CINXE.COM
Search results for: Kinexus rheometer
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Kinexus rheometer</title> <meta name="description" content="Search results for: Kinexus rheometer"> <meta name="keywords" content="Kinexus rheometer"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Kinexus rheometer" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Kinexus rheometer"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 46</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Kinexus rheometer</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Rheological Study of Natural Sediments: Application in Filling of Estuaries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Serhal">S. Serhal</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Melinge"> Y. Melinge</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Rangeard"> D. Rangeard</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Hage%20Chehadeh"> F. Hage Chehadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Filling of estuaries is an international problem that can cause economic and environmental damage. This work aims the study of the rheological structuring mechanisms of natural sedimentary liquid-solid mixture in estuaries in order to better understand their filling. The estuary of the Rance river, located in Brittany, France is particularly targeted by the study. The aim is to provide answers on the rheological behavior of natural sediments by detecting structural factors influencing the rheological parameters. So we can better understand the fillings estuarine areas and especially consider sustainable solutions of ‘cleansing’ of these areas. The sediments were collected from the trap of Lyvet in Rance estuary. This trap was created by the association COEUR (Comité Opérationnel des Elus et Usagers de la Rance) in 1996 in order to facilitate the cleansing of the estuary. It creates a privileged area for the deposition of sediments and consequently makes the cleansing of the estuary easier. We began our work with a preliminary study to establish the trend of the rheological behavior of the suspensions and to specify the dormant phase which precedes the beginning of the biochemical reactivity of the suspensions. Then we highlight the visco-plastic character at younger age using the Kinexus rheometer, plate-plate geometry. This rheological behavior of suspensions is represented by the Bingham model using dynamic yield stress and viscosity which can be a function of volume fraction, granular extent, and chemical reactivity. The evolution of the viscosity as a function of the solid volume fraction is modeled by the Krieger-Dougherty model. On the other hand, the analysis of the dynamic yield stress showed a fairly functional link with the solid volume fraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=estuaries" title="estuaries">estuaries</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20behavior" title=" rheological behavior"> rheological behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=sediments" title=" sediments"> sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=Kinexus%20rheometer" title=" Kinexus rheometer"> Kinexus rheometer</a>, <a href="https://publications.waset.org/abstracts/search?q=Bingham%20model" title=" Bingham model"> Bingham model</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20stress" title=" yield stress"> yield stress</a> </p> <a href="https://publications.waset.org/abstracts/97288/rheological-study-of-natural-sediments-application-in-filling-of-estuaries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Rheometer Enabled Study of Tissue/biomaterial Frequency-Dependent Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Polina%20Prokopovich">Polina Prokopovich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the well-established dependence of cartilage mechanical properties on the frequency of the applied load, most research in the field is carried out in either load-free or constant load conditions because of the complexity of the equipment required for the determination of time-dependent properties. These simpler analyses provide a limited representation of cartilage properties thus greatly reducing the impact of the information gathered hindering the understanding of the mechanisms involved in this tissue replacement, development and pathology. More complex techniques could represent better investigative methods, but their uptake in cartilage research is limited by the highly specialised training required and cost of the equipment. There is, therefore, a clear need for alternative experimental approaches to cartilage testing to be deployed in research and clinical settings using more user-friendly and financial accessible devices. Frequency dependent material properties can be determined through rheometry that is an easy to use requiring a relatively inexpensive device; we present how a commercial rheometer can be adapted to determine the viscoelastic properties of articular cartilage. Frequency-sweep tests were run at various applied normal loads on immature, mature and trypsinased (as model of osteoarthritis) cartilage samples to determine the dynamic shear moduli (G*, G′ G″) of the tissues. Moduli increased with increasing frequency and applied load; mature cartilage had generally the highest moduli and GAG depleted samples the lowest. Hydraulic permeability (KH) was estimated from the rheological data and decreased with applied load; GAG depleted cartilage exhibited higher hydraulic permeability than either immature or mature tissues. The rheometer-based methodology developed was validated by the close comparison of the rheometer-obtained cartilage characteristics (G*, G′, G″, KH) with results obtained with more complex testing techniques available in literature. Rheometry is relatively simpler and does not require highly capital intensive machinery and staff training is more accessible; thus the use of a rheometer would represent a cost-effective approach for the determination of frequency-dependent properties of cartilage for more comprehensive and impactful results for both healthcare professional and R&D. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tissue" title="tissue">tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=rheometer" title=" rheometer"> rheometer</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterial" title=" biomaterial"> biomaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=cartilage" title=" cartilage"> cartilage</a> </p> <a href="https://publications.waset.org/abstracts/168024/rheometer-enabled-study-of-tissuebiomaterial-frequency-dependent-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Comparison of Rheological Properties for Polymer Modified Asphalt Produced in Riyadh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20M.%20Babalghaith">Ali M. Babalghaith</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamad%20A.%20Alsoliman"> Hamad A. Alsoliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20S.%20Al-Suhaibani"> Abdulrahman S. Al-Suhaibani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flexible pavement made with neat asphalt binder is not enough to resist heavy traffic loads as well as harsh environmental condition found in Riyadh region. Therefore, there is a need to modify asphalt binder with polymers to satisfy such conditions. There are several types of polymers that are used to modify asphalt binder. The objective of this paper is to compare the rheological properties of six polymer modified asphalt binders (Lucolast7010, Anglomak2144, Paveflex140, SBS KTR401, EE-2 and Crumb rubber) obtained from asphalt manufacturer plants. The rheological properties of polymer modified asphalt binders were tested using conventional tests such as penetration, softening point and viscosity; and SHRP tests such as dynamic shear rheometer and bending beam rheometer. The results have indicated that the polymer modified asphalt binders have lower penetration and higher softening point than neat asphalt indicating an improvement in stiffness of asphalt binder, and as a result, more resistant to rutting. Moreover, the dynamic shear rheometer results have shown that all modifiers used in this study improved the binder properties and satisfied the Superpave specifications except SBS KTR401 which failed to satisfy the rutting parameter (G*/sinδ). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20modified%20asphalt" title="polymer modified asphalt">polymer modified asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=SBS" title=" SBS"> SBS</a>, <a href="https://publications.waset.org/abstracts/search?q=crumb%20rubber" title=" crumb rubber"> crumb rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=EE-2" title=" EE-2"> EE-2</a> </p> <a href="https://publications.waset.org/abstracts/44713/comparison-of-rheological-properties-for-polymer-modified-asphalt-produced-in-riyadh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Characterization of Shear and Extensional Rheology of Fibre Suspensions Prior to Atomization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20N.%20M.%20Rozali">Siti N. M. Rozali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20J.