CINXE.COM
Field flattener (sub-aperture corrector)
<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns="http://www.w3.org/TR/REC-html40"> <head><meta name="viewport" content="width=device-width, initial-scale=1"> <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"> <meta http-equiv="Content-Language" content="en-us"> <title>Field flattener (sub-aperture corrector)</title> <meta name="keywords" content="field flattener, sub-aperture corrector, Schmidt camera field flattener, SCT field flattener, lens corrector"> <meta name="description" content="Examples of sub-aperture corrector for field correction: singlet lens field flattener and doublet field flatteners"> <style fprolloverstyle>A:hover {color: #FF8204} </style> </head> <body link="#0000FF" vlink="#993399" alink="#FF0000" style="font-family: Verdana; font-size: 10px" bgcolor="#F4F4DF"> <div align="center"> <table border="0" cellpadding="0" cellspacing="0" width="800" height="770" bgcolor="#FFE066"> <!-- MSTableType="layout" --> <tr> <td valign="top" height="704" style="text-indent: 21; padding-left:21px; padding-right:21px; padding-top:21px; padding-bottom:3px; border-left-style:solid; border-left-width:0px; border-right-style:solid; border-right-width:0px; border-top-style:solid; border-top-width:0px"> <!-- MSCellType="ContentBody" --> <p align="center" style="text-indent: 0"> <b><font size="3" color="#518FBD" face="Verdana">telescope</font></b><font face="Microsoft Sans Serif" size="5" color="#518FBD">Ѳ</font><b><font size="3" face="Verdana" color="#518FBD">ptics.net</font><font face="Verdana" color="#95AAA6" size="3"> </font></b> <font size="1" color="#95AAA6">▪</font><font color="#95AAA6"><b> </b> </font><b><font face="Verdana" color="#95AAA6" size="3"> </font></b> <font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font> <font size="1" color="#95AAA6">▪</font><font face="Verdana" color="#95AAA6"><b><font size="2"> </font></b><font size="1"> </font></font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪▪▪▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font face="Verdana" color="#518FBD"><b><font size="2"> </font></b></font><font face="Verdana"><span style="font-weight: 400"><font size="2"><a href="index.htm#TABLE_OF_CONTENTS">CONTENTS</a></font></span></font><font size="2"><span style="font-weight: 400"><font size="2" face="Arial"><br> </font></span></p> <p align="center" style="text-indent: 0"> <span style="font-weight: 400"> <font size="2" face="Arial" color="#336699">◄</font></span><font size="2" face="Verdana"> <a href="sub_aperture_corrector.htm">10.1.2. Sub-aperture corrector examples (1)</a> </font><font size="2" face="Arial"><font color="#C0C0C0"> ▐</font> </font><font size="2" face="Verdana"> <a href="lens_corrector_examples.htm">10.1.2. Sub-aperture correctors for two-mirror systems</a> </font> <font face="Arial" size="2" color="#336699">►</font><br> </p> <h1 align="center" style="text-indent: 0"> <b> <font face="Trebuchet MS" color="#336699" size="3"> 10.1.2. Sub-aperture corrector: Field-flattener</font></b></h1> <div style="background-color: #FFFFCC"> <p align="center" style="text-indent: 0"> PAGE HIGHLIGHTS<br> • <a href="#power">Schmidt camera single lens flattener</a> • <a href="#flattener">SCT doublet flattener</a> • <a href="#pair">Simple doublet flattener for Cassegrain</a><br> • <a href="#refractors">Simple doublet flattener for refractors</a> </div> <p align="justify" style="text-indent: 0; line-height:150%"> <font face="Tahoma"> I</font>mage field curvature is not a serious detriment to visual observing, due to the natural ability of the eye to accommodate (refocus). In photographic use, however, field curvature induces defocus error, which can be significant. In order to flatten curved image field, an auxiliary lens, or group of lens is placed in front of the final focus, offsetting image curvature by generating one of similar magnitude but opposite in sign. In general, a positive lens, or group of lenses, generates curvature concave towards it, while a negative lens generates image curvature convex toward it. </p> </font> <p align="center" style="text-indent: 0"> <font face="Trebuchet MS" color="#336699">Single-lens flattener</font></p><font size="2"> <p align="justify" style="text-indent: 0; line-height:150%"> The simplest way to correct for field curvature is by placing a single thin lens just in front of the final focus. With proper choice of parameters, it flattens the field while inducing very low aberrations, except at very large relative apertures. Assuming no appreciable astigmatism induced by the lens itself - valid for telescopes, in general, but not for the Schmidt camera, or other very fast systems - the field is flattened when lens' Petzval curvature is equal, and opposite in sign, to the median field curvature of a telescope. This determines needed lens shape as plano-concave (negative) for for <b><font color="#000080">Cassegrain-like telescopes</font></b>, and plano-convex (positive) for the <b><font color="#000080">Gregorian</font></b>.</p> <p align="justify" style="text-indent: 0; line-height:150%"> By default, field flattener lens faces image with its flat side, and the sign of its curved surface is determined by the sign of image curvature. Needed radius of curvature of the lens is: <p align="center" style="text-indent: 0"> <b><font face="Tahoma"> <img border="0" src="images/eq144n.PNG" width="111" height="28"> </font></b> <p align="justify" style="text-indent: 0; line-height:150%"> with <b>n</b> being the lens refractive, and <b>R</b><font face="Terminal" size="1"><span style="vertical-align: sub">m</span></font> the telescope median (best astigmatic) image radius. This, of course, assumes that the lens itself generates zero astigmatism; if it is not so, the needed radius is modified according to the magnitude and sign of lens astigmatism.