CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;14 of 14 results for author: <span class="mathjax">Morley, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Morley%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Morley, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Morley%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Morley, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13212">arXiv:2404.13212</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.13212">pdf</a>, <a href="https://arxiv.org/format/2404.13212">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Nematicity of a Magnetic Helix </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tumbleson%2C+R">R. Tumbleson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morley%2C+S+A">S. A. Morley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hollingworth%2C+E">E. Hollingworth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+A">A. Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bayaraa%2C+T">T. Bayaraa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burdet%2C+N+G">N. G. Burdet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saleheen%2C+A+U">A. U. Saleheen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McCarter%2C+M+R">M. R. McCarter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raftrey%2C+D">D. Raftrey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pandolfi%2C+R+J">R. J. Pandolfi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Esposito%2C+V">V. Esposito</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dakovski%2C+G+L">G. L. Dakovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Decker%2C+F+-">F. -J. Decker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+A+H">A. H. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Assefa%2C+T+A">T. A. Assefa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+P">P. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Griffin%2C+S+M">S. M. Griffin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kevan%2C+S+D">S. D. Kevan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hellman%2C+F">F. Hellman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turner%2C+J+J">J. J. Turner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roy%2C+S">S. Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13212v1-abstract-short" style="display: inline;"> A system that possesses translational symmetry but breaks orientational symmetry is known as a nematic phase. While there are many examples of nematic phases in a wide range of contexts, such as in liquid crystals, complex oxides, and superconductors, of particular interest is the magnetic analogue, where the spin, charge, and orbital degrees of freedom of the electron are intertwined. The difficu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13212v1-abstract-full').style.display = 'inline'; document.getElementById('2404.13212v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13212v1-abstract-full" style="display: none;"> A system that possesses translational symmetry but breaks orientational symmetry is known as a nematic phase. While there are many examples of nematic phases in a wide range of contexts, such as in liquid crystals, complex oxides, and superconductors, of particular interest is the magnetic analogue, where the spin, charge, and orbital degrees of freedom of the electron are intertwined. The difficulty of spin nematics is the unambiguous realization and characterization of the phase. Here we present an entirely new type of magnetic nematic phase, which replaces the basis of individual spins with magnetic helices. The helical basis allows for the direct measurement of the order parameters with soft X-ray scattering and a thorough characterization of the nematic phase and its thermodynamic transitions. We discover two distinct nematic phases with unique spatio-temporal correlation signatures. Using coherent X-ray methods, we find that near the phase boundary between the two nematic phases, fluctuations coexist on the timescale of both seconds and sub-nanoseconds. Additionally, we have determined that the fluctuations occur simultaneously with a reorientation of the magnetic helices, indicating that there is spontaneous symmetry breaking and new degrees of freedom become available. Our results provide a novel framework for characterizing exotic phases and the phenomena presented can be mapped onto a broad class of physical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13212v1-abstract-full').style.display = 'none'; document.getElementById('2404.13212v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07948">arXiv:2310.07948</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.07948">pdf</a>, <a href="https://arxiv.org/format/2310.07948">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> 3D Heisenberg universality in the Van der Waals antiferromagnet NiPS$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Plumley%2C+R">Rajan Plumley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mardanya%2C+S">Sougata Mardanya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nokelainen%2C+J">Johannes Nokelainen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Assefa%2C+T">Tadesse Assefa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+L">Lingjia Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burdet%2C+N">Nicholas Burdet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Porter%2C+Z">Zach Porter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petsch%2C+A">Alexander Petsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Israelski%2C+A">Aidan Israelski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hongwei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J+S">Jun Sik Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morley%2C+S">Sophie Morley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roy%2C+S">Sujoy Roy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabbris%2C+G">Gilberto Fabbris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blackburn%2C+E">Elizabeth