%20Paterson"> A. H. J. Paterson</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20%20Hindmarsh"> J. P. Hindmarsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spray drying of fruit juices from liquid to powder is desirable as the powders are easier to handle, especially for storage and transportation. In this project, pomace fibres will be used as a drying aid during spray drying, replacing the commonly used maltodextrins. The main attraction of this drying aid is that the pomace fibres are originally derived from the fruit itself. However, the addition of micro-sized fibres to fruit juices is expected to affect the rheology and subsequent atomization behaviour during the spray drying process. This study focuses on the determination and characterization of the rheology of juice-fibre suspensions specifically inside a spray dryer nozzle. Results show that the juice-fibre suspensions exhibit shear thinning behaviour with a significant extensional viscosity. The shear and extensional viscosities depend on several factors which include fibre fraction, shape, size and aspect ratio. A commercial capillary rheometer is used to characterize the shear behaviour while a portable extensional rheometer has been designed and built to study the extensional behaviour. Methods and equipment will be presented along with the rheology results. Rheology or behaviour of the juice-fibre suspensions provides an insight into the limitations that will be faced during atomization, and in the future, this finding will assist in choosing the best nozzle design that can overcome the limitations introduced by the fibre particles thus resulting in successful spray drying of juice-fibre suspensions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extensional%20rheology" title="extensional rheology">extensional rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre%20suspensions" title=" fibre suspensions"> fibre suspensions</a>, <a href="https://publications.waset.org/abstracts/search?q=portable%20extensional%20rheometer" title=" portable extensional rheometer"> portable extensional rheometer</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20rheology" title=" shear rheology"> shear rheology</a> </p> <a href="https://publications.waset.org/abstracts/77661/characterization-of-shear-and-extensional-rheology-of-fibre-suspensions-prior-to-atomization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Evaluation of Different Anticoagulant Effects on Flow Properties of Human Blood Using Falling Needle Rheometer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiroki%20Tsuneda">Hiroki Tsuneda</a>, <a href="https://publications.waset.org/abstracts/search?q=Takamasa%20Suzuki"> Takamasa Suzuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Hideki%20Yamamoto"> Hideki Yamamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Kimito%20Kawamura"> Kimito Kawamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Eiji%20Tamura"> Eiji Tamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Katharina%20Wochner"> Katharina Wochner</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto%20Plasenzotti"> Roberto Plasenzotti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flow property of human blood is one of the important factors on the prevention of the circulatory condition such as a high blood pressure, a diabetes mellitus, and a cardiac infarction. However, the measurement of flow property of human blood, especially blood viscosity, is not so easy, because of their coagulation or aggregation behaviors after taking a sample from blood vessel. In the experiment, some kinds of anticoagulant were added into the human blood to avoid its solidification. Anticoagulant used in the blood test has been chosen for each purpose of blood test, for anticoagulant effect on blood is different mechanism for each. So that, there is a problem that the evaluation of measured blood property with different anticoagulant is so difficult. Therefore, it is so important to make clear the difference of anticoagulant effect on the blood property. In the previous work, a compact-size falling needle rheometer (FNR) has been developed in order to measure the flow property of human blood such as a flow curve, an apparent viscosity. It was found that FNR system can apply to a rheometer or a viscometry for various experimental conditions for not only human blood but also mammalians blood. In this study, the measurements of human blood viscosity with different anticoagulant (EDTA and Heparin) were carried out using newly developed FNR system. The effect of anticoagulant on blood viscosity was also tested by using the standard liquid for each. The accuracy on the viscometry was also tested by using the standard liquid for calibrating materials (JS-10, JS-20) and observed data have satisfactory agreement with reference data around 1.0% at 310K. The flow curve of six males and females with different anticoagulant were measured using FNR. In this experiment, EDTA and Heparin were chosen as anticoagulant for blood. Heparin can inhibit the coagulation of human blood by activating the body of anti-thrombin. To examine the effect of human blood viscosity on anticoagulant, flow curve was measured at high shear rate (>350s-1), and apparent viscosity of each person were determined with different anticoagulant. The apparent viscosity of human blood with heparin was 2%-9% higher than that with EDTA. However, the difference of blood viscosity for two anticoagulants for same blood was different for each. Further discussion, we need the consideration of effect on other physical property, such as cellular component and plasma component. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=falling-needle%20rheometer" title="falling-needle rheometer">falling-needle rheometer</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20blood" title=" human blood"> human blood</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=anticoagulant" title=" anticoagulant"> anticoagulant</a> </p> <a href="https://publications.waset.org/abstracts/35527/evaluation-of-different-anticoagulant-effects-on-flow-properties-of-human-blood-using-falling-needle-rheometer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> The Influence of the Diameter of the Flow Conducts on the Rheological Behavior of a Non-Newtonian Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hacina%20Abchiche">Hacina Abchiche</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Mellal"> Mounir Mellal</a>, <a href="https://publications.waset.org/abstracts/search?q=Imene%20Bouchelkia"> Imene Bouchelkia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The knowledge of the rheological behavior of the used products in different fields is essential, both in digital simulation and the understanding of phenomenon involved during the flow of these products. The fluids presenting a nonlinear behavior represent an important category of materials used in the process of food-processing, chemical, pharmaceutical and oil industries. The issue is that the rheological characterization by classical rheometer cannot simulate, or take into consideration, the different parameters affecting the characterization of a complex fluid flow during real-time. The main objective of this study is to investigate the influence of the diameter of the flow conducts or pipe on the rheological behavior of a non-Newtonian fluid and Propose a mathematical model linking the rheologic parameters and the diameter of the conduits of flow. For this purpose, we have developed an experimental system based on the principal of a capillary rheometer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rh%C3%A9ologie" title="rhéologie">rhéologie</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian%20fluids" title=" non-Newtonian fluids"> non-Newtonian fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20stady" title=" experimental stady"> experimental stady</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=cylindrical%20%20conducts" title=" cylindrical conducts"> cylindrical conducts</a> </p> <a href="https://publications.waset.org/abstracts/32878/the-influence-of-the-diameter-of-the-flow-conducts-on-the-rheological-behavior-of-a-non-newtonian-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Rheology Study of Polyurethane (COAPUR 6050) For Composite Materials Usage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabrina%20Boutaleb">Sabrina Boutaleb</a>, <a href="https://publications.waset.org/abstracts/search?q=Kouider%20Halim%20Benrahou"> Kouider Halim Benrahou</a>, <a href="https://publications.waset.org/abstracts/search?q=Fran%C3%A7ois%20Schosseler"> François Schosseler</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelouahed%20Tounsi"> Abdelouahed Tounsi</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Abbas%20Adda%20Bedia"> El Abbas Adda Bedia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of polyurethane in different areas becomes more frequent. This is due to significant advantages they have including their lightness and resistance. However, their use requires a mastery of their mechanical performance. We will present in this work, a COAPUR 6050 which can be used to develop composite materials. COAPUR 6050 is an associative polyurethane thickener allowing fine rheological adjustment of flat or semi-gloss paints. COAPUR 6050 is characterised by its thickening efficiency at low shear rate. It is a