CINXE.COM

Search results for: Mathias A. Chia

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Mathias A. Chia</title> <meta name="description" content="Search results for: Mathias A. Chia"> <meta name="keywords" content="Mathias A. Chia"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Mathias A. Chia" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Mathias A. Chia"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 238</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Mathias A. Chia</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">238</span> Microstructure Analysis of Biopolymer Mixture (Chia-Gelatin) by Laser Confocal Microscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Flores%20Huicochea">Emmanuel Flores Huicochea</a>, <a href="https://publications.waset.org/abstracts/search?q=Guadalupe%20Borja%20Mendiola"> Guadalupe Borja Mendiola</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacqueline%20Flores%20Lopez"> Jacqueline Flores Lopez</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodolfo%20Rendon%20Villalobos"> Rodolfo Rendon Villalobos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The usual procedure to investigate the properties of biodegradable films has been to prepare the film, measure the mechanical or transport properties and then decide whether the mixture has better properties than the individual components, instead of investigating whether the mixture has biopolymer-biopolymer interaction, then prepare the film and finally measure the properties of the film. The work investigates the presence of interaction biopolymer-biopolymer in a mixture of chia biopolymer and gelatin using Laser Confocal Microscopy (LCM). Previously, the chia biopolymer was obtained from chia seed. CML analysis of mixtures of chia biopolymer-gelatin without Na⁺ ions exhibited aggregates of different size, in the range of 100-400 μm, of defined color, for the two colors, but no mixing of color was observed. The increased of gelatin in the mixture decreases the size and number of aggregates. The tridimensional microstructure reveled that there are two layers of biopolymers, chia and gelatin well defined. The mixture chia biopolymer-gelatin with 10 mM Na⁺ and with a ratio 75:25 (chia-gelatin) showed lower aggregated size than others mixture with and without ions. This result could be explained because the chia biopolymer is a polyelectrolyte and the added sodium ions reduce the molecular rigidity by neutralizing the negative charges that the chia biopolymer possesses and therefore a better biopolymer-biopolymer interaction is allowed between the biopolymer of chia and gelatin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biopolymer-biopolymer%20interaction" title="biopolymer-biopolymer interaction">biopolymer-biopolymer interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=confocal%20laser%20microscopy" title=" confocal laser microscopy"> confocal laser microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=CLM" title=" CLM"> CLM</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mixture%20chia-gelatin" title=" mixture chia-gelatin"> mixture chia-gelatin</a> </p> <a href="https://publications.waset.org/abstracts/82302/microstructure-analysis-of-biopolymer-mixture-chia-gelatin-by-laser-confocal-microscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">237</span> Efficacy of Chia Seed Oil Supplemented Ice-Cream against Hypercholesterolemia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naureen%20Naeem">Naureen Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Aslam"> M. S. Aslam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chia seeds found to be a rich source of dietary fiber contain oil which is high in omega 6 and omega 3 fatty acids and helpful in the control of cardiovascular diseases. Owing to its spectacular significance, present research had been designed to explore its effect on cholesterol level of the individuals after consumption of chia seed oil supplemented ice cream. The project was designed in such a manner that fat of ice cream was replaced with chia seed oil in different proportions i.e., 25%, 50%, 75%, 100%. After physico-chemical and sensory evaluation of ice cream, best treatment was selected and used for efficacy trials. After baseline line study and thorough inclusion criteria 10 individuals were selected and divided into two groups. One group treated as control and the other was given chia seed oil supplemented l(50%) ice cream. Significant decrease in cholesterol level was observed in the treated group. 18% decrease in cholesterol level was observed at 40th day followed by 8% at 20th day. Similarly 20% decrease in LDL cholesterol with 14% increase in HDL cholesterol. It was recommended that further trials be conducted with sophisticated techniques to completely replace saturated fat in ice cream with unsaturated fats and to study its effect in hyperglycemia and oxidative stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypercholesterolemia" title="hypercholesterolemia">hypercholesterolemia</a>, <a href="https://publications.waset.org/abstracts/search?q=chia%20seed%20oil" title=" chia seed oil"> chia seed oil</a>, <a href="https://publications.waset.org/abstracts/search?q=HDL" title=" HDL"> HDL</a>, <a href="https://publications.waset.org/abstracts/search?q=triglycerides" title=" triglycerides"> triglycerides</a> </p> <a href="https://publications.waset.org/abstracts/64614/efficacy-of-chia-seed-oil-supplemented-ice-cream-against-hypercholesterolemia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">236</span> Possibilities of Using Chia Seeds in Fermented Beverages Made from Mare’s and Cow’s Milk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nancy%20Mahmoud">Nancy Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Teichert"> Joanna Teichert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, fermented milk containing probiotic microorganisms is fundamental to human health. The changes in the properties of fermented milk during storage influence the quality and consumer acceptability. This study aimed to evaluate the effect of 1.5 % of chia seeds on the chemical, physical and sensory properties of fermented cow’s and mare’s milk for two weeks at 4°C. The results showed that the pH of cow’s milk drops significantly at the 2nd hour, but mare's milk drops significantly at the 6th hour. The acidity of both types of milk increased as the storage time progressed. Adding chia seeds increased firmness significantly and improved color and consistency. A decrease in brightness (L*), an increase in redness (a*), and yellowness (b*) during storage were observed. Our study showed that the chia seeds have more effect on reducing the brightness of fermented mare milk than fermented cow milk. Analysis of taste and smell parameters showed that after adding chia seeds, the scores changed and became much higher. The sour taste of fermented milk had reduced this positively affected the acceptance of the product. Chia seeds induced beneficial effects on sensory outcomes and enhanced physiochemical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mare%20milk" title="mare milk">mare milk</a>, <a href="https://publications.waset.org/abstracts/search?q=cow%20milk" title=" cow milk"> cow milk</a>, <a href="https://publications.waset.org/abstracts/search?q=feremnted%20milk" title=" feremnted milk"> feremnted milk</a>, <a href="https://publications.waset.org/abstracts/search?q=kefir" title=" kefir"> kefir</a>, <a href="https://publications.waset.org/abstracts/search?q=koumiss" title=" koumiss"> koumiss</a> </p> <a href="https://publications.waset.org/abstracts/163677/possibilities-of-using-chia-seeds-in-fermented-beverages-made-from-mares-and-cows-milk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">235</span> Purification and Characterization of a Novel Extracellular Chitinase from Bacillus licheniformis LHH100</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laribi-Habchi%20Hasiba">Laribi-Habchi Hasiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouanane-Darenfed%20Amel"> Bouanane-Darenfed Amel</a>, <a href="https://publications.waset.org/abstracts/search?q=Drouiche%20Nadjib"> Drouiche Nadjib</a>, <a href="https://publications.waset.org/abstracts/search?q=Pausse%20Andr%C3%A9"> Pausse André</a>, <a href="https://publications.waset.org/abstracts/search?q=Mameri%20Nabil"> Mameri Nabil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitin, a linear 1, 4-linked N-acetyl-d-glucosamine (GlcNAc) polysaccharide is the major structural component of fungal cell walls, insect exoskeletons and shells of crustaceans. It is one of the most abundant naturally occurring polysaccharides and has attracted tremendous attention in the fields of agriculture, pharmacology and biotechnology. Each year, a vast amount of chitin waste is released from the aquatic food industry, where crustaceans (prawn, crab, Shrimp and lobster) constitute one of the main agricultural products. This creates a serious environmental problem. This linear polymer can be hydrolyzed by bases, acids or enzymes such as chitinase. In this context an extracellular chitinase (ChiA-65) was produced and purified from a newly isolated