CINXE.COM

Search results for: micro-pathogenic organism

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: micro-pathogenic organism</title> <meta name="description" content="Search results for: micro-pathogenic organism"> <meta name="keywords" content="micro-pathogenic organism"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="micro-pathogenic organism" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="micro-pathogenic organism"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 284</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: micro-pathogenic organism</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">284</span> Symbiotic Organism Search (SOS) for Solving the Capacitated Vehicle Routing Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eki%20Ruskartina">Eki Ruskartina</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20F.%20Yu"> Vincent F. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Budi%20Santosa"> Budi Santosa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20N.%20Perwira%20Redi"> A. A. N. Perwira Redi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces symbiotic organism search (SOS) for solving capacitated vehicle routing problem (CVRP). SOS is a new approach in metaheuristics fields and never been used to solve discrete problems. A sophisticated decoding method to deal with a discrete problem setting in CVRP is applied using the basic symbiotic organism search (SOS) framework. The performance of the algorithm was evaluated on a set of benchmark instances and compared results with best known solution. The computational results show that the proposed algorithm can produce good solution as a preliminary testing. These results indicated that the proposed SOS can be applied as an alternative to solve the capacitated vehicle routing problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=symbiotic%20organism%20search" title="symbiotic organism search">symbiotic organism search</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitated%20vehicle%20routing%20problem" title=" capacitated vehicle routing problem"> capacitated vehicle routing problem</a>, <a href="https://publications.waset.org/abstracts/search?q=metaheuristic" title=" metaheuristic"> metaheuristic</a> </p> <a href="https://publications.waset.org/abstracts/27109/symbiotic-organism-search-sos-for-solving-the-capacitated-vehicle-routing-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">634</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">283</span> Organism Profile Causing Prosthetic Joint Infection Continues to Evolve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahaa%20Eldin%20Kornah">Bahaa Eldin Kornah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The organism profile for peri-prosthetic joint infection caused by hematogenous seeding or direct inoculations is changing. The organisms that cause prosthetic joint infections range from normal skin colonizers to highly virulent pathogens. The pathogens continue to evolve. While Staphylococcus aureus continues to be the leading organism, gram-negative bacilli account for approximately 7% of cases and that incidence is increasing. Methicillin-resistant S. aureus(MRSA) accounts for approximately 10% of all infections occurring in the community setting and 20% of those in the health care setting. The list of organisms causing PJI has expanded in recent years. It is important to have an understanding of which organisms may be causing a periprosthetic joint infection based on where the patient contracted it and their recent medical history. Also, recent technology has expanded rapidly and new methods to detect the pathogen and why we failed in detecting it. There are a number of explanations for the latter finding, perhaps the most important reason being the liberal use of antibiotics that interferes with the isolation of the infective organism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infection" title="infection">infection</a>, <a href="https://publications.waset.org/abstracts/search?q=periprosthetic" title=" periprosthetic"> periprosthetic</a>, <a href="https://publications.waset.org/abstracts/search?q=hip" title=" hip"> hip</a>, <a href="https://publications.waset.org/abstracts/search?q=organism%20profile" title=" organism profile"> organism profile</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20infection" title=" joint infection"> joint infection</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20infection" title=" joint infection"> joint infection</a> </p> <a href="https://publications.waset.org/abstracts/159166/organism-profile-causing-prosthetic-joint-infection-continues-to-evolve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">282</span> Awareness of Genetically Modified Products Among Malaysian Consumers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhamad%20Afiq%20Faisal">Muhamad Afiq Faisal</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahaya"> Yahaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Faizal"> Mohd Faizal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamzah"> Hamzah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Genetic modification technology allows scientists to alter the genetic information of a particular organism. The technology allows the production of genetically modified organism (GMO) that has the enhanced property compared to the unmodified organism. The application of such technology is not only in agriculture industry, it is now has been applied extensively in biopharmaceutical industry such as transgenic vaccines. In Malaysia, Biosafety Act 2007 has been enacted in which all GMO-based products must be labeled with adequate information before being marketed. This paper aims to determine the awareness level amongst Malaysian consumers on the GM products available in the market and the efficiency of information supplied in the GM product labeling. The result of the survey will serve as a guideline for Malaysia government agency bodies to provide comprehensive yet efficient information to consumers for the purpose of GM product labeling in the near future. In conclusion, the efficiency of information delivery plays a vital role in ensuring that the information is being conveyed clearly to Malaysian consumers during the selection process of GM products available in the market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20modification%20technology" title="genetic modification technology">genetic modification technology</a>, <a href="https://publications.waset.org/abstracts/search?q=genetically%20modified%20organisms" title=" genetically modified organisms"> genetically modified organisms</a>, <a href="https://publications.waset.org/abstracts/search?q=genetically%20modified%20organism%20products%20labeling" title=" genetically modified organism products labeling"> genetically modified organism products labeling</a>, <a href="https://publications.waset.org/abstracts/search?q=Biosafety%20Act%202007" title=" Biosafety Act 2007"> Biosafety Act 2007</a> </p> <a href="https://publications.waset.org/abstracts/51825/awareness-of-genetically-modified-products-among-malaysian-consumers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">281</span> A Unified Model for Orotidine Monophosphate Synthesis: Target for Inhibition of Growth of Mycobacterium tuberculosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Naga%20Subrahmanyeswara%20Rao">N. Naga Subrahmanyeswara Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Parag%20Arvind%20Deshpande"> Parag Arvind Deshpande</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding nucleotide synthesis reaction of any organism is beneficial to know the growth of it as in Mycobacterium tuberculosis to design anti TB drug. One of the reactions of de novo pathway which takes place in all organisms was considered. The reaction takes places between phosphoribosyl pyrophosphate and orotate catalyzed by orotate phosphoribosyl transferase and divalent metal ion gives orotdine monophosphate, a nucleotide. All the reaction steps of three experimentally proposed mechanisms for this reaction were considered to develop kinetic rate expression. The model was validated using the data for four organisms. This model could successfully describe the kinetics for the reported data. The developed model can serve as a reliable model to describe the kinetics in new organisms without the need of mechanistic determination. So an organism-independent model was developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanism" title="mechanism">mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleotide" title=" nucleotide"> nucleotide</a>, <a href="https://publications.waset.org/abstracts/search?q=organism" title=" organism"> organism</a>, <a href="https://publications.waset.org/abstracts/search?q=tuberculosis" title=" tuberculosis"> tuberculosis</a> </p> <a href="https://publications.waset.org/abstracts/58551/a-unified-model-for-orotidine-monophosphate-synthesis-target-for-inhibition-of-growth-of-mycobacterium-tuberculosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">280</span> Research on Online Consumption of College Students in China with Stimulate-Organism-Reaction Driven Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Lu">Wei Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the development of information technology in China, network consumption is becoming more and more popular. As a special group, college students have a high degree of education and distinct opinions and personalities. In the future, the key groups of network consumption have gradually become the focus groups of network consumption. Studying college students&rsquo; online consumption behavior has important theoretical significance and practical value. Based on the Stimulus-Organism-Response (SOR) driving model and the structural equation model, this paper establishes the influencing factors model of College students&rsquo; online consumption behavior, evaluates and amends the model by using SPSS and AMOS software, analyses and determines the positive factors of marketing college students&rsquo; consumption, and provides an effective basis for guiding and promoting college student consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=college%20students" title="college students">college students</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20consumption" title=" online consumption"> online consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=stimulate-organism-reaction%20driving%20model" title=" stimulate-organism-reaction driving model"> stimulate-organism-reaction driving model</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20equation%20model" title=" structural equation model "> structural equation model </a> </p> <a