solvent-free liquid product. It promotes good paint pick up, while maintaining a low yield point after shearing, and consequently a good levelling. We will then determine its rheological behaviour experimentally using different annular gaps. The rheological properties of COAPUR 6050 were researched by rotational rheometer (Rheometer-Mars III) using different annular gaps. There is the influence of the size of the annular gap on the behaviour as well as on the rheological parameters of the COAPUR 6050. The rheological properties data of COAPUR 6050 were regressed by nonlinear regression method and their rheological models were established, are characterized by yield pseudoplastic model. In this case, it is essential to make a viscometric correction. The latter was developed and presented in the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COAPUR%206050" title="COAPUR 6050">COAPUR 6050</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%E2%80%99s%20couette" title=" flow’s couette"> flow’s couette</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane" title=" polyurethane"> polyurethane</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20behaviours" title=" rheological behaviours"> rheological behaviours</a> </p> <a href="https://publications.waset.org/abstracts/38781/rheology-study-of-polyurethane-coapur-6050-for-composite-materials-usage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Characterization of Waste Thermocol Modified Bitumen by Spectroscopy, Microscopic Technique, and Dynamic Shear Rheometer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supriya%20%20Mahida">Supriya Mahida</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangita"> Sangita</a>, <a href="https://publications.waset.org/abstracts/search?q=Yogesh%20U.%20Shah"> Yogesh U. Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanta%20Kumar"> Shanta Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The global production of thermocol increasing day by day, due to vast applications of the use of thermocole in many sectors. Thermocol being non-biodegradable and more toxic than plastic leads towards a number of problems like its management into value-added products, environmental damage and landfill problems due to weight to volume ratio. Utilization of waste thermocol for modification of bitumen binders resulted in waste thermocol modified bitumen (WTMB) used in road construction and maintenance technology. Modification of bituminous mixes through incorporating thermocol into bituminous mixes through a dry process is one of the new options besides recycling process which consumes lots of waste thermocol. This process leads towards waste management and remedies against thermocol waste disposal. The present challenge is to dispose the thermocol waste under different forms in road infrastructure, either through the dry process or wet process to be developed in future. This paper focuses on the use of thermocol wastes which is mixed with VG 10 bitumen in proportions of 0.5%, 1%, 1.5%, and 2% by weight of bitumen. The physical properties of neat bitumen are evaluated and compared with modified VG 10 bitumen having thermocol. Empirical characterization like penetration, softening, and viscosity of bitumen has been carried out. Thermocol and waste thermocol modified bitumen (WTMB) were further analyzed by Fourier Transform Infrared Spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), and Dynamic Shear Rheometer (DSR). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DSR" title="DSR">DSR</a>, <a href="https://publications.waset.org/abstracts/search?q=FESEM" title=" FESEM"> FESEM</a>, <a href="https://publications.waset.org/abstracts/search?q=FT-IR" title=" FT-IR"> FT-IR</a>, <a href="https://publications.waset.org/abstracts/search?q=thermocol%20wastes" title=" thermocol wastes"> thermocol wastes</a> </p> <a href="https://publications.waset.org/abstracts/91034/characterization-of-waste-thermocol-modified-bitumen-by-spectroscopy-microscopic-technique-and-dynamic-shear-rheometer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Rheolaser: Light Scattering Characterization of Viscoelastic Properties of Hair Cosmetics That Are Related to Performance and Stability of the Respective Colloidal Soft Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heitor%20Oliveira">Heitor Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriele%20De-Waal"> Gabriele De-Waal</a>, <a href="https://publications.waset.org/abstracts/search?q=Juergen%20Schmenger"> Juergen Schmenger</a>, <a href="https://publications.waset.org/abstracts/search?q=Lynsey%20Godfrey"> Lynsey Godfrey</a>, <a href="https://publications.waset.org/abstracts/search?q=Tibor%20Kovacs"> Tibor Kovacs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rheolaser MASTER™ makes use of multiple scattering of light, caused by scattering objects in a continuous medium (such as droplets and particles in colloids), to characterize the viscoelasticity of soft materials. It offers an alternative to conventional rheometers to characterize viscoelasticity of products such as hair cosmetics. Up to six simultaneous measurements at controlled temperature can be carried out simultaneously (10-15 min), and the method requires only minor sample preparation work. Conversely to conventional rheometer based methods, no mechanical stress is applied to the material during the measurements. Therefore, the properties of the exact same sample can be monitored over time, like in aging and stability studies. We determined the elastic index (EI) of water/emulsion mixtures (1 ≤ fat alcohols (FA) ≤ 5 wt%) and emulsion/gel-network mixtures (8 ≤ FA ≤ 17 wt%) and compared with the elastic/sorage mudulus (G’) for the respective samples using a TA conventional rheometer with flat plates geometry. As expected, it was found that log(EI) vs log(G’) presents a linear behavior. Moreover, log(EI) increased in a linear fashion with solids level in the entire range of compositions (1 ≤ FA ≤ 17 wt%), while rheometer measurements were limited to samples down to 4 wt% solids level. Alternatively, a concentric cilinder geometry would be required for more diluted samples (FA > 4 wt%) and rheometer results from different sample holder geometries are not comparable. The plot of the rheolaser output parameters solid-liquid balance (SLB) vs EI were suitable to monitor product aging processes. These data could quantitatively describe some observations such as formation of lumps over aging time. Moreover, this method allowed to identify that the different specifications of a key raw material (RM < 0.4 wt%) in the respective gel-network (GN) product has minor impact on product viscoelastic properties and it is not consumer perceivable after a short aging time. Broadening of a RM spec range typically has a positive impact on cost savings. Last but not least, the photon path length (λ*)—proportional to droplet size and inversely proportional to volume fraction of scattering objects, accordingly to the Mie theory—and the EI were suitable to characterize product destabilization processes (e.g., coalescence and creaming) and to predict product stability about eight times faster than our standard methods. Using these parameters we could successfully identify formulation and process parameters that resulted in unstable products. In conclusion, Rheolaser allows quick and reliable characterization of viscoelastic properties of hair cosmetics that are related to their performance and stability. It operates in a broad range of product compositions and has applications spanning from the formulation of our hair cosmetics to fast release criteria in our production sites. Last but not least, this powerful tool has positive impact on R&D development time—faster delivery of new products to the market—and consequently on cost savings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colloids" title="colloids">colloids</a>, <a href="https://publications.waset.org/abstracts/search?q=hair%20cosmetics" title=" hair cosmetics"> hair cosmetics</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20scattering" title=" light scattering"> light scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20and%20stability" title=" performance and stability"> performance and stability</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20materials" title=" soft materials"> soft materials</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20properties" title=" viscoelastic properties"> viscoelastic properties</a> </p> <a href="https://publications.waset.org/abstracts/89387/rheolaser-light-scattering-characterization-of-viscoelastic-properties-of-hair-cosmetics-that-are-related-to-performance-and-stability-of-the-respective-colloidal-soft-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> The Effect of the Flow Pipe Diameter on the Rheological Behavior of a Polymeric Solution (CMC)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Abchiche">H. Abchiche</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mellal"> M. Mellal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to study the parameters that influence the rheological behavior of a complex fluid (sodium Carboxyméthylcellulose solution), on a capillary rheometer. An installation has been made to be able to vary the diameter of trial conducts. The obtained