CINXE.COM

Search results for: landscape genetic

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: landscape genetic</title> <meta name="description" content="Search results for: landscape genetic"> <meta name="keywords" content="landscape genetic"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="landscape genetic" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="landscape genetic"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2688</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: landscape genetic</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2568</span> Applications of AFM in 4D to Optimize the Design of Genetic Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hosam%20Abdelhady">Hosam Abdelhady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Filming the behaviors of individual DNA molecules in their environment when they interact with individual medicinal nano-polymers in a molecular scale has opened the door to understand the effect of the molecular shape, size, and incubation time with nanocarriers on optimizing the design of robust genetic Nano molecules able to resist the enzymatic degradation, enter the cell, reach to the nucleus and kill individual cancer cells in their environment. To this end, we will show how we applied the 4D AFM as a guide to finetune the design of genetic nanoparticles and to film the effects of these nanoparticles on the nanomechanical and morphological profiles of individual cancer cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AFM" title="AFM">AFM</a>, <a href="https://publications.waset.org/abstracts/search?q=dendrimers" title=" dendrimers"> dendrimers</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA" title=" DNA"> DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20therapy" title=" gene therapy"> gene therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a> </p> <a href="https://publications.waset.org/abstracts/157876/applications-of-afm-in-4d-to-optimize-the-design-of-genetic-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2567</span> The Exploration of Sustainable Landscape in Iran: From Persian Garden to Modern Park</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Honey%20Fadaie">Honey Fadaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Parhoodeh"> Vahid Parhoodeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper concentrates on the result of research based on studies on parameters of sustainability in Persian Garden design as a traditional Iranian landscape and in a contemporary park, Jamshidieh in Iran as a new experience of re-creation of Persian Gardens’ sustainable design. Since, sustainable development has three parts: social, economic and environmental. The complexities of each part are too great to discuss in a paper of this length, thus the authors decided to analyze the design of Persian garden by considering their environmental sustainability. By the analysis of sustainable features and characteristics of traditional gardens, and exploration of parameters of sustainability in Iranian modern landscape, Such as Jamshideh Park, the main objective of this research is to identify the strategies for sustainable landscaping and parameters of creating sustainable green spaces for contemporary cities. The results demonstrate that in Persian Gardens, sustainable parameters such as productive networks and local renewable materials have been used to achieve sustainable development. At the conclusion, guidelines and recommendations for sustainable landscaping are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamshidieh%20park" title="Jamshidieh park">Jamshidieh park</a>, <a href="https://publications.waset.org/abstracts/search?q=Persian%20garden" title=" Persian garden"> Persian garden</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20landscape" title=" sustainable landscape"> sustainable landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20green%20space" title=" urban green space"> urban green space</a> </p> <a href="https://publications.waset.org/abstracts/36241/the-exploration-of-sustainable-landscape-in-iran-from-persian-garden-to-modern-park" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2566</span> Nurse’s Role in Early Detection of Breast Cancer through Mammography and Genetic Screening and Its Impact on Patient&#039;s Outcome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salwa%20Hagag%20Abdelaziz">Salwa Hagag Abdelaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Dorria%20Salem"> Dorria Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoda%20Zaki"> Hoda Zaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Suzan%20Atteya"> Suzan Atteya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Early detection of breast cancer saves many thousands of lives each year via application of mammography and genetic screening and many more lives could be saved if nurses are involved in breast care screening practices. So, the aim of the study was to identify nurse's role in early detection of breast cancer through mammography and genetic screening and its impact on patient's outcome. In order to achieve this aim, 400 women above 40 years, asymptomatic were recruited for mammography and genetic screening. In addition, 50 nurses and 6 technologists were involved in the study. A descriptive analytical design was used. Five tools were utilized: sociodemographic, mammographic examination and risk factors, women's before, during and after mammography, items relaying to technologists, and items related to nurses were also obtained. The study finding revealed that 3% of women detected for malignancy and 7.25% for fibroadenoma. Statistically, significant differences were found between mammography results and age, family history, genetic screening, exposure to smoke, and using contraceptive pills. Nurses have insufficient knowledge about screening tests. Based on these findings the present study recommended involvement of nurses in breast care which is very important to in force population about screening practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mammography" title="mammography">mammography</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20detection" title=" early detection"> early detection</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20screening" title=" genetic screening"> genetic screening</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a> </p> <a href="https://publications.waset.org/abstracts/22557/nurses-role-in-early-detection-of-breast-cancer-through-mammography-and-genetic-screening-and-its-impact-on-patients-outcome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">562</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2565</span> Computational Analyses of Persian Walnut Genetic Data: Notes on Genetic Diversity and Cultivar Phylogeny</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Sheidaei">Masoud Sheidaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Melica%20Tabasi"> Melica Tabasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahimeh%20Koohdar"> Fahimeh Koohdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20Sheidaei"> Mona Sheidaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Juglans regia L. is an economically important species of edible nuts. Iran is known as a center of origin of genetically rich walnut germplasm and expected to be found a large diversity within Iranian walnut populations. A detailed population genetic of local populations is useful for developing an optimal strategy for in