href="https://publications.waset.org/abstracts/110838/research-on-online-consumption-of-college-students-in-china-with-stimulate-organism-reaction-driven-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">279</span> In vitro Skin Model for Enhanced Testing of Antimicrobial Textiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Steven%20Arcidiacono">Steven Arcidiacono</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Stote"> Robert Stote</a>, <a href="https://publications.waset.org/abstracts/search?q=Erin%20Anderson"> Erin Anderson</a>, <a href="https://publications.waset.org/abstracts/search?q=Molly%20Richards"> Molly Richards</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are numerous standard test methods for antimicrobial textiles that measure activity against specific microorganisms. However, many times these results do not translate to the performance of treated textiles when worn by individuals. Standard test methods apply a single target organism grown under optimal conditions to a textile, then recover the organism to quantitate and determine activity; this does not reflect the actual performance environment that consists of polymicrobial communities in less than optimal conditions or interaction of the textile with the skin substrate. Here we propose the development of in vitro skin model method to bridge the gap between lab testing and wear studies. The model will consist of a defined polymicrobial community of 5-7 commensal microbes simulating the skin microbiome, seeded onto a solid tissue platform to represent the skin. The protocol would entail adding a non-commensal test organism of interest to the defined community and applying a textile sample to the solid substrate. Following incubation, the textile would be removed and the organisms recovered, which would then be quantitated to determine antimicrobial activity. Important parameters to consider include identification and assembly of the defined polymicrobial community, growth conditions to allow the establishment of a stable community, and choice of skin surrogate. This model could answer the following questions: 1) is the treated textile effective against the target organism? 2) How is the defined community affected? And 3) does the textile cause unwanted effects toward the skin simulant? The proposed model would determine activity under conditions comparable to the intended application and provide expanded knowledge relative to current test methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20textiles" title="antimicrobial textiles">antimicrobial textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=defined%20polymicrobial%20community" title=" defined polymicrobial community"> defined polymicrobial community</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20skin%20model" title=" in vitro skin model"> in vitro skin model</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20microbiome" title=" skin microbiome"> skin microbiome</a> </p> <a href="https://publications.waset.org/abstracts/133179/in-vitro-skin-model-for-enhanced-testing-of-antimicrobial-textiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">278</span> Inducing Cryptobiosis State of Tardigrades in Cyanobacteria Synechococcus elongatus for Effective Preservation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nilesh%20Bandekar">Nilesh Bandekar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumita%20Dasgupta"> Sumita Dasgupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Alberto%20Allcahuaman%20Huaya"> Luis Alberto Allcahuaman Huaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Souvik%20Manna"> Souvik Manna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cryptobiosis is a dormant state where all measurable metabolic activities are at a halt, allowing an organism to survive in extreme conditions like low temperature (cryobiosis), extreme drought (anhydrobiosis), etc. This phenomenon is observed especially in tardigrades that can retain this state for decades depending on the abiotic environmental conditions. On returning to favorable conditions, tardigrades re-attain a metabolically active state. In this study, cyanobacteria as a model organism are being chosen to induce cryptobiosis for its effective preservation over a long period of time. Preserving cyanobacteria using this strategy will have multiple space applications because of its ability to produce oxygen. In addition, research has shown the survivability of this organism in space for a certain period of time. Few species of cyanobacterial residents of the soil such as Microcoleus, are able to survive in extreme drought as well. This work specifically focuses on Synechococcus elongatus, an endolith cyanobacteria with multiple benefits. It has the capability to produce 25% oxygen in water bodies. It utilizes carbon dioxide to produce oxygen via photosynthesis and also uses carbon dioxide as an energy source to form glucose via the Calvin cycle. There is a fair possibility of initiating cryptobiosis in such an organism by inducing certain proteins extracted from tardigrades such as Heat Shock Proteins (Hsp27 and Hsp30c) and/or hydrophilic Late Embryogenesis Abundant proteins (LEA). Existing methods like cryopreservation are difficult to execute in space keeping in mind their cost and heavy instrumentation. Also, extensive freezing may cause cellular damage. Therefore, cryptobiosis-induced cyanobacteria for its transportation from Earth to Mars as a part of future terraforming missions on Mars will save resources and increase the effectiveness of preservation. Finally, Cyanobacteria species like Synechococcus elongatus can also produce oxygen and glucose on Mars in favorable conditions and holds the key to terraforming Mars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryptobiosis" title="cryptobiosis">cryptobiosis</a>, <a href="https://publications.waset.org/abstracts/search?q=cyanobacteria" title=" cyanobacteria"> cyanobacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=mars" title=" mars"> mars</a>, <a href="https://publications.waset.org/abstracts/search?q=Synechococcus%20elongatus" title=" Synechococcus elongatus"> Synechococcus elongatus</a>, <a href="https://publications.waset.org/abstracts/search?q=tardigrades" title=" tardigrades"> tardigrades</a> </p> <a href="https://publications.waset.org/abstracts/156718/inducing-cryptobiosis-state-of-tardigrades-in-cyanobacteria-synechococcus-elongatus-for-effective-preservation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">277</span> Internet Impulse Buying: A Study Based on Stimulus-Organism-Response Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pui-Lai%20To">Pui-Lai To</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Jing%20Tsai"> Yi-Jing Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the advance of e-commerce technologies, the consumers buying behavior have changed. The focus on consumer buying behavior has already shifted from physical space to the cyberspace, which impulse buying is a major issue of concern. This study examines the stimulus effect of web environment on the consumer's emotional states, and in turn, affecting the urge of impulse buying based on a stimulus-organism-response (S-O-R) theory. Website ambiance and website service quality are the two stimulus variables. The study also explores the effects and the moderator effects of contextual variables and individual characteristic variables on the web environment, the emotional states and the urge of impulse buying. A total of 328 valid questionnaires were collected. Structural equation modeling was used to test the research hypothesis. This study found that both website ambiance and website service quality have a positive effect on consumer emotion, which in turn positively affect the urge of impulse buying. Consumer’s trait of impulse buying has a positive effect on the urge of impulse buying. Consumer’s hedonic motivation has a positive effect on both emotion state and the urge of impulse buying. On the other hand, the study found that money available for the consumer would positively affect consumer's emotion state and time available for the consumer would negatively affect the relationship between website service quality and consumer emotion. The result of this study validates Internet impulse buying behavior based on the S-O-R theory. This study also suggests that having a good website atmosphere and service quality is important to influencing consumers’ emotion and increasing the likelihood of consumer purchasing. The study could serve as a basis for the future research regarding online consumer behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emotion%20state" title="emotion state">emotion state</a>, <a href="https://publications.waset.org/abstracts/search?q=impulse%20buying" title=" impulse buying"> impulse buying</a>, <a href="https://publications.waset.org/abstracts/search?q=stimulus-organism-response" title=" stimulus-organism-response"> stimulus-organism-response</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20urge%20of%20impulse%20buying" title=" the urge of impulse buying"> the urge of impulse buying</a> </p> <a href="https://publications.waset.org/abstracts/93079/internet-impulse-buying-a-study-based-on-stimulus-organism-response-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">276</span> Some Changes in Biochemical Parameters of Body and Hepato-Biliary System under the Influence of Hydrazine Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Y.%20Saspugayeva">G. Y. Saspugayeva</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20R.%20Beysenova"> R. R. Beysenova</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Khanturin"> M. R. Khanturin</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20T.%20Abseitov"> E. T. Abseitov</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20B.