CINXE.COM

Search results for: wheat varieties

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: wheat varieties</title> <meta name="description" content="Search results for: wheat varieties"> <meta name="keywords" content="wheat varieties"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="wheat varieties" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="wheat varieties"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 905</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: wheat varieties</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">905</span> Clustering the Wheat Seeds Using SOM Artificial Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salah%20Ghamari">Salah Ghamari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the ability of self organizing map artificial (SOM) neural networks in clustering the wheat seeds varieties according to morphological properties of them was considered. The SOM is one type of unsupervised competitive learning. Experimentally, five morphological features of 300 seeds (including three varieties: gaskozhen, Md and sardari) were obtained using image processing technique. The results show that the artificial neural network has a good performance (90.33% accuracy) in classification of the wheat varieties despite of high similarity in them. The highest classification accuracy (100%) was achieved for sardari. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title="artificial neural networks">artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=self%20organizing%20map" title=" self organizing map"> self organizing map</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20variety" title=" wheat variety"> wheat variety</a> </p> <a href="https://publications.waset.org/abstracts/33833/clustering-the-wheat-seeds-using-som-artificial-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">657</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">904</span> Characterization of Some Bread Wheat Genotypes for Drought Tolerance Using Molecular Markers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beg%C3%BCm%20Terzi">Begüm Terzi</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zlem%20Ate%C5%9F%20S%C3%B6nmezo%C4%9Flu"> Özlem Ateş Sönmezoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Yildirim"> Ahmet Yildirim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drought is the most important factor that limiting the production and productivity of wheat in the world. The yield of wheat, which is one of the most important crop in the world, reduced depend on drought. Researches to minimize effects of drought are one of the most important about breeding of drought resistant varieties. In recent years, benefiting from the drought resistance wild species and rapid advances in molecular biology studies, researches about drought have been accelerated and number of studies were made on molecular plant breeding which included the molecular mechanisms related to drought resistance. The aim of the present study was characterization of some bread wheat lines for drought tolerance which commonly cultivated in different location of Turkey. In this study, registered 9 bread wheat varieties which on the physiological tests about drought tolerance and 10 bread wheat line has been developed by Transitional Zone Agricultural Research Institute were used. SSR, STS, RAPD and SNP markers that associated with drought tolerance were used. The polymorphisms of the markers were determined by screening of two control varieties. For these purpose 40 molecular markers were used and 12 markers of them were polymorphic among the drought tolerance and the drought sensitive varieties. Control varieties were screened using polymorphic markers. All the DNAs on the genotypes will be searched for the presence of QTLs mapped to different chromosomes. Result of the research, the studied genotypes will be grouped according to drought tolerance and will be detected drought tolerance varieties by molecular markers. In addition, the results will be compared also with physiological tests. The drought tolerant wheat genotypes may be used in breeding studies related to drought stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bread%20wheat" title="bread wheat">bread wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20marker" title=" molecular marker"> molecular marker</a>, <a href="https://publications.waset.org/abstracts/search?q=Triticum%20aestivum" title=" Triticum aestivum"> Triticum aestivum</a> </p> <a href="https://publications.waset.org/abstracts/49403/characterization-of-some-bread-wheat-genotypes-for-drought-tolerance-using-molecular-markers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">903</span> Resistance Evaluation of Common Wheat Varieties/Lines to Leaf Rust and Stripe Rust at Seedling and Adult-Plant Stage in China, Gansu Province</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shelin%20Jin">Shelin Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Huang"> Jin Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiqin%20Cao"> Shiqin Cao</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiuzhen%20Jia"> Qiuzhen Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Zhang"> Bo Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenyu%20Sun"> Zhenyu Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stripe rust and leaf rust, caused by Puccinia striiformis f.sp. tritici and Puccinia recondita f.sp. tritici are two of the most damaging diseases of wheat in China. In recent years, leaf rust has migrated to some wheat growing areas previously suitable for stripe rust, resulting in a mixture of the two diseases occurring in the same area and at the same time, and seriously damage wheat production in China, Gansu Province. The most effective method of prevention those two diseases are through the use of resistant cultivars. However, many studies have only carried out of resistance of wheat varieties for a single disease; resistance to both diseases is unknown. In order to definite the resistance composition of wheat varieties to these two diseases, 715 wheat varieties/lines from 8 breeding units in Gansu province were collected to test for the resistance to stripe rust and leaf rust at seedling stage in greenhouse and at adult plant stage in field in 2016-2018, respectively. Spore suspensions with the fresh mixture races of CYR32, CYR33, and CYR34 of Puccinia striiformis f.sp. tritici and mixture races of THTP, THTT, TKTT, and THTS of Puccinia recondita f.sp. tritici were used for inoculation separately. The result shows that only 4.74% of the varieties/lines show comprehensive resistance to strip rust and leaf rust at all growth stages, and there are 34 wheat varieties/lines including Tianxuan 67, 2006-1-4-1-4-2-7-2-3-10, 03-139-1-2-2-1-2-1, Qingnong 21, Lenghan 5, 04-203-1-1-1 and so on. In seedling stage, the frequencies of resistant varieties/lines to wheat strip rust and leaf rust were 56.64% and 30.23%. While the materials were susceptible to these diseases were 43.36% and 69.77%. 71 varieties/lines were resistant to those two diseases, accounted for 9.93%. 10 varieties/lines, accounted for 1.4%, were highly resistant (including immune/near immune) to those two diseases. In adult-plant stage, the frequencies of resistant varieties/lines to wheat strip rust and leaf rust were 76.53% and 36.11%. While the materials were susceptible to these diseases were 23.47% and 63.89%. 137 varieties/lines were resistant to those two diseases, accounted for 19.16%. 59 varieties/lines, accounted for 8.25%, were highly resistant (including immune/near immune) to those two diseases. Overall, the 715 varieties /lines had high resistance to wheat strip rust, but poor resistance to leaf rust. This study found out some resistant materials which had better comprehensive resistance to leaf rust and strip rust, also pointed out the resistance characteristics of 715 varieties/lines to those two diseases at the seedling stage and adult-plant stage, which will be of great guiding significance in wheat resistance breeding and comprehensive control those two diseases in China, Gansu Province in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Puccinia%20striiformis%20f.sp.%20tritici" title="Puccinia striiformis f.sp. tritici">Puccinia striiformis f.sp. tritici</a>, <a href="https://publications.waset.org/abstracts/search?q=Puccinia%20recondita%20f.sp.%20tritici" title=" Puccinia recondita f.sp. tritici"> Puccinia recondita f.sp. tritici</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20of%20variety" title=" resistance of variety"> resistance of variety</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a> </p> <a href="https://publications.waset.org/abstracts/107461/resistance-evaluation-of-common-wheat-varietieslines-to-leaf-rust-and-stripe-rust-at-seedling-and-adult-plant-stage-in-china-gansu-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">902</span> Allelopathic Effects of Lambsquarters (Chenopodium album) Extract on the Germination and Early Growth of Wheat (Triticum aestivum L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Halabianfar">Amir Halabianfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamshid%20Razmjoo"> Jamshid Razmjoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to evaluate the competitive effects of Lambsqua on the germination and early growth of two wheat (Triticum aestivum L.) varieties, an experiment was conducted in laboratory conditions in researches of agronomy, College of agriculture, Isfahan University of Technology in 2015. A laboratory experiment was conducted on a factorial arrangement in a randomized complete design with four replications. Testing factors include two wheat cultivars (Flat and Atila -4) and three level of Lambsqua (Chenopodium album) extract (30, 60 and 90 percent) plus control with no extract. Twenty-five seeds of each wheat varieties were placed in petri dish, then the root extract of lambsqua, which was prepared previously at three levels, was poured on the seeds in each petri dish. The result showed that allelopathic effect of Lambsquarter on germination, root, and shoot dry weight of two varieties was highly significant. Among varieties, the Atila–4 showed minimum germination at 60% while the Flat showed minimum