LHH100. Pure protein was obtained after heat treatment and ammonium sulphate precipitation followed by Sephacryl S-200 chromatography. Based on matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis, the purified enzyme is a monomer with a molecular mass of 65,195.13 Da. The sequence of the 27 N-terminal residues of the mature ChiA-65 showed high homology with family-18 chitinases. Optimal activity was achieved at pH 4 and 75◦C. Among the inhibitors and metals tested p-chloromercuribenzoic acid, N-ethylmaleimide, Hg2+ and Hg + completelyinhibited enzyme activity. Chitinase activity was high on colloidal chitin, glycol chitin, glycol chitosane, chitotriose and chitooligosaccharide. Chitinase activity towards synthetic substrates in the order of p-NP-(GlcNAc) n (n = 2–4) was p-NP-(GlcNAc)2> p-NP-(GlcNAc)4> p-NP-(GlcNAc)3. Our results suggest that ChiA-65 preferentially hydrolyzed the second glycosidic link from the non-reducing end of (GlcNAc) n. ChiA-65 obeyed Michaelis Menten kinetics the Km and kcat values being 0.385 mg, colloidal chitin/ml and5000 s−1, respectively. ChiA-65 exhibited remarkable biochemical properties suggesting that this enzyme is suitable for bioconversion of chitin waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20licheniformis%20LHH100" title="Bacillus licheniformis LHH100">Bacillus licheniformis LHH100</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20chitinase" title=" extracellular chitinase"> extracellular chitinase</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification "> purification </a> </p> <a href="https://publications.waset.org/abstracts/27008/purification-and-characterization-of-a-novel-extracellular-chitinase-from-bacillus-licheniformis-lhh100" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">234</span> Flip-Chip Bonding for Monolithic of Matrix-Addressable GaN-Based Micro-Light-Emitting Diodes Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chien-Ju%20Chen">Chien-Ju Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Jui%20Yu"> Chia-Jui Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyun-Hao%20Liao"> Jyun-Hao Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Ching%20Wu"> Chia-Ching Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng-Chyi%20Wu"> Meng-Chyi Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 64 × 64 GaN-based micro-light-emitting diode array (μLEDA) with 20 μm in pixel size and 40 μm in pitch by flip-chip bonding (FCB) is demonstrated in this study. Besides, an underfilling (UF) technology is applied to the process for improving the uniformity of device. With those configurations, good characteristics are presented, operation voltage and series resistance of a pixel in the 450 nm flip chip μLEDA are 2.89 V and 1077Ω (4.3 mΩ-cm²) at 25 A/cm², respectively. The μLEDA can sustain higher current density compared to conventional LED, and the power of the device is 9.5 μW at 100 μA and 0.42 mW at 20 mA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GaN" title="GaN">GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-light-emitting%20diode%20array%28%CE%BCLEDA%29" title=" micro-light-emitting diode array(μLEDA)"> micro-light-emitting diode array(μLEDA)</a>, <a href="https://publications.waset.org/abstracts/search?q=flip-chip%20bonding" title=" flip-chip bonding"> flip-chip bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=underfilling" title=" underfilling"> underfilling</a> </p> <a href="https://publications.waset.org/abstracts/73765/flip-chip-bonding-for-monolithic-of-matrix-addressable-gan-based-micro-light-emitting-diodes-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">233</span> Fabrication of InGaAs P-I-N Micro-Photodiode Sensor Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyun-Hao%20Liao">Jyun-Hao Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Ju%20Chen"> Chien-Ju Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Jui%20Yu"> Chia-Jui Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Chyi%20Wu"> Meng Chyi Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Ching%20Wu"> Chia-Ching Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this letter, we reported the fabrication of InGaAs micro-photodiode sensor array with the rapid thermal diffusion (RTD) technique. The spin-on dopant source Zn was used to form the p-type region in InP layer. Through the RTD technique, the InP/InGaAs heterostructure was formed. We improved our fabrication on the p-i-n photodiode to micro size which pixel is 7.8um, and the pitch is 12.8um. The proper SiNx was deposited to form the passivation layer. The leakage current of single pixel decrease to 3.3pA at -5V, and 35fA at -10mV. The leakage current densities of each voltage are 21uA/cm² at -5V and 0.223uA/cm² at -10mV. As we focus on the wavelength from 0.9um to 1.7um, the optimized Si/Al₂O₃ bilayers are deposited to form the AR-coating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=InGaAs" title="InGaAs">InGaAs</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20sensor%20array" title=" micro sensor array"> micro sensor array</a>, <a href="https://publications.waset.org/abstracts/search?q=p-i-n%20photodiode" title=" p-i-n photodiode"> p-i-n photodiode</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20thermal%20diffusion" title=" rapid thermal diffusion"> rapid thermal diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=Zn%20diffusion" title=" Zn diffusion"> Zn diffusion</a> </p> <a href="https://publications.waset.org/abstracts/73769/fabrication-of-ingaas-p-i-n-micro-photodiode-sensor-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">232</span> Single and Combined Effects of Diclofenac and Ibuprofen on Daphnia Magna and Some Phytoplankton Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramatu%20I.%20Sha%E2%80%99aba">Ramatu I. Sha’aba</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathias%20A.%20Chia"> Mathias A. Chia</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullahi%20B.%20Alhassan"> Abdullahi B. Alhassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yisa%20A.%20Gana"> Yisa A. Gana</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20M.%20Gadzama"> Ibrahim M. Gadzama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Globally, Diclofenac (DLC) and Ibuprofen (IBU) are the most prescribed drugs due to their antipyretic and analgesic properties. They are, however, highly toxic at elevated doses, with the involvement of an already described oxidative stress pathway. As a result, there is rising concern about the ecological fate of analgesics on non-target organisms such as Daphnia magna and Phytoplankton species. Phytoplankton is a crucial component of the aquatic ecosystem that serves as the primary producer at the base of the food chain. However, the increasing presence and levels of micropollutants such as these analgesics can disrupt their community structure, dynamics, and ecosystem functions. This study presents a comprehensive series of the physiology, antioxidant response, immobilization, and risk assessment of Diclofenac and Ibuprofen’s effects on Daphnia magna and the Phytoplankton community using a laboratory approach. The effect of DLC and IBU at 27.16 µg/L and 20.89 µg/L, respectively, for a single exposure and 22.39 µg/L for combined exposure of DLC and IBU for the experimental setup. The antioxidant response increased with increasing levels of stress. The highest stressor to the organism was 1000 µg/L of DLC and 10,000 µg/L of IBU. Peroxidase and glutathione -S-transferase activity was higher for Diclofenac + Ibuprofen. The study showed 60% and 70% immobilization of the organism at 1000 g L-1 of DLC and IBU. The two drugs and their combinations adversely impacted Phytoplankton biomass with increased exposure time. However, combining the drugs resulted in more significant adverse effects on physiological and pigment content parameters. The risk assessment calculation for the risk quotient and toxic unit of the analgesic reveals from this study was RQ Diclofenac = 8.41, TU Diclofenac = 3.68, and RQ Ibuprofen = 718.05 and TU Ibuprofen = 487.70. Hence, these findings demonstrate that the current exposure concentrations of Diclofenac and Ibuprofen can immobilize D. magna. This study shows the dangers of multiple drugs in the aquatic environment because their combinations could have additive effects on the structure and functions of Phytoplankton and are capable of immobilizing D. magna. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae" title="algae">algae</a>, <a href="https://publications.waset.org/abstracts/search?q=analgesic%20drug" title=" analgesic drug"> analgesic drug</a>, <a href="https://publications.waset.org/abstracts/search?q=daphnia%20magna" title=" daphnia magna"> daphnia magna</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/172282/single-and-combined-effects-of-diclofenac-and-ibuprofen-on-daphnia-magna-and-some-phytoplankton-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">231</span> Direct Electrophoretic Deposition of Hierarchical Structured Electrode Supercapacitor Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jhen-Ting%20Huang">Jhen-Ting Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Chia%20Chang"> Chia-Chia Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hu-Cheng%20Weng"> Hu-Cheng Weng</a>, <a href="https://publications.waset.org/abstracts/search?q=An-Ya%20Lo"> An-Ya Lo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Co3O4-CNT-Graphene composite electrode was deposited by electrophoretic deposition (EPD) method, where micro polystyrene spheres (PSs) were added for co-deposition. Applied with heat treatment, a hierarchical porosity is left in the electrode which is beneficial for supercapacitor application. In terms of charge and discharge performance, we discussed the optimal CNT/Graphene ratio, macroporous ratio, and the effect of Co3O4 addition on electrode capacitance. For materials characterization, scanning electron microscope (SEM), X-ray diffraction, and BET were applied, while cyclic voltammetry (CV) and chronopotentiometry (CP) measurements, and Ragone plot were applied as in-situ analyses. Based on this, the effects of PS amount on the structure, porosity and their effect on capacitance of the electrodes were investigated. Finally, the full device performance was examined with charge-discharge and electron impedance spectrum (EIS) methods. The results show that the EPD coating with hierarchical porosity was successfully demonstrated in this study. As a result, the capacitance was greatly enhanced by 2.6 times with the hierarchical structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title="supercapacitor">supercapacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocarbon%20tub" title=" nanocarbon tub"> nanocarbon tub</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20oxide" title=" metal oxide"> metal oxide</a> </p> <a href="https://publications.waset.org/abstracts/107788/direct-electrophoretic-deposition-of-hierarchical-structured-electrode-supercapacitor-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">230</span> Fabrication of High-Power AlGaN/GaN Schottky Barrier Diode with Field Plate Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Jui%20Yu">Chia-Jui Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Ju%20Chen"> Chien-Ju Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyun-Hao%20Liao"> Jyun-Hao Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Ching%20Wu"> Chia-Ching Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng-Chyi%20Wu"> Meng-Chyi Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this letter, we demonstrate high-performance AlGaN/GaN planar Schottky barrier diodes (SBDs) on the silicon substrate with field plate structure for increasing breakdown voltage <em>V</em><sub>B</sub>. A low turn-on resistance R<sub>ON</sub> (3.55 m&Omega;-cm<sup>2</sup>), low reverse leakage current (&lt; 0.1 &micro;A) at -100 V, and high reverse breakdown voltage <em>V</em><sub>B</sub> (&gt; 1.1 kV) SBD has been fabricated. A virgin SBD exhibited a breakdown voltage (measured at 1 mA/mm) of 615 V, and with the field plate technology device exhibited a breakdown voltage (measured at 1 mA/mm) of 1525 V (the anode&ndash;cathode distance was L<sub>AC</sub> = 40 &micro;m). Devices without the field plate design exhibit a Baliga&rsquo;s figure of merit of <em>V</em><sub>B</sub><sup>2</sup>/ R<sub>ON</sub> = 60.2 MW/cm<sup>2</sup>, whereas devices with the field plate design show a Baliga&rsquo;s figure of merit of <em>V</em><sub>B</sub><sup>2</sup>/ R<sub>ON</sub> = 340.9 MW/cm<sup>2</sup> (the anode&ndash;cathode distance was L<sub>AC</sub> = 20 &micro;m). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AlGaN%2FGaN%20heterostructure" title="AlGaN/GaN heterostructure">AlGaN/GaN heterostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20substrate" title=" silicon substrate"> silicon substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=Schottky%20barrier%20diode%20%28SBD%29" title=" Schottky barrier diode (SBD)"> Schottky barrier diode (SBD)</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20breakdown%20voltage" title=" high breakdown voltage"> high breakdown voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=Baliga%E2%80%99s%20figure-of-merit" title=" Baliga’s figure-of-merit"> Baliga’s figure-of-merit</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20plate" title=" field plate"> field plate</a> </p> <a href="https://publications.waset.org/abstracts/73759/fabrication-of-high-power-algangan-schottky-barrier-diode-with-field-plate-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> Polymerspolyaniline/CMK-3/Hydroquinone Composite Electrode for Supercapacitor Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hu-Cheng%20Weng">Hu-Cheng Weng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jhen-Ting%20Huang"> Jhen-Ting Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Chia%20Chang"> Chia-Chia Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=An-Ya%20Lo"> An-Ya Lo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, carbon mesoporous material, CMK-3, was adopted as supporting material for electroactive polymerspolyaniline (PANI), polyaniline, for supercapacitor application, where hydroquinone (HQ) was integrated to enhance the redox reaction of PANI. The results show that the addition of PANI improves the capacitance of electrode from 89 F/g (CMK-3) to 337 F/g (PANI/CMK-3), the addition of HQ furtherly improves the capacitance to 463 F/g (PANI/CMK-3/HQ). The PANI provides higher energy density and also acts as binder of the electrode; the CMK-3 provides higher electron double layer capacitance EDLC and stabilize the polyaniline by its highly porosity. With the addition of HQ, the capacitance of PANI/CMK-3 was further enhanced. In-situ analyses including cyclic voltammetry (CV), chronopotentiometry (CP), electron impedance spectrum (EIS) analyses were applied for electrode performance examination. For materials characterization, the crystal structure, morphology, microstructure, and porosity were examined by X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM), and 77K N2 adsorption/desorption analyses, respectively. The effects of electrolyte pH value, PANI polymerization time, HQ concentration, and PANI/CMK-3 ratio on capacitance were discussed. The durability was also studied by long-term operation test. The results show that PANI/CMK-3/HQ with great potential for supercapacitor application. Finally, the potential of all-solid PANI/CMK-3/HQ based supercapacitor was successfully demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMK3" title="CMK3">CMK3</a>, <a href="https://publications.waset.org/abstracts/search?q=PANI" title=" PANI"> PANI</a>, <a href="https://publications.waset.org/abstracts/search?q=redox%20electrolyte" title=" redox electrolyte"> redox electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20supercapacitor" title=" solid supercapacitor"> solid supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/107789/polymerspolyanilinecmk-3hydroquinone-composite-electrode-for-supercapacitor-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">228</span> Self-Tuning Robot Control Based on Subspace Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Marquardt">Mathias Marquardt</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20D%C3%BCnow"> Peter Dünow</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Ba%C3%9Fler"> Sandra Baßler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper describes the use of subspace based identification methods for auto tuning of a state space control system. The plant is an unstable but self balancing transport robot. Because of the unstable character of the process it has to be identified from closed loop input-output data. Based on the identified model a state space controller combined with an observer is calculated. The subspace identification algorithm and the controller design procedure is combined to a auto tuning method. The capability of the approach was verified in a simulation experiments under different process conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auto%20tuning" title="auto tuning">auto tuning</a>, <a href="https://publications.waset.org/abstracts/search?q=balanced%20robot" title=" balanced robot"> balanced robot</a>, <a href="https://publications.waset.org/abstracts/search?q=closed%20loop%20identification" title=" closed loop identification"> closed loop identification</a>, <a href="https://publications.waset.org/abstracts/search?q=subspace%20identification" title=" subspace identification"> subspace identification</a> </p> <a href="https://publications.waset.org/abstracts/49108/self-tuning-robot-control-based-on-subspace-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">227</span> Percolation Transition in an Agglomeration of Spherical Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johannes%20J.%20Schneider">Johannes J. Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathias%20S.%20Weyland"> Mathias S. Weyland</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Eggenberger%20Hotz"> Peter Eggenberger Hotz</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20D.%20Jamieson"> William D. Jamieson</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20Castell"> Oliver Castell</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessia%20Faggian"> Alessia Faggian</a>, <a href="https://publications.waset.org/abstracts/search?q=Rudolf%20M.