CINXE.COM
Marcelo N Kuperman | Universidad Nacional de Cuyo - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Marcelo N Kuperman | Universidad Nacional de Cuyo - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="BHaks47xPywZ5I0VfTs7DR5rK0Q3XAg_FpVqB-D76QD1ZOv4wIqMlEILGkPfm0iDz-LmEnOu9BCqYCdoM3X-Yw" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" media="all" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman","sameAs":[]},"dateCreated":"2015-06-26T11:44:31-07:00","dateModified":"2017-11-08T09:31:33-08:00","name":"Marcelo N Kuperman","description":"","sameAs":[],"relatedLink":"https://www.academia.edu/21038732/Associative_memory_on_a_small_world_neural_network"}</script><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" media="all" /><style type="text/css">@media(max-width: 567px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 32px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 30px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 30px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 24px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 24px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 18px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 32px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 20px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 32px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 40px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 24px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 26px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 48px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 52px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 48px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 58px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 80px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 64px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 568px)and (max-width: 1279px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 104px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 1280px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 38px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 152px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}</style><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/common-57f9da13cef3fd4e2a8b655342c6488eded3e557e823fe67571f2ac77acd7b6f.css" media="all" /> <meta name="author" content="marcelo n kuperman" /> <meta name="description" content="Marcelo N Kuperman, Universidad Nacional de Cuyo: 15 Followers, 7 Following, 60 Research papers. Research interests: Complex Networks, Physics, and Quantum…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'e8a18f05162f50362dc9ff94cb0bb49be84e4276'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13895,"monthly_visitors":"31 million","monthly_visitor_count":31300000,"monthly_visitor_count_in_millions":31,"user_count":286266378,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1743664993000); window.Aedu.timeDifference = new Date().getTime() - 1743664993000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" media="all" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/academia-9982828ed1de4777566441c35ccf7157c55ca779141fce69380d727ebdbbb926.css" media="all" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" media="all" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-ea9e09e22b561126b0d4119ad33eee5d92cc3c2c850b903dfd540d5d5bbafa8f.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-7619a748322c52a5dde35876bf9572375d489ce6dc0f5c94eadf71c265acf5fb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://uncu.academia.edu/MKuperman" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-0d4749eb637d9acf3f125ef24206483a8378882ab36d57629c053436c6027b15.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman","photo":"/images/s65_no_pic.png","has_photo":false,"department":{"id":398952,"name":"Instituto Balseiro","url":"https://uncu.academia.edu/Departments/Instituto_Balseiro/Documents","university":{"id":2129,"name":"Universidad Nacional de Cuyo","url":"https://uncu.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":13330,"name":"Complex Networks","url":"https://www.academia.edu/Documents/in/Complex_Networks"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":6811,"name":"Quantum Theory","url":"https://www.academia.edu/Documents/in/Quantum_Theory"},{"id":2189,"name":"Computational Complexity","url":"https://www.academia.edu/Documents/in/Computational_Complexity"},{"id":13113,"name":"Evolutionary Game Theory","url":"https://www.academia.edu/Documents/in/Evolutionary_Game_Theory"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://uncu.academia.edu/MKuperman","location":"/MKuperman","scheme":"https","host":"uncu.academia.edu","port":null,"pathname":"/MKuperman","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-c264518c-3c02-4424-bae8-bf84c7175c45"></div> <div id="ProfileCheckPaperUpdate-react-component-c264518c-3c02-4424-bae8-bf84c7175c45"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Marcelo N Kuperman</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://uncu.academia.edu/">Universidad Nacional de Cuyo</a>, <a class="u-tcGrayDarker" href="https://uncu.academia.edu/Departments/Instituto_Balseiro/Documents">Instituto Balseiro</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Marcelo" data-follow-user-id="32568803" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="32568803"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">15</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">7</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">7</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><h3 class="ds2-5-heading-sans-serif-xs">Related Authors</h3></div><ul class="suggested-user-card-list" data-nosnippet="true"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/ReimerKuehn"><img class="profile-avatar u-positionAbsolute" alt="Reimer Kuehn related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/ReimerKuehn">Reimer Kuehn</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://csic.academia.edu/SebastianodeFranciscis"><img class="profile-avatar u-positionAbsolute" alt="Sebastiano de Franciscis related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/92153/25578/115281/s200_sebastiano.de_franciscis.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://csic.academia.edu/SebastianodeFranciscis">Sebastiano de Franciscis</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">CSIC (Consejo Superior de Investigaciones Científicas-Spanish National Research Council)</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uniroma1.academia.edu/ElenaAgliari"><img class="profile-avatar u-positionAbsolute" alt="Elena Agliari related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uniroma1.academia.edu/ElenaAgliari">Elena Agliari</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Università degli Studi "La Sapienza" di Roma</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://granada.academia.edu/JoaquinMarro"><img class="profile-avatar u-positionAbsolute" alt="Joaquin Marro related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/50940/1157290/3897471/s200_joaquin.marro.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://granada.academia.edu/JoaquinMarro">Joaquin Marro</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Granada</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://polito.academia.edu/RiccardoZecchina"><img class="profile-avatar u-positionAbsolute" alt="Riccardo Zecchina related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://polito.academia.edu/RiccardoZecchina">Riccardo Zecchina</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Politecnico di Torino</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uniroma1.academia.edu/AdrianoBarra"><img class="profile-avatar u-positionAbsolute" alt="Adriano Barra related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/27334278/8420182/9413137/s200_adriano.barra.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uniroma1.academia.edu/AdrianoBarra">Adriano Barra</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Università degli Studi "La Sapienza" di Roma</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://ufrgs.academia.edu/DavidCarreta"><img class="profile-avatar u-positionAbsolute" alt="David Carreta related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/5894058/11632838/12971440/s200_david.carreta.jpg_oh_14b55953818cb3387c97f45b55908ab7_oe_576f0650" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ufrgs.academia.edu/DavidCarreta">David Carreta</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidade Federal do Rio Grande do Sul</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/DavidDominguez27"><img class="profile-avatar u-positionAbsolute" alt="David Dominguez related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/DavidDominguez27">David Dominguez</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/GinoDelFerraro"><img class="profile-avatar u-positionAbsolute" alt="Gino Del Ferraro related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/GinoDelFerraro">Gino Del Ferraro</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/EleonoraRusso3"><img class="profile-avatar u-positionAbsolute" alt="Eleonora Russo related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/EleonoraRusso3">Eleonora Russo</a></div></div></ul></div><style type="text/css">.suggested-academics--header h3{font-size:16px;font-weight:500;line-height:20px}</style><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32568803" href="https://www.academia.edu/Documents/in/Physics"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://uncu.academia.edu/MKuperman","location":"/MKuperman","scheme":"https","host":"uncu.academia.edu","port":null,"pathname":"/MKuperman","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Physics"]}" data-trace="false" data-dom-id="Pill-react-component-6216f069-339b-49be-85e2-0609c36d733b"></div> <div id="Pill-react-component-6216f069-339b-49be-85e2-0609c36d733b"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32568803" href="https://www.academia.edu/Documents/in/Computational_Complexity"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Computational Complexity"]}" data-trace="false" data-dom-id="Pill-react-component-23a16a47-14f2-492f-ac58-f0abc77909a8"></div> <div id="Pill-react-component-23a16a47-14f2-492f-ac58-f0abc77909a8"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32568803" href="https://www.academia.edu/Documents/in/Evolutionary_Game_Theory"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Evolutionary Game Theory"]}" data-trace="false" data-dom-id="Pill-react-component-e925df52-89d6-49de-911b-908035cf4238"></div> <div id="Pill-react-component-e925df52-89d6-49de-911b-908035cf4238"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Marcelo N Kuperman</h3></div><div class="js-work-strip profile--work_container" data-work-id="21038732"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21038732/Associative_memory_on_a_small_world_neural_network"><img alt="Research paper thumbnail of Associative memory on a small-world neural network" class="work-thumbnail" src="https://attachments.academia-assets.com/41683748/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21038732/Associative_memory_on_a_small_world_neural_network">Associative memory on a small-world neural network</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://fsoc.academia.edu/LuisMorelli">Luis G Morelli</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://uncu.academia.edu/MKuperman">Marcelo N Kuperman</a></span></div><div class="wp-workCard_item"><span>The European Physical Journal B</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study a model of associative memory based on a neural network with small-world structure. The ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study a model of associative memory based on a neural network with small-world structure. The efficacy of the network to retrieve one of the stored patterns exhibits a phase transition at a finite value of the disorder. The more ordered networks are unable to recover the patterns, and are always attracted to non-symmetric mixture states. Besides, for a range of the number of stored patterns, the efficacy has a maximum at an intermediate value of the disorder. We also give a statistical characterization of the spurious attractors for all values of the disorder of the network.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6641ebb5ad70a4263ced3d96a00b45fd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41683748,"asset_id":21038732,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41683748/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21038732"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21038732"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21038732; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21038732]").text(description); $(".js-view-count[data-work-id=21038732]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21038732; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21038732']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6641ebb5ad70a4263ced3d96a00b45fd" } } $('.js-work-strip[data-work-id=21038732]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21038732,"title":"Associative memory on a small-world neural network","translated_title":"","metadata":{"grobid_abstract":"We study a model of associative memory based on a neural network with small-world structure. The efficacy of the network to retrieve one of the stored patterns exhibits a phase transition at a finite value of the disorder. The more ordered networks are unable to recover the patterns, and are always attracted to non-symmetric mixture states. Besides, for a range of the number of stored patterns, the efficacy has a maximum at an intermediate value of the disorder. We also give a statistical characterization of the spurious attractors for all values of the disorder of the network.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"The European Physical Journal B","grobid_abstract_attachment_id":41683748},"translated_abstract":null,"internal_url":"https://www.academia.edu/21038732/Associative_memory_on_a_small_world_neural_network","translated_internal_url":"","created_at":"2016-01-28T04:02:18.357-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40637097,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":14021302,"work_id":21038732,"tagging_user_id":40637097,"tagged_user_id":32505072,"co_author_invite_id":null,"email":"a***n@cab.cnea.gov.ar","affiliation":"Universidad Nacional de Cuyo","display_order":0,"name":"Guillermo Abramson","title":"Associative memory on a small-world neural network"},{"id":14021303,"work_id":21038732,"tagging_user_id":40637097,"tagged_user_id":32568803,"co_author_invite_id":null,"email":"k***n@cab.cnea.gov.ar","affiliation":"Universidad Nacional de Cuyo","display_order":4194304,"name":"Marcelo N Kuperman","title":"Associative memory on a small-world neural network"}],"downloadable_attachments":[{"id":41683748,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41683748/thumbnails/1.jpg","file_name":"swneural.pdf","download_url":"https://www.academia.edu/attachments/41683748/download_file","bulk_download_file_name":"Associative_memory_on_a_small_world_neur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41683748/swneural-libre.pdf?1453984448=\u0026response-content-disposition=attachment%3B+filename%3DAssociative_memory_on_a_small_world_neur.pdf\u0026Expires=1743655926\u0026Signature=VfFrpOspWKer0DkutNEx6m5fyOgZVYz06OXTlKkuJYZIq~a22zFquinQQCBNOVLS1ySqXEQlOVJVVfrjOmxzwcQElFvqIHSXtilS4ie6jh00mt2eEb38uwy~XhytcjEXnuf82JY6~XK~i6EGribWcvORI9O2NQFl0MrpQhgaeRJ8Uc3woQNv4kqKVRyD4dyNmQIUsBSTel7Q7BRMKI7EglBvv~gRjyjWxHiqCUCD-~zyqfgTgCYIUI0DDJAM0roFKWp1dKeXw9nOKoWhQDITQmscoAXFWLYQhnbrh31JOBXUuUOCiK9SuF~AiCEfkxaJcqy6XwgDPmjs-DHtMKxHlA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Associative_memory_on_a_small_world_neural_network","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"We study a model of associative memory based on a neural network with small-world structure. The efficacy of the network to retrieve one of the stored patterns exhibits a phase transition at a finite value of the disorder. The more ordered networks are unable to recover the patterns, and are always attracted to non-symmetric mixture states. Besides, for a range of the number of stored patterns, the efficacy has a maximum at an intermediate value of the disorder. We also give a statistical characterization of the spurious attractors for all values of the disorder of the network.","owner":{"id":40637097,"first_name":"Luis","middle_initials":"G","last_name":"Morelli","page_name":"LuisMorelli","domain_name":"fsoc","created_at":"2015-12-27T03:53:52.324-08:00","display_name":"Luis G Morelli","url":"https://fsoc.academia.edu/LuisMorelli"},"attachments":[{"id":41683748,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41683748/thumbnails/1.jpg","file_name":"swneural.pdf","download_url":"https://www.academia.edu/attachments/41683748/download_file","bulk_download_file_name":"Associative_memory_on_a_small_world_neur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41683748/swneural-libre.pdf?1453984448=\u0026response-content-disposition=attachment%3B+filename%3DAssociative_memory_on_a_small_world_neur.pdf\u0026Expires=1743655926\u0026Signature=VfFrpOspWKer0DkutNEx6m5fyOgZVYz06OXTlKkuJYZIq~a22zFquinQQCBNOVLS1ySqXEQlOVJVVfrjOmxzwcQElFvqIHSXtilS4ie6jh00mt2eEb38uwy~XhytcjEXnuf82JY6~XK~i6EGribWcvORI9O2NQFl0MrpQhgaeRJ8Uc3woQNv4kqKVRyD4dyNmQIUsBSTel7Q7BRMKI7EglBvv~gRjyjWxHiqCUCD-~zyqfgTgCYIUI0DDJAM0roFKWp1dKeXw9nOKoWhQDITQmscoAXFWLYQhnbrh31JOBXUuUOCiK9SuF~AiCEfkxaJcqy6XwgDPmjs-DHtMKxHlA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":328150,"name":"Associative Memory","url":"https://www.academia.edu/Documents/in/Associative_Memory"},{"id":869130,"name":"Small World","url":"https://www.academia.edu/Documents/in/Small_World"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-21038732-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881499"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20881499/A_model_for_the_emergence_of_social_organization_in_primates"><img alt="Research paper thumbnail of A model for the emergence of social organization in primates" class="work-thumbnail" src="https://attachments.academia-assets.com/41611655/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20881499/A_model_for_the_emergence_of_social_organization_in_primates">A model for the emergence of social organization in primates</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Recent studies have established an apparent relationship between the repertoire of signals used f...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Recent studies have established an apparent relationship between the repertoire of signals used for communication and neocortex size of different species of primates and the topology of the social network formed by the interactions between individuals. Inspired by these results, we have developed a model that qualitatively reproduces these observations. The model presents the social organization as a self organized processes where the size of the repertoire in one case and of the neocortex in another play a highly relevant role.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d287fee35b6b145d2e4fcd332d945c40" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41611655,"asset_id":20881499,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41611655/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881499"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881499"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881499; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881499]").text(description); $(".js-view-count[data-work-id=20881499]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881499; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881499']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d287fee35b6b145d2e4fcd332d945c40" } } $('.js-work-strip[data-work-id=20881499]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881499,"title":"A model for the emergence of social organization in primates","translated_title":"","metadata":{"abstract":"Recent studies have established an apparent relationship between the repertoire of signals used for communication and neocortex size of different species of primates and the topology of the social network formed by the interactions between individuals. Inspired by these results, we have developed a model that qualitatively reproduces these observations. The model presents the social organization as a self organized processes where the size of the repertoire in one case and of the neocortex in another play a highly relevant role.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":"Recent studies have established an apparent relationship between the repertoire of signals used for communication and neocortex size of different species of primates and the topology of the social network formed by the interactions between individuals. Inspired by these results, we have developed a model that qualitatively reproduces these observations. The model presents the social organization as a self organized processes where the size of the repertoire in one case and of the neocortex in another play a highly relevant role.","internal_url":"https://www.academia.edu/20881499/A_model_for_the_emergence_of_social_organization_in_primates","translated_internal_url":"","created_at":"2016-01-26T23:57:24.599-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41611655,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611655/thumbnails/1.jpg","file_name":"1011.5199.pdf","download_url":"https://www.academia.edu/attachments/41611655/download_file","bulk_download_file_name":"A_model_for_the_emergence_of_social_orga.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611655/1011.5199-libre.pdf?1453881599=\u0026response-content-disposition=attachment%3B+filename%3DA_model_for_the_emergence_of_social_orga.pdf\u0026Expires=1743655926\u0026Signature=OB3YuFV3yLjS1Am-5-L5QReofF~UEYjYdv~SvhntDJ4vWHDp5fbAIEHWGeiTdxO9e1XxFoDaXugEWthshaO4Jj8AD3THtFgc-MyokWRHv7ciKzBCwNuZOVVK8Fc7t3Vf7G96nnWRTZr~xFKilxQEe4z6VP2CzJjYY9Vr4HGKDIDK4WCtss7uKi50LSuPfH7ozXQhdjBhItBgwbIR3H7Zchp8tB0AxOmBnmY1eV3WtpgBtf3seTGsYrVLJTw1DOT9yskGP2tSVzHLS7gmHWoWPwZwOjv0NPaBwzjWN3qlB1LTpiTSmLvBQlpEWj9ZTex0PzCqKOkpn06ifrRDLhA66A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_model_for_the_emergence_of_social_organization_in_primates","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"Recent studies have established an apparent relationship between the repertoire of signals used for communication and neocortex size of different species of primates and the topology of the social network formed by the interactions between individuals. Inspired by these results, we have developed a model that qualitatively reproduces these observations. The model presents the social organization as a self organized processes where the size of the repertoire in one case and of the neocortex in another play a highly relevant role.","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[{"id":41611655,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611655/thumbnails/1.jpg","file_name":"1011.5199.pdf","download_url":"https://www.academia.edu/attachments/41611655/download_file","bulk_download_file_name":"A_model_for_the_emergence_of_social_orga.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611655/1011.5199-libre.pdf?1453881599=\u0026response-content-disposition=attachment%3B+filename%3DA_model_for_the_emergence_of_social_orga.pdf\u0026Expires=1743655926\u0026Signature=OB3YuFV3yLjS1Am-5-L5QReofF~UEYjYdv~SvhntDJ4vWHDp5fbAIEHWGeiTdxO9e1XxFoDaXugEWthshaO4Jj8AD3THtFgc-MyokWRHv7ciKzBCwNuZOVVK8Fc7t3Vf7G96nnWRTZr~xFKilxQEe4z6VP2CzJjYY9Vr4HGKDIDK4WCtss7uKi50LSuPfH7ozXQhdjBhItBgwbIR3H7Zchp8tB0AxOmBnmY1eV3WtpgBtf3seTGsYrVLJTw1DOT9yskGP2tSVzHLS7gmHWoWPwZwOjv0NPaBwzjWN3qlB1LTpiTSmLvBQlpEWj9ZTex0PzCqKOkpn06ifrRDLhA66A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":41611654,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611654/thumbnails/1.jpg","file_name":"1011.5199.pdf","download_url":"https://www.academia.edu/attachments/41611654/download_file","bulk_download_file_name":"A_model_for_the_emergence_of_social_orga.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611654/1011.5199-libre.pdf?1453881599=\u0026response-content-disposition=attachment%3B+filename%3DA_model_for_the_emergence_of_social_orga.pdf\u0026Expires=1743655926\u0026Signature=PQUh5A~W27SI72Rqh4B~5ouLmOkN50N7toU7FtS4mcXtcTvpysAv1jiqmTzMkbT40VSt9H1kJ6eA2IRoMXNBtzkAYFfFD1H3fKvyixEjxv6FWxcPscBl4PJQHzthGXWyKm6ME~WhTXmmI4vSHh5oLmyd4fvO3H4mT8~Eh6wwo~XStwNhy8IzEA~R5nPyrIEuklVDF0tR8GFkpVD9ptUtLApbBf~xjibMTO2QIacdg7itYxNntdLE0~mph6FaKMiPPln~DK86kWuZM~dBbhkeofUKPTLa5df~gdkAz1QmsQ6wAykxDTojfKer25L8tylm9Mv-QCHRQKOhrUdRVNEwIA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":7150,"name":"Complex Systems","url":"https://www.academia.edu/Documents/in/Complex_Systems"},{"id":58285,"name":"Social organization","url":"https://www.academia.edu/Documents/in/Social_organization"},{"id":299563,"name":"Self Organization","url":"https://www.academia.edu/Documents/in/Self_Organization"},{"id":372231,"name":"Social System","url":"https://www.academia.edu/Documents/in/Social_System"},{"id":625360,"name":"Social Organization","url":"https://www.academia.edu/Documents/in/Social_Organization-1"},{"id":1199379,"name":"Social Network","url":"https://www.academia.edu/Documents/in/Social_Network"}],"urls":[{"id":6244283,"url":"http://arxiv.org/abs/1011.5199"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881499-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881498"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20881498/On_the_roles_of_hunting_and_habitat_size_on_the_extinction_of_megafauna"><img alt="Research paper thumbnail of On the roles of hunting and habitat size on the extinction of megafauna" class="work-thumbnail" src="https://attachments.academia-assets.com/41611763/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20881498/On_the_roles_of_hunting_and_habitat_size_on_the_extinction_of_megafauna">On the roles of hunting and habitat size on the extinction of megafauna</a></div><div class="wp-workCard_item"><span>Quaternary International</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study a mechanistic mathematical model of extinction and coexistence in a generic hunter-prey ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study a mechanistic mathematical model of extinction and coexistence in a generic hunter-prey ecosystem. The model represents typical scenarios of human invasion and environmental change, characteristic of the late Pleistocene, concomitant with the extinction of fauna in many regions of the world. As a first approach we focus on a small trophic web of three species, including two herbivores in asymmetric competition, in order to characterize the generic behaviors. Specifically, we use a stochastic dynamical system, allowing the study of the role of fluctuations and spatial correlations. We show that the presence of hunters drives the superior herbivore to extinction even in habitats that would allow coexistence, and even when the pressure of hunting is lower than on the inferior one. The role of system size and fluctuating populations is addressed, showing an ecological meltdown in small systems in the presence of humans. The time to extinction as a function of the system size, as calculated with the model, shows a good agreement with paleontological data. Other findings show the intricate play of the anthropic and environmental factors that may have caused the extinction of megafauna.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c6c1be323b52c72a33cb82d03b7b4bd6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41611763,"asset_id":20881498,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41611763/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881498"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881498"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881498; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881498]").text(description); $(".js-view-count[data-work-id=20881498]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881498; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881498']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c6c1be323b52c72a33cb82d03b7b4bd6" } } $('.js-work-strip[data-work-id=20881498]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881498,"title":"On the roles of hunting and habitat size on the extinction of megafauna","translated_title":"","metadata":{"grobid_abstract":"We study a mechanistic mathematical model of extinction and coexistence in a generic hunter-prey ecosystem. The model represents typical scenarios of human invasion and environmental change, characteristic of the late Pleistocene, concomitant with the extinction of fauna in many regions of the world. As a first approach we focus on a small trophic web of three species, including two herbivores in asymmetric competition, in order to characterize the generic behaviors. Specifically, we use a stochastic dynamical system, allowing the study of the role of fluctuations and spatial correlations. We show that the presence of hunters drives the superior herbivore to extinction even in habitats that would allow coexistence, and even when the pressure of hunting is lower than on the inferior one. The role of system size and fluctuating populations is addressed, showing an ecological meltdown in small systems in the presence of humans. The time to extinction as a function of the system size, as calculated with the model, shows a good agreement with paleontological data. Other findings show the intricate play of the anthropic and environmental factors that may have caused the extinction of megafauna.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Quaternary International","grobid_abstract_attachment_id":41611763},"translated_abstract":null,"internal_url":"https://www.academia.edu/20881498/On_the_roles_of_hunting_and_habitat_size_on_the_extinction_of_megafauna","translated_internal_url":"","created_at":"2016-01-26T23:57:24.297-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41611763,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611763/thumbnails/1.jpg","file_name":"On_the_roles_of_hunting_and_habitat_size20160126-26079-uzhigc.pdf","download_url":"https://www.academia.edu/attachments/41611763/download_file","bulk_download_file_name":"On_the_roles_of_hunting_and_habitat_size.