<p align="justify" style="text-indent: 0; line-height:150%"> For the <b><font color="#000080">Schmidt camera</font></b>, field flattener lens is positive, with the radius R=[1-(1/n)]R<font face="Terminal" size="1"><span style="vertical-align: sub">M</span></font>/2, with <b>R</b><font face="Terminal" size="1"><span style="vertical-align: sub">M</span></font><font face="Tahoma"> </font>being the mirror radius of curvature (since it has no astigmatism in the Schmidt arrangement, its best surface coincides with its Petzval surface, which equals R<font face="Terminal" size="1"><span style="vertical-align: sub">M</span></font>/2). <p align="justify" style="text-indent: 0; line-height:150%"> For the <b><font color="#000080">Newtonian</font></b>, field flattener lens is of negative power, with the radius R=[1-(1/n)]R<font face="Terminal" size="1"><span style="vertical-align: sub">m</span></font>/2 (according to the <a href="terms_and_conventions.htm">sign convention</a>, with the best field concave toward mirror, <b>R</b><font face="Terminal" size="1"><span style="vertical-align: sub">m</span></font> is numerically positive in the Newtonian), and so is for the <b> <font color="#000080">refractor</font></b>. For the latter, median field curvature varies from one to another type; for a typical doublet achromat median field curvature is approximately -f/3, <b> f</b> being the refractor focal length, and the field flattener's <a name="radius_R">radius R</a>~-[1-(1/n)]f/3 (of negative <a name="power">power</a>).<div style="padding-left: 3px; padding-right: 3px; background-color: #FFFFFF"> <p align="center"> <font face="Tahoma"><b>EXAMPLE 1: Schmidt camera field flattener -</b> Good example for the use of a single-lens flattener is the <a href="Schmidt-camera.htm">Schmidt camera</a>, which is exclusively a photographic instrument. Its only remaining primary aberration is strong field curvature. This leaves two choices: either use of a curved detector, or sacrificing much of the exquisite field quality by using flat detector. </font> </p><p align="center" style="text-indent: 0"> <font face="Tahoma">In general, lens aberrations are low if it remains very close to the original focus. But even then, they can be significant with wide angular fields and/or fast focal ratios. Due to the lens thickness being significant relative to object and image separation, the thin lens equations are not appropriate. Instead, aberrations are calculated for each lens surface, similarly to the approach described with the generalized <a href="aberration_function.htm">aberration coefficients</a>. Only in this case, with the aperture stop displaced from the front lens surface, the relations need to account for this factor. </font> <p align="center" style="text-indent: 0"> <font face="Tahoma">Numerical value of the stop separation <b>T</b> is determined by system configuration: in the Schmidt camera, for the front lens (flattener's) surface it is the distance from the surface to the corrector (where the mirror re-images the stop), thus numerically negative.</font><p align="center" style="text-indent: 0"> <font face="Tahoma">For the second lens surface the stop separation is given by T<b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font></b>=<font face="Lucida Sans Unicode" size="2">α</font>'<font face="Terminal" size="1"><span style="vertical-align: sub">c</span></font>h</font><b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b><font face="Tahoma">, <b>h</b></font><b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b><font face="Tahoma"> being the chief ray height on the second surface (illustrated below; Schmidt flattener thickness exaggerated to show ray paths). In the Newtonian, </font><b> <font face="Tahoma">T</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b><font face="Tahoma"> it is the distance from the lens' front surface to the mirror, numerically positive (<b>AS</b><font face="Terminal" size="1"><span style="vertical-align: sub">M</span></font> on the illustration below, as opposed to <b>AS</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">S</span></font><font face="Tahoma">, with the aperture stop at the surface and T</font><b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b><font face="Tahoma">=0). In two-mirror systems, it is the distance from the lens' surface to the image of the aperture stop (primary) formed by the secondary (exit pupil of the system, <b>ExP</b> on the illustration), numerically negative.</font><p align="center" style="text-indent: 0"> <img border="0" src="images/field.PNG" width="730" height="333"><p align="center" style="text-indent: 0"> <font face="Tahoma">Likewise, the chief ray angle <b><font face="Lucida Sans Unicode" size="2">α</font></b><font face="Terminal" size="1"><span style="vertical-align: sub">c</span></font> is determined by system configuration: in the Schmidt camera, the chief ray coming through the center of the corrector is reflected back to the same point, therefore converging toward the front lens surface at the same incident angle </font><b><font face="Lucida Sans Unicode">α</font></b><font face="Tahoma">. Since it is opening upward from the axis, it is numerically positive, and so is the projected normal to the surface angle </font><b><font face="Georgia"> δ</font></b><font face="Tahoma"> at the axis. Since the angles are small enough to be expressed in radians, it determines the chief ray angle <b><font face="Lucida Sans Unicode" size="2">α</font>'</b><font face="Terminal" size="1"><span style="vertical-align: sub">c</span></font> after refraction at the front lens surface as <font face="Lucida Sans Unicode" size="2">α</font>'<font face="Terminal" size="1"><span style="vertical-align: sub">c</span></font>=</font><font face="Georgia">δ</font><font face="Tahoma">-(</font><font face="Georgia">δ</font><font face="Tahoma">-</font><font face="Lucida Sans Unicode">α</font><font face="Tahoma">)/n, with all the angles in radians, <b>n</b> being the glass refractive. In a two-mirror system, the lens field flattener is of negative power, with both <b><font face="Lucida Sans Unicode" size="2">α</font>'</b><font face="Terminal" size="1"><span style="vertical-align: sub">c</span></font></font><b><font face="Terminal" size="1"><span style="vertical-align: sub">s</span></font></b><font face="Tahoma"> (chief ray angle after reflection from the secondary, appearing to be coming from the image of the primary formed by the secondary) and the surface normal angle </font><b><font face="Georgia">δ</font></b><font face="Tahoma"> numerically negative, the chief ray angle after the front lens surface <font face="Lucida Sans Unicode" size="2">α</font>'<font face="Terminal" size="1"><span style="vertical-align: sub">c</span></font>=</font><font face="Georgia">δ</font><font