%20F%C3%BCchslin"> Rudolf M. Füchslin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agglomerations of polydisperse systems of spherical particles are created in computer simulations using a simplified stochastic-hydrodynamic model: Particles sink to the bottom of the cylinder, taking into account gravity reduced by the buoyant force, the Stokes friction force, the added mass effect, and random velocity changes. Two types of particles are considered, with one of them being able to create connections to neighboring particles of the same type, thus forming a network within the agglomeration at the bottom of a cylinder. Decreasing the fraction of these particles, a percolation transition occurs. The critical regime is determined by investigating the maximum cluster size and the percolation susceptibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20system" title="binary system">binary system</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20cluster%20size" title=" maximum cluster size"> maximum cluster size</a>, <a href="https://publications.waset.org/abstracts/search?q=percolation" title=" percolation"> percolation</a>, <a href="https://publications.waset.org/abstracts/search?q=polydisperse" title=" polydisperse"> polydisperse</a> </p> <a href="https://publications.waset.org/abstracts/182302/percolation-transition-in-an-agglomeration-of-spherical-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">226</span> Barnard Feature Point Detector for Low-Contractperiapical Radiography Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih-Yi%20Ho">Chih-Yi Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzu-Fang%20Chang"> Tzu-Fang Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Chia%20Huang"> Chih-Chia Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Yen%20Lee"> Chia-Yen Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In dental clinics, the dentists use the periapical radiography image to assess the effectiveness of endodontic treatment of teeth with chronic apical periodontitis. Periapical radiography images are taken at different times to assess alveolar bone variation before and after the root canal treatment, and furthermore to judge whether the treatment was successful. Current clinical assessment of apical tissue recovery relies only on dentist personal experience. It is difficult to have the same standard and objective interpretations due to the dentist or radiologist personal background and knowledge. If periapical radiography images at the different time could be registered well, the endodontic treatment could be evaluated. In the image registration area, it is necessary to assign representative control points to the transformation model for good performances of registration results. However, detection of representative control points (feature points) on periapical radiography images is generally very difficult. Regardless of which traditional detection methods are practiced, sufficient feature points may not be detected due to the low-contrast characteristics of the x-ray image. Barnard detector is an algorithm for feature point detection based on grayscale value gradients, which can obtain sufficient feature points in the case of gray-scale contrast is not obvious. However, the Barnard detector would detect too many feature points, and they would be too clustered. This study uses the local extrema of clustering feature points and the suppression radius to overcome the problem, and compared different feature point detection methods. In the preliminary result, the feature points could be detected as representative control points by the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feature%20detection" title="feature detection">feature detection</a>, <a href="https://publications.waset.org/abstracts/search?q=Barnard%20detector" title=" Barnard detector"> Barnard detector</a>, <a href="https://publications.waset.org/abstracts/search?q=registration" title=" registration"> registration</a>, <a href="https://publications.waset.org/abstracts/search?q=periapical%20radiography%20image" title=" periapical radiography image"> periapical radiography image</a>, <a href="https://publications.waset.org/abstracts/search?q=endodontic%20treatment" title=" endodontic treatment"> endodontic treatment</a> </p> <a href="https://publications.waset.org/abstracts/67658/barnard-feature-point-detector-for-low-contractperiapical-radiography-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">225</span> ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based on Li-Ion Battery and Solar Energy Supply</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Chi%20Chang">Chia-Chi Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuan-Bi%20Lin"> Chuan-Bi Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Min%20Chan"> Chia-Min Chan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries. In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZigBee" title="ZigBee">ZigBee</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-ion%20battery" title=" Li-ion battery"> Li-ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20panel" title=" solar panel"> solar panel</a>, <a href="https://publications.waset.org/abstracts/search?q=CC2530" title=" CC2530 "> CC2530 </a> </p> <a href="https://publications.waset.org/abstracts/10028/zigbee-wireless-sensor-nodes-with-hybrid-energy-storage-system-based-on-li-ion-battery-and-solar-energy-supply" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">224</span> An Exploratory Study on Newborns Using Massage Oil to Induce Miliaria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Feng%20Chen">Chia-Feng Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan-Yi%20Lin"> Wan-Yi Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-En%20Liu"> Chia-En Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: There are approximately 600 newborns that stay four weeks in our postpartum agency every year. As we all know, newborn’s skin is 40-60% thinner than adult skin, newborn skin has a higher trans epidermal water loss, so many postpartum agencies use massage oil every day, no matter which seasons. In fact, neonatal miliaria or prickly heat is the most common condition from two to three -week- old newborns. According to research, about 80 percent of two to three -week- old baby are diagnosed with prickly heat because nurses apply massage oil to their faces every day. In China, we can use honeysuckle to wipe the newborn's face for treatment. Purpose: the purpose of the study is to discuss that using massage oil will be induced neonatal miliaria among two or three-week-old newborns and the aim of the study is to assess the protocol of miliaria condition with the face. Methods: a quasi-experimental design was used to evaluated the result between massage oil and non massage oil. A total of 22 participants were recruited randomly and analyzed from August to September in the south of China and collected for about 2 week long. The 22 participants were randomly selected and live in the stable air condition belong, 24 to 26℃. Results: the 64% of participants were diagnosed with miliaria using massage oil, the 2/8 of participants were diagnosed with miliaria no using massage oil. The pearson correction was0.67. The result of 22 participants, including massage oil, and diagnosed with miliaris. Besides, in our study, 9 of participants with miliaria for 3 to 6 days on the face, were treatment with honey-suckle wipe 3days through pediatric doctor suggestion. The effect of honey-suckle were useful in improving miliaria and decreasing the anxiety of parents. Conclusions: Miliaria is a common condition in newborns, especially in summer. The authors postulate that the massage oil did not find suitable for newborn in summer, and the study provides evidence that honey-suckle effectively control miliaria on using massage oil of participants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=massage%20oil" title="massage oil">massage oil</a>, <a href="https://publications.waset.org/abstracts/search?q=miliaria" title=" miliaria"> miliaria</a>, <a href="https://publications.waset.org/abstracts/search?q=newborn" title=" newborn"> newborn</a>, <a href="https://publications.waset.org/abstracts/search?q=honey%20suckle" title=" honey suckle"> honey suckle</a> </p> <a href="https://publications.waset.org/abstracts/158623/an-exploratory-study-on-newborns-using-massage-oil-to-induce-miliaria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">223</span> Hierarchical Porous Carbon Composite Electrode for High Performance Supercapacitor Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Chia%20Chang">Chia-Chia Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jhen-Ting%20Huang"> Jhen-Ting Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hu-Cheng%20Weng"> Hu-Cheng Weng</a>, <a href="https://publications.waset.org/abstracts/search?q=An-Ya%20Lo"> An-Ya Lo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study developed a simple hierarchical porous carbon (HPC) synthesis process and used for supercapacitor application. In which, mesopore provides huge specific surface area, meanwhile, macropore provides excellent mass transfer. Thus the hierarchical porous electrode improves the charge-discharge performance. On the other hand, cerium oxide (CeO2) have also got a lot research attention owing to its rich in content, low in price, environmentally friendly, good catalytic properties, and easy preparation. Besides, a rapid redox reaction occurs between trivalent cerium and tetravalent cerium releases oxygen atom and increase the conductivity. In order to prevent CeO2 from disintegration under long-term charge-discharge operation, the CeO2 carbon porous materials were was integrated as composite material in this study. For in the ex-situ analysis, scanning electron microscope (SEM), X-ray diffraction (XRD), transmission electron microscope (TEM) analysis were adopted to identify the surface morphology, crystal structure, and microstructure of the composite. 