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611763/On_the_roles_of_hunting_and_habitat_size20160126-26079-uzhigc-libre.pdf?1453881874=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_roles_of_hunting_and_habitat_size.pdf\u0026Expires=1743655926\u0026Signature=KYBYGMSfLub18JgaOESgencaP8c2l5o~k2ZcKFOQ2ib6y1bB31~4YTwDpIRSFLekmIK5hEKjRyadquA5ur3ph~rp-65UjXKO1R7yibgXuijLVKV-~LTDm1tB6Mr83SziniAZaEG8FfBFNou6DAyg-icjtAbkfz~vzTfse4Dt7CeYBcK2N0U5yrDcphmN1~wcD8QO-nJ6XF-uQdLh6VL0XhclZyCHd956acR3HE3VfSDpyAdoUnWVrKZjfrSVIR44Nyciousr0yQ~JLavewz~9OqJ1PtDUCJIQQsd9HSvVtMST-MMj6FDO2chdWaIJ4PopT9CKbkOT9iVnBx0HJmpMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_roles_of_hunting_and_habitat_size_on_the_extinction_of_megafauna","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"We study a mechanistic mathematical model of extinction and coexistence in a generic hunter-prey ecosystem. The model represents typical scenarios of human invasion and environmental change, characteristic of the late Pleistocene, concomitant with the extinction of fauna in many regions of the world. As a first approach we focus on a small trophic web of three species, including two herbivores in asymmetric competition, in order to characterize the generic behaviors. Specifically, we use a stochastic dynamical system, allowing the study of the role of fluctuations and spatial correlations. We show that the presence of hunters drives the superior herbivore to extinction even in habitats that would allow coexistence, and even when the pressure of hunting is lower than on the inferior one. The role of system size and fluctuating populations is addressed, showing an ecological meltdown in small systems in the presence of humans. The time to extinction as a function of the system size, as calculated with the model, shows a good agreement with paleontological data. Other findings show the intricate play of the anthropic and environmental factors that may have caused the extinction of megafauna.","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[{"id":41611763,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611763/thumbnails/1.jpg","file_name":"On_the_roles_of_hunting_and_habitat_size20160126-26079-uzhigc.pdf","download_url":"https://www.academia.edu/attachments/41611763/download_file","bulk_download_file_name":"On_the_roles_of_hunting_and_habitat_size.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611763/On_the_roles_of_hunting_and_habitat_size20160126-26079-uzhigc-libre.pdf?1453881874=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_roles_of_hunting_and_habitat_size.pdf\u0026Expires=1743655926\u0026Signature=KYBYGMSfLub18JgaOESgencaP8c2l5o~k2ZcKFOQ2ib6y1bB31~4YTwDpIRSFLekmIK5hEKjRyadquA5ur3ph~rp-65UjXKO1R7yibgXuijLVKV-~LTDm1tB6Mr83SziniAZaEG8FfBFNou6DAyg-icjtAbkfz~vzTfse4Dt7CeYBcK2N0U5yrDcphmN1~wcD8QO-nJ6XF-uQdLh6VL0XhclZyCHd956acR3HE3VfSDpyAdoUnWVrKZjfrSVIR44Nyciousr0yQ~JLavewz~9OqJ1PtDUCJIQQsd9HSvVtMST-MMj6FDO2chdWaIJ4PopT9CKbkOT9iVnBx0HJmpMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":35587,"name":"Quaternary","url":"https://www.academia.edu/Documents/in/Quaternary"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881498-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881497"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/20881497/Quantum_mechanical_analogy_for_solving_a_competitive_coexistence_model_in_ecology"><img alt="Research paper thumbnail of Quantum mechanical analogy for solving a competitive coexistence model in ecology" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Quantum mechanical analogy for solving a competitive coexistence model in ecology</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881497"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881497"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881497; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881497]").text(description); $(".js-view-count[data-work-id=20881497]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881497; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881497']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20881497]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881497,"title":"Quantum mechanical analogy for solving a competitive coexistence model in ecology","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/20881497/Quantum_mechanical_analogy_for_solving_a_competitive_coexistence_model_in_ecology","translated_internal_url":"","created_at":"2016-01-26T23:57:24.062-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Quantum_mechanical_analogy_for_solving_a_competitive_coexistence_model_in_ecology","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[],"research_interests":[{"id":7936,"name":"Quantum Mechanics","url":"https://www.academia.edu/Documents/in/Quantum_Mechanics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881497-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881496"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20881496/Theory_of_possible_effects_of_the_Allee_phenomenon_on_refugia_of_the_Hantavirus_epidemic"><img alt="Research paper thumbnail of Theory of possible effects of the Allee phenomenon on refugia of the Hantavirus epidemic" class="work-thumbnail" src="https://attachments.academia-assets.com/41611757/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20881496/Theory_of_possible_effects_of_the_Allee_phenomenon_on_refugia_of_the_Hantavirus_epidemic">Theory of possible effects of the Allee phenomenon on refugia of the Hantavirus epidemic</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We investigate possible effects of high order nonlinearities on the shapes of infection refugia o...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We investigate possible effects of high order nonlinearities on the shapes of infection refugia of the Hantavirus epidemic. We replace Fisher-like equations that have been recently used to describe Hantavirus spread in mouse populations by generalizations capable of describing Allee effects that are a consequence of the high order nonlinearities. We analyze the equations to calculate steady state solutions. We study the stability of those solutions under physical conditions and compare to the earlier Fisher-like case. We consider spatial modulation of the environment and find that unexpected results appear, including a bifurcation that has not been studied before.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b26fdc63b41fc702fcf81be342b90ea6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41611757,"asset_id":20881496,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41611757/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881496"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881496"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881496; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881496]").text(description); $(".js-view-count[data-work-id=20881496]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881496; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881496']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b26fdc63b41fc702fcf81be342b90ea6" } } $('.js-work-strip[data-work-id=20881496]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881496,"title":"Theory of possible effects of the Allee phenomenon on refugia of the Hantavirus epidemic","translated_title":"","metadata":{"abstract":"We investigate possible effects of high order nonlinearities on the shapes of infection refugia of the Hantavirus epidemic. We replace Fisher-like equations that have been recently used to describe Hantavirus spread in mouse populations by generalizations capable of describing Allee effects that are a consequence of the high order nonlinearities. We analyze the equations to calculate steady state solutions. We study the stability of those solutions under physical conditions and compare to the earlier Fisher-like case. We consider spatial modulation of the environment and find that unexpected results appear, including a bifurcation that has not been studied before."},"translated_abstract":"We investigate possible effects of high order nonlinearities on the shapes of infection refugia of the Hantavirus epidemic. We replace Fisher-like equations that have been recently used to describe Hantavirus spread in mouse populations by generalizations capable of describing Allee effects that are a consequence of the high order nonlinearities. We analyze the equations to calculate steady state solutions. We study the stability of those solutions under physical conditions and compare to the earlier Fisher-like case. We consider spatial modulation of the environment and find that unexpected results appear, including a bifurcation that has not been studied before.","internal_url":"https://www.academia.edu/20881496/Theory_of_possible_effects_of_the_Allee_phenomenon_on_refugia_of_the_Hantavirus_epidemic","translated_internal_url":"","created_at":"2016-01-26T23:57:23.807-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41611757,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611757/thumbnails/1.jpg","file_name":"Theory_of_possible_effects_of_the_Allee_20160126-14159-n7wpwm.pdf","download_url":"https://www.academia.edu/attachments/41611757/download_file","bulk_download_file_name":"Theory_of_possible_effects_of_the_Allee.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611757/Theory_of_possible_effects_of_the_Allee_20160126-14159-n7wpwm-libre.pdf?1453881868=\u0026response-content-disposition=attachment%3B+filename%3DTheory_of_possible_effects_of_the_Allee.pdf\u0026Expires=1743655926\u0026Signature=UI0c7hoC-AqCPdX0q-CNExFX-Uv5RLG272cnu4BT7MqZRRbDUcPsXWFpAXNdT06h2Im6qazAi1noDU7XNz6myQaZdjq2dkt25Dd3Z0KUiP18wYlUjcP0s-ddxzY9DhsH7QjU-iO6UacDNUGgOF9j3AMuLnH6iQBHKssO61AJpsD~NaRbyhqdgHvZHg6s4Ft34CQWiKtVh4dfF20PukvlEtYFinLvbxXe5OTtimjZYRVREhIe3ihTQO-fWWxip6mgLIySknUbJvDyhTIV4BIOxPT2QOevx6Yq9K0fxFFiv~YB3CVzgtJ~920-RVkiXpB5ErHvQ9vI8ScZ3dlGv-JFqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Theory_of_possible_effects_of_the_Allee_phenomenon_on_refugia_of_the_Hantavirus_epidemic","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"We investigate possible effects of high order nonlinearities on the shapes of infection refugia of the Hantavirus epidemic. We replace Fisher-like equations that have been recently used to describe Hantavirus spread in mouse populations by generalizations capable of describing Allee effects that are a consequence of the high order nonlinearities. We analyze the equations to calculate steady state solutions. We study the stability of those solutions under physical conditions and compare to the earlier Fisher-like case. We consider spatial modulation of the environment and find that unexpected results appear, including a bifurcation that has not been studied before.","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[{"id":41611757,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611757/thumbnails/1.jpg","file_name":"Theory_of_possible_effects_of_the_Allee_20160126-14159-n7wpwm.pdf","download_url":"https://www.academia.edu/attachments/41611757/download_file","bulk_download_file_name":"Theory_of_possible_effects_of_the_Allee.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611757/Theory_of_possible_effects_of_the_Allee_20160126-14159-n7wpwm-libre.pdf?1453881868=\u0026response-content-disposition=attachment%3B+filename%3DTheory_of_possible_effects_of_the_Allee.pdf\u0026Expires=1743655926\u0026Signature=UI0c7hoC-AqCPdX0q-CNExFX-Uv5RLG272cnu4BT7MqZRRbDUcPsXWFpAXNdT06h2Im6qazAi1noDU7XNz6myQaZdjq2dkt25Dd3Z0KUiP18wYlUjcP0s-ddxzY9DhsH7QjU-iO6UacDNUGgOF9j3AMuLnH6iQBHKssO61AJpsD~NaRbyhqdgHvZHg6s4Ft34CQWiKtVh4dfF20PukvlEtYFinLvbxXe5OTtimjZYRVREhIe3ihTQO-fWWxip6mgLIySknUbJvDyhTIV4BIOxPT2QOevx6Yq9K0fxFFiv~YB3CVzgtJ~920-RVkiXpB5ErHvQ9vI8ScZ3dlGv-JFqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms"},{"id":5493,"name":"Nonlinear dynamics","url":"https://www.academia.edu/Documents/in/Nonlinear_dynamics"},{"id":28850,"name":"Linear models","url":"https://www.academia.edu/Documents/in/Linear_models"},{"id":57907,"name":"Disease Outbreaks","url":"https://www.academia.edu/Documents/in/Disease_Outbreaks"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":756195,"name":"Hantavirus","url":"https://www.academia.edu/Documents/in/Hantavirus"},{"id":1208706,"name":"Environment","url":"https://www.academia.edu/Documents/in/Environment"},{"id":1294607,"name":"Logistic Models","url":"https://www.academia.edu/Documents/in/Logistic_Models"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881496-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="13248360"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/13248360/The_forager_walk"><img alt="Research paper thumbnail of The forager walk" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">The forager walk</div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://uncu.academia.edu/GuillermoAbramson">Guillermo Abramson</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://uncu.academia.edu/MKuperman">Marcelo N Kuperman</a></span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13248360"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13248360"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13248360; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13248360]").text(description); $(".js-view-count[data-work-id=13248360]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13248360; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13248360']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=13248360]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13248360,"title":"The forager walk","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/13248360/The_forager_walk","translated_internal_url":"","created_at":"2015-06-24T11:20:26.046-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32505072,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1494799,"work_id":13248360,"tagging_user_id":32505072,"tagged_user_id":32568803,"co_author_invite_id":431169,"email":"k***n@cab.cnea.gov.ar","affiliation":"Universidad Nacional de Cuyo","display_order":0,"name":"Marcelo N Kuperman","title":"The forager walk"},{"id":1494810,"work_id":13248360,"tagging_user_id":32505072,"tagged_user_id":5374645,"co_author_invite_id":null,"email":"l***i@gmail.com","display_order":4194304,"name":"Laila Kazimierski","title":"The forager walk"}],"downloadable_attachments":[],"slug":"The_forager_walk","translated_slug":"","page_count":null,"language":"da","content_type":"Work","summary":null,"owner":{"id":32505072,"first_name":"Guillermo","middle_initials":null,"last_name":"Abramson","page_name":"GuillermoAbramson","domain_name":"uncu","created_at":"2015-06-24T11:18:20.773-07:00","display_name":"Guillermo Abramson","url":"https://uncu.academia.edu/GuillermoAbramson"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-13248360-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881495"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20881495/Spatial_features_of_population_dynamics_arising_from_mutual_interaction_of_different_age_groups_in_rodents"><img alt="Research paper thumbnail of Spatial features of population dynamics arising from mutual interaction of different age groups in rodents" class="work-thumbnail" src="https://attachments.academia-assets.com/42390228/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20881495/Spatial_features_of_population_dynamics_arising_from_mutual_interaction_of_different_age_groups_in_rodents">Spatial features of population dynamics arising from mutual interaction of different age groups in rodents</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study the dynamics of the transmission of the hanta virus infection among mouse populations, t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study the dynamics of the transmission of the hanta virus infection among mouse populations, taking into account, simultaneously, seasonal variations of the environment and interactions within two classes in the mouse population: adults and subadults. The interactions considered are not symmetric between the two age-organized classes and are responsible for driving the younger members away from home ranges. We consider the case of a bounded habitat affected by seasonal variations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a571adcbd3cf5855d7fb9403078d138e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":42390228,"asset_id":20881495,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/42390228/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881495"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881495"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881495; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881495]").text(description); $(".js-view-count[data-work-id=20881495]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881495; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881495']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a571adcbd3cf5855d7fb9403078d138e" } } $('.js-work-strip[data-work-id=20881495]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881495,"title":"Spatial features of population dynamics arising from mutual interaction of different age groups in rodents","translated_title":"","metadata":{"abstract":"We study the dynamics of the transmission of the hanta virus infection among mouse populations, taking into account, simultaneously, seasonal variations of the environment and interactions within two classes in the mouse population: adults and subadults. The interactions considered are not symmetric between the two age-organized classes and are responsible for driving the younger members away from home ranges. We consider the case of a bounded habitat affected by seasonal variations.","ai_title_tag":"Population Dynamics of Rodents and Hantavirus Transmission"},"translated_abstract":"We study the dynamics of the transmission of the hanta virus infection among mouse populations, taking into account, simultaneously, seasonal variations of the environment and interactions within two classes in the mouse population: adults and subadults. The interactions considered are not symmetric between the two age-organized classes and are responsible for driving the younger members away from home ranges. We consider the case of a bounded habitat affected by seasonal variations.","internal_url":"https://www.academia.edu/20881495/Spatial_features_of_population_dynamics_arising_from_mutual_interaction_of_different_age_groups_in_rodents","translated_internal_url":"","created_at":"2016-01-26T23:57:23.299-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":42390228,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42390228/thumbnails/1.jpg","file_name":"Spatial_features_of_population_dynamics_20160208-14055-ihvu5s.pdf","download_url":"https://www.academia.edu/attachments/42390228/download_file","bulk_download_file_name":"Spatial_features_of_population_dynamics.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42390228/Spatial_features_of_population_dynamics_20160208-14055-ihvu5s-libre.pdf?1454948770=\u0026response-content-disposition=attachment%3B+filename%3DSpatial_features_of_population_dynamics.pdf\u0026Expires=1743655926\u0026Signature=N2ZAzuOLnCVoCj6hOcCHigqZKI58epuuWKjsoa5PXN65JroYB8qw3KbRG3uEY2fJIQtEVpoFzshRtrJbGZowoM1ioYDqjlZk5W-i8ZJlhODzK8RyScUWh8MfCBDwfIbcDI8ybWk1Jw4nil-OYlCpzbx1uTbp393GDv18E4WEUTKBCycWrzQHIhzNJRfwGYwBwzIu-2XfIwZRtc9d7ow3RJcPbtGKG6Q85mp6Qks5yyvAbiJdHaDErCUuw1DmFlDg4bN47704UE9hYZdlOAQZimRbhf3OZx-oWGGy8ESFhi1Go23k5sFPtwtlaxp1cnjTywKjyM1N45c8dRjXffCxiA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Spatial_features_of_population_dynamics_arising_from_mutual_interaction_of_different_age_groups_in_rodents","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"We study the dynamics of the transmission of the hanta virus infection among mouse populations, taking into account, simultaneously, seasonal variations of the environment and interactions within two classes in the mouse population: adults and subadults. The interactions considered are not symmetric between the two age-organized classes and are responsible for driving the younger members away from home ranges. We consider the case of a bounded habitat affected by seasonal variations.","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[{"id":42390228,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42390228/thumbnails/1.jpg","file_name":"Spatial_features_of_population_dynamics_20160208-14055-ihvu5s.pdf","download_url":"https://www.academia.edu/attachments/42390228/download_file","bulk_download_file_name":"Spatial_features_of_population_dynamics.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42390228/Spatial_features_of_population_dynamics_20160208-14055-ihvu5s-libre.pdf?1454948770=\u0026response-content-disposition=attachment%3B+filename%3DSpatial_features_of_population_dynamics.pdf\u0026Expires=1743655926\u0026Signature=N2ZAzuOLnCVoCj6hOcCHigqZKI58epuuWKjsoa5PXN65JroYB8qw3KbRG3uEY2fJIQtEVpoFzshRtrJbGZowoM1ioYDqjlZk5W-i8ZJlhODzK8RyScUWh8MfCBDwfIbcDI8ybWk1Jw4nil-OYlCpzbx1uTbp393GDv18E4WEUTKBCycWrzQHIhzNJRfwGYwBwzIu-2XfIwZRtc9d7ow3RJcPbtGKG6Q85mp6Qks5yyvAbiJdHaDErCUuw1DmFlDg4bN47704UE9hYZdlOAQZimRbhf3OZx-oWGGy8ESFhi1Go23k5sFPtwtlaxp1cnjTywKjyM1N45c8dRjXffCxiA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":6568451,"url":"https://www.researchgate.net/profile/Marcelo_Kuperman/publication/2206748_Spatial_features_of_population_dynamics_arising_from_mutual_interaction_of_different_age_groups_in_rodents/links/0c96051a4e83cd99cd000000.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881495-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881494"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20881494/The_topological_issues_of_cooperation"><img alt="Research paper thumbnail of The topological issues of cooperation" class="work-thumbnail" src="https://attachments.academia-assets.com/41611762/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20881494/The_topological_issues_of_cooperation">The topological issues of cooperation</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the last years the Prisoner Dilemma (PD) has become a paradigm for the study of the emergence ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the last years the Prisoner Dilemma (PD) has become a paradigm for the study of the emergence of cooperation in spatially structured populations. Such structure is usually assumed to be given by a graph. In general, the success of cooperative strategies is associated with the possibility of forming globular clusters, which in turn depends on a feature of the network that is measured by its clustering coefficient. In this work we test the dependence of the success of cooperation with the clustering coefficient of the network, for several different families of networks. We have found that this dependence is far from trivial. Additionally, for both stochastic and deterministic dynamics we have also found that there is a strong dependence on the initial composition of the population. This hints at the existence of several different mechanisms that could promote or hinder cluster expansion. We have studied in detail some of these mechanisms by concentrating on completely ordered netwo...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f47f57739f426770576579e9ce0ed2f0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41611762,"asset_id":20881494,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41611762/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881494"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881494"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881494; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881494]").text(description); $(".js-view-count[data-work-id=20881494]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881494; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881494']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f47f57739f426770576579e9ce0ed2f0" } } $('.js-work-strip[data-work-id=20881494]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881494,"title":"The topological issues of cooperation","translated_title":"","metadata":{"abstract":"In the last years the Prisoner Dilemma (PD) has become a paradigm for the study of the emergence of cooperation in spatially structured populations. Such structure is usually assumed to be given by a graph. In general, the success of cooperative strategies is associated with the possibility of forming globular clusters, which in turn depends on a feature of the network that is measured by its clustering coefficient. In this work we test the dependence of the success of cooperation with the clustering coefficient of the network, for several different families of networks. We have found that this dependence is far from trivial. Additionally, for both stochastic and deterministic dynamics we have also found that there is a strong dependence on the initial composition of the population. This hints at the existence of several different mechanisms that could promote or hinder cluster expansion. We have studied in detail some of these mechanisms by concentrating on completely ordered netwo..."},"translated_abstract":"In the last years the Prisoner Dilemma (PD) has become a paradigm for the study of the emergence of cooperation in spatially structured populations. Such structure is usually assumed to be given by a graph. In general, the success of cooperative strategies is associated with the possibility of forming globular clusters, which in turn depends on a feature of the network that is measured by its clustering coefficient. In this work we test the dependence of the success of cooperation with the clustering coefficient of the network, for several different families of networks. We have found that this dependence is far from trivial. Additionally, for both stochastic and deterministic dynamics we have also found that there is a strong dependence on the initial composition of the population. This hints at the existence of several different mechanisms that could promote or hinder cluster expansion. We have studied in detail some of these mechanisms by concentrating on completely ordered netwo...","internal_url":"https://www.academia.edu/20881494/The_topological_issues_of_cooperation","translated_internal_url":"","created_at":"2016-01-26T23:57:23.014-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41611762,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611762/thumbnails/1.jpg","file_name":"The_topological_issues_of_cooperation20160126-14159-1n30p6z.pdf","download_url":"https://www.academia.edu/attachments/41611762/download_file","bulk_download_file_name":"The_topological_issues_of_cooperation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611762/The_topological_issues_of_cooperation20160126-14159-1n30p6z-libre.pdf?1453881870=\u0026response-content-disposition=attachment%3B+filename%3DThe_topological_issues_of_cooperation.pdf\u0026Expires=1743655926\u0026Signature=PhBBRHgvzukfknSkhZcNXxjDS6rloASYNq1onm8Rbp0v~hspQZOAxPQ-s3JNh4CLuEDzr3eYrnYmSA3hoiSfTjQlXpBFu7ePpdDcESTfaDKCpKvMgrfi4MTW5ZZWkQ8cgTE7WtqZg4be7bRHBV8oV4eY-Hlu8JPqd38gzhdaCBg-efqOc6ELrrJAKnajkCPx36~Pk7ij61iyMdu5mR7WWquvsz8z1fSimigQ4nNbZmjIt9p7Do5o3cDWmfI2Mig1KYuv~v0QLqtQc-t6Qgz2uOt8zq6yVhuUqklTOHBcXjsqwWQn9YZGi1LYOe3uItQwpoJvPMV4npI7Br8CrLXd6g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_topological_issues_of_cooperation","translated_slug":"","page_count":25,"language":"en","content_type":"Work","summary":"In the last years the Prisoner Dilemma (PD) has become a paradigm for the study of the emergence of cooperation in spatially structured populations. Such structure is usually assumed to be given by a graph. In general, the success of cooperative strategies is associated with the possibility of forming globular clusters, which in turn depends on a feature of the network that is measured by its clustering coefficient. In this work we test the dependence of the success of cooperation with the clustering coefficient of the network, for several different families of networks. We have found that this dependence is far from trivial. Additionally, for both stochastic and deterministic dynamics we have also found that there is a strong dependence on the initial composition of the population. This hints at the existence of several different mechanisms that could promote or hinder cluster expansion. We have studied in detail some of these mechanisms by concentrating on completely ordered netwo...","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[{"id":41611762,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611762/thumbnails/1.jpg","file_name":"The_topological_issues_of_cooperation20160126-14159-1n30p6z.pdf","download_url":"https://www.academia.edu/attachments/41611762/download_file","bulk_download_file_name":"The_topological_issues_of_cooperation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611762/The_topological_issues_of_cooperation20160126-14159-1n30p6z-libre.pdf?1453881870=\u0026response-content-disposition=attachment%3B+filename%3DThe_topological_issues_of_cooperation.pdf\u0026Expires=1743655926\u0026Signature=PhBBRHgvzukfknSkhZcNXxjDS6rloASYNq1onm8Rbp0v~hspQZOAxPQ-s3JNh4CLuEDzr3eYrnYmSA3hoiSfTjQlXpBFu7ePpdDcESTfaDKCpKvMgrfi4MTW5ZZWkQ8cgTE7WtqZg4be7bRHBV8oV4eY-Hlu8JPqd38gzhdaCBg-efqOc6ELrrJAKnajkCPx36~Pk7ij61iyMdu5mR7WWquvsz8z1fSimigQ4nNbZmjIt9p7Do5o3cDWmfI2Mig1KYuv~v0QLqtQc-t6Qgz2uOt8zq6yVhuUqklTOHBcXjsqwWQn9YZGi1LYOe3uItQwpoJvPMV4npI7Br8CrLXd6g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":104340,"name":"Emergence of Cooperation and Altruism","url":"https://www.academia.edu/Documents/in/Emergence_of_Cooperation_and_Altruism"},{"id":320532,"name":"Clustering Coefficient","url":"https://www.academia.edu/Documents/in/Clustering_Coefficient"},{"id":320536,"name":"Random Networks","url":"https://www.academia.edu/Documents/in/Random_Networks"},{"id":771878,"name":"Spatial structure","url":"https://www.academia.edu/Documents/in/Spatial_structure"},{"id":1257668,"name":"Cluster Expansion","url":"https://www.academia.edu/Documents/in/Cluster_Expansion"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881494-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881493"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20881493/Dynamic_Domains_Networks"><img alt="Research paper thumbnail of Dynamic Domains Networks" class="work-thumbnail" src="https://attachments.academia-assets.com/41611759/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20881493/Dynamic_Domains_Networks">Dynamic Domains Networks</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present a model for the description of the evolution of contacts among individuals in a networ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present a model for the description of the evolution of contacts among individuals in a network. At each time step each individual is associated with a domain or neighborhood of fully connected agents.The dynamics of this changing neighborhood will later be translated into a situation where the links between individuals are also dynamic. A characterization in terms of the parameters that govern the evolution of the network and a comparison to previous work on Small World networks is presented as well.