Blackburn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feiguin%2C+A">Adrian Feiguin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W">Wei-Sheng Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindenberg%2C+A">Aaron Lindenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chowdhury%2C+S">Sugata Chowdhury</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dunne%2C+M">Mike Dunne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turner%2C+J+J">Joshua J. Turner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07948v4-abstract-short" style="display: inline;"> Van der Waals (vdW) magnetic materials are comprised of layers of atomically thin sheets, making them ideal platforms for studying magnetism at the two-dimensional (2D) limit. These materials are at the center of a host of novel types of experiments, however, there are notably few pathways to directly probe their magnetic structure. We report the magnetic order within a single crystal of NiPS$_3$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07948v4-abstract-full').style.display = 'inline'; document.getElementById('2310.07948v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07948v4-abstract-full" style="display: none;"> Van der Waals (vdW) magnetic materials are comprised of layers of atomically thin sheets, making them ideal platforms for studying magnetism at the two-dimensional (2D) limit. These materials are at the center of a host of novel types of experiments, however, there are notably few pathways to directly probe their magnetic structure. We report the magnetic order within a single crystal of NiPS$_3$ and show it can be accessed with resonant elastic X-ray diffraction along the edge of the vdW planes in a carefully grown crystal by detecting structurally forbidden resonant magnetic X-ray scattering. We find the magnetic order parameter has a critical exponent of $尾\sim0.36$, indicating that the magnetism of these vdW crystals is more adequately characterized by the three-dimensional (3D) Heisenberg universality class. We verify these findings with first-principle density functional theory, Monte-Carlo simulations, and density matrix renormalization group calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07948v4-abstract-full').style.display = 'none'; document.getElementById('2310.07948v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.04938">arXiv:2307.04938</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.04938">pdf</a>, <a href="https://arxiv.org/format/2307.04938">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-023-00613-3">10.1038/s41535-023-00613-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Periodicity staircase in a Fe/Gd magnetic thin film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+A">Arnab Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Junli Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montoya%2C+S+A">Sergio A. Montoya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morley%2C+S">Sophie Morley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kevan%2C+S+D">Steve D. Kevan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+D">Dao-Xin Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Datta%2C+T">Trinanjan Datta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roy%2C+S">Sujoy Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.04938v3-abstract-short" style="display: inline;"> Presence of multiple competing periodicities may result in a system to go through states with modulated periodicities, an example of which is the self-similar staircase-like structure called the Devil&#39;s staircase. Herein we report on a novel staircase structure of domain periodicity in an amorphous and achiral Fe/Gd magnetic thin film wherein the reciprocal space wavevector \textbf{Q} due to the o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04938v3-abstract-full').style.display = 'inline'; document.getElementById('2307.04938v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.04938v3-abstract-full" style="display: none;"> Presence of multiple competing periodicities may result in a system to go through states with modulated periodicities, an example of which is the self-similar staircase-like structure called the Devil&#39;s staircase. Herein we report on a novel staircase structure of domain periodicity in an amorphous and achiral Fe/Gd magnetic thin film wherein the reciprocal space wavevector \textbf{Q} due to the ordered stripe domains does not evolve continuously, rather exhibits a staircase structure. Resonant X-ray scattering experiments show jumps in the periodicity of the stripe domains as a function of an external magnetic field. When resolved in components, the step change along Q$_x$ was found to be an integral multiple of a minimum step height of 7 nm, which resembles closely to the exchange length of the system. Modeling the magnetic texture in the Fe/Gd thin film as an achiral spin arrangement, we have been able to reproduce the steps in the magnetization using a Landau-Lifshitz spin dynamics calculation. Our results indicate that anisotropy and not the dipolar interaction is the dominant cause for the staircase pattern, thereby revealing the effect of achiral magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04938v3-abstract-full').style.display = 'none'; document.getElementById('2307.04938v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Mater. 