situ conservation and can assist the breeders in crop improvement programs. Different phylogenetic studies have been carried out in this genus, but none has been concerned with genetic changes associated with geographical divergence and the identification of adaptive SNPs. Therefore, we carried out the present study to identify discriminating ITS nucleotides among Juglans species and also reveal association between ITS SNPs and geographical variables. We used different computations approaches like DAPC, CCA, and RDA analyses for the above-mentioned tasks. We also performed population genetics analyses for population effective size changes associated with the species expansion. The results obtained suggest that latitudinal distribution has a more profound effect on the species genetic changes. Similarly, multiple analytical approaches utilized for the identification of both discriminating DNA nucleotides/ SNPs almost produced congruent results. The SNPs with different phylogenetic importance were also identified by using a parsimony approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Persian%20walnut" title="Persian walnut">Persian walnut</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20SNPs" title=" adaptive SNPs"> adaptive SNPs</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20analyses" title=" data analyses"> data analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title=" genetic diversity"> genetic diversity</a> </p> <a href="https://publications.waset.org/abstracts/148098/computational-analyses-of-persian-walnut-genetic-data-notes-on-genetic-diversity-and-cultivar-phylogeny" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2564</span> Genetic-Environment Influences on the Cognitive Abilities of 6-to-8 Years Old Twins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annu%20Panghal">Annu Panghal</a>, <a href="https://publications.waset.org/abstracts/search?q=Bimla%20Dhanda"> Bimla Dhanda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper aims to determine the genetic-environment influences on the cognitive abilities of twins. Using the 100 pairs of twins from two districts, namely: Bhiwani (N = 90) and Hisar (N = 110) of Haryana State, genetic and environmental influences were assessed in twin study design. The cognitive abilities of twins were measured using the Wechsler Intelligence Scale for Children (WISC-R). Home Observation for Measurement of the Environment (HOME) Inventory was taken to examine the home environment of twins. Heritability estimate was used to analyze the genes contributing to shape the cognitive abilities of twins. The heritability estimates for cognitive abilities of 6-7 years old twins in Hisar district were 74% and in Bhiwani District 76%. Further the heritability estimates were 64% in the twins of Hisar district and 60 in Bhiwani district % in the age group of 7-8 years. The remaining variations in the cognitive abilities of twins were due to environmental factors namely: provision for Active Stimulation, paternal involvement, safe physical environment. The findings provide robust evidence that the cognitive abilities were more influenced by genes than the environmental factors and also revealed that the influence of genetic was more in the age group 6-7 years than the age group 7-8 years. The conclusion of the heritability estimates indicates that the genetic influence was more in the age group of 6-7 years than the age group of 7-8 years. As the age increases the genetic influence decreases and environment influence increases. Mother education was strongly associated with the cognitive abilities of twins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetics" title="genetics">genetics</a>, <a href="https://publications.waset.org/abstracts/search?q=heritability" title=" heritability"> heritability</a>, <a href="https://publications.waset.org/abstracts/search?q=twins" title=" twins"> twins</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20abilities" title=" cognitive abilities"> cognitive abilities</a> </p> <a href="https://publications.waset.org/abstracts/113491/genetic-environment-influences-on-the-cognitive-abilities-of-6-to-8-years-old-twins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2563</span> Transfer Knowledge From Multiple Source Problems to a Target Problem in Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Terence%20Soule">Terence Soule</a>, <a href="https://publications.waset.org/abstracts/search?q=Tami%20Al%20Ghamdi"> Tami Al Ghamdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To study how to transfer knowledge from multiple source problems to the target problem, we modeled the Transfer Learning (TL) process using Genetic Algorithms as the model solver. TL is the process that aims to transfer learned data from one problem to another problem. The TL process aims to help Machine Learning (ML) algorithms find a solution to the problems. The Genetic Algorithms (GA) give researchers access to information that we have about how the old problem is solved. In this paper, we have five different source problems, and we transfer the knowledge to the target problem. We studied different scenarios of the target problem. The results showed combined knowledge from multiple source problems improves the GA performance. Also, the process of combining knowledge from several problems results in promoting diversity of the transferred population. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transfer%20learning" title="transfer learning">transfer learning</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20computation" title=" evolutionary computation"> evolutionary computation</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20and%20target" title=" source and target"> source and target</a> </p> <a href="https://publications.waset.org/abstracts/147927/transfer-knowledge-from-multiple-source-problems-to-a-target-problem-in-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2562</span> Inverse Mapping of Weld Bead Geometry in Shielded Metal Arc-Welding: Genetic Algorithm Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Nagesh">D. S. Nagesh</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20L.%20Datta"> G. L. Datta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of welding, various studies had been made by some of the previous investigators to predict as well as optimize weld bead geometric descriptors. Modeling of weld bead shape is important for predicting the quality of welds. In most of the cases, design of experiments technique to postulate multiple linear regression equations have been used. Nowadays, Genetic Algorithm (GA) an intelligent information treatment system with the characteristics of treating complex relationships as seen in welding processes used as a tool for inverse mapping/optimization of the process is attempted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smaw" title="smaw">smaw</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=bead%20geometry" title=" bead geometry"> bead geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%2Finverse%20mapping" title=" optimization/inverse mapping"> optimization/inverse mapping</a> </p> <a href="https://publications.waset.org/abstracts/30261/inverse-mapping-of-weld-bead-geometry-in-shielded-metal-arc-welding-genetic-algorithm-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2561</span> Genetic Algorithm Approach for Inverse Mapping of Weld Bead Geometry in Shielded Metal Arc-Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Nagesh">D. S. Nagesh</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20L.