%20Massenov"> K. B. Massenov </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research is devoted to the problems of rocket fuel and impact of its derivatives on environment and living things. Hydrazine derivatives are used in different spheres, in aero-space activity, medical practice, laboratory-diagnosis practice and etc. For Kazakhstan, which has the cosmodrome "Baikonur", the problem of environmental pollution by rocket fuel and its components is important issue. An unsymmetrical dimethylhydrazine is mostly used as rocket fuel for launch vehicles which has high toxicity to humans and animals referred to the World Health Organization. The question about influence of hydrazine derivatives on human organism and ways of detoxication is very actual and requires special approaches in solving these problems. In connection with this situation, we set the goal: study the negative influence of hydrazine derivatives-hydrazine sulphur, nitrosodimethylamine (NDMA), phenylhydrazine, isonicotinic acid hydrazide (IAH) on some biochemical parameters of blood, hepatobiliary system and correction of functional damages of organism with “Salsocollin” drugs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isonicotinic%20acid%20hydrazide%20%28IAH%29" title="isonicotinic acid hydrazide (IAH)">isonicotinic acid hydrazide (IAH)</a>, <a href="https://publications.waset.org/abstracts/search?q=N-nitrosodimethylamine%20%28NDMA%29" title=" N-nitrosodimethylamine (NDMA)"> N-nitrosodimethylamine (NDMA)</a>, <a href="https://publications.waset.org/abstracts/search?q=AlAT-alanine%20aminotransferase" title=" AlAT-alanine aminotransferase"> AlAT-alanine aminotransferase</a>, <a href="https://publications.waset.org/abstracts/search?q=AsAT-aspartate%20aminotransaminase" title=" AsAT-aspartate aminotransaminase "> AsAT-aspartate aminotransaminase </a> </p> <a href="https://publications.waset.org/abstracts/16379/some-changes-in-biochemical-parameters-of-body-and-hepato-biliary-system-under-the-influence-of-hydrazine-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">275</span> In Vitro Effects of Azadirachta indica Leaves Extract Against Albugo Candida, the Causative Agent of White Blisters Disease of Brassica Oleraceae L., Var. Italica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Affiah%20D.%20U.">Affiah D. U.</a>, <a href="https://publications.waset.org/abstracts/search?q=Katuri%20I.%20P."> Katuri I. P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Emefiene%20M.%20E."> Emefiene M. E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Amienyo%20C.%20A."> Amienyo C. A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Broccoli (Brassica oleraceae L., var. italica) is one of the most important vegetables that is high in nutrients and bioactive compounds. It easily grown on a wide range of soil types and is adaptable to many different climatic conditions. This study was carried out within Jos North and environs in vitro to evaluate Neem (Azadirachta indica) leaves extract against Albugo candida, the causative agent of white blisters disease of broccoli. Through the survey, prevalence and incidence were accessed and a fluffy white growth symptom on the underside of leaves was also observed on the field. Infected leaves samples were collected from three different farms namely: Farin Gada, Naraguta, and Juth and the organism associated with the disease was isolated. Pathogenicity test carried out revealed the fungal isolate Albugo candida to be responsible for the disease. Antimicrobial susceptibility test was performed using agar well diffusion method to determine the minimum inhibitory concentrations of two extract of Azadirachta indica leaves against the organism. Ethanolic extract had the highest antifungal activities of 3.30±0.21 - 17.61± 0.11 while aqueous extract had the least antifungal activities of 0.00±0.00 - 13.23±0.12. The minimum inhibitory concentration of aqueous was 100 mg/ml while its minimum fungicidal concentration was at 200 mg/ml. For ethanol, the minimum inhibitory concentration was 50 mg/ml while its minimum fungicidal concentration was 100 mg/ml. Plants being less toxic in usage over synthetic or inorganic chemicals makes them easy to handle, easily accessible and renewable. Due to the biosafety of plant extracts and its availability since the plant-based extracts of the two different solvents were found to be effective against the test organism hence, it is recommended for in-depth research to make it readily available for control of other pathogens and pests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antifungal" title="antifungal">antifungal</a>, <a href="https://publications.waset.org/abstracts/search?q=biocontrol" title=" biocontrol"> biocontrol</a>, <a href="https://publications.waset.org/abstracts/search?q=broccoli" title=" broccoli"> broccoli</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a> </p> <a href="https://publications.waset.org/abstracts/175662/in-vitro-effects-of-azadirachta-indica-leaves-extract-against-albugo-candida-the-causative-agent-of-white-blisters-disease-of-brassica-oleraceae-l-var-italica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">274</span> A Comparison of the Microbiology Profile for Periprosthetic Joint Infection (PJI) of Knee Arthroplasty and Lower Limb Endoprostheses in Tumour Surgery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirul%20Adlan">Amirul Adlan</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20A%20McCulloch"> Robert A McCulloch</a>, <a href="https://publications.waset.org/abstracts/search?q=Neil%20Jenkins"> Neil Jenkins</a>, <a href="https://publications.waset.org/abstracts/search?q=MIchael%20Parry"> MIchael Parry</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Stevenson"> Jonathan Stevenson</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Jeys"> Lee Jeys</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Objectives: The current antibiotic prophylaxis for oncological patients is based upon evidence from primary arthroplasty despite significant differences in both patient group and procedure. The aim of this study was to compare the microbiology organisms responsible for PJI in patients who underwent two-stage revision for infected primary knee replacement with those of infected oncological endoprostheses of the lower limb in a single institution. This will subsequently guide decision making regarding antibiotic prophylaxis at primary implantation for oncological procedures and empirical antibiotics for infected revision procedures (where the infecting organism(s) are unknown). Patient and Methods: 118 patients were treated with two-stage revision surgery for infected knee arthroplasty and lower limb endoprostheses between 1999 and 2019. 74 patients had two-stage revision for PJI of knee arthroplasty, and 44 had two-stage revision of lower limb endoprostheses. There were 68 males and 50 females. The mean age for the knee arthroplasty cohort and lower limb endoprostheses cohort were 70.2 years (50-89) and 36.1 years (12-78), respectively (p<0.01). Patient host and extremity criteria were categorised according to the MSIS Host and Extremity Staging System. Patient microbiological culture, the incidence of polymicrobial infection and multi-drug resistance (MDR) were analysed and recorded. Results: Polymicrobial infection was reported in 16% (12 patients) from knee arthroplasty PJI and 14.5% (8 patients) in endoprostheses PJI (p=0.783). There was a significantly higher incidence of MDR in endoprostheses PJI, isolated in 36.4% of cultures, compared to knee arthroplasty PJI (17.2%) (p=0.01). Gram-positive organisms were isolated in more than 80% of cultures from both cohorts. Coagulase-negative Staphylococcus (CoNS) was the commonest gram-positive organism, and Escherichia coli was the commonest Gram-negative organism in both groups. According to the MSIS staging system, the host and extremity grade of knee arthroplasty PJI cohort were significantly better than endoprostheses PJI(p<0.05). Conclusion: Empirical antibiotic management of PJI in orthopaedic oncology is based upon PJI in arthroplasty despite differences in both host and microbiology. Our results show a significant increase in MDR pathogens within the oncological group despite CoNS being the most common infective organism in both groups. Endoprosthetic patients presented with poorer host and extremity criteria. These factors should be considered when managing this complex patient group, emphasising the importance of broad-spectrum antibiotic prophylaxis and preoperative sampling to ensure appropriate perioperative antibiotic cover. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbiology" title="microbiology">microbiology</a>, <a href="https://publications.waset.org/abstracts/search?q=periprosthetic%20Joint%20infection" title=" periprosthetic Joint infection"> periprosthetic Joint infection</a>, <a href="https://publications.waset.org/abstracts/search?q=knee%20arthroplasty" title=" knee arthroplasty"> knee arthroplasty</a>, <a href="https://publications.waset.org/abstracts/search?q=endoprostheses" title=" endoprostheses"> endoprostheses</a> </p> <a href="https://publications.waset.org/abstracts/152707/a-comparison-of-the-microbiology-profile-for-periprosthetic-joint-infection-pji-of-knee-arthroplasty-and-lower-limb-endoprostheses-in-tumour-surgery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">273</span> Phytochemial Screening, Anti-Microbial, and Minerals Determination of Leptadenia Hastata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20L.%20Ibrahim">I. L. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mann"> A. Mann</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20A.%20Adam"> B. A. Adam </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project involved screening for antibacterial activity, phytochemical and mineral properties of Leptadenia hastata by flame photometry. The result of phytochemical screening reveals that the presence of flavonoids, tannins, saponins, alkaloids, steroidal, and anthraquinones while the cardiac glycoside was absent. This justifies the plant been used as anti-bleeding and anti-inflammatory agents. The result of flame photometry revealed that 1.85 % (Na), 0.65% (K) and 1.85 % (Ca) which indicates the safe nature of the plant extract as such could be used to lower high blood pressure. The antibacterial properties of both the aqueous and ethanolic extract were studied against some bacteria, Escherichia coli, Bacillus Cercus, Pseudomonas aeruginas, and Enterobacter aerogegens, by disc diffusion method and the result reveals that there are very good activities against the organism while the ethanolic extract at concentration 1.0 – 1.2 mg/ml. the ethanolic extract showed in considerable zone inhibition against bacteria’s; Escherichia coli, Bacillus Cercus, pseudomonas aeruginosa andklebsellapnemuoniae. Minimum inhibitory concentration (MIC) and minimum Bacterial concentration (MBC) were conducted with fairly good significant effect of inhibition on the organism, therefore, plant extract could be a potential source of antibacterial agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Leptadenia%20hastata" title=" Leptadenia hastata"> Leptadenia hastata</a>, <a href="https://publications.waset.org/abstracts/search?q=infectious%20diseases" title=" infectious diseases"> infectious diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical%20screening" title=" phytochemical screening "> phytochemical screening </a> </p> <a href="https://publications.waset.org/abstracts/25213/phytochemial-screening-anti-microbial-and-minerals-determination-of-leptadenia-hastata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">588</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">272</span> Developing Biocompatible Iridium Oxide Electrodes for Bone-Guided Extra-Cochlear