face="Tahoma">-(</font><font face="Georgia">δ</font><font face="Tahoma">-</font><font face="Lucida Sans Unicode">α</font><font face="Tahoma">)/n. <p align="center" style="text-indent: 0"> Since the rear surface of the flattener is flat, <font face="Lucida Sans Unicode" size="2">α</font>'<font face="Terminal" size="1"><span style="vertical-align: sub">c</span></font>=n<font face="Lucida Sans Unicode" size="2">α</font><font face="Terminal" size="1"><span style="vertical-align: sub">c</span></font>. The angle μ</font><b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b><font face="Tahoma">=1/2nF for the marginal ray of axial cone determines location of the image formed by the first lens surface as L</font><b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b><font face="Tahoma">'=h</font><font face="Terminal" size="1"><span style="vertical-align: sub">0</span></font><font face="Tahoma">/μ</font><font face="Terminal" size="1"><span style="vertical-align: sub">0</span></font><font face="Tahoma"> from the front lens surface, </font><b><font face="Tahoma">h</font></b><font face="Terminal" size="1"><span style="vertical-align: sub">0</span></font><font face="Tahoma"> being the height of marginal ray at the surface, given as h</font><font face="Terminal" size="1"><span style="vertical-align: sub">0</span></font><font face="Tahoma">=</font><font face="Lucida Console">l</font><font face="Tahoma">/2F, </font><b><font face="Lucida Console">l</font></b><font face="Tahoma"> being the front lens surface to original focus separation, and <b>F</b> the focal ratio. <p align="center" style="text-indent: 0"> This outlines the general procedure for calculating aberrations of a singlet field flattener lens facing focus with its flat side.<p align="center" style="text-indent: 0; "> With spherical lens surface, Q=0 and the aberration coefficients for spherical aberration, coma and astigmatism, from <a href="aberration_function.htm#stop">Eq. (k)-(m)</a>, are given by <p align="center" style="text-indent: 0; "> <b>s=-NJ<font size="1"><span style="vertical-align: super">2</span></font>/8</b>,<b> c=NJYh/2 </b>and<b> a=-N(Yh)<font size="1"><span style="vertical-align: super">2</span></font>/2</b>, respectively, with <p align="center" style="text-indent: 0; "> <b>N</b>=n<font face="Verdana" size="1"><span style="vertical-align: super">2</span></font>[(1/n'L')-(1/nL)], <b>J</b>=[(1/L)-(1/R)], <b>Y</b>=[(1/T)-(1/R)] <p align="center" style="text-indent: 0; "> and the height of incident point on the surface <b>h</b>=(T<font face="Lucida Sans Unicode" size="2">α</font>), where <b>n</b>, <b>n'</b> are the refractive indici of the incident and refractive/reflecting media, <b>L</b>, <b>L'</b> the surface-to-object and image separation, respectively, <b>R</b> being the lens surface radius of curvature, <b>T</b> being the surface-to-stop separation and <b><font face="Lucida Sans Unicode" size="2">α</font></b> the chief ray angle in radians. Note that the refractive indici are numerically negative, which requires appropriate adjustment to some of the general relations. For instance, needed lens surface curvature to flatten the field is R=(1-1/n<font face="Terminal" size="1"><span style="vertical-align: sub">l</span></font>)R<font face="Terminal" size="1"><span style="vertical-align: sub">m</span></font>/2 with the index <b>n</b> numerically positive, and R=(1+1/n<font face="Terminal" size="1"><span style="vertical-align: sub">l</span></font>)R<font face="Terminal" size="1"><span style="vertical-align: sub">m</span></font>/2 with the index negative. <p align="center" style="text-indent: 0; "> With L⪕R, <a href="gaussian_approximation.htm">Eq. 1</a> gives L'~n'L/n which, after substitution in the relation for <b>N</b> gives <b>N</b>~n(n<font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana">-</font>n'<font face="Verdana" size="1"><span style="vertical-align: super">2</span></font>)/(n'<font face="Verdana" size="1"><span style="vertical-align: super">2</span></font>L); also, <b>J</b>~(1/L) for the front lens surface. In terms of the final lens to image separation, <b>L</b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><b>'</b>, L<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>=L<font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font>'+(t/n), L<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>'=nL<font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font>'+t, and L<font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font>=nL<font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font>'. <p align="center" style="text-indent: 0; "> Stop separation for the front flattener surface is equal to its separation to the corrector, thus T<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>=R<font face="Terminal" size="1"><span style="vertical-align: sub">m</span></font>/2, <b>R</b><font face="Terminal" size="1"><span style="vertical-align: sub">m</span></font> being the mirror radius of curvature, and the chief angle <b><font face="Lucida Sans Unicode" size="2">α</font></b><font face="Terminal" size="1"><span style="vertical-align: sub">c</span></font> for the front surface equals the field angle <b><font face="Lucida Sans Unicode" size="2">α</font></b>. For the rear lens surface, the chief ray angle is, from the ray geometry, <b><font face="Lucida Sans Unicode" size="2">α</font></b><font face="Terminal" size="1"><span style="vertical-align: sub">c</span></font></font><b>'</b><font face="Tahoma">=<font face="Lucida Sans Unicode" size="2">(α'</font>/n)-[1+(1/n)]γ, with <b>γ</b>=<font face="Lucida Sans Unicode" size="2">α</font><font face="Terminal" size="1"><span style="vertical-align: sub">c</span></font>T<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>/R being the lens radius of curvature angle at the front surface point of incidence, and the stop separation for the rear surface T<font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font>=<font face="Lucida Sans Unicode" size="2">(α</font><font face="Terminal" size="1"><span style="vertical-align: sub">c</span></font>/<font face="Lucida Sans Unicode" size="2">α</font>'<font face="Terminal" size="1"><span style="vertical-align: sub">c</span></font><font face="Lucida Sans Unicode" size="2">)</font>T<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>. Alternately, from <a href="gaussian_approximation.htm">Eq. 1</a>, T<font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font>=n</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Tahoma">RT<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>/[(n</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Tahoma">+1)T<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>-R]. Note that all <a name="three_angles">three angles</a> are numerically positive. </font> </font> <font size="2" face="Tahoma"><p align="center" style="text-indent: 0; "> After laying down the formalism, here is the actual example: lower-order aberrations induced by a singlet field flattener lens in 200mm f/2 Schmidt camera<font color="#000080"> </font>(</font><font size="2"><font size="1"><a href="appendix3.htm#SCHMIDT_CORRECTOR">SPECS</a></font>)<font color="#000080">.