9, 2 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.03475">arXiv:2205.03475</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.03475">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.L060407">10.1103/PhysRevB.107.L060407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Antiferromagnetic real-space configuration probed by dichroism in scattered x-ray beams with orbital angular momentum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=McCarter%2C+M+R">Margaret R. McCarter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saleheen%2C+A+I+U">Ahmad I. U. Saleheen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+A">Arnab Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tumbleson%2C+R">Ryan Tumbleson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woods%2C+J+S">Justin S. Woods</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tremsin%2C+A+S">Anton S. Tremsin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scholl%2C+A">Andreas Scholl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Long%2C+L+E">Lance E. De Long</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hastings%2C+J+T">J. Todd Hastings</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morley%2C+S+A">Sophie A. Morley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roy%2C+S">Sujoy Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.03475v2-abstract-short" style="display: inline;"> X-ray beams with orbital angular momentum (OAM) are a promising tool for x-ray characterization techniques. Beams with OAM have a helicity--an azimuthally varying phase--which leads to a gradient of the light field. New material properties can be probed by utilizing the helicity of an OAM beam. Here, we demonstrate a novel dichroic effect in resonant diffraction from an artificial antiferromagnet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.03475v2-abstract-full').style.display = 'inline'; document.getElementById('2205.03475v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.03475v2-abstract-full" style="display: none;"> X-ray beams with orbital angular momentum (OAM) are a promising tool for x-ray characterization techniques. Beams with OAM have a helicity--an azimuthally varying phase--which leads to a gradient of the light field. New material properties can be probed by utilizing the helicity of an OAM beam. Here, we demonstrate a novel dichroic effect in resonant diffraction from an artificial antiferromagnet with a topological defect. We found that the scattered OAM beam has circular dichroism at the antiferromagnetic Bragg peak whose sign is coupled to its helicity, which reveals the real-space configuration of the antiferromagnetic ground state. Thermal cycling of the artificial antiferromagnet can change the ground state, as indicated by reversal of the sign of circular dichroism. This result is one of the first demonstrations of a soft x-ray spectroscopy characterization technique utilizing the OAM of x-rays. This helicity-dependent circular dichroism exemplifies the potential to utilize OAM beams to probe matter in a way that is inaccessible using currently available x-ray techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.03475v2-abstract-full').style.display = 'none'; document.getElementById('2205.03475v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, L060407 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.01203">arXiv:2005.01203</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.01203">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aaz4247">10.1126/science.aaz4247 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Subterahertz spin pumping from an insulating antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vaidya%2C+P">Priyanka Vaidya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morley%2C+S+A">Sophie A. Morley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Tol%2C+J">Johan van Tol</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+R">Ran Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brataas%2C+A">Arne Brataas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lederman%2C+D">David Lederman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=del+Barco%2C+E">Enrique del Barco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.01203v1-abstract-short" style="display: inline;"> Spin-transfer torque and spin Hall effects combined with their reciprocal phenomena, spin-pumping and inverse spin Hall (ISHE) effects, enable the reading and control of magnetic moments in spintronics. The direct observation of these effects remains elusive in antiferromagnetic-based devices. We report sub-terahertz spin-pumping at the interface of a uniaxial insulating antiferromagnet MnF2 and p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.01203v1-abstract-full').style.display = 'inline'; document.getElementById('2005.01203v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.01203v1-abstract-full" style="display: none;"> Spin-transfer torque and spin Hall effects combined with their reciprocal phenomena, spin-pumping and inverse spin Hall (ISHE) effects, enable the reading and control of magnetic moments in spintronics. The direct observation of these effects remains elusive in antiferromagnetic-based devices. We report sub-terahertz spin-pumping at the interface of a uniaxial insulating antiferromagnet MnF2 and platinum. The measured ISHE voltage arising from spin-charge conversion in the platinum layer depends on the chirality of the dynamical modes of the antiferromagnet, which is selectively excited and modulated by the handedness of the circularly polarized sub-THz irradiation. Our results open the door to the controlled generation of coherent pure spin currents at THz frequencies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.01203v1-abstract-full').style.display = 'none'; document.getElementById('2005.01203v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science , Vol. 368, Apr 10 2020, Issue 6487, pp. 160-165 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.10626">arXiv:1908.10626</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.10626">pdf</a>, <a href="https://arxiv.org/format/1908.10626">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.174410">10.1103/PhysRevB.100.174410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heisenberg pseudo-exchange and emergent anisotropies in field-driven pinwheel artificial spin ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Paterson%2C+G+W">Gary W. Paterson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Macauley%2C+G+M">Gavin