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="55f828ab7b7775dbb9b5437b33ae80a8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41611759,"asset_id":20881493,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41611759/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881493"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881493"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881493; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881493]").text(description); $(".js-view-count[data-work-id=20881493]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881493; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881493']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "55f828ab7b7775dbb9b5437b33ae80a8" } } $('.js-work-strip[data-work-id=20881493]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881493,"title":"Dynamic Domains Networks","translated_title":"","metadata":{"abstract":"We present a model for the description of the evolution of contacts among individuals in a network. At each time step each individual is associated with a domain or neighborhood of fully connected agents.The dynamics of this changing neighborhood will later be translated into a situation where the links between individuals are also dynamic. A characterization in terms of the parameters that govern the evolution of the network and a comparison to previous work on Small World networks is presented as well."},"translated_abstract":"We present a model for the description of the evolution of contacts among individuals in a network. At each time step each individual is associated with a domain or neighborhood of fully connected agents.The dynamics of this changing neighborhood will later be translated into a situation where the links between individuals are also dynamic. A characterization in terms of the parameters that govern the evolution of the network and a comparison to previous work on Small World networks is presented as well.","internal_url":"https://www.academia.edu/20881493/Dynamic_Domains_Networks","translated_internal_url":"","created_at":"2016-01-26T23:57:22.698-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41611759,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611759/thumbnails/1.jpg","file_name":"Dynamic_Domains_Networks20160127-20223-1eh59rm.pdf","download_url":"https://www.academia.edu/attachments/41611759/download_file","bulk_download_file_name":"Dynamic_Domains_Networks.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611759/Dynamic_Domains_Networks20160127-20223-1eh59rm-libre.pdf?1453881868=\u0026response-content-disposition=attachment%3B+filename%3DDynamic_Domains_Networks.pdf\u0026Expires=1743655926\u0026Signature=b-2EgD~oohat~rCwSoy1bQXOH5k92bpOLo5ecxO992g4xkLFSg4DwRf7RcvRWHd2hvhI1kQgKtj7R-7BqBsM8YZ5WfPMt0a6EhEitp6R7NgWv6otNiCKBGKxbeF3s7mXr-Og0HvJc2jqfmw3iDn9PvmKb6eZBQTCi1iWsDCfbKWeQrKtyqDXPNrIl10YhA~glhJY1EqE583gDRwr4r5F4XKsIRACOy2xby8h2wwyqIlSOVHgujSKBFmxSPMDLlBwomdf6PZvCipHAFNijAe~C1nt0rCSNkCT~pjUpZ6m3PBt-UJ-rmU1ZVPD-oKhmpiI07-mE5y4JmDxfIBufhKW3Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Dynamic_Domains_Networks","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":"We present a model for the description of the evolution of contacts among individuals in a network. At each time step each individual is associated with a domain or neighborhood of fully connected agents.The dynamics of this changing neighborhood will later be translated into a situation where the links between individuals are also dynamic. A characterization in terms of the parameters that govern the evolution of the network and a comparison to previous work on Small World networks is presented as well.","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[{"id":41611759,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611759/thumbnails/1.jpg","file_name":"Dynamic_Domains_Networks20160127-20223-1eh59rm.pdf","download_url":"https://www.academia.edu/attachments/41611759/download_file","bulk_download_file_name":"Dynamic_Domains_Networks.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611759/Dynamic_Domains_Networks20160127-20223-1eh59rm-libre.pdf?1453881868=\u0026response-content-disposition=attachment%3B+filename%3DDynamic_Domains_Networks.pdf\u0026Expires=1743655926\u0026Signature=b-2EgD~oohat~rCwSoy1bQXOH5k92bpOLo5ecxO992g4xkLFSg4DwRf7RcvRWHd2hvhI1kQgKtj7R-7BqBsM8YZ5WfPMt0a6EhEitp6R7NgWv6otNiCKBGKxbeF3s7mXr-Og0HvJc2jqfmw3iDn9PvmKb6eZBQTCi1iWsDCfbKWeQrKtyqDXPNrIl10YhA~glhJY1EqE583gDRwr4r5F4XKsIRACOy2xby8h2wwyqIlSOVHgujSKBFmxSPMDLlBwomdf6PZvCipHAFNijAe~C1nt0rCSNkCT~pjUpZ6m3PBt-UJ-rmU1ZVPD-oKhmpiI07-mE5y4JmDxfIBufhKW3Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881493-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881492"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20881492/Convergence_in_reaction_diffusion_systems_an_information_theory_approach"><img alt="Research paper thumbnail of Convergence in reaction-diffusion systems: an information theory approach" class="work-thumbnail" src="https://attachments.academia-assets.com/41918598/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20881492/Convergence_in_reaction_diffusion_systems_an_information_theory_approach">Convergence in reaction-diffusion systems: an information theory approach</a></div><div class="wp-workCard_item"><span>Physica A: Statistical Mechanics and its Applications</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... Miguel A. Fuentes , Marcelo N. Kuperman 1 and Horacio S. Wio 2 , Corresponding Author Contact...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... Miguel A. Fuentes , Marcelo N. Kuperman 1 and Horacio S. Wio 2 , Corresponding Author Contact Information , E-mail The Corresponding Author. ... However, Graham and collaborators [22, 23, 24, 33, 34, 35 and 36] who have been pioneers in introducing those concepts ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="421baee2ca9db427475062179e0e2e15" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41918598,"asset_id":20881492,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41918598/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881492"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881492"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881492; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881492]").text(description); $(".js-view-count[data-work-id=20881492]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881492; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881492']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "421baee2ca9db427475062179e0e2e15" } } $('.js-work-strip[data-work-id=20881492]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881492,"title":"Convergence in reaction-diffusion systems: an information theory approach","translated_title":"","metadata":{"abstract":"... Miguel A. Fuentes , Marcelo N. Kuperman 1 and Horacio S. Wio 2 , Corresponding Author Contact Information , E-mail The Corresponding Author. ... However, Graham and collaborators [22, 23, 24, 33, 34, 35 and 36] who have been pioneers in introducing those concepts ...","publication_name":"Physica A: Statistical Mechanics and its Applications"},"translated_abstract":"... Miguel A. Fuentes , Marcelo N. Kuperman 1 and Horacio S. Wio 2 , Corresponding Author Contact Information , E-mail The Corresponding Author. ... However, Graham and collaborators [22, 23, 24, 33, 34, 35 and 36] who have been pioneers in introducing those concepts ...","internal_url":"https://www.academia.edu/20881492/Convergence_in_reaction_diffusion_systems_an_information_theory_approach","translated_internal_url":"","created_at":"2016-01-26T23:57:22.383-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41918598,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41918598/thumbnails/1.jpg","file_name":"s0378-4371_2899_2900256-3.pdf20160202-3950-1d09pfw","download_url":"https://www.academia.edu/attachments/41918598/download_file","bulk_download_file_name":"Convergence_in_reaction_diffusion_system.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41918598/s0378-4371_2899_2900256-3-libre.pdf20160202-3950-1d09pfw?1454477979=\u0026response-content-disposition=attachment%3B+filename%3DConvergence_in_reaction_diffusion_system.pdf\u0026Expires=1743655926\u0026Signature=cdvB-8Cjepro1o~qp11SFWPCqZkDoRtNKeiCJK6A1sR~76ekexdamt0nR0YKVmfDPfB~JT05UlvxEYDn2jGSz5DGlOFDY29cYJEehKwIcIclL0ZwwuWI4tTpTh4nAYkZJT4KpAbzV-3HB3XcGPhYSFeRR7exeCJrm~D-V7Ss1CKe5xWCuvdgz7AoBfTLOqFc5f9UB2ZvNr9OPZFZfwzgpLeZ6vLqmfZKCnibj0pWpWM2G9ekImsLvoiRgkd2a0LnR~ZVBTz5fmxX~Hv~gPj9lUX5UoxgigBAOUNfUU4qb~k1hhkRmL3Q10Ueq6hPX7NnKp8nxButR~9ZtIFktdcgrA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Convergence_in_reaction_diffusion_systems_an_information_theory_approach","translated_slug":"","page_count":18,"language":"en","content_type":"Work","summary":"... Miguel A. Fuentes , Marcelo N. Kuperman 1 and Horacio S. Wio 2 , Corresponding Author Contact Information , E-mail The Corresponding Author. ... However, Graham and collaborators [22, 23, 24, 33, 34, 35 and 36] who have been pioneers in introducing those concepts ...","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[{"id":41918598,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41918598/thumbnails/1.jpg","file_name":"s0378-4371_2899_2900256-3.pdf20160202-3950-1d09pfw","download_url":"https://www.academia.edu/attachments/41918598/download_file","bulk_download_file_name":"Convergence_in_reaction_diffusion_system.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41918598/s0378-4371_2899_2900256-3-libre.pdf20160202-3950-1d09pfw?1454477979=\u0026response-content-disposition=attachment%3B+filename%3DConvergence_in_reaction_diffusion_system.pdf\u0026Expires=1743655926\u0026Signature=cdvB-8Cjepro1o~qp11SFWPCqZkDoRtNKeiCJK6A1sR~76ekexdamt0nR0YKVmfDPfB~JT05UlvxEYDn2jGSz5DGlOFDY29cYJEehKwIcIclL0ZwwuWI4tTpTh4nAYkZJT4KpAbzV-3HB3XcGPhYSFeRR7exeCJrm~D-V7Ss1CKe5xWCuvdgz7AoBfTLOqFc5f9UB2ZvNr9OPZFZfwzgpLeZ6vLqmfZKCnibj0pWpWM2G9ekImsLvoiRgkd2a0LnR~ZVBTz5fmxX~Hv~gPj9lUX5UoxgigBAOUNfUU4qb~k1hhkRmL3Q10Ueq6hPX7NnKp8nxButR~9ZtIFktdcgrA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881492-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881491"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20881491/Stochastic_resonance_in_an_activator_inhibitor_system_through_adiabatic_and_quasi_variational_approaches"><img alt="Research paper thumbnail of Stochastic resonance in an activator–inhibitor system through adiabatic and quasi-variational approaches" class="work-thumbnail" src="https://attachments.academia-assets.com/41611758/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20881491/Stochastic_resonance_in_an_activator_inhibitor_system_through_adiabatic_and_quasi_variational_approaches">Stochastic resonance in an activator–inhibitor system through adiabatic and quasi-variational approaches</a></div><div class="wp-workCard_item"><span>Physica A: Statistical Mechanics and its Applications</span><span>, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study the phenomenon of stochastic resonance in a spatially extended system. An activatorinhib...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study the phenomenon of stochastic resonance in a spatially extended system. An activatorinhibitor reaction-di usion model is analyzed through two di erent approximations: an adiabatic one leading to a known form of the Graham's nonequilibrium potential, and a quasi-variational approach that allows to obtain an approximated form of Graham's potential for a di erent parameter region. Those potentials have been exploited to obtain, ÿrstly the probability for the decay of the metastable extended states, and secondly expressions for the correlation function and for the signal-to-noise ratio, within the framework of a two state description. The analytical results show how this ratio depends on both local and nonlocal coupling parameters.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a14a5eeb806a22380ae67167fa3ab1bf" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41611758,"asset_id":20881491,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41611758/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881491"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881491"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881491; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881491]").text(description); $(".js-view-count[data-work-id=20881491]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881491; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881491']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a14a5eeb806a22380ae67167fa3ab1bf" } } $('.js-work-strip[data-work-id=20881491]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881491,"title":"Stochastic resonance in an activator–inhibitor system through adiabatic and quasi-variational approaches","translated_title":"","metadata":{"ai_title_tag":"Stochastic Resonance in Activator-Inhibitor Systems","grobid_abstract":"We study the phenomenon of stochastic resonance in a spatially extended system. An activatorinhibitor reaction-di usion model is analyzed through two di erent approximations: an adiabatic one leading to a known form of the Graham's nonequilibrium potential, and a quasi-variational approach that allows to obtain an approximated form of Graham's potential for a di erent parameter region. Those potentials have been exploited to obtain, ÿrstly the probability for the decay of the metastable extended states, and secondly expressions for the correlation function and for the signal-to-noise ratio, within the framework of a two state description. The analytical results show how this ratio depends on both local and nonlocal coupling parameters.","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"Physica A: Statistical Mechanics and its Applications","grobid_abstract_attachment_id":41611758},"translated_abstract":null,"internal_url":"https://www.academia.edu/20881491/Stochastic_resonance_in_an_activator_inhibitor_system_through_adiabatic_and_quasi_variational_approaches","translated_internal_url":"","created_at":"2016-01-26T23:57:22.103-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41611758,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611758/thumbnails/1.jpg","file_name":"Stochastic_resonance_in_an_activatorinhi20160126-26079-1jzl0u4.pdf","download_url":"https://www.academia.edu/attachments/41611758/download_file","bulk_download_file_name":"Stochastic_resonance_in_an_activator_inh.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611758/Stochastic_resonance_in_an_activatorinhi20160126-26079-1jzl0u4-libre.pdf?1453881867=\u0026response-content-disposition=attachment%3B+filename%3DStochastic_resonance_in_an_activator_inh.pdf\u0026Expires=1743655926\u0026Signature=a0JSz~1TaWZrOGYAGogobEIbXflNepz12WoLC7rFY29G2Sz~GiH1VjVX3Ja45h3YnrFW~TUTa~qZc-KIOJvycqayfNjHRhb54Ci-jqQsNDr2JKAXOEia8r7kZsxzUZ3SpOQRB6~zkyXOzsmu-T0TdGNa-Vd8yxWz5cMp0syffY6mHeOkfKiPyuCuowQgfehMNUKNsIQLy8135cAXz6uyPV2HoNHZhWyd3nIA-L~MKBLlNrW7jbnB56VMVDgIChme-HsfcGz2huxK7QrqEJdHzLn65PpsJaKe9rzr-XOuDeAj8qnQ60M9Pa~A2iTlC3RMYh1hqmi6-~qLFJYUepshmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Stochastic_resonance_in_an_activator_inhibitor_system_through_adiabatic_and_quasi_variational_approaches","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"We study the phenomenon of stochastic resonance in a spatially extended system. An activatorinhibitor reaction-di usion model is analyzed through two di erent approximations: an adiabatic one leading to a known form of the Graham's nonequilibrium potential, and a quasi-variational approach that allows to obtain an approximated form of Graham's potential for a di erent parameter region. Those potentials have been exploited to obtain, ÿrstly the probability for the decay of the metastable extended states, and secondly expressions for the correlation function and for the signal-to-noise ratio, within the framework of a two state description. The analytical results show how this ratio depends on both local and nonlocal coupling parameters.","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[{"id":41611758,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611758/thumbnails/1.jpg","file_name":"Stochastic_resonance_in_an_activatorinhi20160126-26079-1jzl0u4.pdf","download_url":"https://www.academia.edu/attachments/41611758/download_file","bulk_download_file_name":"Stochastic_resonance_in_an_activator_inh.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611758/Stochastic_resonance_in_an_activatorinhi20160126-26079-1jzl0u4-libre.pdf?1453881867=\u0026response-content-disposition=attachment%3B+filename%3DStochastic_resonance_in_an_activator_inh.pdf\u0026Expires=1743655926\u0026Signature=a0JSz~1TaWZrOGYAGogobEIbXflNepz12WoLC7rFY29G2Sz~GiH1VjVX3Ja45h3YnrFW~TUTa~qZc-KIOJvycqayfNjHRhb54Ci-jqQsNDr2JKAXOEia8r7kZsxzUZ3SpOQRB6~zkyXOzsmu-T0TdGNa-Vd8yxWz5cMp0syffY6mHeOkfKiPyuCuowQgfehMNUKNsIQLy8135cAXz6uyPV2HoNHZhWyd3nIA-L~MKBLlNrW7jbnB56VMVDgIChme-HsfcGz2huxK7QrqEJdHzLn65PpsJaKe9rzr-XOuDeAj8qnQ60M9Pa~A2iTlC3RMYh1hqmi6-~qLFJYUepshmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":112233,"name":"Reaction-Diffusion Systems","url":"https://www.academia.edu/Documents/in/Reaction-Diffusion_Systems"},{"id":336880,"name":"Variational Approach","url":"https://www.academia.edu/Documents/in/Variational_Approach"},{"id":472459,"name":"Stochastic Resonance","url":"https://www.academia.edu/Documents/in/Stochastic_Resonance"},{"id":991311,"name":"Signal to Noise Ratio","url":"https://www.academia.edu/Documents/in/Signal_to_Noise_Ratio"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881491-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881490"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/20881490/Stochastic_resonant_media_Signal_to_noise_ratio_for_the_activator_inhibitor_system_through_a_quasivariational_approach"><img alt="Research paper thumbnail of Stochastic resonant media: Signal-to-noise ratio for the activator-inhibitor system through a quasivariational approach" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Stochastic resonant media: Signal-to-noise ratio for the activator-inhibitor system through a quasivariational approach</div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT We have made an analytical study of the phenomenon of stochastic resonance in a spatiall...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT We have made an analytical study of the phenomenon of stochastic resonance in a spatially extended stochastic system of the activator-inhibitor kind. In its bistable regime, through a quasivariational approach we make an approximate evaluation of the nonequilibrium potential for this system. The latter in turn allows us to obtain the probability for the decay of the (extended) metastable states and through it the signal-to-noise ratio within the framework of a two-state description. The analytical results show that this ratio increases with the activator’s diffusivity, whereas it exhibits nonmonotonic behavior against variation of the coupling between both fields.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881490"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881490"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881490; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881490]").text(description); $(".js-view-count[data-work-id=20881490]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881490; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881490']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20881490]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881490,"title":"Stochastic resonant media: Signal-to-noise ratio for the activator-inhibitor system through a quasivariational approach","translated_title":"","metadata":{"abstract":"ABSTRACT We have made an analytical study of the phenomenon of stochastic resonance in a spatially extended stochastic system of the activator-inhibitor kind. In its bistable regime, through a quasivariational approach we make an approximate evaluation of the nonequilibrium potential for this system. The latter in turn allows us to obtain the probability for the decay of the (extended) metastable states and through it the signal-to-noise ratio within the framework of a two-state description. The analytical results show that this ratio increases with the activator’s diffusivity, whereas it exhibits nonmonotonic behavior against variation of the coupling between both fields.","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"Physical Review E"},"translated_abstract":"ABSTRACT We have made an analytical study of the phenomenon of stochastic resonance in a spatially extended stochastic system of the activator-inhibitor kind. In its bistable regime, through a quasivariational approach we make an approximate evaluation of the nonequilibrium potential for this system. The latter in turn allows us to obtain the probability for the decay of the (extended) metastable states and through it the signal-to-noise ratio within the framework of a two-state description. The analytical results show that this ratio increases with the activator’s diffusivity, whereas it exhibits nonmonotonic behavior against variation of the coupling between both fields.","internal_url":"https://www.academia.edu/20881490/Stochastic_resonant_media_Signal_to_noise_ratio_for_the_activator_inhibitor_system_through_a_quasivariational_approach","translated_internal_url":"","created_at":"2016-01-26T23:57:21.890-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Stochastic_resonant_media_Signal_to_noise_ratio_for_the_activator_inhibitor_system_through_a_quasivariational_approach","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT We have made an analytical study of the phenomenon of stochastic resonance in a spatially extended stochastic system of the activator-inhibitor kind. In its bistable regime, through a quasivariational approach we make an approximate evaluation of the nonequilibrium potential for this system. The latter in turn allows us to obtain the probability for the decay of the (extended) metastable states and through it the signal-to-noise ratio within the framework of a two-state description. The analytical results show that this ratio increases with the activator’s diffusivity, whereas it exhibits nonmonotonic behavior against variation of the coupling between both fields.","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":472459,"name":"Stochastic Resonance","url":"https://www.academia.edu/Documents/in/Stochastic_Resonance"},{"id":991311,"name":"Signal to Noise Ratio","url":"https://www.academia.edu/Documents/in/Signal_to_Noise_Ratio"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881490-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881489"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20881489/Nonlocal_interaction_effects_on_pattern_formation_in_population_dynamics"><img alt="Research paper thumbnail of Nonlocal interaction effects on pattern formation in population dynamics" class="work-thumbnail" src="https://attachments.academia-assets.com/41611754/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20881489/Nonlocal_interaction_effects_on_pattern_formation_in_population_dynamics">Nonlocal interaction effects on pattern formation in population dynamics</a></div><div class="wp-workCard_item"><span>Physical review letters</span><span>, Jan 10, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We consider a model for population dynamics such as for the evolution of bacterial colonies which...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We consider a model for population dynamics such as for the evolution of bacterial colonies which is of the Fisher type but where the competitive interaction among individuals is nonlocal, and show that spatial structures with interesting features emerge. These features depend on the nature of the competitive interaction as well as on its range, specifically on the presence or absence of tails in, and the central curvature of, the influence function of the interaction.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="08d245a04603247095ab488f3ae8f90e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41611754,"asset_id":20881489,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41611754/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881489"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881489"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881489; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881489]").text(description); $(".js-view-count[data-work-id=20881489]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881489; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881489']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "08d245a04603247095ab488f3ae8f90e" } } $('.js-work-strip[data-work-id=20881489]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881489,"title":"Nonlocal interaction effects on pattern formation in population dynamics","translated_title":"","metadata":{"abstract":"We consider a model for population dynamics such as for the evolution of bacterial colonies which is of the Fisher type but where the competitive interaction among individuals is nonlocal, and show that spatial structures with interesting features emerge. These features depend on the nature of the competitive interaction as well as on its range, specifically on the presence or absence of tails in, and the central curvature of, the influence function of the interaction.","publication_date":{"day":10,"month":1,"year":2003,"errors":{}},"publication_name":"Physical review letters"},"translated_abstract":"We consider a model for population dynamics such as for the evolution of bacterial colonies which is of the Fisher type but where the competitive interaction among individuals is nonlocal, and show that spatial structures with interesting features emerge. These features depend on the nature of the competitive interaction as well as on its range, specifically on the presence or absence of tails in, and the central curvature of, the influence function of the interaction.","internal_url":"https://www.academia.edu/20881489/Nonlocal_interaction_effects_on_pattern_formation_in_population_dynamics","translated_internal_url":"","created_at":"2016-01-26T23:57:21.592-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41611754,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611754/thumbnails/1.jpg","file_name":"Nonlocal_Interaction_Effects_on_Pattern_20160126-14159-1saqlom.pdf","download_url":"https://www.academia.edu/attachments/41611754/download_file","bulk_download_file_name":"Nonlocal_interaction_effects_on_pattern.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611754/Nonlocal_Interaction_Effects_on_Pattern_20160126-14159-1saqlom-libre.pdf?1453881869=\u0026response-content-disposition=attachment%3B+filename%3DNonlocal_interaction_effects_on_pattern.pdf\u0026Expires=1743655926\u0026Signature=I7aQ1yqFKZFkS0~1JbILKE64Zmp0RT7~PKeCCwGO-YVltmAu0pwj-9jPw6LJFSZvArS0rHVL34S0Wyzn15R-houdJfID9k6ATz78TOU~xyjR2Q32XjnSQF-52WZCYIXZbsi-N1zEj8aXDhpEaAvTc7kXLuasFg2t01~AO5QJbDcFb3XoePa4-DlQVTYb-74RT6y7NLT6EnXO5JZH-j4El69hwJzCiH5YZufBP7aZV2P2VquGLe2d0~c57tfR9mZrUAsigI-xmsDduq9FbrLhSEGh8~qmThL1DLvOv2a8XPU0bZqEcpsUg0QtAg~AvNlQYw3mt-~5~theiQ9ZYCBO3g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Nonlocal_interaction_effects_on_pattern_formation_in_population_dynamics","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"We consider a model for population dynamics such as for the evolution of bacterial colonies which is of the Fisher type but where the competitive interaction among individuals is nonlocal, and show that spatial structures with interesting features emerge. These features depend on the nature of the competitive interaction as well as on its range, specifically on the presence or absence of tails in, and the central curvature of, the influence function of the interaction.","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[{"id":41611754,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611754/thumbnails/1.jpg","file_name":"Nonlocal_Interaction_Effects_on_Pattern_20160126-14159-1saqlom.pdf","download_url":"https://www.academia.edu/attachments/41611754/download_file","bulk_download_file_name":"Nonlocal_interaction_effects_on_pattern.