results allowed us to deduce that: the diameter of trial conducts have a remarkable effect on the rheological responds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bingham%E2%80%99s%20fluid" title="bingham’s fluid">bingham’s fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=CMC" title=" CMC"> CMC</a>, <a href="https://publications.waset.org/abstracts/search?q=cylindrical%20conduit" title=" cylindrical conduit"> cylindrical conduit</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20behavior" title=" rheological behavior"> rheological behavior</a> </p> <a href="https://publications.waset.org/abstracts/22683/the-effect-of-the-flow-pipe-diameter-on-the-rheological-behavior-of-a-polymeric-solution-cmc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Lignin Pyrolysis to Value-Added Chemicals: A Mechanistic Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Binod%20Shrestha">Binod Shrestha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandrine%20Hoppe"> Sandrine Hoppe</a>, <a href="https://publications.waset.org/abstracts/search?q=Thierry%20Ghislain"> Thierry Ghislain</a>, <a href="https://publications.waset.org/abstracts/search?q=Phillipe%20Marchal"> Phillipe Marchal</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Brosse"> Nicolas Brosse</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Dufour"> Anthony Dufour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermochemical conversion of lignin has received an increasing interest in the frame of different biorefinery concepts for the production of chemicals or energy. It is needed to better understand the physical and chemical conversion of lignin for feeder and reactor designs. In-situ rheology reveals the viscoelastic behaviour of lignin upon thermal conversion. The softening, re-solidification (char formation), swelling and shrinking behaviours are quantified during pyrolysis in real-time [1]. The in-situ rheology of an alkali lignin (Protobind 1000) was conducted in high torque controlled strain rheometer from 35°C to 400°C with a heating rate of 5°C.min-1. The swelling, through glass phase transition overlapped with depolymerization, and solidification (crosslinking and “char” formation) are two main phenomena observed during lignin pyrolysis. The onset of temperatures for softening and solidification for this lignin has been found to be 141°C and 248°C respectively. An ex-situ characterization of lignin/char residues obtained at different temperatures after quenching in the rheometer gives a clear understanding of the pathway of lignin degradation. The lignin residues were sampled from the mid-point temperatures of the softening range and solidification range to study the chemical transformations undergoing. Elemental analysis, FTIR and solid state NMR were conducted after quenching the solid residues (lignin/char). The quenched solid was also extracted by suitable solvent and followed by acetylation and GPC-UV analysis. The combination of 13C NMR and GPC-UV reveals the depolymerization followed by crosslinking of lignin/char. NMR and FTIR provide the evolution of functional moieties upon temperature. Physical and chemical mechanisms occurring during lignin pyrolysis are accounted in this study. Thanks to all these complementary methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title="pyrolysis">pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-chemicals" title=" bio-chemicals"> bio-chemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=valorization" title=" valorization"> valorization</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism" title=" mechanism"> mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=softening" title=" softening"> softening</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification" title=" solidification"> solidification</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20linking" title=" cross linking"> cross linking</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopic%20methods" title=" spectroscopic methods"> spectroscopic methods</a> </p> <a href="https://publications.waset.org/abstracts/15046/lignin-pyrolysis-to-value-added-chemicals-a-mechanistic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Rheological Evaluation of Various Indigenous Gums</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yogita%20Weikey">Yogita Weikey</a>, <a href="https://publications.waset.org/abstracts/search?q=Shobha%20Lata%20Sinha"> Shobha Lata Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Kumar%20Dewangan"> Satish Kumar Dewangan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present investigation, rheology of the three different natural gums has been evaluated experimentally using MCR 102 rheometer. Various samples based on the variation of the concentration of the solid gum powder have been prepared. Their non-Newtonian behavior has been observed by the consistency plots and viscosity variation plots with respect to different solid concentration. The viscosity-shear rate curves of gums are similar and the behavior is shear thinning. Gums are showing pseudoplastic behavior. The value of k and n are calculated by using various models. Results show that the Herschel–Bulkley rheological model is reliable to describe the relationship of shear stress as a function of shear rate. R² values are also calculated to support the choice of gum selection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bentonite" title="bentonite">bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=Indian%20gum" title=" Indian gum"> Indian gum</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian%20model" title=" non-Newtonian model"> non-Newtonian model</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a> </p> <a href="https://publications.waset.org/abstracts/75731/rheological-evaluation-of-various-indigenous-gums" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Extrudate Swell under the Effect of Radial Flow and Intrinsic Factors to the Polymer Upstream of the Die</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hela%20Krir">Hela Krir</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhak%20Ayadi"> Abdelhak Ayadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chedly%20Bradaii"> Chedly Bradaii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of both intrinsic factors, elastic energy and memory effect, and radial flow on the appearance and the evolution of the extrudate swelling are investigated in the present work. The experiments have been performed with linear polydimethylsiloxane (PDMS) via a capillary rheometer in which a convergent radial flow was created upstream the contraction. The correspondence between the effects of radial flow, entry elastic stored energy and memory effect is discussed. In particular, as the influence of the considered radial flow, extrudate photographs showed that when the gap ratio is reduced, the extrudate swell is lessened than what it is when radial flow geometry is not installed. Moreover, with a narrower gap, the polymer stores less energy during its passage through the die which implies a lower extrudate swelling at the outlet of the die. Results previously mentioned may be related both to shear and elongational components of radial flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20energy" title="elastic energy">elastic energy</a>, <a href="https://publications.waset.org/abstracts/search?q=extrudate%20swell" title=" extrudate swell"> extrudate swell</a>, <a href="https://publications.waset.org/abstracts/search?q=memory%20effect" title=" memory effect"> memory effect</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20flow" title=" radial flow"> radial flow</a> </p> <a href="https://publications.waset.org/abstracts/87319/extrudate-swell-under-the-effect-of-radial-flow-and-intrinsic-factors-to-the-polymer-upstream-of-the-die" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Impact of Fly Ash-Based Geopolymer Modification on the High-Temperature Properties of Bitumen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burak%20Yigit%20Katanalp">Burak Yigit Katanalp</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Tastan"> Murat Tastan</a>, <a href="https://publications.waset.org/abstracts/search?q=Perviz%20Ahmedzade"> Perviz Ahmedzade</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%A7Igdem%20Canbay%20Turkyilmaz"> çIgdem Canbay Turkyilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Emrah%20Turkyilmaz"> Emrah Turkyilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study evaluated the mechanical and rheological performance of fly ash-based geopolymer at high temperatures. A series of laboratory tests were conducted on neat bitumen and three modified bitumen samples, which incorporated fly ash-based geopolymer at various percentages. Low-calcium fly ash was used as the alumina-silica source. The dynamic shear rheometer and rotational viscometer were employed to determine high-temperature properties, while conventional tests such as penetration and softening point were used to evaluate the physical properties of bitumen. The short-term aging resistance of the samples was assessed using the rolling thin film oven. The results show that geopolymer has a compromising effect on bitumen properties, with improved stiffness, enhanced mechanical strength, and