M. Macauley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yue Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mac%C3%AAdo%2C+R">Rair Mac锚do</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferguson%2C+C">Ciaran Ferguson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morley%2C+S+A">Sophie A. Morley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosamond%2C+M+C">Mark C. Rosamond</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Linfield%2C+E+H">Edmund H. Linfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marrows%2C+C+H">Christopher H. Marrows</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stamps%2C+R+L">Robert L. Stamps</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McVitie%2C+S">Stephen McVitie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.10626v2-abstract-short" style="display: inline;"> Rotating all islands in square artificial spin ice (ASI) uniformly about their centres gives rise to the recently reported pinwheel ASI. At angles around 45$^\mathrm{o}$, the antiferromagnetic ordering changes to ferromagnetic and the magnetic configurations of the system exhibit near-degeneracy, making it particularly sensitive to small perturbations. We investigate through micromagnetic modellin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.10626v2-abstract-full').style.display = 'inline'; document.getElementById('1908.10626v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.10626v2-abstract-full" style="display: none;"> Rotating all islands in square artificial spin ice (ASI) uniformly about their centres gives rise to the recently reported pinwheel ASI. At angles around 45$^\mathrm{o}$, the antiferromagnetic ordering changes to ferromagnetic and the magnetic configurations of the system exhibit near-degeneracy, making it particularly sensitive to small perturbations. We investigate through micromagnetic modelling the influence of dipolar fields produced by physically extended islands in field-driven magnetisation processes in pinwheel arrays, and compare the results to hysteresis experiments performed in-situ using Lorentz transmission electron microscopy. We find that magnetisation end-states induce a Heisenberg pseudo-exchange interaction that governs both the inter-island coupling and the resultant array reversal process. Symmetry reduction gives rise to anisotropies and array-corner mediated avalanche reversals through a cascade of nearest-neighbour (NN) islands. The symmetries of the anisotropy axes are related to those of the geometrical array but are misaligned to the array axes as a result of the correlated interactions between neighbouring islands. The NN dipolar coupling is reduced by decreasing the island size and, using this property, we track the transition from the strongly coupled regime towards the pure point dipole one and observe modification of the ferromagnetic array reversal process. Our results shed light on important aspects of the interactions in pinwheel ASI, and demonstrate a mechanism by which their properties may be tuned for use in a range of fundamental research and spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.10626v2-abstract-full').style.display = 'none'; document.getElementById('1908.10626v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 13 figures; post revision</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 174410 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.07472">arXiv:1809.07472</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.07472">pdf</a>, <a href="https://arxiv.org/format/1809.07472">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-019-52460-7">10.1038/s41598-019-52460-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermally and field-driven mobility of emergent magnetic charges in square artificial spin ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Morley%2C+S+A">Sophie A. Morley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Porro%2C+J+M">Jose Maria Porro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hrabec%2C+A">Ale拧 Hrabec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosamond%2C+M+C">Mark C. Rosamond</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Linfield%2C+E+H">Edmund H. Linfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burnell%2C+G">Gavin Burnell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Im%2C+M">Mi-Young Im</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+P+J">Peter J. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Langridge%2C+S">Sean Langridge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marrows%2C+C+H">Christopher H. Marrows</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.07472v1-abstract-short" style="display: inline;"> Designing and constructing model systems that embody the statistical mechanics of frustration is now possible using nanotechnology. We have arranged nanomagnets on a two-dimensional square lattice to form an artificial spin ice, and studied its fractional excitations, emergent magnetic monopoles, and how they respond to a driving field using X-ray magnetic microscopy. We observe a regime in which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07472v1-abstract-full').style.display = 'inline'; document.getElementById('1809.07472v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.07472v1-abstract-full" style="display: none;"> Designing and constructing model systems that embody the statistical mechanics of frustration is now possible using nanotechnology. We have arranged nanomagnets on a two-dimensional square lattice to form an artificial spin ice, and studied its fractional excitations, emergent magnetic monopoles, and how they respond to a driving field using X-ray magnetic microscopy. We observe a regime in which the monopole drift velocity is linear in field above a critical field for the onset of motion. The temperature dependence of the critical field can be described by introducing an interaction term into the Bean-Livingston