Implant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yung-Shan%20Lu">Yung-Shan Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Fone%20Lee"> Chia-Fone Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Shang-Hsuan%20Li"> Shang-Hsuan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Hao%20Liu"> Chien-Hao Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, various bioelectronic devices have been developed for neurologic disease treatments via electro-stimulations such as cochlear implants and retinal prosthesis. Since the electric signal needs electrodes to be transmitted to an organism, electrodes play an important role of stimulations. The materials of stimulation electrodes affect the efficiency of the delivered currents. The higher the efficiency of the electrodes, the lower the threshold current can be used to stimulate the organism which minimizes the potential damages to the adjacent tissues. In this study, we proposed a biocompatible composite electrode composed of high-charge-capacity iridium oxide (IrOₓ) film for a bone-guide extra-cochlear implant. IrOₓ was exploited to decrease the threshold current due to its high capacitance and low impedance. The IrOₓ electrode was fabricated via microelectromechanical systems (MEMS) photolithography and examined with in-vivo tests with guinea pigs. Based on the measured responses of brain waves to sound, the results demonstrated that IrOₓ electrodes have a lower threshold current compared with the Platinum (Pt) electrodes. The research results are expected to be beneficial for implantable and biocompatible electrodes for electrical stimulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cochlear%20implants" title="cochlear implants">cochlear implants</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode" title=" electrode"> electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20stimulation" title=" electrical stimulation"> electrical stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=iridium%20oxide" title=" iridium oxide"> iridium oxide</a> </p> <a href="https://publications.waset.org/abstracts/100114/developing-biocompatible-iridium-oxide-electrodes-for-bone-guided-extra-cochlear-implant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">271</span> Cytotoxic Effects of Ag/TiO2 Nanoparticles on the Unicellular Organism Paramecium tetraurelia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20Bernal-Martinez">Juan Bernal-Martinez</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoe%20Quinones-Jurado"> Zoe Quinones-Jurado</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Waldo-Mendoza"> Miguel Waldo-Mendoza</a>, <a href="https://publications.waset.org/abstracts/search?q=Elias%20Perez"> Elias Perez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction and Objective: Ag-TiO2 nanoparticles (NP) have been characterized as effective antibacterial compounds against E. aureous, E. coli, Salmonella and others. Because these nanoparticles have been used in plastic-food containers, there is a concern about the toxicity of Ag-TiO2 NP for higher organisms from protozoan, invertebrates, and mammals. The objective of this study is to evaluate the cytotoxic effect of Ag-TiO2 NP on the survival and swimming behavior of the unicellular organism Paramecium tetraurelia. Material and Methods: Preparation of metallic silver on TiO2 surface was based on chemical reduction route of AgNO3. Aqueous suspension of TiO2 nanoparticles was preparing by adding 5 g of TiO2 to 250 ml of deionized water and followed by sonication for 10 min. The required amount of AgNO3 solutions was added to TiO2 suspension, maintaining heating and stirring. Silver concentration was 0.5, 1.5, 5.0, 25, 35 and 45 % w/w versus TiO2. Paramecium tetraurelia (Carolina Biological, Cat. # 131560) was used as a biological preparation. It was cultured in artificial culture media made as follows: Stigmasterol 5 mg/ml of ethanol, Caseaminoacids 0.3 gr/lt.; KCl 4mM; CaCl2 1mM; MgCl2 100uM and MOPS 1mM, pH 7.3. This media was inoculated with Enterobacter-sp. Paramecium was concentrated after 24 hours of incubation by centrifugation. The pellet of cells was resuspended in 4.1.1 solution prepared as follows (in mM): KCl, 4 mM; CaCl2, 1mM and Trizma, 1mM; pH 7.3. Transmission electron microscopy (TEM) studies were performed to evaluate the appropriate dispersion and topographic distribution AgNPs deposited on TiO2. The experimental solutions were prepared as follows: 50 mg of Polyvinyhlpirolidone were added to 5 ml of 4.1.1. solution. Then, 50 mg of powder 25-Ag-TiO2 was added, mixing for 10 min and sonicated for 60 min. Survival of Paramecium and possible toxic effects after 25-Ag-TiO2 treatment was observed through an inverted microscope. The Paramecium swimming behavior and possible dead cells were recorded for periods of approximately 20-50 seconds by using a digital USB camera adapted to the microscope. Results and Discussion: TEM micrographs demonstrated the topographic distribution of AgNPs deposited on TiO2. 25Ag-TiO2 NP was efficiently dissolved and dispersed in 4.1.1 solution at concentrations from 0.1, 1 and 10 mg/ml. When Paramecium were treated with 25Ag-TiO2 NP at 100 ug/ml, it was observed that cells started swimming backwards. This backward swimming behavior is the typical avoiding reaction of the ciliate in response to a noxious stimulus. After 10 min of incubation, it was observed that Paramecium stopped swimming backwards and exploited. We can argue that this toxic effect of 25Ag-TiO2 NP is probably due to the calcium influx and calcium accumulation during the long-lasting swimming backwards. Conclusions: Here we have demonstrated that 25Ag-TiO2 NP has a specific toxic effect on an organism higher than bacteria such as the protozoan Paremecium. Probably these toxic phenomena could be expected to be observed in a higher organism such as invertebrates and mammals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ag-TiO2" title="Ag-TiO2">Ag-TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20permeability" title=" calcium permeability"> calcium permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=paramecium" title=" paramecium"> paramecium</a> </p> <a href="https://publications.waset.org/abstracts/51454/cytotoxic-effects-of-agtio2-nanoparticles-on-the-unicellular-organism-paramecium-tetraurelia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">270</span> Social Health and Adaptation of Armenian Physicians</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Margaryan">A. G. Margaryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ability of adaptation of the organism is considered as an important component of health in maintaining relative dynamic constancy of the hemostasis and functioning of all organs and systems. Among the various forms of adaptation (individual, species and mental), social adaptation of the organism has a particular role. The aim of this study was to evaluate the subjective perception of social factors, social welfare and the level of adaptability of Armenian physicians. The survey involved 2,167 physicians (592 men and 1,575 women). According to the survey, most physicians (75.1%) were married. It was found that 88.6% of respondents had harmonious family relationships, 7.6% of respondents – tense relationships, and 1.0% – marginal relationships. The results showed that the average monthly salary with all premium payments amounted to 88 263.6±5.0 drams, and 16.7% of physicians heavily relied on the material support of parents or other relatives. Low material welfare was also confirmed by the analysis of the living conditions. Analysis of the results showed that the degree of subjective perception of social factors of different specialties averaged 11.3±3.1 points, which corresponds to satisfactory results (a very good result – 4.0 points). The degree of social adaptation of physicians on average makes 4.13±1.9 points, which corresponds to poor results (allowable less than 3.0 points). The distribution of the results of social adaptation severity revealed that the majority of physicians (58.6%) showed low social adaptation, average social adaptation is observed in 22.4% of the physicians and high adaptation – in only 17.4% of physicians. In conclusions, the findings of this study suggest that the degree of social adaptation of currently practicing physicians is low. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physician%27s%20health" title="physician&#039;s health">physician&#039;s health</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20adaptation" title=" social adaptation"> social adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20factor" title=" social factor"> social factor</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20health" title=" social health"> social health</a> </p> <a href="https://publications.waset.org/abstracts/58927/social-health-and-adaptation-of-armenian-physicians" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">269</span> Efficient Delivery of Biomaterials into Living Organism by Using Noble Metal Nanowire Injector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kkochorong%20Park">Kkochorong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Keun%20Cheon%20Kim"> Keun Cheon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyoban%20Lee"> Hyoban Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun%20Ju%20Lee"> Eun Ju Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Bongsoo%20Kim"> Bongsoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction of biomaterials such as DNA, RNA, proteins is important for many research areas. There are many methods to introduce biomaterials into living organisms like tissue and cells. To introduce biomaterials, several indirect methods including virus‐mediated delivery, chemical reagent (i.e., lipofectamine), electrophoresis have been used. Such methods are passive delivery using an endocytosis process of cell, reducing an efficiency of delivery. Unlike the indirect delivery method, it has been reported that a direct delivery of exogenous biomolecules into nucleus have been more efficient to expression or integration of biomolecules. Nano-sized material is beneficial for detect signal from cell or deliver stimuli/materials into the cell at cellular and molecular levels, due to its similar physical scale. Especially, because 1 dimensional (1D) nanomaterials such as nanotube, nanorod and nanowire with high‐aspect ratio have nanoscale geometry and excellent mechanical, electrical, and chemical properties, they could play an important role in molecular and cellular biology. In this study, by using single crystalline 1D noble metal nanowire, we fabricated nano-sized 1D injector which can successfully interface with living cells and directly deliver biomolecules into several types of cell line (i.e., stem cell, mammalian embryo) without inducing detrimental damages on living cell. This nano-bio technology could be a promising and robust tool for introducing exogenous biomaterials into living organism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA" title="DNA">DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20delivery" title=" gene delivery"> gene delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoinjector" title=" nanoinjector"> nanoinjector</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowire" title=" nanowire"> nanowire</a> </p> <a href="https://publications.waset.org/abstracts/62718/efficient-delivery-of-biomaterials-into-living-organism-by-using-noble-metal-nanowire-injector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">268</span> Computational Identification of Signalling Pathways in Protein Interaction Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angela%20U.