77K Nitrogen adsorption-desorption analysis was used to analyze the porosity of each specimen. For the in-situ test, cyclic voltammetry (CV) and chronopotentiometry (CP) were conducted by potentiostat to understand the charge and discharge properties. Ragone plot was drawn to further analyze the resistance properties. Based on above analyses, the effect of macropores/mespores and the CeO2/HPC ratios on charge-discharge performance were investigated. As a result, the capacitance can be greatly enhanced by 2.6 times higher than pristine mesoporous carbon electrode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20porous%20carbon" title="hierarchical porous carbon">hierarchical porous carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=cerium%20oxide" title=" cerium oxide"> cerium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/107799/hierarchical-porous-carbon-composite-electrode-for-high-performance-supercapacitor-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">222</span> Application of Fourier Series Based Learning Control on Mechatronic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Ba%C3%9Fler">Sandra Baßler</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20D%C3%BCnow"> Peter Dünow</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Marquardt"> Mathias Marquardt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Fourier series based learning control (FSBLC) algorithm for tracking trajectories of mechanical systems with unknown nonlinearities is presented. Two processes are introduced to which the FSBLC with PD controller is applied. One is a simplified service robot capable of climbing stairs due to special wheels and the other is a propeller driven pendulum with nearly the same requirements on control. Additionally to the investigation of learning the feed forward for the desired trajectories some considerations on the implementation of such an algorithm on low cost microcontroller hardware are made. Simulations of the service robot as well as practical experiments on the pendulum show the capability of the used FSBLC algorithm to perform the task of improving control behavior for repetitive task of such mechanical systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climbing%20stairs" title="climbing stairs">climbing stairs</a>, <a href="https://publications.waset.org/abstracts/search?q=FSBLC" title=" FSBLC"> FSBLC</a>, <a href="https://publications.waset.org/abstracts/search?q=ILC" title=" ILC"> ILC</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20robot" title=" service robot"> service robot</a> </p> <a href="https://publications.waset.org/abstracts/47470/application-of-fourier-series-based-learning-control-on-mechatronic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">221</span> Development of Programmed Cell Death Protein 1 Pathway-Associated Prognostic Biomarkers for Bladder Cancer Using Transcriptomic Databases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shu-Pin%20Huang">Shu-Pin Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pai-Chi%20Teng"> Pai-Chi Teng</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao-Han%20Chang"> Hao-Han Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Hsin%20Liu"> Chia-Hsin Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung-Lun%20Lin"> Yung-Lun Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Chi%20Wang"> Shu-Chi Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsin-Chih%20Yeh"> Hsin-Chih Yeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Pin%20Chuu"> Chih-Pin Chuu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiun-Hung%20Geng"> Jiun-Hung Geng</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Hsin%20Chang"> Li-Hsin Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Chung%20Cheng"> Wei-Chung Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Yang%20Li"> Chia-Yang Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The emergence of immune checkpoint inhibitors (ICIs) targeting proteins like PD-1 and PD-L1 has changed the treatment paradigm of bladder cancer. However, not all patients benefit from ICIs, with some experiencing early death. There's a significant need for biomarkers associated with the PD-1 pathway in bladder cancer. Current biomarkers focus on tumor PD-L1 expression, but a more comprehensive understanding of PD-1-related biology is needed. Our study has developed a seven-gene risk score panel, employing a comprehensive bioinformatics strategy, which could serve as a potential prognostic and predictive biomarker for bladder cancer. This panel incorporates the FYN, GRAP2, TRIB3, MAP3K8, AKT3, CD274, and CD80 genes. Additionally, we examined the relationship between this panel and immune cell function, utilizing validated tools such as ESTIMATE, TIDE, and CIBERSORT. Our seven-genes panel has been found to be significantly associated with bladder cancer survival in two independent cohorts. The panel was also significantly correlated with tumor infiltration lymphocytes, immune scores, and tumor purity. These factors have been previously reported to have clinical implications on ICIs. The findings suggest the potential of a PD-1 pathway-based transcriptomic panel as a prognostic and predictive biomarker in bladder cancer, which could help optimize treatment strategies and improve patient outcomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bladder%20cancer" title="bladder cancer">bladder cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=programmed%20cell%20death%20protein%201" title=" programmed cell death protein 1"> programmed cell death protein 1</a>, <a href="https://publications.waset.org/abstracts/search?q=prognostic%20biomarker" title=" prognostic biomarker"> prognostic biomarker</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20checkpoint%20inhibitors" title=" immune checkpoint inhibitors"> immune checkpoint inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20biomarker" title=" predictive biomarker"> predictive biomarker</a> </p> <a href="https://publications.waset.org/abstracts/173666/development-of-programmed-cell-death-protein-1-pathway-associated-prognostic-biomarkers-for-bladder-cancer-using-transcriptomic-databases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">220</span> Oxygen-Tolerant H₂O₂ Reduction Catalysis by Iron Phosphate Coated Iron Oxides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Ting%20Chang">Chia-Ting Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Yu%20Lin"> Chia-Yu Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report on the decisive role of iron phosphate (FePO₄), formed in-situ during the electrochemical characterization, played in the electrocatalytic activity, especially its oxygen tolerance of iron oxides towards H₂O₂ reduction. Iron oxides studied including, Nanorod arrays (NRs) of β-FeOOH, γ-Fe₂O₃, α-Fe₂O₃, α-Fe₂O₃ nanosheets (α-Fe₂O₃NS), α-Fe₂O₃ nanoparticles (α-Fe₂O₃NP), were synthesized using chemical bath deposition. The nanostructure was controlled simply by adjusting the composition of precursor solution and reaction duration for CBD process, whereas the crystal phase was controlled by adjusting the annealing temperature. It was found that iron phosphate (FePO₄) was deposited in-situ onto the surface of this nanostructured α-Fe₂O₃ during the electrochemical pretreatment in the phosphate electrolyte, and both FePO₄ and α-Fe₂O₃ showed the activity in catalysing the electrochemical reduction of H₂O₂. In addition, the interaction/compatibility between deposited FePO₄ and iron oxides has a decisive effect on the overall electrocatalytic activity of the resultant electrodes; FePO₄ only showed synergetic effect on the overall electrocatalytic activity of α-Fe₂O₃NR and α-Fe2O₃NS. Both α-Fe₂O₃NR and α-Fe₂O₃NS showed two reduction peaks in phosphate electrolyte containing H₂O₂, one being pH-dependent and related to the electrocatalytic properties of FePO₄, and the other one being pH-independent and only related to the intrinsic electrocatalytic properties of α-Fe₂O₃NR and α-Fe₂O₃NS. However, all iron oxides showed only one pH-independent reductive peak in non-phosphate electrolyte containing H₂O₂. The synergesitic catalysis exerted by FePO₄ with α-Fe₂O₃NR or α-Fe₂O₃NS providing additional oxygen-insensitive active site for H₂O₂ reduction, which allows their applications to electrochemical detection of H₂O₂ without the interference of O₂ involving