model of field-assisted barrier hopping. By analogy with electrical charge drift motion, we define and measure a monopole mobility that is larger both for higher temperatures and stronger interactions between nanomagnets. The mobility in this linear regime is described by a creep model of zero-dimensional charges moving within a network of quasi-one-dimensional objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07472v1-abstract-full').style.display = 'none'; document.getElementById('1809.07472v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.10490">arXiv:1808.10490</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.10490">pdf</a>, <a href="https://arxiv.org/format/1808.10490">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.8b08884">10.1021/acsnano.8b08884 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superferromagnetism and domain-wall topologies in artificial &#39;pinwheel&#39; spin ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yue Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paterson%2C+G+W">Gary W. Paterson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Macauley%2C+G+M">Gavin M. Macauley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nascimento%2C+F+S">Fabio S. Nascimento</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferguson%2C+C">Ciaran Ferguson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morley%2C+S+A">Sophie A. Morley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosamond%2C+M+C">Mark C. Rosamond</a>, <a href="/search/cond-mat?searchtype=author&amp;query=MacLaren%2C+D+A">Donald A. MacLaren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mac%C3%AAdo%2C+R">Rair Mac锚do</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marrows%2C+C+H">Christopher H. Marrows</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McVitie%2C+S">Stephen McVitie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stamps%2C+R+L">Robert L. Stamps</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.10490v1-abstract-short" style="display: inline;"> For over ten years, arrays of interacting single-domain nanomagnets, referred to as artificial spin ices, have been engineered with the aim to study frustration in model spin systems. Here, we use Fresnel imaging to study the reversal process in &#39;pinwheel&#39; artificial spin ice, a modified square ASI structure obtained by rotating each island by some angle about its midpoint. Our results demonstrate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10490v1-abstract-full').style.display = 'inline'; document.getElementById('1808.10490v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.10490v1-abstract-full" style="display: none;"> For over ten years, arrays of interacting single-domain nanomagnets, referred to as artificial spin ices, have been engineered with the aim to study frustration in model spin systems. Here, we use Fresnel imaging to study the reversal process in &#39;pinwheel&#39; artificial spin ice, a modified square ASI structure obtained by rotating each island by some angle about its midpoint. Our results demonstrate that a simple 45掳 rotation changes the magnetic ordering from antiferromagnetic to ferromagnetic, creating a superferromagnet which exhibits mesoscopic domain growth mediated by domain wall nucleation and coherent domain propagation. We observe several domain-wall configurations, most of which are direct analogues to those seen in continuous ferromagnetic films. However, novel charged walls also appear due to the geometric constraints of the system. Changing the orientation of the external magnetic field allows control of the nature of the spin reversal with the emergence of either 1-D or 2-D avalanches. This unique property of pinwheel ASI could be employed to tune devices based on magnetotransport phenomena such as Hall circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10490v1-abstract-full').style.display = 'none'; document.getElementById('1808.10490v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.07321">arXiv:1806.07321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.07321">pdf</a>, <a href="https://arxiv.org/format/1806.07321">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.2.104406">10.1103/PhysRevMaterials.2.104406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Antiferromagnetic-ferromagnetic phase domain development in nanopatterned FeRh islands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Temple%2C+R+C">R. C. Temple</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Almeida%2C+T+P">T. P. Almeida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Massey%2C+J+R">J. R. Massey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fallon%2C+K">K. Fallon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lamb%2C+R">R. Lamb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morley%2C+S+A">S. A. Morley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">F. Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">S. S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McGrouther%2C+D">D. McGrouther</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McVitie%2C+S">S. McVitie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+T+A">T. A. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marrows%2C+C+H">C. H. Marrows</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.07321v1-abstract-short" style="display: inline;"> The antiferromagnetic to ferromagnetic phase transition in B2-ordered FeRh is imaged in laterally confined nanopatterned islands using photoemission electron microscopy with x-ray magnetic circular dichroism contrast. The resulting magnetic images directly detail the progression in the shape and size of the FM phase domains during heating and cooling through the transition. In 5 um square islands&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.07321v1-abstract-full').style.display = 'inline'; document.getElementById('1806.07321v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.07321v1-abstract-full" style="display: none;"> The antiferromagnetic to ferromagnetic phase transition in B2-ordered FeRh is imaged in laterally confined nanopatterned islands using photoemission electron microscopy with x-ray magnetic circular dichroism contrast. The resulting magnetic images directly detail the progression in the shape and size of the FM phase domains during heating and cooling through the transition. In 5 um square islands this domain development during heating is shown to proceed in three distinct modes: nucleation, growth, and merging, each with subsequently greater energy costs. In 0.5 um islands, which are smaller than the typical final domain size, the growth mode is stunted and the transition temperature was found to be reduced by 20 K. The modification to the transition temperature is found by high resolution scanning transmission electron microscopy to be due to a 100 nm chemically disordered edge grain present as a result of ion implantation damage during the patterning. FeRh has unique possibilities for magnetic memory applications; the inevitable changes to its magnetic properties due to subtractive nanofabrication will need to be addressed in future work in order to progress from sheet films to suitable patterned devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.07321v1-abstract-full').style.display = 'none'; document.getElementById('1806.07321v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 2, 104406 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.02404">arXiv:1712.02404</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.02404">pdf</a>, <a href="https://arxiv.org/format/1712.02404">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-018-23208-6">10.1038/s41598-018-23208-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of FePd alloy composition on the dynamics of artificial spin ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Morley%2C+S+A">Sophie A. Morley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riley%2C+S+T">Susan T. Riley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Porro%2C+J">Jose-Maria Porro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosamond%2C+M+C">Mark C. Rosamond</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Linfield%2C+E+H">Edmund H. Linfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cunningham%2C+J+E">John E. Cunningham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Langridge%2C+S">Sean Langridge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marrows%2C+C+H">Christopher H. Marrows</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.02404v1-abstract-short" style="display: inline;"> Artificial spin ices (ASI) are arrays of single domain nano-magnetic islands, arranged in geometries that give rise to frustrated magnetostatic interactions. It is possible to reach their ground state via thermal annealing. We have made square ASI using different FePd alloys to vary the magnetization via co-sputtering. From a polarized state the samples were incrementally heated and we measured th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.02404v1-abstract-full').style.display = 'inline'; document.getElementById('1712.02404v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.02404v1-abstract-full" style="display: none;"> Artificial spin ices (ASI) are arrays of single domain nano-magnetic islands, arranged in geometries that give rise to frustrated magnetostatic interactions. It is possible to reach their ground state via thermal annealing. We have made square ASI using different FePd alloys to vary the magnetization via co-sputtering. From a polarized state the samples were incrementally heated and we measured the vertex population as a function of temperature using magnetic force microscopy. For the higher magnetization FePd sample, we report an onset of dynamics at $T = 493$ K, with a rapid collapse into $&gt;90\%$ ground state vertices. In contrast, the low magnetization sample started to fluctuate at lower temperatures, $T = 393$ K and over a wider temperature range but only reached a maximum of $25\%$ of ground state vertices. These results indicate that the interaction strength, dynamic temperature range and pathways can be finely tuned using a simple co-sputtering process. In addition we have compared our experimental values of the blocking temperature to those predicted using the simple N茅el-Brown two-state model and find a large discrepancy which we attribute to activation volumes much smaller than the island volume. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.02404v1-abstract-full').style.display = 'none'; document.getElementById('1712.02404v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 8, 4750 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.03018">arXiv:1710.03018</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.03018">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-019-56219-y">10.1038/s41598-019-56219-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetization dynamics of weakly interacting sub-100 nm square artificial spin ices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Porro%2C+J+M">Jose M. Porro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morley%2C+S">Sophie Morley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Venero%2C+D+A">Diego Alba Venero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mac%C3%AAdo%2C+R">Rair Mac锚do</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosamond%2C+M+C">Mark C. Rosamond</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Linfield%2C+E+H">Edmund H. Linfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stamps%2C+R+L">Robert L. Stamps</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marrows%2C+C+H">Christopher H. Marrows</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Langridge%2C+S">Sean Langridge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.03018v2-abstract-short" style="display: inline;"> Artificial Spin Ice (ASI), consisting of a two dimensional