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611754/Nonlocal_Interaction_Effects_on_Pattern_20160126-14159-1saqlom-libre.pdf?1453881869=\u0026response-content-disposition=attachment%3B+filename%3DNonlocal_interaction_effects_on_pattern.pdf\u0026Expires=1743655926\u0026Signature=I7aQ1yqFKZFkS0~1JbILKE64Zmp0RT7~PKeCCwGO-YVltmAu0pwj-9jPw6LJFSZvArS0rHVL34S0Wyzn15R-houdJfID9k6ATz78TOU~xyjR2Q32XjnSQF-52WZCYIXZbsi-N1zEj8aXDhpEaAvTc7kXLuasFg2t01~AO5QJbDcFb3XoePa4-DlQVTYb-74RT6y7NLT6EnXO5JZH-j4El69hwJzCiH5YZufBP7aZV2P2VquGLe2d0~c57tfR9mZrUAsigI-xmsDduq9FbrLhSEGh8~qmThL1DLvOv2a8XPU0bZqEcpsUg0QtAg~AvNlQYw3mt-~5~theiQ9ZYCBO3g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":11417,"name":"Population Dynamics","url":"https://www.academia.edu/Documents/in/Population_Dynamics"},{"id":113903,"name":"Bacteria","url":"https://www.academia.edu/Documents/in/Bacteria"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881489-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881488"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/20881488/Pattern_formation_in_catalytic_processes_Phase_field_model"><img alt="Research paper thumbnail of Pattern formation in catalytic processes: Phase-field model" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Pattern formation in catalytic processes: Phase-field model</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881488"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881488"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881488; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881488]").text(description); $(".js-view-count[data-work-id=20881488]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881488; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881488']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20881488]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881488,"title":"Pattern formation in catalytic processes: Phase-field model","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/20881488/Pattern_formation_in_catalytic_processes_Phase_field_model","translated_internal_url":"","created_at":"2016-01-26T23:57:21.404-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Pattern_formation_in_catalytic_processes_Phase_field_model","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[],"research_interests":[{"id":8383,"name":"Pattern Formation","url":"https://www.academia.edu/Documents/in/Pattern_Formation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881488-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881487"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/20881487/IX_Latin_American_Workshop_on_Nonlinear_Phenomena_Proceedings_of_the_IXth_Latin_American_Workshop_on_Nonlinear_Phenomena_San_Carlos_de_Bariloche_Argentina_23_28_October_2005"><img alt="Research paper thumbnail of IX Latin American Workshop on Nonlinear Phenomena: Proceedings of the IXth Latin American Workshop on Nonlinear Phenomena, San Carlos de Bariloche, Argentina, 23-28 October 2005" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">IX Latin American Workshop on Nonlinear Phenomena: Proceedings of the IXth Latin American Workshop on Nonlinear Phenomena, San Carlos de Bariloche, Argentina, 23-28 October 2005</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881487"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881487"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881487; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881487]").text(description); $(".js-view-count[data-work-id=20881487]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881487; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881487']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20881487]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881487,"title":"IX Latin American Workshop on Nonlinear Phenomena: Proceedings of the IXth Latin American Workshop on Nonlinear Phenomena, San Carlos de Bariloche, Argentina, 23-28 October 2005","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/20881487/IX_Latin_American_Workshop_on_Nonlinear_Phenomena_Proceedings_of_the_IXth_Latin_American_Workshop_on_Nonlinear_Phenomena_San_Carlos_de_Bariloche_Argentina_23_28_October_2005","translated_internal_url":"","created_at":"2016-01-26T23:57:21.153-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"IX_Latin_American_Workshop_on_Nonlinear_Phenomena_Proceedings_of_the_IXth_Latin_American_Workshop_on_Nonlinear_Phenomena_San_Carlos_de_Bariloche_Argentina_23_28_October_2005","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881487-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881486"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/20881486/Evolution_of_reaction_diffusion_patterns_in_infinite_and_bounded_domains"><img alt="Research paper thumbnail of Evolution of reaction-diffusion patterns in infinite and bounded domains" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Evolution of reaction-diffusion patterns in infinite and bounded domains</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881486"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881486"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881486; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881486]").text(description); $(".js-view-count[data-work-id=20881486]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881486; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881486']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20881486]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881486,"title":"Evolution of reaction-diffusion patterns in infinite and bounded domains","translated_title":"","metadata":{"abstract":"ABSTRACT"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/20881486/Evolution_of_reaction_diffusion_patterns_in_infinite_and_bounded_domains","translated_internal_url":"","created_at":"2016-01-26T23:57:21.014-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Evolution_of_reaction_diffusion_patterns_in_infinite_and_bounded_domains","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":112233,"name":"Reaction-Diffusion Systems","url":"https://www.academia.edu/Documents/in/Reaction-Diffusion_Systems"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881486-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="13248349"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13248349/Social_games_in_a_social_network"><img alt="Research paper thumbnail of Social games in a social network" class="work-thumbnail" src="https://attachments.academia-assets.com/45552353/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13248349/Social_games_in_a_social_network">Social games in a social network</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://uncu.academia.edu/GuillermoAbramson">Guillermo Abramson</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://uncu.academia.edu/MKuperman">Marcelo N Kuperman</a></span></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study an evolutionary version of the Prisoner's Dilemma game, played by agents placed in a sma...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study an evolutionary version of the Prisoner's Dilemma game, played by agents placed in a small-world network. Agents are able to change their strategy, imitating that of the most successful neighbor. We observe that different topologies, ranging from regular lattices to random graphs, produce a variety of emergent behaviors. This is a contribution towards the study of social phenomena and transitions governed by the topology of the community.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bb016797bceea76b1963d9d6bfc1c9b2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":45552353,"asset_id":13248349,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/45552353/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13248349"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13248349"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13248349; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13248349]").text(description); $(".js-view-count[data-work-id=13248349]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13248349; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13248349']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bb016797bceea76b1963d9d6bfc1c9b2" } } $('.js-work-strip[data-work-id=13248349]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13248349,"title":"Social games in a social network","translated_title":"","metadata":{"grobid_abstract":"We study an evolutionary version of the Prisoner's Dilemma game, played by agents placed in a small-world network. Agents are able to change their strategy, imitating that of the most successful neighbor. We observe that different topologies, ranging from regular lattices to random graphs, produce a variety of emergent behaviors. This is a contribution towards the study of social phenomena and transitions governed by the topology of the community.","publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"publication_name":"Physical Review E","grobid_abstract_attachment_id":45552353},"translated_abstract":null,"internal_url":"https://www.academia.edu/13248349/Social_games_in_a_social_network","translated_internal_url":"","created_at":"2015-06-24T11:20:24.925-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32505072,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1494795,"work_id":13248349,"tagging_user_id":32505072,"tagged_user_id":32568803,"co_author_invite_id":431169,"email":"k***n@cab.cnea.gov.ar","affiliation":"Universidad Nacional de Cuyo","display_order":0,"name":"Marcelo N Kuperman","title":"Social games in a social network"}],"downloadable_attachments":[{"id":45552353,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45552353/thumbnails/1.jpg","file_name":"Social_games_in_a_social_network20160511-949-zhfmjv.pdf","download_url":"https://www.academia.edu/attachments/45552353/download_file","bulk_download_file_name":"Social_games_in_a_social_network.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45552353/Social_games_in_a_social_network20160511-949-zhfmjv-libre.pdf?1463004928=\u0026response-content-disposition=attachment%3B+filename%3DSocial_games_in_a_social_network.pdf\u0026Expires=1743655927\u0026Signature=dMJXlGnHosJvQUNQYvf7TnilABB999pdNq7h87n4YyXmK66G-4Mz7XDcxmsj22W72HbasxfWlFV9627qiaAk30fwUgvxQreKd1tEguJ07qBTugokqdfEjF72~6zGzQS7SKl81YzbbmHln7LGXQPkcp7OPlraVLHIkAymB~f1NbTf2AwsPFrkIhrd1tXg8fAB9egJaVhv6l~rDy5XGlSyO3-ibClZZKZIfJVT18GQ6tf3PS5~yv8EFJpsZX64hciqyDb9AzMocna~~PQs7JDjX1daBWAkD7mx4AUI6eCjyZlD8v4dDUCn42s56sxKOZAbWBMlXPOEluFXwqsFrBwvXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Social_games_in_a_social_network","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"We study an evolutionary version of the Prisoner's Dilemma game, played by agents placed in a small-world network. Agents are able to change their strategy, imitating that of the most successful neighbor. We observe that different topologies, ranging from regular lattices to random graphs, produce a variety of emergent behaviors. This is a contribution towards the study of social phenomena and transitions governed by the topology of the community.","owner":{"id":32505072,"first_name":"Guillermo","middle_initials":null,"last_name":"Abramson","page_name":"GuillermoAbramson","domain_name":"uncu","created_at":"2015-06-24T11:18:20.773-07:00","display_name":"Guillermo Abramson","url":"https://uncu.academia.edu/GuillermoAbramson"},"attachments":[{"id":45552353,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45552353/thumbnails/1.jpg","file_name":"Social_games_in_a_social_network20160511-949-zhfmjv.pdf","download_url":"https://www.academia.edu/attachments/45552353/download_file","bulk_download_file_name":"Social_games_in_a_social_network.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45552353/Social_games_in_a_social_network20160511-949-zhfmjv-libre.pdf?1463004928=\u0026response-content-disposition=attachment%3B+filename%3DSocial_games_in_a_social_network.pdf\u0026Expires=1743655927\u0026Signature=dMJXlGnHosJvQUNQYvf7TnilABB999pdNq7h87n4YyXmK66G-4Mz7XDcxmsj22W72HbasxfWlFV9627qiaAk30fwUgvxQreKd1tEguJ07qBTugokqdfEjF72~6zGzQS7SKl81YzbbmHln7LGXQPkcp7OPlraVLHIkAymB~f1NbTf2AwsPFrkIhrd1tXg8fAB9egJaVhv6l~rDy5XGlSyO3-ibClZZKZIfJVT18GQ6tf3PS5~yv8EFJpsZX64hciqyDb9AzMocna~~PQs7JDjX1daBWAkD7mx4AUI6eCjyZlD8v4dDUCn42s56sxKOZAbWBMlXPOEluFXwqsFrBwvXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":757,"name":"Game Theory","url":"https://www.academia.edu/Documents/in/Game_Theory"},{"id":1681,"name":"Decision Making","url":"https://www.academia.edu/Documents/in/Decision_Making"},{"id":5493,"name":"Nonlinear dynamics","url":"https://www.academia.edu/Documents/in/Nonlinear_dynamics"},{"id":11417,"name":"Population Dynamics","url":"https://www.academia.edu/Documents/in/Population_Dynamics"},{"id":19988,"name":"Group Processes","url":"https://www.academia.edu/Documents/in/Group_Processes"},{"id":25660,"name":"Decision Theory","url":"https://www.academia.edu/Documents/in/Decision_Theory"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":137551,"name":"Social Isolation","url":"https://www.academia.edu/Documents/in/Social_Isolation"},{"id":372231,"name":"Social System","url":"https://www.academia.edu/Documents/in/Social_System"},{"id":377792,"name":"Emergent Behavior","url":"https://www.academia.edu/Documents/in/Emergent_Behavior"},{"id":1153482,"name":"Cooperative Behavior","url":"https://www.academia.edu/Documents/in/Cooperative_Behavior"},{"id":1199379,"name":"Social Network","url":"https://www.academia.edu/Documents/in/Social_Network"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-13248349-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881485"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20881485/Analytic_considerations_in_the_study_of_spatial_patterns_arising_from_non_local_interaction_effects_in_population_dynamics"><img alt="Research paper thumbnail of Analytic considerations in the study of spatial patterns arising from non-local interaction effects in population dynamics" class="work-thumbnail" src="https://attachments.academia-assets.com/41611652/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20881485/Analytic_considerations_in_the_study_of_spatial_patterns_arising_from_non_local_interaction_effects_in_population_dynamics">Analytic considerations in the study of spatial patterns arising from non-local interaction effects in population dynamics</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Simple analytic considerations are applied to recently discovered patterns in a generalized Fishe...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Simple analytic considerations are applied to recently discovered patterns in a generalized Fisher equation for population dynamics. The generalization consists of the inclusion of non-local competition interactions among individuals. We first show how stability arguments yield a condition for pattern formation involving the ratio of the pattern wavelength and the effective diffusion length of the individuals. We develop a mode-mode</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-20881485-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-20881485-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33214600/figure-1-the-dispersion-relation-between-the-dimensionless"><img alt="FIG. 1: The dispersion relation (9) between the dimensionless growth exponent y and wavenumber k’ plotted for different values of the ratio 7 of the influence function range to the diffusion length (see text). Values of 7 are 50 (solid line), 10 (dashed line), and 2 (dotted line). Patterns appear for those values of k’ for which ¢ is positive. " class="figure-slide-image" src="https://figures.academia-assets.com/41611652/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33214603/figure-2-the-dispersion-relation-between-the-dimension-less"><img alt="FIG. 2: The dispersion relation between the dimension- less growth exponent y and wavenumber k plotted for the intermediate influence function. Values of 7 are as in Fig. 1: 50 (solid line), 10 (dashed line), and 2 (dotted line). Patterns appear for those values of k’ for which p is positive. " class="figure-slide-image" src="https://figures.academia-assets.com/41611652/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33214606/figure-3-in-explicitly-noting-that-mn-and-using-the"><img alt="in @), explicitly noting that k, = mn/L, and using the orthogonality properties of trigonometric functions, ob- tain separate equations for the n = 0 mode, Equations and are the complete set of equations for the evolution of the amplitudes of all modes in the non-local problem given by Eq. @). The appearance of stable patterns only for those values of k,, for which y is positive as seen in our Figs. 1 and 2, suggests that we envisage an interaction between only two modes, the zero mode and the one whose growth we examine, say n = m. In a situation as in the plots shown in which y > 0 only for a small k— range, the discrete nature of the allowed k values could lead to only a single non-zero mode lying in the stable range. Then we would have only two coupled nonlinear equations for the mode amplitudes, " class="figure-slide-image" src="https://figures.academia-assets.com/41611652/figure_003.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-20881485-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ec95eaa4b29be08d6d18dd5b978684a0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41611652,"asset_id":20881485,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41611652/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881485"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881485"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881485; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881485]").text(description); $(".js-view-count[data-work-id=20881485]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881485; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881485']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ec95eaa4b29be08d6d18dd5b978684a0" } } $('.js-work-strip[data-work-id=20881485]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881485,"title":"Analytic considerations in the study of spatial patterns arising from non-local interaction effects in population dynamics","translated_title":"","metadata":{"abstract":"Simple analytic considerations are applied to recently discovered patterns in a generalized Fisher equation for population dynamics. The generalization consists of the inclusion of non-local competition interactions among individuals. We first show how stability arguments yield a condition for pattern formation involving the ratio of the pattern wavelength and the effective diffusion length of the individuals. We develop a mode-mode","publication_date":{"day":null,"month":null,"year":2003,"errors":{}}},"translated_abstract":"Simple analytic considerations are applied to recently discovered patterns in a generalized Fisher equation for population dynamics. The generalization consists of the inclusion of non-local competition interactions among individuals. We first show how stability arguments yield a condition for pattern formation involving the ratio of the pattern wavelength and the effective diffusion length of the individuals. We develop a mode-mode","internal_url":"https://www.academia.edu/20881485/Analytic_considerations_in_the_study_of_spatial_patterns_arising_from_non_local_interaction_effects_in_population_dynamics","translated_internal_url":"","created_at":"2016-01-26T23:57:20.321-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41611652,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611652/thumbnails/1.jpg","file_name":"0311017.pdf","download_url":"https://www.academia.edu/attachments/41611652/download_file","bulk_download_file_name":"Analytic_considerations_in_the_study_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611652/0311017-libre.pdf?1453881598=\u0026response-content-disposition=attachment%3B+filename%3DAnalytic_considerations_in_the_study_of.pdf\u0026Expires=1743655927\u0026Signature=gHIeGrxDne~ZToK3LCFNAL6QtD6w1CIajQ8YLwrsItoE47Su4aZMJVZrZJxXVdLlKh-rtmpnvE1QTH0zH~5eCgxY27svqWpPedCIV26sNS4SNrbBQNFrXOJJiwQ2epOEziBbgzy4Gythw8ASpnJ8oI2x653V0dFl4yM1wT4pk-37NzQe5H~TmoNJ-5D-nPGPAfcB27SyGvoURFKaYNgWV2bIBEvOEY64~CmNt1nJ-C70GVh-LVIw8Vk8PEWjmG4-STdcw7so9KRglKuc9FDn0WtB8mc-Xh7KDh-BjoOPRSmQFyqp~odghcr8ZMCBRKxre2Te0YLgJmCQQhf~cxDyRA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Analytic_considerations_in_the_study_of_spatial_patterns_arising_from_non_local_interaction_effects_in_population_dynamics","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"Simple analytic considerations are applied to recently discovered patterns in a generalized Fisher equation for population dynamics. The generalization consists of the inclusion of non-local competition interactions among individuals. We first show how stability arguments yield a condition for pattern formation involving the ratio of the pattern wavelength and the effective diffusion length of the individuals. We develop a mode-mode","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[{"id":41611652,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611652/thumbnails/1.jpg","file_name":"0311017.pdf","download_url":"https://www.academia.edu/attachments/41611652/download_file","bulk_download_file_name":"Analytic_considerations_in_the_study_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611652/0311017-libre.pdf?1453881598=\u0026response-content-disposition=attachment%3B+filename%3DAnalytic_considerations_in_the_study_of.pdf\u0026Expires=1743655927\u0026Signature=gHIeGrxDne~ZToK3LCFNAL6QtD6w1CIajQ8YLwrsItoE47Su4aZMJVZrZJxXVdLlKh-rtmpnvE1QTH0zH~5eCgxY27svqWpPedCIV26sNS4SNrbBQNFrXOJJiwQ2epOEziBbgzy4Gythw8ASpnJ8oI2x653V0dFl4yM1wT4pk-37NzQe5H~TmoNJ-5D-nPGPAfcB27SyGvoURFKaYNgWV2bIBEvOEY64~CmNt1nJ-C70GVh-LVIw8Vk8PEWjmG4-STdcw7so9KRglKuc9FDn0WtB8mc-Xh7KDh-BjoOPRSmQFyqp~odghcr8ZMCBRKxre2Te0YLgJmCQQhf~cxDyRA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":41611653,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611653/thumbnails/1.jpg","file_name":"0311017.pdf","download_url":"https://www.academia.edu/attachments/41611653/download_file","bulk_download_file_name":"Analytic_considerations_in_the_study_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611653/0311017-libre.pdf?1453881598=\u0026response-content-disposition=attachment%3B+filename%3DAnalytic_considerations_in_the_study_of.pdf\u0026Expires=1743655927\u0026Signature=McDceqPlI-XU4ZwtBMRgqH8AXKrvF5Jh~yfsrMS2aUIudD6J7DxDHkhP4xP27fZ-Pkfk8R~ymgYift3X5CRQK1j-PePjF1nYQT4ZDvBjxOQSqAcSZL0gyRyyvZ2y6gXxIxNUplw6EQ8yrjdLMKWL63i6xjqWBINNEoxotJzEtu4o3O4j6vciDTYZaGxvft0l4~qc5ZULwsgCkfvhIOsQQCS9e3QJegPogAAlDnFDiC49z0nQrPI06Jqs0uV5TbFJdt5plJhvglpKn7pBWYjRLE3ead~CbAC8X7T1phOOo1a5hndIjQez1TKK-8hFlGUIVu0LO~U~DBqdeVwGd~8iBQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":8383,"name":"Pattern Formation","url":"https://www.academia.edu/Documents/in/Pattern_Formation"},{"id":286413,"name":"Spatial Pattern","url":"https://www.academia.edu/Documents/in/Spatial_Pattern"},{"id":1237825,"name":"Population dynamic","url":"https://www.academia.edu/Documents/in/Population_dynamic"}],"urls":[{"id":6244282,"url":"http://arxiv.org/abs/nlin/0311017"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-20881485-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881484"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20881484/Invited_review_Epidemics_on_social_networks"><img alt="Research paper thumbnail of Invited review: Epidemics on social networks" class="work-thumbnail" src="https://attachments.academia-assets.com/41611743/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20881484/Invited_review_Epidemics_on_social_networks">Invited review: Epidemics on social networks</a></div><div class="wp-workCard_item"><span>Papers in Physics</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Since its rst formulations almost a century ago, mathematical models for disease spreading contri...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Since its rst formulations almost a century ago, mathematical models for disease spreading contributed to understand, evaluate and control the epidemic processes. They promoted a dramatic change in how epidemiologists thought of the propagation of infectious diseases. In the last decade, when the traditional epidemiological models seemed to be exhausted, new types of models were developed. These new models incorporated concepts from graph theory to describe and model the underlying social structure. Many of these works merely produced a more detailed extension of the previous results, but some others triggered a completely new paradigm in the mathematical study of epidemic processes. In this review, we will introduce the basic concepts of epidemiology, epidemic modeling and networks, to nally provide a brief description of the most relevant results in the eld. *</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fc894f3859439d655bdab61fb1fecba2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41611743,"asset_id":20881484,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41611743/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881484"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881484"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881484; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881484]").text(description); $(".js-view-count[data-work-id=20881484]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881484; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881484']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fc894f3859439d655bdab61fb1fecba2" } } $('.js-work-strip[data-work-id=20881484]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881484,"title":"Invited review: Epidemics on social networks","translated_title":"","metadata":{"grobid_abstract":"Since its rst formulations almost a century ago, mathematical models for disease spreading contributed to understand, evaluate and control the epidemic processes. They promoted a dramatic change in how epidemiologists thought of the propagation of infectious diseases. In the last decade, when the traditional epidemiological models seemed to be exhausted, new types of models were developed. These new models incorporated concepts from graph theory to describe and model the underlying social structure. Many of these works merely produced a more detailed extension of the previous results, but some others triggered a completely new paradigm in the mathematical study of epidemic processes. In this review, we will introduce the basic concepts of epidemiology, epidemic modeling and networks, to nally provide a brief description of the most relevant results in the eld. *","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Papers in Physics","grobid_abstract_attachment_id":41611743},"translated_abstract":null,"internal_url":"https://www.academia.edu/20881484/Invited_review_Epidemics_on_social_networks","translated_internal_url":"","created_at":"2016-01-26T23:57:20.067-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41611743,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611743/thumbnails/1.jpg","file_name":"Invited_review_Epidemics_on_social_netwo20160126-22146-1uy3xse.pdf","download_url":"https://www.academia.edu/attachments/41611743/download_file","bulk_download_file_name":"Invited_review_Epidemics_on_social_netwo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611743/Invited_review_Epidemics_on_social_netwo20160126-22146-1uy3xse-libre.pdf?1453881819=\u0026response-content-disposition=attachment%3B+filename%3DInvited_review_Epidemics_on_social_netwo.pdf\u0026Expires=1743655927\u0026Signature=YkDLVMvCU7HqNeRkJ2QXeYqW896SGznGOS0WPEn72CUkRtWhnyz5SgcSBhtLZUtYvtBdSnlm-V9CgJzxvOTjmiSdIqh-Qg2-ZtfldeGC8uF~wYISgMD~Buzg0vJNVjFjclzrQke496FZBkmyBRiwa00ESe9cq9QY81vHI67W7eoDIhRdIfNNSHFLVEWPwru-gaVA~T1~6RWqhWV2CNd8MTLbN7Eo4rmbDvv4ii8LyFMBmB89xn1kZ88YnuUob715wxXVqNRDdE4QpI7uC9s4WcP4co3oKMY2iup~q0RGDYN11pqTHB0XIHQJk1Rfdli2XelG7TTdNEisbQDK-W6xww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Invited_review_Epidemics_on_social_networks","translated_slug":"","page_count":17,"language":"en","content_type":"Work","summary":"Since its rst formulations almost a century ago, mathematical models for disease spreading contributed to understand, evaluate and control the epidemic processes. They promoted a dramatic change in how epidemiologists thought of the propagation of infectious diseases. In the last decade, when the traditional epidemiological models seemed to be exhausted, new types of models were developed. These new models incorporated concepts from graph theory to describe and model the underlying social structure. Many of these works merely produced a more detailed extension of the previous results, but some others triggered a completely new paradigm in the mathematical study of epidemic processes. In this review, we will introduce the basic concepts of epidemiology, epidemic modeling and networks, to nally provide a brief description of the most relevant results in the eld. *","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[{"id":41611743,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611743/thumbnails/1.jpg","file_name":"Invited_review_Epidemics_on_social_netwo20160126-22146-1uy3xse.pdf","download_url":"https://www.academia.edu/attachments/41611743/download_file","bulk_download_file_name":"Invited_review_Epidemics_on_social_netwo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611743/Invited_review_Epidemics_on_social_netwo20160126-22146-1uy3xse-libre.pdf?1453881819=\u0026response-content-disposition=attachment%3B+filename%3DInvited_review_Epidemics_on_social_netwo.pdf\u0026Expires=1743655927\u0026Signature=YkDLVMvCU7HqNeRkJ2QXeYqW896SGznGOS0WPEn72CUkRtWhnyz5SgcSBhtLZUtYvtBdSnlm-V9CgJzxvOTjmiSdIqh-Qg2-ZtfldeGC8uF~wYISgMD~Buzg0vJNVjFjclzrQke496FZBkmyBRiwa00ESe9cq9QY81vHI67W7eoDIhRdIfNNSHFLVEWPwru-gaVA~T1~6RWqhWV2CNd8MTLbN7Eo4rmbDvv4ii8LyFMBmB89xn1kZ88YnuUob715wxXVqNRDdE4QpI7uC9s4WcP4co3oKMY2iup~q0RGDYN11pqTHB0XIHQJk1Rfdli2XelG7TTdNEisbQDK-W6xww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1085,"name":"Epidemiology","url":"https://www.academia.edu/Documents/in/Epidemiology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881484-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="13248344"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/13248344/Random_walk_model_to_study_cycles_emerging_from_the_exploration_exploitation_trade_off"><img alt="Research paper thumbnail of Random-walk model to study cycles emerging from the exploration-exploitation trade-off" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Random-walk model to study cycles emerging from the exploration-exploitation trade-off</div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://uncu.academia.edu/GuillermoAbramson">Guillermo Abramson</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://uncu.academia.edu/MKuperman">Marcelo N Kuperman</a></span></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present a model for a random walk with memory, phenomenologically inspired in a biological sys...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present a model for a random walk with memory, phenomenologically inspired in a biological system. The walker has the capacity to remember the time of the last visit to each site and the step taken from there. This memory affects the behavior of the walker each time it reaches an already visited site modulating the probability of repeating previous moves. This probability increases with the time elapsed from the last visit. A biological analog of the walker is a frugivore, with the lattice sites representing plants. The memory effect can be associated with the time needed by plants to recover its fruit load. We propose two different strategies, conservative and explorative, as well as intermediate cases, leading to nonintuitive interesting results, such as the emergence of cycles.