</font> <font face="Tahoma">For near-minimum lens-image separation of 2mm, lens thickness <b>t</b>=-3mm, lens refractive n'<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>=n</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Tahoma">=n</font><font face="Terminal" size="1"><span style="vertical-align: sub">l</span></font><font face="Tahoma">=-1.5, the image shift caused by the lens is approximately [1+(1/n</font><font face="Terminal" size="1"><span style="vertical-align: sub">l</span></font><font face="Tahoma">)]t=-1mm, which determines lens location such that its rear surface is ~1mm inside the original focus; thus, the front surface to the original focus separation </font><font face="Lucida Console">l</font><font face="Tahoma">=-4mm. </font> <p align="center" style="text-indent: 0; "> <font face="Tahoma">At this location, the height of marginal ray at the front lens surface - determining the effective (and minimum) front lens aperture semi-diameter <b>d</b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font> - is d<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>=-</font><font face="Lucida Console">l</font><font face="Tahoma">/2F= 1mm (the converging angle represented by 1/2F is numerically negative, since opening counterclockwise, which is why it requires minus sign when expressed using the F-number). The indici are n<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>=-1 and n'<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>=-1.5. The front lens surface stop separation <b>T</b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>=-404mm, and the height of the incidence point at the front surface for the field (and aperture stop) chief ray angle <b><font face="Lucida Sans Unicode" size="2">α</font></b><font face="Terminal" size="1"><span style="vertical-align: sub">c</span></font>=<font face="Lucida Sans Unicode" size="2">α</font>=2� is <b>h</b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>=<font face="Lucida Sans Unicode" size="2">-α</font><font face="Terminal" size="1"><span style="vertical-align: sub">c</span></font></font><b>T</b><font face="Tahoma"><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>=404<font face="Lucida Sans Unicode" size="2">α</font></font><font face="Terminal" size="1"><span style="vertical-align: sub">c</span></font><font face="Tahoma">=14.1mm. The object distance <b>L</b> equals the separation between lens surface and the image formed by preceding surface, thus <b>L</b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>=-4mm. The radius of curvature of the front lens surface needed to flatten the field (assuming near zero lens astigmatism) is </font> <p align="center" style="text-indent: 0; "> <font face="Tahoma"><b>R</b>=[1+(1/n</font><font face="Terminal" size="1"><span style="vertical-align: sub">l</span></font><font face="Tahoma">)]R</font><font face="Terminal" size="1"><span style="vertical-align: sub">m</span></font><font face="Tahoma">/2=-133mm.<p align="center" style="text-indent: 0; "> For the rear surface, n=-1.5, n'=-1. With <b>L'</b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>=-n</font><font face="Terminal" size="1"><span style="vertical-align: sub">l</span></font><font face="Tahoma">L<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>=1.5L<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>, aperture radius </font> <b><font face="Tahoma">d</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font></b><font face="Tahoma">=[1+(t/n</font><font face="Terminal" size="1"><span style="vertical-align: sub">l</span></font><font face="Tahoma">L<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>)]d<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>=0.5mm. Similar result is obtained using the refracted marginal ray angle of the axial cone μ=(1/2nF)+[1+(1/n)]d</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font><font face="Tahoma">/R, from d</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Tahoma">=d<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>-μt=0.49mm. The object distance for this surface is </font> <b><font face="Tahoma">L</font></b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Tahoma">=L'<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>-t=-3mm, and the image distance </font> <b><font face="Tahoma">L</font></b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Tahoma"><b>'</b>=-2mm. The chief ray angle at the rear surface </font> <b> <font face="Lucida Console" size="2">α</font>'</b><font face="Terminal" size="1"><span style="vertical-align: sub">c</span></font><font face="Tahoma">=0.058, the stop separation <b>T</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Tahoma">=(<font face="Lucida Sans Unicode" size="2">α</font></font><font face="Terminal" size="1"><span style="vertical-align: sub">c</span></font><font face="Tahoma">/<font face="Lucida Sans Unicode" size="2">α</font>'</font><font face="Terminal" size="1"><span style="vertical-align: sub">c</span></font><font face="Tahoma">)T<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>=-242mm, and the incidence point height for the chief ray<b> h</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Tahoma">=h<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>T</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Tahoma">/(T</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Tahoma">+t)=13.9.