increased thermal susceptibility of the asphalt binder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitumen" title="bitumen">bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title=" geopolymer"> geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=modification" title=" modification"> modification</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20mechanical%20analysis" title=" dynamic mechanical analysis"> dynamic mechanical analysis</a> </p> <a href="https://publications.waset.org/abstracts/165226/impact-of-fly-ash-based-geopolymer-modification-on-the-high-temperature-properties-of-bitumen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Effects of Preparation Conditions on the Properties of Crumb Rubber Modified Binder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baha%20Vural%20K%C3%B6k">Baha Vural Kök</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Yilmaz"> Mehmet Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Akpolat"> Mustafa Akpolat</a>, <a href="https://publications.waset.org/abstracts/search?q=Cihat%20Sav"> Cihat Sav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various types of additives are used frequently in order to improve the rheological and mechanical properties of bituminous mixtures. Small devices instead of full scale machines are used for bitumen modification in the laboratory. These laboratory scale devices vary in terms of their properties such as mixing rate, mixing blade and the amount of binder. In this study, the effect of mixing rate and time during the bitumen modification processes on conventional and rheological properties of pure and crumb rubber modified binder were investigated. Penetration, softening point, rotational viscosity (RV) and dynamic shear rheometer (DSR) tests were applied to pure and CR modified bitumen. It was concluded that the penetration and softening point test did not show the efficiency of CR obtained by different mixing conditions. Besides, oxidation that occurred during the preparation processes plays a great part in the improvement effects of the modified binder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitumen" title="bitumen">bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=crumb%20rubber" title=" crumb rubber"> crumb rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=modification" title=" modification"> modification</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a> </p> <a href="https://publications.waset.org/abstracts/79014/effects-of-preparation-conditions-on-the-properties-of-crumb-rubber-modified-binder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Effect of Polymer Concentration on the Rheological Properties of Polyelectrolyte Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Benyounes">Khaled Benyounes</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrahmane%20Mellak"> Abderrahmane Mellak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rheology of aqueous solutions of polyelectrolyte (polyanionic cellulose, PAC) at high molecular weight was investigated using a controlled stress rheometer. Several rheological measurements; viscosity measurements, creep compliance tests at a constant low shear stress and oscillation experiments have been performed. The concentrations ranged by weight from 0.01 to 2.5% of PAC. It was found that the aqueous solutions of PAC do not exhibit a yield stress, the flow curves of PAC over a wide range of shear rate (0 to 1000 s-1) could be described by the cross model and the Williamson models. The critical concentrations of polymer c* and c** have been estimated. The dynamic moduli, i.e., storage modulus (G’) and loss modulus (G’’) of the polymer have been determined at frequency sweep from 0.01 to 10 Hz. At polymer concentration above 1%, the modulus G’ is superior to G’’. The relationships between the dynamic modulus and concentration of polymer have been established. The creep-recovery experiments demonstrated that polymer solutions show important viscoelastic properties of system water-PAC when the concentration of the polymer increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyanionic%20cellulose" title="polyanionic cellulose">polyanionic cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillation" title=" oscillation"> oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20model" title=" cross model"> cross model</a> </p> <a href="https://publications.waset.org/abstracts/6588/effect-of-polymer-concentration-on-the-rheological-properties-of-polyelectrolyte-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Influence of the Mixer on the Rheological Properties of the Fresh Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Nitsche">Alexander Nitsche</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr-Robert%20Lazik"> Piotr-Robert Lazik</a>, <a href="https://publications.waset.org/abstracts/search?q=Harald%20Garrecht"> Harald Garrecht</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The viscosity of the concrete has a great influence on the properties of the fresh concrete. Fresh concretes with low viscosity have a good flowability, whereas high viscosity has a lower flowability. Clearly, viscosity is directly linked to other parameters such as consistency, compaction, and workability of the concrete. The above parameters also depend very much on the energy induced during the mixing process and, of course, on the installation of the mixer itself. The University of Stuttgart has decided to investigate the influence of different mixing systems on the viscosity of various types of concrete, such as road concrete, self-compacting concrete, and lightweight concrete, using a rheometer and other testing methods. Each type is tested with three different mixers, and the rheological properties, namely consistency, and viscosity are determined. The aim of the study is to show that different types of concrete mixed with different types of mixers reach completely different yield points. Therefore, a 3 step procedure will be introduced. At first, various types of concrete mixtures and their differences are introduced. Then, the chosen suspension mixer and conventional mixers, which are going to be used in this paper, will be discussed. Lastly, the influence of the mixing system on the rheological properties of each of the select mix designs, as well as on fresh concrete, in general, will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title="rheological properties">rheological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=flowability" title=" flowability"> flowability</a>, <a href="https://publications.waset.org/abstracts/search?q=suspension%20mixer" title=" suspension mixer"> suspension mixer</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/118870/influence-of-the-mixer-on-the-rheological-properties-of-the-fresh-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Genome of Bio-Based Construction Adhesives and Complex Rheological Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ellie%20Fini">Ellie Fini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahour%20Parast"> Mahour Parast</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Oldham"> Daniel Oldham</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahrzad%20Hosseinnezhad"> Shahrzad Hosseinnezhad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the relationship between molecular species of four different bio-based adhesives (made from Swine Manure, Miscanthus Pellet, Corn Stover, and Wood Pellet) and their rheological behavior before and after they undergo extensive oxidative aging. To study the effect of oxidative aging on the chemical structure of bio-adhesives, Infrared Attenuated Total Reflectance Spectroscopy (Fourier transform infrared) was utilised. In addition, a Drop Shape Analyser, Rotational Viscometer, and Dynamic Shear Rheometer were used to evaluate the surface properties and rheological behaviour of each bio-adhesive. Overall, bio-adhesives were found to be significantly different in terms of their ageing characteristics. Accordingly, their surface and rheological properties were found to be ranked differently before and after ageing. The results showed that the bio-adhesive from swine manure is less susceptible to aging compared to plant-based bio-oils. This can be further attributed to the chemical structure and the high lipid contents of the bio-adhesive from swine manure, making it less affected by oxidative ageing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-adhesive" title="bio-adhesive">bio-adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-mass" title=" bio-mass"> bio-mass</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20genome" title=" material genome"> material genome</a> </p> <a href="https://publications.waset.org/abstracts/55277/genome-of-bio-based-construction-adhesives-and-complex-rheological-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Experimental Investigations on Nanoclay (Cloisite-15A) Modified Bitumen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Kumar">Ashish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Kumar%20Suman"> Sanjeev Kumar Suman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the influence of Cloisite-15A nanoclay on the physical, performance, and mechanical properties of bitumen binder. Cloisite-15A was blended in the bitumen in variegated percentages from 1% to 9% with increment of 2%. The blended bitumen was characterized using penetration, softening point, and dynamic viscosity using rotational viscometer, and compared with unmodified bitumen equally penetration grade 60/70. The rheological parameters were investigated using Dynamic Shear Rheometer (DSR), and mechanical properties were investigated by using Marshall Stability test. The results indicated an increase in softening point, dynamic viscosity and decrease in binder penetration. Rheological properties of bitumen increase complex modulus, decrease phase angle and improve rutting resistances as well. There was significant improvement in Marshall Stability, rather marginal improvement in flow value. The best improvement in the modified binder was obtained with 5% Cloisite-15A nanoclay. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cloisite-15A" title="Cloisite-15A">Cloisite-15A</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20shear%20modulus" title=" complex shear modulus"> complex shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20angle" title=" phase angle"> phase angle</a>, <a href="https://publications.waset.org/abstracts/search?q=rutting%20resistance" title=" rutting resistance"> rutting resistance</a> </p> <a href="https://publications.waset.org/abstracts/58589/experimental-investigations-on-nanoclay-cloisite-15a-modified-bitumen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Advanced Materials Based on Ethylene-Propylene-Diene Terpolymers and Organically Modified Montmorillonite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20D.%20Stelescu">M. D. Stelescu</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Manaila"> E. Manaila</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Pelin"> G. Pelin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Georgescu"> M. Georgescu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sonmez"> M. Sonmez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents studies on the development and characterization of nanocomposites based on ethylene-propylene terpolymer rubber (EPDM), chlorobutyl rubber (IIR-Cl) and organically modified montmorillonite (OMMT). Mixtures were made containing 0, 3 and 6 phr (parts per 100 parts rubber) OMMT, respectively. They were obtained by melt intercalation in an internal mixer - Plasti-Corder Brabender, in suitable blending parameters, at high temperature for 11 minutes. Curing agents were embedded on a laboratory roller at 70-100 ºC, friction 1:1.1, processing time 5 minutes. Rubber specimens were obtained by compression, using a hydraulic press at 165 ºC and a pressing force of 300 kN. Curing time, determined using the Monsanto rheometer, decreases with the increased amount of OMMT in the mixtures. At the same time, it was noticed that mixtures containing OMMT show improvement in physical-mechanical properties. These types of nanocomposites may be used to obtain rubber seals for the space application or for other areas of application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chlorobutyl%20rubber" title="chlorobutyl rubber">chlorobutyl rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene-propylene-diene%20terpolymers" title=" ethylene-propylene-diene terpolymers"> ethylene-propylene-diene terpolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=montmorillonite" title=" montmorillonite"> montmorillonite</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber%20seals" title=" rubber seals"> rubber seals</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20application" title=" space application"> space application</a> </p> <a href="https://publications.waset.org/abstracts/101045/advanced-materials-based-on-ethylene-propylene-diene-terpolymers-and-organically-modified-montmorillonite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Stability and Rheological Study of Carbon Nanotube Water Based Nanofluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Rashidi">S. Rashidi</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20C.%20Abdullah"> L. C. Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Walvekar"> R. Walvekar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mohammad"> K. Mohammad</a>, <a href="https://publications.waset.org/abstracts/search?q=F-R.%20Ahmadun"> F-R. Ahmadun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Faizah"> M. Y. Faizah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, stability and rheology behavior of Multi-walled carbon nanotube (MWCNT) nanofluids by using Xanthan Gum as a dispersant were measured. This paper addresses the effects of Xanthan Gum (XG) concentration and nanoparticle loading on stability and viscosity of nanofluids. The stability of nanofluids is measured by Zeta Sizer Nano-ZS (Malvern Instruments, ZEN 3600). The zeta potential of the stable samples was analyzed. The rheological behavior of carbon nanotube CNT nanofluids was analyzed using rheometer (Model AR G2, TA Instrument). Both stability and viscosity of the nanofluids increased with increasing CNT and XG concentration. The experimental results indicated that the zeta potential of nanofluid samples is stable. The results demonstrated that the zeta potential was affected by the CNT concentration and is augmented in parallel with increasing CNT concentration. The rheology results showed that the viscosity of CNT/XG nanofluid was increased. The escalated viscosity of CNT/XG nanofluid is owing to the higher van der Waals interaction between the CNT nanoparticles. On the other hand, the viscosity of the CNT/XG nanofluid decreases with increasing temperature. In summary, this research provides useful insight into the behavior of CNT nanofluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title="nanofluid">nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title=" carbon nanotube"> carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a> </p> <a href="https://publications.waset.org/abstracts/102821/stability-and-rheological-study-of-carbon-nanotube-water-based-nanofluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Role of Sodium Concentration, Waiting Time and Constituents’ Temperature on the Rheological Behavior of Alkali Activated Slag Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammet%20M.%20Erdem">Muhammet M. Erdem</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdo%C4%9Fan%20%C3%96zbay"> Erdoğan Özbay</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20H.%20Durmu%C5%9F"> Ibrahim H. Durmuş</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Erdemir"> Mustafa Erdemir</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Bik%C3%A7e"> Murat Bikçe</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%BCzeyyen%20Bal%C3%A7%C4%B1kanl%C4%B1"> Müzeyyen Balçıkanlı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, rheological behavior of alkali activated slag concretes were investigated depending on the sodium concentration (SC), waiting time (WT) after production, and constituents’ temperature (CT) parameters. For this purpose, an experimental program was conducted with four different SCs of 1.85, 3.0, 4.15, and 5.30%, three different WT of 0 (just after production), 15, and 30 minutes and three different CT of 18, 30, and 40 °C. Solid precursors are activated by water glass and sodium hydroxide solutions with silicate modulus (Ms = SiO<sub>2</sub>/Na<sub>2</sub>O) of 1. Slag content and (water + activator solution)/slag ratio were kept constant in all mixtures. Yield stress and plastic viscosity values were defined for each mixture by using the ICAR rheometer. Test results were demonstrated that all of the three studied parameters have tremendous effect on the yield stress and plastic viscosity values of the alkali activated slag concretes. Increasing the SC, WT, and CT drastically augmented the rheological parameters. At the 15 and 30 minutes WT after production, most of the alkali activated slag concretes were set instantaneously, and rheological measurements were not performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20activation" title="alkali activation">alkali activation</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20stress" title=" yield stress"> yield stress</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20viscosity" title=" plastic viscosity"> plastic viscosity</a> </p> <a href="https://publications.waset.org/abstracts/54616/role-of-sodium-concentration-waiting-time-and-constituents-temperature-on-the-rheological-behavior-of-alkali-activated-slag-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Physical and Rheological Properties of Asphalt Modified with Cellulose Date Palm Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Howaidi%20M.%20Al-Otaibi">Howaidi M. Al-Otaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20S.%20Al-Suhaibani"> Abdulrahman S. Al-Suhaibani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamad%20A.