germination at 90% concentration. In case of root dry weight, Atila–4 was more suppressed as compared to Flat at 60% concentration but at 90% concentration, the both wheat varieties were reduced non-significantly. Shoot dry weight of Flat were decreased non-significantly concentrations except Atila -4 that was more reduced at 60 % than 90% concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allelopathy" title="allelopathy">allelopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Chenopodium%20album" title=" Chenopodium album"> Chenopodium album</a>, <a href="https://publications.waset.org/abstracts/search?q=extract" title=" extract"> extract</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20growth" title=" early growth"> early growth</a> </p> <a href="https://publications.waset.org/abstracts/78721/allelopathic-effects-of-lambsquarters-chenopodium-album-extract-on-the-germination-and-early-growth-of-wheat-triticum-aestivum-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">901</span> Nutritional Value and Leaf Disease Resistance of Different Varieties of Wheat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danut%C4%97%20Jablonskyt%C4%97-Ra%C5%A1%C4%8D%C4%97">Danutė Jablonskytė-Raščė</a>, <a href="https://publications.waset.org/abstracts/search?q=Vidas%20Damanauskas"> Vidas Damanauskas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wheat (Triticum) genus is divided into many species, of which only two are widely distributed in the world - common wheat (Triticum aestivum L.) and durum wheat (Triticum durum Desf.). Common (soft) wheat is the most common type of wheat in the world and the most suitable for the harsh climate of Lithuania, but the grains have lower protein content and poorer nutritional properties. Durum wheat is characterized by a high protein content of the grain, but it is a crop of warmer climates grown in southern countries, Italy, Spain, the United States, Egypt, etc. Today's important issue is food, its resources and quality. The research focuses on healthier food grown in our conditions, the quality of which recently depends a lot not only on the cultivation technology but also on the warming climate conditions. Climatic conditions change the distribution of fungi and their hosts. Plants that have grown in our climate for many years have adapted to the use of fungicides, so the aim is to study cereal varieties grown in warmer climates and compare them with our country's varieties, studying their nutritional value and the spread of fungal diseases. The field experiments of different varieties of wheat were conducted at Joniškėlis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry in 2023. The soil of the experimental site was Endocalcari-Endohypogleyic Cambisol (CMg-n-w-can). The research was designed to identify the resistance to leaf diseases and the nutritional value of various wheat varieties. This research aims to focus on healthier food grown in our conditions, the quality of which recently depends a lot not only on the cultivation technology but also on the conditions of the warming climate. The study found that hot and humid summer weather led to the spread of foliar diseases in wheat. Tan spot (Pyrenophora tritici-repentis) is mostly spread in wheat crops. This disease had an average prevalence of 86.90%. The wheat crop was sparse, so this year was unfavorable for the spread of powdery mildew (Blumeria graminis). Dry weather prevailed during the period of flowering of cereals, which prevented the spread of ear diseases. Examining the qualitative indicators of grain, it was found that durum wheat had the best parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=varieties" title="varieties">varieties</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20disease" title=" leaf disease"> leaf disease</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20quality" title=" grain quality"> grain quality</a> </p> <a href="https://publications.waset.org/abstracts/186143/nutritional-value-and-leaf-disease-resistance-of-different-varieties-of-wheat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">900</span> Polymorphism of HMW-GS in Collection of Wheat Genotypes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ch%C5%88apek">M. Chňapek</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tomka"> M. Tomka</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Peroutkov%C3%A1"> R. Peroutková</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20G%C3%A1lov%C3%A1"> Z. Gálová </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Processes of plant breeding, testing and licensing of new varieties, patent protection in seed production, relations in trade and protection of copyright are dependent on identification, differentiation and characterization of plant genotypes. Therefore, we focused our research on utilization of wheat storage proteins as genetic markers suitable not only for differentiation of individual genotypes, but also for identification and characterization of their considerable properties. We analyzed a collection of 102 genotypes of bread wheat (Triticum aestivum L.), 41 genotypes of spelt wheat (Triticum spelta L.), and 35 genotypes of durum wheat (Triticum durum Desf.), in this study. Our results show, that genotypes of bread wheat and durum wheat were homogenous and single line, but spelt wheat genotypes were heterogenous. We observed variability of HMW-GS composition according to environmental factors and level of breeding and predict technological quality on the basis of Glu-score calculation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genotype%20identification" title="genotype identification">genotype identification</a>, <a href="https://publications.waset.org/abstracts/search?q=HMW-GS" title=" HMW-GS"> HMW-GS</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20quality" title=" wheat quality"> wheat quality</a>, <a href="https://publications.waset.org/abstracts/search?q=polymorphism" title=" polymorphism"> polymorphism</a> </p> <a href="https://publications.waset.org/abstracts/6533/polymorphism-of-hmw-gs-in-collection-of-wheat-genotypes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">899</span> Role of Phenylalanine and Glycine in Plant Signaling to Improve Drought Tolerance Potential in Wheat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abida%20Kausar">Abida Kausar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shagufta%20Parveen"> Shagufta Parveen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The priming of seeds was carried out by two amino acids (phenylalanine and glycine) to improve the drought tolerance potential of two wheat varieties. As wheat is a staple food of more than half of the population of the world, including Pakistan. However, its productivity is mainly adversely affected by abiotic stresses. The current research plan was to investigate the effect of hydropriming and priming by amino acids on wheat varieties under drought stress (50% field capacity). Therefore morphological, biochemical, physiological, and yield attributes were recorded. It was revealed that drought stress significantly decreased the biochemical, morpho-physiological, and growth attributes of the wheat crop. However, the priming treatments have shown a positive correlation with all the studied attributes. It was concluded that priming might involve plant signaling to produce the drought tolerance metabolites under stress conditions which, as a consequence, enhanced the drought tolerance potential of crops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant%20biomass" title="plant biomass">plant biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=biochemical%20parameters" title=" biochemical parameters"> biochemical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophyll%20contents" title=" chlorophyll contents"> chlorophyll contents</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/151774/role-of-phenylalanine-and-glycine-in-plant-signaling-to-improve-drought-tolerance-potential-in-wheat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">898</span> Behavior of Common Wheat under the Influence of Treated Waste Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiahi%20Nadia">Chiahi Nadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of our work is to monitor the behavior of soft wheat on a morpho-physiological and agronomic scale under the influence of treated wastewater. Physico-chemical analyses of the treated sewage were also carried out, and our tests were carried out on two varieties of common wheat (Triticum aestivum L), HD1220 and ARZ. For this, a seedling was made, and two different irrigations were chosen, one using treated wastewater from the Sedrata (Wilaya of Souk ahras - Algeria) WWTP and the other stormwater as a control. The tests focused on soil and soft wheat parameters, and based on our results, the soft wheat development, physiological and yield parameters appear to respond favorably to the use of these waters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=common%20wheat%20%28Triticum%20aestivum%20L.%29" title="common wheat (Triticum aestivum L.)">common wheat (Triticum aestivum L.)</a>, <a href="https://publications.waset.org/abstracts/search?q=purified%20wastewater" title=" purified wastewater"> purified wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=morph%20physiological%20and%20agronomic%20parameters" title=" morph physiological and agronomic parameters"> morph physiological and agronomic parameters</a> </p> <a href="https://publications.waset.org/abstracts/171497/behavior-of-common-wheat-under-the-influence-of-treated-waste-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">897</span> Doubled Haploid Production in Wheat Using Imperata cylindrica Mediated Chromosome Elimination Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhu%20Patial">Madhu Patial</a>, <a href="https://publications.waset.org/abstracts/search?q=Dharam%20Pal"> Dharam Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagdish%20Kumar"> Jagdish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20K.