<p align="center" style="text-indent: 0; "> The corresponding values of compounded parameters for the front lens surface are <b>N</b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>=-0.139, <b>J</b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>=-0.25, <b>Y</b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>=0.005, and <b>h</b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>=14.1, giving the aberration coefficients <p align="center" style="text-indent: 0; "> <b>s</b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>=0.0011, <b>c</b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>=0.0012, and <b>a</b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>=0.00035. <p align="justify" style="text-indent: 0; "> For the rear surface, <b>N</b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font>=0.625, <b>J</b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font>=-0.33, <b>Y</b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font>=-0.0041 and <b>h</b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font>=13.9mm, giving the aberration coefficients <p align="center" style="text-indent: 0; "> <b>s</b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font>=-0.0085, <b>c</b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font>=0.0059 and <b>a</b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font>=-0.001. <p align="center" style="text-indent: 0; "> The corresponding combined coefficients for both lens surfaces are <p align="center" style="text-indent: 0; "> <b>s</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">l</span></font><font face="Tahoma">=s<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>+(d</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Tahoma">/d<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>)</font><font face="Tahoma" size="1"><span style="vertical-align: super">4</span></font><font face="Tahoma">s</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Tahoma">=0.00057, <b>c</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">l</span></font><font face="Tahoma">=c<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>+(d</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Tahoma">/d<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>)</font><font face="Tahoma" size="1"><span style="vertical-align: super">3</span></font><font face="Tahoma">c</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Tahoma">=0.0019 and <b>a</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">l</span></font><font face="Tahoma">=a<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>+(d</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Tahoma">/d<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font>)</font><font face="Tahoma" size="1"><span style="vertical-align: super">2</span></font><font face="Tahoma">c</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Tahoma">=0.0001, </font> <p align="center" style="text-indent: 0; "> <font face="Tahoma">with the resulting P-V wavefront errors at paraxial focus, in units of 0.00055mm wavelength, </font> <p align="center" style="text-indent: 0; "> <font face="Tahoma"><b>W</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">s</span></font><font face="Tahoma">=s</font><font face="Terminal" size="1"><span style="vertical-align: sub">l</span></font><font face="Tahoma">d<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></font><font face="Tahoma" size="1"><span style="vertical-align: super">4</span></font><font face="Tahoma">=-1, <b>W</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">c</span></font><font face="Tahoma">=2c</font><font face="Terminal" size="1"><span style="vertical-align: sub">l</span></font><font face="Tahoma">d<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></font><font face="Tahoma" size="1"><span style="vertical-align: super">3</span></font><font face="Tahoma">=6.9 and <b>W</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">a</span></font><font face="Tahoma">=2a</font><font face="Terminal" size="1"><span style="vertical-align: sub">l</span></font><font face="Tahoma">d<font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></font><font face="Tahoma" size="1"><span style="vertical-align: super">2</span></font><font face="Tahoma">=0.36</font><p align="center" style="text-indent: 0; "> <font face="Tahoma">for spherical aberration, coma and astigmatism, respectively. At the best focus location, the errors are smaller by a factor -0.25 for spherical aberration, and 1/3 for coma (P-V for the astigmatism remains unchanged, but the RMS error at the best focus is smaller by a factor of 1/</font><b><font face="Tahoma" size="2">√</font></b><font size="2" face="Tahoma"><span style="text-decoration: overline">1.5</span></font><font face="Tahoma">), which gives the final values as </font> <p align="center" style="text-indent: 0; "> <font face="Tahoma"><b>W</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">s</span></font><font face="Tahoma">=0.25, <b>W</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">c</span></font><font face="Tahoma">=2.3 and <b>W</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">a</span></font><font face="Tahoma">=0.36. <p align="center" style="text-indent: 0; "> The exact raytrace by OSLO gives for this system W</font><font face="Terminal" size="1"><span style="vertical-align: sub">s</span></font><font face="Tahoma">=0.2 (the differential mainly due to the residual spherical of the camera), W</font><font face="Terminal" size="1"><span style="vertical-align: sub">c</span></font><font face="Tahoma">=2.36 and W</font><font face="Terminal" size="1"><span style="vertical-align: sub">a</span></font><font face="Tahoma">=0.09 (the latter two based on the Zernike aberration coefficients for primary aberrations, with the higher order terms negligible) for the lower-order aberrations at the best focus location. Most of the lens' astigmatism - about 3/4 of it - is offset by the corrector's astigmatism of opposite sign, with the effective system astigmatism coming at less than 1/10 wave at 2</font>°<font face="Tahoma"> off axis. Higher-order aberrations are still low, but increasing rapidly with larger relative apertures. Here is the raytrace plot:</font><p align="center" style="text-indent: 0; "> <font face="Tahoma"> <img border="0" src="images/Vaisala2.PNG" width="744" height="744"><p align="center" style="text-indent: 0; "> Evidently, the most significant aberration induced by the flattener is