%20Alsoliman"> Hamad A. Alsoliman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fibers are extensively used in civil engineering applications for many years. In this study, empty fruit bunch of date palm trees were used to produce cellulose fiber that were used as additives in the asphalt binder. Two sizes (coarse and fine) of cellulose fibers were pre-blended in PG64-22 binder with various contents of 1.5%, 3%, 4.5%, 6%, and 7.5% by weight of asphalt binder. The physical and rheological properties of fiber modified asphalt binders were tested by using conventional tests such as penetration, softening point and viscosity; and SHRP test such as dynamic shear rheometer. The results indicated that the fiber modified asphalt binders were higher in softening point, viscosity, and complex shear modulus, and lower in penetration compared to pure asphalt. The fiber modified binders showed an improvement in rheological properties since it was possible to raise the control binder (pure asphalt) PG from 64 to 70 by adding 6% (by weight) of either fine or coarse fibers. Such improvement in stiffness of fiber modified binder is expected to improve pavement resistance to rutting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose%20date%20palm%20fiber" title="cellulose date palm fiber">cellulose date palm fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20modified%20asphalt" title=" fiber modified asphalt"> fiber modified asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20properties" title=" physical properties"> physical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a> </p> <a href="https://publications.waset.org/abstracts/48756/physical-and-rheological-properties-of-asphalt-modified-with-cellulose-date-palm-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Effect of Bentonite on the Rheological Behavior of Cement Grout in Presence of Superplasticizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Benyounes">K. Benyounes</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benmounah"> A. Benmounah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cement-based grouts has been used successfully to repair cracks in many concrete structures such as bridges, tunnels, buildings and to consolidate soils or rock foundations. In the present study, the rheological characterization of cement grout with water/binder ratio (W/B) is fixed at 0.5. The effect of the replacement of cement by bentonite (2 to 10 % wt) in presence of superplasticizer (0.5 % wt) was investigated. Several rheological tests were carried out by using controlled-stress rheometer equipped with vane geometry in temperature of 20°C. To highlight the influence of bentonite and superplasticizer on the rheological behavior of grout cement, various flow tests in a range of shear rate from 0 to 200 s-1 were observed. Cement grout showed a non-Newtonian viscosity behavior at all concentrations of bentonite. Three parameter model Herschel-Bulkley was chosen for fitting of experimental data. Based on the values of correlation coefficients of the estimated parameters, The Herschel-Bulkley law model well described the rheological behavior of the grouts. Test results showed that the dosage of bentonite increases the viscosity and yield stress of the system and introduces more thixotropy. While the addition of both bentonite and superplasticizer with cement grout improve significantly the fluidity and reduced the yield stress due to the action of dispersion of SP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheology" title="rheology">rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20grout" title=" cement grout"> cement grout</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=superplasticizer" title=" superplasticizer"> superplasticizer</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20stress" title=" yield stress "> yield stress </a> </p> <a href="https://publications.waset.org/abstracts/18440/effect-of-bentonite-on-the-rheological-behavior-of-cement-grout-in-presence-of-superplasticizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> The Effect of Acrylic Gel Grouting on Groundwater in Porous Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Wagner">S. Wagner</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Boley"> C. Boley</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Forouzandeh"> Y. Forouzandeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When digging excavations, groundwater bearing layers are often encountered. In order to allow anhydrous excavation, soil groutings are carried out, which form a water-impermeable layer. As it is injected into groundwater areas, the effects of the materials used on the environment must be known. Developing an eco-friendly, economical and low viscous acrylic gel which has a sealing effect on groundwater is therefore a significant task. At this point the study begins. Basic investigations with the rheometer and a reverse column experiment have been performed with different mixing ratios of an acrylic gel. A dynamic rheology study was conducted to determine the time at which the gel still can be processed and the maximum gel strength is reached. To examine the effect of acrylic gel grouting on determine the parameters pH value, turbidity, electric conductivity, and total organic carbon on groundwater, an acrylic gel was injected in saturated sand filled the column. The structure was rinsed with a constant flow and the eluate was subsequently examined. The results show small changes in pH values and turbidity but there is a dependency between electric conductivity and total organic carbon. The curves of the two parameters react at the same time, which means that the electrical conductivity in the eluate can be measured constantly until the maximum is reached and only then must total organic carbon (TOC) samples be taken. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acrylic%20gel%20grouting" title="acrylic gel grouting">acrylic gel grouting</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20rheology%20study" title=" dynamic rheology study"> dynamic rheology study</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20conductivity" title=" electric conductivity"> electric conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20organic%20carbon" title=" total organic carbon"> total organic carbon</a> </p> <a href="https://publications.waset.org/abstracts/109849/the-effect-of-acrylic-gel-grouting-on-groundwater-in-porous-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Evaluation of the Rheological Properties of Bituminous Binders Modified with Biochars Obtained from Various Biomasses by Pyrolysis Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammed%20Ertu%C4%9Frul%20%C3%87elo%C4%9Flu">Muhammed Ertuğrul Çeloğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Y%C4%B1lmaz"> Mehmet Yılmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, apricot seed shell, walnut shell, and sawdust were chosen as biomass sources. The materials were sorted by using a sieve No. 50 and the sieved materials were subjected to pyrolysis process at 400 °C, resulting in three different biochar products. The resulting biochar products were added to the bitumen at three different rates (5%, 10% and 15%), producing modified bitumen. Penetration, softening point, rotation viscometer and dynamic shear rheometer (DSR) tests were conducted on modified binders. Thus the modified bitumen, which was obtained by using additives at 3 different rates obtained from biochar produced at 400 °C temperatures of 3 different biomass sources were compared and the effects of pyrolysis temperature and additive rates were evaluated. As a result of the conducted tests, it was determined that the rheology of the pure bitumen improved significantly as a result of the modification of the bitumen with the biochar. Additionally, with biochar additive, it was determined that the rutting parameter values obtained from softening point, viscometer and DSR tests were increased while the values in terms of penetration and phase angle decreased. It was also observed that the most effective biomass is sawdust while the least effective was ground apricot seed shell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheology" title="rheology">rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=biochar" title=" biochar"> biochar</a> </p> <a href="https://publications.waset.org/abstracts/83777/evaluation-of-the-rheological-properties-of-bituminous-binders-modified-with-biochars-obtained-from-various-biomasses-by-pyrolysis-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Experimental Characterization of Flowable Cement Pastes Made with Marble Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Messaoudi">F. Messaoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Haddad"> O. Haddad</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Bouras"> R. Bouras</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kaci">S. Kaci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of self-compacting concrete (SCC) marks a huge step towards improved efficiency and working conditions on construction sites and in the precast industry. SCC flows easily into more complex shapes and through reinforcement bars, reduces the manpower required for the placement; no vibration is required to ensure correct compaction of concrete. This concrete contains a high volume of binder which is controlled by their rheological behavior. The paste consists of binders (Portland cement with or without supplementary cementitious materials), water, chemical admixtures and fillers. In this study, two series of tests were performed on self-compacting cement pastes made with marble waste