array of nanoscale magnetic elements, provides a fascinating opportunity to observe the physics of out of equilibrium systems. Initial studies concentrated on the static, frozen state, whilst more recent studies have accessed the out-of-equilibrium dynamic, fluctuating state. This opens up exciting possibilities such as the observation of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.03018v2-abstract-full').style.display = 'inline'; document.getElementById('1710.03018v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.03018v2-abstract-full" style="display: none;"> Artificial Spin Ice (ASI), consisting of a two dimensional array of nanoscale magnetic elements, provides a fascinating opportunity to observe the physics of out of equilibrium systems. Initial studies concentrated on the static, frozen state, whilst more recent studies have accessed the out-of-equilibrium dynamic, fluctuating state. This opens up exciting possibilities such as the observation of systems exploring their energy landscape through monopole quasiparticle creation, potentially leading to ASI magnetricity, and to directly observe unconventional phase transitions. In this work we have measured and analysed the magnetic relaxation of thermally active ASI systems by means of SQUID magnetometry. We have investigated the effect of the interaction strength on the magnetization dynamics at different temperatures in the range where the nanomagnets are thermally active and have observed that they follow an Arrhenius-type N茅el-Brown behaviour. An unexpected negative correlation of the average blocking temperature with the interaction strength is also observed, which is supported by Monte Carlo simulations. The magnetization relaxation measurements show faster relaxation for more strongly coupled nanoelements with similar dimensions. The analysis of the stretching exponents obtained from the measurements suggest 1-D chain-like magnetization dynamics. This indicates that the nature of the interactions between nanoelements lowers the dimensionality of the ASI from 2-D to 1-D. Finally, we present a way to quantify the effective interaction energy of a square ASI system, and compare it to the interaction energy calculated from a simple dipole model and also to the magnetostatic energy computed with micromagnetic simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.03018v2-abstract-full').style.display = 'none'; document.getElementById('1710.03018v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci Rep 9, 19967 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.04792">arXiv:1703.04792</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.04792">pdf</a>, <a href="https://arxiv.org/ps/1703.04792">ps</a>, <a href="https://arxiv.org/format/1703.04792">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-017-0009-4">10.1038/s41567-017-0009-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Frustration and thermalisation in an artificial magnetic quasicrystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+D">Dong Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Budrikis%2C+Z">Zoe Budrikis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stein%2C+A">Aaron Stein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morley%2C+S+A">Sophie A. Morley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Olmsted%2C+P+D">Peter D. Olmsted</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burnell%2C+G">Gavin Burnell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marrows%2C+C+H">Christopher H. Marrows</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.04792v3-abstract-short" style="display: inline;"> We have created and studied artificial magnetic quasicrystals based on Penrose tiling patterns of interacting nanomagnets that lack the translational symmetry of spatially periodic artificial spin ices. Vertex-level degeneracy and frustration induced by the network topology of the Penrose pattern leads to a low energy configuration that we propose as a ground state. Topologically induced emergent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.04792v3-abstract-full').style.display = 'inline'; document.getElementById('1703.04792v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.04792v3-abstract-full" style="display: none;"> We have created and studied artificial magnetic quasicrystals based on Penrose tiling patterns of interacting nanomagnets that lack the translational symmetry of spatially periodic artificial spin ices. Vertex-level degeneracy and frustration induced by the network topology of the Penrose pattern leads to a low energy configuration that we propose as a ground state. Topologically induced emergent frustration means that this ground state cannot be constructed from vertices in their ground states. It has two parts, a quasi-one-dimensional rigid &#34;skeleton&#34; that spans the entire pattern and is capable of long-range order, and &#34;flippable&#34; clusters of macrospins within it. These lead to macroscopic degeneracy for the array as a whole. Magnetic force microscopy imaging of Penrose tiling arrays revealed superdomains that are larger for more strongly coupled arrays. The superdomain size is larger after AC-demagnetisation and especially after annealing the array above its blocking temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.04792v3-abstract-full').style.display = 'none'; document.getElementById('1703.04792v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.09375">arXiv:1603.09375</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.09375">pdf</a>, <a href="https://arxiv.org/ps/1603.09375">ps</a>, <a href="https://arxiv.org/format/1603.09375">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.104422">10.1103/PhysRevB.95.104422 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vogel-Fulcher-Tammann Freezing of a Thermally Fluctuating Artificial Spin Ice Probed by X-ray Photon Correlation Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Morley%2C+S+A">S. A. Morley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Venero%2C+D+A">D. Alba