coma. An option for eliminating this (negative) coma is to move Schmidt corrector somewhat closer to the primary. For this particular system, the separation nearly eliminating coma, with little effect on other aberrations, is 772mm (28mm closer than the original camera), but the other aberrations induced by the flattener remain. Spherical aberration induced by the 3mm thick flattener lens is at 0.21 wave P-V near-negligible, less so the unbalanced chromatic defocus (the two combined resulting in 1.6, 0.2 and 0.36 wave P-V in the <b>h</b>, <b>e</b> and <b>r</b> line on axis, respectively vs. 0.56, 0.03 and 0.22 wave P-V in the camera w/o corrector) due to the shift of the common crossing away from the best focus location (0.707 zone), worsened by the lateral color error. The latter is reduced if instead of the standard plano-convex (PCX) lens with the flat side toward the focus a lens with the curved rear surface is used. As the lens shape goes through the standard PCX, equi-convex (ECX), PCX facing the focus with its curved side (middle right), and a meniscus also facing the focus with its convex side, lateral color diminishes, to be cancelled with a particular meniscus shape (bottom left). <br> This, however, comes at a price of increasing astigmatism induced by the lens. Since astigmatism curves image field, lens radii need to be adjusted so that the astigmatism coefficient is twice the lens' Petzval and of opposite sign. Generally, lens radii are somewhat weaker, since the curved camera image surface is flattened when combined with the median astigmatic surface of the same radius and opposite in sign, i.e. (1/R<font face="Terminal" size="1"><span style="vertical-align: sub">Pc</span></font>)=-(1/R<font face="Terminal" size="1"><span style="vertical-align: sub">Ml</span></font>)=-[(1/R<font face="Terminal" size="1"><span style="vertical-align: sub">Pl</span></font>)+4a], where <b>R</b><font face="Terminal" size="1"><span style="vertical-align: sub">Pc</span></font> and <b>R</b><font face="Terminal" size="1"><span style="vertical-align: sub">Pl</span></font> are the camera and lens Petzval surface, respectively, and <b>a</b> is the lens' coefficient of astigmatism. There is no simple way to express the needed radius, or radii, since it requires known astigmatism which, in turn, requires known lens radius. However, it is quick and easy using ray trace. In this case the needed radius is 162mm for the reversed PCX flattener (PCX-r above) , and 296mm for the ECX. The meniscus shape canceling lateral color has the radii of 660 (front) and 134mm, with 7.5mm thickness (bottom left), but it also generates the largest amount of astigmatism. Still, since astigmatism changes with the square of field radius (as opposed with field radius for lateral color of the standard flattener) that makes it inferior to the standard flattener only toward the edge of the field, while better over more than a half of the field area. Considering that it forms symmetrical star images, not elongated by lateral color, it is probably better overall choice performance-wise. Another alternative with no lateral color is making the flattener an achromatized cemented doublet (bottom right). It also results in some astigmatism, slightly less than the ECX. Spherical aberration without changing the Schmidt profile (nearly 0.4 waves P-V) is not unacceptably excessive for a camera, in general, so it is optional here (the system given here is with integrated flattener, i.e. modified Schmidt profile).<br> Another possibility for eliminating lateral color without introducing significant astigmatism is by placing a plano parallel plate (<b>PPP</b>) in front of the standard flattener (mid bottom). In this case the plate is 17.2mm thick. While the PCX, ECX and PCX-r flatteners do not benefit significantly from making the camera an integrated system (i.e. re-optimizing Schmidt profile), only from relatively small adjustment in the corrector separation, the meniscus and PCX+PPP flatteners - particularly the latter - require changing Schmidt profile due to significant spherical aberration (overcorrection) they induce.<br> <br> <img border="0" src="images/SQ.PNG" width="511" height="366" align="left"> Ensquared energy plots (400-800nm, typical CCD sensitivity) for each of these camera arrangements show that at 2</font>°<font face="Tahoma"> off-axis PCX+PPP (<b>6</b>) packs up 80% of the energy (standard CCD spectral sensitivity in the 0.4-0.8 micron range) within 4μm square, slightly better than the stand alone camera over its best (curved) field (<b>1</b>), the integrated standard PCX (<b>4i</b>) within little over 5μm square, doublet flattener (<b>7</b>) little over 6μm, non integrated standard <b>PCX</b> (w/Schmidt corrector slightly closer to correct coma) little over 8μm square (<b>4</b>), <b>ECX</b> nearly 9μm, meniscus nearly 10μm square (<b>5</b>), and <b>PCX-r</b> (w/Schmidt corrector slightly closer to correct coma) little about 11μm. Standard PCX not corrected for residual coma (<b>2</b>) needs over 16μm square and, for comparison, stand alone camera over flat field about 23μm square. Since this is the field edge, probably all except <b>3</b> can be considered acceptable, with the 80% energy edge footprint of 0.01mm, or less. Table below shows the parameters for each of the above systems.<br> <table border="1" width="100%" cellspacing="0" style="font-family: Tahoma; font-size: 10pt; text-indent: 0; text-align: center" bordercolor="#C0C0C0"> <tr> <td colspan="2"> </td> <td><b>CAMERA ALONE</b></td> <td><b>PCX STANDARD</b></td> <td><b>ECX</b></td> <td><b>PCX-r</b></td> <td><b>MENISCUS</b></td> <td><b>PCX+PPP</b></td> <td><b>DOUBLET</b></td> </tr> <tr> <td rowspan="3"><b>Schmidt<br> corrector</b></td> <td><b>A4</b></td> <td>9.27E-10</td> <td>9.27E-10</td> <td> <font face="Tahoma" size="2"> 9.27E-10</font></td> <td> <font face="Tahoma" size="2"> 9.27E-10</font></td> <td>8.84E-10</td> <td>8.15E-10</td> <td>8.94<font face="Tahoma" size="2">E-10</font></td> </tr> <tr> <td><b>A6</b></td> <td> <font face="Tahoma" size="2"> 2.16E-15</font></td> <td> <font face="Tahoma" size="2"> 2.16E-15</font></td> <td> <font face="Tahoma" size="2"> 2.16E-15</font></td> <td> <font face="Tahoma" size="2"> 2.16E-15</font></td> <td> <font face="Tahoma" size="2"> 2.16E-15</font></td> <td>2.16E-15</td> <td><font