in oxidase-catalyzed chemical processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=H%E2%82%82O%E2%82%82%20reduction" title="H₂O₂ reduction">H₂O₂ reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=Iron%20oxide" title=" Iron oxide"> Iron oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20phosphate" title=" iron phosphate"> iron phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=O%E2%82%82%20tolerance" title=" O₂ tolerance "> O₂ tolerance </a> </p> <a href="https://publications.waset.org/abstracts/84481/oxygen-tolerant-h2o2-reduction-catalysis-by-iron-phosphate-coated-iron-oxides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">219</span> Novel Verticillane-Type Diterpenoid from the Formosan Soft Coral Cespitularia taeniata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Chi%20Lin">Yu-Chi Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Sheng%20Lin"> Yun-Sheng Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Ching%20Liaw"> Chia-Ching Liaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Yu%20Chen"> Ching-Yu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Liang%20Chao"> Chien-Liang Chao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Hung%20Chou"> Chang-Hung Chou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ya-Ching%20Shen"> Ya-Ching Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel diterpenoid, cespitulactam peroxide (1), was isolated from the Formosan Soft Coral Cespitularia taeniata. Compound 1 possesses a verticillene skeleton having a γ-lactam fused with 1,2-dioxetane ring system. The structure of 1 was elucidated on the basis of spectroscopic analyses, especially HRMS and 2D NMR experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cespitularia%20hypotentaculata" title="Cespitularia hypotentaculata">Cespitularia hypotentaculata</a>, <a href="https://publications.waset.org/abstracts/search?q=diterpenoid" title=" diterpenoid"> diterpenoid</a>, <a href="https://publications.waset.org/abstracts/search?q=cespitulactam%20peroxide" title=" cespitulactam peroxide"> cespitulactam peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-lactam" title=" γ-lactam"> γ-lactam</a> </p> <a href="https://publications.waset.org/abstracts/15211/novel-verticillane-type-diterpenoid-from-the-formosan-soft-coral-cespitularia-taeniata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">593</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">218</span> Implication of Multi-Walled Carbon Nanotubes on Polymer/MXene Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Aakyiir">Mathias Aakyiir</a>, <a href="https://publications.waset.org/abstracts/search?q=Qunhui%20Zheng"> Qunhui Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20Araby"> Sherif Araby</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Ma"> Jun Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MXene nanosheets stack in polymer matrices, while multi-walled carbon nanotubes (MWCNTs) entangle themselves when used to form composites. These challenges are addressed in this work by forming MXene/MWCNT hybrid nanofillers by electrostatic self-assembly and developing elastomer/MXene/MWCNTs nanocomposites using a latex compounding method. In a 3-phase nanocomposite, MWCNTs serve as bridges between MXene nanosheets, leading to nanocomposites with well-dispersed nanofillers. The high aspect ratio of MWCNTs and the interconnection role of MXene serve as a basis for forming nanocomposites of lower percolation threshold of electrical conductivity from the hybrid fillers compared with the 2-phase composites containing either MXene or MWCNTs only. This study focuses on discussing into detail the interfacial interaction of nanofillers and the elastomer matrix and the outstanding mechanical and functional properties of the resulting nanocomposites. The developed nanocomposites have potential applications in the automotive and aerospace industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastomers" title="elastomers">elastomers</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-walled%20carbon%20nanotubes" title=" multi-walled carbon nanotubes"> multi-walled carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=MXenes" title=" MXenes"> MXenes</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a> </p> <a href="https://publications.waset.org/abstracts/116767/implication-of-multi-walled-carbon-nanotubes-on-polymermxene-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">217</span> Kauffman Model on a Network of Containers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johannes%20J.%20Schneider">Johannes J. Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathias%20S.%20Weyland"> Mathias S. Weyland</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Eggenberger%20Hotz"> Peter Eggenberger Hotz</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20D.%20Jamieson"> William D. Jamieson</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20Castell"> Oliver Castell</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessia%20Faggian"> Alessia Faggian</a>, <a href="https://publications.waset.org/abstracts/search?q=Rudolf%20M.%20F%C3%BCchslin"> Rudolf M. Füchslin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the description of the origin of life, there are still some open gaps, e.g., the formation of macromolecules cannot be fully explained so far. The Kauffman model proposes the existence of autocatalytic sets of macromolecules which mutually catalyze reactions leading to each other’s formation. Usually, this model is simulated in one well-stirred pot only, with a continuous inflow of small building blocks, from which larger molecules are created by a set of catalyzed ligation and cleavage reactions. This approach represents the picture of the primordial soup. However, the conditions on the early Earth must have differed geographically, leading to spatially different outcomes whether a specific reaction could be performed or not. Guided by this picture, the Kauffman model is simulated in a large number of containers in parallel, with neighboring containers being connected by diffusion. In each container, only a subset of the overall reaction set can be performed. Under specific conditions, this approach leads to a larger probability for the existence of an autocatalytic metabolism than in the original Kauffman model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agglomeration" title="agglomeration">agglomeration</a>, <a href="https://publications.waset.org/abstracts/search?q=autocatalytic%20set" title=" autocatalytic set"> autocatalytic set</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20equation" title=" differential equation"> differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Kauffman%20model" title=" Kauffman model"> Kauffman model</a> </p> <a href="https://publications.waset.org/abstracts/182310/kauffman-model-on-a-network-of-containers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">216</span> Reducing Change-Related Costs in Assembly of Lithium-Ion Batteries for Electric Cars by Mechanical Decoupling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Achim%20Kampker">Achim Kampker</a>, <a href="https://publications.waset.org/abstracts/search?q=Heiner%20Hans%20Heimes"> Heiner Hans Heimes</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Ordung"> Mathias Ordung</a>, <a href="https://publications.waset.org/abstracts/search?q=Nemanja%20Sarovic"> Nemanja Sarovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A key component of the drive train of electric vehicles is the lithium-ion battery system. Among various other components, such as the battery management system or the thermal management system, the battery system mostly consists of several cells which are integrated mechanically as well as electrically. Due to different vehicle concepts with regards to space, energy and power specifications, there is a variety of different battery systems. The corresponding assembly lines are specially designed for each battery concept. Minor changes to certain characteristics of the battery have a disproportionally high effect on the set-up effort in the form of high change-related costs. This paper will focus on battery systems which are made out of battery cells with a prismatic format. The product architecture and the assembly process will be analyzed in detail based on battery concepts of existing electric cars and key variety-causing drivers will be identified. On this basis, several measures will be presented and discussed on how to change the product architecture and the assembly process in order to reduce change-related costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly" title="assembly">assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20industry" title=" automotive industry"> automotive industry</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20system" title=" battery system"> battery system</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20concept" title=" battery concept"> battery concept</a> </p> <a href="https://publications.waset.org/abstracts/56399/reducing-change-related-costs-in-assembly-of-lithium-ion-batteries-for-electric-cars-by-mechanical-decoupling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">215</span> Constructing