%20Datta"> G. L. Datta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of welding, various studies had been made by some of the previous investigators to predict as well as optimize weld bead geometric descriptors. Modeling of weld bead shape is important for predicting the quality of welds. In most of the cases design of experiments technique to postulate multiple linear regression equations have been used. Nowadays Genetic Algorithm (GA) an intelligent information treatment system with the characteristics of treating complex relationships as seen in welding processes used as a tool for inverse mapping/optimization of the process is attempted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SMAW" title="SMAW">SMAW</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=bead%20geometry" title=" bead geometry"> bead geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%2Finverse%20mapping" title=" optimization/inverse mapping"> optimization/inverse mapping</a> </p> <a href="https://publications.waset.org/abstracts/30262/genetic-algorithm-approach-for-inverse-mapping-of-weld-bead-geometry-in-shielded-metal-arc-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2560</span> Maximum Efficiency of the Photovoltaic Cells Using a Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Latifa%20Sabri">Latifa Sabri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Benzirar"> Mohammed Benzirar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mimoun%20Zazoui"> Mimoun Zazoui </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The installation of photovoltaic systems is one of future sources to generate electricity without emitting pollutants. The photovoltaic cells used in these systems have demonstrated enormous efficiencies and advantages. Several researches have discussed the maximum efficiency of these technologies, but only a few experiences have succeeded to right weather conditions to get these results. In this paper, two types of cells were selected: crystalline and amorphous silicon. Using the method of genetic algorithm, the results show that for an ambient temperature of 25°C and direct irradiation of 625 W/m², the efficiency of crystalline silicon is 12% and 5% for amorphous silicon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PV" title="PV">PV</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20efficiency" title=" maximum efficiency"> maximum efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/43781/maximum-efficiency-of-the-photovoltaic-cells-using-a-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2559</span> Genetic Parameters as Indicators of Sustainability and Diversity of Schinus terebinthifolius Populations in the Riparian Area of the São Francisco River</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Renata%20Silva-Mann">Renata Silva-Mann</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheila%20Val%C3%A9ria%20%C3%81lvares%20Carvalho"> Sheila Valéria Álvares Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=Rob%C3%A9rio%20Anast%C3%A1cio%20Ferreira"> Robério Anastácio Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Jane%20Gomes"> Laura Jane Gomes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is growing interest in defining indicators of sustainability, which are important for monitoring the conservation of native forests, particularly in areas of permanent protection. These indicators are references for assessing the state of the forest and the status of the depredated area and its ability to maintain species populations. The aim of the present study was to select genetic parameters as indicators of sustainability for Schinus terebinthifolius Raddi. Fragments located in riparian areas between the Sergipe and Alagoas States in Brazil. This species has been exploited for traditional communities, which represent 20% of the incoming. This study was carried out using the indicators suggested by the Organization for Economic Cooperation and Development, which were identified as Driving-Pressure-State-Impact-Response (DPSIR) factors. The genetic parameters were obtained in five populations located on the shores and islands of the São Francisco River, one of the most important rivers in Brazil. The framework for Schinus conservation suggests seventeen indicators of sustainability. In accordance with genetic parameters, the populations are isolated, and these genetic parameters can be used to monitor the sustainability of those populations in riparian area with the aim of defining strategies for forest restoration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alleles" title="alleles">alleles</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20markers" title=" molecular markers"> molecular markers</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title=" genetic diversity"> genetic diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title=" biodiversity"> biodiversity</a> </p> <a href="https://publications.waset.org/abstracts/1658/genetic-parameters-as-indicators-of-sustainability-and-diversity-of-schinus-terebinthifolius-populations-in-the-riparian-area-of-the-sao-francisco-river" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2558</span> Modeling and Optimization of Micro-Grid Using Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Rezaei">Mehrdad Rezaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Haghmaram"> Reza Haghmaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Nima%20Amjadi"> Nima Amjadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes an operating and cost optimization model for micro-grid (MG). This model takes into account emission costs of NOx, SO2, and CO2, together with the operation and maintenance costs. Wind turbines (WT), photovoltaic (PV) arrays, micro turbines (MT), fuel cells (FC), diesel engine generators (DEG) with different capacities are considered in this model. The aim of the optimization is minimizing operation cost according to constraints, supply demand and safety of the system. The proposed genetic algorithm (GA), with the ability to fine-tune its own settings, is used to optimize the micro-grid operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-grid" title="micro-grid">micro-grid</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=MG" title=" MG"> MG</a> </p> <a href="https://publications.waset.org/abstracts/10259/modeling-and-optimization-of-micro-grid-using-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2557</span> Identification of the Parameters of a AC Servomotor Using Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20G.%20Batista">J. G. Batista</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20N.%20Sousa"> K. N. Sousa</a>, <a href="https://publications.waset.org/abstracts/search?q=%C2%ACJ.%20L.%20Nunes"> ¬J. L. Nunes</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20L.%20S.%20Sousa"> R. L. S. Sousa</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20P.