face="Tahoma" size="2"> 2.16E-15</font></td> </tr> <tr> <td><b>R</b><font face="Terminal" size="1"><span style="vertical-align: sub">C</span></font></td> <td>-54,000</td> <td>-54,000</td> <td> <font face="Tahoma" size="2"> -54,000</font></td> <td> <font face="Tahoma" size="2"> -54,000</font></td> <td>-26,000</td> <td>-140,000</td> <td>-25,000</td> </tr> <tr> <td colspan="2"><b>STOP-to-MIRROR</b></td> <td>800</td> <td>772*</td> <td>777*</td> <td>780*</td> <td>790*</td> <td>800</td> <td>767*</td> </tr> <tr> <td colspan="2"><b>MIRROR-to-LENS</b></td> <td>-</td> <td>-394.5</td> <td> <font face="Tahoma" size="2"> -394.5</font></td> <td> <font face="Tahoma" size="2"> -394.5</font></td> <td>-389.9</td> <td>-378.5</td> <td>-391.1</td> </tr> <tr> <td colspan="2"><b>T-PPP</b></td> <td>-</td> <td>-</td> <td> <font face="Tahoma" size="2"> -</font></td> <td> <font face="Tahoma" size="2"> -</font></td> <td> <font face="Tahoma" size="2"> -</font></td> <td>-17.2 (BK7)</td> <td>-</td> </tr> <tr> <td colspan="2"><b>R</b><font face="Terminal" size="1"><span style="vertical-align: sub">l1</span></font></td> <td>-</td> <td>-133</td> <td>-296</td> <td>inf.</td> <td>660</td> <td>-134</td> <td>118</td> </tr> <tr> <td colspan="2"><b>T</b><font face="Terminal" size="1"><span style="vertical-align: sub">l1</span></font></td> <td>-</td> <td>-3 (K11)</td> <td>-3 <font face="Tahoma" size="2"> (K11)</font></td> <td>-3 <font face="Tahoma" size="2"> (K11)</font></td> <td>-7.5 <font face="Tahoma" size="2"> (K11)</font></td> <td>-3 <font face="Tahoma" size="2"> (K11)</font></td> <td>-3.5 (BK7)</td> </tr> <tr> <td colspan="2"><b>R</b><font face="Terminal" size="1"><span style="vertical-align: sub">l2</span></font></td> <td>-</td> <td>inf.</td> <td>296</td> <td>-162</td> <td>134</td> <td>inf.</td> <td>190</td> </tr> <tr> <td colspan="2"><font face="Tahoma" size="2"> <b>T</b><font face="Terminal" size="1"><span style="vertical-align: sub">l2</span></font></font></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-2.5 (F2)</td> </tr> <tr> <td colspan="2"><font face="Tahoma" size="2"> <b>R</b><font face="Terminal" size="1"><span style="vertical-align: sub">l3</span></font></font></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>inf.</td> </tr> <tr> <td colspan="2"><b>LENS-to-IMAGE</b></td> <td>-</td> <td>-1.92</td> <td>-1.94</td> <td>-1.96</td> <td>-1.91</td> <td>-1.9</td> <td>-1.96</td> </tr> </table> <p align="center" style="text-indent: 0; "> The asterisk is for corrector separation change needed to cancel coma. Corrector radius changes significantly with both, meniscus and PCX+PPP flatteners, which means that it shape also changes significantly. Since the radius is inversely proportional to the defocus parameter <b><font face="Tahoma" size="1">Λ</font></b>, and for the stand-alone camera <font face="Tahoma" size="1">Λ</font>=1 (0.707 neutral zone), the integrated meniscus flattener has <font face="Tahoma" size="1">Λ</font>~2.1, i.e. Schmidt profile shape which would without flattener have brought all the wavelengths to a common focus slightly inside (toward mirror) marginal focus (convex profile with the neutral zone at 1.025, or slightly out of the effective surface). And the profile with the PCX+PPP flattener has <font face="Tahoma" size="1">Λ</font>~0.386, i.e. neutral zone at 0.44 radius, with the profile edge higher than its inner portion. Both profiles are harder to fabricate than the standard 0.707 neutral zone.</font></div> <p align="justify" style="text-indent: 0; line-height:150%"> Reducing lens-to-image separation would proportionally reduce the cone width at the lens, i.e. the effective aperture at the lens surfaces, and with it the level of aberrations. However, since the only significant aberration at the 2mm separation is coma, which can be cancelled by moving Schmidt corrector slightly closer, further reducing the lens-to-image separation would not produce practical benefits.<p align="justify" style="text-indent: 0; line-height:150%"> For the same reason - i.e. due to the smaller effective (cone) aperture at the lens - aberrations induced by the single-lens field-flattener will be much smaller in slow systems for any given lens-to-image separation: in proportion to the fourth power, third power and square of the inverse F-number for spherical aberration, coma and astigmatism, respectively. For that reason, monochromatic aberrations of a single-lens flattener are not the limiting factor to widening the lens-to-image separation in a system like Cassegrain. The limiting factors are lateral color, increasing approximately with the lens-to-image separation, and the magnification factor, since the <a name="flattener">flattener</a> has negative power. </font> <p align="center" style="text-indent: 0"> <font face="Trebuchet MS" color="#336699">Doublets field flatteners</font></p> <font size="2"> <p align="justify" style="text-indent: 0; line-height:150%"> Two-lens subaperture corrector can flatten field in the <a href="lens_corrector_examples.htm#Cassegrain">Cassegrain</a> or, in general, any of other popular <a href="lens_corrector_examples.htm"> two mirror systems</a>. A long-focus Cassegrain gains less from field flattening than, for instance Ritchey-Chretien or Dall-Kirkham, both having stronger off-axis aberrations, which are also greatly reduced with adequately designed flattener. <p align="justify" style="text-indent: 0; line-height:150%"> Similarly, flattening field in the SCT with spherical mirrors would produce little benefit if not correcting for the system coma as well.