CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 94 results for author: <span class="mathjax">Mathur, N</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Mathur%2C+N">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Mathur, N"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Mathur%2C+N&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Mathur, N"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Mathur%2C+N&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Mathur%2C+N&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Mathur%2C+N&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12729">arXiv:2411.12729</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12729">pdf</a>, <a href="https://arxiv.org/format/2411.12729">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Precise study of triply charmed baryons ($惟_{ccc}$) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Dhindsa%2C+N+S">Navdeep Singh Dhindsa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chakraborty%2C+D">Debsubhra Chakraborty</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Radhakrishnan%2C+A">Archana Radhakrishnan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12729v1-abstract-short" style="display: inline;"> We present the most precise results for the ground state mass of the triply-charmed spin-$3/2$ baryon using lattice quantum chromodynamics. The calculations are performed on six $N_f=2+1+1$ Highly Improved Staggered Quark (HISQ) lattice ensembles generated by the MILC collaboration. Two different lattice setups are employed: in the first one, a fully dynamical calculation with HISQ action is perfo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12729v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12729v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12729v1-abstract-full" style="display: none;"> We present the most precise results for the ground state mass of the triply-charmed spin-$3/2$ baryon using lattice quantum chromodynamics. The calculations are performed on six $N_f=2+1+1$ Highly Improved Staggered Quark (HISQ) lattice ensembles generated by the MILC collaboration. Two different lattice setups are employed: in the first one, a fully dynamical calculation with HISQ action is performed, while in the second calculation, an overlap action is utilized for the valence charm quark dynamics. Following the continuum extrapolation of our results, obtained at five different lattice spacings, two different volumes, and two different actions, our prediction for the mass of the lowest triply charmed spin-3/2 baryon, $惟_{ccc} (3/2^{+})$, is $4793 (5) (7)$ MeV. This is the most precise determination to date, fully addressing the systematic uncertainties. We also predict the $惟_{ccc} (3/2^{-})$ mass to be $5094 (12) (13)$ MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12729v1-abstract-full').style.display = 'none'; document.getElementById('2411.12729v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, 1 table, and supplemental material (10 pages, 9 figures, 10 tables)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TIFR/TH/24-22 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08962">arXiv:2411.08962</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08962">pdf</a>, <a href="https://arxiv.org/format/2411.08962">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Nuclear correlation functions using first-principle calculations of lattice quantum chromodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chakraborty%2C+D">Debsubhra Chakraborty</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Srivastava%2C+P">Piyush Srivastava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kumar%2C+A">Arpith Kumar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08962v1-abstract-short" style="display: inline;"> Exploring nuclear physics through the fundamental constituents of the strong force -- quarks and gluons -- is a formidable challenge. While numerical calculations using lattice quantum chromodynamics offer the most promising approach for this pursuit, practical implementation is arduous, especially due to the uncontrollable growth of quark-combinatorics, the so-called Wick-contraction problem of n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08962v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08962v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08962v1-abstract-full" style="display: none;"> Exploring nuclear physics through the fundamental constituents of the strong force -- quarks and gluons -- is a formidable challenge. While numerical calculations using lattice quantum chromodynamics offer the most promising approach for this pursuit, practical implementation is arduous, especially due to the uncontrollable growth of quark-combinatorics, the so-called Wick-contraction problem of nuclei. We present here two novel methods providing a state-of-the-art solution to this problem. In the first, we exploit randomized algorithms inspired from computational number theory to detect and eliminate redundancies that arise in Wick contraction computations. Our second method explores facilities for automation of tensor computations -- in terms of efficient utilization of specialized hardware, algorithmic optimizations, as well as ease of programming and the potential for automatic code generation -- that are offered by new programming models inspired by applications in machine learning (e.g., TensorFlow). We demonstrate the efficacy of our methods by computing two-point correlation functions for Deuteron, Helium-3, Helium-4 and Lithium-7, achieving at least an order of magnitude improvement over existing algorithms with efficient implementation on GPU-accelerators. Additionally, we discover an intriguing characteristic shared by all the nuclei we study: specific spin-color combinations dominate the correlation functions, hinting at a potential connection to an as-yet-unidentified symmetry in nuclei. Moreover finding them beforehand can reduce the computing time further and substantially. Our results, with the efficiency that we achieved, suggest the possibility of extending the applicability of our methods for calculating properties of light nuclei, potentially up to A ~12 and beyond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08962v1-abstract-full').style.display = 'none'; document.getElementById('2411.08962v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">68 pages with 6 tables and 23 figures including an Appendix. To be published in Physical Review D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TIFR/TH/24-23 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08519">arXiv:2410.08519</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.08519">pdf</a>, <a href="https://arxiv.org/format/2410.08519">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Spectrum of two-flavored spin-zero heavy dibaryons in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Junnarkar%2C+P+M">Parikshit M. Junnarkar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08519v1-abstract-short" style="display: inline;"> We present the ground state energy spectra of two-flavored heavy dibaryons in the spin-singlet channel. In particular, the ground state masses of $惟_{llQ}惟_{llQ}, 惟_{QlQ}惟_{llQ}$ and $惟_{QlQ}惟_{QlQ}$ states are computed and compared with their respective lowest non-interacting energy levels, where the flavor $Q \in (c,b)$ denotes charm and bottom quarks, and the other flavor $l \in {s,c,b}$ repres&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08519v1-abstract-full').style.display = 'inline'; document.getElementById('2410.08519v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08519v1-abstract-full" style="display: none;"> We present the ground state energy spectra of two-flavored heavy dibaryons in the spin-singlet channel. In particular, the ground state masses of $惟_{llQ}惟_{llQ}, 惟_{QlQ}惟_{llQ}$ and $惟_{QlQ}惟_{QlQ}$ states are computed and compared with their respective lowest non-interacting energy levels, where the flavor $Q \in (c,b)$ denotes charm and bottom quarks, and the other flavor $l \in {s,c,b}$ represents strange, charm and bottom, respectively. Considering their valence quark structures, these hadrons could be thought of as the heavy flavor analogues of spin-singlet nucleon-nucleon states. The gauge configurations employed in this study are HISQ ensembles with $N_f = 2+1+1$ flavors, generated by the MILC collaboration, at four lattice spacings, namely $a=0.1207, 0.0888, 0.0582$ and $0.0448$ fm. The aforementioned states are also computed at different quark masses, between $m_s \le m_l \le m_b$, including at unphysical heavy quark masses, to explore the quark mass dependence of any possible binding. For the dibaryon states $惟_{bbc}惟_{bbc}, 惟_{ccb}惟_{ccb}$ and $惟_{ccb} 惟_{bbc}$, we find a clear evidence of an energy level below their respective non-interacting energy levels. In addition, for these dibaryons at quark masses $m_c &lt; m_l \le m_b$, a trend is found where the gap, between the lowest energy levels and the respective lowest non-interacting levels, increases as the quark mass $m_l$ increases. We also study the heavy quark spin-symmetry and its breaking for these heavy dibaryons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08519v1-abstract-full').style.display = 'none'; document.getElementById('2410.08519v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TIFR/TH/24-20 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10167">arXiv:2409.10167</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.10167">pdf</a>, <a href="https://arxiv.org/format/2409.10167">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Exploring Single-Flavor Dibaryons: A lattice perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Dhindsa%2C+N+S">Navdeep Singh Dhindsa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10167v1-abstract-short" style="display: inline;"> We present a lattice calculation of dibaryons composed of single-flavor quarks with either charm or strange quark mass. We utilize a set of lattice QCD ensembles with $N_f=2+1+1$ dynamical HISQ fields, two spatial volumes, and four different lattice spacings generated by the MILC collaboration. By using an overlap action for the valence quark propagators, we calculate the ground state energies of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10167v1-abstract-full').style.display = 'inline'; document.getElementById('2409.10167v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10167v1-abstract-full" style="display: none;"> We present a lattice calculation of dibaryons composed of single-flavor quarks with either charm or strange quark mass. We utilize a set of lattice QCD ensembles with $N_f=2+1+1$ dynamical HISQ fields, two spatial volumes, and four different lattice spacings generated by the MILC collaboration. By using an overlap action for the valence quark propagators, we calculate the ground state energies of dibaryons in $S = 0$ and $S = 2$ spin channels. By analyzing the energy difference of the ground state of the dibaryon with respect to the relevant threshold, we provide insights into the interactions involved in different spin channels at the charm and the strange quark masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10167v1-abstract-full').style.display = 'none'; document.getElementById('2409.10167v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, 1 table, contribution to the 41st International Symposium on Lattice Field Theory (Lattice 2024), July 28th - August 3rd, 2024, University of Liverpool</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TIFR/TH/24-18 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.08109">arXiv:2404.08109</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.08109">pdf</a>, <a href="https://arxiv.org/format/2404.08109">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.034506">10.1103/PhysRevD.110.034506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of isoscalar scalar $bc\bar u\bar d$ tetraquark $T_{bc}$ from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Radhakrishnan%2C+A">Archana Radhakrishnan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.08109v1-abstract-short" style="display: inline;"> We present a lattice QCD study of the elastic $S$-wave $D\bar{B}$ scattering in search of tetraquark candidates with explicitly exotic flavor content $bc\bar u\bar d$ in the isospin $I\!=\!0$ and $J^P=0^+$ channel. We use four lattice QCD ensembles with dynamical $u/d$, $s$, and $c$ quark fields generated by the MILC Collaboration. A non-relativistic QCD Hamiltonian, including improvement coeffici&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08109v1-abstract-full').style.display = 'inline'; document.getElementById('2404.08109v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.08109v1-abstract-full" style="display: none;"> We present a lattice QCD study of the elastic $S$-wave $D\bar{B}$ scattering in search of tetraquark candidates with explicitly exotic flavor content $bc\bar u\bar d$ in the isospin $I\!=\!0$ and $J^P=0^+$ channel. We use four lattice QCD ensembles with dynamical $u/d$, $s$, and $c$ quark fields generated by the MILC Collaboration. A non-relativistic QCD Hamiltonian, including improvement coefficients up to $\mathcal{O}(伪_sv^4)$, is utilized for the bottom quarks. For the rest of the valence quarks we employ a relativistic overlap action. Five different valence quark masses are utilized to study the light quark mass dependence of the $D\bar{B}$ scattering amplitude. The finite volume energy spectra are extracted following a variational approach. The elastic $D\bar{B}$ scattering amplitudes are extracted employing L眉scher&#39;s prescription. The light quark mass dependence of the continuum extrapolated amplitudes suggests an attractive interaction between the $\bar B$ and $D$ mesons. At the physical pseudoscalar meson mass ($M_{ps}=M_蟺$) the $D\bar{B}$ scattering amplitude has a sub-threshold pole corresponding to a binding energy of $-39(^{+4}_{-6})(^{~+8}_{-18}) \mbox{~MeV}$ with respect to the $D\bar{B}$ threshold. The critical $M_{ps}$ at which the $D\bar{B}$ scattering length diverges and the system becomes unbound corresponds to $M^*_{ps}=2.94(15)(5) \mbox{~GeV}$. This result can hold significant experimental relevance in the search for a bound scalar $T_{bc}$ tetraquark, which could well be the next &#34;doubly heavy&#34; bound tetraquark to be discovered with only weak decay modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08109v1-abstract-full').style.display = 'none'; document.getElementById('2404.08109v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IMSc/2024/2 TIFR/TH/24-2 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 110 (2024) 3, 034506 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.13137">arXiv:2312.13137</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.13137">pdf</a>, <a href="https://arxiv.org/format/2312.13137">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> LDIC Survey 2023: Feeling Welcome in the Community </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Aubin%2C+C">Christopher Aubin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chakraborty%2C+B">Bipasha Chakraborty</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">Will Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Martins%2C+S">Sofie Martins</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mendes%2C+T">Tereza Mendes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Stokes%2C+F+M">Finn M. Stokes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.13137v1-abstract-short" style="display: inline;"> We review the level of welcomeness that members of the lattice field theory community feel based on the results of a survey performed in May and June 2023. While respondents reported generally high levels of feeling welcome at the lattice conference, women and people with diverse gender identities, sexual orientations, ethnic backgrounds and religious affiliations feel less included and have more&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13137v1-abstract-full').style.display = 'inline'; document.getElementById('2312.13137v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.13137v1-abstract-full" style="display: none;"> We review the level of welcomeness that members of the lattice field theory community feel based on the results of a survey performed in May and June 2023. While respondents reported generally high levels of feeling welcome at the lattice conference, women and people with diverse gender identities, sexual orientations, ethnic backgrounds and religious affiliations feel less included and have more negative experiences at the lattice conference than their peers. Respondents report that they are actively informing themselves about inequities in the community, however a large fraction of survey participants underestimate the severity of the problem, as was found in previous surveys. The survey data indicate that this situation can be most effectively improved by organizing talks and events about issues of diversity and inclusion within the lattice community. Respondents also reported that individual readings of scientific papers on equity and inclusion are effective in giving people agency in making a change and hence it may be helpful to collate a collection of important articles on these topics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13137v1-abstract-full').style.display = 'none'; document.getElementById('2312.13137v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings contribution to &#34;The 40th International Symposium on Lattice Field Theory (Lattice 2023)&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.14128">arXiv:2307.14128</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.14128">pdf</a>, <a href="https://arxiv.org/format/2307.14128">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.201902">10.1103/PhysRevLett.132.201902 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bound isoscalar axial-vector $bc\bar u\bar d$ tetraquark $T_{bc}$ from lattice QCD using two-meson and diquark-antidiquark variational basis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Radhakrishnan%2C+A">Archana Radhakrishnan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.14128v2-abstract-short" style="display: inline;"> We report a lattice QCD study of the heavy-light meson-meson interactions with an explicitly exotic flavor content $bc\bar u\bar d$, isospin $I\!