Venero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Porro%2C+J+M">J. M. Porro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riley%2C+S+T">S. T. Riley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stein%2C+A">A. Stein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steadman%2C+P">P. Steadman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stamps%2C+R+L">R. L. Stamps</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Langridge%2C+S">S. Langridge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marrows%2C+C+H">C. H. Marrows</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.09375v2-abstract-short" style="display: inline;"> We report on the crossover from the thermal to athermal regime of an artificial spin ice formed from a square array of magnetic islands whose lateral size, 30~nm~$\times$~70~nm, is small enough that they are superparamagnetic at room temperature. We used resonant magnetic soft x-ray photon correlation spectroscopy (XPCS) as a method to observe the time-time correlations of the fluctuating magnetic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.09375v2-abstract-full').style.display = 'inline'; document.getElementById('1603.09375v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.09375v2-abstract-full" style="display: none;"> We report on the crossover from the thermal to athermal regime of an artificial spin ice formed from a square array of magnetic islands whose lateral size, 30~nm~$\times$~70~nm, is small enough that they are superparamagnetic at room temperature. We used resonant magnetic soft x-ray photon correlation spectroscopy (XPCS) as a method to observe the time-time correlations of the fluctuating magnetic configurations of spin ice during cooling, which are found to slow abruptly as a freezing temperature $T_0 = 178 \pm 5$~K is approached. This slowing is well-described by a Vogel-Fulcher-Tammann law, implying that the frozen state is glassy, with the freezing temperature being commensurate with the strength of magnetostatic interaction energies in the array. The activation temperature, $T_\mathrm{A} = 40 \pm 10$~K, is much less than that expected from a Stoner-Wohlfarth coherent rotation model. Zero-field-cooled/field-cooled magnetometry reveals a freeing up of fluctuations of states within islands above this temperature, caused by variation in the local anisotropy axes at the oxidised edges. This Vogel-Fulcher-Tammann behavior implies that the system enters a glassy state on freezing, which is unexpected for a system with a well-defined ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.09375v2-abstract-full').style.display = 'none'; document.getElementById('1603.09375v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 104422 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.7346">arXiv:1412.7346</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.7346">pdf</a>, <a href="https://arxiv.org/ps/1412.7346">ps</a>, <a href="https://arxiv.org/format/1412.7346">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Temperature controlled motion of an antiferromagnet-ferromagnet interface within a dopant-graded FeRh epilayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gra%C3%ABt%2C+C+L">C. Le Gra毛t</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Charlton%2C+T+R">T. R. Charlton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McLaren%2C+M">M. McLaren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loving%2C+M">M. Loving</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morley%2C+S+A">S. A. Morley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kinane%2C+C+J">C. J. Kinane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brydson%2C+R+M+D">R. M. D. Brydson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lewis%2C+L+H">L. H. Lewis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Langridge%2C+S">S. Langridge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marrows%2C+C+H">C. H. Marrows</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.7346v1-abstract-short" style="display: inline;"> Chemically ordered B2 FeRh exhibits a remarkable antiferromagnetic-ferromagnetic phase transition that is first order. It thus shows phase coexistence, usually by proceeding though nucleation at random defect sites followed by propagation of phase boundary domain walls. The transition occurs at a temperature that can be varied by doping other metals onto the Rh site. We have taken advantage of thi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.7346v1-abstract-full').style.display = 'inline'; document.getElementById('1412.7346v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.7346v1-abstract-full" style="display: none;"> Chemically ordered B2 FeRh exhibits a remarkable antiferromagnetic-ferromagnetic phase transition that is first order. It thus shows phase coexistence, usually by proceeding though nucleation at random defect sites followed by propagation of phase boundary domain walls. The transition occurs at a temperature that can be varied by doping other metals onto the Rh site. We have taken advantage of this to yield control over the transition process by preparing an epilayer with oppositely directed doping gradients of Pd and Ir throughout its height, yielding a gradual transition that occurs between 350~K and 500~K. As the sample is heated, a horizontal antiferromagnetic-ferromagnetic phase boundary domain wall moves gradually up through the layer, its position controlled by the temperature. This mobile magnetic domain wall affects the magnetisation and resistivity of the layer in a way that can be controlled, and hence exploited, for novel device applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.7346v1-abstract-full').style.display = 'none'; document.getElementById('1412.7346v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to APL Materials</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10