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13248344"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13248344"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13248344; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13248344]").text(description); $(".js-view-count[data-work-id=13248344]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13248344; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13248344']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=13248344]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13248344,"title":"Random-walk model to study cycles emerging from the exploration-exploitation trade-off","translated_title":"","metadata":{"abstract":"We present a model for a random walk with memory, phenomenologically inspired in a biological system. The walker has the capacity to remember the time of the last visit to each site and the step taken from there. This memory affects the behavior of the walker each time it reaches an already visited site modulating the probability of repeating previous moves. This probability increases with the time elapsed from the last visit. A biological analog of the walker is a frugivore, with the lattice sites representing plants. The memory effect can be associated with the time needed by plants to recover its fruit load. We propose two different strategies, conservative and explorative, as well as intermediate cases, leading to nonintuitive interesting results, such as the emergence of cycles.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Physical Review E"},"translated_abstract":"We present a model for a random walk with memory, phenomenologically inspired in a biological system. The walker has the capacity to remember the time of the last visit to each site and the step taken from there. This memory affects the behavior of the walker each time it reaches an already visited site modulating the probability of repeating previous moves. This probability increases with the time elapsed from the last visit. A biological analog of the walker is a frugivore, with the lattice sites representing plants. The memory effect can be associated with the time needed by plants to recover its fruit load. We propose two different strategies, conservative and explorative, as well as intermediate cases, leading to nonintuitive interesting results, such as the emergence of cycles.","internal_url":"https://www.academia.edu/13248344/Random_walk_model_to_study_cycles_emerging_from_the_exploration_exploitation_trade_off","translated_internal_url":"","created_at":"2015-06-24T11:20:24.302-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32505072,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1494794,"work_id":13248344,"tagging_user_id":32505072,"tagged_user_id":32568803,"co_author_invite_id":431169,"email":"k***n@cab.cnea.gov.ar","affiliation":"Universidad Nacional de Cuyo","display_order":0,"name":"Marcelo N Kuperman","title":"Random-walk model to study cycles emerging from the exploration-exploitation trade-off"},{"id":1494809,"work_id":13248344,"tagging_user_id":32505072,"tagged_user_id":5374645,"co_author_invite_id":null,"email":"l***i@gmail.com","display_order":4194304,"name":"Laila Kazimierski","title":"Random-walk model to study cycles emerging from the exploration-exploitation trade-off"}],"downloadable_attachments":[],"slug":"Random_walk_model_to_study_cycles_emerging_from_the_exploration_exploitation_trade_off","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We present a model for a random walk with memory, phenomenologically inspired in a biological system. The walker has the capacity to remember the time of the last visit to each site and the step taken from there. This memory affects the behavior of the walker each time it reaches an already visited site modulating the probability of repeating previous moves. This probability increases with the time elapsed from the last visit. A biological analog of the walker is a frugivore, with the lattice sites representing plants. The memory effect can be associated with the time needed by plants to recover its fruit load. We propose two different strategies, conservative and explorative, as well as intermediate cases, leading to nonintuitive interesting results, such as the emergence of cycles.","owner":{"id":32505072,"first_name":"Guillermo","middle_initials":null,"last_name":"Abramson","page_name":"GuillermoAbramson","domain_name":"uncu","created_at":"2015-06-24T11:18:20.773-07:00","display_name":"Guillermo Abramson","url":"https://uncu.academia.edu/GuillermoAbramson"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-13248344-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3102436" id="papers"><div class="js-work-strip profile--work_container" data-work-id="21038732"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21038732/Associative_memory_on_a_small_world_neural_network"><img alt="Research paper thumbnail of Associative memory on a small-world neural network" class="work-thumbnail" src="https://attachments.academia-assets.com/41683748/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21038732/Associative_memory_on_a_small_world_neural_network">Associative memory on a small-world neural network</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://fsoc.academia.edu/LuisMorelli">Luis G Morelli</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://uncu.academia.edu/MKuperman">Marcelo N Kuperman</a></span></div><div class="wp-workCard_item"><span>The European Physical Journal B</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study a model of associative memory based on a neural network with small-world structure. The ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study a model of associative memory based on a neural network with small-world structure. The efficacy of the network to retrieve one of the stored patterns exhibits a phase transition at a finite value of the disorder. The more ordered networks are unable to recover the patterns, and are always attracted to non-symmetric mixture states. Besides, for a range of the number of stored patterns, the efficacy has a maximum at an intermediate value of the disorder. We also give a statistical characterization of the spurious attractors for all values of the disorder of the network.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6641ebb5ad70a4263ced3d96a00b45fd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41683748,"asset_id":21038732,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41683748/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21038732"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21038732"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21038732; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21038732]").text(description); $(".js-view-count[data-work-id=21038732]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21038732; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21038732']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6641ebb5ad70a4263ced3d96a00b45fd" } } $('.js-work-strip[data-work-id=21038732]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21038732,"title":"Associative memory on a small-world neural network","translated_title":"","metadata":{"grobid_abstract":"We study a model of associative memory based on a neural network with small-world structure. The efficacy of the network to retrieve one of the stored patterns exhibits a phase transition at a finite value of the disorder. The more ordered networks are unable to recover the patterns, and are always attracted to non-symmetric mixture states. Besides, for a range of the number of stored patterns, the efficacy has a maximum at an intermediate value of the disorder. We also give a statistical characterization of the spurious attractors for all values of the disorder of the network.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"The European Physical Journal B","grobid_abstract_attachment_id":41683748},"translated_abstract":null,"internal_url":"https://www.academia.edu/21038732/Associative_memory_on_a_small_world_neural_network","translated_internal_url":"","created_at":"2016-01-28T04:02:18.357-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":40637097,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":14021302,"work_id":21038732,"tagging_user_id":40637097,"tagged_user_id":32505072,"co_author_invite_id":null,"email":"a***n@cab.cnea.gov.ar","affiliation":"Universidad Nacional de Cuyo","display_order":0,"name":"Guillermo Abramson","title":"Associative memory on a small-world neural network"},{"id":14021303,"work_id":21038732,"tagging_user_id":40637097,"tagged_user_id":32568803,"co_author_invite_id":null,"email":"k***n@cab.cnea.gov.ar","affiliation":"Universidad Nacional de Cuyo","display_order":4194304,"name":"Marcelo N Kuperman","title":"Associative memory on a small-world neural network"}],"downloadable_attachments":[{"id":41683748,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41683748/thumbnails/1.jpg","file_name":"swneural.pdf","download_url":"https://www.academia.edu/attachments/41683748/download_file","bulk_download_file_name":"Associative_memory_on_a_small_world_neur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41683748/swneural-libre.pdf?1453984448=\u0026response-content-disposition=attachment%3B+filename%3DAssociative_memory_on_a_small_world_neur.pdf\u0026Expires=1743655926\u0026Signature=VfFrpOspWKer0DkutNEx6m5fyOgZVYz06OXTlKkuJYZIq~a22zFquinQQCBNOVLS1ySqXEQlOVJVVfrjOmxzwcQElFvqIHSXtilS4ie6jh00mt2eEb38uwy~XhytcjEXnuf82JY6~XK~i6EGribWcvORI9O2NQFl0MrpQhgaeRJ8Uc3woQNv4kqKVRyD4dyNmQIUsBSTel7Q7BRMKI7EglBvv~gRjyjWxHiqCUCD-~zyqfgTgCYIUI0DDJAM0roFKWp1dKeXw9nOKoWhQDITQmscoAXFWLYQhnbrh31JOBXUuUOCiK9SuF~AiCEfkxaJcqy6XwgDPmjs-DHtMKxHlA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Associative_memory_on_a_small_world_neural_network","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"We study a model of associative memory based on a neural network with small-world structure. The efficacy of the network to retrieve one of the stored patterns exhibits a phase transition at a finite value of the disorder. The more ordered networks are unable to recover the patterns, and are always attracted to non-symmetric mixture states. Besides, for a range of the number of stored patterns, the efficacy has a maximum at an intermediate value of the disorder. We also give a statistical characterization of the spurious attractors for all values of the disorder of the network.","owner":{"id":40637097,"first_name":"Luis","middle_initials":"G","last_name":"Morelli","page_name":"LuisMorelli","domain_name":"fsoc","created_at":"2015-12-27T03:53:52.324-08:00","display_name":"Luis G Morelli","url":"https://fsoc.academia.edu/LuisMorelli"},"attachments":[{"id":41683748,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41683748/thumbnails/1.jpg","file_name":"swneural.pdf","download_url":"https://www.academia.edu/attachments/41683748/download_file","bulk_download_file_name":"Associative_memory_on_a_small_world_neur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41683748/swneural-libre.pdf?1453984448=\u0026response-content-disposition=attachment%3B+filename%3DAssociative_memory_on_a_small_world_neur.pdf\u0026Expires=1743655926\u0026Signature=VfFrpOspWKer0DkutNEx6m5fyOgZVYz06OXTlKkuJYZIq~a22zFquinQQCBNOVLS1ySqXEQlOVJVVfrjOmxzwcQElFvqIHSXtilS4ie6jh00mt2eEb38uwy~XhytcjEXnuf82JY6~XK~i6EGribWcvORI9O2NQFl0MrpQhgaeRJ8Uc3woQNv4kqKVRyD4dyNmQIUsBSTel7Q7BRMKI7EglBvv~gRjyjWxHiqCUCD-~zyqfgTgCYIUI0DDJAM0roFKWp1dKeXw9nOKoWhQDITQmscoAXFWLYQhnbrh31JOBXUuUOCiK9SuF~AiCEfkxaJcqy6XwgDPmjs-DHtMKxHlA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":328150,"name":"Associative Memory","url":"https://www.academia.edu/Documents/in/Associative_Memory"},{"id":869130,"name":"Small World","url":"https://www.academia.edu/Documents/in/Small_World"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-21038732-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881499"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20881499/A_model_for_the_emergence_of_social_organization_in_primates"><img alt="Research paper thumbnail of A model for the emergence of social organization in primates" class="work-thumbnail" src="https://attachments.academia-assets.com/41611655/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20881499/A_model_for_the_emergence_of_social_organization_in_primates">A model for the emergence of social organization in primates</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Recent studies have established an apparent relationship between the repertoire of signals used f...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Recent studies have established an apparent relationship between the repertoire of signals used for communication and neocortex size of different species of primates and the topology of the social network formed by the interactions between individuals. Inspired by these results, we have developed a model that qualitatively reproduces these observations. The model presents the social organization as a self organized processes where the size of the repertoire in one case and of the neocortex in another play a highly relevant role.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d287fee35b6b145d2e4fcd332d945c40" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41611655,"asset_id":20881499,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41611655/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881499"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881499"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881499; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881499]").text(description); $(".js-view-count[data-work-id=20881499]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881499; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881499']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d287fee35b6b145d2e4fcd332d945c40" } } $('.js-work-strip[data-work-id=20881499]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881499,"title":"A model for the emergence of social organization in primates","translated_title":"","metadata":{"abstract":"Recent studies have established an apparent relationship between the repertoire of signals used for communication and neocortex size of different species of primates and the topology of the social network formed by the interactions between individuals. Inspired by these results, we have developed a model that qualitatively reproduces these observations. The model presents the social organization as a self organized processes where the size of the repertoire in one case and of the neocortex in another play a highly relevant role.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":"Recent studies have established an apparent relationship between the repertoire of signals used for communication and neocortex size of different species of primates and the topology of the social network formed by the interactions between individuals. Inspired by these results, we have developed a model that qualitatively reproduces these observations. The model presents the social organization as a self organized processes where the size of the repertoire in one case and of the neocortex in another play a highly relevant role.","internal_url":"https://www.academia.edu/20881499/A_model_for_the_emergence_of_social_organization_in_primates","translated_internal_url":"","created_at":"2016-01-26T23:57:24.599-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41611655,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611655/thumbnails/1.jpg","file_name":"1011.5199.pdf","download_url":"https://www.academia.edu/attachments/41611655/download_file","bulk_download_file_name":"A_model_for_the_emergence_of_social_orga.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611655/1011.5199-libre.pdf?1453881599=\u0026response-content-disposition=attachment%3B+filename%3DA_model_for_the_emergence_of_social_orga.pdf\u0026Expires=1743655926\u0026Signature=OB3YuFV3yLjS1Am-5-L5QReofF~UEYjYdv~SvhntDJ4vWHDp5fbAIEHWGeiTdxO9e1XxFoDaXugEWthshaO4Jj8AD3THtFgc-MyokWRHv7ciKzBCwNuZOVVK8Fc7t3Vf7G96nnWRTZr~xFKilxQEe4z6VP2CzJjYY9Vr4HGKDIDK4WCtss7uKi50LSuPfH7ozXQhdjBhItBgwbIR3H7Zchp8tB0AxOmBnmY1eV3WtpgBtf3seTGsYrVLJTw1DOT9yskGP2tSVzHLS7gmHWoWPwZwOjv0NPaBwzjWN3qlB1LTpiTSmLvBQlpEWj9ZTex0PzCqKOkpn06ifrRDLhA66A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_model_for_the_emergence_of_social_organization_in_primates","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"Recent studies have established an apparent relationship between the repertoire of signals used for communication and neocortex size of different species of primates and the topology of the social network formed by the interactions between individuals. Inspired by these results, we have developed a model that qualitatively reproduces these observations. The model presents the social organization as a self organized processes where the size of the repertoire in one case and of the neocortex in another play a highly relevant role.","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[{"id":41611655,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611655/thumbnails/1.jpg","file_name":"1011.5199.pdf","download_url":"https://www.academia.edu/attachments/41611655/download_file","bulk_download_file_name":"A_model_for_the_emergence_of_social_orga.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611655/1011.5199-libre.pdf?1453881599=\u0026response-content-disposition=attachment%3B+filename%3DA_model_for_the_emergence_of_social_orga.pdf\u0026Expires=1743655926\u0026Signature=OB3YuFV3yLjS1Am-5-L5QReofF~UEYjYdv~SvhntDJ4vWHDp5fbAIEHWGeiTdxO9e1XxFoDaXugEWthshaO4Jj8AD3THtFgc-MyokWRHv7ciKzBCwNuZOVVK8Fc7t3Vf7G96nnWRTZr~xFKilxQEe4z6VP2CzJjYY9Vr4HGKDIDK4WCtss7uKi50LSuPfH7ozXQhdjBhItBgwbIR3H7Zchp8tB0AxOmBnmY1eV3WtpgBtf3seTGsYrVLJTw1DOT9yskGP2tSVzHLS7gmHWoWPwZwOjv0NPaBwzjWN3qlB1LTpiTSmLvBQlpEWj9ZTex0PzCqKOkpn06ifrRDLhA66A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":41611654,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611654/thumbnails/1.jpg","file_name":"1011.5199.pdf","download_url":"https://www.academia.edu/attachments/41611654/download_file","bulk_download_file_name":"A_model_for_the_emergence_of_social_orga.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611654/1011.5199-libre.pdf?1453881599=\u0026response-content-disposition=attachment%3B+filename%3DA_model_for_the_emergence_of_social_orga.pdf\u0026Expires=1743655926\u0026Signature=PQUh5A~W27SI72Rqh4B~5ouLmOkN50N7toU7FtS4mcXtcTvpysAv1jiqmTzMkbT40VSt9H1kJ6eA2IRoMXNBtzkAYFfFD1H3fKvyixEjxv6FWxcPscBl4PJQHzthGXWyKm6ME~WhTXmmI4vSHh5oLmyd4fvO3H4mT8~Eh6wwo~XStwNhy8IzEA~R5nPyrIEuklVDF0tR8GFkpVD9ptUtLApbBf~xjibMTO2QIacdg7itYxNntdLE0~mph6FaKMiPPln~DK86kWuZM~dBbhkeofUKPTLa5df~gdkAz1QmsQ6wAykxDTojfKer25L8tylm9Mv-QCHRQKOhrUdRVNEwIA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":7150,"name":"Complex Systems","url":"https://www.academia.edu/Documents/in/Complex_Systems"},{"id":58285,"name":"Social organization","url":"https://www.academia.edu/Documents/in/Social_organization"},{"id":299563,"name":"Self Organization","url":"https://www.academia.edu/Documents/in/Self_Organization"},{"id":372231,"name":"Social System","url":"https://www.academia.edu/Documents/in/Social_System"},{"id":625360,"name":"Social Organization","url":"https://www.academia.edu/Documents/in/Social_Organization-1"},{"id":1199379,"name":"Social Network","url":"https://www.academia.edu/Documents/in/Social_Network"}],"urls":[{"id":6244283,"url":"http://arxiv.org/abs/1011.5199"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881499-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881498"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20881498/On_the_roles_of_hunting_and_habitat_size_on_the_extinction_of_megafauna"><img alt="Research paper thumbnail of On the roles of hunting and habitat size on the extinction of megafauna" class="work-thumbnail" src="https://attachments.academia-assets.com/41611763/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20881498/On_the_roles_of_hunting_and_habitat_size_on_the_extinction_of_megafauna">On the roles of hunting and habitat size on the extinction of megafauna</a></div><div class="wp-workCard_item"><span>Quaternary International</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study a mechanistic mathematical model of extinction and coexistence in a generic hunter-prey ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study a mechanistic mathematical model of extinction and coexistence in a generic hunter-prey ecosystem. The model represents typical scenarios of human invasion and environmental change, characteristic of the late Pleistocene, concomitant with the extinction of fauna in many regions of the world. As a first approach we focus on a small trophic web of three species, including two herbivores in asymmetric competition, in order to characterize the generic behaviors. Specifically, we use a stochastic dynamical system, allowing the study of the role of fluctuations and spatial correlations. We show that the presence of hunters drives the superior herbivore to extinction even in habitats that would allow coexistence, and even when the pressure of hunting is lower than on the inferior one. The role of system size and fluctuating populations is addressed, showing an ecological meltdown in small systems in the presence of humans. The time to extinction as a function of the system size, as calculated with the model, shows a good agreement with paleontological data. Other findings show the intricate play of the anthropic and environmental factors that may have caused the extinction of megafauna.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c6c1be323b52c72a33cb82d03b7b4bd6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41611763,"asset_id":20881498,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41611763/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881498"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881498"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881498; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881498]").text(description); $(".js-view-count[data-work-id=20881498]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881498; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881498']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c6c1be323b52c72a33cb82d03b7b4bd6" } } $('.js-work-strip[data-work-id=20881498]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881498,"title":"On the roles of hunting and habitat size on the extinction of megafauna","translated_title":"","metadata":{"grobid_abstract":"We study a mechanistic mathematical model of extinction and coexistence in a generic hunter-prey ecosystem. The model represents typical scenarios of human invasion and environmental change, characteristic of the late Pleistocene, concomitant with the extinction of fauna in many regions of the world. As a first approach we focus on a small trophic web of three species, including two herbivores in asymmetric competition, in order to characterize the generic behaviors. Specifically, we use a stochastic dynamical system, allowing the study of the role of fluctuations and spatial correlations. We show that the presence of hunters drives the superior herbivore to extinction even in habitats that would allow coexistence, and even when the pressure of hunting is lower than on the inferior one. The role of system size and fluctuating populations is addressed, showing an ecological meltdown in small systems in the presence of humans. The time to extinction as a function of the system size, as calculated with the model, shows a good agreement with paleontological data. Other findings show the intricate play of the anthropic and environmental factors that may have caused the extinction of megafauna.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Quaternary International","grobid_abstract_attachment_id":41611763},"translated_abstract":null,"internal_url":"https://www.academia.edu/20881498/On_the_roles_of_hunting_and_habitat_size_on_the_extinction_of_megafauna","translated_internal_url":"","created_at":"2016-01-26T23:57:24.297-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41611763,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611763/thumbnails/1.jpg","file_name":"On_the_roles_of_hunting_and_habitat_size20160126-26079-uzhigc.pdf","download_url":"https://www.academia.edu/attachments/41611763/download_file","bulk_download_file_name":"On_the_roles_of_hunting_and_habitat_size.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611763/On_the_roles_of_hunting_and_habitat_size20160126-26079-uzhigc-libre.pdf?1453881874=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_roles_of_hunting_and_habitat_size.pdf\u0026Expires=1743655926\u0026Signature=KYBYGMSfLub18JgaOESgencaP8c2l5o~k2ZcKFOQ2ib6y1bB31~4YTwDpIRSFLekmIK5hEKjRyadquA5ur3ph~rp-65UjXKO1R7yibgXuijLVKV-~LTDm1tB6Mr83SziniAZaEG8FfBFNou6DAyg-icjtAbkfz~vzTfse4Dt7CeYBcK2N0U5yrDcphmN1~wcD8QO-nJ6XF-uQdLh6VL0XhclZyCHd956acR3HE3VfSDpyAdoUnWVrKZjfrSVIR44Nyciousr0yQ~JLavewz~9OqJ1PtDUCJIQQsd9HSvVtMST-MMj6FDO2chdWaIJ4PopT9CKbkOT9iVnBx0HJmpMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_roles_of_hunting_and_habitat_size_on_the_extinction_of_megafauna","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"We study a mechanistic mathematical model of extinction and coexistence in a generic hunter-prey ecosystem. The model represents typical scenarios of human invasion and environmental change, characteristic of the late Pleistocene, concomitant with the extinction of fauna in many regions of the world. As a first approach we focus on a small trophic web of three species, including two herbivores in asymmetric competition, in order to characterize the generic behaviors. Specifically, we use a stochastic dynamical system, allowing the study of the role of fluctuations and spatial correlations. We show that the presence of hunters drives the superior herbivore to extinction even in habitats that would allow coexistence, and even when the pressure of hunting is lower than on the inferior one. The role of system size and fluctuating populations is addressed, showing an ecological meltdown in small systems in the presence of humans. The time to extinction as a function of the system size, as calculated with the model, shows a good agreement with paleontological data. Other findings show the intricate play of the anthropic and environmental factors that may have caused the extinction of megafauna.","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[{"id":41611763,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611763/thumbnails/1.jpg","file_name":"On_the_roles_of_hunting_and_habitat_size20160126-26079-uzhigc.pdf","download_url":"https://www.academia.edu/attachments/41611763/download_file","bulk_download_file_name":"On_the_roles_of_hunting_and_habitat_size.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611763/On_the_roles_of_hunting_and_habitat_size20160126-26079-uzhigc-libre.pdf?1453881874=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_roles_of_hunting_and_habitat_size.pdf\u0026Expires=1743655926\u0026Signature=KYBYGMSfLub18JgaOESgencaP8c2l5o~k2ZcKFOQ2ib6y1bB31~4YTwDpIRSFLekmIK5hEKjRyadquA5ur3ph~rp-65UjXKO1R7yibgXuijLVKV-~LTDm1tB6Mr83SziniAZaEG8FfBFNou6DAyg-icjtAbkfz~vzTfse4Dt7CeYBcK2N0U5yrDcphmN1~wcD8QO-nJ6XF-uQdLh6VL0XhclZyCHd956acR3HE3VfSDpyAdoUnWVrKZjfrSVIR44Nyciousr0yQ~JLavewz~9OqJ1PtDUCJIQQsd9HSvVtMST-MMj6FDO2chdWaIJ4PopT9CKbkOT9iVnBx0HJmpMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":35587,"name":"Quaternary","url":"https://www.academia.edu/Documents/in/Quaternary"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881498-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881497"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/20881497/Quantum_mechanical_analogy_for_solving_a_competitive_coexistence_model_in_ecology"><img alt="Research paper thumbnail of Quantum mechanical analogy for solving a competitive coexistence model in ecology" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Quantum mechanical analogy for solving a competitive coexistence model in ecology</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881497"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881497"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881497; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881497]").text(description); $(".js-view-count[data-work-id=20881497]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881497; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881497']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20881497]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881497,"title":"Quantum mechanical analogy for solving a competitive coexistence model in ecology","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/20881497/Quantum_mechanical_analogy_for_solving_a_competitive_coexistence_model_in_ecology","translated_internal_url":"","created_at":"2016-01-26T23:57:24.062-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Quantum_mechanical_analogy_for_solving_a_competitive_coexistence_model_in_ecology","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[],"research_interests":[{"id":7936,"name":"Quantum Mechanics","url":"https://www.academia.edu/Documents/in/Quantum_Mechanics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881497-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881496"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20881496/Theory_of_possible_effects_of_the_Allee_phenomenon_on_refugia_of_the_Hantavirus_epidemic"><img alt="Research paper thumbnail of Theory of possible effects of the Allee phenomenon on refugia of the Hantavirus epidemic" class="work-thumbnail" src="https://attachments.academia-assets.com/41611757/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20881496/Theory_of_possible_effects_of_the_Allee_phenomenon_on_refugia_of_the_Hantavirus_epidemic">Theory of possible effects of the Allee phenomenon on refugia of the Hantavirus epidemic</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We investigate possible effects of high order nonlinearities on the shapes of infection refugia o...