%20Makolo">Angela U. Makolo</a>, <a href="https://publications.waset.org/abstracts/search?q=Temitayo%20A.%20Olagunju"> Temitayo A. Olagunju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The knowledge of signaling pathways is central to understanding the biological mechanisms of organisms since it has been identified that in eukaryotic organisms, the number of signaling pathways determines the number of ways the organism will react to external stimuli. Signaling pathways are studied using protein interaction networks constructed from protein-protein interaction data obtained using high throughput experimental procedures. However, these high throughput methods are known to produce very high rates of false positive and negative interactions. In order to construct a useful protein interaction network from this noisy data, computational methods are applied to validate the protein-protein interactions. In this study, a computational technique to identify signaling pathways from a protein interaction network constructed using validated protein-protein interaction data was designed. A weighted interaction graph of the Saccharomyces cerevisiae (Baker’s Yeast) organism using the proteins as the nodes and interactions between them as edges was constructed. The weights were obtained using Bayesian probabilistic network to estimate the posterior probability of interaction between two proteins given the gene expression measurement as biological evidence. Only interactions above a threshold were accepted for the network model. A pathway was formalized as a simple path in the interaction network from a starting protein and an ending protein of interest. We were able to identify some pathway segments, one of which is a segment of the pathway that signals the start of the process of meiosis in S. cerevisiae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20networks" title="Bayesian networks">Bayesian networks</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20interaction%20networks" title=" protein interaction networks"> protein interaction networks</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae" title=" Saccharomyces cerevisiae"> Saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=signalling%20pathways" title=" signalling pathways"> signalling pathways</a> </p> <a href="https://publications.waset.org/abstracts/22095/computational-identification-of-signalling-pathways-in-protein-interaction-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">546</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">267</span> Phenotypic Characterization of Listeria Spp Isolated from Chicken Carcasses Marketed in Northeast of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdollah%20Jamshidi">Abdollah Jamshidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tayebeh%20Zeinali"> Tayebeh Zeinali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrnaz%20Rad"> Mehrnaz Rad</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamshid%20Razmyar"> Jamshid Razmyar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Listeria infections occur worldwide in variety of animals and man. Listeriae are widely distributed in nature. The organism has been isolated from the feces of humans and several animals, different soils, plants, aquatic environments and food of animal and vegetable origin. Listeria monocytogenes is recognized as important food-borne pathogens due to its high mortality rate. This organism is able to growth at refrigeration temperature, and high osmotic pressure. Poultry can become contaminated environmentally or through healthy carrier birds. In recent decades, prophylactic use of antimicrobial agents may be lead to emergence of antibiotic resistant organisms, which can be transmitted to human through consumption of contaminated foods. In this study, from 200 fresh chicken carcasses samples which were collected randomly from different supermarkets and butcheries, 80 samples were detected as contaminate with Listeria spp. and 19% of the isolates identified as Listeria monocytogene using multiplex PCR assay. Conventional methods were used to differentiate other species of the listeria genus. The results showed the most prevalent isolates as L. monocytogenes (48.75%). Other isolates were detected as Listeria innocua (28.75%), Listeria murrayi (20%), Listeria grayi (3.75%) and Listeria welshimeri (2.5%).The Majority of the isolates had multidrug resistance to commonly used antibiotics. Most of them were resistant to erythromycin (50%), followed by Tetracycline (44.44%), Clindamycin (41.66%), and Trimethoprim (25%). Some of them showed resistance to chloramphenicol (17.65%). The results indicate the resistance of the isolates to antimicrobials commonly used to treat human listeriosis, which could be a potential health hazard for consumers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=listeria%20species" title="listeria species">listeria species</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20monocytogenes" title=" L. monocytogenes"> L. monocytogenes</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance" title=" antibiotic resistance"> antibiotic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=chicken%20carcass" title=" chicken carcass"> chicken carcass</a> </p> <a href="https://publications.waset.org/abstracts/35844/phenotypic-characterization-of-listeria-spp-isolated-from-chicken-carcasses-marketed-in-northeast-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">266</span> Defining Death and Dying in Relation to Information Technology and Advances in Biomedicine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evangelos%20Koumparoudis">Evangelos Koumparoudis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The definition of death is a deep philosophical question, and no single meaning can be ascribed to it. This essay focuses on the ontological, epistemological, and ethical aspects of death and dying in view of technological progress in information technology and biomedicine. It starts with the ad hoc 1968 Harvard committee that proposed that the criterion for the definition of death be irreversible coma and then refers to the debate over the whole brain death formula, emphasizing the integrated function of the organism and higher brain formula, taking consciousness and personality as essential human characteristics. It follows with the contribution of information technology in personalized and precision medicine and anti-aging measures aimed at life prolongation. It also touches on the possibility of the creation of human-machine hybrids and how this raises ontological and ethical issues that concern the “cyborgization” of human beings and the conception of the organism and personhood based on a post/transhumanist essence, and, furthermore, if sentient AI capable of autonomous decision-making that might even surpass human intelligence (singularity, superintelligence) deserves moral or legal personhood. Finally, there is the question as to whether death and dying should be redefined at a transcendent level, which is reinforced by already-existing technologies of “virtual after-” life and the possibility of uploading human minds. In the last section, I refer to the current (and future) applications of nanomedicine in diagnostics, therapeutics, implants, and tissue engineering as well as the aspiration to “immortality” by cryonics. The definition of death is reformulated since age and disease elimination may be realized, and the criterion of irreversibility may be challenged. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=death" title="death">death</a>, <a href="https://publications.waset.org/abstracts/search?q=posthumanism" title=" posthumanism"> posthumanism</a>, <a href="https://publications.waset.org/abstracts/search?q=infomedicine" title=" infomedicine"> infomedicine</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomedicine" title=" nanomedicine"> nanomedicine</a>, <a href="https://publications.waset.org/abstracts/search?q=cryonics" title=" cryonics"> cryonics</a> </p> <a href="https://publications.waset.org/abstracts/175526/defining-death-and-dying-in-relation-to-information-technology-and-advances-in-biomedicine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">265</span> Numerical Simulation of Von Karman Swirling Bioconvection Nanofluid Flow from a Deformable Rotating Disk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kadir">Ali Kadir</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Mishra"> S. R. Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shamshuddin"> M. Shamshuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Anwar%20Beg"> O. Anwar Beg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Motivation- Rotating disk bio-reactors are fundamental to numerous medical/biochemical engineering processes including oxygen transfer, chromatography, purification and swirl-assisted pumping. The modern upsurge in biologically-enhanced engineering devices has embraced new phenomena including bioconvection of micro-organisms (photo-tactic, oxy-tactic, gyrotactic etc). The proven thermal performance superiority of nanofluids i.e. base fluids doped with engineered nanoparticles has also stimulated immense implementation in biomedical designs. Motivated by these emerging applications, we present a numerical thermofluid dynamic simulation of the transport phenomena in bioconvection nanofluid rotating disk bioreactor flow. Methodology- We study analytically and computationally the time-dependent three-dimensional viscous gyrotactic bioconvection in swirling nanofluid flow from a rotating disk configuration. The disk is also deformable i.e. able to extend (stretch) in the radial direction. Stefan blowing is included. The Buongiorno dilute nanofluid model is adopted wherein Brownian motion and thermophoresis are the dominant nanoscale effects. The primitive conservation equations for mass, radial, tangential and axial momentum, heat (energy), nanoparticle concentration and micro-organism density function are formulated in a cylindrical polar coordinate system with appropriate wall and free stream boundary conditions. A