%20Chaudhary"> H. K. Chaudhary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Doubled haploid breeding serves as a useful technique in wheat improvement by providing instant and complete homozygosity. Of the various techniques employed for haploid production chromosome elimination has a large scale practical application in wheat improvement. Barclay (1975) initiated the technique in wheat by crossing wheat variety Chinese spring with Hordeum bulbosum, but due to presence of the dominant crossability inhibitor genes Kr7 and Kr2 in many wheat varieties, the technique was however genotypic specific. The discovery of wheat X maize system of haploid production being genotype non-specific is quite successful but still maize needs to be grown in greenhouse to coincide flowering with wheat crop. Recently, wheat X Imperate cylindrica has been identified as a new chromosome mediated DH approach for efficient haploid induction. An experiment to use this technique in wheat was set up by crossing six F1s and two three way F1s with Imperata cylindrica. The data was recorded for the three component traits of haploid induction viz., seed formation, embryo formation and regeneration frequency. Variation among wheat F1s was observed and higher frequency for all the traits were recorded in cross HD 2997/2*FL-8/DONSK-POLL and KLE/BER/2*FL-8/DONSK-POLL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat" title="wheat">wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=haploid" title=" haploid"> haploid</a>, <a href="https://publications.waset.org/abstracts/search?q=imperata%20cylindrica" title=" imperata cylindrica"> imperata cylindrica</a>, <a href="https://publications.waset.org/abstracts/search?q=chromosome%20elimination%20technique" title=" chromosome elimination technique"> chromosome elimination technique</a> </p> <a href="https://publications.waset.org/abstracts/24869/doubled-haploid-production-in-wheat-using-imperata-cylindrica-mediated-chromosome-elimination-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">896</span> Yield Parameters of Hulled Wheat Species, Grown in Organic Farming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petr%20Konvalina">Petr Konvalina</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Moudry"> Jan Moudry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As organic farmers are searching foregoing crops for horticultural crops, there is possible to choice neglected wheat species and also have a new market and sale opportunities. Concerning wheat, there are landraces so called hulled wheat species (einkorn, emmer wheat, spelt) comprising parts of collections of the world gene banks. The advantage of this wheat species are small demands on growing conditions and also droughtiness in conditions of changing climate. Our paper aims at presenting the results of the study and the assessment of spring wheat forms, four einkorn cultivars, eight emmer wheat cultivars, seven spelt wheat cultivars in particular, as compared to modern bread wheat variety. Small-plot trials were established at two different localities within the Czech Republic and Austria in 2009 and 2012. The results of the trials show that some varieties were inclined to lodging. On the other hand, they were resistant to common wheat diseases (mildew, brown rust). Hulls served as barriers and obstacles against the DON grain contamination. The yield rate was lower. The grains were characterized by a high proportion of protein in grain (up to 18.1 %). However, they may be difficult to use for common baking. Moreover, new food products demonstrating a different technological quality of the hulled wheat species have to be launched on the market. They will be suitable for regional marketing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20farming" title="organic farming">organic farming</a>, <a href="https://publications.waset.org/abstracts/search?q=hulled%20wheat%20species" title=" hulled wheat species"> hulled wheat species</a>, <a href="https://publications.waset.org/abstracts/search?q=einkorn" title=" einkorn"> einkorn</a>, <a href="https://publications.waset.org/abstracts/search?q=emmer" title=" emmer"> emmer</a>, <a href="https://publications.waset.org/abstracts/search?q=spelt" title=" spelt"> spelt</a> </p> <a href="https://publications.waset.org/abstracts/29354/yield-parameters-of-hulled-wheat-species-grown-in-organic-farming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">895</span> An Evaluation of Different Weed Management Techniques in Organic Arable Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicola%20D.%20Cannon">Nicola D. Cannon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A range of field experiments have been conducted since 1991 to 2017 on organic land at the Royal Agricultural University’s Harnhill Manor Farm near Cirencester, UK to explore the impact of different management practices on weed infestation in organic winter and spring wheat. The experiments were designed using randomised complete block and some with split plot arrangements. Sowing date, variety choice, crop height and crop establishment technique have all shown a significant impact on weed infestations. Other techniques have also been investigated but with less clear, but, still often significant effects on weed control including grazing with sheep, undersowing with different legumes and mechanical weeding techniques. Tillage treatments included traditional plough based systems, minimum tillage and direct drilling. Direct drilling had significantly higher weed dry matter than the other two techniques. Taller wheat varieties which do not contain Rht1 or Rht2 had higher weed populations than the wheat without dwarfing genes. Early sown winter wheat had greater weed dry matter than later sown wheat. Grazing with sheep interacted strongly with sowing date, with shorter varieties and also late sowing dates providing much less forage but, grazing did reduce weed biomass in June. Undersowing had mixed impacts which were related to the success of establishment of the undersown legume crop. Weeds are most successfully controlled when a range of techniques are implemented to give the wheat crop the greatest chance of competing with weeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crop%20establishment" title="crop establishment">crop establishment</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling%20date" title=" drilling date"> drilling date</a>, <a href="https://publications.waset.org/abstracts/search?q=grazing" title=" grazing"> grazing</a>, <a href="https://publications.waset.org/abstracts/search?q=undersowing" title=" undersowing"> undersowing</a>, <a href="https://publications.waset.org/abstracts/search?q=varieties" title=" varieties"> varieties</a>, <a href="https://publications.waset.org/abstracts/search?q=weeds" title=" weeds"> weeds</a> </p> <a href="https://publications.waset.org/abstracts/79382/an-evaluation-of-different-weed-management-techniques-in-organic-arable-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">894</span> Grain Yield, Morpho-Physiological Parameters and Growth Indices of Wheat (Triticum Aestivum L.) Varieties Exposed to High Temperature under Late Sown Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shital%20Bangar">Shital Bangar</a>, <a href="https://publications.waset.org/abstracts/search?q=Chetana%20Mandavia"> Chetana Mandavia </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field experiment was carried out in Factorial Randomized Block Design (FRBD) with three replications at Instructional Farm Krushigadh, Junagadh Agricultural University, Junagadh, India to assess the biochemical parameters of wheat in order to assess the thermotolerance. Nine different wheat varieties GW 433, GW 431, HI 1571, GW 432, RAJ 3765, HD 2864, HI 1563, HD 3091 and PBW 670 sown in timely and late sown conditions (i.e., 22 Nov and 6 Dec 2012) were analysed. All the varieties differed significantly with respect to grain yield morpho-physiological parameters and growth indices for time of sowing, varieties and varieties x time of sowing interactions. The observations on morpho-physiological parameters viz., germination percentage, canopy temperature depression and growth indices viz., leaf area index (LAI), leaf area ratio (LAR) were recorded. Almost all the morpho-physiological parameters, growth indices and grain yield studied were affected adversely by late sowing, registering reduction in their magnitude. Germination percentage was reduced under late sown condition but variety PBW 670 was the best. Varieties GW 432 performed better with respect to canopy temperature depression while sown late. Under late sown condition, variety GW 431 recorded higher LAI while HI 1563 had maximum LAR. Considering yield performance, HD 2864 was best under timely sown condition, while GW 433 was best under late sown condition. Varieties HI 1571, GW 433 and GW 431 could be labelled as thermo-tolerant because there was least reduction in grain yield under late sown condition (1.75 %, 7.90 % and13.8 % respectively). Considering correlation coefficient, grain yield showed very strong significant positive association with germination percentage. Leaf area ratio was strongly and significantly correlated with grain yield but in negative direction. Canopy temperature depression and leaf area index also had positive correlation with grain yield but were non-significant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=growth%20indices" title="growth indices">growth indices</a>, <a href="https://publications.waset.org/abstracts/search?q=morpho-physiological%20parametrs" title=" morpho-physiological parametrs"> morpho-physiological parametrs</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-tolerance" title=" thermo-tolerance"> thermo-tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a> </p> <a href="https://publications.waset.org/abstracts/21796/grain-yield-morpho-physiological-parameters-and-growth-indices-of-wheat-triticum-aestivum-l-varieties-exposed-to-high-temperature-under-late-sown-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">893</span> The Effects of Fungicide and Genetics on Fungal Diseases on Wheat in Nebraska With Emphasis on Stem Rust</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javed%20Sidiqi">Javed Sidiqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Baezinger"> Stephen Baezinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Wegulo"> Stephen Wegulo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wheat (Triticum aestivum L.) production continues to be challenged by foliar fungal diseases although significant improvement has been made to manage the diseases through developing resistant varieties and the fungicide use to ensure sufficient wheat is produced to meet the growing population’s need. Significant crop losses have been recorded in the history of grain production and yield losses due to fungal diseases, and the trend continues to threat food security in the world and particularly in the less developed countries. The impact of individual fungal diseases on grain yield has been studied extensively to determine crop losses. However, there is limited research available to find out the combined effects of fungal diseases on grain yield and the ways to effectively manage the diseases. Therefore, the objectives of this research were to study the effect of fungal pathogens on grain yield of pre-released winter wheat genotypes in fungicide treated and untreated plots, and to determine whether S7b gene was present in ‘Gage’ wheat as previously hypothesized. Sixty winter wheat genotypes in fungicide treated and untreated plots were studied across four environments. There was a significant effect of fungicide on grain yield consistently across four environments in three years. Fungicide treated wheat lines demonstrated (4,496 kg/ ha-1) grain yield compared to (3,147 kg/ ha-1) grain yield in untreated wheat lines indicating 43% increased grain yield due to severity of foliar fungal diseases. Furthermore, fungicide application also caused an increase in protein concentration from 153 (g kg-1) to 164 (g kg-1) in treated plots in along with test weight from 73 to 77 (kg hL-1) respectively. Gage wheat variety and ISr7b-Ra were crossed to determine presence of Sr7b in Gage. The F2 and F2:3 segregating families were screened and evaluated for stem rust resistance. The segregation of families fell within 15:1 ratio for two separate resistance genes suggesting that Sr7b segregates independently from an unknown resistance gene in Gage that needs to be characterized for its use in the future wheat breeding program to develop resistant wheat varieties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=funicide" title="funicide">funicide</a>, <a href="https://publications.waset.org/abstracts/search?q=genetics" title=" genetics"> genetics</a>, <a href="https://publications.waset.org/abstracts/search?q=foliar%20diseases" title=" foliar diseases"> foliar diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=grain" title=" grain"> grain</a> </p> <a href="https://publications.waset.org/abstracts/149205/the-effects-of-fungicide-and-genetics-on-fungal-diseases-on-wheat-in-nebraska-with-emphasis-on-stem-rust" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">892</span> Physiological and Biochemical Assisted Screening of Wheat Varieties under Partial Rhizosphere Drying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Aown%20Sammar%20Raza">Muhammad Aown Sammar Raza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental stresses are one of the major reasons for poor crop yield across the globe. Among the various environmental stresses, drought stress is the most damaging one, especially in arid and semi-arid regions. Wheat is the major staple food of many countries of the world, which is badly affected by drought stress. In order to fulfill the dietary needs of increasing population with depleting water resources there is a need to adopt technologies which result in sufficient crop yield with less water consumption. One of them is partial root zone drying. Keeping in view these conditions, a wire house experiment was conducted at agronomic research area of University College of Agriculture and Environmental Sciences, The Islamia University Bahawalpur during 2015, to screen out the different wheat varieties for partial root zone drying (PRD). Five approved local wheat varieties (V1= Galaxy-2013, V2= Punjab-2011, V3 = Faisalabad-2008, V4 = Lasani-2008 and V5 = V.8200) and two irrigation levels (I1= control irrigation and I2 = PRD irrigation) with completely randomized design having four replications were used in the experiment. Among the varieties, Galaxy-2013 performed the best and attained maximum plant height, leaf area, stomatal conductance, photosynthesis, total sugars, proline contents and antioxidant enzymes activities and minimum values of growth and physiological parameters were recorded in variety V.8200. For irrigation levels, higher values of growth, physiological and water related parameters were recorded in control treatment (I1) except leaf water potential, osmotic potential, total sugars and proline contents. However, enzyme activities were higher under PRD treatment for all varieties. It was concluded that Galaxy-2013 is the most compatible and V.8200 is the most susceptible variety for PRD, respectively and more quality traits and enzymatic activities were recorded under PRD irrigation as compared to control treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20enzymes%20activities" title="antioxidant enzymes activities">antioxidant enzymes activities</a>, <a href="https://publications.waset.org/abstracts/search?q=osmolytes%20concentration" title=" osmolytes concentration"> osmolytes concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20root%20zone%20drying" title=" partial root zone drying"> partial root zone drying</a>, <a href="https://publications.waset.org/abstracts/search?q=photosynthetic%20rate" title=" photosynthetic rate"> photosynthetic rate</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20relations" title=" water relations"> water relations</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a> </p> <a href="https://publications.waset.org/abstracts/63093/physiological-and-biochemical-assisted-screening-of-wheat-varieties-under-partial-rhizosphere-drying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">891</span> Genetic Analysis of Rust Resistance Genes in Global Wheat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aktar-Uz-Zaman">Aktar-Uz-Zaman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tuhina-Khatun"> M. Tuhina-Khatun</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hanafi%20Musa"> Mohamed Hanafi Musa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three rust diseases: leaf (brown) rust caused by Puccinia triticina Eriks, stripe (yellow) rust caused by Puccinia striiformis West, and stem (black) rust caused by Puccinia graminis f. sp. tritici are economically important diseases of wheat in world wide. Yield loss due to leaf rust is 40% in susceptible cultivars. Yield losses caused by the stem rust pathogens in the mid of 20 century reached 20-30% in Eastern and Central Europe and the most virulent stem rust race Ug99 emerged first in Uganda and after that in Kenya, Ethiopia, Yemen, in the Middle East and South Asia. Yield losses were estimated up to 100%, whereas, up to 80% have been reported in Kenya during 1999. In case of stripe rust, severity level has been recorded 60% - 70% as compared to 100% severity of susceptible check in disease screening nurseries in Kenya. Improvement of resistant varieties or cultivars is the sustainable, economical and environmentally friendly approaches for increasing the global wheat production to suppress the rust diseases. More than 68 leaf rust, 49 stripe rust and 53 stem rust resistance genes have been identified in the global wheat cultivars or varieties using different molecular breeding approaches. Among these, Lr1, Lr9, Lr10, Lr19, Lr21, Lr24, Lr25, Lr28, Lr29, Lr34, Lr35, Lr37, Lr39, Lr47, Lr51, Lr3bg, Lr18, Lr40, Lr46, and Lr50 leaf rust resistance genes have been identified by using molecular, enzymatic and microsatellite markers from African, Asian, European cultivars of hexaploid wheat (Triticum aestivum), durum wheat and diploid wheat species. These genes are located on 20, of the 21 chromosomes of hexaploid wheat. Similarly, Sr1, Sr2, Sr24, and Sr3, Sr31 stem rust resistance genes have been recognized from wheat cultivars of Pakistan, India, Kenya, and Uganda etc. A race of P. striiformis (stripe rust) Yr9, Yr18, and Yr29 was first observed in East Africa, Italy, Pakistan and India wheat cultivars. These stripe rust resistance genes are located on chromosomes 1BL, 4BL, 6AL, 3BS and 6BL in bread wheat cultivars. All these identified resistant genes could be used for notable improvement of susceptible wheat cultivars in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hexaploid%20wheat" title="hexaploid wheat">hexaploid wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20genes" title=" resistance genes"> resistance genes</a>, <a href="https://publications.waset.org/abstracts/search?q=rust%20disease" title=" rust disease"> rust disease</a>, <a href="https://publications.waset.org/abstracts/search?q=triticum%20aestivum" title=" triticum aestivum"> triticum aestivum</a> </p> <a href="https://publications.waset.org/abstracts/36183/genetic-analysis-of-rust-resistance-genes-in-global-wheat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">890</span> Growth Analysis in Wheat as Influenced by Water Stress and Variety in Sokoto, Sudan Savannah, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20B.%20Sokoto">M. B. Sokoto</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20U.