a Co-Working Innovation Model for Multiple Art Integration: A Case Study of Children&#039;s Musical</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nai-Chia%20Chao">Nai-Chia Chao</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng-Chi%20Shih"> Meng-Chi Shih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under today’s fast technology and massive data era, the working method start to change. In this study, based under literature meaning of “Co-working” we had implemented the new “Co-working innovation model”. Research concluded that co-working innovation model shall not be limited in co-working space but use under different field when applying multiple art integration stragies. Research show co-working should not be limited in special field or group, should be use or adapt whenever different though or ideas where found, it should be use under different field and plans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arts%20integration" title="arts integration">arts integration</a>, <a href="https://publications.waset.org/abstracts/search?q=co-working" title=" co-working"> co-working</a>, <a href="https://publications.waset.org/abstracts/search?q=children%27s%20musical" title=" children&#039;s musical"> children&#039;s musical</a> </p> <a href="https://publications.waset.org/abstracts/40936/constructing-a-co-working-innovation-model-for-multiple-art-integration-a-case-study-of-childrens-musical" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">214</span> Psychological Indices and Sporting Performance among Elite Athletes in Football in South-South Region, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simon%20Bullem">Simon Bullem</a>, <a href="https://publications.waset.org/abstracts/search?q=Ukkpata%20Mathias%20Oko"> Ukkpata Mathias Oko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The trust of this study will investigate the psychological indices and sporting performance among elite athletes in football in 32 teams in the south-south region, of Nigeria. To achieve the aim of the study, five research questions and five hypotheses shall be tested at a 0.05 level of significance that will guide the study. Literature shall be reviewed in line with the sub-independent variables of sporting psychological indices and the dependent variables of elite athlete achievement reactions towards the psychological indices. The ex.post facto survey designed shall be adapted for the study. The population of the study shall be 768 elite athletes from 32 clubs across the south-south region in Nigeria. A sample of 300 elite athletes shall be sampled using a simple random and stratified sampling technique. The questionnaire titled Psychological Indices and Sporting Performance among Elite Athletes in Football (PISPAEAF) will be the mean instrument for data collection. The research question shall be analyzed using the main and standard deviation statistics while the hypotheses shall use the person product moment correlation analysis at 0.5 level of significance finding for implications in sporting psychological indices and elite athletes' performance, which will emanate from the study. Based on the findings, recommendations shall be made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=psychological%20indices" title="psychological indices">psychological indices</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=elite%20athletes" title=" elite athletes"> elite athletes</a>, <a href="https://publications.waset.org/abstracts/search?q=sports" title=" sports"> sports</a>, <a href="https://publications.waset.org/abstracts/search?q=football" title=" football"> football</a> </p> <a href="https://publications.waset.org/abstracts/184519/psychological-indices-and-sporting-performance-among-elite-athletes-in-football-in-south-south-region-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">213</span> Development of Energy Management System Based on Internet of Things Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen-Jye%20Shyr">Wen-Jye Shyr</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Ming%20Lin"> Chia-Ming Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Yun%20Feng">Hung-Yun Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to develop an energy management system for university campuses based on the Internet of Things (IoT) technique. The proposed IoT technique based on WebAccess is used via network browser Internet Explore and applies TCP/IP protocol. The case study of IoT for lighting energy usage management system was proposed. Structure of proposed IoT technique included perception layer, equipment layer, control layer, application layer and network layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20management" title="energy management">energy management</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT%20technique" title=" IoT technique"> IoT technique</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=WebAccess" title=" WebAccess"> WebAccess</a> </p> <a href="https://publications.waset.org/abstracts/56513/development-of-energy-management-system-based-on-internet-of-things-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">212</span> Food Security and Mental Health: A Qualitative Exploration of Mediating Factors in Rural and Urban Ghana </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emma%20Mathias">Emma Mathias</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to explore the role of food insecurity as a mediator of mental health in sub-Saharan Africa, taking Ghana as a case study. Although a quantitative correlation has recently been established between food insecurity and mental illness in Ghana, the nature and validity of this correlation remains unclear. A qualitative exploration was employed to investigate this correlation further. During the data collection period, twelve semi-structured interviews and five focus groups were conducted with a total of 124 individuals who were diagnosed with mental illnesses and their primary carers throughout rural and urban areas in Ghana. Interviews and focus groups were transcribed, translated, and analysed using thematic analysis. Preliminary results suggest that food insecurity may plays a role in mental illness in rural areas of Ghana where communities are reliant on agriculture for their livelihoods, but may play a lesser role in urban areas where communities are more reliant on petty trade as a source of livelihood. These results support psychosocial theories which suggest that the social and cultural factors involved in food production and consumption may be the key mediators between food insecurity and mental health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Food%20insecurity" title="Food insecurity">Food insecurity</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghana" title=" Ghana"> Ghana</a>, <a href="https://publications.waset.org/abstracts/search?q=Mental%20health" title=" Mental health"> Mental health</a>, <a href="https://publications.waset.org/abstracts/search?q=Phenomenology" title=" Phenomenology"> Phenomenology</a> </p> <a href="https://publications.waset.org/abstracts/114626/food-security-and-mental-health-a-qualitative-exploration-of-mediating-factors-in-rural-and-urban-ghana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">211</span> Analysis of the Extreme Hydrometeorological Events in the Theorical Hydraulic Potential and Streamflow Forecast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Patricia%20Ibarra-Zavaleta">Sara Patricia Ibarra-Zavaleta</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabindranarth%20Romero-Lopez"> Rabindranarth Romero-Lopez</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosario%20Langrave"> Rosario Langrave</a>, <a href="https://publications.waset.org/abstracts/search?q=Annie%20Poulin"> Annie Poulin</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerald%20Corzo"> Gerald Corzo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Glaus"> Mathias Glaus</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Vega-Azamar"> Ricardo Vega-Azamar</a>, <a href="https://publications.waset.org/abstracts/search?q=Norma%20Angelica%20Oropeza"> Norma Angelica Oropeza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The progressive change in climatic conditions worldwide has increased frequency and severity of extreme hydrometeorological events (EHE). Mexico is an example; this has been affected by the presence of EHE leaving economic, social and environmental losses. The objective of this research was to apply a Canadian distributed hydrological model (DHM) to tropical conditions and to evaluate its capacity to predict flows in a basin in the central Gulf of Mexico. In addition, the DHM (once calibrated and validated) was used to calculate the theoretical hydraulic power and the performance to predict streamflow before the presence of an EHE. The results of the DHM show that the goodness of fit indicators between the observed and simulated flows in the calibration process (NSE=0.83, RSR=0.021 and BIAS=-4.3) and validation: temporal was assessed at two points: point one (NSE=0.78, RSR=0.113 and BIAS=0.054) and point two (NSE=0.825, RSR=0.103 and BIAS=0.063) are