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We investigate possible effects of high order nonlinearities on the shapes of infection refugia of the Hantavirus epidemic. We replace Fisher-like equations that have been recently used to describe Hantavirus spread in mouse populations by generalizations capable of describing Allee effects that are a consequence of the high order nonlinearities. We analyze the equations to calculate steady state solutions. We study the stability of those solutions under physical conditions and compare to the earlier Fisher-like case. We consider spatial modulation of the environment and find that unexpected results appear, including a bifurcation that has not been studied before.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b26fdc63b41fc702fcf81be342b90ea6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41611757,"asset_id":20881496,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41611757/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881496"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881496"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881496; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881496]").text(description); $(".js-view-count[data-work-id=20881496]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881496; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881496']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b26fdc63b41fc702fcf81be342b90ea6" } } $('.js-work-strip[data-work-id=20881496]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881496,"title":"Theory of possible effects of the Allee phenomenon on refugia of the Hantavirus epidemic","translated_title":"","metadata":{"abstract":"We investigate possible effects of high order nonlinearities on the shapes of infection refugia of the Hantavirus epidemic. We replace Fisher-like equations that have been recently used to describe Hantavirus spread in mouse populations by generalizations capable of describing Allee effects that are a consequence of the high order nonlinearities. We analyze the equations to calculate steady state solutions. We study the stability of those solutions under physical conditions and compare to the earlier Fisher-like case. We consider spatial modulation of the environment and find that unexpected results appear, including a bifurcation that has not been studied before."},"translated_abstract":"We investigate possible effects of high order nonlinearities on the shapes of infection refugia of the Hantavirus epidemic. We replace Fisher-like equations that have been recently used to describe Hantavirus spread in mouse populations by generalizations capable of describing Allee effects that are a consequence of the high order nonlinearities. We analyze the equations to calculate steady state solutions. We study the stability of those solutions under physical conditions and compare to the earlier Fisher-like case. We consider spatial modulation of the environment and find that unexpected results appear, including a bifurcation that has not been studied before.","internal_url":"https://www.academia.edu/20881496/Theory_of_possible_effects_of_the_Allee_phenomenon_on_refugia_of_the_Hantavirus_epidemic","translated_internal_url":"","created_at":"2016-01-26T23:57:23.807-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41611757,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611757/thumbnails/1.jpg","file_name":"Theory_of_possible_effects_of_the_Allee_20160126-14159-n7wpwm.pdf","download_url":"https://www.academia.edu/attachments/41611757/download_file","bulk_download_file_name":"Theory_of_possible_effects_of_the_Allee.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611757/Theory_of_possible_effects_of_the_Allee_20160126-14159-n7wpwm-libre.pdf?1453881868=\u0026response-content-disposition=attachment%3B+filename%3DTheory_of_possible_effects_of_the_Allee.pdf\u0026Expires=1743655926\u0026Signature=UI0c7hoC-AqCPdX0q-CNExFX-Uv5RLG272cnu4BT7MqZRRbDUcPsXWFpAXNdT06h2Im6qazAi1noDU7XNz6myQaZdjq2dkt25Dd3Z0KUiP18wYlUjcP0s-ddxzY9DhsH7QjU-iO6UacDNUGgOF9j3AMuLnH6iQBHKssO61AJpsD~NaRbyhqdgHvZHg6s4Ft34CQWiKtVh4dfF20PukvlEtYFinLvbxXe5OTtimjZYRVREhIe3ihTQO-fWWxip6mgLIySknUbJvDyhTIV4BIOxPT2QOevx6Yq9K0fxFFiv~YB3CVzgtJ~920-RVkiXpB5ErHvQ9vI8ScZ3dlGv-JFqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Theory_of_possible_effects_of_the_Allee_phenomenon_on_refugia_of_the_Hantavirus_epidemic","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"We investigate possible effects of high order nonlinearities on the shapes of infection refugia of the Hantavirus epidemic. We replace Fisher-like equations that have been recently used to describe Hantavirus spread in mouse populations by generalizations capable of describing Allee effects that are a consequence of the high order nonlinearities. We analyze the equations to calculate steady state solutions. We study the stability of those solutions under physical conditions and compare to the earlier Fisher-like case. We consider spatial modulation of the environment and find that unexpected results appear, including a bifurcation that has not been studied before.","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[{"id":41611757,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611757/thumbnails/1.jpg","file_name":"Theory_of_possible_effects_of_the_Allee_20160126-14159-n7wpwm.pdf","download_url":"https://www.academia.edu/attachments/41611757/download_file","bulk_download_file_name":"Theory_of_possible_effects_of_the_Allee.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611757/Theory_of_possible_effects_of_the_Allee_20160126-14159-n7wpwm-libre.pdf?1453881868=\u0026response-content-disposition=attachment%3B+filename%3DTheory_of_possible_effects_of_the_Allee.pdf\u0026Expires=1743655926\u0026Signature=UI0c7hoC-AqCPdX0q-CNExFX-Uv5RLG272cnu4BT7MqZRRbDUcPsXWFpAXNdT06h2Im6qazAi1noDU7XNz6myQaZdjq2dkt25Dd3Z0KUiP18wYlUjcP0s-ddxzY9DhsH7QjU-iO6UacDNUGgOF9j3AMuLnH6iQBHKssO61AJpsD~NaRbyhqdgHvZHg6s4Ft34CQWiKtVh4dfF20PukvlEtYFinLvbxXe5OTtimjZYRVREhIe3ihTQO-fWWxip6mgLIySknUbJvDyhTIV4BIOxPT2QOevx6Yq9K0fxFFiv~YB3CVzgtJ~920-RVkiXpB5ErHvQ9vI8ScZ3dlGv-JFqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms"},{"id":5493,"name":"Nonlinear dynamics","url":"https://www.academia.edu/Documents/in/Nonlinear_dynamics"},{"id":28850,"name":"Linear models","url":"https://www.academia.edu/Documents/in/Linear_models"},{"id":57907,"name":"Disease Outbreaks","url":"https://www.academia.edu/Documents/in/Disease_Outbreaks"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":756195,"name":"Hantavirus","url":"https://www.academia.edu/Documents/in/Hantavirus"},{"id":1208706,"name":"Environment","url":"https://www.academia.edu/Documents/in/Environment"},{"id":1294607,"name":"Logistic Models","url":"https://www.academia.edu/Documents/in/Logistic_Models"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881496-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="13248360"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/13248360/The_forager_walk"><img alt="Research paper thumbnail of The forager walk" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">The forager walk</div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://uncu.academia.edu/GuillermoAbramson">Guillermo Abramson</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://uncu.academia.edu/MKuperman">Marcelo N Kuperman</a></span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13248360"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13248360"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13248360; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13248360]").text(description); $(".js-view-count[data-work-id=13248360]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13248360; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13248360']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=13248360]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13248360,"title":"The forager walk","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/13248360/The_forager_walk","translated_internal_url":"","created_at":"2015-06-24T11:20:26.046-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32505072,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1494799,"work_id":13248360,"tagging_user_id":32505072,"tagged_user_id":32568803,"co_author_invite_id":431169,"email":"k***n@cab.cnea.gov.ar","affiliation":"Universidad Nacional de Cuyo","display_order":0,"name":"Marcelo N Kuperman","title":"The forager walk"},{"id":1494810,"work_id":13248360,"tagging_user_id":32505072,"tagged_user_id":5374645,"co_author_invite_id":null,"email":"l***i@gmail.com","display_order":4194304,"name":"Laila Kazimierski","title":"The forager walk"}],"downloadable_attachments":[],"slug":"The_forager_walk","translated_slug":"","page_count":null,"language":"da","content_type":"Work","summary":null,"owner":{"id":32505072,"first_name":"Guillermo","middle_initials":null,"last_name":"Abramson","page_name":"GuillermoAbramson","domain_name":"uncu","created_at":"2015-06-24T11:18:20.773-07:00","display_name":"Guillermo Abramson","url":"https://uncu.academia.edu/GuillermoAbramson"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-13248360-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881495"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20881495/Spatial_features_of_population_dynamics_arising_from_mutual_interaction_of_different_age_groups_in_rodents"><img alt="Research paper thumbnail of Spatial features of population dynamics arising from mutual interaction of different age groups in rodents" class="work-thumbnail" src="https://attachments.academia-assets.com/42390228/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20881495/Spatial_features_of_population_dynamics_arising_from_mutual_interaction_of_different_age_groups_in_rodents">Spatial features of population dynamics arising from mutual interaction of different age groups in rodents</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study the dynamics of the transmission of the hanta virus infection among mouse populations, t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study the dynamics of the transmission of the hanta virus infection among mouse populations, taking into account, simultaneously, seasonal variations of the environment and interactions within two classes in the mouse population: adults and subadults. The interactions considered are not symmetric between the two age-organized classes and are responsible for driving the younger members away from home ranges. We consider the case of a bounded habitat affected by seasonal variations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a571adcbd3cf5855d7fb9403078d138e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":42390228,"asset_id":20881495,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/42390228/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881495"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881495"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881495; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881495]").text(description); $(".js-view-count[data-work-id=20881495]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881495; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881495']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a571adcbd3cf5855d7fb9403078d138e" } } $('.js-work-strip[data-work-id=20881495]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881495,"title":"Spatial features of population dynamics arising from mutual interaction of different age groups in rodents","translated_title":"","metadata":{"abstract":"We study the dynamics of the transmission of the hanta virus infection among mouse populations, taking into account, simultaneously, seasonal variations of the environment and interactions within two classes in the mouse population: adults and subadults. The interactions considered are not symmetric between the two age-organized classes and are responsible for driving the younger members away from home ranges. We consider the case of a bounded habitat affected by seasonal variations.","ai_title_tag":"Population Dynamics of Rodents and Hantavirus Transmission"},"translated_abstract":"We study the dynamics of the transmission of the hanta virus infection among mouse populations, taking into account, simultaneously, seasonal variations of the environment and interactions within two classes in the mouse population: adults and subadults. The interactions considered are not symmetric between the two age-organized classes and are responsible for driving the younger members away from home ranges. We consider the case of a bounded habitat affected by seasonal variations.","internal_url":"https://www.academia.edu/20881495/Spatial_features_of_population_dynamics_arising_from_mutual_interaction_of_different_age_groups_in_rodents","translated_internal_url":"","created_at":"2016-01-26T23:57:23.299-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":42390228,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42390228/thumbnails/1.jpg","file_name":"Spatial_features_of_population_dynamics_20160208-14055-ihvu5s.pdf","download_url":"https://www.academia.edu/attachments/42390228/download_file","bulk_download_file_name":"Spatial_features_of_population_dynamics.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42390228/Spatial_features_of_population_dynamics_20160208-14055-ihvu5s-libre.pdf?1454948770=\u0026response-content-disposition=attachment%3B+filename%3DSpatial_features_of_population_dynamics.pdf\u0026Expires=1743655926\u0026Signature=N2ZAzuOLnCVoCj6hOcCHigqZKI58epuuWKjsoa5PXN65JroYB8qw3KbRG3uEY2fJIQtEVpoFzshRtrJbGZowoM1ioYDqjlZk5W-i8ZJlhODzK8RyScUWh8MfCBDwfIbcDI8ybWk1Jw4nil-OYlCpzbx1uTbp393GDv18E4WEUTKBCycWrzQHIhzNJRfwGYwBwzIu-2XfIwZRtc9d7ow3RJcPbtGKG6Q85mp6Qks5yyvAbiJdHaDErCUuw1DmFlDg4bN47704UE9hYZdlOAQZimRbhf3OZx-oWGGy8ESFhi1Go23k5sFPtwtlaxp1cnjTywKjyM1N45c8dRjXffCxiA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Spatial_features_of_population_dynamics_arising_from_mutual_interaction_of_different_age_groups_in_rodents","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"We study the dynamics of the transmission of the hanta virus infection among mouse populations, taking into account, simultaneously, seasonal variations of the environment and interactions within two classes in the mouse population: adults and subadults. The interactions considered are not symmetric between the two age-organized classes and are responsible for driving the younger members away from home ranges. We consider the case of a bounded habitat affected by seasonal variations.","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[{"id":42390228,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42390228/thumbnails/1.jpg","file_name":"Spatial_features_of_population_dynamics_20160208-14055-ihvu5s.pdf","download_url":"https://www.academia.edu/attachments/42390228/download_file","bulk_download_file_name":"Spatial_features_of_population_dynamics.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42390228/Spatial_features_of_population_dynamics_20160208-14055-ihvu5s-libre.pdf?1454948770=\u0026response-content-disposition=attachment%3B+filename%3DSpatial_features_of_population_dynamics.pdf\u0026Expires=1743655926\u0026Signature=N2ZAzuOLnCVoCj6hOcCHigqZKI58epuuWKjsoa5PXN65JroYB8qw3KbRG3uEY2fJIQtEVpoFzshRtrJbGZowoM1ioYDqjlZk5W-i8ZJlhODzK8RyScUWh8MfCBDwfIbcDI8ybWk1Jw4nil-OYlCpzbx1uTbp393GDv18E4WEUTKBCycWrzQHIhzNJRfwGYwBwzIu-2XfIwZRtc9d7ow3RJcPbtGKG6Q85mp6Qks5yyvAbiJdHaDErCUuw1DmFlDg4bN47704UE9hYZdlOAQZimRbhf3OZx-oWGGy8ESFhi1Go23k5sFPtwtlaxp1cnjTywKjyM1N45c8dRjXffCxiA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":6568451,"url":"https://www.researchgate.net/profile/Marcelo_Kuperman/publication/2206748_Spatial_features_of_population_dynamics_arising_from_mutual_interaction_of_different_age_groups_in_rodents/links/0c96051a4e83cd99cd000000.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881495-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881494"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20881494/The_topological_issues_of_cooperation"><img alt="Research paper thumbnail of The topological issues of cooperation" class="work-thumbnail" src="https://attachments.academia-assets.com/41611762/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20881494/The_topological_issues_of_cooperation">The topological issues of cooperation</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the last years the Prisoner Dilemma (PD) has become a paradigm for the study of the emergence ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the last years the Prisoner Dilemma (PD) has become a paradigm for the study of the emergence of cooperation in spatially structured populations. Such structure is usually assumed to be given by a graph. In general, the success of cooperative strategies is associated with the possibility of forming globular clusters, which in turn depends on a feature of the network that is measured by its clustering coefficient. In this work we test the dependence of the success of cooperation with the clustering coefficient of the network, for several different families of networks. We have found that this dependence is far from trivial. Additionally, for both stochastic and deterministic dynamics we have also found that there is a strong dependence on the initial composition of the population. This hints at the existence of several different mechanisms that could promote or hinder cluster expansion. We have studied in detail some of these mechanisms by concentrating on completely ordered netwo...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f47f57739f426770576579e9ce0ed2f0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41611762,"asset_id":20881494,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41611762/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881494"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881494"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881494; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881494]").text(description); $(".js-view-count[data-work-id=20881494]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881494; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881494']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f47f57739f426770576579e9ce0ed2f0" } } $('.js-work-strip[data-work-id=20881494]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881494,"title":"The topological issues of cooperation","translated_title":"","metadata":{"abstract":"In the last years the Prisoner Dilemma (PD) has become a paradigm for the study of the emergence of cooperation in spatially structured populations. Such structure is usually assumed to be given by a graph. In general, the success of cooperative strategies is associated with the possibility of forming globular clusters, which in turn depends on a feature of the network that is measured by its clustering coefficient. In this work we test the dependence of the success of cooperation with the clustering coefficient of the network, for several different families of networks. We have found that this dependence is far from trivial. Additionally, for both stochastic and deterministic dynamics we have also found that there is a strong dependence on the initial composition of the population. This hints at the existence of several different mechanisms that could promote or hinder cluster expansion. We have studied in detail some of these mechanisms by concentrating on completely ordered netwo..."},"translated_abstract":"In the last years the Prisoner Dilemma (PD) has become a paradigm for the study of the emergence of cooperation in spatially structured populations. Such structure is usually assumed to be given by a graph. In general, the success of cooperative strategies is associated with the possibility of forming globular clusters, which in turn depends on a feature of the network that is measured by its clustering coefficient. In this work we test the dependence of the success of cooperation with the clustering coefficient of the network, for several different families of networks. We have found that this dependence is far from trivial. Additionally, for both stochastic and deterministic dynamics we have also found that there is a strong dependence on the initial composition of the population. This hints at the existence of several different mechanisms that could promote or hinder cluster expansion. We have studied in detail some of these mechanisms by concentrating on completely ordered netwo...","internal_url":"https://www.academia.edu/20881494/The_topological_issues_of_cooperation","translated_internal_url":"","created_at":"2016-01-26T23:57:23.014-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41611762,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611762/thumbnails/1.jpg","file_name":"The_topological_issues_of_cooperation20160126-14159-1n30p6z.pdf","download_url":"https://www.academia.edu/attachments/41611762/download_file","bulk_download_file_name":"The_topological_issues_of_cooperation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611762/The_topological_issues_of_cooperation20160126-14159-1n30p6z-libre.pdf?1453881870=\u0026response-content-disposition=attachment%3B+filename%3DThe_topological_issues_of_cooperation.pdf\u0026Expires=1743655926\u0026Signature=PhBBRHgvzukfknSkhZcNXxjDS6rloASYNq1onm8Rbp0v~hspQZOAxPQ-s3JNh4CLuEDzr3eYrnYmSA3hoiSfTjQlXpBFu7ePpdDcESTfaDKCpKvMgrfi4MTW5ZZWkQ8cgTE7WtqZg4be7bRHBV8oV4eY-Hlu8JPqd38gzhdaCBg-efqOc6ELrrJAKnajkCPx36~Pk7ij61iyMdu5mR7WWquvsz8z1fSimigQ4nNbZmjIt9p7Do5o3cDWmfI2Mig1KYuv~v0QLqtQc-t6Qgz2uOt8zq6yVhuUqklTOHBcXjsqwWQn9YZGi1LYOe3uItQwpoJvPMV4npI7Br8CrLXd6g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_topological_issues_of_cooperation","translated_slug":"","page_count":25,"language":"en","content_type":"Work","summary":"In the last years the Prisoner Dilemma (PD) has become a paradigm for the study of the emergence of cooperation in spatially structured populations. Such structure is usually assumed to be given by a graph. In general, the success of cooperative strategies is associated with the possibility of forming globular clusters, which in turn depends on a feature of the network that is measured by its clustering coefficient. In this work we test the dependence of the success of cooperation with the clustering coefficient of the network, for several different families of networks. We have found that this dependence is far from trivial. Additionally, for both stochastic and deterministic dynamics we have also found that there is a strong dependence on the initial composition of the population. This hints at the existence of several different mechanisms that could promote or hinder cluster expansion. We have studied in detail some of these mechanisms by concentrating on completely ordered netwo...","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[{"id":41611762,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611762/thumbnails/1.jpg","file_name":"The_topological_issues_of_cooperation20160126-14159-1n30p6z.pdf","download_url":"https://www.academia.edu/attachments/41611762/download_file","bulk_download_file_name":"The_topological_issues_of_cooperation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611762/The_topological_issues_of_cooperation20160126-14159-1n30p6z-libre.pdf?1453881870=\u0026response-content-disposition=attachment%3B+filename%3DThe_topological_issues_of_cooperation.pdf\u0026Expires=1743655926\u0026Signature=PhBBRHgvzukfknSkhZcNXxjDS6rloASYNq1onm8Rbp0v~hspQZOAxPQ-s3JNh4CLuEDzr3eYrnYmSA3hoiSfTjQlXpBFu7ePpdDcESTfaDKCpKvMgrfi4MTW5ZZWkQ8cgTE7WtqZg4be7bRHBV8oV4eY-Hlu8JPqd38gzhdaCBg-efqOc6ELrrJAKnajkCPx36~Pk7ij61iyMdu5mR7WWquvsz8z1fSimigQ4nNbZmjIt9p7Do5o3cDWmfI2Mig1KYuv~v0QLqtQc-t6Qgz2uOt8zq6yVhuUqklTOHBcXjsqwWQn9YZGi1LYOe3uItQwpoJvPMV4npI7Br8CrLXd6g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":104340,"name":"Emergence of Cooperation and Altruism","url":"https://www.academia.edu/Documents/in/Emergence_of_Cooperation_and_Altruism"},{"id":320532,"name":"Clustering Coefficient","url":"https://www.academia.edu/Documents/in/Clustering_Coefficient"},{"id":320536,"name":"Random Networks","url":"https://www.academia.edu/Documents/in/Random_Networks"},{"id":771878,"name":"Spatial structure","url":"https://www.academia.edu/Documents/in/Spatial_structure"},{"id":1257668,"name":"Cluster Expansion","url":"https://www.academia.edu/Documents/in/Cluster_Expansion"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881494-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881493"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20881493/Dynamic_Domains_Networks"><img alt="Research paper thumbnail of Dynamic Domains Networks" class="work-thumbnail" src="https://attachments.academia-assets.com/41611759/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20881493/Dynamic_Domains_Networks">Dynamic Domains Networks</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present a model for the description of the evolution of contacts among individuals in a networ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present a model for the description of the evolution of contacts among individuals in a network. At each time step each individual is associated with a domain or neighborhood of fully connected agents.The dynamics of this changing neighborhood will later be translated into a situation where the links between individuals are also dynamic. A characterization in terms of the parameters that govern the evolution of the network and a comparison to previous work on Small World networks is presented as well.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="55f828ab7b7775dbb9b5437b33ae80a8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41611759,"asset_id":20881493,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41611759/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881493"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881493"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881493; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881493]").text(description); $(".js-view-count[data-work-id=20881493]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881493; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881493']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "55f828ab7b7775dbb9b5437b33ae80a8" } } $('.js-work-strip[data-work-id=20881493]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881493,"title":"Dynamic Domains Networks","translated_title":"","metadata":{"abstract":"We present a model for the description of the evolution of contacts among individuals in a network. At each time step each individual is associated with a domain or neighborhood of fully connected agents.The dynamics of this changing neighborhood will later be translated into a situation where the links between individuals are also dynamic. A characterization in terms of the parameters that govern the evolution of the network and a comparison to previous work on Small World networks is presented as well."},"translated_abstract":"We present a model for the description of the evolution of contacts among individuals in a network. At each time step each individual is associated with a domain or neighborhood of fully connected agents.The dynamics of this changing neighborhood will later be translated into a situation where the links between individuals are also dynamic. A characterization in terms of the parameters that govern the evolution of the network and a comparison to previous work on Small World networks is presented as well.","internal_url":"https://www.academia.edu/20881493/Dynamic_Domains_Networks","translated_internal_url":"","created_at":"2016-01-26T23:57:22.698-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41611759,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611759/thumbnails/1.jpg","file_name":"Dynamic_Domains_Networks20160127-20223-1eh59rm.pdf","download_url":"https://www.academia.edu/attachments/41611759/download_file","bulk_download_file_name":"Dynamic_Domains_Networks.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611759/Dynamic_Domains_Networks20160127-20223-1eh59rm-libre.pdf?1453881868=\u0026response-content-disposition=attachment%3B+filename%3DDynamic_Domains_Networks.pdf\u0026Expires=1743655926\u0026Signature=b-2EgD~oohat~rCwSoy1bQXOH5k92bpOLo5ecxO992g4xkLFSg4DwRf7RcvRWHd2hvhI1kQgKtj7R-7BqBsM8YZ5WfPMt0a6EhEitp6R7NgWv6otNiCKBGKxbeF3s7mXr-Og0HvJc2jqfmw3iDn9PvmKb6eZBQTCi1iWsDCfbKWeQrKtyqDXPNrIl10YhA~glhJY1EqE583gDRwr4r5F4XKsIRACOy2xby8h2wwyqIlSOVHgujSKBFmxSPMDLlBwomdf6PZvCipHAFNijAe~C1nt0rCSNkCT~pjUpZ6m3PBt-UJ-rmU1ZVPD-oKhmpiI07-mE5y4JmDxfIBufhKW3Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Dynamic_Domains_Networks","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":"We present a model for the description of the evolution of contacts among individuals in a network. At each time step each individual is associated with a domain or neighborhood of fully connected agents.The dynamics of this changing neighborhood will later be translated into a situation where the links between individuals are also dynamic. A characterization in terms of the parameters that govern the evolution of the network and a comparison to previous work on Small World networks is presented as well.","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[{"id":41611759,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611759/thumbnails/1.jpg","file_name":"Dynamic_Domains_Networks20160127-20223-1eh59rm.pdf","download_url":"https://www.academia.edu/attachments/41611759/download_file","bulk_download_file_name":"Dynamic_Domains_Networks.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611759/Dynamic_Domains_Networks20160127-20223-1eh59rm-libre.pdf?1453881868=\u0026response-content-disposition=attachment%3B+filename%3DDynamic_Domains_Networks.pdf\u0026Expires=1743655926\u0026Signature=b-2EgD~oohat~rCwSoy1bQXOH5k92bpOLo5ecxO992g4xkLFSg4DwRf7RcvRWHd2hvhI1kQgKtj7R-7BqBsM8YZ5WfPMt0a6EhEitp6R7NgWv6otNiCKBGKxbeF3s7mXr-Og0HvJc2jqfmw3iDn9PvmKb6eZBQTCi1iWsDCfbKWeQrKtyqDXPNrIl10YhA~glhJY1EqE583gDRwr4r5F4XKsIRACOy2xby8h2wwyqIlSOVHgujSKBFmxSPMDLlBwomdf6PZvCipHAFNijAe~C1nt0rCSNkCT~pjUpZ6m3PBt-UJ-rmU1ZVPD-oKhmpiI07-mE5y4JmDxfIBufhKW3Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881493-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881492"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20881492/Convergence_in_reaction_diffusion_systems_an_information_theory_approach"><img alt="Research paper thumbnail of Convergence in reaction-diffusion systems: an information theory approach" class="work-thumbnail" src="https://attachments.academia-assets.com/41918598/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20881492/Convergence_in_reaction_diffusion_systems_an_information_theory_approach">Convergence in reaction-diffusion systems: an information theory approach</a></div><div class="wp-workCard_item"><span>Physica A: Statistical Mechanics and its Applications</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... Miguel A. Fuentes , Marcelo N. Kuperman 1 and Horacio S. Wio 2 , Corresponding Author Contact...