%20Abubakar"> I. U. Abubakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was carried out on effect of water stress and variety on growth of wheat (Triticum aestivum L.), during 2009/10 and 2010/11 dry seasons. The treatments consisted of factorial combination of water stress at three critical growth stage which was imposed by withholding water at (Tillering, Flowering, Grain filling) and Control (No stress) and two varieties (Star 11 TR 77173/SLM and Kauze/Weaver) laid out in a split-plot design with three replications. Water stress was assigned to the main-plot while variety was assigned to the sub-plots. Result revealed significant (P<0.05) effect of water stress, water stress at tillering significantly (P<0.05) reduced plant height, LAI, CGR, and NAR. Variety had a significant effect on plant height, LAI, CGR and NAR. In conclusion water stress at tillering was observed to be most critical growth stage in wheat, and water stress at this period should be avoided because it results to decrease in growth components in wheat. Wheat should be sown in November or at least first week of December in this area and other area with similar climate. Star II TR 77173/LM is recommended variety for the area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat" title="wheat">wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress" title=" water stress"> water stress</a>, <a href="https://publications.waset.org/abstracts/search?q=variety" title=" variety"> variety</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudan%20savannah" title=" Sudan savannah"> Sudan savannah</a> </p> <a href="https://publications.waset.org/abstracts/21974/growth-analysis-in-wheat-as-influenced-by-water-stress-and-variety-in-sokoto-sudan-savannah-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">889</span> Evaluation of Wheat Varieties on Water Use Efficiency under Staggering Sowing times and Variable Irrigation Regimes under Timely and Late Sown Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaibhav%20Baliyan">Vaibhav Baliyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shweta%20Mehrotra"> Shweta Mehrotra</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Parihar"> S. S. Parihar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The agricultural productivity is challenged by climate change and depletion in natural resources, including water and land, which significantly affects the crop yield. Wheat is a thermo-sensitive crop and is prone to heat stress. High temperature decreases crop duration, yield attributes, and, subsequently, grain yield and biomass production. Terminal heat stress affects grain filling duration, grain yield, and yield attributes, thus causing a reduction in wheat yield. A field experiment was conducted at Indian Agricultural Research Institute, New Delhi, for two consecutive rabi seasons (2017-18 and 2018-19) on six varieties of wheat (early sown - HD 2967, HD 3086, HD 2894 and late sown - WR 544, HD 3059, HD 3117 ) with three moisture regimes (100%, 80%, and 60% ETc, and no irrigation) and six sowing dates in three replications to investigate the effect of different moisture regimes and sowing dates on growth, yield and water use efficiency of wheat for development of best management practices for mitigation of terminal heat stress. HD3086 and HD3059 gave higher grain yield than others under early sown and late sown conditions, respectively. Maximum soil moisture extraction was recorded from 0-30 cm soil depth across the sowing dates, irrigation regimes, and varieties. Delayed sowing resulted in reducing crop growth period and forced maturity, in turn, led to significant deterioration in all the yield attributing characters and, there by, reduction in yield, suggesting that terminal heat stress had greater impact on yield. Early sowing and irrigation at 80% ETc resulted in improved growth and yield attributes and water use efficiency in both the seasons and helped to some extent in reducing the risk of terminal heat stress of wheat grown on sandy loam soils of semi-arid regions of India. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sowing" title="sowing">sowing</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20stress" title=" heat stress"> heat stress</a> </p> <a href="https://publications.waset.org/abstracts/164830/evaluation-of-wheat-varieties-on-water-use-efficiency-under-staggering-sowing-times-and-variable-irrigation-regimes-under-timely-and-late-sown-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">888</span> Identifying of Hybrid Lines for Lpx-B1 Gene in Durum Wheat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%96zlem%20Ate%C5%9F%20S%C3%B6nmezo%C4%9Flu">Özlem Ateş Sönmezoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Beg%C3%BCm%20Terzi"> Begüm Terzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Y%C4%B1ld%C4%B1r%C4%B1m"> Ahmet Yıldırım</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramazan%20%C3%96zbey"> Ramazan Özbey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The basic criteria which determine durum wheat quality is its suitability for pasta processing that is pasta making quality. Bright yellow color is a desired property in pasta products. Durum wheat pasta making quality is affected by grain pigment content and oxidative enzymes which affect adversely bright yellow color. Of the oxidative enzymes, lipoxygenase LOX is the most effective one on oxidative bleaching of yellow pigments in durum wheat products. Thus, wheat cultivars that are high in yellow pigments but low in LOX enzyme activity should be preferred for the production of pasta with high color quality. The aim of this study was to reduce lipoxygenase activities of the backcross durum wheat lines that were previously improved for their protein quality. For this purpose, two advanced lines with different parents (TMB2 and TMB3) were used recurrent parents. Also, Gediz-75 wheat with low LOX enzyme activity was used as the gene source. In all of the generations, backcrossed plants carrying the targeted gene region (Lpx-B1.1) were selected using SSR markers by marker assisted selection method. As a result, the study will be completed in three years instead of six years required in a classical backcross breeding study, leading to the development of high-quality candidate varieties. This research has been financially supported by TÜBİTAK (Project No: 112T910). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=durum%20wheat" title="durum wheat">durum wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=lipoxygenase" title=" lipoxygenase"> lipoxygenase</a>, <a href="https://publications.waset.org/abstracts/search?q=LOX" title=" LOX"> LOX</a>, <a href="https://publications.waset.org/abstracts/search?q=Lpx-B1.1" title=" Lpx-B1.1"> Lpx-B1.1</a>, <a href="https://publications.waset.org/abstracts/search?q=MAS" title=" MAS"> MAS</a>, <a href="https://publications.waset.org/abstracts/search?q=Triticum%20durum" title=" Triticum durum"> Triticum durum</a> </p> <a href="https://publications.waset.org/abstracts/68345/identifying-of-hybrid-lines-for-lpx-b1-gene-in-durum-wheat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">887</span> Germination and Seed Vigor Response of Five Wheat Cultivars to Stress of Premature Aging Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Soltani%20Howyzeh">Mehdi Soltani Howyzeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Neda%20Kardoni"> Neda Kardoni</a>, <a href="https://publications.waset.org/abstracts/search?q=Mani%20Mojadam"> Mani Mojadam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To evaluate the vigor of wheat seeds and stress of premature aging effects on germination percentage, root length and shoot length of five wheat cultivars that include Vynak, Karkheh, Chamran, Star and Kavir which underwent a period of zero, two, three, four days in terms of premature aging with 41 °C temperature and 100% relative humidity. Seed germination percentage, root length and shoot length in these conditions were measured. This experiment was conducted as a factorial completely randomized design with four replications in laboratory conditions. The results showed that each of aging treatments used in this experiment can be used to detect differences in vigor of wheat varieties. Wheat cultivars illustrated significant differences in germination percentage, root length and shoot length in terms of premature aging. The wheat cultivars; Astar and Vynak had maximum germination percentage and Karkheh, respectively Kavir and Chamran had lowest percentage of seed germination. Reactions of root and shoot length of wheat cultivars was also different. The results showed that the seeds with a stronger vigor affected less in premature aging condition and the difference between the percentage of seed germination under normal conditions and stress was significant and the seeds with the weaker vigor were more sensitive to the premature aging stress and the premature aging had more severe negative impact on seed vigor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat%20cultivars" title="wheat cultivars">wheat cultivars</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20vigor" title=" seed vigor"> seed vigor</a>, <a href="https://publications.waset.org/abstracts/search?q=premature%20aging%20effects" title=" premature aging effects"> premature aging effects</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination "> germination </a> </p> <a href="https://publications.waset.org/abstracts/32327/germination-and-seed-vigor-response-of-five-wheat-cultivars-to-stress-of-premature-aging-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">886</span> Influence of Laser Treatment on the Growth of Sprouts of Different Wheat Varieties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Bakradze">N. Bakradze</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Dumbadze"> T. Dumbadze</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Gagelidze"> N. Gagelidze</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Amiranashvili"> L. Amiranashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20L.