additions as the mineral addition. The first series of this investigation was to determine the flow time of paste using Marsh cone, the second series was to determine the rheological parameters of the same paste namely yield stress and plastic viscosity using the rheometer Haake RheoStress 1. The results of this investigation allowed us to study the evolution of the yield stress, viscosity and the flow time Marsh cone paste as a function of the composition of the paste. A correlation between the results obtained on the flow test Marsh cone and those of the plastic viscosity on the mottled different cement pastes is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adjuvant" title="adjuvant">adjuvant</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20parameter" title=" rheological parameter"> rheological parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20cement%20pastes" title=" self-compacting cement pastes"> self-compacting cement pastes</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20marble" title=" waste marble"> waste marble</a> </p> <a href="https://publications.waset.org/abstracts/33165/experimental-characterization-of-flowable-cement-pastes-made-with-marble-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Evaluation of Barium Sulfate and Its Surface Modification as Reinforcing Filler for Natural and Some Synthetic Rubbers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Abdelfattah%20Ibrahim%20Elghrbawy">Mohamad Abdelfattah Ibrahim Elghrbawy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work deals to evaluate barium sulfate (BS) before and after its surface modification as reinforcing filler for rubber. Barium sulfate was surface-modified using polymethacrylic acid (PMAA), the monolayer surface coverage of barium sulfate by polymethacrylic acid molecules occurred at 5.4x10-6 mol/g adsorbed amount. This amount was sufficient to reduce the sediment volume from 2.65 to 2.55 cm3/gm. Natural rubber (NR) was compounded with different concentrations of barium sulfate. The rheological characteristics of NR mixes were measured using a Monsanto Oscillating Disk Rheometer. The compounded NR was vulcanized at 142°C, and the physico-mechanical properties were tested according to the standard methods. The rheological data show that the minimum torque decreases while the maximum torque increases as the barium sulfate content increase. The physico-mechanical properties of NR vulcanizates were improved up to 50 phr/ barium sulfate loading. On the other hand, styrene–butadiene rubber (SBR) and nitrile–butadiene rubber (NBR) rubbers compounded with 50 phr/barium sulfate had good rheological and mechanical properties. Scanning electron microscope studies show surface homogeneity of rubber samples as a result of good dispersion of surface modified barium sulfate in the rubber matrix. The NR, SBR and NBR vulcanizates keep their values of mechanical properties after subjected to thermal oxidative aging at 90°C for 7 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barium%20sulfate" title="barium sulfate">barium sulfate</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20rubber%20%28nr%29" title=" natural rubber (nr)"> natural rubber (nr)</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrile%E2%80%93butadiene%20rubber%20%28nbr%29" title=" nitrile–butadiene rubber (nbr)"> nitrile–butadiene rubber (nbr)</a>, <a href="https://publications.waset.org/abstracts/search?q=polymethacrylic%20acid%20%28pmaa%29" title=" polymethacrylic acid (pmaa)"> polymethacrylic acid (pmaa)</a>, <a href="https://publications.waset.org/abstracts/search?q=styrene%E2%80%93butadiene%20rubber%20%28sbr%29" title=" styrene–butadiene rubber (sbr)"> styrene–butadiene rubber (sbr)</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a> </p> <a href="https://publications.waset.org/abstracts/168237/evaluation-of-barium-sulfate-and-its-surface-modification-as-reinforcing-filler-for-natural-and-some-synthetic-rubbers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Thermo-Mechanical Properties of PBI Fiber Reinforced HDPE Composites: Effect of Fiber Length and Composition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shan%20Faiz">Shan Faiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Arfat%20Anis"> Arfat Anis</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20M.%20Al-Zarani"> Saeed M. Al-Zarani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High density polyethylene (HDPE) and poly benzimidazole fiber (PBI) composites were prepared by melt blending in a twin screw extruder (TSE). The thermo-mechanical properties of PBI fiber reinforced HDPE composite samples (1%, 4% and 8% fiber content) of fiber lengths 3 mm and 6 mm were investigated using differential scanning calorimeter (DSC), universal testing machine (UTM), rheometer and scanning electron microscopy (SEM). The effect of fiber content and fiber lengths on the thermo-mechanical properties of the HDPE-PBI composites was studied. The DSC analysis showed decrease in crystallinity of HDPE-PBI composites with the increase of fiber loading. Maximum decrease observed was 12% at 8% fiber length. The thermal stability was found to increase with the addition of fiber. T50% was notably increased to 40oC for both grades of HDPE using 8% of fiber content. The mechanical properties were not much affected by the increase in fiber content. The optimum value of tensile strength was achieved using 4% fiber content and slight increase of 9% in tensile strength was observed. No noticeable change was observed in flexural strength. In rheology study, the complex viscosities of HDPE-PBI composites were higher than the HDPE matrix and substantially increased with even minimum increase of PBI fiber loading i.e. 1%. We found that the addition of the PBI fiber resulted in a modest improvement in the thermal stability and mechanical properties of the prepared composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PBI%20fiber" title="PBI fiber">PBI fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20density%20polyethylene" title=" high density polyethylene"> high density polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20blending" title=" melt blending"> melt blending</a> </p> <a href="https://publications.waset.org/abstracts/26194/thermo-mechanical-properties-of-pbi-fiber-reinforced-hdpe-composites-effect-of-fiber-length-and-composition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> The Effect of Linear Low-Density Polyethylene Cross-Contamination by Other Plastic Types on Bitumen Modification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nioushasadat%20Haji%20Seyed%20Javadi">Nioushasadat Haji Seyed Javadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ailar%20Hajimohammadi"> Ailar Hajimohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20Khalili"> Nasser Khalili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the recycling of plastic wastes has been the subject of much research attention, especially in pavement constructions, where virgin polymers can be replaced by recycled plastics for asphalt binder modification. Among the plastic types, recycled linear low-density polyethylene (RLLDPE) has been one of the common and largely available plastics for bitumen modification. However, it is important to note that during the recycling process, LLDPE can easily be contaminated with other plastic types, especially with low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polypropylene (PP). The cross-contamination of LLDPE with other plastics lowers its quality and, consequently, can affect the asphalt modification process. This study aims to assess the effect of LLDPE cross-contamination on bitumen modification. To do so, samples of bitumen modified with LLDPE and blends of LLDPE with LDPE, HDPE, and PP were prepared and compared through physical and rheological evaluations. The experimental tests, including softening point, penetration, viscosity at 135 °C, and dynamic shear rheometer, were conducted. The results indicated that the effect of cross-contamination on softening point and rutting resistance was negligible. On the other side, penetration and viscosity were highly impacted. The results also showed that among contamination of LLDPE with the other plastic types, PP had the highest influence in comparison with HDPE and LDPE on changing the properties of the LLDPE- modified bitumen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20polyethylene" title="recycled polyethylene">recycled polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20cross-contamination" title=" polymer cross-contamination"> polymer cross-contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20plastic" title=" waste plastic"> waste plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=bitumen" title=" bitumen"> bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=rutting%20resistance" title=" rutting resistance"> rutting resistance</a> </p> <a href="https://publications.waset.org/abstracts/152078/the-effect-of-linear-low-density-polyethylene-cross-contamination-by-other-plastic-types-on-bitumen-modification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Kinexus%20rheometer&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Kinexus%20rheometer&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>