mass convective condition is also incorporated at the disk surface. Forced convection is considered i.e. buoyancy forces are neglected. This highly nonlinear, strongly coupled system of unsteady partial differential equations is normalized with the classical Von Karman and other transformations to render the boundary value problem (BVP) into an ordinary differential system which is solved with the efficient Adomian decomposition method (ADM). Validation with earlier Runge-Kutta shooting computations in the literature is also conducted. Extensive computations are presented (with the aid of MATLAB symbolic software) for radial and circumferential velocity components, temperature, nanoparticle concentration, micro-organism density number and gradients of these functions at the disk surface (radial local skin friction, local circumferential skin friction, Local Nusselt number, Local Sherwood number, motile microorganism mass transfer rate). Main Findings- Increasing radial stretching parameter decreases radial velocity and radial skin friction, reduces azimuthal velocity and skin friction, decreases local Nusselt number and motile micro-organism mass wall flux whereas it increases nano-particle local Sherwood number. Disk deceleration accelerates the radial flow, damps the azimuthal flow, decreases temperatures and thermal boundary layer thickness, depletes the nano-particle concentration magnitudes (and associated nano-particle species boundary layer thickness) and furthermore decreases the micro-organism density number and gyrotactic micro-organism species boundary layer thickness. Increasing Stefan blowing accelerates the radial flow and azimuthal (circumferential flow), elevates temperatures of the nanofluid, boosts nano-particle concentration (volume fraction) and gyrotactic micro-organism density number magnitudes whereas suction generates the reverse effects. Increasing suction effect reduces radial skin friction and azimuthal skin friction, local Nusselt number, and motile micro-organism wall mass flux whereas it enhances the nano-particle species local Sherwood number. Conclusions - Important transport characteristics are identified of relevance to real bioreactor nanotechnological systems not discussed in previous works. ADM is shown to achieve very rapid convergence and highly accurate solutions and shows excellent promise in simulating swirling multi-physical nano-bioconvection fluid dynamics problems. Furthermore, it provides an excellent complement to more general commercial computational fluid dynamics simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-nanofluids" title="bio-nanofluids">bio-nanofluids</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20disk%20bioreactors" title=" rotating disk bioreactors"> rotating disk bioreactors</a>, <a href="https://publications.waset.org/abstracts/search?q=Von%20Karman%20swirling%20flow" title=" Von Karman swirling flow"> Von Karman swirling flow</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solutions" title=" numerical solutions"> numerical solutions</a> </p> <a href="https://publications.waset.org/abstracts/97804/numerical-simulation-of-von-karman-swirling-bioconvection-nanofluid-flow-from-a-deformable-rotating-disk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">264</span> Functional Finishing of Organic Cotton Fabric Using Vetiver Root Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sakeena%20Naikwadi">Sakeena Naikwadi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Jagaluraiah%20Sannapapamma"> K. Jagaluraiah Sannapapamma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vetiveria zizanioides is an aromatic grass and traditionally been used in aromatherapy and ayurvedic medicine. Vetiver root is multi-functional biopolymer and has highly aromatic, antimicrobial, UV blocking, antioxidant properties suitable for textile finishing. The vetiver root (Gulabi) powder of different concentration (2, 4, 6,8 percent) were extracted by aqueous and solvent methods subjected to bioassay for antimicrobial efficiency and GCMS spectral analysis. The organic cotton fabric was finished with vetiver root extract (8 percent) by exhaust and pad dry cure methods. The finished fabric was assessed for functional properties viz., UV protective factor, antimicrobial efficiency and aroma intensity. The results revealed that Ethanol extraction showed a greater zone of inhibition compared to aqueous extract in root powder. Among the concentrations, 8 percent root extract in ethanol showed a greater zone of inhibition against gram-positive organism S. aureus and gram-negative organism E. coli. The major compounds present in vetiver root extracts were diethyl pathalate with greater percentage (87.73 %) followed by 7- Isopropyl dimethyl carboxylic acid (4.05 %), 2-butanone 4-trimethyle cyclohexen (1.21 %), phenanthrene carboxylic acid (1.03 %), naphthalene pentanoic acid (0.99 %), 1-phenanthrene carboxylic acid and 1 cyclohexenone 2-methyl oxobuty (0.89 %). The sample finished by pad dry cure method exhibited better UV protection even after 10th wash as compared to exhaust method. Vetiver extract treated samples exhibited maximum zone of inhibition against S. aureus than the E. coli organism. The vetiver root extract treated organic cotton fabric through pad dry cure method possessed good antimicrobial activity against S. aureus and E. coli even after 20th washes compared to vetiver root extract treated by exhaust method. The olfactory analysis was carried out by 30 panels of members and opined that vetiver root extract treated fabric has very good and pleasant aroma with better tactile properties that provide cooling, soothing effect and enhances the mood of the wearer. Vetiver root extract finished organic cotton fabric possessed aroma, antimicrobial and UV properties which are aptly suitable for medical and healthcare textiles viz., wound dressing, bandage gauze, surgical cloths, baby diapers and sanitary napkins. It can be used as after finishing agent for variegated garments and made-ups and can be replaced with commercial after finishing agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=olfactory%20analysis" title=" olfactory analysis"> olfactory analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20protection%20factor" title=" UV protection factor"> UV protection factor</a>, <a href="https://publications.waset.org/abstracts/search?q=vetiver%20root%20extract" title=" vetiver root extract"> vetiver root extract</a> </p> <a href="https://publications.waset.org/abstracts/85045/functional-finishing-of-organic-cotton-fabric-using-vetiver-root-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">263</span> TAXAPRO, A Streamlined Pipeline to Analyze Shotgun Metagenomes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Sehli">Sofia Sehli</a>, <a href="https://publications.waset.org/abstracts/search?q=Zainab%20El%20Ouafi"> Zainab El Ouafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Casey%20Eddington"> Casey Eddington</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumaya%20Jbara"> Soumaya Jbara</a>, <a href="https://publications.waset.org/abstracts/search?q=Kasambula%20Arthur%20Shem"> Kasambula Arthur Shem</a>, <a href="https://publications.waset.org/abstracts/search?q=Islam%20El%20Jaddaoui"> Islam El Jaddaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayorinde%20Afolayan"> Ayorinde Afolayan</a>, <a href="https://publications.waset.org/abstracts/search?q=Olaitan%20I.%20Awe"> Olaitan I. Awe</a>, <a href="https://publications.waset.org/abstracts/search?q=Allissa%20Dillman"> Allissa Dillman</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Ghazal"> Hassan Ghazal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ability to promptly sequence whole genomes at a relatively low cost has revolutionized the way we study the microbiome. Microbiologists are no longer limited to studying what can be grown in a laboratory and instead are given the opportunity to rapidly identify the makeup of microbial communities in a wide variety of environments. Analyzing whole genome sequencing (WGS) data is a complex process that involves multiple moving parts and might be rather unintuitive for scientists that don’t typically work with this type of data. Thus, to help lower the barrier for less-computationally inclined individuals, TAXAPRO was developed at the first Omics Codeathon held virtually by the African Society for Bioinformatics and Computational Biology (ASBCB) in June 2021. TAXAPRO is an advanced metagenomics pipeline that accurately assembles organelle genomes from whole-genome sequencing data. TAXAPRO seamlessly combines WGS analysis tools to create a pipeline that automatically processes raw WGS data and presents organism abundance information in both a tabular and graphical format. TAXAPRO was evaluated using COVID-19 patient gut microbiome data. Analysis performed by TAXAPRO demonstrated a high abundance of Clostridia and Bacteroidia genera and a low abundance of Proteobacteria genera relative to others in the gut microbiome of patients hospitalized with COVID-19, consistent with the original findings derived using a different analysis methodology. This provides crucial evidence that the TAXAPRO workflow dispenses reliable organism abundance information overnight without the hassle of performing the analysis manually. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metagenomics" title="metagenomics">metagenomics</a>, <a href="https://publications.waset.org/abstracts/search?q=shotgun%20metagenomic%20sequence%20analysis" title=" shotgun metagenomic sequence analysis"> shotgun metagenomic sequence analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline" title=" pipeline"> pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a> </p> <a href="https://publications.waset.org/abstracts/147152/taxapro-a-streamlined-pipeline-to-analyze-shotgun-metagenomes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">262</span> Phylogenetic Differential Separation of Environmental Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amber%20C.%20W.%20Vandepoele">Amber C. W. Vandepoele</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20A.