=\!0$, and axialvector $J^P=1^+$ quantum numbers in search of possible tetraquark bound states. The calculation is performed at four values of lattice spacing, ranging $\sim$0.058 to $\sim$0.12 fm, and at five different values of valence light quark mass&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14128v2-abstract-full').style.display = 'inline'; document.getElementById('2307.14128v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.14128v2-abstract-full" style="display: none;"> We report a lattice QCD study of the heavy-light meson-meson interactions with an explicitly exotic flavor content $bc\bar u\bar d$, isospin $I\!=\!0$, and axialvector $J^P=1^+$ quantum numbers in search of possible tetraquark bound states. The calculation is performed at four values of lattice spacing, ranging $\sim$0.058 to $\sim$0.12 fm, and at five different values of valence light quark mass $m_{u/d}$, corresponding to pseudoscalar meson mass $M_{ps}$ of about 0.5, 0.6, 0.7, 1.0, and 3.0 GeV. The energy eigenvalues in the finite-volume are determined through a variational procedure applied to correlation matrices built out of two-meson interpolating operators as well as diquark-antidiquark operators. The continuum limit estimates for $D\bar B^*$ elastic $S$-wave scattering amplitude are extracted from the lowest finite-volume eigenenergies, corresponding to the ground states, using amplitude parametrizations supplemented by a lattice spacing dependence. Light quark mass $m_{u/d}$ dependence of the $D\bar B^*$ scattering length ($a_0$) suggests that at the physical pion mass $a_0^{phys} = +0.57(^{+4}_{-5})(17)$ fm, which clearly points to an attractive interaction between the $D$ and $\bar B^*$ mesons that is strong enough to host a real bound state $T_{bc}$, with a binding energy of $-43(_{-7}^{+6})(_{-24}^{+14})$ MeV with respect to the $D\bar B^*$ threshold. We also find that the strength of the binding decreases with increasing $m_{u/d}$ and the system becomes unbound at a critical light quark mass $m^{*}_{u/d}$ corresponding to $M^{*}_{ps} = 2.73(21)(19)$ GeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14128v2-abstract-full').style.display = 'none'; document.getElementById('2307.14128v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, 1 table, plus supplemental material (4 pages, 5 figures, 1 table). v2: version accepted to be published in Physical Review Letters. Results and conclusions unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IMSc/23/05, TIFR/TH/23-14 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.Lett. 132 (2024) 20, 201902 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.16822">arXiv:2306.16822</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.16822">pdf</a>, <a href="https://arxiv.org/format/2306.16822">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Semi-supervised learning of order parameter in 2D Ising and XY models using Conditional Variational Autoencoders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Naravane%2C+A">Adwait Naravane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.16822v1-abstract-short" style="display: inline;"> We investigate the application of deep learning techniques employing the conditional variational autoencoders for semi-supervised learning of latent parameters to describe phase transition in the two-dimensional (2D) ferromagnetic Ising model and the two-dimensional XY model. For both models, we utilize spin configurations generated using the Wolff algorithms below and above the critical temperatu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16822v1-abstract-full').style.display = 'inline'; document.getElementById('2306.16822v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.16822v1-abstract-full" style="display: none;"> We investigate the application of deep learning techniques employing the conditional variational autoencoders for semi-supervised learning of latent parameters to describe phase transition in the two-dimensional (2D) ferromagnetic Ising model and the two-dimensional XY model. For both models, we utilize spin configurations generated using the Wolff algorithms below and above the critical temperatures. For the 2D Ising model we find the latent parameter of conditional variational autoencoders is correlated to the known order parameter of magnetization more efficiently than their correspondence in variational autoencoders used previously. It can also clearly identify the restoration of the $\mathbb{Z}_2$ symmetry beyond the critical point. The critical temperature extracted from the latent parameter at larger lattices are found to be approaching its correct value. Similarly, for the 2D XY model, we find our chosen network with the latent representation of conditional variational autoencoders is equally capable of separating the two phases between the high and low temperatures, again at the correct critical temperature with reasonable accuracy. Together these results show that the latent representation of conditional variational autoencoders can be employed efficiently to identify the phases of condensed matter systems, without their prior knowledge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16822v1-abstract-full').style.display = 'none'; document.getElementById('2306.16822v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TIFR/TH/23-13 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.13026">arXiv:2210.13026</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.13026">pdf</a>, <a href="https://arxiv.org/format/2210.13026">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Ab-initio study of dibaryons with highest bottom number </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chakraborty%2C+D">Debsubhra Chakraborty</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.13026v1-abstract-short" style="display: inline;"> We present the first lattice study of dibaryons with highest bottom number. Utilizing a set of state-of-the-art lattice QCD ensembles and methodologies, we determine the ground state of dibaryon composed of two $惟_{bbb}$ baryons. We extract the related scattering amplitude in the $^1S_0$ channel and find a sub-threshold pole, which signifies an unambiguous evidence for a deeply bound&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13026v1-abstract-full').style.display = 'inline'; document.getElementById('2210.13026v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.13026v1-abstract-full" style="display: none;"> We present the first lattice study of dibaryons with highest bottom number. Utilizing a set of state-of-the-art lattice QCD ensembles and methodologies, we determine the ground state of dibaryon composed of two $惟_{bbb}$ baryons. We extract the related scattering amplitude in the $^1S_0$ channel and find a sub-threshold pole, which signifies an unambiguous evidence for a deeply bound $惟_{bbb}-惟_{bbb}$ dibaryon. The binding energy of such a state as dictated by this pole singularity is found to be -81($^{+14}_{-16}$) MeV. We quantify various systematic uncertainties involved in this determination, including those related to the excited state contamination and Coulomb repulsion between the bottom quarks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13026v1-abstract-full').style.display = 'none'; document.getElementById('2210.13026v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, 2 tables, contribution for the 39th International Symposium on Lattice Field Theory, 8th-13th August, 2022, Bonn, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP-22-086, TIFR/TH/22-42 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.02942">arXiv:2206.02942</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.02942">pdf</a>, <a href="https://arxiv.org/format/2206.02942">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.054511">10.1103/PhysRevD.106.054511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of three-flavored heavy dibaryons using lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Junnarkar%2C+P">Parikshit Junnarkar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.02942v2-abstract-short" style="display: inline;"> We present results of the first lattice QCD calculation of three-flavored heavy dibaryons both in the flavor-symmetric and antisymmetric channels. These dibaryons have spin zero, and are constructed using various possible combinations of quark flavors with at least one of them as the charm or the bottom quark, i.e., namely, $H_c(cudcud), H_b(budbud), H_{bcs}(bcsbcs)$,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.02942v2-abstract-full').style.display = 'inline'; document.getElementById('2206.02942v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.02942v2-abstract-full" style="display: none;"> We present results of the first lattice QCD calculation of three-flavored heavy dibaryons both in the flavor-symmetric and antisymmetric channels. These dibaryons have spin zero, and are constructed using various possible combinations of quark flavors with at least one of them as the charm or the bottom quark, i.e., namely, $H_c(cudcud), H_b(budbud), H_{bcs}(bcsbcs)$, $H_{csl}(cslcsl), H_{bsl}(bslbsl)$ and $H_{bcl}(bclbcl)$; $l\in u,d$. We compute the ground state masses of these dibaryons and the calculations are performed on three $N_f=2+1+1$ HISQ gauge ensembles of the MILC collaboration, with lattice spacings $a =$ 0.1207, 0.0888 and 0.0582 fm. A relativistic overlap action is employed for the valence light to charm quarks while a non-relativistic-QCD Hamiltonian with improved coefficients is used for the bottom quarks. Unlike the doubly heavy tetraquarks, one and two-flavored heavy dibaryons, for which lattice QCD calculations have predicted deeply bound strong-interactions-stable states, for these $H_c, H_b, H_{csl},H_{bsl}$ dibaryons we do not find any such deeply bound state. However, for $H_{bcs}$, our results indicate the presence of an energy level $29\pm 24$ MeV below the lowest two-baryon threshold, which could be relevant for its future experimental searches. Moreover, we find that the energy difference between the ground state of $H_{bcl}$ and its lowest threshold increases when $m_l&gt;m_s$. Taken together, our findings indicate the possibility of the existence of the $H_{bcs}$ dibaryon while all other physical three-flavored dibaryons are much closer to their thresholds suggesting either they are weakly bound or unbound, resolving which requires further detail study. Our results also point that the binding of a dibaryon configuration becomes stronger with the increase of its valence quark masses which suggests an interesting aspect of strong interactions at multiple scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.02942v2-abstract-full').style.display = 'none'; document.getElementById('2206.02942v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version published in Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TIFR/TH/22-30 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 106, 054511 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.02862">arXiv:2205.02862</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.02862">pdf</a>, <a href="https://arxiv.org/format/2205.02862">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.111901">10.1103/PhysRevLett.130.111901 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strongly Bound Dibaryon with Maximal Beauty Flavor from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chakraborty%2C+D">Debsubhra Chakraborty</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.02862v2-abstract-short" style="display: inline;"> We report the first lattice QCD study of the heavy dibaryons in which all six quarks have the bottom (beauty) flavor. Performing a state-of-the-art lattice QCD calculation we find clear evidence for a deeply bound $惟_{bbb}$-$惟_{bbb}$ dibaryon in the $^1S_0$ channel, as a pole singularity in the $S$-wave $惟_{bbb}$-$惟_{bbb}$ scattering amplitude with a binding energy $-81(_{-16}^{+14})$ MeV. With su&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02862v2-abstract-full').style.display = 'inline'; document.getElementById('2205.02862v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.02862v2-abstract-full" style="display: none;"> We report the first lattice QCD study of the heavy dibaryons in which all six quarks have the bottom (beauty) flavor. Performing a state-of-the-art lattice QCD calculation we find clear evidence for a deeply bound $惟_{bbb}$-$惟_{bbb}$ dibaryon in the $^1S_0$ channel, as a pole singularity in the $S$-wave $惟_{bbb}$-$惟_{bbb}$ scattering amplitude with a binding energy $-81(_{-16}^{+14})$ MeV. With such a deep binding, Coulomb repulsion serves only as a perturbation on the ground state wave function of the parameterized strong potential and may shift the strong binding only by a few percent. Considering the scalar channel to be the most bound for single flavored dibaryons, we conclude this state is the heaviest possible most deeply bound dibaryon in the visible universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02862v2-abstract-full').style.display = 'none'; document.getElementById('2205.02862v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TIFR/TH/22-21, MITP-22-033 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters, 130, 111901 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.01147">arXiv:2111.01147</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.01147">pdf</a>, <a href="https://arxiv.org/format/2111.01147">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> $\bar{b}\bar{c}\,q_1q_2$four-quark states from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.01147v1-abstract-short" style="display: inline;"> We present the results of a lattice calculation of four-quark states with the quark contents $\bar{b}\bar{c}q_1q_2$ where $q_1,q_2 \in u,d,s$. For the spin 1 states, when the light quark ($q_1, q_2$) masses are lighter, we find at least one energy level below the possible elastic threshold energy levels. These calculations are performed on three dynamical $N_f = 2+1+1$ highly improved staggered qu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01147v1-abstract-full').style.display = 'inline'; document.getElementById('2111.01147v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.01147v1-abstract-full" style="display: none;"> We present the results of a lattice calculation of four-quark states with the quark contents $\bar{b}\bar{c}q_1q_2$ where $q_1,q_2 \in u,d,s$. For the spin 1 states, when the light quark ($q_1, q_2$) masses are lighter, we find at least one energy level below the possible elastic threshold energy levels. These calculations are performed on three dynamical $N_f = 2+1+1$ highly improved staggered quark ensembles at lattice spacings of about 0.12, 0.09, and 0.06 fm. We use the overlap action for light to charm quarks while a non-relativistic action with non-perturbatively improved coefficients is employed for the bottom quark. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01147v1-abstract-full').style.display = 'none'; document.getElementById('2111.01147v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures. Proceedings of the 38th International Symposium on Lattice Field Theory (LATTICE2021)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TIFR-TH/21-19, MITP/21-051 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.02635">arXiv:1911.02635</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.02635">pdf</a>, <a href="https://arxiv.org/format/1911.02635">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.054511">10.1103/PhysRevD.101.054511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Roper State from Overlap Fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+M">Mingyang Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+G">Gen Wang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandru%2C+A">Andrei Alexandru</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dong%2C+S">Shao-Jing Dong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Draper%2C+T">Terrence Draper</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fallica%2C+J">Jacob Fallica</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+F+X">Frank X. Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+A">Anyi Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.02635v2-abstract-short" style="display: inline;"> The Roper state is extracted with valence overlap fermions on a $2+1$-flavor domain-wall fermion lattice (spacing $a = 0.114$ fm and $m_蟺 = 330$ MeV) using both the Sequential Empirical Bayes (SEB) method and the variational method. The results are consistent, provided that a large smearing-size interpolation operator is included in the variational calculation to have better overlap with the lowes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.02635v2-abstract-full').style.display = 'inline'; document.getElementById('1911.02635v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.02635v2-abstract-full" style="display: none;"> The Roper state is extracted with valence overlap fermions on a $2+1$-flavor domain-wall fermion lattice (spacing $a = 0.114$ fm and $m_蟺 = 330$ MeV) using both the Sequential Empirical Bayes (SEB) method and the variational method. The results are consistent, provided that a large smearing-size interpolation operator is included in the variational calculation to have better overlap with the lowest radial excitation. Similar calculations carried out for an anisotropic clover lattice with similar parameters find the Roper $\approx 280$ MeV higher than that of the overlap fermion. The fact that the prediction of the Roper state by overlap fermions is consistently lower than those of clover fermions, chirally improved fermions, and twisted-mass fermions over a wide range of pion masses has been dubbed a &#34;Roper puzzle.&#34; To understand the origin of this difference, we study the hairpin $Z$-diagram in the isovector scalar meson ($a_0$) correlator in the quenched approximation. Comparing the $a_0$ correlators for clover and overlap fermions, at a pion mass of 290 MeV, we find that the spectral weight of the ghost state with clover fermions is smaller than that of the overlap at $a = 0.12$ fm and $0.09$ fm, whereas the whole $a_0$ correlators of clover and overlap at $a = 0.06$ fm coincide within errors. This suggests that chiral symmetry is restored for clover at $a \le 0.06$ fm and that the Roper should come down at and below this $a$. We conclude that this work supports a resolution of the &#34;Roper puzzle&#34; due to $Z$-graph type chiral dynamics. This entails coupling to higher components in the Fock space (e.g. $N蟺$, $N蟺蟺$ states) to induce the effective flavor-spin interaction between quarks as prescribed in the chiral quark model, resulting in the parity-reversal pattern as observed in the experimental excited states of $N, 螖$ and $螞$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.02635v2-abstract-full').style.display = 'none'; document.getElementById('1911.02635v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 16 figures, revised manuscript accepted for publication in Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-19-005 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 054511 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.06054">arXiv:1906.06054</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.06054">pdf</a>, <a href="https://arxiv.org/format/1906.06054">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.162003">10.1103/PhysRevLett.123.162003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deuteron-like heavy dibaryons from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Junnarkar%2C+P">Parikshit Junnarkar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.06054v2-abstract-short" style="display: inline;"> We report the first lattice quantum chromodynamics (QCD) study of deuteron($np$)-like dibaryons with heavy quark flavours. These include particles with following dibaryon structures and valence quark contents: $危_c螢_{cc} (uucucc)$, $惟_c惟_{cc} (sscscc)$, $危_b螢_{bb} (uububb)$, $惟_b惟_{bb} (ssbsbb)$ and $惟_{ccb}惟_{cbb} (ccbcbb)$, and with spin ($J$)-parity ($P$), $J^{P} \equiv 1^{+}$. Using a state-of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.06054v2-abstract-full').style.display = 'inline'; document.getElementById('1906.06054v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.06054v2-abstract-full" style="display: none;"> We report the first lattice quantum chromodynamics (QCD) study of deuteron($np$)-like dibaryons with heavy quark flavours. These include particles with following dibaryon structures and valence quark contents: $危_c螢_{cc} (uucucc)$, $惟_c惟_{cc} (sscscc)$, $危_b螢_{bb} (uububb)$, $惟_b惟_{bb} (ssbsbb)$ and $惟_{ccb}惟_{cbb} (ccbcbb)$, and with spin ($J$)-parity ($P$), $J^{P} \equiv 1^{+}$. Using a state-of-the art lattice QCD calculation, after controlling relevant systematic errors, we unambiguously find that the ground state masses of dibaryons $惟_c惟_{cc} (sscscc)$, $惟_b惟_{bb} (ssbsbb)$ and $惟_{ccb}惟_{cbb} (ccbcbb)$ are below their respective two-baryon thresholds, suggesting the presence of bound states which are stable under strong and electromagnetic interactions. We also predict their masses precisely. For dibaryons $危_c螢_{cc} (uucucc)$, and $危_b螢_{bb} (uububb)$, we could not reach to a definitive conclusion about the presence of any bound state due to large systematics associated with these states. We also find that the binding of these dibaryons becomes stronger as they become heavier in mass. This study also opens up the possibility of the existence of many other exotic nuclei, which can be formed through the fusion of heavy baryons, similar to the formation of nuclei of elements in the Periodic Table. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.06054v2-abstract-full').style.display = 'none'; document.getElementById('1906.06054v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">version accepted for publication in Phys. Rev. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 162003 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.12285">arXiv:1810.12285</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.12285">pdf</a>, <a href="https://arxiv.org/format/1810.12285">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.034507">10.1103/PhysRevD.99.034507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of doubly heavy tetraquarks in Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Junnarkar%2C+P">Parikshit Junnarkar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M Padmanath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.12285v4-abstract-short" style="display: inline;"> We present results of a lattice calculation of tetraquark states with quark contents $q_1q_2\bar{Q}\bar{Q}, \, q_1,q_2 \subset u,d,s,c$ and $Q \equiv b,c$ in both spin zero ($J=0$) and spin one ($J=1$) sectors. These calculations are performed on three dynamical $N_f = 2 + 1 + 1$ highly improved staggered quark ensembles at lattice spacings of about 0.12, 0.09 and 0.06 fm. We use the overlap actio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.12285v4-abstract-full').style.display = 'inline'; document.getElementById('1810.12285v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.12285v4-abstract-full" style="display: none;"> We present results of a lattice calculation of tetraquark states with quark contents $q_1q_2\bar{Q}\bar{Q}, \, q_1,q_2 \subset u,d,s,c$ and $Q \equiv b,c$ in both spin zero ($J=0$) and spin one ($J=1$) sectors. These calculations are performed on three dynamical $N_f = 2 + 1 + 1$ highly improved staggered quark ensembles at lattice spacings of about 0.12, 0.09 and 0.06 fm. We use the overlap action for light to charm quarks while a non-relativistic action with non-perturbatively improved coefficients with terms up to $\mathcal{O}(伪_s v^4)$ is employed for the bottom quark. While considering two heavy quarks as charm or bottom, we calculate the energy levels of various four-quark configurations with light quark masses ranging from the physical strange quark mass to that of the corresponding physical pion mass. Results for the spin one states show the presence of ground state energy levels which are below their respective thresholds for all the light flavor combinations with both doubly heavy quarks and particularly for the bottom quarks. Further, we identify a trend that the energy splittings, defined as the energy difference between the ground state energy levels and their respective thresholds, increase with decreasing the light quark masses and are maximum at the physical point for all the spin one states. The rate of increase is however dependent on the light quark configuration of the particular spin one state. We also present a study of hadron mass relations involving tetraquarks, baryons and mesons arising in the limit of infinitely heavy quark and find that these relations are more compatible with the heavy quark limit in the bottom sector but deviate substantially in the charm sector. The ground state spectra of the spin zero tetraquark states with various flavor combinations are seen to lie above their respective thresholds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.12285v4-abstract-full').style.display = 'none'; document.getElementById('1810.12285v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 9 figures. Version accepted for publication in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TIFR/TH/18-43 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 034507 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.00174">arXiv:1807.00174</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.00174">pdf</a>, <a href="https://arxiv.org/format/1807.00174">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.031501">10.1103/PhysRevD.99.031501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice QCD study of doubly-charmed strange baryons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.00174v2-abstract-short" style="display: inline;"> We present the energy spectra of the low lying doubly-charmed baryons using lattice quantum chromodynamics. We precisely predict the ground state mass of the charmed-strange Omega(cc) (1/2+) baryon to be 3712(11)(12) MeV which could well be the next doubly-charmed baryon to be discovered at the LHCb experiment at CERN. We also predict masses of other doubly-charmed strange baryons with quantum num&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.00174v2-abstract-full').style.display = 'inline'; document.getElementById('1807.00174v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.00174v2-abstract-full" style="display: none;"> We present the energy spectra of the low lying doubly-charmed baryons using lattice quantum chromodynamics. We precisely predict the ground state mass of the charmed-strange Omega(cc) (1/2+) baryon to be 3712(11)(12) MeV which could well be the next doubly-charmed baryon to be discovered at the LHCb experiment at CERN. We also predict masses of other doubly-charmed strange baryons with quantum numbers 3/2+, 1/2-, and 3/2-. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.00174v2-abstract-full').style.display = 'none'; document.getElementById('1807.00174v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 8 figures, accepted for publication in PRD Rapid Communications</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TIFR/TH/18-18 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 031501 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.04151">arXiv:1806.04151</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.04151">pdf</a>, <a href="https://arxiv.org/format/1806.04151">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.202002">10.1103/PhysRevLett.121.202002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Precise predictions of charmed-bottom hadrons from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mondal%2C+S">Sourav Mondal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.04151v2-abstract-short" style="display: inline;"> We report the ground state masses of hadrons containing at least one charm and one bottom quark using lattice quantum chromodynamics. These include mesons with spin (J)-parity (P) quantum numbers J(P): 0(-), 1(-), 1(+) and 0(+) and the spin-1/2 and 3/2 baryons. Among these hadrons only the ground state of 0(-) is known experimentally and therefore our predictions provide important information for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.04151v2-abstract-full').style.display = 'inline'; document.getElementById('1806.04151v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.04151v2-abstract-full" style="display: none;"> We report the ground state masses of hadrons containing at least one charm and one bottom quark using lattice quantum chromodynamics. These include mesons with spin (J)-parity (P) quantum numbers J(P): 0(-), 1(-), 1(+) and 0(+) and the spin-1/2 and 3/2 baryons. Among these hadrons only the ground state of 0(-) is known experimentally and therefore our predictions provide important information for the experimental discovery of all other hadrons with these quark contents. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.04151v2-abstract-full').style.display = 'none'; document.getElementById('1806.04151v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages 5 figures, version published in Phys. Rev. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TIFR/TH/18-09 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 202002 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.08446">arXiv:1712.08446</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.08446">pdf</a>, <a href="https://arxiv.org/format/1712.08446">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817505021">10.1051/epjconf/201817505021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectroscopy of Charmed and Bottom Hadrons using Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Mondal%2C+S">Sourav Mondal</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.08446v1-abstract-short" style="display: inline;"> We present preliminary results on the light, charmed and bottom baryon spectra using overlap valence quarks on the background of 2+1+1 flavours HISQ gauge configurations of the MILC collaboration. These calculations are performed on three different gauge ensembles at three lattice spacings (a ~ 0.12 fm, 0.09 fm and 0.06 fm) and for physical strange, charm and bottom quark masses. The SU(2) heavy b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.08446v1-abstract-full').style.display = 'inline'; document.getElementById('1712.08446v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.08446v1-abstract-full" style="display: none;"> We present preliminary results on the light, charmed and bottom baryon spectra using overlap valence quarks on the background of 2+1+1 flavours HISQ gauge configurations of the MILC collaboration. These calculations are performed on three different gauge ensembles at three lattice spacings (a ~ 0.12 fm, 0.09 fm and 0.06 fm) and for physical strange, charm and bottom quark masses. The SU(2) heavy baryon chiral perturbation theory is used to extrapolate baryon masses to the physical pion mass and the continuum limit extrapolations are also performed. Our results are consistent with the well measured charmed baryons. We predict the masses of many other states which are yet to be discovered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.08446v1-abstract-full').style.display = 'none'; document.getElementById('1712.08446v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, Proceedings of the 35th International Symposium on Lattice Field Theory (Lattice 2017)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TIFR/TH/17-40 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.08400">arXiv:1712.08400</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.08400">pdf</a>, <a href="https://arxiv.org/format/1712.08400">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Heavy light tetraquarks from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Junnarkar%2C+P">Parikshit Junnarkar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M Padmanath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.08400v2-abstract-short" style="display: inline;"> We present preliminary results from a lattice calculation of tetraquark states in the charm and bottom sector of the type $ud\bar{b}\bar{b}$, $us\bar{b}\bar{b}$, $ud\bar{c}\bar{c}$ and $sc\bar{b}\bar{b}$. These calculations are performed on $N_f = 2 + 1 + 1$ MILC ensembles with lattice spacing of $a = 0.12~\mathrm{fm} $ and $a=0.06~\mathrm{fm} $. A relativistic action with overlap fermions is empl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.08400v2-abstract-full').style.display = 'inline'; document.getElementById('1712.08400v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.08400v2-abstract-full" style="display: none;"> We present preliminary results from a lattice calculation of tetraquark states in the charm and bottom sector of the type $ud\bar{b}\bar{b}$, $us\bar{b}\bar{b}$, $ud\bar{c}\bar{c}$ and $sc\bar{b}\bar{b}$. These calculations are performed on $N_f = 2 + 1 + 1$ MILC ensembles with lattice spacing of $a = 0.12~\mathrm{fm} $ and $a=0.06~\mathrm{fm} $. A relativistic action with overlap fermions is employed for the light and charm quarks while a non-relativistic action with non-perturbatively improved coefficients is used in the bottom sector. Preliminary results provide a clear indication of presence of energy levels below the relevant thresholds of different tetraquark states. While in double charm sector we find shallow bound levels, our results suggest deeply bound levels with double bottom tetraquarks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.08400v2-abstract-full').style.display = 'none'; document.getElementById('1712.08400v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Corrected threshold for the $ud\bar{c}\bar{c}$ tetraquark state. Proceedings of the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain. TIFR preprint no : TIFR/TH/17-39</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.00259">arXiv:1704.00259</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.00259">pdf</a>, <a href="https://arxiv.org/format/1704.00259">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.119.042001">10.1103/PhysRevLett.119.042001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Numbers of Recently Discovered $惟^{0}_{c}$ Baryons from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.00259v2-abstract-short" style="display: inline;"> We present the ground and excited state spectra of $惟^{0}_{c}$ baryons with spin up to 7/2 from lattice quantum chromodynamics with dynamical quark fields. Based on our lattice results, we predict the quantum numbers of five $惟^{0}_{c}$ baryons, which have recently been observed by the LHCb Collaboration. Our results strongly indicate that the observed states $惟_c(3000)^0$ and $惟_c(3050)^0$ have s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.00259v2-abstract-full').style.display = 'inline'; document.getElementById('1704.00259v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.00259v2-abstract-full" style="display: none;"> We present the ground and excited state spectra of $惟^{0}_{c}$ baryons with spin up to 7/2 from lattice quantum chromodynamics with dynamical quark fields. Based on our lattice results, we predict the quantum numbers of five $惟^{0}_{c}$ baryons, which have recently been observed by the LHCb Collaboration. Our results strongly indicate that the observed states $惟_c(3000)^0$ and $惟_c(3050)^0$ have spin-parity $J^P = 1/2^{-}$, the states $惟_c(3066)^0$ and $惟_c(3090)^0$ have $J^P = 3/2^{-}$, whereas $惟_c(3119)^0$ is possibly a $5/2^{-}$ state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.00259v2-abstract-full').style.display = 'none'; document.getElementById('1704.00259v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version accepted for publication in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TIFR/TH/17-12 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 119, 042001 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.04085">arXiv:1611.04085</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.04085">pdf</a>, <a href="https://arxiv.org/format/1611.04085">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Charmed-Bottom Mesons from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lewis%2C+R">Randy Lewis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.04085v1-abstract-short" style="display: inline;"> We present ground state spectra of mesons containing a charm and a bottom quark. For the charm quark we use overlap valence quarks while a non-relativistic formulation is utilized for the bottom quark on a background of 2+1+1 flavors HISQ gauge configurations generated by the MILC collaboration. The hyperfine splitting between $1S$ states of $B_c$ mesons is found to be $56^{+4}_{-3}$ MeV. We also&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.04085v1-abstract-full').style.display = 'inline'; document.getElementById('1611.04085v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.04085v1-abstract-full" style="display: none;"> We present ground state spectra of mesons containing a charm and a bottom quark. For the charm quark we use overlap valence quarks while a non-relativistic formulation is utilized for the bottom quark on a background of 2+1+1 flavors HISQ gauge configurations generated by the MILC collaboration. The hyperfine splitting between $1S$ states of $B_c$ mesons is found to be $56^{+4}_{-3}$ MeV. We also study the baryons containing only charm and bottom quarks and predict their ground state masses. Results are obtained at three lattice spacings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.04085v1-abstract-full').style.display = 'none'; document.getElementById('1611.04085v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures. Talk presented at Lattice 2016, Southampton, UK</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TIFR/TH/16-44 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2016) 100 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.00233">arXiv:1610.00233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.00233">pdf</a>, <a href="https://arxiv.org/format/1610.00233">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Probing the nature of phases across the phase transition at finite isospin chemical potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bali%2C+G+S">Gunnar S. Bali</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Endrodi%2C+G">G. Endrodi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gavai%2C+R+V">Rajiv V. Gavai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">N. Mathur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.00233v1-abstract-short" style="display: inline;"> We compare the low eigenvalue spectra of the Overlap Dirac operator on two sets of configurations at $渭_I/渭_I^c$ = 0.5 and 1.5 generated with dynamical staggered fermions at these isospin chemical potential on $24^3 \times 6$ lattices. We find very small changes in the number of zero modes and low lying modes which is in stark contrast with those across the corresponding finite temperature phases&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.00233v1-abstract-full').style.display = 'inline'; document.getElementById('1610.00233v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.00233v1-abstract-full" style="display: none;"> We compare the low eigenvalue spectra of the Overlap Dirac operator on two sets of configurations at $渭_I/渭_I^c$ = 0.5 and 1.5 generated with dynamical staggered fermions at these isospin chemical potential on $24^3 \times 6$ lattices. We find very small changes in the number of zero modes and low lying modes which is in stark contrast with those across the corresponding finite temperature phases where one sees a drop across the phase transition. Possible consequences are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.00233v1-abstract-full').style.display = 'none'; document.getElementById('1610.00233v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 Pages, 3 Figures, Submitted for the proceedings of the 10th International Conference on Critical Point and Onset of Deconfinement (CPOD 2016), Wroclaw, Poland</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TIFR/TH/16-38 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.07168">arXiv:1508.07168</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.07168">pdf</a>, <a href="https://arxiv.org/ps/1508.07168">ps</a>, <a href="https://arxiv.org/format/1508.07168">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Charmed baryons on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.07168v1-abstract-short" style="display: inline;"> We discuss the significance of charm baryon spectroscopy in hadron physics and review the recent developments of the spectra of charmed baryons in lattice calculations. Special emphasis is given on the recent studies of highly excited charm baryon states. Recent precision lattice measurements of the low lying charm and bottom baryons are also reviewed. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.07168v1-abstract-full" style="display: none;"> We discuss the significance of charm baryon spectroscopy in hadron physics and review the recent developments of the spectra of charmed baryons in lattice calculations. Special emphasis is given on the recent studies of highly excited charm baryon states. Recent precision lattice measurements of the low lying charm and bottom baryons are also reviewed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.07168v1-abstract-full').style.display = 'none'; document.getElementById('1508.07168v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures, To be published in the proceedings of CHARM-2015, Detroit, MI, 18-22 May 2015</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.01845">arXiv:1502.01845</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.01845">pdf</a>, <a href="https://arxiv.org/format/1502.01845">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.91.094502">10.1103/PhysRevD.91.094502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectroscopy of doubly-charmed baryons from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Peardon%2C+M">Michael Peardon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.01845v1-abstract-short" style="display: inline;"> We present the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 16^3 X 128, with inverse spacing in temporal direction 1/a_t = 5.67(4) GeV and with a pion mass of about 390 MeV. A large set of baryonic operators that respect the symmetries of the lattice yet which retain a memory of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.01845v1-abstract-full').style.display = 'inline'; document.getElementById('1502.01845v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.01845v1-abstract-full" style="display: none;"> We present the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 16^3 X 128, with inverse spacing in temporal direction 1/a_t = 5.67(4) GeV and with a pion mass of about 390 MeV. A large set of baryonic operators that respect the symmetries of the lattice yet which retain a memory of their continuum analogues are used. These operators transform as irreducible representations of SU(3) symmetry for flavor, SU(4) symmetry for Dirac spins of quarks and O(3) for spatial symmetry. The distillation method is utilized to generate baryon correlation functions which are analysed using the variational fitting method to extract excited states. The lattice spectra obtained have baryonic states with well-defined total spins up to 7/2 and the pattern of low lying states does not support the diquark picture for doubly charmed baryons. On the contrary the calculated spectra are remarkably similar to the expectations from models with an SU(6)X O(3) symmetry. Various spin dependent energy splittings between the extracted states are also evaluated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.01845v1-abstract-full').style.display = 'none'; document.getElementById('1502.01845v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 17 figures. arXiv admin note: text overlap with arXiv:1307.7022</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TIFR/TH/15-06 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.7248">arXiv:1412.7248</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.7248">pdf</a>, <a href="https://arxiv.org/format/1412.7248">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Hadron spectra and Delta_{mix} from overlap quarks on a HISQ sea </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Basak%2C+S">S. Basak</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Datta%2C+S">S. Datta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">N. Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lytle%2C+A+T">A. T. Lytle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Majumdar%2C+P">P. Majumdar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.7248v2-abstract-short" style="display: inline;"> We present results of our continuing study on mixed-action hadron spectra and decay constants using overlap valence quarks on MILC&#39;s 2+1+1 flavor HISQ gauge configurations. This study is carried out on three lattice spacings, with charm and strange masses tuned to their physical values, and with m_l/m_s = 1/5. We present results of an ongoing determination of the mixed-action parameter Delta_{mix}&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.7248v2-abstract-full').style.display = 'inline'; document.getElementById('1412.7248v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.7248v2-abstract-full" style="display: none;"> We present results of our continuing study on mixed-action hadron spectra and decay constants using overlap valence quarks on MILC&#39;s 2+1+1 flavor HISQ gauge configurations. This study is carried out on three lattice spacings, with charm and strange masses tuned to their physical values, and with m_l/m_s = 1/5. We present results of an ongoing determination of the mixed-action parameter Delta_{mix}, which enters into chiral formulae for the masses and decay constants. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.7248v2-abstract-full').style.display = 'none'; document.getElementById('1412.7248v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures. v2 updated discussion and references. Contribution to the 32nd International Symposium on Lattice Field Theory, 23-28 June 2014, Columbia University New York, NY, USA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2014)083 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.3503">arXiv:1411.3503</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.3503">pdf</a>, <a href="https://arxiv.org/ps/1411.3503">ps</a>, <a href="https://arxiv.org/format/1411.3503">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Light Glueball masses using the Multilevel Algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Mondal%2C+S">Sourav Mondal</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Majumdar%2C+P">Pushan Majumdar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.3503v1-abstract-short" style="display: inline;"> Following the multilevel scheme we present an error reduction algorithm for extracting glueball masses from monte-carlo simulations of pure SU(3) lattice gauge theory. We look at the two lightest states viz. the $0^{++}$ and $2^{++}$. Our method involves looking at correlations between large Wilson loops and does not require any smearing of links. The error bars we obtain are at the moment compara&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.3503v1-abstract-full').style.display = 'inline'; document.getElementById('1411.3503v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.3503v1-abstract-full" style="display: none;"> Following the multilevel scheme we present an error reduction algorithm for extracting glueball masses from monte-carlo simulations of pure SU(3) lattice gauge theory. We look at the two lightest states viz. the $0^{++}$ and $2^{++}$. Our method involves looking at correlations between large Wilson loops and does not require any smearing of links. The error bars we obtain are at the moment comparable to those obtained using smeared operators. We also present a comparison of our method with the naive method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.3503v1-abstract-full').style.display = 'none'; document.getElementById('1411.3503v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 9 figures, The 32nd International Symposium on Lattice Field Theory, 23-28 June, 2014. Columbia University New York, NY</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.8791">arXiv:1410.8791</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1410.8791">pdf</a>, <a href="https://arxiv.org/format/1410.8791">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Spectroscopy of charmed baryons from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Peardon%2C+M">Michael Peardon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.8791v1-abstract-short" style="display: inline;"> We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.8791v1-abstract-full').style.display = 'inline'; document.getElementById('1410.8791v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.8791v1-abstract-full" style="display: none;"> We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) $\otimes$ O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.8791v1-abstract-full').style.display = 'none'; document.getElementById('1410.8791v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 tables, 4 figures; Contribution to the 32nd International Symposium on Lattice Field Theory, 23-28 June, 2014, Columbia University New York, NY</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.2936">arXiv:1403.2936</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1403.2936">pdf</a>, <a href="https://arxiv.org/ps/1403.2936">ps</a>, <a href="https://arxiv.org/format/1403.2936">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2014.07.056">10.1016/j.physletb.2014.07.056 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Noise reduction algorithm for Glueball correlators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Majumdar%2C+P">Pushan Majumdar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mondal%2C+S">Sourav Mondal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.2936v2-abstract-short" style="display: inline;"> We present an error reduction method for obtaining glueball correlators from monte carlo simulations of SU(3) lattice gauge theory. We explore the scalar and tensor channels at three different lattice spacings. Using this method we can follow glueball correlators to temporal separations even up to 1 fermi. We estimate the improvement over the naive method and compare our results with existing comp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.2936v2-abstract-full').style.display = 'inline'; document.getElementById('1403.2936v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.2936v2-abstract-full" style="display: none;"> We present an error reduction method for obtaining glueball correlators from monte carlo simulations of SU(3) lattice gauge theory. We explore the scalar and tensor channels at three different lattice spacings. Using this method we can follow glueball correlators to temporal separations even up to 1 fermi. We estimate the improvement over the naive method and compare our results with existing computations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.2936v2-abstract-full').style.display = 'none'; document.getElementById('1403.2936v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 tables and 2 figures, computations at larger volumes added, article partially rewritten, main conclusions unchanged</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.1487">arXiv:1401.1487</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1401.1487">pdf</a>, <a href="https://arxiv.org/ps/1401.1487">ps</a>, <a href="https://arxiv.org/format/1401.1487">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Charmonium, $D_s$ and $D_s^*$ from overlap fermion on DWF configurations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Yang%2C+Y+B">Y. B. Yang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandru%2C+A">A. Alexandru</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dong%2C+S+J">S. J. Dong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Draper%2C+T">T. Draper</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gong%2C+M">M. Gong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+F+X">F. X. Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+A">A. Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+K+F">K. F. Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Z">Z. Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lujan%2C+M">M. Lujan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">N. Mathur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.1487v1-abstract-short" style="display: inline;"> We take a new approach to determine the scale parameter $r_0$, the physical masses of strange and charm quarks through a global fit which incorporates continuum extrapolation, chiral extrapolation and quark mass interpolation to the lattice data. The charmonium and charm-strange meson spectrum are calculated with overlap valence quarks on $2+1$-flavor domain-wall fermion gauge configurations gener&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.1487v1-abstract-full').style.display = 'inline'; document.getElementById('1401.1487v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.1487v1-abstract-full" style="display: none;"> We take a new approach to determine the scale parameter $r_0$, the physical masses of strange and charm quarks through a global fit which incorporates continuum extrapolation, chiral extrapolation and quark mass interpolation to the lattice data. The charmonium and charm-strange meson spectrum are calculated with overlap valence quarks on $2+1$-flavor domain-wall fermion gauge configurations generated by the RBC and UKQCD Collaboration. We use the masses of $D_s$, $D_s^*$ and $J/蠄$ as inputs and obtain $m_c^{\overline{\rm MS}}(2\,{\rm GeV})=1.110(24)\,{\rm GeV}$, $m_s^{\overline{\rm MS}}(2\,{\rm GeV})=0.104(9)\,{\rm GeV}$ and $r_0=0.458(11)\,{\rm fm}$. Subsequently, the hyperfine-splitting of charmonium and $f_{D_s}$ are predicted to be $112(5)\,{\rm MeV}$ and $254(5)\,{\rm MeV}$, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.1487v1-abstract-full').style.display = 'none'; document.getElementById('1401.1487v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures, POS for lattice 2013</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1312.4816">arXiv:1312.4816</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1312.4816">pdf</a>, <a href="https://arxiv.org/format/1312.4816">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.91.014505">10.1103/PhysRevD.91.014505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Lattice Study of Quark and Glue Momenta and Angular Momenta in the Nucleon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Deka%2C+M">M. Deka</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Doi%2C+T">T. Doi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yang%2C+Y+B">Y. B. Yang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chakraborty%2C+B">B. Chakraborty</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dong%2C+S+J">S. J. Dong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Draper%2C+T">T. Draper</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Glatzmaier%2C+M">M. Glatzmaier</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gong%2C+M">M. Gong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H+W">H. W. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+K+F">K. F. Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mankame%2C+D">D. Mankame</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">N. Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Streuer%2C+T">T. Streuer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1312.4816v2-abstract-short" style="display: inline;"> We report a complete calculation of the quark and glue momenta and angular momenta in the proton. These include the quark contributions from both the connected and disconnected insertions. The quark disconnected insertion loops are computed with $Z_4$ noise, and the signal-to-noise is improved with unbiased subtractions. The glue operator is comprised of gauge-field tensors constructed from the ov&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.4816v2-abstract-full').style.display = 'inline'; document.getElementById('1312.4816v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1312.4816v2-abstract-full" style="display: none;"> We report a complete calculation of the quark and glue momenta and angular momenta in the proton. These include the quark contributions from both the connected and disconnected insertions. The quark disconnected insertion loops are computed with $Z_4$ noise, and the signal-to-noise is improved with unbiased subtractions. The glue operator is comprised of gauge-field tensors constructed from the overlap operator. The calculation is carried out on a $16^3 \times 24$ quenched lattice at $尾= 6.0$ for Wilson fermions with $魏=0.154, 0.155$, and $0.1555$ which correspond to pion masses at $650, 538$, and $478$~MeV, respectively. The chirally extrapolated $u$ and $d$ quark momentum/angular momentum fraction is found to be $0.64(5)/0.70(5)$, the strange momentum/angular momentum fraction is $0.024(6)/0.023(7)$, and that of the glue is $0.33(6)/0.28(8)$. The previous study of quark spin on the same lattice revealed that it carries a fraction of $0.25(12)$ of proton spin. The orbital angular momenta of the quarks are then obtained from subtracting the spin from their corresponding angular momentum components. We find that the quark orbital angular momentum constitutes $0.47(13)$ of the proton spin with almost all of it coming from the disconnected insertions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.4816v2-abstract-full').style.display = 'none'; document.getElementById('1312.4816v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Renormalization section is expanded to include more details. There are slight changes in the final numbers. A few modification and corrections are made in the rest of the text</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-QHP-109 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev. D91 (2015) 1, 014505 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1312.3050">arXiv:1312.3050</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1312.3050">pdf</a>, <a href="https://arxiv.org/format/1312.3050">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Hadron spectra from overlap fermions on HISQ gauge configurations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Basak%2C+S">S. Basak</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Datta%2C+S">S. Datta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lytle%2C+A+T">A. T. Lytle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Majumdar%2C+P">P. Majumdar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">N. Mathur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1312.3050v1-abstract-short" style="display: inline;"> Adopting a mixed action approach, we report here results on hadron spectra containing one or more charm quarks. We use overlap valence quarks on a background of 2+1+1 flavor HISQ gauge configurations generated by the MILC collaboration. We also study the ratio of leptonic decay constants, f_Ds*/f_Ds. Results are obtained at two lattice spacings. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1312.3050v1-abstract-full" style="display: none;"> Adopting a mixed action approach, we report here results on hadron spectra containing one or more charm quarks. We use overlap valence quarks on a background of 2+1+1 flavor HISQ gauge configurations generated by the MILC collaboration. We also study the ratio of leptonic decay constants, f_Ds*/f_Ds. Results are obtained at two lattice spacings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.3050v1-abstract-full').style.display = 'none'; document.getElementById('1312.3050v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures; presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TIFR/TH/13-43 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE 2013)243 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.4806">arXiv:1311.4806</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.4806">pdf</a>, <a href="https://arxiv.org/format/1311.4806">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Excited-state spectroscopy of singly, doubly and triply-charmed baryons from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Peardon%2C+M">Michael Peardon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.4806v2-abstract-short" style="display: inline;"> We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. These operators transform as irreducible representations of SU(3)$_F$ symmetry for flavour, SU(4) symmetry for Dirac sp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.4806v2-abstract-full').style.display = 'inline'; document.getElementById('1311.4806v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.4806v2-abstract-full" style="display: none;"> We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. These operators transform as irreducible representations of SU(3)$_F$ symmetry for flavour, SU(4) symmetry for Dirac spins of quarks and O(3) symmetry for orbital angular momenta. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6)$\otimes$O(3) symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.4806v2-abstract-full').style.display = 'none'; document.getElementById('1311.4806v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to appear in the proceedings of The 6th International Workshop on Charm Physics (CHARM 2013)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.4354">arXiv:1311.4354</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.4354">pdf</a>, <a href="https://arxiv.org/ps/1311.4354">ps</a>, <a href="https://arxiv.org/format/1311.4354">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Spectroscopy of doubly and triply-charmed baryons from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Peardon%2C+M">Michael Peardon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.4354v1-abstract-short" style="display: inline;"> We present the ground and excited state spectra of doubly and triply-charmed baryons by using lattice QCD with dynamical clover fermions. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.4354v1-abstract-full').style.display = 'inline'; document.getElementById('1311.4354v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.4354v1-abstract-full" style="display: none;"> We present the ground and excited state spectra of doubly and triply-charmed baryons by using lattice QCD with dynamical clover fermions. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) $\otimes$ O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses. Using those splittings for doubly-charmed baryons, and taking input of experimental $B_c$ meson mass, we predict the mass splittings of $B^*_c - B_c$ to be about 80 $\pm$ 8 MeV and $m_{惟_{ccb}} = 8050\pm10$ MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.4354v1-abstract-full').style.display = 'none'; document.getElementById('1311.4354v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1307.7022">arXiv:1307.7022</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1307.7022">pdf</a>, <a href="https://arxiv.org/format/1307.7022">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.90.074504">10.1103/PhysRevD.90.074504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectroscopy of triply-charmed baryons from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Peardon%2C+M">Michael Peardon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1307.7022v2-abstract-short" style="display: inline;"> The spectrum of excitations of triply-charmed baryons is computed using lattice QCD including dynamical light quark fields. Calculations are performed on anisotropic lattices with temporal and spatial spacings a_t = 0.0351(2) and a_s ~ 0.12 fm respectively and with pion mass of about 390 MeV. The spectrum obtained has baryonic states with well-defined total spin up to 7/2 and the low-lying states&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.7022v2-abstract-full').style.display = 'inline'; document.getElementById('1307.7022v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1307.7022v2-abstract-full" style="display: none;"> The spectrum of excitations of triply-charmed baryons is computed using lattice QCD including dynamical light quark fields. Calculations are performed on anisotropic lattices with temporal and spatial spacings a_t = 0.0351(2) and a_s ~ 0.12 fm respectively and with pion mass of about 390 MeV. The spectrum obtained has baryonic states with well-defined total spin up to 7/2 and the low-lying states closely resemble the expectation from models with an SU(6)X O(3) symmetry. Energy splittings between extracted states, including those due to spin-orbit coupling in the heavy quark limit are computed and compared against data at other quark masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.7022v2-abstract-full').style.display = 'none'; document.getElementById('1307.7022v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version published in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TIFR/TH/13-23, TCDMATH 13-10 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 90, 074504 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.5236">arXiv:1212.5236</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1212.5236">pdf</a>, <a href="https://arxiv.org/format/1212.5236">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.87.054506">10.1103/PhysRevD.87.054506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Flavor Structure of the Excited Baryon Spectra from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">David G. Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wallace%2C+S+J">Stephen J. Wallace</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.5236v2-abstract-short" style="display: inline;"> Excited state spectra are calculated using lattice QCD for baryons that can be formed from $u$, $d$ and $s$ quarks, namely the $N$, $螖$, $螞$, $危$, $螢$ and $惟$ families of baryons. Baryonic operators are constructed from continuum operators that transform as irreducible representations of SU(3)$_F$ symmetry for flavor, SU(4) symmetry for Dirac spins of quarks and O(3) symmetry for orbital angular m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.5236v2-abstract-full').style.display = 'inline'; document.getElementById('1212.5236v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.5236v2-abstract-full" style="display: none;"> Excited state spectra are calculated using lattice QCD for baryons that can be formed from $u$, $d$ and $s$ quarks, namely the $N$, $螖$, $螞$, $危$, $螢$ and $惟$ families of baryons. Baryonic operators are constructed from continuum operators that transform as irreducible representations of SU(3)$_F$ symmetry for flavor, SU(4) symmetry for Dirac spins of quarks and O(3) symmetry for orbital angular momenta. Covariant derivatives are used to realize orbital angular momenta. Using the operators, we calculate matrices of correlation functions in order to extract excited states. The resulting lattice spectra have bands of baryonic states with well-defined total spins up to $J=7/2$. Each state can be assigned a dominant flavor symmetry and the counting of states of each flavor and spin reflects $SU(6) \times O(3)$ symmetry for the lowest negative-parity and positive-parity bands. States with strong hybrid content are identified through the dominance of chromo-magnetic operators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.5236v2-abstract-full').style.display = 'none'; document.getElementById('1212.5236v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-12-1680, TIFR/TH/12-50 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D87 (2013) 054506 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.2927">arXiv:1212.2927</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1212.2927">pdf</a>, <a href="https://arxiv.org/ps/1212.2927">ps</a>, <a href="https://arxiv.org/format/1212.2927">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP02(2013)145">10.1007/JHEP02(2013)145 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleons near the QCD deconfinement transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Datta%2C+S">Saumen Datta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gupta%2C+S">Sourendu Gupta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Maiti%2C+J">Jyotirmoy Maiti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.2927v2-abstract-short" style="display: inline;"> Using non-perturbative lattice method we studied hadronic screening correlators above and immediately below the deconfinement transition temperature, Tc, in the quenched approximation with lattice spacing of 1/(8T) using clover improved Wilson fermions. Simulations were performed at temperatures T /Tc = 0, 0.95 and 1.5. Mesonic screening correlators show no statistically significant thermal effect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.2927v2-abstract-full').style.display = 'inline'; document.getElementById('1212.2927v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.2927v2-abstract-full" style="display: none;"> Using non-perturbative lattice method we studied hadronic screening correlators above and immediately below the deconfinement transition temperature, Tc, in the quenched approximation with lattice spacing of 1/(8T) using clover improved Wilson fermions. Simulations were performed at temperatures T /Tc = 0, 0.95 and 1.5. Mesonic screening correlators show no statistically significant thermal effects below Tc, and clear evidence for weakly interacting quarks above Tc . Baryon screening correlators yield similar physics above Tc, but show precursor effects for chiral symmetry restoration below Tc . <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.2927v2-abstract-full').style.display = 'none'; document.getElementById('1212.2927v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures, typos corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TIFR/TH/12-48 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.6277">arXiv:1211.6277</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1211.6277">pdf</a>, <a href="https://arxiv.org/ps/1211.6277">ps</a>, <a href="https://arxiv.org/format/1211.6277">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Charm and strange hadron spectra from overlap fermions on HISQ gauge configurations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Basak%2C+S">S. Basak</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Datta%2C+S">S. Datta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Majumdar%2C+P">P. Majumdar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">N. Mathur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.6277v1-abstract-short" style="display: inline;"> We report here results on charm and strange hadron spectra. Adopting a mixed action approach, we use overlap fermions for valence quarks, on a background of 2+1+1 flavours HISQ gauge configurations of MILC collaboration. Two lattice spacings (0.09 fm and 0.06 fm) are used. We find the hyperfine splitting of 1S charmonia to be 114(3)(-2) MeV and 109(4)(-3) MeV, and the splitting (m(Omega_ccc)-3/2&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.6277v1-abstract-full').style.display = 'inline'; document.getElementById('1211.6277v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.6277v1-abstract-full" style="display: none;"> We report here results on charm and strange hadron spectra. Adopting a mixed action approach, we use overlap fermions for valence quarks, on a background of 2+1+1 flavours HISQ gauge configurations of MILC collaboration. Two lattice spacings (0.09 fm and 0.06 fm) are used. We find the hyperfine splitting of 1S charmonia to be 114(3)(-2) MeV and 109(4)(-3) MeV, and the splitting (m(Omega_ccc)-3/2 m(J唯)) is found to be 110(20)(-10) MeV and 120(10) MeV, corresponding to lattices with spacings a = 0.09 and 0.06 fm respectively. We also look at the ratio of the leptonic decay constant f_Ds*/f_Ds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.6277v1-abstract-full').style.display = 'none'; document.getElementById('1211.6277v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, Proceedings of the 30th International Symposium on Lattice Field Theory, June 24 - 29, 2012, Cairns, Australia, to appear as PoS(Lattice 2012)141</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TIFR/TH/12-44 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1204.6256">arXiv:1204.6256</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1204.6256">pdf</a>, <a href="https://arxiv.org/format/1204.6256">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.86.014501">10.1103/PhysRevD.86.014501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The $螖_{mix}$ parameter in the overlap on domain-wall mixed action </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lujan%2C+M">M. Lujan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandru%2C+A">A. Alexandru</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Draper%2C+T">T. Draper</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Freeman%2C+W">W. Freeman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gong%2C+M">M. Gong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+F+X">F. X. Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+A">A. Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+K+F">K. F. Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">N. Mathur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1204.6256v1-abstract-short" style="display: inline;"> A direct calculation of the mixed-action parameter $螖_{mix}$ with valence overlap fermions on a domain-wall fermion sea is presented. The calculation is performed on four ensembles of the 2+1-flavor domain-wall gauge configurations: $24^3 \times 64$ ($a m_l= 0.005$, $a=0.114\fm$) and $32^3 \times 64$ ($a m_l = 0.004, 0.006, 0.008$, $a=0.085\fm$). For pion masses close to $300\MeV$ we find \hbox{&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.6256v1-abstract-full').style.display = 'inline'; document.getElementById('1204.6256v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1204.6256v1-abstract-full" style="display: none;"> A direct calculation of the mixed-action parameter $螖_{mix}$ with valence overlap fermions on a domain-wall fermion sea is presented. The calculation is performed on four ensembles of the 2+1-flavor domain-wall gauge configurations: $24^3 \times 64$ ($a m_l= 0.005$, $a=0.114\fm$) and $32^3 \times 64$ ($a m_l = 0.004, 0.006, 0.008$, $a=0.085\fm$). For pion masses close to $300\MeV$ we find \hbox{$螖_{mix}=0.030(6)\GeV^4$} at $a=0.114\fm$ and $螖_{mix}=0.033(12)\GeV^4$ at $a=0.085\fm$. The results are quite independent of the lattice spacing and they are significantly smaller than the results for valence domain-wall fermions on Asqtad sea or those of valence overlap fermions on clover sea. Combining the results extracted from these two ensembles, we get $螖_{mix}=0.030(6)(5)\GeV^4$, where the first error is statistical and the second is the systematic error associated with the fitting method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.6256v1-abstract-full').style.display = 'none'; document.getElementById('1204.6256v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1203.6388">arXiv:1203.6388</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1203.6388">pdf</a>, <a href="https://arxiv.org/ps/1203.6388">ps</a>, <a href="https://arxiv.org/format/1203.6388">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Quark and Glue Momenta and Angular Momenta in the Proton --- a Lattice Calculation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+K+F">K. F. Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Deka%2C+M">M. Deka</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Doi%2C+T">T. Doi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yang%2C+Y+B">Y. B. Yang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chakraborty%2C+B">B. Chakraborty</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dong%2C+S+J">S. J. Dong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Draper%2C+T">T. Draper</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gong%2C+M">M. Gong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H+W">H. W. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mankame%2C+D">D. Mankame</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">N. Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Streuer%2C+T">T. Streuer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1203.6388v1-abstract-short" style="display: inline;"> We report a complete calculation of the quark and glue momenta and angular momenta in the proton. These include the quark contributions from both the connected and disconnected insertions. The calculation is carried out on a $16^3 \times 24$ quenched lattice at $尾= 6.0$ and for Wilson fermions with $魏= 0.154, 0.155,$ and 0.1555 which correspond to pion masses at 650, 538, and 478 MeV. The quark lo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.6388v1-abstract-full').style.display = 'inline'; document.getElementById('1203.6388v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1203.6388v1-abstract-full" style="display: none;"> We report a complete calculation of the quark and glue momenta and angular momenta in the proton. These include the quark contributions from both the connected and disconnected insertions. The calculation is carried out on a $16^3 \times 24$ quenched lattice at $尾= 6.0$ and for Wilson fermions with $魏= 0.154, 0.155,$ and 0.1555 which correspond to pion masses at 650, 538, and 478 MeV. The quark loops are calculated with $Z_4$ noise and signal-to-noise is improved further with unbiased subtractions. The glue operator is comprised of gauge-field tensors constructed from the overlap operator. The $u$ and $d$ quark momentum/angular momentum fraction is 0.66(5)/0.72(5), the strange momentum/angular momentum fraction is 0.024(6)/0.023(7), and that of the glue is 0.31(6)/0.25(8). The orbital angular momenta of the quarks are obtained from subtracting the angular momentum component from its corresponding spin. As a result, the quark orbital angular momentum constitutes 0.50(2) of the proton spin, with almost all it coming from the disconnected insertion. The quark spin carries a fraction 0.25(12) and glue carries a fraction 0.25(8) of the total proton spin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.6388v1-abstract-full').style.display = 'none'; document.getElementById('1203.6388v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures, talk presented at the 2011 Lattice conference, Lake Tahoe, California</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UK/12-03 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(Lattice 2011)164 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1101.4411">arXiv:1101.4411</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1101.4411">pdf</a>, <a href="https://arxiv.org/ps/1101.4411">ps</a>, <a href="https://arxiv.org/format/1101.4411">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.84.114011">10.1103/PhysRevD.84.114011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral extrapolation beyond the power-counting regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Hall%2C+J+M+M">J. M. M. Hall</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+F+X">F. X. Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Leinweber%2C+D+B">D. B. Leinweber</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+K+F">K. F. Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">N. Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+J+B">J. B. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1101.4411v3-abstract-short" style="display: inline;"> Chiral effective field theory can provide valuable insight into the chiral physics of hadrons when used in conjunction with non-perturbative schemes such as lattice QCD. In this discourse, the attention is focused on extrapolating the mass of the rho meson to the physical pion mass in quenched QCD (QQCD). With the absence of a known experimental value, this serves to demonstrate the ability of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.4411v3-abstract-full').style.display = 'inline'; document.getElementById('1101.4411v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1101.4411v3-abstract-full" style="display: none;"> Chiral effective field theory can provide valuable insight into the chiral physics of hadrons when used in conjunction with non-perturbative schemes such as lattice QCD. In this discourse, the attention is focused on extrapolating the mass of the rho meson to the physical pion mass in quenched QCD (QQCD). With the absence of a known experimental value, this serves to demonstrate the ability of the extrapolation scheme to make predictions without prior bias. By using extended effective field theory developed previously, an extrapolation is performed using quenched lattice QCD data that extends outside the chiral power-counting regime (PCR). The method involves an analysis of the renormalization flow curves of the low energy coefficients in a finite-range regularized effective field theory. The analysis identifies an optimal regulator, which is embedded in the lattice QCD data themselves. This optimal regulator is the regulator value at which the renormalization of the low energy coefficients is approximately independent of the range of quark masses considered. By using recent precision, quenched lattice results, the extrapolation is tested directly by truncating the analysis to a set of points above 380 MeV, while being blinded of the results probing deeply into the chiral regime. The result is a successful extrapolation to the chiral regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.4411v3-abstract-full').style.display = 'none'; document.getElementById('1101.4411v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-11-5/T727 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D84.114011.2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.4378">arXiv:1011.4378</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1011.4378">pdf</a>, <a href="https://arxiv.org/format/1011.4378">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Meson spectra from overlap fermion on domain wall gauge configurations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">N. Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandru%2C+A">A. Alexandru</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Doi%2C+T">T. Doi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dong%2C+S+J">S. J. Dong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Draper%2C+T">T. Draper</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gong%2C+M">M. Gong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+F+X">F. X. Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+A">A. Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+K+-">K. -F. Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Streuer%2C+T">T. Streuer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+J+B">J. B. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.4378v1-abstract-short" style="display: inline;"> We report meson spectra obtained by using valence overlap fermion propagators generated on a background of 2+1 flavor domain wall fermion gauge configurations on 16^3 X 32, 24^3 X 64 and 32^3 X 64 lattices. We use many-to-all correlators with Z3 grid source and low eigenmode substitution which is efficient in reducing errors for the hadron correlators. The preliminary results on meson spectrum, a0&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.4378v1-abstract-full').style.display = 'inline'; document.getElementById('1011.4378v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.4378v1-abstract-full" style="display: none;"> We report meson spectra obtained by using valence overlap fermion propagators generated on a background of 2+1 flavor domain wall fermion gauge configurations on 16^3 X 32, 24^3 X 64 and 32^3 X 64 lattices. We use many-to-all correlators with Z3 grid source and low eigenmode substitution which is efficient in reducing errors for the hadron correlators. The preliminary results on meson spectrum, a0 correlators, and charmonium hyperfine splitting for three sea quark masses are reported here. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.4378v1-abstract-full').style.display = 'none'; document.getElementById('1011.4378v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Talk presented at The XXVIII International Symposium on Lattice Field Theory, Lattice2010, June 14-19, 2010, Villasimius, Italy</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS Lattice2010:114,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1010.2834">arXiv:1010.2834</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1010.2834">pdf</a>, <a href="https://arxiv.org/ps/1010.2834">ps</a>, <a href="https://arxiv.org/format/1010.2834">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3647212">10.1063/1.3647212 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon strangeness form factors and moments of PDF </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Doi%2C+T">Takumi Doi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Deka%2C+M">Mridupawan Deka</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dong%2C+S">Shao-Jing Dong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Draper%2C+T">Terrence Draper</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mankame%2C+D">Devdatta Mankame</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Streuer%2C+T">Thomas Streuer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1010.2834v1-abstract-short" style="display: inline;"> The calculation of the nucleon strangeness form factors from N_f=2+1 clover fermion lattice QCD is presented. Disconnected insertions are evaluated using the Z(4) stochastic method, along with unbiased subtractions from the hopping parameter expansion. We find that increasing the number of nucleon sources for each configuration improves the signal significantly. We obtain G_M^s(0) = -0.017(25)(07)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.2834v1-abstract-full').style.display = 'inline'; document.getElementById('1010.2834v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1010.2834v1-abstract-full" style="display: none;"> The calculation of the nucleon strangeness form factors from N_f=2+1 clover fermion lattice QCD is presented. Disconnected insertions are evaluated using the Z(4) stochastic method, along with unbiased subtractions from the hopping parameter expansion. We find that increasing the number of nucleon sources for each configuration improves the signal significantly. We obtain G_M^s(0) = -0.017(25)(07), which is consistent with experimental values, and has an order of magnitude smaller error. Preliminary results for the strangeness contribution to the second moment of the parton distribution function are also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.2834v1-abstract-full').style.display = 'none'; document.getElementById('1010.2834v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Talk given at 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2010), Williamsburg, Virginia, USA, 31 May - 4 Jun 2010, 4 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1005.5424">arXiv:1005.5424</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1005.5424">pdf</a>, <a href="https://arxiv.org/ps/1005.5424">ps</a>, <a href="https://arxiv.org/format/1005.5424">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.82.114501">10.1103/PhysRevD.82.114501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Overlap Valence on 2+1 Flavor Domain Wall Fermion Configurations with Deflation and Low-mode Substitution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+A">A. Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Alexandru%2C+A">A. Alexandru</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Doi%2C+T">T. Doi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dong%2C+S+J">S. J. Dong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Draper%2C+T">T. Draper</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gong%2C+M">M. Gong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Horvath%2C+I">I. Horvath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+F+X">F. X. Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+K+F">K. F. Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">N. Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Streuer%2C+T">T. Streuer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+J+B">J. B. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1005.5424v2-abstract-short" style="display: inline;"> The overlap fermion propagator is calculated on 2+1 flavor domain wall fermion gauge configurations on 16^3 x 32, 24^3 x 64 and 32^3 x 64 lattices. With HYP smearing and low eigenmode deflation, it is shown that the inversion of the overlap operator can be expedited by ~ 20 times for the 16^3 x 32 lattice and ~ 80 times for the 32^3 x 64 lattice. Through the study of hyperfine splitting, we found&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.5424v2-abstract-full').style.display = 'inline'; document.getElementById('1005.5424v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1005.5424v2-abstract-full" style="display: none;"> The overlap fermion propagator is calculated on 2+1 flavor domain wall fermion gauge configurations on 16^3 x 32, 24^3 x 64 and 32^3 x 64 lattices. With HYP smearing and low eigenmode deflation, it is shown that the inversion of the overlap operator can be expedited by ~ 20 times for the 16^3 x 32 lattice and ~ 80 times for the 32^3 x 64 lattice. Through the study of hyperfine splitting, we found that the O(m^2a^2) error is small and these dynamical fermion lattices can adequately accommodate quark mass up to the charm quark. The low energy constant 螖_{mix} which characterizes the discretization error of the pion made up of a pair of sea and valence quarks in this mixed action approach is calculated via the scalar correlator with periodic and anti-periodic boundary conditions. It is found to be small which shifts a 300 MeV pion mass by ~ 10 to 19 MeV on these sets of lattices. We have studied the signal-to-noise issue of the noise source for the meson and baryon. It is found that the many-to-all meson and baryon correlators with Z_3 grid source and low eigenmode substitution is efficient in reducing errors for the correlators of both mesons and baryons. With 64-point Z_3 grid source and low-mode substitution, it can reduce the statistical errors of the light quark (m_蟺 ~ 200 - 300 MeV) meson and nucleon correlators by a factor of ~ 3-4 as compared to the point source. The Z_3 grid source itself can reduce the errors of the charmonium correlators by a factor of ~ 3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.5424v2-abstract-full').style.display = 'none'; document.getElementById('1005.5424v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 18 figures, replaced with the version to be published in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UK/10-01 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D82:114501,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1005.0948">arXiv:1005.0948</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1005.0948">pdf</a>, <a href="https://arxiv.org/ps/1005.0948">ps</a>, <a href="https://arxiv.org/format/1005.0948">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.82.094507">10.1103/PhysRevD.82.094507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice study of light scalar tetraquarks with I=0,2,1/2,3/2: are sigma and kappa tetraquarks? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Prelovsek%2C+S">S. Prelovsek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Draper%2C+T">T. Draper</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Limmer%2C+M">M. Limmer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+K+-">K. -F. Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">N. Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mohler%2C+D">D. Mohler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1005.0948v2-abstract-short" style="display: inline;"> We investigate whether the lightest scalar mesons sigma and kappa have a large tetraquark component, as is strongly supported by many phenomenological studies. A search for possible light tetraquark states with J^PC=0^++ and I=0, 2, 1/2, 3/2 on the lattice is presented. We perform the two-flavor dynamical simulation with Chirally Improved quarks and the quenched simulation with overlap quarks, fin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.0948v2-abstract-full').style.display = 'inline'; document.getElementById('1005.0948v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1005.0948v2-abstract-full" style="display: none;"> We investigate whether the lightest scalar mesons sigma and kappa have a large tetraquark component, as is strongly supported by many phenomenological studies. A search for possible light tetraquark states with J^PC=0^++ and I=0, 2, 1/2, 3/2 on the lattice is presented. We perform the two-flavor dynamical simulation with Chirally Improved quarks and the quenched simulation with overlap quarks, finding qualitative agreement between both results. The spectrum is determined using the generalized eigenvalue method with a number of tetraquark interpolators at the source and the sink, and we omit the disconnected contractions. The time-dependence of the eigenvalues at finite temporal extent of the lattice is explored also analytically. In all the channels, we unavoidably find lowest scattering states pi(k)pi(-k) or K(k)pi(-k) with back-to-back momentum k=0, 2*pi/L,... However, we find an additional light state in the I=0 and I=1/2 channels, which may be interpreted as the observed resonances sigma and kappa with a sizable tetraquark component. In the exotic repulsive channels I=2 and I=3/2, where no resonance is observed, we find no light state in addition to the scattering states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.0948v2-abstract-full').style.display = 'none'; document.getElementById('1005.0948v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 May, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 12 figures, version to appear in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D82:094507,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1002.4710">arXiv:1002.4710</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1002.4710">pdf</a>, <a href="https://arxiv.org/ps/1002.4710">ps</a>, <a href="https://arxiv.org/format/1002.4710">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cpc.2010.07.004">10.1016/j.cpc.2010.07.004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heavy-Baryon Spectroscopy from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S+D">Saul D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andre Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1002.4710v1-abstract-short" style="display: inline;"> We use a four-dimensional lattice calculation of the full-QCD (quantum chromodynamics, the non-abliean gauge theory of the strong interactions of quarks and gluons) path integrals needed to determine the masses of the charmed and bottom baryons. In the charm sector, our results are in good agreement with experiment within our systematics, except for the spin-1/2 $螢_{cc}$, for which we found the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1002.4710v1-abstract-full').style.display = 'inline'; document.getElementById('1002.4710v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1002.4710v1-abstract-full" style="display: none;"> We use a four-dimensional lattice calculation of the full-QCD (quantum chromodynamics, the non-abliean gauge theory of the strong interactions of quarks and gluons) path integrals needed to determine the masses of the charmed and bottom baryons. In the charm sector, our results are in good agreement with experiment within our systematics, except for the spin-1/2 $螢_{cc}$, for which we found the isospin-averaged mass to be $螢_{cc}$ to be $3665\pm17\pm14^{+0}_{-78}$ MeV. We predict the mass of the (isospin-averaged) spin-1/2 $惟_{cc}$ to be $3763\pm19\pm26^{+13}_{-79}$ {MeV}. In the bottom sector, our results are also in agreement with experimental observations and other lattice calculations within our statistical and systematic errors. In particular, we find the mass of the $惟_b$ to be consistent with the recent CDF measurement. We also predict the mass for the as yet unobserved $螢^\prime_b$ to be 5955(27) MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1002.4710v1-abstract-full').style.display = 'none'; document.getElementById('1002.4710v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Invited talk at Conference of Computational Physics 2009. 