%20Batako"> A. D. L. Batako</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cereals are considered as a strategic product in human life and it demand is increasing with the growth of world population. There is always shortage of cereals in various areas of the globe. For example, Georgia own production meets only 15-20% of the demand for grain, despite the fact that the country is considered one of the main centers of wheat origin. In Georgia, there are 14 types of wheat and more than 150 subspecies, and 40 subspecies of common wheat. Increasing wheat production is important for the country. One of the ways to solve the problem is to develop and implement new, environmentally and economically acceptable technologies. Such technologies include pre-sowing treatment of seed with a laser and associative nitrogen-fixing of the Azospirillum brasilensse bacteria. In the region there are Dika and Lomtagora which are among the most common in Georgia. Dika is a frost-resistant wheat, with a high ability to adapt to the environment, resistant to falling and it is sown in highlands. Dicka excellent properties are due to its strong immunity to fungal diseases; Dicka grains are rich in protein and lysine. Lomtagora 126 differs with its winter and drought resistance, and, it has a great ability to germinate. Lomtagora is characterized by a strong root system and a high budding capacity. It is an early variety, fall-resistant, easy to thresh and suitable for mechanized harvesting with large and red grains. The plant is moderately resistant to fungal diseases. This paper presents some preliminary experimental results where, a continuous CO2 laser at a power of 25-40 W/cm2 was used to radiate grains at a flow rate of 10-15 cm/sec. The treatment was carried out on grains of the Triticum aestivum L. var. of Lutescens (local variety name - Lomtagora 126), and Triticum carthlicum Nevski (local variety name - Dika). Here the grains were treated with Azospirillum brasilensse isolate (108-109 CFU / ml), which was isolated from the rhizosphere of wheat. It was observed that the germination of the wheat was not significantly influenced by either laser or bacteria treatment. In the case of the variety Lomtagora 126, when irradiated at an angle of 90°, it slightly improved the growth within 38 days of sawing, and in the case of irradiation at an angle of 90°+1, by 23%. The treatment of seeds with Azospirillum brazilense in both irradiated and non-irradiated variants led to an improvement in the growth of ssprouts. However, in the case of treatment with azospiril alone - by 22%, and with joint treatment of seeds with azospiril and irradiation - by 29%. In the case of the Dika wheat, the irradiation only led to an increase in growth by 8-9%, and the combine treatment of seeds with azospiril and irradiation - by 10-15%, in comparison with the control. Thus, the combine treatment of wheat of different varieties provided the best effect on the growth. Acknowledgment: This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG) (Grant number CARYS 19-573) <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20treatment" title="laser treatment">laser treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=Azospirillum%20brasilensse" title=" Azospirillum brasilensse"> Azospirillum brasilensse</a>, <a href="https://publications.waset.org/abstracts/search?q=seeds" title=" seeds"> seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20varieties" title=" wheat varieties"> wheat varieties</a>, <a href="https://publications.waset.org/abstracts/search?q=Lomtagora" title=" Lomtagora"> Lomtagora</a>, <a href="https://publications.waset.org/abstracts/search?q=Dika" title=" Dika"> Dika</a> </p> <a href="https://publications.waset.org/abstracts/135124/influence-of-laser-treatment-on-the-growth-of-sprouts-of-different-wheat-varieties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">885</span> Wheat Production and Market in Afghanistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fayiz%20Saifurahman">Fayiz Saifurahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Noori%20Fida%20Mohammad"> Noori Fida Mohammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Afghanistan produces the highest rate of wheat, it is the first source of food, and food security in Afghanistan is dependent on the availability of wheat. Although Afghanistan is the main producer of wheat, on the other hand, Afghanistan is the largest importers of flour. The objective of this study is to assess the structure and dynamics of the wheat market in Afghanistan, can compute with foreign markets, and increase the level of production. To complete this, a broad series of secondary data was complied with, group discussions and interviews with farmers, agricultural and market experts. The research findings propose that; the government should adopt different policies to support the local market. The government should distribute the seed, support financially and technically to increase wheat production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afghanistan" title="Afghanistan">Afghanistan</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production "> production </a>, <a href="https://publications.waset.org/abstracts/search?q=import" title=" import "> import </a> </p> <a href="https://publications.waset.org/abstracts/128290/wheat-production-and-market-in-afghanistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">884</span> Field Evaluation of Fusarium Head Blight in Durum Wheat Caused by Fusarium culmorum in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salah%20Hadjout">Salah Hadjout</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Zouidi"> Mohamed Zouidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Algeria, several works carried out in recent years have shown the importance of fusarium head blight in durum wheat. Indeed, this disease is caused by a complex of Fusarium genus pathogens. The research carried out reports that F. culmorum is the main species infecting cereals. These informations motivated our interest in the field evaluation of the behavior of some durum wheat genotypes (parental varieties and lines) with regard to fusarium head blight, mainly caused by four F. culmorum isolates. Our research work focused on following the evolution of symptom development throughout the grain filling, after artificial inoculation of ears by Fusarium isolates in order to establish a first image on the differences in genotype behavior to fusarium haed blight. Field disease assessment criteria are: disease assessment using a grading scale, thousand grain weight measurement and AUDPC. The results obtained revealed that the varieties and lines resulting from crosses had a quite different level of sensitivity to F. culmorum species and no genotype showed complete resistance in our culture conditions. Among the material tested, some lines showed higher resistance than their parents. The results also show a slight behavioral variability also linked to the aggressiveness of the Fusarium species studied in this work. Our results open very important research perspectives on fusarium head blight, in particular the search for toxins produced by Fusarium species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fusarium%20head%20blight" title="fusarium head blight">fusarium head blight</a>, <a href="https://publications.waset.org/abstracts/search?q=durum%20wheat" title=" durum wheat"> durum wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=Fusarium%20culmorum" title=" Fusarium culmorum"> Fusarium culmorum</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20disease%20assessment%20criteria" title=" field disease assessment criteria"> field disease assessment criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/158540/field-evaluation-of-fusarium-head-blight-in-durum-wheat-caused-by-fusarium-culmorum-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">883</span> Valorizing Traditional Greek Wheat Varieties: Use of DNA Barcoding for Species Identification and Biochemical Analysis of Their Nutritional Value</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niki%20Mougiou">Niki Mougiou</a>, <a href="https://publications.waset.org/abstracts/search?q=Spyros%20Didos"> Spyros Didos</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioanna%20Bouzouka"> Ioanna Bouzouka</a>, <a href="https://publications.waset.org/abstracts/search?q=Athina%20Theodorakopoulou"> Athina Theodorakopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Kornaros"> Michael Kornaros</a>, <a href="https://publications.waset.org/abstracts/search?q=Anagnostis%20Argiriou"> Anagnostis Argiriou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Grains from traditional old Greek cereal varieties were evaluated and compared to commercial cultivars, like Simeto and Mexicali 81, in an effort to valorize local products and assess the nutritional benefits of ancient grains. The samples studied in this research included common wheat, durum wheat, emmer (Triticum dicoccum) and einkorn (Triticum monococcum), as well as barley, oats and rye grains. The Internal Transcribed Spacer 2 (ITS2) nuclear region was amplified and sequenced as a barcode for species identification, allowing the verification of the label of each product. After that, the total content of bound and free polyphenols and flavonoids, as well as the antioxidant activity of bound and free compounds, was measured by classic colorimetric assays using Folin- Ciocalteu, AlCl₃ and DPPH‧ (2,2-diphenyl-1-picrylhydrazyl) reagents, respectively. Moreover, the level of variation of fatty acids was determined in all samples by gas chromatography. The results showed that local old landraces of emmer and einkorn had the highest polyphenol content, 2.4 and 3.3 times higher than the average value of 5 durum wheat samples, respectively. Regarding the total flavonoid content, einkorn had 2.6-fold and emmer 2-fold higher values than common wheat. The antioxidant activity of free or bound compounds was at the same level, at about 20-30% higher in both einkorn and emmer compared to common wheat. Five main fatty acids were detected in all samples, in order of decreasing amounts: linoleic (C18:2) > palmitic (C16:0) ≈ , oleic (C18:1) > eicosenoic (C20:1, cis-11) > stearic (C18:0). Emmer and einkorn showed a higher diversity of fatty acids and a higher content of mono-unsaturated fatty acids compared to common wheat. The results of this study demonstrate the high nutritional value of old local landraces that have been put aside by more productive, yet with lower qualitative characteristics, commercial cultivars, underlining the importance of maintaining sustainable agricultural practices to ensure their continued cultivation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochemical%20analysis" title="biochemical analysis">biochemical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20value" title=" nutritional value"> nutritional value</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20barcoding" title=" plant barcoding"> plant barcoding</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a> </p> <a href="https://publications.waset.org/abstracts/165737/valorizing-traditional-greek-wheat-varieties-use-of-dna-barcoding-for-species-identification-and-biochemical-analysis-of-their-nutritional-value" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">882</span> Comparative Study