%20Marciano"> Michael A. Marciano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biological analyses frequently focus on single organisms, however many times, the biological sample consists of more than the target organism; for example, human microbiome research targets bacterial DNA, yet most samples consist largely of human DNA. Therefore, there would be an advantage to removing these contaminating organisms. Conversely, some analyses focus on a single organism but would greatly benefit from the additional information regarding the other organismal components of the sample. Forensic analysis is one such example, wherein most forensic casework, human DNA is targeted; however, it typically exists in complex non-pristine sample substrates such as soil or unclean surfaces. These complex samples are commonly comprised of not just human tissue but also microbial and plant life, where these organisms may help gain more forensically relevant information about a specific location or interaction. This project aims to optimize a ‘phylogenetic’ differential extraction method that will separate mammalian, bacterial and plant cells in a mixed sample. This is accomplished through the use of size exclusion separation, whereby the different cell types are separated through multiple filtrations using 5 μm filters. The components are then lysed via differential enzymatic sensitivities among the cells and extracted with minimal contribution from the preceding component. This extraction method will then allow complex DNA samples to be more easily interpreted through non-targeting sequencing since the data will not be skewed toward the smaller and usually more numerous bacterial DNAs. This research project has demonstrated that this ‘phylogenetic’ differential extraction method successfully separated the epithelial and bacterial cells from each other with minimal cell loss. We will take this one step further, showing that when adding the plant cells into the mixture, they will be separated and extracted from the sample. Research is ongoing, and results are pending. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20isolation" title="DNA isolation">DNA isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=geolocation" title=" geolocation"> geolocation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-human" title=" non-human"> non-human</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20separation" title=" phylogenetic separation"> phylogenetic separation</a> </p> <a href="https://publications.waset.org/abstracts/122792/phylogenetic-differential-separation-of-environmental-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">261</span> 3D Scaffolds Fabricated by Microfluidic Device for Rat Cardiomyocytes Observation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih-Wei%20Chao">Chih-Wei Chao</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiashing%20Yu"> Jiashing Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microfluidic devices have recently emerged as promising tools for the fabrication of scaffolds for cell culture. To mimic the natural circumstances of organism for cells to grow, here we present three-dimensional (3D) scaffolds fabricated by microfluidics for cells cultivation. This work aims at investigating the behavior in terms of the viability and the proliferation capability of rat H9c2 cardiomyocytes in the gelatin 3D scaffolds by fluorescent images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidic%20device" title="microfluidic device">microfluidic device</a>, <a href="https://publications.waset.org/abstracts/search?q=H9c2" title=" H9c2"> H9c2</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20scaffolds" title=" 3D scaffolds"> 3D scaffolds</a> </p> <a href="https://publications.waset.org/abstracts/13074/3d-scaffolds-fabricated-by-microfluidic-device-for-rat-cardiomyocytes-observation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">260</span> Effect of Oxidative Stress on Glutathione Reductase Activity of Escherichia coli Clinical Isolates from Patients with Urinary Tract Infection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fariha%20Akhter%20Chowdhury">Fariha Akhter Chowdhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabrina%20Mahboob"> Sabrina Mahboob</a>, <a href="https://publications.waset.org/abstracts/search?q=Anamika%20Saha"> Anamika Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Afrin%20Jahan"> Afrin Jahan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Nurul%20Islam"> Mohammad Nurul Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urinary tract infection (UTI) is frequently experienced by the female population where the prevalence increases with aging. Escherichia coli, one of the most common UTI causing organisms, retains glutathione defense mechanism that aids the organism to withstand the harsh physiological environment of urinary tract, host oxidative immune response and even to affect antibiotic-mediated cell death and the emergence of resistance. In this study, we aimed to investigate the glutathione reductase activity of uropathogenic E. coli (UPEC) by observing the reduced glutathione (GSH) level alteration under stressful condition. Urine samples of 58 patients with UTI were collected. Upon isolation and identification, 88% of the samples presented E. coli as UTI causing organism among which randomly selected isolates (n=9), obtained from urine samples of female patients, were considered for this study. E. coli isolates were grown under normal and stressful conditions where H₂O₂ was used as the stress-inducing agent. GSH level estimation of the isolates in both conditions was carried out based on the colorimetric measurement of 5,5'-dithio-bis (2-nitrobenzoic acid) (DTNB) and GSH reaction product using microplate reader assay. The GSH level of isolated E. coli sampled from adult patients decreased under stress compared to normal condition (p = 0.011). On the other hand, GSH production increased markedly in samples that were collected from elderly subjects (p = 0.024). A significant partial correlation between age and change of GSH level was found as well (p = 0.007). This study may help to reveal ways for better understanding of E. coli pathogenesis of UTI prevalence in elderly patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title="Escherichia coli">Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=glutathione%20reductase%20activity" title=" glutathione reductase activity"> glutathione reductase activity</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20glutathione%20%28GSH%29" title=" reduced glutathione (GSH)"> reduced glutathione (GSH)</a>, <a href="https://publications.waset.org/abstracts/search?q=urinary%20tract%20infection%20%28UTI%29" title=" urinary tract infection (UTI)"> urinary tract infection (UTI)</a> </p> <a href="https://publications.waset.org/abstracts/64174/effect-of-oxidative-stress-on-glutathione-reductase-activity-of-escherichia-coli-clinical-isolates-from-patients-with-urinary-tract-infection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">259</span> Single and Combined Effects of Diclofenac and Ibuprofen on Daphnia Magna and Some Phytoplankton Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramatu%20I.%20Sha%E2%80%99aba">Ramatu I. Sha’aba</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathias%20A.%20Chia"> Mathias A. Chia</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullahi%20B.%20Alhassan"> Abdullahi B. Alhassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yisa%20A.%20Gana"> Yisa A. Gana</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20M.%20Gadzama"> Ibrahim M. Gadzama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Globally, Diclofenac (DLC) and Ibuprofen (IBU) are the most prescribed drugs due to their antipyretic and analgesic properties. They are, however, highly toxic at elevated doses, with the involvement of an already described oxidative stress pathway. As a result, there is rising concern about the ecological fate of analgesics on non-target organisms such as Daphnia magna and Phytoplankton species. Phytoplankton is a crucial component of the aquatic ecosystem that serves as the primary producer at the base of the food chain. However, the increasing presence and levels of micropollutants such as these analgesics can disrupt their community structure, dynamics, and ecosystem functions. This study presents a comprehensive series of the physiology, antioxidant response, immobilization, and risk assessment of Diclofenac and Ibuprofen’s effects on Daphnia magna and the Phytoplankton community using a laboratory approach. The effect of DLC and IBU at 27.16 µg/L and 20.89 µg/L, respectively, for a single exposure and 22.39 µg/L for combined exposure of DLC and IBU for the experimental setup. The antioxidant response increased with increasing levels of stress. The highest stressor to the organism was 1000 µg/L of DLC and 10,000 µg/L of IBU. Peroxidase and glutathione -S-transferase activity was higher for Diclofenac + Ibuprofen. The study showed 60% and 70% immobilization of the organism at 1000 g L-1 of DLC and IBU. The two drugs and their combinations adversely impacted Phytoplankton biomass with increased exposure time. However, combining the drugs resulted in more significant adverse effects on physiological and pigment content parameters. The risk assessment calculation for the risk quotient and toxic unit of the analgesic reveals from this study was RQ Diclofenac = 8.41, TU Diclofenac = 3.68, and RQ Ibuprofen = 718.05 and TU Ibuprofen = 487.70. Hence, these findings demonstrate that the current exposure concentrations of Diclofenac and Ibuprofen can immobilize D. magna. This study shows the dangers of multiple drugs in the aquatic environment because their combinations could have additive effects on the structure and functions of Phytoplankton and are capable of immobilizing D. magna. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae" title="algae">algae</a>, <a href="https://publications.waset.org/abstracts/search?q=analgesic%20drug" title=" analgesic drug"> analgesic drug</a>, <a href="https://publications.waset.org/abstracts/search?q=daphnia%20magna" title=" daphnia magna"> daphnia magna</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/172282/single-and-combined-effects-of-diclofenac-and-ibuprofen-on-daphnia-magna-and-some-phytoplankton-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">258</span> Intelligent Drug Delivery Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shideh%20Mohseni%20Movahed">Shideh Mohseni Movahed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansoureh%20Safari"> Mansoureh Safari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intelligent drug delivery systems (IDDS) are innovative technological innovations and clinical way to advance current treatments. These systems differ in technique of therapeutic administration, intricacy, materials and patient compliance to address numerous clinical conditions that require different pharmacological therapies. IDDS capable of releasing an active molecule at the proper site and at a amount that adjusts in response to the progression of the disease or to certain functions/biorhythms of the organism is particularly appealing. In this paper, we describe the most recent advances in the development of intelligent drug delivery systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery%20systems" title="drug delivery systems">drug delivery systems</a>, <a href="https://publications.waset.org/abstracts/search?q=IDDS" title=" IDDS"> IDDS</a>, <a href="https://publications.waset.org/abstracts/search?q=medicine" title=" medicine"> medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=health" title=" health"> health</a> </p> <a href="https://publications.waset.org/abstracts/81880/intelligent-drug-delivery-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">257</span> Exploring an Exome Target Capture Method for Cross-Species Population Genetic Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20A.