%20Th%C3%A9"> G. A. P. Thé</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measured and/or expected values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=AC%20servomotor" title=" AC servomotor"> AC servomotor</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20motor-PMSM" title=" permanent magnet synchronous motor-PMSM"> permanent magnet synchronous motor-PMSM</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20control" title=" vector control"> vector control</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20manipulator" title=" robotic manipulator"> robotic manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a> </p> <a href="https://publications.waset.org/abstracts/8166/identification-of-the-parameters-of-a-ac-servomotor-using-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2556</span> Chaos Fuzzy Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Jalali%20Varnamkhasti">Mohammad Jalali Varnamkhasti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The genetic algorithms have been very successful in handling difficult optimization problems. The fundamental problem in genetic algorithms is premature convergence. This paper, present a new fuzzy genetic algorithm based on chaotic values instead of the random values in genetic algorithm processes. In this algorithm, for initial population is used chaotic sequences and then a new sexual selection proposed for selection mechanism. In this technique, the population is divided such that the male and female would be selected in an alternate way. The layout of the male and female chromosomes in each generation is different. A female chromosome is selected by tournament selection size from the female group. Then, the male chromosome is selected, in order of preference based on the maximum Hamming distance between the male chromosome and the female chromosome or The highest fitness value of male chromosome (if more than one male chromosome is having the maximum Hamming distance existed), or Random selection. The selections of crossover and mutation operators are achieved by running the fuzzy logic controllers, the crossover and mutation probabilities are varied on the basis of the phenotype and genotype characteristics of the chromosome population. Computational experiments are conducted on the proposed techniques and the results are compared with some other operators, heuristic and local search algorithms commonly used for solving p-median problems published in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20system" title=" fuzzy system"> fuzzy system</a>, <a href="https://publications.waset.org/abstracts/search?q=chaos" title=" chaos"> chaos</a>, <a href="https://publications.waset.org/abstracts/search?q=sexual%20selection" title=" sexual selection"> sexual selection</a> </p> <a href="https://publications.waset.org/abstracts/30310/chaos-fuzzy-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2555</span> The Appearance of Identity in the Urban Landscape by Enjoying the Natural Factors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Karimi">Mehrdad Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farshad%20Negintaji"> Farshad Negintaji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study has examined the appearance of identity in the urban landscape and its effects on the natural factors. For this purpose, the components of place identity, emotional attachment, place dependence and social bond which totally constitute place attachment, measures it in three domains of cognitive (place identity), affective (emotional attachment) and behavioral (place dependence and social bond). In order to measure the natural factors, three components of the absolute elements, living entities, natural elements have been measured. The study is descriptive and the statistical population has been Yasouj, a city in Iran. To analyze the data the SPSS software has been used. The results in two level of descriptive and inferential statistics have been investigated. In the inferential statistics, Pearson correlation coefficient test has been used to evaluate the research hypotheses. In this study, the variable of identity is in high level and the natural factors are also in high level. These results indicate a positive relationship between place identity and natural factors. Development of environment and reaching the quality level of the personality or identity will develop the individual and society. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=identity" title="identity">identity</a>, <a href="https://publications.waset.org/abstracts/search?q=place%20identity" title=" place identity"> place identity</a>, <a href="https://publications.waset.org/abstracts/search?q=landscape" title=" landscape"> landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20landscape" title=" urban landscape"> urban landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=landscaping" title=" landscaping"> landscaping</a> </p> <a href="https://publications.waset.org/abstracts/14399/the-appearance-of-identity-in-the-urban-landscape-by-enjoying-the-natural-factors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2554</span> Influence of Genetic Counseling in Family Dynamics in Patients with Deafness in Merida, Yucatán, Mexico</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Damaris%20Estrella%20Castillo">Damaris Estrella Castillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zacil%20ha%20Vilchis%20Zapata"> Zacil ha Vilchis Zapata</a>, <a href="https://publications.waset.org/abstracts/search?q=Leydi%20Peraza%20G%C3%B3mez"> Leydi Peraza Gómez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hearing loss is an etiologically heterogeneous condition, where almost 60% is genetic in origin, 20% is due to environmental factors, and 20% have unknown causes. However, it is now known that the gene, GJB2, which encodes the connexin 26 protein, accounts for a large percentage of non-syndromic genetic hearing loss, and variants in this gene have been identified to be a common cause of hereditary hearing loss in many populations. The literature reports that the etiology in deafness helps improve family functioning but low-income countries this is difficult. Therefore, it is difficult to contribute the right of families to know about the genetic risk in future pregnancies as well as determining the certainty of being a carrier or affected. In order to assess the impact of genetic counseling and the functionality, 100 families with at least one child with profound hearing loss, were evaluated by specialists in audiology, clinical genetics and psychology. Targeted mutation analysis for one of the two known large deletions of upstream of GJB2/GJB6 gene (35delG; and including GJB2 regulatory sequences and GJB6) were performed in patients with diagnosis of non-syndromic hearing loss. Genetic counseling was given to all parents and primary caregivers, and APGAR family test was applied before and after the counseling. We analyzed a total of 300 members (children, parents) to determine the presence of the GJB2 gene mutation. Twelve patients (carriers and affected) were positive for the mutation, from 5 different families. The subsequent family APGAR testing and genetic counseling, showed that 14% perceived their families as functional, 62 % and 24 % moderately functional dysfunctional. This shows the importance of genetic counseling in the perception of family function that can directly impact the quality of life of these families. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=family%20dynamics" title="family dynamics">family dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=deafness" title=" deafness"> deafness</a>, <a href="https://publications.waset.org/abstracts/search?q=APGAR" title=" APGAR"> APGAR</a>, <a href="https://publications.waset.org/abstracts/search?q=counseling" title=" counseling"> counseling</a> </p> <a href="https://publications.waset.org/abstracts/17887/influence-of-genetic-counseling-in-family-dynamics-in-patients-with-deafness-in-merida-yucatan-mexico" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">643</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2553</span> Genetic Identification of Crop Cultivars Using Barcode System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kesavan%20Markkandan">Kesavan Markkandan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ha%20Young%20Park"> Ha Young Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Il%20Yoo"> Seung-Il Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sin-Gi%20Park"> Sin-Gi Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Junhyung%20Park"> Junhyung Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For genetic identification of crop cultivars, insertions/deletions (InDel) markers have been preferred currently because they are easy to use, PCR based, co-dominant and relatively abundant. However, new InDels need to be developed for genetic studies of new varieties due to the difference of allele frequencies in InDels among the population groups. These new varieties are evolved with low levels of genetic diversity in specific genome loci with high recombination rate. In this study, we described soybean barcode system approach based on InDel makers, each of which is specific to a variation block (VB), where the genomes split by all assumed recombination sites. Firstly, VBs in crop cultivars were mined for transferability to VB-specific InDel markers. Secondly, putative InDels in the VB regions were identified for the development of barcode system by analyzing particular cultivar’s whole genome data. Thirdly, common VB-specific InDels from all cultivars were selected by gel electrophoresis, which were converted as 2D barcode types according to comparing amplicon polymorphisms in the five cultivars to the reference cultivar. Finally, the polymorphism of the selected markers was assessed with other cultivars, and the barcode system that allows a clear distinction among those cultivars is described. The same approach can be applicable for other commercial crops. Hence, VB-based genetic identification not only minimize the molecular markers but also useful for assessing cultivars and for marker-assisted breeding in other crop species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=variation%20block" title="variation block">variation block</a>, <a href="https://publications.waset.org/abstracts/search?q=polymorphism" title=" polymorphism"> polymorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=InDel%20marker" title=" InDel marker"> InDel marker</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20identification" title=" genetic identification"> genetic identification</a> </p> <a href="https://publications.waset.org/abstracts/67342/genetic-identification-of-crop-cultivars-using-barcode-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2552</span> Institutional Capacity of Health Care Institutes for Diagnosis and Management of Common Genetic Diseases-a Study from a North Coastal District of Andhra Pradesh, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koteswara%20Rao%20Pagolu">Koteswara Rao Pagolu</a>, <a href="https://publications.waset.org/abstracts/search?q=Raghava%20Rao%20Tamanam"> Raghava Rao Tamanam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In India, genetic disease is a disregarded service element in the community health- protection system. This study aims to gauge the accessibility of services for treating genetic disorders and also to evaluate the practices on deterrence and management services in the district health system. A cross-sectional survey of selected health amenities in the government health sector was conducted from 15 primary health centers (PHC’s), 4 community health centers (CHC’s), 1 district government hospital (DGH) and 3 referral hospitals (RH’s). From these, the existing manpower like 130 medical officers (MO’s), 254 supporting staff, 409 nursing staff (NS) and 45 lab technicians (LT’s) was examined. From the side of private health institutions, 25 corporate hospitals (CH’s), 3 medical colleges (MC’s) and 25 diagnostic laboratories (DL’s) were selected for the survey and from these, 316 MO’s, 995 NS and 254 LT’s were also reviewed. The findings show that adequate staff was in place at more than 70% of health centers, but none of the staff have obtained any operative training on genetic disease management. The largest part of the DH’s had rudimentary infrastructural and diagnostic facilities. However, the greater part of the CHC’s and PHC’s had inadequate diagnostic facilities related to genetic disease management. Biochemical, molecular, and cytogenetic services were not available at PHC’s and CHC’s. DH’s, RH’s, and all selected medical colleges were found to have offered the basic Biochemical genetics units during the survey. The district health care infrastructure in India has a shortage of basic services to be provided for the genetic disorder. With some policy resolutions and facility strengthening, it is possible to provide advanced services for a genetic disorder in the district health system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=district%20health%20system" title="district health system">district health system</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20disorder" title=" genetic disorder"> genetic disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructural%20amenities" title=" infrastructural amenities"> infrastructural amenities</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20practices" title=" management practices"> management practices</a> </p> <a href="https://publications.waset.org/abstracts/139234/institutional-capacity-of-health-care-institutes-for-diagnosis-and-management-of-common-genetic-diseases-a-study-from-a-north-coastal-district-of-andhra-pradesh-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2551</span> Functions of Bilingualism in Hong Kong: Comparing the Linguistic Landscape of Tsim Sha Tsui and Tai Wai</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xinyi%20Huang">Xinyi Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a former British colony and one of the most famous world financial centers today, Hong Kong attracts countless businessmen and tourists to visit or settle down every year. Hong Kong is a land that leads western culture to blossom in Asia, and in the meantime, it inherits the unique charm of Chinese traditional culture. The Chinese-English bilingual phenomenon can be seen everywhere in Hong Kong. The public presentation, code choice, and practical use of these two languages can also reflect the economic and social status, population distribution, and individual identity construction of a specific area. This paper mainly compares the linguistic landscape of two areas with different social functions in Hong Kong: Tsim Sha Tsui, a large commercial center in Kowloon, and Tai Wai, a residential area in New Territories. By adopting the methodology of the Walking Tour, the bilingual data of 75 photos are collected unintentionally during the field trip in the two areas. Through the methods of quantitative analysis and linguistic landscape studies, this paper deeply analyzes the similarities and differences in language distribution and the respective social functions of two languages in the two places. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bilingualism" title="bilingualism">bilingualism</a>, <a href="https://publications.waset.org/abstracts/search?q=linguistic%20landscape" title=" linguistic landscape"> linguistic landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=identity%20construction" title=" identity construction"> identity construction</a>, <a href="https://publications.waset.org/abstracts/search?q=commodification" title=" commodification"> commodification</a> </p> <a href="https://publications.waset.org/abstracts/156287/functions-of-bilingualism-in-hong-kong-comparing-the-linguistic-landscape-of-tsim-sha-tsui-and-tai-wai" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2550</span> Identification of Soft Faults in Branched Wire Networks by Distributed Reflectometry and Multi-Objective Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soumaya%20Sallem">Soumaya Sallem</a>, <a href="https://publications.waset.org/abstracts/search?q=Marc%20Olivas"> Marc Olivas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This contribution presents a method for detecting, locating, and characterizing soft faults in a complex wired network. The proposed method is based on multi-carrier reflectometry MCTDR (Multi-Carrier Time Domain Reflectometry) combined with a multi-objective genetic algorithm. In order to ensure complete network coverage and eliminate diagnosis ambiguities, the MCTDR test signal is injected at several points on the network, and the data is merged between different reflectometers (sensors) distributed on the network. An adapted multi-objective genetic algorithm is used to merge data in order to obtain more accurate faults location and characterization. The proposed method performances are evaluated from numerical and experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wired%20network" title="wired network">wired network</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectometry" title=" reflectometry"> reflectometry</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20distributed%20diagnosis" title=" network distributed diagnosis"> network distributed diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20genetic%20algorithm" title=" multi-objective genetic algorithm"> multi-objective genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/139182/identification-of-soft-faults-in-branched-wire-networks-by-distributed-reflectometry-and-multi-objective-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2549</span> Partial Knowledge Transfer Between the Source Problem and the Target Problem in Genetic Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Terence%20Soule">Terence Soule</a>, <a href="https://publications.waset.org/abstracts/search?q=Tami%20Al%20Ghamdi"> Tami Al Ghamdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To study how the partial knowledge transfer may affect the Genetic Algorithm (GA) performance, we model the Transfer Learning (TL) process using GA as the model solver. The objective of the TL is to transfer the knowledge from one problem to another related problem. This process imitates how humans think in their daily life. In this paper, we proposed to study a case where the knowledge transferred from the S problem has less information than what the T problem needs. We sampled the transferred population using different strategies of TL. The results showed transfer part of the knowledge is helpful and speeds the GA process of finding a solution to the problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transfer%20learning" title="transfer learning">transfer learning</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20transfer" title=" partial transfer"> partial transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20computation" title=" evolutionary computation"> evolutionary computation</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/147924/partial-knowledge-transfer-between-the-source-problem-and-the-target-problem-in-genetic-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2548</span> Solving the Wireless Mesh Network Design Problem Using Genetic Algorithm and Simulated Annealing Optimization Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moheb%20R.%20Girgis">Moheb R. Girgis</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20M.%20Mahmoud"> Tarek M. Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahgat%20A.%20Abdullatif"> Bahgat A. Abdullatif</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Rabie"> Ahmed M. Rabie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mesh clients, mesh routers and gateways are components of Wireless Mesh Network (WMN). In WMN, gateways connect to Internet using wireline links and supply Internet access services for users. We usually need multiple gateways, which takes time and costs a lot of money set up, due to the limited wireless channel bit rate. WMN is a highly developed technology that offers to end users a wireless broadband access. It offers a high degree of flexibility contrasted to conventional networks; however, this attribute comes at the expense of a more complex construction. Therefore, a challenge is the planning and optimization of WMNs. In this paper, we concentrate on this challenge using a genetic algorithm and simulated annealing. The genetic algorithm and simulated annealing enable searching for a low-cost WMN configuration with constraints and determine the number of used gateways. Experimental results proved that the performance of the genetic algorithm and simulated annealing in minimizing WMN network costs while satisfying quality of service. The proposed models are presented to significantly outperform the existing solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20mesh%20networks" title="wireless mesh networks">wireless mesh networks</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithms" title=" genetic algorithms"> genetic algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20annealing" title=" simulated annealing"> simulated annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=topology%20design" title=" topology design"> topology design</a> </p> <a href="https://publications.waset.org/abstracts/11103/solving-the-wireless-mesh-network-design-problem-using-genetic-algorithm-and-simulated-annealing-optimization-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2547</span> Comparative Germination Studies in Mature Seeds of Haloxylon Salicornicum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laila%20Almulla">Laila Almulla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As native plants are better adapted to the local environment, can endure long spells of drought, withstand high soil salinity levels and provide a more natural effect to landscape projects, their use in landscape projects are gaining popularity. Standardization of seed germination methods and raising the hardened plants of selected native plants for their use in landscape projects will both conserve natural resources and produce sustainable greenery. In the present study, Haloxylon salicornicum, a perennial herb with a potential use for urban greenery was selected for seed germination tests as there is an urgent need to mass multiply them for their large-scale use. Among the nine treatments tried with different concentrations of gibberelic acid (GA3) and dry heat, the seeds responded with treatments when the wings were removed. The control as well as 250 GA3 treatments produced the maximum germination of 86%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dormancy" title="dormancy">dormancy</a>, <a href="https://publications.waset.org/abstracts/search?q=gibberelic%20acid" title=" gibberelic acid"> gibberelic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=germination%20trays" title=" germination trays "> germination trays </a>, <a href="https://publications.waset.org/abstracts/search?q=vigor%20index" title=" vigor index"> vigor index</a> </p> <a href="https://publications.waset.org/abstracts/1762/comparative-germination-studies-in-mature-seeds-of-haloxylon-salicornicum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2546</span> A609 Modeling of AC Servomotor Using Genetic Algorithm and Tests for Control of a Robotic Joint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20G.