satisfactory. The DHM showed its applicability in tropical environments and its ability to characterize the rainfall-runoff relationship in the study area. This work can serve as a tool for identifying vulnerabilities before floods and for the rational and sustainable management of water resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HYDROTEL" title="HYDROTEL">HYDROTEL</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20power" title=" hydraulic power"> hydraulic power</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20hydrometeorological%20events" title=" extreme hydrometeorological events"> extreme hydrometeorological events</a>, <a href="https://publications.waset.org/abstracts/search?q=streamflow" title=" streamflow"> streamflow</a> </p> <a href="https://publications.waset.org/abstracts/85335/analysis-of-the-extreme-hydrometeorological-events-in-the-theorical-hydraulic-potential-and-streamflow-forecast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">210</span> The Development and Change of Settlement in Tainan County (1904-2015) Using Historical Geographic Information System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Ting%20Han">Wei Ting Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiann-Far%20Kung"> Shiann-Far Kung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the early time, most of the arable land is dry farming and using rainfall as water sources for irrigation in Tainan county. After the Chia-nan Irrigation System (CIS) was completed in 1930, Chia-nan Plain was more efficient allocation of limited water sources or irrigation, because of the benefit from irrigation systems, drainage systems, and land improvement projects. The problem of long-term drought, flood and salt damage in the past were also improved by CIS. The canal greatly improved the paddy field area and agricultural output, Tainan county has become one of the important agricultural producing areas in Taiwan. With the development of water conservancy facilities, affected by national policies and other factors, many agricultural communities and settlements are formed indirectly, also promoted the change of settlement patterns and internal structures. With the development of historical geographic information system (HGIS), Academia Sinica developed the WebGIS theme with the century old maps of Taiwan which is the most complete historical map of database in Taiwan. It can be used to overlay historical figures of different periods, present the timeline of the settlement change, also grasp the changes in the natural environment or social sciences and humanities, and the changes in the settlements presented by the visualized areas. This study will explore the historical development and spatial characteristics of the settlements in various areas of Tainan County. Using of large-scale areas to explore the settlement changes and spatial patterns of the entire county, through the dynamic time and space evolution from Japanese rule to the present day. Then, digitizing the settlement of different periods to perform overlay analysis by using Taiwan historical topographic maps in 1904, 1921, 1956 and 1989. Moreover, using document analysis to analyze the temporal and spatial changes of regional environment and settlement structure. In addition, the comparison analysis method is used to classify the spatial characteristics and differences between the settlements. Exploring the influence of external environments in different time and space backgrounds, such as government policies, major construction, and industrial development. This paper helps to understand the evolution of the settlement space and the internal structural changes in Tainan County. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=historical%20geographic%20information%20system" title="historical geographic information system">historical geographic information system</a>, <a href="https://publications.waset.org/abstracts/search?q=overlay%20analysis" title=" overlay analysis"> overlay analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement%20change" title=" settlement change"> settlement change</a>, <a href="https://publications.waset.org/abstracts/search?q=Tainan%20County" title=" Tainan County"> Tainan County</a> </p> <a href="https://publications.waset.org/abstracts/103162/the-development-and-change-of-settlement-in-tainan-county-1904-2015-using-historical-geographic-information-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">209</span> A Study of Non-Coplanar Imaging Technique in INER Prototype Tomosynthesis System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Yu%20Lin">Chia-Yu Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Hsiang%20Shen"> Yu-Hsiang Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Cing-Ciao%20Ke"> Cing-Ciao Ke</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Hao%20Chang"> Chia-Hao Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Fan-Pin%20Tseng"> Fan-Pin Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Ching%20Ni"> Yu-Ching Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Pin%20Tseng"> Sheng-Pin Tseng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tomosynthesis is an imaging system that generates a 3D image by scanning in a limited angular range. It could provide more depth information than traditional 2D X-ray single projection. Radiation dose in tomosynthesis is less than computed tomography (CT). Because of limited angular range scanning, there are many properties depending on scanning direction. Therefore, non-coplanar imaging technique was developed to improve image quality in traditional tomosynthesis. The purpose of this study was to establish the non-coplanar imaging technique of tomosynthesis system and evaluate this technique by the reconstructed image. INER prototype tomosynthesis system contains an X-ray tube, a flat panel detector, and a motion machine. This system could move X-ray tube in multiple directions during the acquisition. In this study, we investigated three different imaging techniques that were 2D X-ray single projection, traditional tomosynthesis, and non-coplanar tomosynthesis. An anthropopathic chest phantom was used to evaluate the image quality. It contained three different size lesions (3 mm, 5 mm and, 8 mm diameter). The traditional tomosynthesis acquired 61 projections over a 30 degrees angular range in one scanning direction. The non-coplanar tomosynthesis acquired 62 projections over 30 degrees angular range in two scanning directions. A 3D image was reconstructed by iterative image reconstruction algorithm (ML-EM). Our qualitative method was to evaluate artifacts in tomosynthesis reconstructed image. The quantitative method was used to calculate a peak-to-valley ratio (PVR) that means the intensity ratio of the lesion to the background. We used PVRs to evaluate the contrast of lesions. The qualitative results showed that in the reconstructed image of non-coplanar scanning, anatomic structures of chest and lesions could be identified clearly and no significant artifacts of scanning direction dependent could be discovered. In 2D X-ray single projection, anatomic structures overlapped and lesions could not be discovered. In traditional tomosynthesis image, anatomic structures and lesions could be identified clearly, but there were many artifacts of scanning direction dependent. The quantitative results of PVRs show that there were no significant differences between non-coplanar tomosynthesis and traditional tomosynthesis. The PVRs of the non-coplanar technique were slightly higher than traditional technique in 5 mm and 8 mm lesions. In non-coplanar tomosynthesis, artifacts of scanning direction dependent could be reduced and PVRs of lesions were not decreased. The reconstructed image was more isotropic uniformity in non-coplanar tomosynthesis than in traditional tomosynthesis. In the future, scan strategy and scan time will be the challenges of non-coplanar imaging technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20reconstruction" title="image reconstruction">image reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=non-coplanar%20imaging%20technique" title=" non-coplanar imaging technique"> non-coplanar imaging technique</a>, <a href="https://publications.waset.org/abstracts/search?q=tomosynthesis" title=" tomosynthesis"> tomosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20imaging" title=" X-ray imaging"> X-ray imaging</a> </p> <a href="https://publications.waset.org/abstracts/50913/a-study-of-non-coplanar-imaging-technique-in-iner-prototype-tomosynthesis-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mathias%20A.%20Chia&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mathias%20A.%20Chia&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mathias%20A.%20Chia&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mathias%20A.%20Chia&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mathias%20A.%20Chia&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mathias%20A.%20Chia&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mathias%20A.%20Chia&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mathias%20A.%20Chia&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10