%20Ha">Benjamin A. Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Morselli"> Marco Morselli</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinhui%20Paige%20Zhang"> Xinhui Paige Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20A.%20C.%20Heath-Heckman"> Elizabeth A. C. Heath-Heckman</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20B.%20Puritz"> Jonathan B. Puritz</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20K.%20Jacobs"> David K. Jacobs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Next-generation sequencing has enhanced the ability to acquire massive amounts of sequence data to address classic population genetic questions for non-model organisms. Targeted approaches allow for cost effective or more precise analyses of relevant sequences; although, many such techniques require a known genome and it can be costly to purchase probes from a company. This is challenging for non-model organisms with no published genome and can be expensive for large population genetic studies. Expressed exome capture sequencing (EecSeq) synthesizes probes in the lab from expressed mRNA, which is used to capture and sequence the coding regions of genomic DNA from a pooled suite of samples. A normalization step produces probes to recover transcripts from a wide range of expression levels. This approach offers low cost recovery of a broad range of genes in the genome. This research project expands on EecSeq to investigate if mRNA from one taxon may be used to capture relevant sequences from a series of increasingly less closely related taxa. For this purpose, we propose to use the endangered Northern Tidewater goby, Eucyclogobius newberryi, a non-model organism that inhabits California coastal lagoons. mRNA will be extracted from E. newberryi to create probes and capture exomes from eight other taxa, including the more at-risk Southern Tidewater goby, E. kristinae, and more divergent species. Captured exomes will be sequenced, analyzed bioinformatically and phylogenetically, then compared to previously generated phylogenies across this group of gobies. This will provide an assessment of the utility of the technique in cross-species studies and for analyzing low genetic variation within species as is the case for E. kristinae. This method has potential applications to provide economical ways to expand population genetic and evolutionary biology studies for non-model organisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coastal%20lagoons" title="coastal lagoons">coastal lagoons</a>, <a href="https://publications.waset.org/abstracts/search?q=endangered%20species" title=" endangered species"> endangered species</a>, <a href="https://publications.waset.org/abstracts/search?q=non-model%20organism" title=" non-model organism"> non-model organism</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20capture%20method" title=" target capture method"> target capture method</a> </p> <a href="https://publications.waset.org/abstracts/139578/exploring-an-exome-target-capture-method-for-cross-species-population-genetic-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">256</span> Fastidious Enteric Pathogens in HIV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Pathak">S. Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Lazarus"> R. Lazarus </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 25-year-old male HIV patient (CD4 cells 20/µL and HIV viral load 14200000 copies/ml) with a past medical history of duodenal ulcer, pneumocystis carinii pneumonia, oesophageal candidiasis presented with fever and a seizure to hospital. The only recent travel had been a religious pilgrimage from Singapore to Malaysia 5 days prior; during the trip he sustained skin abrasions. The patient had recently started highly active antiretroviral therapy 2 months prior. Clinical examination was unremarkable other than a temperature of 38.8°C and perianal warts. Laboratory tests showed a leukocyte count 12.5x109 cells/L, haemoglobin 9.4 g/dL, normal biochemistry and a C-reactive protein 121 mg/L. CT head and MRI head were unremarkable and cerebrospinal fluid analysis performed after a delay (due to technical difficulties) of 11 days was unremarkable. Blood cultures (three sets) taken on admission showed Gram-negative rods in the anaerobic bottles only at the end of incubation with culture result confirmed by molecular sequencing showing Helicobacter cinaedi. The patient was treated empirically with ceftriaxone for seven days and this was converted to oral co-amoxiclav for a further seven days after the blood cultures became positive. A Transthoracic echocardiogram was unremarkable. The patient made a full recovery. Helicobacter cinaedi is a gram-negative anaerobic fastidious organism affecting patients with comorbidity. Infection may manifest as cellulitius, colitis or as in this case as bloodstream infection – the latter is often attributed to faeco-oral infection. Laboratory identification requires prolonged culture. Therapeutic options may be limited by resistance to macrolides and fluoroquinolones. The likely pathogen inoculation routes in the case described include gastrointestinal translocation due to proctitis at the site of perianal warts, or breach of the skin via abrasions occurring during the pilgrimage. Such organisms are increasing in prevalence as our patient population ages and patients have multiple comorbidities including HIV. It may be necessary in patients with unexplained fever to prolong incubation of sterile sites including blood in order to identify this unusual fastidious organism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fastidious" title="fastidious">fastidious</a>, <a href="https://publications.waset.org/abstracts/search?q=Helicobacter%20cinaedi" title=" Helicobacter cinaedi"> Helicobacter cinaedi</a>, <a href="https://publications.waset.org/abstracts/search?q=HIV" title=" HIV"> HIV</a>, <a href="https://publications.waset.org/abstracts/search?q=immunocompromised" title=" immunocompromised "> immunocompromised </a> </p> <a href="https://publications.waset.org/abstracts/34184/fastidious-enteric-pathogens-in-hiv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">255</span> Clostridium thermocellum DBT-IOC-C19, A Potential CBP Isolate for Ethanol Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisha%20Singh">Nisha Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Munish%20Puri"> Munish Puri</a>, <a href="https://publications.waset.org/abstracts/search?q=Collin%20Barrow"> Collin Barrow</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Tuli"> Deepak Tuli</a>, <a href="https://publications.waset.org/abstracts/search?q=Anshu%20S.%20Mathur"> Anshu S. Mathur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The biological conversion of lignocellulosic biomass to ethanol is a promising strategy to solve the present global crisis of exhausting fossil fuels. The existing bioethanol production technologies have cost constraints due to the involvement of mandate pretreatment and extensive enzyme production steps. A unique process configuration known as consolidated bioprocessing (CBP) is believed to be a potential cost-effective process due to its efficient integration of enzyme production, saccharification, and fermentation into one step. Due to several favorable reasons like single step conversion, no need of adding exogenous enzymes and facilitated product recovery, CBP has gained the attention of researchers worldwide. However, there are several technical and economic barriers which need to be overcome for making consolidated bioprocessing a commercially viable process. Finding a natural candidate CBP organism is critically important and thermophilic anaerobes are preferred microorganisms. The thermophilic anaerobes that can represent CBP mainly belong to genus Clostridium, Caldicellulosiruptor, Thermoanaerobacter, Thermoanaero bacterium, and Geobacillus etc. Amongst them, Clostridium thermocellum has received increased attention as a high utility CBP candidate due to its highest growth rate on crystalline cellulose, the presence of highly efficient cellulosome system and ability to produce ethanol directly from cellulose. Recently with the availability of genetic and molecular tools aiding the metabolic engineering of Clostridium thermocellum have further facilitated the viability of commercial CBP process. With this view, we have specifically screened cellulolytic and xylanolytic thermophilic anaerobic ethanol producing bacteria, from unexplored hot spring/s in India. One of the isolates is a potential CBP organism identified as a new strain of Clostridium thermocellum. This strain has shown superior avicel and xylan degradation under unoptimized conditions compared to reported wild type strains of Clostridium thermocellum and produced more than 50 mM ethanol in 72 hours from 1 % avicel at 60°C. Besides, this strain shows good ethanol tolerance and growth on both hexose and pentose sugars. Hence, with further optimization this new strain could be developed as a potential CBP microbe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clostridium%20thermocellum" title="Clostridium thermocellum">Clostridium thermocellum</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidated%20bioprocessing" title=" consolidated bioprocessing"> consolidated bioprocessing</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20anaerobes" title=" thermophilic anaerobes"> thermophilic anaerobes</a> </p> <a href="https://publications.waset.org/abstracts/33981/clostridium-thermocellum-dbt-ioc-c19-a-potential-cbp-isolate-for-ethanol-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro-pathogenic%20organism&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro-pathogenic%20organism&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro-pathogenic%20organism&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro-pathogenic%20organism&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro-pathogenic%20organism&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro-pathogenic%20organism&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro-pathogenic%20organism&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro-pathogenic%20organism&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro-pathogenic%20organism&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro-pathogenic%20organism&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10