3 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Comput.Phys.Commun.182:24-26,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1002.0193">arXiv:1002.0193</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1002.0193">pdf</a>, <a href="https://arxiv.org/ps/1002.0193">ps</a>, <a href="https://arxiv.org/format/1002.0193">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Searching for tetraquarks on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Prelovsek%2C+S">S. Prelovsek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Draper%2C+T">T. Draper</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Limmer%2C+M">M. Limmer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+K+-">K. -F. Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">N. Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mohler%2C+D">D. Mohler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1002.0193v1-abstract-short" style="display: inline;"> We address the question whether the lightest scalar mesons sigma and kappa are tetraquarks. We present a search for possible light tetraquark states with J^PC=0^++ and I=0, 1/2, 3/2, 2 in the dynamical and the quenched lattice simulations using tetraquark interpolators. In all the channels, we unavoidably find lowest scattering states pi(k)pi(-k) or K(k)pi(-k) with back-to-back momentum k=0,2*pi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1002.0193v1-abstract-full').style.display = 'inline'; document.getElementById('1002.0193v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1002.0193v1-abstract-full" style="display: none;"> We address the question whether the lightest scalar mesons sigma and kappa are tetraquarks. We present a search for possible light tetraquark states with J^PC=0^++ and I=0, 1/2, 3/2, 2 in the dynamical and the quenched lattice simulations using tetraquark interpolators. In all the channels, we unavoidably find lowest scattering states pi(k)pi(-k) or K(k)pi(-k) with back-to-back momentum k=0,2*pi/L,.. . However, we find an additional light state in the I=0 and I=1/2 channels, which may be related to the observed resonances sigma and kappa with a strong tetraquark component. In the exotic repulsive channels I=2 and I=3/2, where no resonance is observed, we find no light state in addition to the scattering states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1002.0193v1-abstract-full').style.display = 'none'; document.getElementById('1002.0193v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 1 figure, proceedings of Lepton-Photon 2009, Hamburg</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0911.3373">arXiv:0911.3373</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0911.3373">pdf</a>, <a href="https://arxiv.org/ps/0911.3373">ps</a>, <a href="https://arxiv.org/format/0911.3373">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Excited-Nucleon Spectroscopy with 2+1 Fermion Flavors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S">Saul Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J+M">John M. Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Foley%2C+J">Justin Foley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+R">Ricky Wong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Joo%2C+B">Balint Joo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">David G. Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Juge%2C+K+J">K. Jimmy Juge</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Peardon%2C+M+J">Michael J. Peardon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ryan%2C+S+M">Sinead M. Ryan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0911.3373v1-abstract-short" style="display: inline;"> We present progress made by the Hadron Spectrum Collaboration (HSC) in determining the tower of excited nucleon states using 2+1-flavor anisotropic clover lattices. The HSC has been investigating interpolating operators projected into irreducible representations of the cubic group in order to better calculate two-point correlators for nucleon spectroscopy; results are published for quenched and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0911.3373v1-abstract-full').style.display = 'inline'; document.getElementById('0911.3373v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0911.3373v1-abstract-full" style="display: none;"> We present progress made by the Hadron Spectrum Collaboration (HSC) in determining the tower of excited nucleon states using 2+1-flavor anisotropic clover lattices. The HSC has been investigating interpolating operators projected into irreducible representations of the cubic group in order to better calculate two-point correlators for nucleon spectroscopy; results are published for quenched and 2-flavor anisotropic Wilson lattices. In this work, we present the latest results using a new technique, distillation, which allows us to reach higher statistics than before. Future directions will be outlined at the end. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0911.3373v1-abstract-full').style.display = 'none'; document.getElementById('0911.3373v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures. Presented at the XXVII International Symposium on Lattice Field Theory, July 26-31, 2009, Peking University, Beijing</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LAT2009:112,2009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0910.2749">arXiv:0910.2749</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0910.2749">pdf</a>, <a href="https://arxiv.org/format/0910.2749">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Spectroscopy of light tetraquark states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Prelovsek%2C+S">S. Prelovsek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Draper%2C+T">T. Draper</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lang%2C+C+B">C. B. Lang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Limmer%2C+M">M. Limmer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+K+-">K. -F. Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">N. Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mohler%2C+D">D. Mohler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0910.2749v1-abstract-short" style="display: inline;"> We address the question whether the lightest scalar mesons sigma and kappa are tetraquarks, as is strongly supported by many phenomenological studies. We present a search for possible light tetraquark states with J^PC=0^++ and I=0, 1/2, 3/2, 2 on the lattice. The spectrum is determined using the generalized eigenvalue method with a number of tetraquark interpolators at the source and the sink. I&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.2749v1-abstract-full').style.display = 'inline'; document.getElementById('0910.2749v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0910.2749v1-abstract-full" style="display: none;"> We address the question whether the lightest scalar mesons sigma and kappa are tetraquarks, as is strongly supported by many phenomenological studies. We present a search for possible light tetraquark states with J^PC=0^++ and I=0, 1/2, 3/2, 2 on the lattice. The spectrum is determined using the generalized eigenvalue method with a number of tetraquark interpolators at the source and the sink. In all the channels, we unavoidably find lowest scattering states pi(k)pi(-k) or K(k)pi(-k) with back-to-back momentum k=0,2*pi/L,.. . However, we find an additional light state in the I=0 and I=1/2 channels, which may be related to the observed resonances sigma and kappa with a strong tetraquark component. In the exotic repulsive channels I=2 and I=3/2, where no resonance is observed, we find no light state in addition to the scattering states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.2749v1-abstract-full').style.display = 'none'; document.getElementById('0910.2749v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, talk presented at The XXVII International Symposium on Lattice Field Theory, July 26-31, 2009, Peking University, Beijing, China</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LAT2009:103,2009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0910.2687">arXiv:0910.2687</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0910.2687">pdf</a>, <a href="https://arxiv.org/ps/0910.2687">ps</a>, <a href="https://arxiv.org/format/0910.2687">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The calculation of nucleon strangeness form factors from N_f=2+1 clover fermion lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Doi%2C+T">Takumi Doi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Deka%2C+M">Mridupawan Deka</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dong%2C+S">Shao-Jing Dong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Draper%2C+T">Terrence Draper</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mankame%2C+D">Devdatta Mankame</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Streuer%2C+T">Thomas Streuer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0910.2687v1-abstract-short" style="display: inline;"> We study the strangeness electromagnetic form factors of the nucleon from the N_f=2+1 clover fermion lattice QCD calculation. The disconnected insertions are evaluated using the Z(4) stochastic method, along with unbiased subtractions from the hopping parameter expansion. In addition to increasing the number of Z(4) noises, we find that increasing the number of nucleon sources for each configura&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.2687v1-abstract-full').style.display = 'inline'; document.getElementById('0910.2687v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0910.2687v1-abstract-full" style="display: none;"> We study the strangeness electromagnetic form factors of the nucleon from the N_f=2+1 clover fermion lattice QCD calculation. The disconnected insertions are evaluated using the Z(4) stochastic method, along with unbiased subtractions from the hopping parameter expansion. In addition to increasing the number of Z(4) noises, we find that increasing the number of nucleon sources for each configuration improves the signal significantly. We obtain G_M^s(0) = -0.017(25)(07), where the first error is statistical, and the second is the uncertainties in Q^2 and chiral extrapolations. This is consistent with experimental values, and has an order of magnitude smaller error. We also study the strangeness second moment of the partion distribution function of the nucleon, &lt;x^2&gt;_{s-\bar{s}}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.2687v1-abstract-full').style.display = 'none'; document.getElementById('0910.2687v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Talk given at 27th International Symposium on Lattice Field Theory (Lattice 2009), Beijing, China, 25-31 Jul 2009, 7 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LAT2009:134,2009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0907.4516">arXiv:0907.4516</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0907.4516">pdf</a>, <a href="https://arxiv.org/ps/0907.4516">ps</a>, <a href="https://arxiv.org/format/0907.4516">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/180/1/012067">10.1088/1742-6596/180/1/012067 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring the Spectrum of QCD using the Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S">Saul Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dudek%2C+J">Jozef Dudek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R">Robert Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Engelson%2C+E">Eric Engelson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Foley%2C+J">Justin Foley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Joo%2C+B">Balint Joo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Juge%2C+J">Jimmy Juge</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Peardon%2C+M">Mike Peardon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D">David Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ryan%2C+S">Sinead Ryan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Thomas%2C+C">Christopher Thomas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Thomas%2C+A">Anthony Thomas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wallace%2C+S">Stephen Wallace</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0907.4516v1-abstract-short" style="display: inline;"> The calculation of the spectrum of QCD is key to an understanding of the strong interactions, and vital if we are to capitalize on the experimental study of the spectrum. In this paper, we describe progress towards understanding the spectrum of resonances of both mesons and baryons from lattice QCD, focusing in particular on the resonances of the $I=1/2$ nucleon states, and of charmonium mesons&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0907.4516v1-abstract-full').style.display = 'inline'; document.getElementById('0907.4516v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0907.4516v1-abstract-full" style="display: none;"> The calculation of the spectrum of QCD is key to an understanding of the strong interactions, and vital if we are to capitalize on the experimental study of the spectrum. In this paper, we describe progress towards understanding the spectrum of resonances of both mesons and baryons from lattice QCD, focusing in particular on the resonances of the $I=1/2$ nucleon states, and of charmonium mesons composed of the heavy charmed quarks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0907.4516v1-abstract-full').style.display = 'none'; document.getElementById('0907.4516v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Invited Poster presented at 2009 DOE Scientific Discovery through Advanced Computing (SciDAC) conference, June 14-18, 2009, San Diego, CA. To appear in Journal of Physics Conference Series</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J.Phys.Conf.Ser.180:012067,2009 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Mathur%2C+N&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Mathur%2C+N&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Mathur%2C+N&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10