%20Batista">J. G. Batista</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Santiago"> T. S. Santiago</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Ribeiro"> E. A. Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20P.%20Th%C3%A9"> G. A. P. Thé</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measure and/or expected values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=AC%20servomotor" title=" AC servomotor"> AC servomotor</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20motor-PMSM" title=" permanent magnet synchronous motor-PMSM"> permanent magnet synchronous motor-PMSM</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20control" title=" vector control"> vector control</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20manipulator" title=" robotic manipulator"> robotic manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a> </p> <a href="https://publications.waset.org/abstracts/5466/a609-modeling-of-ac-servomotor-using-genetic-algorithm-and-tests-for-control-of-a-robotic-joint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2545</span> Applying Genetic Algorithm in Exchange Rate Models Determination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Rostamzadeh">Mehdi Rostamzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Genetic Algorithms (GAs) are an adaptive heuristic search algorithm premised on the evolutionary ideas of natural selection and genetic. In this study, we apply GAs for fundamental and technical models of exchange rate determination in exchange rate market. In this framework, we estimated absolute and relative purchasing power parity, Mundell-Fleming, sticky and flexible prices (monetary models), equilibrium exchange rate and portfolio balance model as fundamental models and Auto Regressive (AR), Moving Average (MA), Auto-Regressive with Moving Average (ARMA) and Mean Reversion (MR) as technical models for Iranian Rial against European Union’s Euro using monthly data from January 1992 to December 2014. Then, we put these models into the genetic algorithm system for measuring their optimal weight for each model. These optimal weights have been measured according to four criteria i.e. R-Squared (R2), mean square error (MSE), mean absolute percentage error (MAPE) and root mean square error (RMSE).Based on obtained Results, it seems that for explaining of Iranian Rial against EU Euro exchange rate behavior, fundamental models are better than technical models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exchange%20rate" title="exchange rate">exchange rate</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=fundamental%20models" title=" fundamental models"> fundamental models</a>, <a href="https://publications.waset.org/abstracts/search?q=technical%20models" title=" technical models"> technical models</a> </p> <a href="https://publications.waset.org/abstracts/47210/applying-genetic-algorithm-in-exchange-rate-models-determination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2544</span> Sensitivity Analysis during the Optimization Process Using Genetic Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Rubio">M. A. Rubio</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Urquia"> A. Urquia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Genetic algorithms (GA) are applied to the solution of high-dimensional optimization problems. Additionally, sensitivity analysis (SA) is usually carried out to determine the effect on optimal solutions of changes in parameter values of the objective function. These two analyses (i.e., optimization and sensitivity analysis) are computationally intensive when applied to high-dimensional functions. The approach presented in this paper consists in performing the SA during the GA execution, by statistically analyzing the data obtained of running the GA. The advantage is that in this case SA does not involve making additional evaluations of the objective function and, consequently, this proposed approach requires less computational effort than conducting optimization and SA in two consecutive steps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithms" title=" genetic algorithms"> genetic algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20calibration" title=" model calibration"> model calibration</a> </p> <a href="https://publications.waset.org/abstracts/62152/sensitivity-analysis-during-the-optimization-process-using-genetic-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2543</span> Lycopene and β-Carotene Variation among Genetically Diverse Momordica cochinchinensis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dilani%20Wimalasiri">Dilani Wimalasiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Brkljaca"> Robert Brkljaca</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvia%20Urban"> Sylvia Urban</a>, <a href="https://publications.waset.org/abstracts/search?q=Terrence%20Piva"> Terrence Piva</a>, <a href="https://publications.waset.org/abstracts/search?q=Tien%20Huynh"> Tien Huynh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Momordica cochinchinensis (Cucurbitaceae) is used as food and traditional medicine in South East Asia and is commonly known as Red Gac. The fruit aril consists 70 times higher lycopene and 10 times higher β-carotene than all known fruits and vegetables. Despite its nutritional value there is little information available on its genetic variation and its influence on nutritional value. In this study; genetic and nutritional variation (lycopene and β-carotene) was investigated among 47 M. cochinchinensis samples collected from Australia, Thailand and Vietnam using molecular markers (RAPD and ISSR) and HPLC, respectively. UPGMA based cluster analysis of genetic data grouped Northern and Central Vietnam samples together but were separated from Australia, Thailand and Southern Vietnam samples. The concentration of lycopene was significantly higher among the samples collected from Central Vietnam (p<0.05) and the concentration of β-carotene was significantly higher among the samples collected from Northern Vietnam (p<0.05) indicating the existence of best varieties. This study provides vital information in genetic diversity and facilitates the selection and breeding for nutritious M. cochinchinensis varieties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=momordica%20cochinchinensis" title="momordica cochinchinensis">momordica cochinchinensis</a>, <a href="https://publications.waset.org/abstracts/search?q=lycopene" title=" lycopene"> lycopene</a>, <a href="https://publications.waset.org/abstracts/search?q=beta%20carotene" title=" beta carotene"> beta carotene</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title=" genetic diversity"> genetic diversity</a> </p> <a href="https://publications.waset.org/abstracts/11612/lycopene-and-v-carotene-variation-among-genetically-diverse-momordica-cochinchinensis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2542</span> Agro Morphological Characterization of Vicia Faba L. Accessions in the Kingdom of Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zia%20Amjad">Zia Amjad</a>, <a href="https://publications.waset.org/abstracts/search?q=Salem%20S.