CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 55 results for author: <span class="mathjax">Dogra, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Dogra, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Dogra%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Dogra, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Dogra%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Dogra%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Dogra%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13038">arXiv:2409.13038</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.13038">pdf</a>, <a href="https://arxiv.org/format/2409.13038">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> HeadCT-ONE: Enabling Granular and Controllable Automated Evaluation of Head CT Radiology Report Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Acosta%2C+J+N">Juli谩n N. Acosta</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+X">Xiaoman Zhang</a>, <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">Siddhant Dogra</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+H">Hong-Yu Zhou</a>, <a href="/search/?searchtype=author&amp;query=Payabvash%2C+S">Seyedmehdi Payabvash</a>, <a href="/search/?searchtype=author&amp;query=Falcone%2C+G+J">Guido J. Falcone</a>, <a href="/search/?searchtype=author&amp;query=Oermann%2C+E+K">Eric K. Oermann</a>, <a href="/search/?searchtype=author&amp;query=Rajpurkar%2C+P">Pranav Rajpurkar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13038v1-abstract-short" style="display: inline;"> We present Head CT Ontology Normalized Evaluation (HeadCT-ONE), a metric for evaluating head CT report generation through ontology-normalized entity and relation extraction. HeadCT-ONE enhances current information extraction derived metrics (such as RadGraph F1) by implementing entity normalization through domain-specific ontologies, addressing radiological language variability. HeadCT-ONE compare&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13038v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13038v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13038v1-abstract-full" style="display: none;"> We present Head CT Ontology Normalized Evaluation (HeadCT-ONE), a metric for evaluating head CT report generation through ontology-normalized entity and relation extraction. HeadCT-ONE enhances current information extraction derived metrics (such as RadGraph F1) by implementing entity normalization through domain-specific ontologies, addressing radiological language variability. HeadCT-ONE compares normalized entities and relations, allowing for controllable weighting of different entity types or specific entities. Through experiments on head CT reports from three health systems, we show that HeadCT-ONE&#39;s normalization and weighting approach improves the capture of semantically equivalent reports, better distinguishes between normal and abnormal reports, and aligns with radiologists&#39; assessment of clinically significant errors, while offering flexibility to prioritize specific aspects of report content. Our results demonstrate how HeadCT-ONE enables more flexible, controllable, and granular automated evaluation of head CT reports. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13038v1-abstract-full').style.display = 'none'; document.getElementById('2409.13038v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13380">arXiv:2408.13380</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.13380">pdf</a>, <a href="https://arxiv.org/format/2408.13380">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> The MUSE Beamline Calorimeter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lin%2C+W">W. Lin</a>, <a href="/search/?searchtype=author&amp;query=Rostomyan%2C+T">T. Rostomyan</a>, <a href="/search/?searchtype=author&amp;query=Gilman%2C+R">R. Gilman</a>, <a href="/search/?searchtype=author&amp;query=Strauch%2C+S">S. Strauch</a>, <a href="/search/?searchtype=author&amp;query=Meier%2C+C">C. Meier</a>, <a href="/search/?searchtype=author&amp;query=Nestler%2C+C">C. Nestler</a>, <a href="/search/?searchtype=author&amp;query=Ali%2C+M">M. Ali</a>, <a href="/search/?searchtype=author&amp;query=Atac%2C+H">H. Atac</a>, <a href="/search/?searchtype=author&amp;query=Bernauer%2C+J+C">J. C. Bernauer</a>, <a href="/search/?searchtype=author&amp;query=Briscoe%2C+W+J">W. J. Briscoe</a>, <a href="/search/?searchtype=author&amp;query=Ndukwe%2C+A+C">A. Christopher Ndukwe</a>, <a href="/search/?searchtype=author&amp;query=Cline%2C+E+W">E. W. Cline</a>, <a href="/search/?searchtype=author&amp;query=Deiters%2C+K">K. Deiters</a>, <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">S. Dogra</a>, <a href="/search/?searchtype=author&amp;query=Downie%2C+E+J">E. J. Downie</a>, <a href="/search/?searchtype=author&amp;query=Duan%2C+Z">Z. Duan</a>, <a href="/search/?searchtype=author&amp;query=Fernando%2C+I+P">I. P. Fernando</a>, <a href="/search/?searchtype=author&amp;query=Flannery%2C+A">A. Flannery</a>, <a href="/search/?searchtype=author&amp;query=Ghosal%2C+D">D. Ghosal</a>, <a href="/search/?searchtype=author&amp;query=Golossanov%2C+A">A. Golossanov</a>, <a href="/search/?searchtype=author&amp;query=Guo%2C+J">J. Guo</a>, <a href="/search/?searchtype=author&amp;query=Ifat%2C+N+S">N. S. Ifat</a>, <a href="/search/?searchtype=author&amp;query=Ilieva%2C+Y">Y. Ilieva</a>, <a href="/search/?searchtype=author&amp;query=Kohl%2C+M">M. Kohl</a>, <a href="/search/?searchtype=author&amp;query=Lavrukhin%2C+I">I. Lavrukhin</a> , et al. (18 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13380v1-abstract-short" style="display: inline;"> The MUon Scattering Experiment (MUSE) was motivated by the proton radius puzzle arising from the discrepancy between muonic hydrogen spectroscopy and electron-proton measurements. The MUSE physics goals also include testing lepton universality, precisely measuring two-photon exchange contribution, and testing radiative corrections. MUSE addresses these physics goals through simultaneous measuremen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13380v1-abstract-full').style.display = 'inline'; document.getElementById('2408.13380v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13380v1-abstract-full" style="display: none;"> The MUon Scattering Experiment (MUSE) was motivated by the proton radius puzzle arising from the discrepancy between muonic hydrogen spectroscopy and electron-proton measurements. The MUSE physics goals also include testing lepton universality, precisely measuring two-photon exchange contribution, and testing radiative corrections. MUSE addresses these physics goals through simultaneous measurement of high precision cross sections for electron-proton and muon-proton scattering using a mixed-species beam. The experiment will run at both positive and negative beam polarities. Measuring precise cross sections requires understanding both the incident beam energy and the radiative corrections. For this purpose, a lead-glass calorimeter was installed at the end of the beam line in the MUSE detector system. In this article we discuss the detector specifications, calibration and performance. We demonstrate that the detector performance is well reproduced by simulation, and meets experimental requirements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13380v1-abstract-full').style.display = 'none'; document.getElementById('2408.13380v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.17438">arXiv:2401.17438</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.17438">pdf</a>, <a href="https://arxiv.org/format/2401.17438">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Quantum simulation of the pseudo-Hermitian Landau-Zener-St眉ckelberg-Majorana effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kivel%C3%A4%2C+F">Feliks Kivel盲</a>, <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">Shruti Dogra</a>, <a href="/search/?searchtype=author&amp;query=Paraoanu%2C+G+S">Gheorghe Sorin Paraoanu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.17438v2-abstract-short" style="display: inline;"> While the Hamiltonians used in standard quantum mechanics are Hermitian, it is also possible to extend the theory to non-Hermitian Hamiltonians. Particularly interesting are non-Hermitian Hamiltonians satisfying parity-time (PT) symmetry, or more generally pseudo-Hermiticity, since such non-Hermitian Hamiltonians can still exhibit real eigenvalues. In this work, we present a quantum simulation of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17438v2-abstract-full').style.display = 'inline'; document.getElementById('2401.17438v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.17438v2-abstract-full" style="display: none;"> While the Hamiltonians used in standard quantum mechanics are Hermitian, it is also possible to extend the theory to non-Hermitian Hamiltonians. Particularly interesting are non-Hermitian Hamiltonians satisfying parity-time (PT) symmetry, or more generally pseudo-Hermiticity, since such non-Hermitian Hamiltonians can still exhibit real eigenvalues. In this work, we present a quantum simulation of the time-dependent non-Hermitian non-PT-symmetric Hamiltonian used in a pseudo-Hermitian extension of the Landau-Zener-St眉ckelberg-Majorana (LZSM) model. The simulation is implemented on a superconducting processor by using Naimark dilation to transform a non-Hermitian Hamiltonian for one qubit into a Hermitian Hamiltonian for a qubit and an ancilla; postselection on the ancilla state ensures that the qubit undergoes nonunitary time-evolution corresponding to the original non-Hermitian Hamiltonian. We observe properties such as the dependence of transition rates on time and the replacement of conservation of total probability by other dynamical invariants in agreement with predictions based on a theoretical treatment of the pseudo-Hermitian LZSM system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17438v2-abstract-full').style.display = 'none'; document.getElementById('2401.17438v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures. Changes from the previous version: Added a definition of the U quantum gate and additional details about the initialization of the quantum circuits. Improved some aspects of notation. Changed equation 30 (previously equation 28) slightly to emphasize that it only applies to basis states, not arbitrary states. Fixed some typos</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.17190">arXiv:2312.17190</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.17190">pdf</a>, <a href="https://arxiv.org/format/2312.17190">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.032404">10.1103/PhysRevA.110.032404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherent interaction-free detection of noise </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=McCord%2C+J+J">John J. McCord</a>, <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">Shruti Dogra</a>, <a href="/search/?searchtype=author&amp;query=Paraoanu%2C+G+S">Gheorghe Sorin Paraoanu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.17190v2-abstract-short" style="display: inline;"> The measurement and characterization of noise is a flourishing area of research in mesoscopic physics. In this work, we propose interaction-free measurements as a noise-detection technique, exploring two conceptually different schemes: the coherent and the projective realizations. These detectors consist of a qutrit whose second transition is resonantly coupled to an oscillatory field that may hav&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17190v2-abstract-full').style.display = 'inline'; document.getElementById('2312.17190v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.17190v2-abstract-full" style="display: none;"> The measurement and characterization of noise is a flourishing area of research in mesoscopic physics. In this work, we propose interaction-free measurements as a noise-detection technique, exploring two conceptually different schemes: the coherent and the projective realizations. These detectors consist of a qutrit whose second transition is resonantly coupled to an oscillatory field that may have noise in amplitude or phase. For comparison, we consider a more standard detector previously discussed in this context: a qubit coupled in a similar way to the noise source. We find that the qutrit scheme offers clear advantages, allowing precise detection and characterization of the noise, while the qubit does not. Finally, we study the signature of noise correlations in the detector&#39;s signal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17190v2-abstract-full').style.display = 'none'; document.getElementById('2312.17190v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 110, 032404 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.13353">arXiv:2308.13353</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.13353">pdf</a>, <a href="https://arxiv.org/format/2308.13353">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> High-fidelity robust qubit control by phase-modulated pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kuzmanovi%C4%87%2C+M">Marko Kuzmanovi膰</a>, <a href="/search/?searchtype=author&amp;query=Bj%C3%B6rkman%2C+I">Isak Bj枚rkman</a>, <a href="/search/?searchtype=author&amp;query=McCord%2C+J+J">John J. McCord</a>, <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">Shruti Dogra</a>, <a href="/search/?searchtype=author&amp;query=Paraoanu%2C+G+S">Gheorghe Sorin Paraoanu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.13353v2-abstract-short" style="display: inline;"> We present a set of robust and high-fidelity pulses that realize paradigmatic operations such as the transfer of the ground state population into the excited state and arbitrary $X/Y$ rotations on the Bloch sphere. These pulses are based on the phase modulation of the control field. We implement these operations on a transmon qubit, demonstrating resilience against deviations in the drive amplitud&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13353v2-abstract-full').style.display = 'inline'; document.getElementById('2308.13353v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.13353v2-abstract-full" style="display: none;"> We present a set of robust and high-fidelity pulses that realize paradigmatic operations such as the transfer of the ground state population into the excited state and arbitrary $X/Y$ rotations on the Bloch sphere. These pulses are based on the phase modulation of the control field. We implement these operations on a transmon qubit, demonstrating resilience against deviations in the drive amplitude of more than $\approx 20\%$ and/or detuning from the qubit transition frequency in the order of $10~\mathrm{MHz}$. The concept and modulation scheme is straightforward to implement and it is compatible with other quantum-technology experimental platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13353v2-abstract-full').style.display = 'none'; document.getElementById('2308.13353v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.05214">arXiv:2307.05214</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.05214">pdf</a>, <a href="https://arxiv.org/format/2307.05214">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.033012">10.1103/PhysRevResearch.5.033012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Theory of coherent interaction-free detection of pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=McCord%2C+J+J">John J. McCord</a>, <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">Shruti Dogra</a>, <a href="/search/?searchtype=author&amp;query=Paraoanu%2C+G+S">Gheorghe Sorin Paraoanu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.05214v1-abstract-short" style="display: inline;"> Quantum physics allows an object to be detected even in the absence of photon absorption, by the use of so-called interaction-free measurements. We provide a formulation of this protocol using a three-level system, where the object to be detected is a pulse coupled resonantly into the second transition. In the original formulation of interaction-free measurements, the absorption is associated with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05214v1-abstract-full').style.display = 'inline'; document.getElementById('2307.05214v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.05214v1-abstract-full" style="display: none;"> Quantum physics allows an object to be detected even in the absence of photon absorption, by the use of so-called interaction-free measurements. We provide a formulation of this protocol using a three-level system, where the object to be detected is a pulse coupled resonantly into the second transition. In the original formulation of interaction-free measurements, the absorption is associated with a projection operator onto the third state. We perform an in-depth analytical and numerical analysis of the coherent protocol, where coherent interaction between the object and the detector replaces the projective operators, resulting in higher detection efficiencies. We provide approximate asymptotic analytical results to support this finding. We find that our protocol reaches the Heisenberg limit when evaluating the Fisher information at small strengths of the pulses we aim to detect -- in contrast to the projective protocol that can only reach the standard quantum limit. We also demonstrate that the coherent protocol remains remarkably robust under errors such as pulse rotation phases and strengths, the effect of relaxation rates and detunings, as well as different thermalized initial states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05214v1-abstract-full').style.display = 'none'; document.getElementById('2307.05214v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5, 033012 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.12266">arXiv:2302.12266</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.12266">pdf</a>, <a href="https://arxiv.org/format/2302.12266">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP06(2023)195">10.1007/JHEP06(2023)195 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SHAPER: Can You Hear the Shape of a Jet? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ba%2C+D">Demba Ba</a>, <a href="/search/?searchtype=author&amp;query=Dogra%2C+A+S">Akshunna S. Dogra</a>, <a href="/search/?searchtype=author&amp;query=Gambhir%2C+R">Rikab Gambhir</a>, <a href="/search/?searchtype=author&amp;query=Tasissa%2C+A">Abiy Tasissa</a>, <a href="/search/?searchtype=author&amp;query=Thaler%2C+J">Jesse Thaler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.12266v4-abstract-short" style="display: inline;"> The identification of interesting substructures within jets is an important tool for searching for new physics and probing the Standard Model at colliders. Many of these substructure tools have previously been shown to take the form of optimal transport problems, in particular the Energy Mover&#39;s Distance (EMD). In this work, we show that the EMD is in fact the natural structure for comparing colli&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.12266v4-abstract-full').style.display = 'inline'; document.getElementById('2302.12266v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.12266v4-abstract-full" style="display: none;"> The identification of interesting substructures within jets is an important tool for searching for new physics and probing the Standard Model at colliders. Many of these substructure tools have previously been shown to take the form of optimal transport problems, in particular the Energy Mover&#39;s Distance (EMD). In this work, we show that the EMD is in fact the natural structure for comparing collider events, which accounts for its recent success in understanding event and jet substructure. We then present a Shape Hunting Algorithm using Parameterized Energy Reconstruction (SHAPER), which is a general framework for defining and computing shape-based observables. SHAPER generalizes N-jettiness from point clusters to any extended, parametrizable shape. This is accomplished by efficiently minimizing the EMD between events and parameterized manifolds of energy flows representing idealized shapes, implemented using the dual-potential Sinkhorn approximation of the Wasserstein metric. We show how the geometric language of observables as manifolds can be used to define novel observables with built-in infrared-and-collinear safety. We demonstrate the efficacy of the SHAPER framework by performing empirical jet substructure studies using several examples of new shape-based observables. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.12266v4-abstract-full').style.display = 'none'; document.getElementById('2302.12266v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45+15 pages, 18 figures, 5 tables. Code available at https://github.com/rikab/SHAPER; v2: Minor fixes; v3: Updated to match JHEP version; v4: Minor formatting fixes</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP 5535 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. High Energ. Phys. 2023, 195 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.05271">arXiv:2204.05271</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.05271">pdf</a>, <a href="https://arxiv.org/format/2204.05271">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6455/ac7fcc">10.1088/1361-6455/ac7fcc <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Perfect stimulated Raman adiabatic passage with imperfect finite-time pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">Shruti Dogra</a>, <a href="/search/?searchtype=author&amp;query=Paraoanu%2C+G+S">Gheorghe Sorin Paraoanu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.05271v2-abstract-short" style="display: inline;"> We present a well-tailored sequence of two Gaussian-pulsed drives that achieves perfect population transfer in STImulated Raman Adiabatic Passage (STIRAP). We give a theoretical analysis of the optimal truncation and relative placement of the Stokes and pump pulses. Further, we obtain the power and the duration of the protocol for a given pulse width. Importantly, the duration of the protocol requ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.05271v2-abstract-full').style.display = 'inline'; document.getElementById('2204.05271v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.05271v2-abstract-full" style="display: none;"> We present a well-tailored sequence of two Gaussian-pulsed drives that achieves perfect population transfer in STImulated Raman Adiabatic Passage (STIRAP). We give a theoretical analysis of the optimal truncation and relative placement of the Stokes and pump pulses. Further, we obtain the power and the duration of the protocol for a given pulse width. Importantly, the duration of the protocol required to attain a desired value of fidelity depends only logarithmically on the infidelity. Subject to optimal truncation of the drives and with reference to the point of fastest transfer, we obtain a new adiabaticity criteria, which is remarkably simple and effective. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.05271v2-abstract-full').style.display = 'none'; document.getElementById('2204.05271v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. B: At. Mol. Opt. Phys.55 174001 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.01657">arXiv:2204.01657</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.01657">pdf</a>, <a href="https://arxiv.org/format/2204.01657">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-35049-z">10.1038/s41467-022-35049-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherent interaction-free detection of microwave pulses with a superconducting circuit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">Shruti Dogra</a>, <a href="/search/?searchtype=author&amp;query=McCord%2C+J+J">John J. McCord</a>, <a href="/search/?searchtype=author&amp;query=Paraoanu%2C+G+S">Gheorghe Sorin Paraoanu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.01657v2-abstract-short" style="display: inline;"> The interaction-free measurement is a fundamental quantum effect whereby the presence of a photosensitive object is determined without irreversible photon absorption. Here we propose the concept of coherent interaction-free detection and demonstrate it experimentally using a three-level superconducting transmon circuit. In contrast to standard interaction-free measurement setups, where the dynamic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01657v2-abstract-full').style.display = 'inline'; document.getElementById('2204.01657v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.01657v2-abstract-full" style="display: none;"> The interaction-free measurement is a fundamental quantum effect whereby the presence of a photosensitive object is determined without irreversible photon absorption. Here we propose the concept of coherent interaction-free detection and demonstrate it experimentally using a three-level superconducting transmon circuit. In contrast to standard interaction-free measurement setups, where the dynamics involves a series of projection operations, our protocol employs a fully coherent evolution that results, surprisingly, in a higher probability of success. We show that it is possible to ascertain the presence of a microwave pulse resonant with the second transition of the transmon, while at the same time avoid exciting the device onto the third level. Experimentally, this is done by using a series of Ramsey microwave pulses coupled into the first transition and monitoring the ground-state population. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01657v2-abstract-full').style.display = 'none'; document.getElementById('2204.01657v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 20 figures. Comments are welcome!</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 13, 7528 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.12073">arXiv:2203.12073</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.12073">pdf</a>, <a href="https://arxiv.org/format/2203.12073">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1098/rsta.2021.0274">10.1098/rsta.2021.0274 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental demonstration of robustness under scaling errors for superadiabatic population transfer in a superconducting circuit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">Shruti Dogra</a>, <a href="/search/?searchtype=author&amp;query=Veps%C3%A4l%C3%A4inen%2C+A">Antti Veps盲l盲inen</a>, <a href="/search/?searchtype=author&amp;query=Paraoanu%2C+G+S">Gheorghe Sorin Paraoanu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.12073v2-abstract-short" style="display: inline;"> We study experimentally and theoretically the transfer of population between the ground state and the second excited state in a transmon circuit by the use of superadiabatic stimulated Raman adiabatic passage (saSTIRAP). We show that the transfer is remarkably resilient against variations in the amplitudes of the pulses (scaling errors), thus demostrating that the superadiabatic process inherits c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12073v2-abstract-full').style.display = 'inline'; document.getElementById('2203.12073v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.12073v2-abstract-full" style="display: none;"> We study experimentally and theoretically the transfer of population between the ground state and the second excited state in a transmon circuit by the use of superadiabatic stimulated Raman adiabatic passage (saSTIRAP). We show that the transfer is remarkably resilient against variations in the amplitudes of the pulses (scaling errors), thus demostrating that the superadiabatic process inherits certain robustness features from the adiabatic one. In particular, we put in evidence a new plateau that appears at high values of the counterdiabatic pulse strength, which goes beyond the usual framework of saSTIRAP. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12073v2-abstract-full').style.display = 'none'; document.getElementById('2203.12073v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phil. Trans. R. Soc. A., 380: 20210274 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.12044">arXiv:2111.12044</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.12044">pdf</a>, <a href="https://arxiv.org/format/2111.12044">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0054871">10.1063/5.0054871 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum process tomography of adiabatic and superadiabatic stimulated Raman passage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">Shruti Dogra</a>, <a href="/search/?searchtype=author&amp;query=Paraoanu%2C+G+S">Gheorghe Sorin Paraoanu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.12044v1-abstract-short" style="display: inline;"> Quantum control methods for three-level systems have become recently an important direction of research in quantum information science and technology. Here we present numerical simulations using realistic experimental parameters for quantum process tomography in STIRAP (stimulated Raman adiabatic passage) and saSTIRAP (superadiabatic STIRAP). Specifically, we identify a suitable basis in the opera&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12044v1-abstract-full').style.display = 'inline'; document.getElementById('2111.12044v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.12044v1-abstract-full" style="display: none;"> Quantum control methods for three-level systems have become recently an important direction of research in quantum information science and technology. Here we present numerical simulations using realistic experimental parameters for quantum process tomography in STIRAP (stimulated Raman adiabatic passage) and saSTIRAP (superadiabatic STIRAP). Specifically, we identify a suitable basis in the operator space as the identity operator together with the 8 Gell-Mann operators, and we calculate the corresponding process matrices, which have $9\times 9=81$ elements. We discuss these results for the ideal decoherence-free case, as well as for the experimentally-relevant case with decoherence included. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12044v1-abstract-full').style.display = 'none'; document.getElementById('2111.12044v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> AIP Conference Proceedings 2362, 030004 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.12036">arXiv:2111.12036</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.12036">pdf</a>, <a href="https://arxiv.org/format/2111.12036">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-021-00534-2">10.1038/s42005-021-00534-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum simulation of parity-time symmetry breaking with a superconducting quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">Shruti Dogra</a>, <a href="/search/?searchtype=author&amp;query=Melnikov%2C+A+A">Artem A. Melnikov</a>, <a href="/search/?searchtype=author&amp;query=Paraoanu%2C+G+S">Gheorghe Sorin Paraoanu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.12036v1-abstract-short" style="display: inline;"> The observation of genuine quantum effects in systems governed by non-Hermitian Hamiltonians has been an outstanding challenge in the field. Here we simulate the evolution under such Hamiltonians in the quantum regime on a superconducting quantum processor by using a dilation procedure involving an ancillary qubit. We observe the parity-time ($\mathcal{PT}$)-symmetry breaking phase transition at t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12036v1-abstract-full').style.display = 'inline'; document.getElementById('2111.12036v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.12036v1-abstract-full" style="display: none;"> The observation of genuine quantum effects in systems governed by non-Hermitian Hamiltonians has been an outstanding challenge in the field. Here we simulate the evolution under such Hamiltonians in the quantum regime on a superconducting quantum processor by using a dilation procedure involving an ancillary qubit. We observe the parity-time ($\mathcal{PT}$)-symmetry breaking phase transition at the exceptional points, obtain the critical exponent, and show that this transition is associated with a loss of state distinguishability. In a two-qubit setting, we show that the entanglement can be modified by local operations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12036v1-abstract-full').style.display = 'none'; document.getElementById('2111.12036v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Communications Physics, 4, 26 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.03210">arXiv:2110.03210</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.03210">pdf</a>, <a href="https://arxiv.org/format/2110.03210">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Universality of Winning Tickets: A Renormalization Group Perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Redman%2C+W+T">William T. Redman</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+T">Tianlong Chen</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Z">Zhangyang Wang</a>, <a href="/search/?searchtype=author&amp;query=Dogra%2C+A+S">Akshunna S. Dogra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.03210v3-abstract-short" style="display: inline;"> Foundational work on the Lottery Ticket Hypothesis has suggested an exciting corollary: winning tickets found in the context of one task can be transferred to similar tasks, possibly even across different architectures. This has generated broad interest, but methods to study this universality are lacking. We make use of renormalization group theory, a powerful tool from theoretical physics, to add&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.03210v3-abstract-full').style.display = 'inline'; document.getElementById('2110.03210v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.03210v3-abstract-full" style="display: none;"> Foundational work on the Lottery Ticket Hypothesis has suggested an exciting corollary: winning tickets found in the context of one task can be transferred to similar tasks, possibly even across different architectures. This has generated broad interest, but methods to study this universality are lacking. We make use of renormalization group theory, a powerful tool from theoretical physics, to address this need. We find that iterative magnitude pruning, the principal algorithm used for discovering winning tickets, is a renormalization group scheme, and can be viewed as inducing a flow in parameter space. We demonstrate that ResNet-50 models with transferable winning tickets have flows with common properties, as would be expected from the theory. Similar observations are made for BERT models, with evidence that their flows are near fixed points. Additionally, we leverage our framework to study winning tickets transferred across ResNet architectures, observing that smaller models have flows with more uniform properties than larger models, complicating transfer between them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.03210v3-abstract-full').style.display = 'none'; document.getElementById('2110.03210v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 3 figures, 8 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the 39th International Conference on Machine Learning, PMLR Vol. 162, pp. 18483-18498 (ICML 2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.09508">arXiv:2109.09508</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.09508">pdf</a>, <a href="https://arxiv.org/format/2109.09508">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.105.055201">10.1103/PhysRevC.105.055201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterization of Muon and Electron Beams in the Paul Scherrer Institute PiM1 Channel for the MUSE Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Cline%2C+E">E. Cline</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+W">W. Lin</a>, <a href="/search/?searchtype=author&amp;query=Roy%2C+P">P. Roy</a>, <a href="/search/?searchtype=author&amp;query=Reimer%2C+P+E">P. E. Reimer</a>, <a href="/search/?searchtype=author&amp;query=Mesick%2C+K+E">K. E. Mesick</a>, <a href="/search/?searchtype=author&amp;query=Akmal%2C+A">A. Akmal</a>, <a href="/search/?searchtype=author&amp;query=Alie%2C+A">A. Alie</a>, <a href="/search/?searchtype=author&amp;query=Atac%2C+H">H. Atac</a>, <a href="/search/?searchtype=author&amp;query=Atencio%2C+A">A. Atencio</a>, <a href="/search/?searchtype=author&amp;query=Gayoso%2C+C+A">C. Ayerbe Gayoso</a>, <a href="/search/?searchtype=author&amp;query=Benmouna%2C+N">N. Benmouna</a>, <a href="/search/?searchtype=author&amp;query=Benmokhtar%2C+F">F. Benmokhtar</a>, <a href="/search/?searchtype=author&amp;query=Bernauer%2C+J+C">J. C. Bernauer</a>, <a href="/search/?searchtype=author&amp;query=Briscoe%2C+W+J">W. J. Briscoe</a>, <a href="/search/?searchtype=author&amp;query=Campbell%2C+J">J. Campbell</a>, <a href="/search/?searchtype=author&amp;query=Cohen%2C+D">D. Cohen</a>, <a href="/search/?searchtype=author&amp;query=Cohen%2C+E+O">E. O. Cohen</a>, <a href="/search/?searchtype=author&amp;query=Collicott%2C+C">C. Collicott</a>, <a href="/search/?searchtype=author&amp;query=Deiters%2C+K">K. Deiters</a>, <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">S. Dogra</a>, <a href="/search/?searchtype=author&amp;query=Downie%2C+E">E. Downie</a>, <a href="/search/?searchtype=author&amp;query=Fernando%2C+I+P">I. P. Fernando</a>, <a href="/search/?searchtype=author&amp;query=Flannery%2C+A">A. Flannery</a>, <a href="/search/?searchtype=author&amp;query=Gautam%2C+T">T. Gautam</a>, <a href="/search/?searchtype=author&amp;query=Ghosal%2C+D">D. Ghosal</a> , et al. (35 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.09508v1-abstract-short" style="display: inline;"> The MUon Scattering Experiment, MUSE, at the Paul Scherrer Institute, Switzerland, investigates the proton charge radius puzzle, lepton universality, and two-photon exchange, via simultaneous measurements of elastic muon-proton and electron-proton scattering. The experiment uses the PiM1 secondary beam channel, which was designed for high precision pion scattering measurements. We review the prope&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09508v1-abstract-full').style.display = 'inline'; document.getElementById('2109.09508v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.09508v1-abstract-full" style="display: none;"> The MUon Scattering Experiment, MUSE, at the Paul Scherrer Institute, Switzerland, investigates the proton charge radius puzzle, lepton universality, and two-photon exchange, via simultaneous measurements of elastic muon-proton and electron-proton scattering. The experiment uses the PiM1 secondary beam channel, which was designed for high precision pion scattering measurements. We review the properties of the beam line established for pions. We discuss the production processes that generate the electron and muon beams, and the simulations of these processes. Simulations of the $蟺$/$渭$/$e$ beams through the channel using TURTLE and G4beamline are compared. The G4beamline simulation is then compared to several experimental measurements of the channel, including the momentum dispersion at the IFP and target, the shape of the beam spot at the target, and timing measurements that allow the beam momenta to be determined. We conclude that the PiM1 channel can be used for high precision $蟺$, $渭$, and $e$ scattering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09508v1-abstract-full').style.display = 'none'; document.getElementById('2109.09508v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.07786">arXiv:2104.07786</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.07786">pdf</a>, <a href="https://arxiv.org/format/2104.07786">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/07/P07023">10.1088/1748-0221/16/07/P07023 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Test beam characterization of sensor prototypes for the CMS Barrel MIP Timing Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/?searchtype=author&amp;query=Abreu%2C+A">A. Abreu</a>, <a href="/search/?searchtype=author&amp;query=Addesa%2C+F">F. Addesa</a>, <a href="/search/?searchtype=author&amp;query=Alhusseini%2C+M">M. Alhusseini</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+T">T. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Andreev%2C+Y">Y. Andreev</a>, <a href="/search/?searchtype=author&amp;query=Apresyan%2C+A">A. Apresyan</a>, <a href="/search/?searchtype=author&amp;query=Arcidiacono%2C+R">R. Arcidiacono</a>, <a href="/search/?searchtype=author&amp;query=Arenton%2C+M">M. Arenton</a>, <a href="/search/?searchtype=author&amp;query=Auffray%2C+E">E. Auffray</a>, <a href="/search/?searchtype=author&amp;query=Bastos%2C+D">D. Bastos</a>, <a href="/search/?searchtype=author&amp;query=Bauerdick%2C+L+A+T">L. A. T. Bauerdick</a>, <a href="/search/?searchtype=author&amp;query=Bellan%2C+R">R. Bellan</a>, <a href="/search/?searchtype=author&amp;query=Bellato%2C+M">M. Bellato</a>, <a href="/search/?searchtype=author&amp;query=Benaglia%2C+A">A. Benaglia</a>, <a href="/search/?searchtype=author&amp;query=Benettoni%2C+M">M. Benettoni</a>, <a href="/search/?searchtype=author&amp;query=Bertoni%2C+R">R. Bertoni</a>, <a href="/search/?searchtype=author&amp;query=Besancon%2C+M">M. Besancon</a>, <a href="/search/?searchtype=author&amp;query=Bharthuar%2C+S">S. Bharthuar</a>, <a href="/search/?searchtype=author&amp;query=Bornheim%2C+A">A. Bornheim</a>, <a href="/search/?searchtype=author&amp;query=Br%C3%BCcken%2C+E">E. Br眉cken</a>, <a href="/search/?searchtype=author&amp;query=Butler%2C+J+N">J. N. Butler</a>, <a href="/search/?searchtype=author&amp;query=Campagnari%2C+C">C. Campagnari</a>, <a href="/search/?searchtype=author&amp;query=Campana%2C+M">M. Campana</a>, <a href="/search/?searchtype=author&amp;query=Carlin%2C+R">R. Carlin</a> , et al. (174 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.07786v2-abstract-short" style="display: inline;"> The MIP Timing Detector will provide additional timing capabilities for detection of minimum ionizing particles (MIPs) at CMS during the High Luminosity LHC era, improving event reconstruction and pileup rejection. The central portion of the detector, the Barrel Timing Layer (BTL), will be instrumented with LYSO:Ce crystals and Silicon Photomultipliers (SiPMs) providing a time resolution of about&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.07786v2-abstract-full').style.display = 'inline'; document.getElementById('2104.07786v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.07786v2-abstract-full" style="display: none;"> The MIP Timing Detector will provide additional timing capabilities for detection of minimum ionizing particles (MIPs) at CMS during the High Luminosity LHC era, improving event reconstruction and pileup rejection. The central portion of the detector, the Barrel Timing Layer (BTL), will be instrumented with LYSO:Ce crystals and Silicon Photomultipliers (SiPMs) providing a time resolution of about 30 ps at the beginning of operation, and degrading to 50-60 ps at the end of the detector lifetime as a result of radiation damage. In this work, we present the results obtained using a 120 GeV proton beam at the Fermilab Test Beam Facility to measure the time resolution of unirradiated sensors. A proof-of-concept of the sensor layout proposed for the barrel region of the MTD, consisting of elongated crystal bars with dimensions of about 3 x 3 x 57 mm$^3$ and with double-ended SiPM readout, is demonstrated. This design provides a robust time measurement independent of the impact point of the MIP along the crystal bar. We tested LYSO:Ce bars of different thickness (2, 3, 4 mm) with a geometry close to the reference design and coupled to SiPMs manufactured by Hamamatsu and Fondazione Bruno Kessler. The various aspects influencing the timing performance such as the crystal thickness, properties of the SiPMs (e.g. photon detection efficiency), and impact angle of the MIP are studied. A time resolution of about 28 ps is measured for MIPs crossing a 3 mm thick crystal bar, corresponding to an MPV energy deposition of 2.6 MeV, and of 22 ps for the 4.2 MeV MPV energy deposition expected in the BTL, matching the detector performance target for unirradiated devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.07786v2-abstract-full').style.display = 'none'; document.getElementById('2104.07786v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Instrumentation, Volume 16, July 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.14526">arXiv:2012.14526</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.14526">pdf</a>, <a href="https://arxiv.org/format/2012.14526">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The Analog Front-end for the LGAD Based Precision Timing Application in CMS ETL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sun%2C+Q">Quan Sun</a>, <a href="/search/?searchtype=author&amp;query=Dogra%2C+S+M">Sunil M. Dogra</a>, <a href="/search/?searchtype=author&amp;query=Edwards%2C+C">Christopher Edwards</a>, <a href="/search/?searchtype=author&amp;query=Gong%2C+D">Datao Gong</a>, <a href="/search/?searchtype=author&amp;query=Gray%2C+L">Lindsey Gray</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+X">Xing Huang</a>, <a href="/search/?searchtype=author&amp;query=Joshi%2C+S">Siddhartha Joshi</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+J">Jongho Lee</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+C">Chonghan Liu</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+T">Tiehui Liu</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+T">Tiankuan Liu</a>, <a href="/search/?searchtype=author&amp;query=Los%2C+S">Sergey Los</a>, <a href="/search/?searchtype=author&amp;query=Moon%2C+C">Chang-Seong Moon</a>, <a href="/search/?searchtype=author&amp;query=Oh%2C+G">Geonhee Oh</a>, <a href="/search/?searchtype=author&amp;query=Olsen%2C+J">Jamieson Olsen</a>, <a href="/search/?searchtype=author&amp;query=Ristori%2C+L">Luciano Ristori</a>, <a href="/search/?searchtype=author&amp;query=Sun%2C+H">Hanhan Sun</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+X">Xiao Wang</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+J">Jinyuan Wu</a>, <a href="/search/?searchtype=author&amp;query=Ye%2C+J">Jingbo Ye</a>, <a href="/search/?searchtype=author&amp;query=Ye%2C+Z">Zhenyu Ye</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+L">Li Zhang</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+W">Wei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.14526v1-abstract-short" style="display: inline;"> The analog front-end for the Low Gain Avalanche Detector (LGAD) based precision timing application in the CMS Endcap Timing Layer (ETL) has been prototyped in a 65 nm CMOS mini-ASIC named ETROC0. Serving as the very first prototype of ETL readout chip (ETROC), ETROC0 aims to study and demonstrate the performance of the analog frontend, with the goal to achieve 40 to 50 ps time resolution per hit w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14526v1-abstract-full').style.display = 'inline'; document.getElementById('2012.14526v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.14526v1-abstract-full" style="display: none;"> The analog front-end for the Low Gain Avalanche Detector (LGAD) based precision timing application in the CMS Endcap Timing Layer (ETL) has been prototyped in a 65 nm CMOS mini-ASIC named ETROC0. Serving as the very first prototype of ETL readout chip (ETROC), ETROC0 aims to study and demonstrate the performance of the analog frontend, with the goal to achieve 40 to 50 ps time resolution per hit with LGAD (therefore reach about 30ps per track with two detector-layer hits per track). ETROC0 consists of preamplifier and discriminator stages, which amplifies the LGAD signal and generates digital pulses containing time of arrival and time over threshold information. This paper will focus on the design considerations that lead to the ETROC front-end architecture choice, the key design features of the building blocks, the methodology of using the LGAD simulation data to evaluate and optimize the front-end design. The ETROC0 prototype chips have been extensively tested using charge injection and the measured performance agrees well with simulation. The initial beam test results are also presented, with time resolution of around 33 ps observed from the preamplifier waveform analysis and around 41 ps from the discriminator pulses analysis. A subset of ETROC0 chips have also been tested to a total ionizing dose of 100 MRad with X-ray and no performance degradation been observed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14526v1-abstract-full').style.display = 'none'; document.getElementById('2012.14526v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.12190">arXiv:2008.12190</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.12190">pdf</a>, <a href="https://arxiv.org/format/2008.12190">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> </div> </div> <p class="title is-5 mathjax"> Local error quantification for Neural Network Differential Equation solvers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dogra%2C+A+S">Akshunna S. Dogra</a>, <a href="/search/?searchtype=author&amp;query=Redman%2C+W+T">William T Redman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.12190v3-abstract-short" style="display: inline;"> Neural networks have been identified as powerful tools for the study of complex systems. A noteworthy example is the neural network differential equation (NN DE) solver, which can provide functional approximations to the solutions of a wide variety of differential equations. Such solvers produce robust functional expressions, are well suited for further manipulations on the quantities of interest&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.12190v3-abstract-full').style.display = 'inline'; document.getElementById('2008.12190v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.12190v3-abstract-full" style="display: none;"> Neural networks have been identified as powerful tools for the study of complex systems. A noteworthy example is the neural network differential equation (NN DE) solver, which can provide functional approximations to the solutions of a wide variety of differential equations. Such solvers produce robust functional expressions, are well suited for further manipulations on the quantities of interest (for example, taking derivatives), and capable of leveraging the modern advances in parallelization and computing power. However, there is a lack of work on the role precise error quantification can play in their predictions: usually, the focus is on ambiguous and/or global measures of performance like the loss function and/or obtaining global bounds on the errors associated with the predictions. Precise, local error quantification is seldom possible without external means or outright knowledge of the true solution. We address these concerns in the context of dynamical system NN DE solvers, leveraging learnt information within the NN DE solvers to develop methods that allow them to be more accurate and efficient, while still pursuing an unsupervised approach that does not rely on external tools or data. We achieve this via methods that can precisely estimate NN DE solver prediction errors point-wise, thus allowing the user the capacity for efficient and targeted error correction. We exemplify the utility of our methods by testing them on a nonlinear and a chaotic system each. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.12190v3-abstract-full').style.display = 'none'; document.getElementById('2008.12190v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures, 2 Tables, 1 appendix with a new proposed algorithm. Modifications in the statement and proof of Equation 7 compared to the previous version. Text overlap with arXiv:2004.11826</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.01774">arXiv:2008.01774</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.01774">pdf</a>, <a href="https://arxiv.org/format/2008.01774">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> An artificial intelligence system for predicting the deterioration of COVID-19 patients in the emergency department </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Shamout%2C+F+E">Farah E. Shamout</a>, <a href="/search/?searchtype=author&amp;query=Shen%2C+Y">Yiqiu Shen</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+N">Nan Wu</a>, <a href="/search/?searchtype=author&amp;query=Kaku%2C+A">Aakash Kaku</a>, <a href="/search/?searchtype=author&amp;query=Park%2C+J">Jungkyu Park</a>, <a href="/search/?searchtype=author&amp;query=Makino%2C+T">Taro Makino</a>, <a href="/search/?searchtype=author&amp;query=Jastrz%C4%99bski%2C+S">Stanis艂aw Jastrz臋bski</a>, <a href="/search/?searchtype=author&amp;query=Witowski%2C+J">Jan Witowski</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+D">Duo Wang</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+B">Ben Zhang</a>, <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">Siddhant Dogra</a>, <a href="/search/?searchtype=author&amp;query=Cao%2C+M">Meng Cao</a>, <a href="/search/?searchtype=author&amp;query=Razavian%2C+N">Narges Razavian</a>, <a href="/search/?searchtype=author&amp;query=Kudlowitz%2C+D">David Kudlowitz</a>, <a href="/search/?searchtype=author&amp;query=Azour%2C+L">Lea Azour</a>, <a href="/search/?searchtype=author&amp;query=Moore%2C+W">William Moore</a>, <a href="/search/?searchtype=author&amp;query=Lui%2C+Y+W">Yvonne W. Lui</a>, <a href="/search/?searchtype=author&amp;query=Aphinyanaphongs%2C+Y">Yindalon Aphinyanaphongs</a>, <a href="/search/?searchtype=author&amp;query=Fernandez-Granda%2C+C">Carlos Fernandez-Granda</a>, <a href="/search/?searchtype=author&amp;query=Geras%2C+K+J">Krzysztof J. Geras</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.01774v2-abstract-short" style="display: inline;"> During the coronavirus disease 2019 (COVID-19) pandemic, rapid and accurate triage of patients at the emergency department is critical to inform decision-making. We propose a data-driven approach for automatic prediction of deterioration risk using a deep neural network that learns from chest X-ray images and a gradient boosting model that learns from routine clinical variables. Our AI prognosis s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.01774v2-abstract-full').style.display = 'inline'; document.getElementById('2008.01774v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.01774v2-abstract-full" style="display: none;"> During the coronavirus disease 2019 (COVID-19) pandemic, rapid and accurate triage of patients at the emergency department is critical to inform decision-making. We propose a data-driven approach for automatic prediction of deterioration risk using a deep neural network that learns from chest X-ray images and a gradient boosting model that learns from routine clinical variables. Our AI prognosis system, trained using data from 3,661 patients, achieves an area under the receiver operating characteristic curve (AUC) of 0.786 (95% CI: 0.745-0.830) when predicting deterioration within 96 hours. The deep neural network extracts informative areas of chest X-ray images to assist clinicians in interpreting the predictions and performs comparably to two radiologists in a reader study. In order to verify performance in a real clinical setting, we silently deployed a preliminary version of the deep neural network at New York University Langone Health during the first wave of the pandemic, which produced accurate predictions in real-time. In summary, our findings demonstrate the potential of the proposed system for assisting front-line physicians in the triage of COVID-19 patients. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.01774v2-abstract-full').style.display = 'none'; document.getElementById('2008.01774v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.12207">arXiv:2007.12207</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.12207">pdf</a>, <a href="https://arxiv.org/format/2007.12207">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2020.164801">10.1016/j.nima.2020.164801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Timing Detectors with SiPM read-out for the MUSE Experiment at PSI </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Rostomyan%2C+T">Tigran Rostomyan</a>, <a href="/search/?searchtype=author&amp;query=Cline%2C+E">Ethan Cline</a>, <a href="/search/?searchtype=author&amp;query=Lavrukhin%2C+I">Ievgen Lavrukhin</a>, <a href="/search/?searchtype=author&amp;query=Atac%2C+H">Hamza Atac</a>, <a href="/search/?searchtype=author&amp;query=Atencio%2C+A">Ariella Atencio</a>, <a href="/search/?searchtype=author&amp;query=Bernauer%2C+J+C">Jan C. Bernauer</a>, <a href="/search/?searchtype=author&amp;query=Briscoe%2C+W+J">William J. Briscoe</a>, <a href="/search/?searchtype=author&amp;query=Cohen%2C+D">Dan Cohen</a>, <a href="/search/?searchtype=author&amp;query=Cohen%2C+E+O">Erez O. Cohen</a>, <a href="/search/?searchtype=author&amp;query=Collicott%2C+C">Cristina Collicott</a>, <a href="/search/?searchtype=author&amp;query=Deiters%2C+K">Konrad Deiters</a>, <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">Shraddha Dogra</a>, <a href="/search/?searchtype=author&amp;query=Downie%2C+E">Evangeline Downie</a>, <a href="/search/?searchtype=author&amp;query=Erni%2C+W">Werner Erni</a>, <a href="/search/?searchtype=author&amp;query=Fernando%2C+I+P">Ishara P. Fernando</a>, <a href="/search/?searchtype=author&amp;query=Flannery%2C+A">Anne Flannery</a>, <a href="/search/?searchtype=author&amp;query=Gautam%2C+T">Thir Gautam</a>, <a href="/search/?searchtype=author&amp;query=Ghosal%2C+D">Debdeep Ghosal</a>, <a href="/search/?searchtype=author&amp;query=Gilman%2C+R">Ronald Gilman</a>, <a href="/search/?searchtype=author&amp;query=Golossanov%2C+A">Alexander Golossanov</a>, <a href="/search/?searchtype=author&amp;query=Hirschman%2C+J">Jack Hirschman</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+M">Minjung Kim</a>, <a href="/search/?searchtype=author&amp;query=Kohl%2C+M">Michael Kohl</a>, <a href="/search/?searchtype=author&amp;query=Krusche%2C+B">Bernd Krusche</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+L">Lin Li</a> , et al. (18 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.12207v2-abstract-short" style="display: inline;"> The Muon Scattering Experiment at the Paul Scherrer Institut uses a mixed beam of electrons, muons, and pions, necessitating precise timing to identify the beam particles and reactions they cause. We describe the design and performance of three timing detectors using plastic scintillator read out with silicon photomultipliers that have been built for the experiment. The Beam Hodoscope, upstream of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.12207v2-abstract-full').style.display = 'inline'; document.getElementById('2007.12207v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.12207v2-abstract-full" style="display: none;"> The Muon Scattering Experiment at the Paul Scherrer Institut uses a mixed beam of electrons, muons, and pions, necessitating precise timing to identify the beam particles and reactions they cause. We describe the design and performance of three timing detectors using plastic scintillator read out with silicon photomultipliers that have been built for the experiment. The Beam Hodoscope, upstream of the scattering target, counts the beam flux and precisely times beam particles both to identify species and provide a starting time for time-of-flight measurements. The Beam Monitor, downstream of the scattering target, counts the unscattered beam flux, helps identify background in scattering events, and precisely times beam particles for time-of-flight measurements. The Beam Focus Monitor, mounted on the target ladder under the liquid hydrogen target inside the target vacuum chamber, is used in dedicated runs to sample the beam spot at three points near the target center, where the beam should be focused. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.12207v2-abstract-full').style.display = 'none'; document.getElementById('2007.12207v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Fixed typos, added references, and rephrased some sections to be clearer. Changed numbering of tables and figures in Appendix</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Instrum. Meth. A 986 (2021) 164801 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.04433">arXiv:2007.04433</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.04433">pdf</a>, <a href="https://arxiv.org/ps/2007.04433">ps</a>, <a href="https://arxiv.org/format/2007.04433">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Error Estimation and Correction from within Neural Network Differential Equation Solvers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dogra%2C+A+S">Akshunna S. Dogra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.04433v2-abstract-short" style="display: inline;"> Neural Network Differential Equation (NN DE) solvers have surged in popularity due to a combination of factors: computational advances making their optimization more tractable, their capacity to handle high dimensional problems, easy interpret-ability of their models, etc. However, almost all NN DE solvers suffer from a fundamental limitation: they are trained using loss functions that depend only&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.04433v2-abstract-full').style.display = 'inline'; document.getElementById('2007.04433v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.04433v2-abstract-full" style="display: none;"> Neural Network Differential Equation (NN DE) solvers have surged in popularity due to a combination of factors: computational advances making their optimization more tractable, their capacity to handle high dimensional problems, easy interpret-ability of their models, etc. However, almost all NN DE solvers suffer from a fundamental limitation: they are trained using loss functions that depend only implicitly on the error associated with the estimate. As such, validation and error analysis of solution estimates requires knowledge of the true solution. Indeed, if the true solution is unknown, we are often reduced to simply hoping that a &#34;low enough&#34; loss implies &#34;small enough&#34; errors, since explicit relationships between the two are not available/well defined. In this work, we describe a general strategy for efficiently constructing error estimates and corrections for Neural Network Differential Equation solvers. Our methods do not require advance knowledge of the true solutions and obtain explicit relationships between loss functions and the error associated with solution estimates. In turn, these explicit relationships directly allow us to estimate and correct for the errors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.04433v2-abstract-full').style.display = 'none'; document.getElementById('2007.04433v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.02361">arXiv:2006.02361</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.02361">pdf</a>, <a href="https://arxiv.org/format/2006.02361">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Optimizing Neural Networks via Koopman Operator Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dogra%2C+A+S">Akshunna S. Dogra</a>, <a href="/search/?searchtype=author&amp;query=Redman%2C+W+T">William T Redman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.02361v3-abstract-short" style="display: inline;"> Koopman operator theory, a powerful framework for discovering the underlying dynamics of nonlinear dynamical systems, was recently shown to be intimately connected with neural network training. In this work, we take the first steps in making use of this connection. As Koopman operator theory is a linear theory, a successful implementation of it in evolving network weights and biases offers the pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.02361v3-abstract-full').style.display = 'inline'; document.getElementById('2006.02361v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.02361v3-abstract-full" style="display: none;"> Koopman operator theory, a powerful framework for discovering the underlying dynamics of nonlinear dynamical systems, was recently shown to be intimately connected with neural network training. In this work, we take the first steps in making use of this connection. As Koopman operator theory is a linear theory, a successful implementation of it in evolving network weights and biases offers the promise of accelerated training, especially in the context of deep networks, where optimization is inherently a non-convex problem. We show that Koopman operator theoretic methods allow for accurate predictions of weights and biases of feedforward, fully connected deep networks over a non-trivial range of training time. During this window, we find that our approach is &gt;10x faster than various gradient descent based methods (e.g. Adam, Adadelta, Adagrad), in line with our complexity analysis. We end by highlighting open questions in this exciting intersection between dynamical systems and neural network theory. We highlight additional methods by which our results could be expanded to broader classes of networks and larger training intervals, which shall be the focus of future work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.02361v3-abstract-full').style.display = 'none'; document.getElementById('2006.02361v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 main content pages (7 supplementary pages), 3 main content figures (3 supplementary figures), 2 main content Tables (5 supplementary Tables). 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advances in Neural Information Processing Systems 33, 2087-2097 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.02976">arXiv:2005.02976</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.02976">pdf</a>, <a href="https://arxiv.org/format/2005.02976">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A comparative study of system size dependence of the effect of non-unitary channels on different classes of quantum states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Narang%2C+G">Geetu Narang</a>, <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">Shruti Dogra</a>, <a href="/search/?searchtype=author&amp;query=Arvind"> Arvind</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.02976v1-abstract-short" style="display: inline;"> We investigate the effect of different types of non-unitary quantum channels on multi-qubit quantum systems. For an $n$-qubit system and a particular channel, in order to draw unbiased conclusions about the system as a whole as opposed to specific states, we evolve a large number of randomly generated states under the given channel. We increase the number of qubits and study the effect of system s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02976v1-abstract-full').style.display = 'inline'; document.getElementById('2005.02976v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.02976v1-abstract-full" style="display: none;"> We investigate the effect of different types of non-unitary quantum channels on multi-qubit quantum systems. For an $n$-qubit system and a particular channel, in order to draw unbiased conclusions about the system as a whole as opposed to specific states, we evolve a large number of randomly generated states under the given channel. We increase the number of qubits and study the effect of system size on the decoherence processes. The entire scheme is repeated for various types of environments which include dephasing channel, depolarising channel, collective dephasing channel and zero temperature bath. Non-unitary channels representing the environments are modeled via their Karus operator decomposition or master equation approach. Further, for a given $n$ we restrict ourselves to the study of particular subclasses of entangled states, namely the GHZ-type and W-type states. We generate random states within these classes and study the class behaviors under different quantum channels for various values of $n$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02976v1-abstract-full').style.display = 'none'; document.getElementById('2005.02976v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages revtex 10 pdf figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.11826">arXiv:2004.11826</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.11826">pdf</a>, <a href="https://arxiv.org/ps/2004.11826">ps</a>, <a href="https://arxiv.org/format/2004.11826">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Dynamical Systems and Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dogra%2C+A+S">Akshunna S. Dogra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.11826v1-abstract-short" style="display: inline;"> Neural Networks (NNs) have been identified as a potentially powerful tool in the study of complex dynamical systems. A good example is the NN differential equation (DE) solver, which provides closed form, differentiable, functional approximations for the evolution of a wide variety of dynamical systems. A major disadvantage of such NN solvers can be the amount of computational resources needed to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.11826v1-abstract-full').style.display = 'inline'; document.getElementById('2004.11826v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.11826v1-abstract-full" style="display: none;"> Neural Networks (NNs) have been identified as a potentially powerful tool in the study of complex dynamical systems. A good example is the NN differential equation (DE) solver, which provides closed form, differentiable, functional approximations for the evolution of a wide variety of dynamical systems. A major disadvantage of such NN solvers can be the amount of computational resources needed to achieve accuracy comparable to existing numerical solvers. We present new strategies for existing dynamical system NN DE solvers, making efficient use of the \textit{learnt} information, to speed up their training process, while still pursuing a completely unsupervised approach. We establish a fundamental connection between NN theory and dynamical systems theory via Koopman Operator Theory (KOT), by showing that the usual training processes for Neural Nets are fertile ground for identifying multiple Koopman operators of interest. We end by illuminating certain applications that KOT might have for NNs in general. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.11826v1-abstract-full').style.display = 'none'; document.getElementById('2004.11826v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.09939">arXiv:2003.09939</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.09939">pdf</a>, <a href="https://arxiv.org/format/2003.09939">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.043079">10.1103/PhysRevResearch.2.043079 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Majorana representation of adiabatic and superadiabatic processes in three-level systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">Shruti Dogra</a>, <a href="/search/?searchtype=author&amp;query=Veps%C3%A4l%C3%A4inen%2C+A">Antti Veps盲l盲inen</a>, <a href="/search/?searchtype=author&amp;query=Paraoanu%2C+G+S">G. S. Paraoanu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.09939v2-abstract-short" style="display: inline;"> We show that stimulated Raman adiabatic passage (STIRAP) and its superadiabatic version (saSTIRAP) have a natural geometric two-star representation on the Majorana sphere. In the case of STIRAP, we find that the evolution is confined to a vertical plane. A faster evolution can be achieved in the saSTIRAP protocol, which employs a counterdiabatic Hamiltonian to nullify the non-adiabatic excitations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.09939v2-abstract-full').style.display = 'inline'; document.getElementById('2003.09939v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.09939v2-abstract-full" style="display: none;"> We show that stimulated Raman adiabatic passage (STIRAP) and its superadiabatic version (saSTIRAP) have a natural geometric two-star representation on the Majorana sphere. In the case of STIRAP, we find that the evolution is confined to a vertical plane. A faster evolution can be achieved in the saSTIRAP protocol, which employs a counterdiabatic Hamiltonian to nullify the non-adiabatic excitations. We derive this Hamiltonian in the Majorana picture, and we observe how, under realistic experimental parameters, the counterdiabatic term corrects the trajectory of the Majorana stars toward the dark state. We also introduce a spin-1 average vector and present its evolution during the two processes, demonstrating that it provides a measure of nonadiabaticity. We show that the Majorana representation can be used as a sensitive tool for the detection of process errors due to ac Stark shifts and non-adiabatic transitions. Finally, we provide an extension of these results to mixed states and processes with decoherence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.09939v2-abstract-full').style.display = 'none'; document.getElementById('2003.09939v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 043079 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.11107">arXiv:2001.11107</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.11107">pdf</a>, <a href="https://arxiv.org/format/2001.11107">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.105.065305">10.1103/PhysRevE.105.065305 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hamiltonian neural networks for solving equations of motion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mattheakis%2C+M">Marios Mattheakis</a>, <a href="/search/?searchtype=author&amp;query=Sondak%2C+D">David Sondak</a>, <a href="/search/?searchtype=author&amp;query=Dogra%2C+A+S">Akshunna S. Dogra</a>, <a href="/search/?searchtype=author&amp;query=Protopapas%2C+P">Pavlos Protopapas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.11107v5-abstract-short" style="display: inline;"> There has been a wave of interest in applying machine learning to study dynamical systems. We present a Hamiltonian neural network that solves the differential equations that govern dynamical systems. This is an equation-driven machine learning method where the optimization process of the network depends solely on the predicted functions without using any ground truth data. The model learns soluti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.11107v5-abstract-full').style.display = 'inline'; document.getElementById('2001.11107v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.11107v5-abstract-full" style="display: none;"> There has been a wave of interest in applying machine learning to study dynamical systems. We present a Hamiltonian neural network that solves the differential equations that govern dynamical systems. This is an equation-driven machine learning method where the optimization process of the network depends solely on the predicted functions without using any ground truth data. The model learns solutions that satisfy, up to an arbitrarily small error, Hamilton&#39;s equations and, therefore, conserve the Hamiltonian invariants. The choice of an appropriate activation function drastically improves the predictability of the network. Moreover, an error analysis is derived and states that the numerical errors depend on the overall network performance. The Hamiltonian network is then employed to solve the equations for the nonlinear oscillator and the chaotic Henon-Heiles dynamical system. In both systems, a symplectic Euler integrator requires two orders more evaluation points than the Hamiltonian network in order to achieve the same order of the numerical error in the predicted phase space trajectories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.11107v5-abstract-full').style.display = 'none'; document.getElementById('2001.11107v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 105, 065305 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.09190">arXiv:2001.09190</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.09190">pdf</a>, <a href="https://arxiv.org/format/2001.09190">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-020-2619-8">10.1038/s41586-020-2619-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of ionizing radiation on superconducting qubit coherence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Veps%C3%A4l%C3%A4inen%2C+A">Antti Veps盲l盲inen</a>, <a href="/search/?searchtype=author&amp;query=Karamlou%2C+A+H">Amir H. Karamlou</a>, <a href="/search/?searchtype=author&amp;query=Orrell%2C+J+L">John L. Orrell</a>, <a href="/search/?searchtype=author&amp;query=Dogra%2C+A+S">Akshunna S. Dogra</a>, <a href="/search/?searchtype=author&amp;query=Loer%2C+B">Ben Loer</a>, <a href="/search/?searchtype=author&amp;query=Vasconcelos%2C+F">Francisca Vasconcelos</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+D+K">David K. Kim</a>, <a href="/search/?searchtype=author&amp;query=Melville%2C+A+J">Alexander J. Melville</a>, <a href="/search/?searchtype=author&amp;query=Niedzielski%2C+B+M">Bethany M. Niedzielski</a>, <a href="/search/?searchtype=author&amp;query=Yoder%2C+J+L">Jonilyn L. Yoder</a>, <a href="/search/?searchtype=author&amp;query=Gustavsson%2C+S">Simon Gustavsson</a>, <a href="/search/?searchtype=author&amp;query=Formaggio%2C+J+A">Joseph A. Formaggio</a>, <a href="/search/?searchtype=author&amp;query=VanDevender%2C+B+A">Brent A. VanDevender</a>, <a href="/search/?searchtype=author&amp;query=Oliver%2C+W+D">William D. Oliver</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.09190v2-abstract-short" style="display: inline;"> The practical viability of any qubit technology stands on long coherence times and high-fidelity operations, with the superconducting qubit modality being a leading example. However, superconducting qubit coherence is impacted by broken Cooper pairs, referred to as quasiparticles, with a density that is empirically observed to be orders of magnitude greater than the value predicted for thermal equ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09190v2-abstract-full').style.display = 'inline'; document.getElementById('2001.09190v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.09190v2-abstract-full" style="display: none;"> The practical viability of any qubit technology stands on long coherence times and high-fidelity operations, with the superconducting qubit modality being a leading example. However, superconducting qubit coherence is impacted by broken Cooper pairs, referred to as quasiparticles, with a density that is empirically observed to be orders of magnitude greater than the value predicted for thermal equilibrium by the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity. Previous work has shown that infrared photons significantly increase the quasiparticle density, yet even in the best isolated systems, it still remains higher than expected, suggesting that another generation mechanism exists. In this Letter, we provide evidence that ionizing radiation from environmental radioactive materials and cosmic rays contributes to this observed difference, leading to an elevated quasiparticle density that