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... Miguel A. Fuentes , Marcelo N. Kuperman 1 and Horacio S. Wio 2 , Corresponding Author Contact Information , E-mail The Corresponding Author. ... However, Graham and collaborators [22, 23, 24, 33, 34, 35 and 36] who have been pioneers in introducing those concepts ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="421baee2ca9db427475062179e0e2e15" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41918598,"asset_id":20881492,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41918598/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881492"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881492"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881492; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881492]").text(description); $(".js-view-count[data-work-id=20881492]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881492; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881492']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "421baee2ca9db427475062179e0e2e15" } } $('.js-work-strip[data-work-id=20881492]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881492,"title":"Convergence in reaction-diffusion systems: an information theory approach","translated_title":"","metadata":{"abstract":"... Miguel A. Fuentes , Marcelo N. Kuperman 1 and Horacio S. Wio 2 , Corresponding Author Contact Information , E-mail The Corresponding Author. ... However, Graham and collaborators [22, 23, 24, 33, 34, 35 and 36] who have been pioneers in introducing those concepts ...","publication_name":"Physica A: Statistical Mechanics and its Applications"},"translated_abstract":"... Miguel A. Fuentes , Marcelo N. Kuperman 1 and Horacio S. Wio 2 , Corresponding Author Contact Information , E-mail The Corresponding Author. ... However, Graham and collaborators [22, 23, 24, 33, 34, 35 and 36] who have been pioneers in introducing those concepts ...","internal_url":"https://www.academia.edu/20881492/Convergence_in_reaction_diffusion_systems_an_information_theory_approach","translated_internal_url":"","created_at":"2016-01-26T23:57:22.383-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41918598,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41918598/thumbnails/1.jpg","file_name":"s0378-4371_2899_2900256-3.pdf20160202-3950-1d09pfw","download_url":"https://www.academia.edu/attachments/41918598/download_file","bulk_download_file_name":"Convergence_in_reaction_diffusion_system.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41918598/s0378-4371_2899_2900256-3-libre.pdf20160202-3950-1d09pfw?1454477979=\u0026response-content-disposition=attachment%3B+filename%3DConvergence_in_reaction_diffusion_system.pdf\u0026Expires=1743655926\u0026Signature=cdvB-8Cjepro1o~qp11SFWPCqZkDoRtNKeiCJK6A1sR~76ekexdamt0nR0YKVmfDPfB~JT05UlvxEYDn2jGSz5DGlOFDY29cYJEehKwIcIclL0ZwwuWI4tTpTh4nAYkZJT4KpAbzV-3HB3XcGPhYSFeRR7exeCJrm~D-V7Ss1CKe5xWCuvdgz7AoBfTLOqFc5f9UB2ZvNr9OPZFZfwzgpLeZ6vLqmfZKCnibj0pWpWM2G9ekImsLvoiRgkd2a0LnR~ZVBTz5fmxX~Hv~gPj9lUX5UoxgigBAOUNfUU4qb~k1hhkRmL3Q10Ueq6hPX7NnKp8nxButR~9ZtIFktdcgrA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Convergence_in_reaction_diffusion_systems_an_information_theory_approach","translated_slug":"","page_count":18,"language":"en","content_type":"Work","summary":"... Miguel A. Fuentes , Marcelo N. Kuperman 1 and Horacio S. Wio 2 , Corresponding Author Contact Information , E-mail The Corresponding Author. ... However, Graham and collaborators [22, 23, 24, 33, 34, 35 and 36] who have been pioneers in introducing those concepts ...","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[{"id":41918598,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41918598/thumbnails/1.jpg","file_name":"s0378-4371_2899_2900256-3.pdf20160202-3950-1d09pfw","download_url":"https://www.academia.edu/attachments/41918598/download_file","bulk_download_file_name":"Convergence_in_reaction_diffusion_system.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41918598/s0378-4371_2899_2900256-3-libre.pdf20160202-3950-1d09pfw?1454477979=\u0026response-content-disposition=attachment%3B+filename%3DConvergence_in_reaction_diffusion_system.pdf\u0026Expires=1743655926\u0026Signature=cdvB-8Cjepro1o~qp11SFWPCqZkDoRtNKeiCJK6A1sR~76ekexdamt0nR0YKVmfDPfB~JT05UlvxEYDn2jGSz5DGlOFDY29cYJEehKwIcIclL0ZwwuWI4tTpTh4nAYkZJT4KpAbzV-3HB3XcGPhYSFeRR7exeCJrm~D-V7Ss1CKe5xWCuvdgz7AoBfTLOqFc5f9UB2ZvNr9OPZFZfwzgpLeZ6vLqmfZKCnibj0pWpWM2G9ekImsLvoiRgkd2a0LnR~ZVBTz5fmxX~Hv~gPj9lUX5UoxgigBAOUNfUU4qb~k1hhkRmL3Q10Ueq6hPX7NnKp8nxButR~9ZtIFktdcgrA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881492-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881491"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20881491/Stochastic_resonance_in_an_activator_inhibitor_system_through_adiabatic_and_quasi_variational_approaches"><img alt="Research paper thumbnail of Stochastic resonance in an activator–inhibitor system through adiabatic and quasi-variational approaches" class="work-thumbnail" src="https://attachments.academia-assets.com/41611758/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20881491/Stochastic_resonance_in_an_activator_inhibitor_system_through_adiabatic_and_quasi_variational_approaches">Stochastic resonance in an activator–inhibitor system through adiabatic and quasi-variational approaches</a></div><div class="wp-workCard_item"><span>Physica A: Statistical Mechanics and its Applications</span><span>, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study the phenomenon of stochastic resonance in a spatially extended system. An activatorinhib...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study the phenomenon of stochastic resonance in a spatially extended system. An activatorinhibitor reaction-di usion model is analyzed through two di erent approximations: an adiabatic one leading to a known form of the Graham's nonequilibrium potential, and a quasi-variational approach that allows to obtain an approximated form of Graham's potential for a di erent parameter region. Those potentials have been exploited to obtain, ÿrstly the probability for the decay of the metastable extended states, and secondly expressions for the correlation function and for the signal-to-noise ratio, within the framework of a two state description. The analytical results show how this ratio depends on both local and nonlocal coupling parameters.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a14a5eeb806a22380ae67167fa3ab1bf" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41611758,"asset_id":20881491,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41611758/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881491"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881491"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881491; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881491]").text(description); $(".js-view-count[data-work-id=20881491]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881491; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881491']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a14a5eeb806a22380ae67167fa3ab1bf" } } $('.js-work-strip[data-work-id=20881491]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881491,"title":"Stochastic resonance in an activator–inhibitor system through adiabatic and quasi-variational approaches","translated_title":"","metadata":{"ai_title_tag":"Stochastic Resonance in Activator-Inhibitor Systems","grobid_abstract":"We study the phenomenon of stochastic resonance in a spatially extended system. An activatorinhibitor reaction-di usion model is analyzed through two di erent approximations: an adiabatic one leading to a known form of the Graham's nonequilibrium potential, and a quasi-variational approach that allows to obtain an approximated form of Graham's potential for a di erent parameter region. Those potentials have been exploited to obtain, ÿrstly the probability for the decay of the metastable extended states, and secondly expressions for the correlation function and for the signal-to-noise ratio, within the framework of a two state description. The analytical results show how this ratio depends on both local and nonlocal coupling parameters.","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"Physica A: Statistical Mechanics and its Applications","grobid_abstract_attachment_id":41611758},"translated_abstract":null,"internal_url":"https://www.academia.edu/20881491/Stochastic_resonance_in_an_activator_inhibitor_system_through_adiabatic_and_quasi_variational_approaches","translated_internal_url":"","created_at":"2016-01-26T23:57:22.103-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41611758,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611758/thumbnails/1.jpg","file_name":"Stochastic_resonance_in_an_activatorinhi20160126-26079-1jzl0u4.pdf","download_url":"https://www.academia.edu/attachments/41611758/download_file","bulk_download_file_name":"Stochastic_resonance_in_an_activator_inh.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611758/Stochastic_resonance_in_an_activatorinhi20160126-26079-1jzl0u4-libre.pdf?1453881867=\u0026response-content-disposition=attachment%3B+filename%3DStochastic_resonance_in_an_activator_inh.pdf\u0026Expires=1743655926\u0026Signature=a0JSz~1TaWZrOGYAGogobEIbXflNepz12WoLC7rFY29G2Sz~GiH1VjVX3Ja45h3YnrFW~TUTa~qZc-KIOJvycqayfNjHRhb54Ci-jqQsNDr2JKAXOEia8r7kZsxzUZ3SpOQRB6~zkyXOzsmu-T0TdGNa-Vd8yxWz5cMp0syffY6mHeOkfKiPyuCuowQgfehMNUKNsIQLy8135cAXz6uyPV2HoNHZhWyd3nIA-L~MKBLlNrW7jbnB56VMVDgIChme-HsfcGz2huxK7QrqEJdHzLn65PpsJaKe9rzr-XOuDeAj8qnQ60M9Pa~A2iTlC3RMYh1hqmi6-~qLFJYUepshmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Stochastic_resonance_in_an_activator_inhibitor_system_through_adiabatic_and_quasi_variational_approaches","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"We study the phenomenon of stochastic resonance in a spatially extended system. An activatorinhibitor reaction-di usion model is analyzed through two di erent approximations: an adiabatic one leading to a known form of the Graham's nonequilibrium potential, and a quasi-variational approach that allows to obtain an approximated form of Graham's potential for a di erent parameter region. Those potentials have been exploited to obtain, ÿrstly the probability for the decay of the metastable extended states, and secondly expressions for the correlation function and for the signal-to-noise ratio, within the framework of a two state description. The analytical results show how this ratio depends on both local and nonlocal coupling parameters.","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[{"id":41611758,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611758/thumbnails/1.jpg","file_name":"Stochastic_resonance_in_an_activatorinhi20160126-26079-1jzl0u4.pdf","download_url":"https://www.academia.edu/attachments/41611758/download_file","bulk_download_file_name":"Stochastic_resonance_in_an_activator_inh.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611758/Stochastic_resonance_in_an_activatorinhi20160126-26079-1jzl0u4-libre.pdf?1453881867=\u0026response-content-disposition=attachment%3B+filename%3DStochastic_resonance_in_an_activator_inh.pdf\u0026Expires=1743655926\u0026Signature=a0JSz~1TaWZrOGYAGogobEIbXflNepz12WoLC7rFY29G2Sz~GiH1VjVX3Ja45h3YnrFW~TUTa~qZc-KIOJvycqayfNjHRhb54Ci-jqQsNDr2JKAXOEia8r7kZsxzUZ3SpOQRB6~zkyXOzsmu-T0TdGNa-Vd8yxWz5cMp0syffY6mHeOkfKiPyuCuowQgfehMNUKNsIQLy8135cAXz6uyPV2HoNHZhWyd3nIA-L~MKBLlNrW7jbnB56VMVDgIChme-HsfcGz2huxK7QrqEJdHzLn65PpsJaKe9rzr-XOuDeAj8qnQ60M9Pa~A2iTlC3RMYh1hqmi6-~qLFJYUepshmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":112233,"name":"Reaction-Diffusion Systems","url":"https://www.academia.edu/Documents/in/Reaction-Diffusion_Systems"},{"id":336880,"name":"Variational Approach","url":"https://www.academia.edu/Documents/in/Variational_Approach"},{"id":472459,"name":"Stochastic Resonance","url":"https://www.academia.edu/Documents/in/Stochastic_Resonance"},{"id":991311,"name":"Signal to Noise Ratio","url":"https://www.academia.edu/Documents/in/Signal_to_Noise_Ratio"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881491-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881490"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/20881490/Stochastic_resonant_media_Signal_to_noise_ratio_for_the_activator_inhibitor_system_through_a_quasivariational_approach"><img alt="Research paper thumbnail of Stochastic resonant media: Signal-to-noise ratio for the activator-inhibitor system through a quasivariational approach" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Stochastic resonant media: Signal-to-noise ratio for the activator-inhibitor system through a quasivariational approach</div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT We have made an analytical study of the phenomenon of stochastic resonance in a spatiall...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT We have made an analytical study of the phenomenon of stochastic resonance in a spatially extended stochastic system of the activator-inhibitor kind. In its bistable regime, through a quasivariational approach we make an approximate evaluation of the nonequilibrium potential for this system. The latter in turn allows us to obtain the probability for the decay of the (extended) metastable states and through it the signal-to-noise ratio within the framework of a two-state description. The analytical results show that this ratio increases with the activator’s diffusivity, whereas it exhibits nonmonotonic behavior against variation of the coupling between both fields.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881490"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881490"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881490; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881490]").text(description); $(".js-view-count[data-work-id=20881490]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881490; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881490']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20881490]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881490,"title":"Stochastic resonant media: Signal-to-noise ratio for the activator-inhibitor system through a quasivariational approach","translated_title":"","metadata":{"abstract":"ABSTRACT We have made an analytical study of the phenomenon of stochastic resonance in a spatially extended stochastic system of the activator-inhibitor kind. In its bistable regime, through a quasivariational approach we make an approximate evaluation of the nonequilibrium potential for this system. The latter in turn allows us to obtain the probability for the decay of the (extended) metastable states and through it the signal-to-noise ratio within the framework of a two-state description. The analytical results show that this ratio increases with the activator’s diffusivity, whereas it exhibits nonmonotonic behavior against variation of the coupling between both fields.","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"Physical Review E"},"translated_abstract":"ABSTRACT We have made an analytical study of the phenomenon of stochastic resonance in a spatially extended stochastic system of the activator-inhibitor kind. In its bistable regime, through a quasivariational approach we make an approximate evaluation of the nonequilibrium potential for this system. The latter in turn allows us to obtain the probability for the decay of the (extended) metastable states and through it the signal-to-noise ratio within the framework of a two-state description. The analytical results show that this ratio increases with the activator’s diffusivity, whereas it exhibits nonmonotonic behavior against variation of the coupling between both fields.","internal_url":"https://www.academia.edu/20881490/Stochastic_resonant_media_Signal_to_noise_ratio_for_the_activator_inhibitor_system_through_a_quasivariational_approach","translated_internal_url":"","created_at":"2016-01-26T23:57:21.890-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Stochastic_resonant_media_Signal_to_noise_ratio_for_the_activator_inhibitor_system_through_a_quasivariational_approach","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT We have made an analytical study of the phenomenon of stochastic resonance in a spatially extended stochastic system of the activator-inhibitor kind. In its bistable regime, through a quasivariational approach we make an approximate evaluation of the nonequilibrium potential for this system. The latter in turn allows us to obtain the probability for the decay of the (extended) metastable states and through it the signal-to-noise ratio within the framework of a two-state description. The analytical results show that this ratio increases with the activator’s diffusivity, whereas it exhibits nonmonotonic behavior against variation of the coupling between both fields.","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":472459,"name":"Stochastic Resonance","url":"https://www.academia.edu/Documents/in/Stochastic_Resonance"},{"id":991311,"name":"Signal to Noise Ratio","url":"https://www.academia.edu/Documents/in/Signal_to_Noise_Ratio"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881490-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881489"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20881489/Nonlocal_interaction_effects_on_pattern_formation_in_population_dynamics"><img alt="Research paper thumbnail of Nonlocal interaction effects on pattern formation in population dynamics" class="work-thumbnail" src="https://attachments.academia-assets.com/41611754/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20881489/Nonlocal_interaction_effects_on_pattern_formation_in_population_dynamics">Nonlocal interaction effects on pattern formation in population dynamics</a></div><div class="wp-workCard_item"><span>Physical review letters</span><span>, Jan 10, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We consider a model for population dynamics such as for the evolution of bacterial colonies which...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We consider a model for population dynamics such as for the evolution of bacterial colonies which is of the Fisher type but where the competitive interaction among individuals is nonlocal, and show that spatial structures with interesting features emerge. These features depend on the nature of the competitive interaction as well as on its range, specifically on the presence or absence of tails in, and the central curvature of, the influence function of the interaction.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="08d245a04603247095ab488f3ae8f90e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41611754,"asset_id":20881489,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41611754/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881489"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881489"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881489; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881489]").text(description); $(".js-view-count[data-work-id=20881489]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881489; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881489']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "08d245a04603247095ab488f3ae8f90e" } } $('.js-work-strip[data-work-id=20881489]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881489,"title":"Nonlocal interaction effects on pattern formation in population dynamics","translated_title":"","metadata":{"abstract":"We consider a model for population dynamics such as for the evolution of bacterial colonies which is of the Fisher type but where the competitive interaction among individuals is nonlocal, and show that spatial structures with interesting features emerge. These features depend on the nature of the competitive interaction as well as on its range, specifically on the presence or absence of tails in, and the central curvature of, the influence function of the interaction.","publication_date":{"day":10,"month":1,"year":2003,"errors":{}},"publication_name":"Physical review letters"},"translated_abstract":"We consider a model for population dynamics such as for the evolution of bacterial colonies which is of the Fisher type but where the competitive interaction among individuals is nonlocal, and show that spatial structures with interesting features emerge. These features depend on the nature of the competitive interaction as well as on its range, specifically on the presence or absence of tails in, and the central curvature of, the influence function of the interaction.","internal_url":"https://www.academia.edu/20881489/Nonlocal_interaction_effects_on_pattern_formation_in_population_dynamics","translated_internal_url":"","created_at":"2016-01-26T23:57:21.592-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41611754,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611754/thumbnails/1.jpg","file_name":"Nonlocal_Interaction_Effects_on_Pattern_20160126-14159-1saqlom.pdf","download_url":"https://www.academia.edu/attachments/41611754/download_file","bulk_download_file_name":"Nonlocal_interaction_effects_on_pattern.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611754/Nonlocal_Interaction_Effects_on_Pattern_20160126-14159-1saqlom-libre.pdf?1453881869=\u0026response-content-disposition=attachment%3B+filename%3DNonlocal_interaction_effects_on_pattern.pdf\u0026Expires=1743655926\u0026Signature=I7aQ1yqFKZFkS0~1JbILKE64Zmp0RT7~PKeCCwGO-YVltmAu0pwj-9jPw6LJFSZvArS0rHVL34S0Wyzn15R-houdJfID9k6ATz78TOU~xyjR2Q32XjnSQF-52WZCYIXZbsi-N1zEj8aXDhpEaAvTc7kXLuasFg2t01~AO5QJbDcFb3XoePa4-DlQVTYb-74RT6y7NLT6EnXO5JZH-j4El69hwJzCiH5YZufBP7aZV2P2VquGLe2d0~c57tfR9mZrUAsigI-xmsDduq9FbrLhSEGh8~qmThL1DLvOv2a8XPU0bZqEcpsUg0QtAg~AvNlQYw3mt-~5~theiQ9ZYCBO3g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Nonlocal_interaction_effects_on_pattern_formation_in_population_dynamics","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"We consider a model for population dynamics such as for the evolution of bacterial colonies which is of the Fisher type but where the competitive interaction among individuals is nonlocal, and show that spatial structures with interesting features emerge. These features depend on the nature of the competitive interaction as well as on its range, specifically on the presence or absence of tails in, and the central curvature of, the influence function of the interaction.","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[{"id":41611754,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611754/thumbnails/1.jpg","file_name":"Nonlocal_Interaction_Effects_on_Pattern_20160126-14159-1saqlom.pdf","download_url":"https://www.academia.edu/attachments/41611754/download_file","bulk_download_file_name":"Nonlocal_interaction_effects_on_pattern.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611754/Nonlocal_Interaction_Effects_on_Pattern_20160126-14159-1saqlom-libre.pdf?1453881869=\u0026response-content-disposition=attachment%3B+filename%3DNonlocal_interaction_effects_on_pattern.pdf\u0026Expires=1743655926\u0026Signature=I7aQ1yqFKZFkS0~1JbILKE64Zmp0RT7~PKeCCwGO-YVltmAu0pwj-9jPw6LJFSZvArS0rHVL34S0Wyzn15R-houdJfID9k6ATz78TOU~xyjR2Q32XjnSQF-52WZCYIXZbsi-N1zEj8aXDhpEaAvTc7kXLuasFg2t01~AO5QJbDcFb3XoePa4-DlQVTYb-74RT6y7NLT6EnXO5JZH-j4El69hwJzCiH5YZufBP7aZV2P2VquGLe2d0~c57tfR9mZrUAsigI-xmsDduq9FbrLhSEGh8~qmThL1DLvOv2a8XPU0bZqEcpsUg0QtAg~AvNlQYw3mt-~5~theiQ9ZYCBO3g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":11417,"name":"Population Dynamics","url":"https://www.academia.edu/Documents/in/Population_Dynamics"},{"id":113903,"name":"Bacteria","url":"https://www.academia.edu/Documents/in/Bacteria"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881489-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881488"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/20881488/Pattern_formation_in_catalytic_processes_Phase_field_model"><img alt="Research paper thumbnail of Pattern formation in catalytic processes: Phase-field model" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Pattern formation in catalytic processes: Phase-field model</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881488"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881488"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881488; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881488]").text(description); $(".js-view-count[data-work-id=20881488]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881488; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881488']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20881488]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881488,"title":"Pattern formation in catalytic processes: Phase-field model","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/20881488/Pattern_formation_in_catalytic_processes_Phase_field_model","translated_internal_url":"","created_at":"2016-01-26T23:57:21.404-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Pattern_formation_in_catalytic_processes_Phase_field_model","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[],"research_interests":[{"id":8383,"name":"Pattern Formation","url":"https://www.academia.edu/Documents/in/Pattern_Formation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881488-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881487"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/20881487/IX_Latin_American_Workshop_on_Nonlinear_Phenomena_Proceedings_of_the_IXth_Latin_American_Workshop_on_Nonlinear_Phenomena_San_Carlos_de_Bariloche_Argentina_23_28_October_2005"><img alt="Research paper thumbnail of IX Latin American Workshop on Nonlinear Phenomena: Proceedings of the IXth Latin American Workshop on Nonlinear Phenomena, San Carlos de Bariloche, Argentina, 23-28 October 2005" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">IX Latin American Workshop on Nonlinear Phenomena: Proceedings of the IXth Latin American Workshop on Nonlinear Phenomena, San Carlos de Bariloche, Argentina, 23-28 October 2005</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881487"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881487"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881487; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881487]").text(description); $(".js-view-count[data-work-id=20881487]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881487; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881487']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20881487]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881487,"title":"IX Latin American Workshop on Nonlinear Phenomena: Proceedings of the IXth Latin American Workshop on Nonlinear Phenomena, San Carlos de Bariloche, Argentina, 23-28 October 2005","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/20881487/IX_Latin_American_Workshop_on_Nonlinear_Phenomena_Proceedings_of_the_IXth_Latin_American_Workshop_on_Nonlinear_Phenomena_San_Carlos_de_Bariloche_Argentina_23_28_October_2005","translated_internal_url":"","created_at":"2016-01-26T23:57:21.153-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"IX_Latin_American_Workshop_on_Nonlinear_Phenomena_Proceedings_of_the_IXth_Latin_American_Workshop_on_Nonlinear_Phenomena_San_Carlos_de_Bariloche_Argentina_23_28_October_2005","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881487-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881486"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/20881486/Evolution_of_reaction_diffusion_patterns_in_infinite_and_bounded_domains"><img alt="Research paper thumbnail of Evolution of reaction-diffusion patterns in infinite and bounded domains" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Evolution of reaction-diffusion patterns in infinite and bounded domains</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881486"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881486"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881486; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881486]").text(description); $(".js-view-count[data-work-id=20881486]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881486; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881486']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=20881486]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881486,"title":"Evolution of reaction-diffusion patterns in infinite and bounded domains","translated_title":"","metadata":{"abstract":"ABSTRACT"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/20881486/Evolution_of_reaction_diffusion_patterns_in_infinite_and_bounded_domains","translated_internal_url":"","created_at":"2016-01-26T23:57:21.014-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Evolution_of_reaction_diffusion_patterns_in_infinite_and_bounded_domains","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":112233,"name":"Reaction-Diffusion Systems","url":"https://www.academia.edu/Documents/in/Reaction-Diffusion_Systems"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881486-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="13248349"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13248349/Social_games_in_a_social_network"><img alt="Research paper thumbnail of Social games in a social network" class="work-thumbnail" src="https://attachments.academia-assets.com/45552353/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13248349/Social_games_in_a_social_network">Social games in a social network</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://uncu.academia.edu/GuillermoAbramson">Guillermo Abramson</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://uncu.academia.edu/MKuperman">Marcelo N Kuperman</a></span></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study an evolutionary version of the Prisoner's Dilemma game, played by agents placed in a sma...