of the Effect of Three Fungicides: Tilt and Artea Amistarxtra about Growing Wheat, Hard, and Soft and Their Impact on Grain Yield and Its Components in the Semi-Arid Zone of Setif</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheniti%20Khalissa">Cheniti Khalissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Dekhili%20Mohamed"> Dekhili Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several fungal diseases may infect hard and soft wheat, which directly affect the yield and thus the economy of the homeland. So, a treatment fungicide is one of means of diseases control. In this context, we studied two varieties of wheat; Waha for soft wheat and Hidhab for hard wheat, at the level of the Technical Institute of crops (ITGC) in the wilaya of Setif under semi-arid conditions. This study consists of a successive application of three fungicides (Tilt, Artea, and Armistarxtra) according to three treatments (T1, T2, and T3) in addition to the witness (T0) at different stages of plant development (respectively, Montaison, earing and after flowering) whose purpose is to test and determine the effectiveness of these products used sequentially. The study showed good efficacy when we use the sum of these pesticides The comparison between these different treatments indicates that the T3 treatment reduced yield losses significantly; which is evident in the main yield components such as fertility, grain yield and weight of 1000 grains. The various components of yield and final yield are all parameters to be taken into account in such a study. In general, the fungal treatment is an effective way of improving profitability. In general, the fungal treatment is an effective way of improving profitability and positioning interventions in time is one of the requirements for an appreciable efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hard%20wheat" title="hard wheat">hard wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20wheat" title=" soft wheat"> soft wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=diseases" title=" diseases"> diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=fungicide%20treatment" title=" fungicide treatment"> fungicide treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=fertility" title=" fertility"> fertility</a>, <a href="https://publications.waset.org/abstracts/search?q=1000-grain%20weight" title=" 1000-grain weight"> 1000-grain weight</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-arid%20zone" title=" semi-arid zone"> semi-arid zone</a> </p> <a href="https://publications.waset.org/abstracts/14541/comparative-study-of-the-effect-of-three-fungicides-tilt-and-artea-amistarxtra-about-growing-wheat-hard-and-soft-and-their-impact-on-grain-yield-and-its-components-in-the-semi-arid-zone-of-setif" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">881</span> Responses to Germination and Seedling Emergence Capacity of Durum Wheat Cultivars in Long Term Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ahmet%20Bagci">S. Ahmet Bagci</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayati%20Akman"> Hayati Akman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted at the research laboratory and greenhouse conditions to determine the effect on germination and emergency values of long-term stored seed (7 years) and non-stored seed (control) of nine durum wheat varieties. Three replicates of 20 seeds were germinated between double layered rolled germination papers in the Petri plates. Seeds were allowed to germinate at 20±1°C in the dark for 8 days. The seeds were counted on the 8th day as per ISTA rules and calculated in percent to determine germination capacity. Seedling emergency values were determined by testing 20 seeds placed into the sands with three replications of pots. Plants were counted on the 7th day and 12th day to determined seedling emergency rate and capacity, respectively. According to results, there are significant differences among the varieties in terms of germination capacity, seedling emergency rate and capacity of long-term stored and non-stored seeds. Germination capacity values declined from 100% to 93,3% of non-stored seeds whereas they were from 96,7% to 71,7% of long-term stored seeds. Percentage of seedling emergency capacity varied from 65,0% to 93,3% for non-stored seeds, however, the percentage of it was between 11,7 and 86,7% for long-term stored seeds. Results indicate that germination and emergence values responses to long-term stored condition varied significantly among durum wheat cultivars. Research results showed that the long-term-storage resulted in significant decrease with 13.5 % for germination, 36.4 % for emergence on the seventh day and 32.4 % for emergence on the twelfth day. Germination values ranged from 93.3 to 100.0 % for control and 71.7 to 96.7 % for storage. Emergence values in seventh day varied between 51.7 % and 90.0 % for control and 75.0 % and 10.0 % for storage, however values in twelfth day were between 93.3 % and 65.0 % for control and 86.7 % and 11.7 % for storage. According to research results, germination and emergence responses to long-term storage condition varied significantly among durum wheat cultivars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=germination" title="germination">germination</a>, <a href="https://publications.waset.org/abstracts/search?q=emergence" title=" emergence"> emergence</a>, <a href="https://publications.waset.org/abstracts/search?q=long-term-storage" title=" long-term-storage"> long-term-storage</a>, <a href="https://publications.waset.org/abstracts/search?q=durum%20wheat" title=" durum wheat"> durum wheat</a> </p> <a href="https://publications.waset.org/abstracts/43319/responses-to-germination-and-seedling-emergence-capacity-of-durum-wheat-cultivars-in-long-term-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">880</span> British English vs. American English: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Halima%20Benazzouz">Halima Benazzouz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is often believed that British English and American English are the foremost varieties of the English Language serving as reference norms for other varieties;that is the reason why they have obviously been compared and contrasted.Meanwhile,the terms “British English” and “American English” are used differently by different people to refer to: 1) Two national varieties each subsuming regional and other sub-varieties standard and non-standard. 2) Two national standard varieties in which each one is only part of the range of English within its own state, but the most prestigious part. 3) Two international varieties, that is each is more than a national variety of the English Language. 4) Two international standard varieties that may or may not each subsume other standard varieties.Furthermore,each variety serves as a reference norm for users of the language elsewhere. Moreover, without a clear identification, as primarily belonging to one variety or the other, British English(Br.Eng) and American English (Am.Eng) are understood as national or international varieties. British English and American English are both “variants” and “varieties” of the English Language, more similar than different.In brief, the following may justify general categories of difference between Standard American English (S.Am.E) and Standard British English (S.Br.e) each having their own sociolectic value: A difference in pronunciation exists between the two foremost varieties, although it is the same spelling, by contrast, a divergence in spelling may be recognized, eventhough the same pronunciation. In such case, the same term is different but there is a similarity in spelling and pronunciation. Otherwise, grammar, syntax, and punctuation are distinctively used to distinguish the two varieties of the English Language. Beyond these differences, spelling is noted as one of the chief sources of variation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Greek" title="Greek">Greek</a>, <a href="https://publications.waset.org/abstracts/search?q=Latin" title=" Latin"> Latin</a>, <a href="https://publications.waset.org/abstracts/search?q=French%20pronunciation%20expert" title=" French pronunciation expert"> French pronunciation expert</a>, <a href="https://publications.waset.org/abstracts/search?q=varieties%20of%20English%20language" title=" varieties of English language"> varieties of English language</a> </p> <a href="https://publications.waset.org/abstracts/15569/british-english-vs-american-english-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">879</span> Introgression of Improved Root Biomass Traits into Wheat Hybrids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20N.%20U.%20Abdullah">F. N. U. Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20H.%20Ibrahim"> A. M. H. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuyu%20Liu"> Shuyu Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hybrid wheat root system is the major plant organ for water and nutrient acquisition. An initial wheat root study with Winrhizo scanner showed that entries with high root surface area but narrow root angle are associated with past drought tolerance in Texas, while those with wide angle can perform best under normal growing conditions. In a hybrid field experiment, commercial heterosis up to 8.3% in grain yield was obtained from diverse parents selected from male and female diverse groups. These hybrids showed promising yield at Greenville and McGregor, Texas, with grain yield up to 4412 Kg ha⁻¹ as compared to best performing commercial varieties ‘TAM-304’ (4075 Kg ha⁻¹) and ‘Gallagher’ (3981 Kg ha⁻¹). Among 130 hybrids produced, a subset of 50 better-performing hybrids and parents was subjected to one-month-old plant root studies scanned with Winrhizo. The results showed a significant positive correlation of grain yield with initial root angle and a negative correlation with root length. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrids" title="hybrids">hybrids</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20studies" title=" root studies"> root studies</a>, <a href="https://publications.waset.org/abstracts/search?q=heterosis" title=" heterosis"> heterosis</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20breeding" title=" wheat breeding"> wheat breeding</a> </p> <a href="https://publications.waset.org/abstracts/183018/introgression-of-improved-root-biomass-traits-into-wheat-hybrids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">878</span> Evaluation of Wheat Varieties for Water Use Efficiency under Staggering Sowing Times and Variable Irrigation Regimes under Timely and Late Sown Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaibhav%20Baliyan">Vaibhav Baliyan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Parihar"> S. S. Parihar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rise in temperature during reproductive phase and moisture stress, winter wheat yields are likely to decrease because of limited plant growth, higher rate of night respiration, higher spikelet sterility or number of grains per spike and restricted embryo development thereby reducing grain number. Crop management practices play a pivotal role in minimizing adverse effects of terminal heat stress on wheat production. Amongst various agronomic management practices, adjusting sowing date, crop cultivars and irrigation scheduling have been realized to be simple yet powerful, implementable and eco-friendly mitigation strategies to sustain yields under elevated temperature conditions. Taking into account, large variability in wheat production in space and time, a study was conducted to identify the suitable wheat varieties under both early and late planting with suitable irrigation schedule for minimizing terminal heat stress effect and thereby improving wheat production. Experiments were conducted at research farms of Indian Agricultural Research Institute, New Delhi, India, separately for timely and late sown conditions with suitable varieties with staggering dates of sowing from 1st November to 30th November in case of timely sown and from 1st December to 31st December for late sown condition. The irrigation schedule followed for both the experiments were 100% of ETc (evapotranspiration of crop), 80% of ETc and 60% of ETc. Results of the timely sown experiment indicated that 1st November sowing resulted in higher grain yield followed by 10th November. However, delay in sowing thereafter resulted in gradual decrease in yield and the maximum reduction was noticed under 30th November sowing. Amongst the varieties, HD3086 produced higher grain yield compared to other varieties. Irrigation applied based on 100% of ETc gave higher yield comparable to 80% of ETc but both were significantly higher than 60% of ETc. It was further observed that even liberal irrigation under 100% of ETc could not compensate the yield under delayed sowing suggesting that rise in temperature beyond January adversely affected the growth and development of crop as well as forced maturity resulting in significant reduction of yield attributing characters due to terminal heat stress. Similar observations were recorded under late sown experiment too. Planting on 1st December along with 100% ETc of irrigation schedule resulted in significantly higher grain yield as compared to other dates and irrigation regimes. Further, it was observed that reduction in yield under late sown conditions was significantly large than the timely sown conditions irrespective of the variety grown and irrigation schedule followed. Delayed sowing resulted in reducing crop growth period and forced maturity in turn led to significant deterioration in all the yield attributing characters and there by reduction in yield suggesting that terminal heat stress had greater impact on yield under late sown crop than timely sown due to temperature rise coinciding with reproductive phase of the crop. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate" title="climate">climate</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation" title=" mitigation"> mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a> </p> <a href="https://publications.waset.org/abstracts/125228/evaluation-of-wheat-varieties-for-water-use-efficiency-under-staggering-sowing-times-and-variable-irrigation-regimes-under-timely-and-late-sown-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">877</span> Evaluation of Wheat Sowing and Fertilizer Application Methods in Wheat Weeds Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Izadi-Darbandi">Ebrahim Izadi-Darbandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to investigation the effects of sowing methods, nitrogen and phosphorus application methods in wheat weeds management, an experiment was performed as split plot, based on randomized completely block design with three replications at Research Farm, Faculty of Agriculture, Ferdowsi University of Mashhad, in 2010. Treatments included, wheat sowing methods (single-row with 30 cm distance and twine row on 50 cm width ridges) as main plots and nitrogen and phosphorus application methods (Broadcast and Band) as sub plots. In this experiment, phosphorus and nitrogen sources for fertilization were super phosphate triple (150 kg ha-1) applied before wheat sowing and incorporated with soil and urea (200 kg ha-1) respectively, applied in 2 phases (pre-plant 50%) and near wheat shooting (50%). Results showed that the effect of fertilizers application methods and wheat sowing methods were significant (p≤0.01) on wheat yield increasing and reducing weed-wheat competition. Wheat twine row sowing method, reduced weeds biomass for 25% compared wheat single-row sowing method and increased wheat seed yield and biomass for 60% and 30% respectively. Phosphorus and nitrogen band application reduced weeds biomass for 46% and 53% respectively and increased wheat seed yield for 22% and 33% compared to their broadcast application. The effects of wheat sowing method plus phosphorus and nitrogen application methods interactions, showed that the fertilizers band application and wheat twine-row sowing method were the best methods in wheat yield improvement and reducing wheat-weeds interaction. These results shows that modifying of fertilization methods and wheat sowing method can have important role in fertilizers use efficiency and improving of weeds managements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=competition" title="competition">competition</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20yield" title=" wheat yield"> wheat yield</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer%20management" title=" fertilizer management"> fertilizer management</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a> </p> <a href="https://publications.waset.org/abstracts/13197/evaluation-of-wheat-sowing-and-fertilizer-application-methods-in-wheat-weeds-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">876</span> Agroecological and Socioeconomic Determinants of Conserving Diversity On-Farm: The Case of Wheat Genetic Resources in Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bedilu%20Tafesse">Bedilu Tafesse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conservation of crop genetic resources presents a challenge of identifying specific determinants driving maintenance of diversity at farm and agroecosystems. The objectives of this study were to identify socioeconomic, market and agroecological determinants of farmers’ maintenance of wheat diversity at the household level and derive implications for policies in designing on-farm conservation programs. We assess wheat diversity at farm level using household survey data. A household decision making model is conceptualized using microeconomic theory to assess and identify factors influencing on-farm rice diversity. The model is then tested econometrically by using various factors affecting farmers’ variety choice and diversity decisions. The findings show that household-specific socioeconomic, agroecological and market factors are important in determining on-farm wheat diversity. The significant variables in explaining richness and evenness of wheat diversity include distance to the nearest market, subsistence ratio, modern variety sold, land types and adult labour working in agriculture. The statistical signs of the factors determining wheat diversity are consistent in explaining the richness, dominance and evenness among rice varieties. Finally, the study implies that the cost-effective means of promoting and sustaining on-farm conservation programmes is to target them in market isolated geographic locations of high crop diversity where farm households have more heterogeneity of agroecological conditions and more active family adult labour working on-farm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diversity%20indices" title="diversity indices">diversity indices</a>, <a href="https://publications.waset.org/abstracts/search?q=dominance" title=" dominance"> dominance</a>, <a href="https://publications.waset.org/abstracts/search?q=evenness" title=" evenness"> evenness</a>, <a href="https://publications.waset.org/abstracts/search?q=on-farm%20conservation" title=" on-farm conservation"> on-farm conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20diversity" title=" wheat diversity"> wheat diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=richness" title=" richness"> richness</a> </p> <a href="https://publications.waset.org/abstracts/10481/agroecological-and-socioeconomic-determinants-of-conserving-diversity-on-farm-the-case-of-wheat-genetic-resources-in-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheat%20varieties&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheat%20varieties&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheat%20varieties&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheat%20varieties&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheat%20varieties&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheat%20varieties&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheat%20varieties&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheat%20varieties&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheat%20varieties&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheat%20varieties&amp;page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheat%20varieties&amp;page=31">31</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wheat%20varieties&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10