would ultimately limit superconducting qubits of the type measured here to coherence times in the millisecond regime. We further demonstrate that introducing radiation shielding reduces the flux of ionizing radiation and positively correlates with increased coherence time. Albeit a small effect for today&#39;s qubits, reducing or otherwise mitigating the impact of ionizing radiation will be critical for realizing fault-tolerant superconducting quantum computers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09190v2-abstract-full').style.display = 'none'; document.getElementById('2001.09190v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 584, 551-556 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.08991">arXiv:1904.08991</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.08991">pdf</a>, <a href="https://arxiv.org/format/1904.08991">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Physical Symmetries Embedded in Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mattheakis%2C+M">M. Mattheakis</a>, <a href="/search/?searchtype=author&amp;query=Protopapas%2C+P">P. Protopapas</a>, <a href="/search/?searchtype=author&amp;query=Sondak%2C+D">D. Sondak</a>, <a href="/search/?searchtype=author&amp;query=Di+Giovanni%2C+M">M. Di Giovanni</a>, <a href="/search/?searchtype=author&amp;query=Kaxiras%2C+E">E. Kaxiras</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.08991v3-abstract-short" style="display: inline;"> Neural networks are a central technique in machine learning. Recent years have seen a wave of interest in applying neural networks to physical systems for which the governing dynamics are known and expressed through differential equations. Two fundamental challenges facing the development of neural networks in physics applications is their lack of interpretability and their physics-agnostic design&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.08991v3-abstract-full').style.display = 'inline'; document.getElementById('1904.08991v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.08991v3-abstract-full" style="display: none;"> Neural networks are a central technique in machine learning. Recent years have seen a wave of interest in applying neural networks to physical systems for which the governing dynamics are known and expressed through differential equations. Two fundamental challenges facing the development of neural networks in physics applications is their lack of interpretability and their physics-agnostic design. The focus of the present work is to embed physical constraints into the structure of the neural network to address the second fundamental challenge. By constraining tunable parameters (such as weights and biases) and adding special layers to the network, the desired constraints are guaranteed to be satisfied without the need for explicit regularization terms. This is demonstrated on upervised and unsupervised networks for two basic symmetries: even/odd symmetry of a function and energy conservation. In the supervised case, the network with embedded constraints is shown to perform well on regression problems while simultaneously obeying the desired constraints whereas a traditional network fits the data but violates the underlying constraints. Finally, a new unsupervised neural network is proposed that guarantees energy conservation through an embedded symplectic structure. The symplectic neural network is used to solve a system of energy-conserving differential equations and out-performs an unsupervised, non-symplectic neural network. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.08991v3-abstract-full').style.display = 'none'; document.getElementById('1904.08991v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is the same manuscript with version 1 (arXiv:1904.08991v1) which accidentally was replaced 16 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.10769">arXiv:1902.10769</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.10769">pdf</a>, <a href="https://arxiv.org/format/1902.10769">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.99.062217">10.1103/PhysRevE.99.062217 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum signatures of chaos, thermalization and tunneling in the exactly solvable few body kicked top </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">Shruti Dogra</a>, <a href="/search/?searchtype=author&amp;query=Madhok%2C+V">Vaibhav Madhok</a>, <a href="/search/?searchtype=author&amp;query=Lakshminarayan%2C+A">Arul Lakshminarayan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.10769v1-abstract-short" style="display: inline;"> Exactly solvable models that exhibit quantum signatures of classical chaos are both rare as well as important - more so in view of the fact that the mechanisms for ergodic behavior and thermalization in isolated quantum systems and its connections to non-integrability are under active investigation. In this work, we study quantum systems of few qubits collectively modeled as a kicked top, a textbo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.10769v1-abstract-full').style.display = 'inline'; document.getElementById('1902.10769v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.10769v1-abstract-full" style="display: none;"> Exactly solvable models that exhibit quantum signatures of classical chaos are both rare as well as important - more so in view of the fact that the mechanisms for ergodic behavior and thermalization in isolated quantum systems and its connections to non-integrability are under active investigation. In this work, we study quantum systems of few qubits collectively modeled as a kicked top, a textbook example of quantum chaos. In particular, we show that the 3 and 4 qubit cases are exactly solvable and yet, interestingly, can display signatures of ergodicity and thermalization. Deriving analytical expressions for entanglement entropy and concurrence, we see agreement in certain parameter regimes between long-time average values and ensemble averages of random states with permutation symmetry. Comparing with results using the data of a recent transmons based experiment realizing the 3-qubit case, we find agreement for short times, including a peculiar step-like behaviour in correlations of some states. In the case of 4-qubits we point to a precursor of dynamical tunneling between what in the classical limit would be two stable islands. Numerical results for larger number of qubits show the emergence of the classical limit including signatures of a bifurcation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.10769v1-abstract-full').style.display = 'none'; document.getElementById('1902.10769v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">supersedes arXiv:1808.07741. More detailed analysis, new results, more figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.00972">arXiv:1812.00972</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.00972">pdf</a>, <a href="https://arxiv.org/ps/1812.00972">ps</a>, <a href="https://arxiv.org/format/1812.00972">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="History and Overview">math.HO</span> </div> </div> <p class="title is-5 mathjax"> Optimal Presentations of Mathematical Objects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dogra%2C+A+S">Akshunna Shaurya Dogra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.00972v1-abstract-short" style="display: inline;"> We discuss the optimal presentations of mathematical objects under well defined symbol libraries. We shall examine what light our chosen symbol libraries and syntax shed upon the objects they represent. A major part of this work will focus on discrete sets, particularly the natural numbers, with results that describe the presentation of the natural numbers under specific symbol libraries and what&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.00972v1-abstract-full').style.display = 'inline'; document.getElementById('1812.00972v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.00972v1-abstract-full" style="display: none;"> We discuss the optimal presentations of mathematical objects under well defined symbol libraries. We shall examine what light our chosen symbol libraries and syntax shed upon the objects they represent. A major part of this work will focus on discrete sets, particularly the natural numbers, with results that describe the presentation of the natural numbers under specific symbol libraries and what those presentations may reveal about the properties of the natural numbers themselves. We shall present bounds and constraints on the length and shape of presentations, connect already existing problems in other fields of mathematics to questions relevant to these presentations and otherwise illuminate why such a study can produce exciting results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.00972v1-abstract-full').style.display = 'none'; document.getElementById('1812.00972v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.02211">arXiv:1810.02211</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.02211">pdf</a>, <a href="https://arxiv.org/format/1810.02211">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevFluids.4.102401">10.1103/PhysRevFluids.4.102401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Geometry of transient chaos in streamwise-localized pipe flow turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Budanur%2C+N+B">Nazmi Burak Budanur</a>, <a href="/search/?searchtype=author&amp;query=Dogra%2C+A+S">Akshunna S. Dogra</a>, <a href="/search/?searchtype=author&amp;query=Hof%2C+B">Bj枚rn Hof</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.02211v2-abstract-short" style="display: inline;"> In pipes and channels, the onset of turbulence is initially dominated by localized transients, which lead to sustained turbulence through their collective dynamics. In the present work, we study the localized turbulence in pipe flow numerically and elucidate a state space structure that gives rise to transient chaos. Starting from the basin boundary separating laminar and turbulent flow, we identi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.02211v2-abstract-full').style.display = 'inline'; document.getElementById('1810.02211v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.02211v2-abstract-full" style="display: none;"> In pipes and channels, the onset of turbulence is initially dominated by localized transients, which lead to sustained turbulence through their collective dynamics. In the present work, we study the localized turbulence in pipe flow numerically and elucidate a state space structure that gives rise to transient chaos. Starting from the basin boundary separating laminar and turbulent flow, we identify transverse homoclinic orbits, the presence of which necessitates a homoclinic tangle and chaos. A direct consequence of the homoclinic tangle is the fractal nature of the laminar-turbulent boundary, which was conjectured in various earlier studies. By mapping the transverse intersections between the stable and unstable manifold of a periodic orbit, we identify the &#39;gateways&#39; that promote an escape from turbulence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.02211v2-abstract-full').style.display = 'none'; document.getElementById('1810.02211v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Physical Review Fluids as a Rapid Communication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Fluids 4, 102401 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.07741">arXiv:1808.07741</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.07741">pdf</a>, <a href="https://arxiv.org/format/1808.07741">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.99.062217">10.1103/PhysRevE.99.062217 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum chaos, thermalization and tunneling in an exactly solvable few body system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">Shruti Dogra</a>, <a href="/search/?searchtype=author&amp;query=Madhok%2C+V">Vaibhav Madhok</a>, <a href="/search/?searchtype=author&amp;query=Lakshminarayan%2C+A">Arul Lakshminarayan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.07741v1-abstract-short" style="display: inline;"> Exactly solvable models that exhibit quantum signatures of classical chaos are both rare as well as important - more so in view of the fact that the mechanisms for ergodic behavior and thermalization in isolated quantum systems and its connections to non-integrability are under active investigation. In this work, we study quantum systems of few qubits collectively modeled as a kicked top, a textbo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.07741v1-abstract-full').style.display = 'inline'; document.getElementById('1808.07741v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.07741v1-abstract-full" style="display: none;"> Exactly solvable models that exhibit quantum signatures of classical chaos are both rare as well as important - more so in view of the fact that the mechanisms for ergodic behavior and thermalization in isolated quantum systems and its connections to non-integrability are under active investigation. In this work, we study quantum systems of few qubits collectively modeled as a kicked top, a textbook example of quantum chaos. In particular, we show that the 3 and 4 qubit cases are exactly solvable and yet, interestingly, can display signatures of ergodicity and thermalization. Deriving analytical expressions for entanglement entropy and concurrence, we see agreement in certain parameter regimes between long-time average values and ensemble averages of random states with permutation symmetry. Comparing with results using the data of a recent transmons based experiment realizing the 3-qubit case, we find agreement for short times, including a peculiar step-like behaviour in correlations of some states. In the case of 4-qubits we point to a precursor of dynamical tunneling between what in the classical limit would be two stable islands. Numerical results for larger number of qubits show the emergence of the classical limit including signatures of a bifurcation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.07741v1-abstract-full').style.display = 'none'; document.getElementById('1808.07741v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+5 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 99, 062217 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.03647">arXiv:1802.03647</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.03647">pdf</a>, <a href="https://arxiv.org/format/1802.03647">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.optcom.2018.03.069">10.1016/j.optcom.2018.03.069 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum correlations as probes of chaos and ergodicity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Madhok%2C+V">Vaibhav Madhok</a>, <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">Shruti Dogra</a>, <a href="/search/?searchtype=author&amp;query=Lakshminarayan%2C+A">Arul Lakshminarayan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.03647v1-abstract-short" style="display: inline;"> Long-time average behavior of quantum correlations in a multi-qubit system, collectively modeled as a kicked top, is addressed here. The behavior of dynamical generation of quantum correlations such as entanglement, discord, concurrence, as previously studied, and Bell correlation function and tangle, as identified in this study, is a function of initially localized coherent states. Their long-tim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.03647v1-abstract-full').style.display = 'inline'; document.getElementById('1802.03647v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.03647v1-abstract-full" style="display: none;"> Long-time average behavior of quantum correlations in a multi-qubit system, collectively modeled as a kicked top, is addressed here. The behavior of dynamical generation of quantum correlations such as entanglement, discord, concurrence, as previously studied, and Bell correlation function and tangle, as identified in this study, is a function of initially localized coherent states. Their long-time average reproduces coarse-grained classical phase space structures of the kicked top which contrast, often starkly, chaotic and regular regions. Apart from providing numerical evidence of such correspondence in the semiclassical regime of a large number of qubits, we use data from a recent transmons based experiment to explore this in the deep quantum regime of a 3-qubit kicked top. The degree to which quantum correlations can be regarded as a quantum signature of chaos, and in what ways the various correlation measures are similar or distinct are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.03647v1-abstract-full').style.display = 'none'; document.getElementById('1802.03647v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.01360">arXiv:1801.01360</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.01360">pdf</a>, <a href="https://arxiv.org/format/1801.01360">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="History and Overview">math.HO</span> </div> </div> <p class="title is-5 mathjax"> Minimal Representations of Natural Numbers Under a Set of Operators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dogra%2C+A+S">Akshunna Shaurya Dogra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.01360v1-abstract-short" style="display: inline;"> This paper studies the minimal length representation of the natural numbers. Let O be a fixed set of integer-valued functions (primarily hyperoperations). For each n, what is the shortest way of expressing n as a combinations of functions in O to the constant 1? For example, if O contains the two functions Sx (successor of x) and *xy (x times y) then the shortest representation of 12 is *SSS1SS1,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.01360v1-abstract-full').style.display = 'inline'; document.getElementById('1801.01360v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.01360v1-abstract-full" style="display: none;"> This paper studies the minimal length representation of the natural numbers. Let O be a fixed set of integer-valued functions (primarily hyperoperations). For each n, what is the shortest way of expressing n as a combinations of functions in O to the constant 1? For example, if O contains the two functions Sx (successor of x) and *xy (x times y) then the shortest representation of 12 is *SSS1SS1, with 8 symbols. This is taken to mean that 8 is complexity of 12 under O. We make a study of such minimal representations and complexities in this paper, proving and/or rightly predicting bounds on complexities, discussing some relevant patterns in the complexities and minimal representations of the natural numbers and listing the results gleaned from computational analysis. Computationally, the first 4.5 million natural numbers were probed to verify our mathematically obtained results. Due to the finiteness of the problem, we used the method of exhaustion of possibilities to state some other results as well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.01360v1-abstract-full').style.display = 'none'; document.getElementById('1801.01360v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 2 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.06102">arXiv:1703.06102</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.06102">pdf</a>, <a href="https://arxiv.org/format/1703.06102">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6455/aaa69f">10.1088/1361-6455/aaa69f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Majorana representation, qutrit Hilbert space and NMR implementation of qutrit gates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">Shruti Dogra</a>, <a href="/search/?searchtype=author&amp;query=Dorai%2C+K">Kavita Dorai</a>, <a href="/search/?searchtype=author&amp;query=Arvind"> Arvind</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.06102v2-abstract-short" style="display: inline;"> We report a study of the Majorana geometrical representation of a qutrit, where a pair of points on a unit sphere represents its quantum states. A canonical form for qutrit states is presented, where every state can be obtained from a one-parameter family of states via $SO(3)$ action. The notion of spin-1 magnetization which is invariant under $SO(3)$ is geometrically interpreted on the Majorana s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.06102v2-abstract-full').style.display = 'inline'; document.getElementById('1703.06102v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.06102v2-abstract-full" style="display: none;"> We report a study of the Majorana geometrical representation of a qutrit, where a pair of points on a unit sphere represents its quantum states. A canonical form for qutrit states is presented, where every state can be obtained from a one-parameter family of states via $SO(3)$ action. The notion of spin-1 magnetization which is invariant under $SO(3)$ is geometrically interpreted on the Majorana sphere. Furthermore, we describe the action of several quantum gates in the Majorana picture and experimentally implement these gates on a spin-1 system (an NMR qutrit) oriented in a liquid crystalline environment. We study the dynamics of the pair of points representing a qutrit state under various useful quantum operations and connect them to different NMR operations. Finally, using the Gell Mann matrix picture we experimentally implement a scheme for complete qutrit state tomography. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.06102v2-abstract-full').style.display = 'none'; document.getElementById('1703.06102v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">replaced with final version 3 figures added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Physics B: Atomic, Molecular and Optical Physics 51, 045505 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.02418">arXiv:1702.02418</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.02418">pdf</a>, <a href="https://arxiv.org/format/1702.02418">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.97.052330">10.1103/PhysRevA.97.052330 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superposing pure quantum states with partial prior information </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">Shruti Dogra</a>, <a href="/search/?searchtype=author&amp;query=Thomas%2C+G">George Thomas</a>, <a href="/search/?searchtype=author&amp;query=Ghosh%2C+S">Sibasish Ghosh</a>, <a href="/search/?searchtype=author&amp;query=Suter%2C+D">Dieter Suter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.02418v2-abstract-short" style="display: inline;"> The principle of superposition is an intriguing feature of Quantum Mechanics, which is regularly exploited at various instances. A recent work [PRL \textbf{116}, 110403 (2016)] shows that the fundamentals of Quantum Mechanics restrict the superposition of two arbitrary pure states of a quantum system, even though it is possible to superpose two quantum states with partial prior knowledge. The prio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.02418v2-abstract-full').style.display = 'inline'; document.getElementById('1702.02418v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.02418v2-abstract-full" style="display: none;"> The principle of superposition is an intriguing feature of Quantum Mechanics, which is regularly exploited at various instances. A recent work [PRL \textbf{116}, 110403 (2016)] shows that the fundamentals of Quantum Mechanics restrict the superposition of two arbitrary pure states of a quantum system, even though it is possible to superpose two quantum states with partial prior knowledge. The prior knowledge imposes geometrical constraints on the choice of input pure states. We discuss an experimentally feasible protocol to superpose multiple pure states of a $d$ dimensional quantum system and carry out an explicit experimental realization to superpose two single-qubit pure states on a two-qubit NMR quantum information processor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.02418v2-abstract-full').style.display = 'none'; document.getElementById('1702.02418v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 97, 052330 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.00241">arXiv:1511.00241</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.00241">pdf</a>, <a href="https://arxiv.org/format/1511.00241">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physleta.2016.04.015">10.1016/j.physleta.2016.04.015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental demonstration of quantum contextuality on an NMR qutrit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">Shruti Dogra</a>, <a href="/search/?searchtype=author&amp;query=Dorai%2C+K">Kavita Dorai</a>, <a href="/search/?searchtype=author&amp;query=Arvind"> Arvind</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.00241v1-abstract-short" style="display: inline;"> We experimentally test quantum contextuality of a single qutrit using NMR. The contextuality inequalities based on nine observables developed by Kurzynski et. al. are first reformulated in terms of traceless observables which can be measured in an NMR experiment. These inequalities reveal the contextuality of almost all single-qutrit states. We demonstrate the violation of the inequality on four d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.00241v1-abstract-full').style.display = 'inline'; document.getElementById('1511.00241v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.00241v1-abstract-full" style="display: none;"> We experimentally test quantum contextuality of a single qutrit using NMR. The contextuality inequalities based on nine observables developed by Kurzynski et. al. are first reformulated in terms of traceless observables which can be measured in an NMR experiment. These inequalities reveal the contextuality of almost all single-qutrit states. We demonstrate the violation of the inequality on four different initial states of a spin-1 deuterium nucleus oriented in a liquid crystal matrix, and follow the violation as the states evolve in time. We also describe and experimentally perform a single-shot test of contextuality for a subclass of qutrit states whose density matrix is diagonal in the energy basis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.00241v1-abstract-full').style.display = 'none'; document.getElementById('1511.00241v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages revtex 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.04856">arXiv:1504.04856</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.04856">pdf</a>, <a href="https://arxiv.org/ps/1504.04856">ps</a>, <a href="https://arxiv.org/format/1504.04856">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.92.022307">10.1103/PhysRevA.92.022307 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental construction of a W-superposition state and its equivalence to the GHZ state under local filtration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Das%2C+D">Debmalya Das</a>, <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">Shruti Dogra</a>, <a href="/search/?searchtype=author&amp;query=Dorai%2C+K">Kavita Dorai</a>, <a href="/search/?searchtype=author&amp;query=Arvind"> Arvind</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.04856v1-abstract-short" style="display: inline;"> We experimentally construct a novel three-qubit entangled W-superposition ($\rm W \bar{\rm W}$) state on an NMR quantum information processor. We give a measurement-based filtration protocol for the invertible local operation (ILO) that converts the $\rm W \bar{\rm W}$ state to the GHZ state, using a register of three ancilla qubits. Further we implement an experimental protocol to reconstruct ful&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.04856v1-abstract-full').style.display = 'inline'; document.getElementById('1504.04856v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.04856v1-abstract-full" style="display: none;"> We experimentally construct a novel three-qubit entangled W-superposition ($\rm W \bar{\rm W}$) state on an NMR quantum information processor. We give a measurement-based filtration protocol for the invertible local operation (ILO) that converts the $\rm W \bar{\rm W}$ state to the GHZ state, using a register of three ancilla qubits. Further we implement an experimental protocol to reconstruct full information about the three-party $\rm W \bar{\rm W}$ state using only two-party reduced density matrices. An intriguing fact unearthed recently is that the $\rm W \bar{\rm W}$ state which is equivalent to the GHZ state under ILO, is in fact reconstructible from its two-party reduced density matrices, unlike the GHZ state. We hence demonstrate that although the $\rm W \bar{\rm W}$ state is interconvertible with the GHZ state, it stores entanglement very differently. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.04856v1-abstract-full').style.display = 'none'; document.getElementById('1504.04856v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages Revtex4-1, Six eps figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 92, 022307 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.06624">arXiv:1503.06624</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.06624">pdf</a>, <a href="https://arxiv.org/ps/1503.06624">ps</a>, <a href="https://arxiv.org/format/1503.06624">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Implementation of the quantum Fourier transform on a hybrid qubit-qutrit NMR quantum emulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">Shruti Dogra</a>, <a href="/search/?searchtype=author&amp;query=Arvind"> Arvind</a>, <a href="/search/?searchtype=author&amp;query=Dorai%2C+K">Kavita Dorai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.06624v1-abstract-short" style="display: inline;"> The quantum Fourier transform (QFT) is a key ingredient of several quantum algorithms and a qudit-specific implementation of the QFT is hence an important step toward the realization of qudit-based quantum computers. This work develops a circuit decomposition of the QFT for hybrid qudits based on generalized Hadamard and generalized controlled-phase gates, which can be implemented using selective&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.06624v1-abstract-full').style.display = 'inline'; document.getElementById('1503.06624v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.06624v1-abstract-full" style="display: none;"> The quantum Fourier transform (QFT) is a key ingredient of several quantum algorithms and a qudit-specific implementation of the QFT is hence an important step toward the realization of qudit-based quantum computers. This work develops a circuit decomposition of the QFT for hybrid qudits based on generalized Hadamard and generalized controlled-phase gates, which can be implemented using selective rotations in NMR. We experimentally implement the hybrid qudit QFT on an NMR quantum emulator, which uses four qubits to emulate a single qutrit coupled to two qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.06624v1-abstract-full').style.display = 'none'; document.getElementById('1503.06624v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.4413">arXiv:1411.4413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.4413">pdf</a>, <a href="https://arxiv.org/format/1411.4413">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature14474">10.1038/nature14474 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of the rare $B^0_s\to渭^+渭^-$ decay from the combined analysis of CMS and LHCb data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=CMS%2C+T">The CMS</a>, <a href="/search/?searchtype=author&amp;query=Collaborations%2C+L">LHCb Collaborations</a>, <a href="/search/?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/?searchtype=author&amp;query=Khachatryan%2C+V">V. Khachatryan</a>, <a href="/search/?searchtype=author&amp;query=Sirunyan%2C+A+M">A. M. Sirunyan</a>, <a href="/search/?searchtype=author&amp;query=Tumasyan%2C+A">A. Tumasyan</a>, <a href="/search/?searchtype=author&amp;query=Adam%2C+W">W. Adam</a>, <a href="/search/?searchtype=author&amp;query=Bergauer%2C+T">T. Bergauer</a>, <a href="/search/?searchtype=author&amp;query=Dragicevic%2C+M">M. Dragicevic</a>, <a href="/search/?searchtype=author&amp;query=Er%C3%B6%2C+J">J. Er枚</a>, <a href="/search/?searchtype=author&amp;query=Friedl%2C+M">M. Friedl</a>, <a href="/search/?searchtype=author&amp;query=Fr%C3%BChwirth%2C+R">R. Fr眉hwirth</a>, <a href="/search/?searchtype=author&amp;query=Ghete%2C+V+M">V. M. Ghete</a>, <a href="/search/?searchtype=author&amp;query=Hartl%2C+C">C. Hartl</a>, <a href="/search/?searchtype=author&amp;query=H%C3%B6rmann%2C+N">N. H枚rmann</a>, <a href="/search/?searchtype=author&amp;query=Hrubec%2C+J">J. Hrubec</a>, <a href="/search/?searchtype=author&amp;query=Jeitler%2C+M">M. Jeitler</a>, <a href="/search/?searchtype=author&amp;query=Kiesenhofer%2C+W">W. Kiesenhofer</a>, <a href="/search/?searchtype=author&amp;query=Kn%C3%BCnz%2C+V">V. Kn眉nz</a>, <a href="/search/?searchtype=author&amp;query=Krammer%2C+M">M. Krammer</a>, <a href="/search/?searchtype=author&amp;query=Kr%C3%A4tschmer%2C+I">I. Kr盲tschmer</a>, <a href="/search/?searchtype=author&amp;query=Liko%2C+D">D. Liko</a>, <a href="/search/?searchtype=author&amp;query=Mikulec%2C+I">I. Mikulec</a>, <a href="/search/?searchtype=author&amp;query=Rabady%2C+D">D. Rabady</a>, <a href="/search/?searchtype=author&amp;query=Rahbaran%2C+B">B. Rahbaran</a> , et al. (2807 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.4413v2-abstract-short" style="display: inline;"> A joint measurement is presented of the branching fractions $B^0_s\to渭^+渭^-$ and $B^0\to渭^+渭^-$ in proton-proton collisions at the LHC by the CMS and LHCb experiments. The data samples were collected in 2011 at a centre-of-mass energy of 7 TeV, and in 2012 at 8 TeV. The combined analysis produces the first observation of the $B^0_s\to渭^+渭^-$ decay, with a statistical significance exceeding six sta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.4413v2-abstract-full').style.display = 'inline'; document.getElementById('1411.4413v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.4413v2-abstract-full" style="display: none;"> A joint measurement is presented of the branching fractions $B^0_s\to渭^+渭^-$ and $B^0\to渭^+渭^-$ in proton-proton collisions at the LHC by the CMS and LHCb experiments. The data samples were collected in 2011 at a centre-of-mass energy of 7 TeV, and in 2012 at 8 TeV. The combined analysis produces the first observation of the $B^0_s\to渭^+渭^-$ decay, with a statistical significance exceeding six standard deviations, and the best measurement of its branching fraction so far. Furthermore, evidence for the $B^0\to渭^+渭^-$ decay is obtained with a statistical significance of three standard deviations. The branching fraction measurements are statistically compatible with SM predictions and impose stringent constraints on several theories beyond the SM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.4413v2-abstract-full').style.display = 'none'; document.getElementById('1411.4413v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Correspondence should be addressed to cms-and-lhcb-publication-committees@cern.ch</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-PH-EP-2014-220, CMS-BPH-13-007, LHCb-PAPER-2014-049 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 522, 68-72 (04 June 2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.3448">arXiv:1407.3448</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1407.3448">pdf</a>, <a href="https://arxiv.org/ps/1407.3448">ps</a>, <a href="https://arxiv.org/format/1407.3448">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.91.022312">10.1103/PhysRevA.91.022312 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental construction of generic three-qubit states and their reconstruction from two-party reduced states on an NMR quantum information processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">Shruti Dogra</a>, <a href="/search/?searchtype=author&amp;query=Dorai%2C+K">Kavita Dorai</a>, <a href="/search/?searchtype=author&amp;query=Arvind"> Arvind</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.3448v2-abstract-short" style="display: inline;"> We experimentally explore the state space of three qubits on an NMR quantum information processor. We construct a scheme to experimentally realize a canonical form for general three-qubit states up to single-qubit unitaries. This form involves a non-trivial combination of GHZ and W-type maximally entangled states of three qubits. The general circuit that we have constructed for the generic state r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.3448v2-abstract-full').style.display = 'inline'; document.getElementById('1407.3448v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.3448v2-abstract-full" style="display: none;"> We experimentally explore the state space of three qubits on an NMR quantum information processor. We construct a scheme to experimentally realize a canonical form for general three-qubit states up to single-qubit unitaries. This form involves a non-trivial combination of GHZ and W-type maximally entangled states of three qubits. The general circuit that we have constructed for the generic state reduces to those for GHZ and W states as special cases. The experimental construction of a generic state is carried out for a nontrivial set of parameters and the good fidelity of preparation is confirmed by complete state tomography. The GHZ and W-states are constructed as special cases of the general experimental scheme. Further, we experimentally demonstrate a curious fact about three-qubit states, where for almost all pure states, the two-qubit reduced states can be used to reconstruct the full three-qubit state. For the case of a generic state and for the W-state, we demonstrate this method of reconstruction by comparing it with the directly tomographed three-qubit state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.3448v2-abstract-full').style.display = 'none'; document.getElementById('1407.3448v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version to appear in PRA new results added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 91, 022312 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1406.5026">arXiv:1406.5026</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1406.5026">pdf</a>, <a href="https://arxiv.org/format/1406.5026">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physleta.2014.10.003">10.1016/j.physleta.2014.10.003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Determining the parity of a permutation using an experimental NMR qutrit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dogra%2C+S">Shruti Dogra</a>, <a href="/search/?searchtype=author&amp;query=Arvind"> Arvind</a>, <a href="/search/?searchtype=author&amp;query=Dorai%2C+K">Kavita Dorai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1406.5026v1-abstract-short" style="display: inline;"> We present the NMR implementation of a recently proposed quantum algorithm to find the parity of a permutation. In the usual qubit model of quantum computation, speedup requires the presence of entanglement and thus cannot be achieved by a single qubit. On the other hand, a qutrit is qualitatively more quantum than a qubit because of the existence of quantum contextuality and a single qutrit can b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.5026v1-abstract-full').style.display = 'inline'; document.getElementById('1406.5026v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1406.5026v1-abstract-full" style="display: none;"> We present the NMR implementation of a recently proposed quantum algorithm to find the parity of a permutation. In the usual qubit model of quantum computation, speedup requires the presence of entanglement and thus cannot be achieved by a single qubit. On the other hand, a qutrit is qualitatively more quantum than a qubit because of the existence of quantum contextuality and a single qutrit can be used for computing. We use the deuterium nucleus oriented in a liquid crystal as the experimental qutrit. This is the first experimental exploitation of a single qutrit to carry out a computational task. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.5026v1-abstract-full').style.display = 'none'; document.getElementById('1406.5026v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages 4 figures revtex</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics Letters A 378, 3452 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1109.5446">arXiv:1109.5446</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1109.5446">pdf</a>, <a href="https://arxiv.org/ps/1109.5446">ps</a>, <a href="https://arxiv.org/format/1109.5446">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.85.014901">10.1103/PhysRevC.85.014901 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Directed and elliptic flow of charged particles in Cu+Cu collisions at $\sqrt{\bm {s_{NN}}} =$ 22.4 GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Agakishiev%2C+G">G. Agakishiev</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+M+M">M. M. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Ahammed%2C+Z">Z. Ahammed</a>, <a href="/search/?searchtype=author&amp;query=Alakhverdyants%2C+A+V">A. V. Alakhverdyants</a>, <a href="/search/?searchtype=author&amp;query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/?searchtype=author&amp;query=Alford%2C+J">J. Alford</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+B+D">B. D. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Anson%2C+C+D">C. D. Anson</a>, <a href="/search/?searchtype=author&amp;query=Arkhipkin%2C+D">D. Arkhipkin</a>, <a href="/search/?searchtype=author&amp;query=Averichev%2C+G+S">G. S. Averichev</a>, <a href="/search/?searchtype=author&amp;query=Balewski%2C+J">J. Balewski</a>, <a href="/search/?searchtype=author&amp;query=Beavis%2C+D+R">D. R. Beavis</a>, <a href="/search/?searchtype=author&amp;query=Behera%2C+N+K">N. K. Behera</a>, <a href="/search/?searchtype=author&amp;query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/?searchtype=author&amp;query=Betancourt%2C+M+J">M. J. Betancourt</a>, <a href="/search/?searchtype=author&amp;query=Betts%2C+R+R">R. R. Betts</a>, <a href="/search/?searchtype=author&amp;query=Bhasin%2C+A">A. Bhasin</a>, <a href="/search/?searchtype=author&amp;query=Bhati%2C+A+K">A. K. Bhati</a>, <a href="/search/?searchtype=author&amp;query=Bichsel%2C+H">H. Bichsel</a>, <a href="/search/?searchtype=author&amp;query=Bielcik%2C+J">J. Bielcik</a>, <a href="/search/?searchtype=author&amp;query=Bielcikova%2C+J">J. Bielcikova</a>, <a href="/search/?searchtype=author&amp;query=Bland%2C+L+C">L. C. Bland</a>, <a href="/search/?searchtype=author&amp;query=Bordyuzhin%2C+I+G">I. G. Bordyuzhin</a>, <a href="/search/?searchtype=author&amp;query=Borowski%2C+W">W. Borowski</a>, <a href="/search/?searchtype=author&amp;query=Bouchet%2C+J">J. Bouchet</a> , et al. (346 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1109.5446v2-abstract-short" style="display: inline;"> This paper reports results for directed flow $v_{1}$ and elliptic flow $v_{2}$ of charged particles in Cu+Cu collisions at $\sqrt{s_{NN}}=$ 22.4 GeV at the Relativistic Heavy Ion Collider. The measurements are for the 0-60% most central collisions, using charged particles observed in the STAR detector. Our measurements extend to 22.4 GeV Cu+Cu collisions the prior observation that $v_1$ is indepen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.5446v2-abstract-full').style.display = 'inline'; document.getElementById('1109.5446v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1109.5446v2-abstract-full" style="display: none;"> This paper reports results for directed flow $v_{1}$ and elliptic flow $v_{2}$ of charged particles in Cu+Cu collisions at $\sqrt{s_{NN}}=$ 22.4 GeV at the Relativistic Heavy Ion Collider. The measurements are for the 0-60% most central collisions, using charged particles observed in the STAR detector. Our measurements extend to 22.4 GeV Cu+Cu collisions the prior observation that $v_1$ is independent of the system size at 62.4 and 200 GeV, and also extend the scaling of $v_1$ with $畏/y_{\rm beam}$ to this system. The measured $v_2(p_T)$ in Cu+Cu collisions is similar for $\sqrt{s_{NN}} = 22.4-200$ GeV. We also report a comparison with results from transport model (UrQMD and AMPT) calculations. The model results do not agree quantitatively with the measured $v_1(畏), v_2(p_T)$ and $v_2(畏)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.5446v2-abstract-full').style.display = 'none'; document.getElementById('1109.5446v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages,9 figures: Introduction part of the paper is expanded, Fig 9 is changed slightly, more discussion on summary</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 85, 014901 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1107.2955">arXiv:1107.2955</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1107.2955">pdf</a>, <a href="https://arxiv.org/ps/1107.2955">ps</a>, <a href="https://arxiv.org/format/1107.2955">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.108.072301">10.1103/PhysRevLett.108.072301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strangeness Enhancement in Cu+Cu and Au+Au Collisions at \sqrt{s_{NN}} = 200 GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=STAR+Collaboration"> STAR Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Agakishiev%2C+H">H. Agakishiev</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+M+M">M. M. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Ahammed%2C+Z">Z. Ahammed</a>, <a href="/search/?searchtype=author&amp;query=Alakhverdyants%2C+A+V">A. V. Alakhverdyants</a>, <a href="/search/?searchtype=author&amp;query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/?searchtype=author&amp;query=Alford%2C+J">J. Alford</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+B+D">B. D. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Anson%2C+C+D">C. D. Anson</a>, <a href="/search/?searchtype=author&amp;query=Arkhipkin%2C+D">D. Arkhipkin</a>, <a href="/search/?searchtype=author&amp;query=Averichev%2C+G+S">G. S. Averichev</a>, <a href="/search/?searchtype=author&amp;query=Balewski%2C+J">J. Balewski</a>, <a href="/search/?searchtype=author&amp;query=Barnby%2C+L+S">L. S. Barnby</a>, <a href="/search/?searchtype=author&amp;query=Beavis%2C+D+R">D. R. Beavis</a>, <a href="/search/?searchtype=author&amp;query=Behera%2C+N+K">N. K. Behera</a>, <a href="/search/?searchtype=author&amp;query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/?searchtype=author&amp;query=Betancourt%2C+M+J">M. J. Betancourt</a>, <a href="/search/?searchtype=author&amp;query=Betts%2C+R+R">R. R. Betts</a>, <a href="/search/?searchtype=author&amp;query=Bhasin%2C+A">A. Bhasin</a>, <a href="/search/?searchtype=author&amp;query=Bhati%2C+A+K">A. K. Bhati</a>, <a href="/search/?searchtype=author&amp;query=Bichsel%2C+H">H. Bichsel</a>, <a href="/search/?searchtype=author&amp;query=Bielcik%2C+J">J. Bielcik</a>, <a href="/search/?searchtype=author&amp;query=Bielcikova%2C+J">J. Bielcikova</a>, <a href="/search/?searchtype=author&amp;query=Biritz%2C+B">B. Biritz</a>, <a href="/search/?searchtype=author&amp;query=Bland%2C+L+C">L. C. Bland</a> , et al. (348 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1107.2955v2-abstract-short" style="display: inline;"> We report new STAR measurements of mid-rapidity yields for the $螞$, $\bar螞$, $K^{0}_{S}$, $螢^{-}$, $\bar螢^{+}$, $惟^{-}$, $\bar惟^{+}$ particles in Cu+Cu collisions at \sNN{200}, and mid-rapidity yields for the $螞$, $\bar螞$, $K^{0}_{S}$ particles in Au+Au at \sNN{200}. We show that at a given number of participating nucleons, the production of strange hadrons is higher in Cu+Cu collisions than in Au&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1107.2955v2-abstract-full').style.display = 'inline'; document.getElementById('1107.2955v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1107.2955v2-abstract-full" style="display: none;"> We report new STAR measurements of mid-rapidity yields for the $螞$, $\bar螞$, $K^{0}_{S}$, $螢^{-}$, $\bar螢^{+}$, $惟^{-}$, $\bar惟^{+}$ particles in Cu+Cu collisions at \sNN{200}, and mid-rapidity yields for the $螞$, $\bar螞$, $K^{0}_{S}$ particles in Au+Au at \sNN{200}. We show that at a given number of participating nucleons, the production of strange hadrons is higher in Cu+Cu collisions than in Au+Au collisions at the same center-of-mass energy. We find that aspects of the enhancement factors for all particles can be described by a parameterization based on the fraction of participants that undergo multiple collisions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1107.2955v2-abstract-full').style.display = 'none'; document.getElementById('1107.2955v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2011. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1102.2669">arXiv:1102.2669</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1102.2669">pdf</a>, <a href="https://arxiv.org/ps/1102.2669">ps</a>, <a href="https://arxiv.org/format/1102.2669">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.83.061901">10.1103/PhysRevC.83.061901 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Studies of di-jet survival and surface emission bias in Au+Au collisions via angular correlations with respect to back-to-back leading hadrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Agakishiev%2C+H">H. Agakishiev</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+M+M">M. M. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Ahammed%2C+Z">Z. Ahammed</a>, <a href="/search/?searchtype=author&amp;query=Alakhverdyants%2C+A+V">A. V. Alakhverdyants</a>, <a href="/search/?searchtype=author&amp;query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/?searchtype=author&amp;query=Alford%2C+J">J. Alford</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+B+D">B. D. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Anson%2C+C+D">C. D. Anson</a>, <a href="/search/?searchtype=author&amp;query=Arkhipkin%2C+D">D. Arkhipkin</a>, <a href="/search/?searchtype=author&amp;query=Averichev%2C+G+S">G. S. Averichev</a>, <a href="/search/?searchtype=author&amp;query=Balewski%2C+J">J. Balewski</a>, <a href="/search/?searchtype=author&amp;query=Beavis%2C+D+R">D. R. Beavis</a>, <a href="/search/?searchtype=author&amp;query=Behera%2C+N+K">N. K. Behera</a>, <a href="/search/?searchtype=author&amp;query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/?searchtype=author&amp;query=Betancourt%2C+M+J">M. J. Betancourt</a>, <a href="/search/?searchtype=author&amp;query=Betts%2C+R+R">R. R. Betts</a>, <a href="/search/?searchtype=author&amp;query=Bhasin%2C+A">A. Bhasin</a>, <a href="/search/?searchtype=author&amp;query=Bhati%2C+A+K">A. K. Bhati</a>, <a href="/search/?searchtype=author&amp;query=Bichsel%2C+H">H. Bichsel</a>, <a href="/search/?searchtype=author&amp;query=Bielcik%2C+J">J. Bielcik</a>, <a href="/search/?searchtype=author&amp;query=Bielcikova%2C+J">J. Bielcikova</a>, <a href="/search/?searchtype=author&amp;query=Biritz%2C+B">B. Biritz</a>, <a href="/search/?searchtype=author&amp;query=Bland%2C+L+C">L. C. Bland</a>, <a href="/search/?searchtype=author&amp;query=Bordyuzhin%2C+I+G">I. G. Bordyuzhin</a>, <a href="/search/?searchtype=author&amp;query=Borowski%2C+W">W. Borowski</a> , et al. (353 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1102.2669v1-abstract-short" style="display: inline;"> We report first results from an analysis based on a new multi-hadron correlation technique, exploring jet-medium interactions and di-jet surface emission bias at RHIC. Pairs of back-to-back high transverse momentum hadrons are used for triggers to study associated hadron distributions. In contrast with two- and three-particle correlations with a single trigger with similar kinematic selections, th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.2669v1-abstract-full').style.display = 'inline'; document.getElementById('1102.2669v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1102.2669v1-abstract-full" style="display: none;"> We report first results from an analysis based on a new multi-hadron correlation technique, exploring jet-medium interactions and di-jet surface emission bias at RHIC. Pairs of back-to-back high transverse momentum hadrons are used for triggers to study associated hadron distributions. In contrast with two- and three-particle correlations with a single trigger with similar kinematic selections, the associated hadron distribution of both trigger sides reveals no modification in either relative pseudo-rapidity or relative azimuthal angle from d+Au to central Au+Au collisions. We determine associated hadron yields and spectra as well as production rates for such correlated back-to-back triggers to gain additional insights on medium properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.2669v1-abstract-full').style.display = 'none'; document.getElementById('1102.2669v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">By the STAR Collaboration. 6 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.C83:061901,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1010.0690">arXiv:1010.0690</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1010.0690">pdf</a>, <a href="https://arxiv.org/format/1010.0690">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/abdf3f">10.1088/1674-1137/abdf3f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurements of Dihadron Correlations Relative to the Event Plane in Au+Au Collisions at $\sqrt{s_{_{\rm NN}}}=200$ GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Agakishiev%2C+H">H. Agakishiev</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+M+M">M. M. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Ahammed%2C+Z">Z. Ahammed</a>, <a href="/search/?searchtype=author&amp;query=Alakhverdyants%2C+A+V">A. V. Alakhverdyants</a>, <a href="/search/?searchtype=author&amp;query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/?searchtype=author&amp;query=Alford%2C+J">J. Alford</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+B+D">B. D. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Anson%2C+C+D">C. D. Anson</a>, <a href="/search/?searchtype=author&amp;query=Arkhipkin%2C+D">D. Arkhipkin</a>, <a href="/search/?searchtype=author&amp;query=Averichev%2C+G+S">G. S. Averichev</a>, <a href="/search/?searchtype=author&amp;query=Balewski%2C+J">J. Balewski</a>, <a href="/search/?searchtype=author&amp;query=Beavis%2C+D+R">D. R. Beavis</a>, <a href="/search/?searchtype=author&amp;query=Behera%2C+N+K">N. K. Behera</a>, <a href="/search/?searchtype=author&amp;query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/?searchtype=author&amp;query=Betancourt%2C+M+J">M. J. Betancourt</a>, <a href="/search/?searchtype=author&amp;query=Betts%2C+R+R">R. R. Betts</a>, <a href="/search/?searchtype=author&amp;query=Bhasin%2C+A">A. Bhasin</a>, <a href="/search/?searchtype=author&amp;query=Bhati%2C+A+K">A. K. Bhati</a>, <a href="/search/?searchtype=author&amp;query=Bichsel%2C+H">H. Bichsel</a>, <a href="/search/?searchtype=author&amp;query=Bielcik%2C+J">J. Bielcik</a>, <a href="/search/?searchtype=author&amp;query=Bielcikova%2C+J">J. Bielcikova</a>, <a href="/search/?searchtype=author&amp;query=Biritz%2C+B">B. Biritz</a>, <a href="/search/?searchtype=author&amp;query=Bland%2C+L+C">L. C. Bland</a>, <a href="/search/?searchtype=author&amp;query=Borowski%2C+W">W. Borowski</a>, <a href="/search/?searchtype=author&amp;query=Bouchet%2C+J">J. Bouchet</a> , et al. (345 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1010.0690v4-abstract-short" style="display: inline;"> Dihadron azimuthal correlations containing a high transverse momentum ($p_T$) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to p+p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.0690v4-abstract-full').style.display = 'inline'; document.getElementById('1010.0690v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1010.0690v4-abstract-full" style="display: none;"> Dihadron azimuthal correlations containing a high transverse momentum ($p_T$) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to p+p and d+Au collisions. The modification increases with the collision centrality, suggesting a path-length or energy density dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20-60%) Au+Au collisions at $\sqrt{s_{_{\rm NN}}}=200$ GeV as a function of the trigger particle&#39;s azimuthal angle relative to the event plane, $蠁_s=|蠁_t-蠄_{\rm EP}|$. The azimuthal correlation is studied as a function of both the trigger and associated particle $p_T$. The subtractions of the combinatorial background and anisotropic flow, assuming Zero Yield At Minimum (ZYAM), are described. The correlation results are first discussed with subtraction of the even harmonic (elliptic and quadrangular) flow backgrounds. The away-side correlation is strongly modified, and the modification varies with $蠁_s$, with a double-peak structure for out-of-plane trigger particles. The near-side ridge (long range pseudo-rapidity $螖畏$ correlation) appears to drop with increasing $蠁_s$ while the jet-like component remains approximately constant. The correlation functions are further studied with subtraction of odd harmonic triangular flow background arising from fluctuations. It is found that the triangular flow, while responsible for the majority of the amplitudes, is not sufficient to explain the $蠁_s$-dependence of the ridge or the away-side double-peak structure. ... <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.0690v4-abstract-full').style.display = 'none'; document.getElementById('1010.0690v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">54 pages, 40 figures, 6 tables. As published</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. C 45 (2021) 044002 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1007.2613">arXiv:1007.2613</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1007.2613">pdf</a>, <a href="https://arxiv.org/format/1007.2613">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=STAR+Collaboration"> STAR Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+M+M">M. M. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Ahammed%2C+Z">Z. Ahammed</a>, <a href="/search/?searchtype=author&amp;query=Alakhverdyants%2C+A+V">A. V. Alakhverdyants</a>, <a href="/search/?searchtype=author&amp;query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+B+D">B. D. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Arkhipkin%2C+D">D. Arkhipkin</a>, <a href="/search/?searchtype=author&amp;query=Averichev%2C+G+S">G. S. Averichev</a>, <a href="/search/?searchtype=author&amp;query=Balewski%2C+J">J. Balewski</a>, <a href="/search/?searchtype=author&amp;query=Barnby%2C+L+S">L. S. Barnby</a>, <a href="/search/?searchtype=author&amp;query=Baumgart%2C+S">S. Baumgart</a>, <a href="/search/?searchtype=author&amp;query=Beavis%2C+D+R">D. R. Beavis</a>, <a href="/search/?searchtype=author&amp;query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/?searchtype=author&amp;query=Betancourt%2C+M+J">M. J. Betancourt</a>, <a href="/search/?searchtype=author&amp;query=Betts%2C+R+R">R. R. Betts</a>, <a href="/search/?searchtype=author&amp;query=Bhasin%2C+A">A. Bhasin</a>, <a href="/search/?searchtype=author&amp;query=Bhati%2C+A+K">A. K. Bhati</a>, <a href="/search/?searchtype=author&amp;query=Bichsel%2C+H">H. Bichsel</a>, <a href="/search/?searchtype=author&amp;query=Bielcik%2C+J">J. Bielcik</a>, <a href="/search/?searchtype=author&amp;query=Bielcikova%2C+J">J. Bielcikova</a>, <a href="/search/?searchtype=author&amp;query=Biritz%2C+B">B. Biritz</a>, <a href="/search/?searchtype=author&amp;query=Bland%2C+L+C">L. C. Bland</a>, <a href="/search/?searchtype=author&amp;query=Bonner%2C+B+E">B. E. Bonner</a>, <a href="/search/?searchtype=author&amp;query=Bouchet%2C+J">J. Bouchet</a>, <a href="/search/?searchtype=author&amp;query=Braidot%2C+E">E. Braidot</a> , et al. (359 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1007.2613v1-abstract-short" style="display: inline;"> The QCD phase diagram lies at the heart of what the RHIC Physics Program is all about. While RHIC has been operating very successfully at or close to its maximum energy for almost a decade, it has become clear that this collider can also be operated at lower energies down to 5 GeV without extensive upgrades. An exploration of the full region of beam energies available at the RHIC facility is imper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1007.2613v1-abstract-full').style.display = 'inline'; document.getElementById('1007.2613v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1007.2613v1-abstract-full" style="display: none;"> The QCD phase diagram lies at the heart of what the RHIC Physics Program is all about. While RHIC has been operating very successfully at or close to its maximum energy for almost a decade, it has become clear that this collider can also be operated at lower energies down to 5 GeV without extensive upgrades. An exploration of the full region of beam energies available at the RHIC facility is imperative. The STAR detector, due to its large uniform acceptance and excellent particle identification capabilities, is uniquely positioned to carry out this program in depth and detail. The first exploratory beam energy scan (BES) run at RHIC took place in 2010 (Run 10), since several STAR upgrades, most importantly a full barrel Time of Flight detector, are now completed which add new capabilities important for the interesting physics at BES energies. In this document we discuss current proposed measurements, with estimations of the accuracy of the measurements given an assumed event count at each beam energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1007.2613v1-abstract-full').style.display = 'none'; document.getElementById('1007.2613v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">59 pages, 78 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1006.1961">arXiv:1006.1961</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1006.1961">pdf</a>, <a href="https://arxiv.org/ps/1006.1961">ps</a>, <a href="https://arxiv.org/format/1006.1961">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.84.034909">10.1103/PhysRevC.84.034909 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> K*0 production in Cu+Cu and Au+Au collisions at \sqrt{s_NN} = 62.4 GeV and 200 GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+M+M">M. M. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Ahammed%2C+Z">Z. Ahammed</a>, <a href="/search/?searchtype=author&amp;query=Alakhverdyants%2C+A+V">A. V. Alakhverdyants</a>, <a href="/search/?searchtype=author&amp;query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/?searchtype=author&amp;query=Alford%2C+J">J. Alford</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+B+D">B. D. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Anson%2C+D">Daniel Anson</a>, <a href="/search/?searchtype=author&amp;query=Arkhipkin%2C+D">D. Arkhipkin</a>, <a href="/search/?searchtype=author&amp;query=Averichev%2C+G+S">G. S. Averichev</a>, <a href="/search/?searchtype=author&amp;query=Balewski%2C+J">J. Balewski</a>, <a href="/search/?searchtype=author&amp;query=Barnby%2C+L+S">L. S. Barnby</a>, <a href="/search/?searchtype=author&amp;query=Baumgart%2C+S">S. Baumgart</a>, <a href="/search/?searchtype=author&amp;query=Beavis%2C+D+R">D. R. Beavis</a>, <a href="/search/?searchtype=author&amp;query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/?searchtype=author&amp;query=Betancourt%2C+M+J">M. J. Betancourt</a>, <a href="/search/?searchtype=author&amp;query=Betts%2C+R+R">R. R. Betts</a>, <a href="/search/?searchtype=author&amp;query=Bhasin%2C+A">A. Bhasin</a>, <a href="/search/?searchtype=author&amp;query=Bhati%2C+A+K">A. K. Bhati</a>, <a href="/search/?searchtype=author&amp;query=Bichsel%2C+H">H. Bichsel</a>, <a href="/search/?searchtype=author&amp;query=Bielcik%2C+J">J. Bielcik</a>, <a href="/search/?searchtype=author&amp;query=Bielcikova%2C+J">J. Bielcikova</a>, <a href="/search/?searchtype=author&amp;query=Biritz%2C+B">B. Biritz</a>, <a href="/search/?searchtype=author&amp;query=Bland%2C+L+C">L. C. Bland</a>, <a href="/search/?searchtype=author&amp;query=Bonner%2C+B+E">B. E. Bonner</a>, <a href="/search/?searchtype=author&amp;query=Borowski%2C+W">W. Borowski</a> , et al. (362 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1006.1961v1-abstract-short" style="display: inline;"> We report on K*0 production at mid-rapidity in Au+Au and Cu+Cu collisions at \sqrt{s_{NN}} = 62.4 and 200 GeV collected by the Solenoid Tracker at RHIC (STAR) detector. The K*0 is reconstructed via the hadronic decays K*0 \to K+ pi- and \bar{K*0} \to K-pi+. Transverse momentum, pT, spectra are measured over a range of pT extending from 0.2 GeV/c to 5 GeV/c. The center of mass energy and system siz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1006.1961v1-abstract-full').style.display = 'inline'; document.getElementById('1006.1961v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1006.1961v1-abstract-full" style="display: none;"> We report on K*0 production at mid-rapidity in Au+Au and Cu+Cu collisions at \sqrt{s_{NN}} = 62.4 and 200 GeV collected by the Solenoid Tracker at RHIC (STAR) detector. The K*0 is reconstructed via the hadronic decays K*0 \to K+ pi- and \bar{K*0} \to K-pi+. Transverse momentum, pT, spectra are measured over a range of pT extending from 0.2 GeV/c to 5 GeV/c. The center of mass energy and system size dependence of the rapidity density, dN/dy, and the average transverse momentum, &lt;pT&gt;, are presented. The measured N(K*0)/N(K) and N(蠁)/N(K*0) ratios favor the dominance of re-scattering of decay daughters of K*0 over the hadronic regeneration for the K*0 production. In the intermediate pT region (2.0 &lt; pT &lt; 4.0 GeV/c), the elliptic flow parameter, v2, and the nuclear modification factor, RCP, agree with the expectations from the quark coalescence model of particle production. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1006.1961v1-abstract-full').style.display = 'none'; document.getElementById('1006.1961v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages and 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1004.4959">arXiv:1004.4959</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1004.4959">pdf</a>, <a href="https://arxiv.org/ps/1004.4959">ps</a>, <a href="https://arxiv.org/format/1004.4959">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.105.022302">10.1103/PhysRevLett.105.022302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Higher Moments of Net-proton Multiplicity Distributions at RHIC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+M+M">M. M. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Ahammed%2C+Z">Z. Ahammed</a>, <a href="/search/?searchtype=author&amp;query=Alakhverdyants%2C+A+V">A. V. Alakhverdyants</a>, <a href="/search/?searchtype=author&amp;query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/?searchtype=author&amp;query=Alford%2C+J">J. Alford</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+B+D">B. D. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Arkhipkin%2C+D">D. Arkhipkin</a>, <a href="/search/?searchtype=author&amp;query=Averichev%2C+G+S">G. S. Averichev</a>, <a href="/search/?searchtype=author&amp;query=Balewski%2C+J">J. Balewski</a>, <a href="/search/?searchtype=author&amp;query=Barnby%2C+L+S">L. S. Barnby</a>, <a href="/search/?searchtype=author&amp;query=Baumgart%2C+S">S. Baumgart</a>, <a href="/search/?searchtype=author&amp;query=Beavis%2C+D+R">D. R. Beavis</a>, <a href="/search/?searchtype=author&amp;query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/?searchtype=author&amp;query=Betancourt%2C+M+J">M. J. Betancourt</a>, <a href="/search/?searchtype=author&amp;query=Betts%2C+R+R">R. R. Betts</a>, <a href="/search/?searchtype=author&amp;query=Bhasin%2C+A">A. Bhasin</a>, <a href="/search/?searchtype=author&amp;query=Bhati%2C+A+K">A. K. Bhati</a>, <a href="/search/?searchtype=author&amp;query=Bichsel%2C+H">H. Bichsel</a>, <a href="/search/?searchtype=author&amp;query=Bielcik%2C+J">J. Bielcik</a>, <a href="/search/?searchtype=author&amp;query=Bielcikova%2C+J">J. Bielcikova</a>, <a href="/search/?searchtype=author&amp;query=Biritz%2C+B">B. Biritz</a>, <a href="/search/?searchtype=author&amp;query=Bland%2C+L+C">L. C. Bland</a>, <a href="/search/?searchtype=author&amp;query=Bonner%2C+3+B+E">3 B. E. Bonner</a>, <a href="/search/?searchtype=author&amp;query=Bouchet%2C+J">J. Bouchet</a>, <a href="/search/?searchtype=author&amp;query=Braidot%2C+E">E. Braidot</a> , et al. (359 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1004.4959v2-abstract-short" style="display: inline;"> We report the first measurements of the kurtosis (魏), skewness (S) and variance (蟽^2) of net-proton multiplicity (N_p - N_pbar) distributions at midrapidity for Au+Au collisions at \sqrt(s_NN) = 19.6, 62.4, and 200 GeV corresponding to baryon chemical potentials (渭_B) between 200 - 20 MeV. Our measurements of the products 魏蟽^2 and S 蟽, which can be related to theoretical calculations sensitive t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1004.4959v2-abstract-full').style.display = 'inline'; document.getElementById('1004.4959v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1004.4959v2-abstract-full" style="display: none;"> We report the first measurements of the kurtosis (魏), skewness (S) and variance (蟽^2) of net-proton multiplicity (N_p - N_pbar) distributions at midrapidity for Au+Au collisions at \sqrt(s_NN) = 19.6, 62.4, and 200 GeV corresponding to baryon chemical potentials (渭_B) between 200 - 20 MeV. Our measurements of the products 魏蟽^2 and S 蟽, which can be related to theoretical calculations sensitive to baryon number susceptibilities and long range correlations, are constant as functions of collision centrality. We compare these products with results from lattice QCD and various models without a critical point and study the \sqrt(s_NN) dependence of 魏蟽^2. From the measurements at the three beam energies, we find no evidence for a critical point in the QCD phase diagram for 渭_B below 200 MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1004.4959v2-abstract-full').style.display = 'none'; document.getElementById('1004.4959v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages and 4 figures. Version accepted for publication in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.Lett.105:022302,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1004.2377">arXiv:1004.2377</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1004.2377">pdf</a>, <a href="https://arxiv.org/ps/1004.2377">ps</a>, <a href="https://arxiv.org/format/1004.2377">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.82.024912">10.1103/PhysRevC.82.024912 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Azimuthal di-hadron correlations in d+Au and Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV from STAR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=STAR+Collaboration"> STAR Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+M+M">M. M. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Ahammed%2C+Z">Z. Ahammed</a>, <a href="/search/?searchtype=author&amp;query=Alakhverdyants%2C+A+V">A. V. Alakhverdyants</a>, <a href="/search/?searchtype=author&amp;query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/?searchtype=author&amp;query=Alford%2C+J">J. Alford</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+B+D">B. D. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Anson%2C+D">Daniel Anson</a>, <a href="/search/?searchtype=author&amp;query=Arkhipkin%2C+D">D. Arkhipkin</a>, <a href="/search/?searchtype=author&amp;query=Averichev%2C+G+S">G. S. Averichev</a>, <a href="/search/?searchtype=author&amp;query=Balewski%2C+J">J. Balewski</a>, <a href="/search/?searchtype=author&amp;query=Barnby%2C+L+S">L. S. Barnby</a>, <a href="/search/?searchtype=author&amp;query=Baumgart%2C+S">S. Baumgart</a>, <a href="/search/?searchtype=author&amp;query=Beavis%2C+D+R">D. R. Beavis</a>, <a href="/search/?searchtype=author&amp;query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/?searchtype=author&amp;query=Betancourt%2C+M+J">M. J. Betancourt</a>, <a href="/search/?searchtype=author&amp;query=Betts%2C+R+R">R. R. Betts</a>, <a href="/search/?searchtype=author&amp;query=Bhasin%2C+A">A. Bhasin</a>, <a href="/search/?searchtype=author&amp;query=Bhati%2C+A+K">A. K. Bhati</a>, <a href="/search/?searchtype=author&amp;query=Bichsel%2C+H">H. Bichsel</a>, <a href="/search/?searchtype=author&amp;query=Bielcik%2C+J">J. Bielcik</a>, <a href="/search/?searchtype=author&amp;query=Bielcikova%2C+J">J. Bielcikova</a>, <a href="/search/?searchtype=author&amp;query=Biritz%2C+B">B. Biritz</a>, <a href="/search/?searchtype=author&amp;query=Bland%2C+L+C">L. C. Bland</a>, <a href="/search/?searchtype=author&amp;query=Bonner%2C+B+E">B. E. Bonner</a> , et al. (363 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1004.2377v2-abstract-short" style="display: inline;"> Yields, correlation shapes, and mean transverse momenta \pt{} of charged particles associated with intermediate to high-\pt{} trigger particles ($2.5 &lt; \pt &lt; 10$ \GeVc) in d+Au and Au+Au collisions at $\snn=200$ GeV are presented. For associated particles at higher $\pt \gtrsim 2.5$ \GeVc, narrow correlation peaks are seen in d+Au and Au+Au, indicating that the main production mechanism is jet fra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1004.2377v2-abstract-full').style.display = 'inline'; document.getElementById('1004.2377v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1004.2377v2-abstract-full" style="display: none;"> Yields, correlation shapes, and mean transverse momenta \pt{} of charged particles associated with intermediate to high-\pt{} trigger particles ($2.5 &lt; \pt &lt; 10$ \GeVc) in d+Au and Au+Au collisions at $\snn=200$ GeV are presented. For associated particles at higher $\pt \gtrsim 2.5$ \GeVc, narrow correlation peaks are seen in d+Au and Au+Au, indicating that the main production mechanism is jet fragmentation. At lower associated particle $\pt &lt; 2$ \GeVc, a large enhancement of the near- ($\dphi \sim 0$) and away-side ($\dphi \sim 蟺$) associated yields is found, together with a strong broadening of the away-side azimuthal distributions in Au+Au collisions compared to d+Au measurements, suggesting that other particle production mechanisms play a role. This is further supported by the observed significant softening of the away-side associated particle yield distribution at $\dphi \sim 蟺$ in central Au+Au collisions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1004.2377v2-abstract-full').style.display = 'none'; document.getElementById('1004.2377v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 April, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 11 figures, updated after journal review</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.C82:024912,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1004.0925">arXiv:1004.0925</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1004.0925">pdf</a>, <a href="https://arxiv.org/ps/1004.0925">ps</a>, <a href="https://arxiv.org/format/1004.0925">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.83.064905">10.1103/PhysRevC.83.064905 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion femtoscopy in p+p collisions at sqrt(s)=200 GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Aggarwal%2C+M+M">M. M. Aggarwal</a>, <a href="/search/?searchtype=author&amp;query=Ahammed%2C+Z">Z. Ahammed</a>, <a href="/search/?searchtype=author&amp;query=Alakhverdyants%2C+A+V">A. V. Alakhverdyants</a>, <a href="/search/?searchtype=author&amp;query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/?searchtype=author&amp;query=Alford%2C+J">J. Alford</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+B+D">B. D. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Arkhipkin%2C+D">D. Arkhipkin</a>, <a href="/search/?searchtype=author&amp;query=Averichev%2C+G+S">G. S. Averichev</a>, <a href="/search/?searchtype=author&amp;query=Balewski%2C+J">J. Balewski</a>, <a href="/search/?searchtype=author&amp;query=Barnby%2C+L+S">L. S. Barnby</a>, <a href="/search/?searchtype=author&amp;query=Baumgart%2C+S">S. Baumgart</a>, <a href="/search/?searchtype=author&amp;query=Beavis%2C+D+R">D. R. Beavis</a>, <a href="/search/?searchtype=author&amp;query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/?searchtype=author&amp;query=Betancourt%2C+M+J">M. J. Betancourt</a>, <a href="/search/?searchtype=author&amp;query=Betts%2C+R+R">R. R. Betts</a>, <a href="/search/?searchtype=author&amp;query=Bhasin%2C+A">A. Bhasin</a>, <a href="/search/?searchtype=author&amp;query=Bhati%2C+A+K">A. K. Bhati</a>, <a href="/search/?searchtype=author&amp;query=Bichsel%2C+H">H. Bichsel</a>, <a href="/search/?searchtype=author&amp;query=Bielcik%2C+J">J. Bielcik</a>, <a href="/search/?searchtype=author&amp;query=Bielcikova%2C+J">J. Bielcikova</a>, <a href="/search/?searchtype=author&amp;query=Biritz%2C+B">B. Biritz</a>, <a href="/search/?searchtype=author&amp;query=Bland%2C+L+C">L. C. Bland</a>, <a href="/search/?searchtype=author&amp;query=Bonner%2C+3+B+E">3 B. E. Bonner</a>, <a href="/search/?searchtype=author&amp;query=Bouchet%2C+J">J. Bouchet</a>, <a href="/search/?searchtype=author&amp;query=Braidot%2C+E">E. Braidot</a> , et al. (359 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1004.0925v3-abstract-short" style="display: inline;"> The STAR Collaboration at RHIC has measured two-pion correlation functions from p+p collisions at sqrt(s)=200 GeV. Spatial scales are extracted via a femtoscopic analysis of the correlations, though this analysis is complicated by the presence of strong non-femtoscopic effects. Our results are put into the context of the world dataset of femtoscopy in hadron-hadron collisions. We present the first&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1004.0925v3-abstract-full').style.display = 'inline'; document.getElementById('1004.0925v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1004.0925v3-abstract-full" style="display: none;"> The STAR Collaboration at RHIC has measured two-pion correlation functions from p+p collisions at sqrt(s)=200 GeV. Spatial scales are extracted via a femtoscopic analysis of the correlations, though this analysis is complicated by the presence of strong non-femtoscopic effects. Our results are put into the context of the world dataset of femtoscopy in hadron-hadron collisions. We present the first direct comparison of femtoscopy in p+p and heavy ion collisions, under identical analysis and detector conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1004.0925v3-abstract-full').style.display = 'none'; document.getElementById('1004.0925v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 April, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 15 figures, as published in Phys. Rev. C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.C83:064905,2011 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Dogra%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Dogra%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Dogra%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10