<div style="background-color: #FFFFFF"> <p align="center" style="text-indent: 0"> <font face="Tahoma"><b>Example 2: SCT with spherical mirrors</b> - A near zero-power pair of BK7 lenses for flattening the field of the commercial 9-inch </font>f<font face="Tahoma">/2/10 SCT. Coma is removed by the rear surface of the front lens, and the rear lens mainly produces net astigmatism that flattens the field. For the near-complete correction, a pair of lenses has to be an integral part of the system, i.e. Schmidt corrector adjustment is required. This flattener - somewhat tweaked version of the flattener/corrector for a </font>f<font face="Tahoma">/2.8/10 SCT by Richard Snashall - leaves a trace of residual coma, and induces near 1/4 wave (0.24) P-V of undercorrection. Either can be cancelled at the expense of the other becoming somewhat greater (for instance, zero coma would result in about 0.3 wave P-V of spherical aberration, and for negligible spherical - about 1/6 wave P-V or less - the RMS error would only slightly increase, but would have noticeably more of coma-like deformation toward the edge). <br> <br> <img border="0" src="images/SCT_flat.PNG" width="733" height="466"></font></div> <p align="justify" style="text-indent: 22px; line-height:150%"> A <a name="pair">pair</a> of simple plano CX/CV lenses can eliminate curvature of field in a Cassegrain without inducing significant chromatism, spherical aberration or coma. If the positive element is made of common crown, and the negative of common flint, the flattener also somewhat reduces the focal length, generally desirable with long-focus Cassegrains.<div style="background-color: #FFFFFF"> <p align="center" style="text-indent: 22px"> <b>Example 3: Simple field flattener for a Cassegrain. </b><font face="Tahoma">300mm </font>f<font face="Tahoma">/4/14 Classical Cassegrain with a flattener that improves its performance over wide field (there is no noticeable change in the blur size if the spectral range is widened). The flattener induces astigmatism which flattens the field. It also reduces the focal length by 7-8%. This particular flattener only illustrates the effect; somewhat better correction could be possible if optimized for the location, spacing and shape. But any further improvement wouldn't be significant in practical terms, since the dominant residual aberration is the field-flattening astigmatism.</font><b><br> <img border="0" src="images/cass_flat2.PNG" width="666" height="311"></b></div> <p align="justify" style="text-indent: 22px; line-height:150%"> Similar form of a field flattener can be used for <a name="refractors">refractors</a>. Since most of them are fairly similar in their field curvature properties, the parameters of such flattener can be defined, at least in general terms, in terms of the refractor's focal length. A pair of plano CX/CV lenses of the common crown and flint (respectively) will induce field-flattening astigmatism and low residual aberrations if the crown lens has focal length of nearly 1/3 of the focal length <b>f</b> of the refractor - which sets its radius at ~f/3(n-1) - with the flint lens radius twice larger, and the two placed in near contact at about 0.1f in front of the original focus. The astigmatism is nearly halved in magnitude, but becomes different in sign to somewhat stronger Petzval, with the net effect being near-flat field with roughly half the astigmatism of the objective lens alone.<p align="justify" style="text-indent: 22px; line-height:150%"> Typically such flattener will reduce off axis error by a factor of 3. While it does flatten image field in both, achromats and apochromats, it is less beneficial in achromats, due to their large longitudinal chromatic defocus, as plots below illustrate. While the error is significantly reduced in the green, farther off-axis chromatic error with the flattener is larger than without it, because field curvature in part compensates for the chromatic defocus. With the red/green/blue blur being similar in size at 1° off axis, here would be little change in imaging, but visual field definition would be noticeably improved, since eye sensitivity is much higher for the green. <div style="background-color: #FFFFFF"> <p align="center" style="text-indent: 22px"> <font face="Tahoma"><b>Example 4: Simple flattener for refractors</b> - At left, farther off axis the green (e) blur in the achromat is noticeably smaller with flattener, but the red/blue (C/F) blur is actually larger, due to the curvature actually bringing C/F closer to focus. With CCD chip nearly as sensitive in the red/blue as in the green, there is little to gain in imaging. On the other hand, the gain is evident with apo refractors (note that the flattener reduces focal length by 10-15%).<br> <br> <img border="0" src="images/ref_flattener.PNG" width="722" height="550"></font></div> <p align="justify" style="text-indent: 0; line-height:150%"> With such a generic prescription, best location for the flattener varies from one system to another, but it should be within 10-20mm. At the optimum location, coma is near zero, and the median astigmatic surface is nearly flat (the error is actually slightly smaller with a very mild residual curvature, than with flat median surface, which requires more of astigmatism). Moving corrector away from the optimum location worsens the curvature/astigmatism error, and also induces coma (small changes in the lens spacing have little effect, the two lenses can be in full contact). Again, optimization would probably somewhat improve the best flattener's performance, put not significantly in practical terms, since the dominant aberration is the astigmatism flattening the field. <div style="background-color: #FFFFFF"> <p align="center" style="text-indent: 22px"> <font face="Tahoma"><b>Example 5: Eyepiece flattener</b> - Finally, for visuall use it is possible to flatten field of the objective with a zero-power singlet lens pair inserted into eyepiece barrel. Being very close to the image, the only significant aberration of such corrector is astigmatism, which can flatten the final visual field. Shown is such corrector that flattens field of a 150mm f/5 achromat, by inducing astigmatism of opposite sign to that of achromat's Petzval curvature. Final result is flat visual field and more than twice lower astigmatism.<br> <br> <img border="0" src="images/eyepiece_flattener.png" width="666" height="381"></font></div> <p align="center" style="text-indent: 0"> <span style="font-weight: 400"> <font size="2" face="Arial" color="#336699">◄</font></span><font size="2" face="Verdana"> <a href="sub_aperture_corrector.htm">10.1.2. Sub-aperture corrector examples (1)</a> </font><font size="2" face="Arial"><font color="#C0C0C0"> ▐</font> </font><font size="2" face="Verdana"> <a href="lens_corrector_examples.htm">10.1.2. Sub-aperture correctors for two-mirror systems</a> </font> <font face="Arial" size="2" color="#336699">►</font><p align="center" style="text-indent: 0"> <a href="index.htm">Home</a> | <a href="mailto:webpub@fastmail.com">Comments</a><p> </td> </tr> </table> </div> </body> </html>