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study an evolutionary version of the Prisoner's Dilemma game, played by agents placed in a small-world network. Agents are able to change their strategy, imitating that of the most successful neighbor. We observe that different topologies, ranging from regular lattices to random graphs, produce a variety of emergent behaviors. This is a contribution towards the study of social phenomena and transitions governed by the topology of the community.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bb016797bceea76b1963d9d6bfc1c9b2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":45552353,"asset_id":13248349,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/45552353/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13248349"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13248349"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13248349; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13248349]").text(description); $(".js-view-count[data-work-id=13248349]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13248349; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13248349']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bb016797bceea76b1963d9d6bfc1c9b2" } } $('.js-work-strip[data-work-id=13248349]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13248349,"title":"Social games in a social network","translated_title":"","metadata":{"grobid_abstract":"We study an evolutionary version of the Prisoner's Dilemma game, played by agents placed in a small-world network. Agents are able to change their strategy, imitating that of the most successful neighbor. We observe that different topologies, ranging from regular lattices to random graphs, produce a variety of emergent behaviors. This is a contribution towards the study of social phenomena and transitions governed by the topology of the community.","publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"publication_name":"Physical Review E","grobid_abstract_attachment_id":45552353},"translated_abstract":null,"internal_url":"https://www.academia.edu/13248349/Social_games_in_a_social_network","translated_internal_url":"","created_at":"2015-06-24T11:20:24.925-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32505072,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1494795,"work_id":13248349,"tagging_user_id":32505072,"tagged_user_id":32568803,"co_author_invite_id":431169,"email":"k***n@cab.cnea.gov.ar","affiliation":"Universidad Nacional de Cuyo","display_order":0,"name":"Marcelo N Kuperman","title":"Social games in a social network"}],"downloadable_attachments":[{"id":45552353,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45552353/thumbnails/1.jpg","file_name":"Social_games_in_a_social_network20160511-949-zhfmjv.pdf","download_url":"https://www.academia.edu/attachments/45552353/download_file","bulk_download_file_name":"Social_games_in_a_social_network.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45552353/Social_games_in_a_social_network20160511-949-zhfmjv-libre.pdf?1463004928=\u0026response-content-disposition=attachment%3B+filename%3DSocial_games_in_a_social_network.pdf\u0026Expires=1743655927\u0026Signature=dMJXlGnHosJvQUNQYvf7TnilABB999pdNq7h87n4YyXmK66G-4Mz7XDcxmsj22W72HbasxfWlFV9627qiaAk30fwUgvxQreKd1tEguJ07qBTugokqdfEjF72~6zGzQS7SKl81YzbbmHln7LGXQPkcp7OPlraVLHIkAymB~f1NbTf2AwsPFrkIhrd1tXg8fAB9egJaVhv6l~rDy5XGlSyO3-ibClZZKZIfJVT18GQ6tf3PS5~yv8EFJpsZX64hciqyDb9AzMocna~~PQs7JDjX1daBWAkD7mx4AUI6eCjyZlD8v4dDUCn42s56sxKOZAbWBMlXPOEluFXwqsFrBwvXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Social_games_in_a_social_network","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"We study an evolutionary version of the Prisoner's Dilemma game, played by agents placed in a small-world network. Agents are able to change their strategy, imitating that of the most successful neighbor. We observe that different topologies, ranging from regular lattices to random graphs, produce a variety of emergent behaviors. This is a contribution towards the study of social phenomena and transitions governed by the topology of the community.","owner":{"id":32505072,"first_name":"Guillermo","middle_initials":null,"last_name":"Abramson","page_name":"GuillermoAbramson","domain_name":"uncu","created_at":"2015-06-24T11:18:20.773-07:00","display_name":"Guillermo Abramson","url":"https://uncu.academia.edu/GuillermoAbramson"},"attachments":[{"id":45552353,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45552353/thumbnails/1.jpg","file_name":"Social_games_in_a_social_network20160511-949-zhfmjv.pdf","download_url":"https://www.academia.edu/attachments/45552353/download_file","bulk_download_file_name":"Social_games_in_a_social_network.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45552353/Social_games_in_a_social_network20160511-949-zhfmjv-libre.pdf?1463004928=\u0026response-content-disposition=attachment%3B+filename%3DSocial_games_in_a_social_network.pdf\u0026Expires=1743655927\u0026Signature=dMJXlGnHosJvQUNQYvf7TnilABB999pdNq7h87n4YyXmK66G-4Mz7XDcxmsj22W72HbasxfWlFV9627qiaAk30fwUgvxQreKd1tEguJ07qBTugokqdfEjF72~6zGzQS7SKl81YzbbmHln7LGXQPkcp7OPlraVLHIkAymB~f1NbTf2AwsPFrkIhrd1tXg8fAB9egJaVhv6l~rDy5XGlSyO3-ibClZZKZIfJVT18GQ6tf3PS5~yv8EFJpsZX64hciqyDb9AzMocna~~PQs7JDjX1daBWAkD7mx4AUI6eCjyZlD8v4dDUCn42s56sxKOZAbWBMlXPOEluFXwqsFrBwvXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":757,"name":"Game Theory","url":"https://www.academia.edu/Documents/in/Game_Theory"},{"id":1681,"name":"Decision Making","url":"https://www.academia.edu/Documents/in/Decision_Making"},{"id":5493,"name":"Nonlinear dynamics","url":"https://www.academia.edu/Documents/in/Nonlinear_dynamics"},{"id":11417,"name":"Population Dynamics","url":"https://www.academia.edu/Documents/in/Population_Dynamics"},{"id":19988,"name":"Group Processes","url":"https://www.academia.edu/Documents/in/Group_Processes"},{"id":25660,"name":"Decision Theory","url":"https://www.academia.edu/Documents/in/Decision_Theory"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":137551,"name":"Social Isolation","url":"https://www.academia.edu/Documents/in/Social_Isolation"},{"id":372231,"name":"Social System","url":"https://www.academia.edu/Documents/in/Social_System"},{"id":377792,"name":"Emergent Behavior","url":"https://www.academia.edu/Documents/in/Emergent_Behavior"},{"id":1153482,"name":"Cooperative Behavior","url":"https://www.academia.edu/Documents/in/Cooperative_Behavior"},{"id":1199379,"name":"Social Network","url":"https://www.academia.edu/Documents/in/Social_Network"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-13248349-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881485"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20881485/Analytic_considerations_in_the_study_of_spatial_patterns_arising_from_non_local_interaction_effects_in_population_dynamics"><img alt="Research paper thumbnail of Analytic considerations in the study of spatial patterns arising from non-local interaction effects in population dynamics" class="work-thumbnail" src="https://attachments.academia-assets.com/41611652/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20881485/Analytic_considerations_in_the_study_of_spatial_patterns_arising_from_non_local_interaction_effects_in_population_dynamics">Analytic considerations in the study of spatial patterns arising from non-local interaction effects in population dynamics</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Simple analytic considerations are applied to recently discovered patterns in a generalized Fishe...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Simple analytic considerations are applied to recently discovered patterns in a generalized Fisher equation for population dynamics. The generalization consists of the inclusion of non-local competition interactions among individuals. We first show how stability arguments yield a condition for pattern formation involving the ratio of the pattern wavelength and the effective diffusion length of the individuals. We develop a mode-mode</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-20881485-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-20881485-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33214600/figure-1-the-dispersion-relation-between-the-dimensionless"><img alt="FIG. 1: The dispersion relation (9) between the dimensionless growth exponent y and wavenumber k’ plotted for different values of the ratio 7 of the influence function range to the diffusion length (see text). Values of 7 are 50 (solid line), 10 (dashed line), and 2 (dotted line). Patterns appear for those values of k’ for which ¢ is positive. " class="figure-slide-image" src="https://figures.academia-assets.com/41611652/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33214603/figure-2-the-dispersion-relation-between-the-dimension-less"><img alt="FIG. 2: The dispersion relation between the dimension- less growth exponent y and wavenumber k plotted for the intermediate influence function. Values of 7 are as in Fig. 1: 50 (solid line), 10 (dashed line), and 2 (dotted line). Patterns appear for those values of k’ for which p is positive. " class="figure-slide-image" src="https://figures.academia-assets.com/41611652/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/33214606/figure-3-in-explicitly-noting-that-mn-and-using-the"><img alt="in @), explicitly noting that k, = mn/L, and using the orthogonality properties of trigonometric functions, ob- tain separate equations for the n = 0 mode, Equations and are the complete set of equations for the evolution of the amplitudes of all modes in the non-local problem given by Eq. @). The appearance of stable patterns only for those values of k,, for which y is positive as seen in our Figs. 1 and 2, suggests that we envisage an interaction between only two modes, the zero mode and the one whose growth we examine, say n = m. In a situation as in the plots shown in which y > 0 only for a small k— range, the discrete nature of the allowed k values could lead to only a single non-zero mode lying in the stable range. Then we would have only two coupled nonlinear equations for the mode amplitudes, " class="figure-slide-image" src="https://figures.academia-assets.com/41611652/figure_003.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-20881485-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ec95eaa4b29be08d6d18dd5b978684a0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41611652,"asset_id":20881485,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41611652/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881485"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881485"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881485; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881485]").text(description); $(".js-view-count[data-work-id=20881485]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881485; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881485']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ec95eaa4b29be08d6d18dd5b978684a0" } } $('.js-work-strip[data-work-id=20881485]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881485,"title":"Analytic considerations in the study of spatial patterns arising from non-local interaction effects in population dynamics","translated_title":"","metadata":{"abstract":"Simple analytic considerations are applied to recently discovered patterns in a generalized Fisher equation for population dynamics. The generalization consists of the inclusion of non-local competition interactions among individuals. We first show how stability arguments yield a condition for pattern formation involving the ratio of the pattern wavelength and the effective diffusion length of the individuals. We develop a mode-mode","publication_date":{"day":null,"month":null,"year":2003,"errors":{}}},"translated_abstract":"Simple analytic considerations are applied to recently discovered patterns in a generalized Fisher equation for population dynamics. The generalization consists of the inclusion of non-local competition interactions among individuals. We first show how stability arguments yield a condition for pattern formation involving the ratio of the pattern wavelength and the effective diffusion length of the individuals. We develop a mode-mode","internal_url":"https://www.academia.edu/20881485/Analytic_considerations_in_the_study_of_spatial_patterns_arising_from_non_local_interaction_effects_in_population_dynamics","translated_internal_url":"","created_at":"2016-01-26T23:57:20.321-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41611652,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611652/thumbnails/1.jpg","file_name":"0311017.pdf","download_url":"https://www.academia.edu/attachments/41611652/download_file","bulk_download_file_name":"Analytic_considerations_in_the_study_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611652/0311017-libre.pdf?1453881598=\u0026response-content-disposition=attachment%3B+filename%3DAnalytic_considerations_in_the_study_of.pdf\u0026Expires=1743655927\u0026Signature=gHIeGrxDne~ZToK3LCFNAL6QtD6w1CIajQ8YLwrsItoE47Su4aZMJVZrZJxXVdLlKh-rtmpnvE1QTH0zH~5eCgxY27svqWpPedCIV26sNS4SNrbBQNFrXOJJiwQ2epOEziBbgzy4Gythw8ASpnJ8oI2x653V0dFl4yM1wT4pk-37NzQe5H~TmoNJ-5D-nPGPAfcB27SyGvoURFKaYNgWV2bIBEvOEY64~CmNt1nJ-C70GVh-LVIw8Vk8PEWjmG4-STdcw7so9KRglKuc9FDn0WtB8mc-Xh7KDh-BjoOPRSmQFyqp~odghcr8ZMCBRKxre2Te0YLgJmCQQhf~cxDyRA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Analytic_considerations_in_the_study_of_spatial_patterns_arising_from_non_local_interaction_effects_in_population_dynamics","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"Simple analytic considerations are applied to recently discovered patterns in a generalized Fisher equation for population dynamics. The generalization consists of the inclusion of non-local competition interactions among individuals. We first show how stability arguments yield a condition for pattern formation involving the ratio of the pattern wavelength and the effective diffusion length of the individuals. We develop a mode-mode","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[{"id":41611652,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611652/thumbnails/1.jpg","file_name":"0311017.pdf","download_url":"https://www.academia.edu/attachments/41611652/download_file","bulk_download_file_name":"Analytic_considerations_in_the_study_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611652/0311017-libre.pdf?1453881598=\u0026response-content-disposition=attachment%3B+filename%3DAnalytic_considerations_in_the_study_of.pdf\u0026Expires=1743655927\u0026Signature=gHIeGrxDne~ZToK3LCFNAL6QtD6w1CIajQ8YLwrsItoE47Su4aZMJVZrZJxXVdLlKh-rtmpnvE1QTH0zH~5eCgxY27svqWpPedCIV26sNS4SNrbBQNFrXOJJiwQ2epOEziBbgzy4Gythw8ASpnJ8oI2x653V0dFl4yM1wT4pk-37NzQe5H~TmoNJ-5D-nPGPAfcB27SyGvoURFKaYNgWV2bIBEvOEY64~CmNt1nJ-C70GVh-LVIw8Vk8PEWjmG4-STdcw7so9KRglKuc9FDn0WtB8mc-Xh7KDh-BjoOPRSmQFyqp~odghcr8ZMCBRKxre2Te0YLgJmCQQhf~cxDyRA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":41611653,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611653/thumbnails/1.jpg","file_name":"0311017.pdf","download_url":"https://www.academia.edu/attachments/41611653/download_file","bulk_download_file_name":"Analytic_considerations_in_the_study_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611653/0311017-libre.pdf?1453881598=\u0026response-content-disposition=attachment%3B+filename%3DAnalytic_considerations_in_the_study_of.pdf\u0026Expires=1743655927\u0026Signature=McDceqPlI-XU4ZwtBMRgqH8AXKrvF5Jh~yfsrMS2aUIudD6J7DxDHkhP4xP27fZ-Pkfk8R~ymgYift3X5CRQK1j-PePjF1nYQT4ZDvBjxOQSqAcSZL0gyRyyvZ2y6gXxIxNUplw6EQ8yrjdLMKWL63i6xjqWBINNEoxotJzEtu4o3O4j6vciDTYZaGxvft0l4~qc5ZULwsgCkfvhIOsQQCS9e3QJegPogAAlDnFDiC49z0nQrPI06Jqs0uV5TbFJdt5plJhvglpKn7pBWYjRLE3ead~CbAC8X7T1phOOo1a5hndIjQez1TKK-8hFlGUIVu0LO~U~DBqdeVwGd~8iBQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":8383,"name":"Pattern Formation","url":"https://www.academia.edu/Documents/in/Pattern_Formation"},{"id":286413,"name":"Spatial Pattern","url":"https://www.academia.edu/Documents/in/Spatial_Pattern"},{"id":1237825,"name":"Population dynamic","url":"https://www.academia.edu/Documents/in/Population_dynamic"}],"urls":[{"id":6244282,"url":"http://arxiv.org/abs/nlin/0311017"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-20881485-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="20881484"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20881484/Invited_review_Epidemics_on_social_networks"><img alt="Research paper thumbnail of Invited review: Epidemics on social networks" class="work-thumbnail" src="https://attachments.academia-assets.com/41611743/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20881484/Invited_review_Epidemics_on_social_networks">Invited review: Epidemics on social networks</a></div><div class="wp-workCard_item"><span>Papers in Physics</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Since its rst formulations almost a century ago, mathematical models for disease spreading contri...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Since its rst formulations almost a century ago, mathematical models for disease spreading contributed to understand, evaluate and control the epidemic processes. They promoted a dramatic change in how epidemiologists thought of the propagation of infectious diseases. In the last decade, when the traditional epidemiological models seemed to be exhausted, new types of models were developed. These new models incorporated concepts from graph theory to describe and model the underlying social structure. Many of these works merely produced a more detailed extension of the previous results, but some others triggered a completely new paradigm in the mathematical study of epidemic processes. In this review, we will introduce the basic concepts of epidemiology, epidemic modeling and networks, to nally provide a brief description of the most relevant results in the eld. *</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fc894f3859439d655bdab61fb1fecba2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41611743,"asset_id":20881484,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41611743/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20881484"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20881484"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20881484; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20881484]").text(description); $(".js-view-count[data-work-id=20881484]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20881484; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20881484']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fc894f3859439d655bdab61fb1fecba2" } } $('.js-work-strip[data-work-id=20881484]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20881484,"title":"Invited review: Epidemics on social networks","translated_title":"","metadata":{"grobid_abstract":"Since its rst formulations almost a century ago, mathematical models for disease spreading contributed to understand, evaluate and control the epidemic processes. They promoted a dramatic change in how epidemiologists thought of the propagation of infectious diseases. In the last decade, when the traditional epidemiological models seemed to be exhausted, new types of models were developed. These new models incorporated concepts from graph theory to describe and model the underlying social structure. Many of these works merely produced a more detailed extension of the previous results, but some others triggered a completely new paradigm in the mathematical study of epidemic processes. In this review, we will introduce the basic concepts of epidemiology, epidemic modeling and networks, to nally provide a brief description of the most relevant results in the eld. *","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Papers in Physics","grobid_abstract_attachment_id":41611743},"translated_abstract":null,"internal_url":"https://www.academia.edu/20881484/Invited_review_Epidemics_on_social_networks","translated_internal_url":"","created_at":"2016-01-26T23:57:20.067-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32568803,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41611743,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611743/thumbnails/1.jpg","file_name":"Invited_review_Epidemics_on_social_netwo20160126-22146-1uy3xse.pdf","download_url":"https://www.academia.edu/attachments/41611743/download_file","bulk_download_file_name":"Invited_review_Epidemics_on_social_netwo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611743/Invited_review_Epidemics_on_social_netwo20160126-22146-1uy3xse-libre.pdf?1453881819=\u0026response-content-disposition=attachment%3B+filename%3DInvited_review_Epidemics_on_social_netwo.pdf\u0026Expires=1743655927\u0026Signature=YkDLVMvCU7HqNeRkJ2QXeYqW896SGznGOS0WPEn72CUkRtWhnyz5SgcSBhtLZUtYvtBdSnlm-V9CgJzxvOTjmiSdIqh-Qg2-ZtfldeGC8uF~wYISgMD~Buzg0vJNVjFjclzrQke496FZBkmyBRiwa00ESe9cq9QY81vHI67W7eoDIhRdIfNNSHFLVEWPwru-gaVA~T1~6RWqhWV2CNd8MTLbN7Eo4rmbDvv4ii8LyFMBmB89xn1kZ88YnuUob715wxXVqNRDdE4QpI7uC9s4WcP4co3oKMY2iup~q0RGDYN11pqTHB0XIHQJk1Rfdli2XelG7TTdNEisbQDK-W6xww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Invited_review_Epidemics_on_social_networks","translated_slug":"","page_count":17,"language":"en","content_type":"Work","summary":"Since its rst formulations almost a century ago, mathematical models for disease spreading contributed to understand, evaluate and control the epidemic processes. They promoted a dramatic change in how epidemiologists thought of the propagation of infectious diseases. In the last decade, when the traditional epidemiological models seemed to be exhausted, new types of models were developed. These new models incorporated concepts from graph theory to describe and model the underlying social structure. Many of these works merely produced a more detailed extension of the previous results, but some others triggered a completely new paradigm in the mathematical study of epidemic processes. In this review, we will introduce the basic concepts of epidemiology, epidemic modeling and networks, to nally provide a brief description of the most relevant results in the eld. *","owner":{"id":32568803,"first_name":"Marcelo","middle_initials":"N","last_name":"Kuperman","page_name":"MKuperman","domain_name":"uncu","created_at":"2015-06-26T11:44:31.357-07:00","display_name":"Marcelo N Kuperman","url":"https://uncu.academia.edu/MKuperman"},"attachments":[{"id":41611743,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41611743/thumbnails/1.jpg","file_name":"Invited_review_Epidemics_on_social_netwo20160126-22146-1uy3xse.pdf","download_url":"https://www.academia.edu/attachments/41611743/download_file","bulk_download_file_name":"Invited_review_Epidemics_on_social_netwo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41611743/Invited_review_Epidemics_on_social_netwo20160126-22146-1uy3xse-libre.pdf?1453881819=\u0026response-content-disposition=attachment%3B+filename%3DInvited_review_Epidemics_on_social_netwo.pdf\u0026Expires=1743655927\u0026Signature=YkDLVMvCU7HqNeRkJ2QXeYqW896SGznGOS0WPEn72CUkRtWhnyz5SgcSBhtLZUtYvtBdSnlm-V9CgJzxvOTjmiSdIqh-Qg2-ZtfldeGC8uF~wYISgMD~Buzg0vJNVjFjclzrQke496FZBkmyBRiwa00ESe9cq9QY81vHI67W7eoDIhRdIfNNSHFLVEWPwru-gaVA~T1~6RWqhWV2CNd8MTLbN7Eo4rmbDvv4ii8LyFMBmB89xn1kZ88YnuUob715wxXVqNRDdE4QpI7uC9s4WcP4co3oKMY2iup~q0RGDYN11pqTHB0XIHQJk1Rfdli2XelG7TTdNEisbQDK-W6xww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1085,"name":"Epidemiology","url":"https://www.academia.edu/Documents/in/Epidemiology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-20881484-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="13248344"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/13248344/Random_walk_model_to_study_cycles_emerging_from_the_exploration_exploitation_trade_off"><img alt="Research paper thumbnail of Random-walk model to study cycles emerging from the exploration-exploitation trade-off" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Random-walk model to study cycles emerging from the exploration-exploitation trade-off</div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://uncu.academia.edu/GuillermoAbramson">Guillermo Abramson</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://uncu.academia.edu/MKuperman">Marcelo N Kuperman</a></span></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present a model for a random walk with memory, phenomenologically inspired in a biological sys...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present a model for a random walk with memory, phenomenologically inspired in a biological system. The walker has the capacity to remember the time of the last visit to each site and the step taken from there. This memory affects the behavior of the walker each time it reaches an already visited site modulating the probability of repeating previous moves. This probability increases with the time elapsed from the last visit. A biological analog of the walker is a frugivore, with the lattice sites representing plants. The memory effect can be associated with the time needed by plants to recover its fruit load. We propose two different strategies, conservative and explorative, as well as intermediate cases, leading to nonintuitive interesting results, such as the emergence of cycles.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13248344"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13248344"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13248344; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13248344]").text(description); $(".js-view-count[data-work-id=13248344]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13248344; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13248344']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=13248344]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13248344,"title":"Random-walk model to study cycles emerging from the exploration-exploitation trade-off","translated_title":"","metadata":{"abstract":"We present a model for a random walk with memory, phenomenologically inspired in a biological system. The walker has the capacity to remember the time of the last visit to each site and the step taken from there. This memory affects the behavior of the walker each time it reaches an already visited site modulating the probability of repeating previous moves. This probability increases with the time elapsed from the last visit. A biological analog of the walker is a frugivore, with the lattice sites representing plants. The memory effect can be associated with the time needed by plants to recover its fruit load. We propose two different strategies, conservative and explorative, as well as intermediate cases, leading to nonintuitive interesting results, such as the emergence of cycles.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Physical Review E"},"translated_abstract":"We present a model for a random walk with memory, phenomenologically inspired in a biological system. The walker has the capacity to remember the time of the last visit to each site and the step taken from there. This memory affects the behavior of the walker each time it reaches an already visited site modulating the probability of repeating previous moves. This probability increases with the time elapsed from the last visit. A biological analog of the walker is a frugivore, with the lattice sites representing plants. The memory effect can be associated with the time needed by plants to recover its fruit load. We propose two different strategies, conservative and explorative, as well as intermediate cases, leading to nonintuitive interesting results, such as the emergence of cycles.","internal_url":"https://www.academia.edu/13248344/Random_walk_model_to_study_cycles_emerging_from_the_exploration_exploitation_trade_off","translated_internal_url":"","created_at":"2015-06-24T11:20:24.302-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32505072,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":1494794,"work_id":13248344,"tagging_user_id":32505072,"tagged_user_id":32568803,"co_author_invite_id":431169,"email":"k***n@cab.cnea.gov.ar","affiliation":"Universidad Nacional de Cuyo","display_order":0,"name":"Marcelo N Kuperman","title":"Random-walk model to study cycles emerging from the exploration-exploitation trade-off"},{"id":1494809,"work_id":13248344,"tagging_user_id":32505072,"tagged_user_id":5374645,"co_author_invite_id":null,"email":"l***i@gmail.com","display_order":4194304,"name":"Laila Kazimierski","title":"Random-walk model to study cycles emerging from the exploration-exploitation trade-off"}],"downloadable_attachments":[],"slug":"Random_walk_model_to_study_cycles_emerging_from_the_exploration_exploitation_trade_off","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We present a model for a random walk with memory, phenomenologically inspired in a biological system. The walker has the capacity to remember the time of the last visit to each site and the step taken from there. This memory affects the behavior of the walker each time it reaches an already visited site modulating the probability of repeating previous moves. This probability increases with the time elapsed from the last visit. A biological analog of the walker is a frugivore, with the lattice sites representing plants. The memory effect can be associated with the time needed by plants to recover its fruit load. We propose two different strategies, conservative and explorative, as well as intermediate cases, leading to nonintuitive interesting results, such as the emergence of cycles.","owner":{"id":32505072,"first_name":"Guillermo","middle_initials":null,"last_name":"Abramson","page_name":"GuillermoAbramson","domain_name":"uncu","created_at":"2015-06-24T11:18:20.773-07:00","display_name":"Guillermo Abramson","url":"https://uncu.academia.edu/GuillermoAbramson"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-13248344-figures'); } }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "f3a7fe7f2d66071fab90a28bd3374687d8f8502ff45d028b1653ce8e04c47f9d", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="V_luVp4_bIDxq93gy_HdK5clwbd765aIaaosktjXqBWm6yEd0ETfOKpESrZpUa6lRqwM4T8ZaqfVX2H9C1m_dg" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://uncu.academia.edu/MKuperman" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="WKGoL32vD-mHrHQkkzHJFJhyUfAuuT-JbpvQSx3PNtaps-dkM9S8UdxD43IxkbqaSfucpmpLw6bSbp0kzkEhtQ" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>