%20Alghamdi"> Salem S. Alghamdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experiment was carried out at student educational farm College of Food and Agriculture, KSU, kingdom of Saudi Arabia; in order to characterize 154 V. faba accessions based on UPOV and IBPGR descriptors. 24 agro-morphological characters including 11 quantitative and 13 qualitative were observed for genetic variation. All the results were analyzed using multivariate analysis i.e. principle component analysis (PCA). First six principle components (PC) had Eigen-value greater than one; accounted for 72% of available V. faba genetic diversity. However first three components revealed more than 10% of genetic diversity each i.e. 22.36%, 15.86% and 10.89% respectively. PCA distributed the V. faba accessions into different groups based on their performance for the characters under observation. PC-1 which represented 22.36% of the genetic diversity was positively associated with stipule spot pigmentation, intensity of streaks, pod degree of curvature and to some extent with 100 seed weight. PC-2 covered 15.86 of the genetic diversity and showed positive association for average seed weight per plant, pod length, number of seeds per plant, 100 seed weight, stipule spot pigmentation, intensity of streaks (same as in PC-1) and to some extent for pod degree of curvature and number of pods per plant. PC-3 revealed 10.89% of genetic diversity and expressed positive association for number of pods per plant and number of leaflets per plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agro%20morphological%20characterization" title="agro morphological characterization">agro morphological characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=vicia%20faba" title=" vicia faba"> vicia faba</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA" title=" PCA"> PCA</a> </p> <a href="https://publications.waset.org/abstracts/171645/agro-morphological-characterization-of-vicia-faba-l-accessions-in-the-kingdom-of-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2541</span> A Hybrid Genetic Algorithm for Assembly Line Balancing In Automotive Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qazi%20Salman%20Khalid">Qazi Salman Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Khalid"> Muhammad Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahid%20Maqsood"> Shahid Maqsood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a solution for optimizing the cycle time in an assembly line with human-robot collaboration and diverse operators. A genetic algorithm with tailored parameters is used to address the assembly line balancing problem in the automobile sector. A mathematical model is developed, depicting the problem. Currently, the firm runs on the largest candidate rule; however, it causes a lag in orders, which ultimately gets penalized. The results of the study show that the proposed GA is effective in providing efficient solutions and that the cycle time has significantly impacted productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=line%20balancing" title="line balancing">line balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=cycle%20time" title=" cycle time"> cycle time</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a> </p> <a href="https://publications.waset.org/abstracts/162367/a-hybrid-genetic-algorithm-for-assembly-line-balancing-in-automotive-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2540</span> Redefinition of Village Landscape with Ruins-Taking Cunwei Village in Nanping City, Fujian Province as Example</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siyu%20Bu">Siyu Bu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Wang"> Jie Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yajing%20Jiang"> Yajing Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, villages still occupying 94.7% of the national territorial area (almost nine million square kilometers) of China. Some of them are meeting urbanization and grow as satellite; however, others are witnessing more and more citizens swarming into with nostalgia, seek enjoyment from the beautiful green countryside. In villages, new types of house come and we see billions of old houses lay unused, or even be dying at every second, which cause a lot of 'bad palaces', decadent and dangerous. In this context, there are lots of tries for gearing villages in China. This article deconstructs the traditional village house to excavate its’ landscape potential for future. By research in CunWei Village, Nanping City, Fujian Province, China, a method of reconstruction of old houses comes out: the wreckage will be a strong landscape, showing the great beauty of nature. It will be a better use of the old material as well as the space pattern. It was supposed to gain a juxtaposition of traditional village life and modern social life by offering possibilities of multiple event, replacing the bad space to attractive one by strengthen the old structures without destroy traditional patterns. Furthermore , this method acts as an exploring for building redefinition of village landscape that fit Chinese villages, using local nature resource and traditional construction logic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=juxtaposition" title="juxtaposition">juxtaposition</a>, <a href="https://publications.waset.org/abstracts/search?q=replace" title=" replace"> replace</a>, <a href="https://publications.waset.org/abstracts/search?q=village" title=" village"> village</a>, <a href="https://publications.waset.org/abstracts/search?q=ruins" title=" ruins"> ruins</a> </p> <a href="https://publications.waset.org/abstracts/73608/redefinition-of-village-landscape-with-ruins-taking-cunwei-village-in-nanping-city-fujian-province-as-example" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2539</span> Networking Approach for Historic Urban Landscape: Case Study of the Porcelain Capital of China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ding%20He">Ding He</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Hu"> Ping Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents a “networking approach” as an alternative to the “layering model” in the issue of the historic urban landscape [HUL], based on research conducted in the historic city of Jingdezhen, the center of the porcelain industry in China. This study points out that the existing HUL concept, which can be traced back to the fundamental conceptual divisions set forth by western science, tends to analyze the various elements of urban heritage (composed of hybrid natural-cultural elements) by layers and ignore the nuanced connections and interweaving structure of various elements. Instead, the networking analysis approach can respond to the challenges of complex heritage networks and to the difficulties that are often faced when modern schemes of looking and thinking of landscape in the Eurocentric heritage model encounters local knowledge of Chinese settlement. The fieldwork in this paper examines the local language regarding place names and everyday uses of urban spaces, thereby highlighting heritage systems grounded in local life and indigenous knowledge. In the context of Chinese “Fengshui”, this paper demonstrates the local knowledge of nature and local intelligence of settlement location and design. This paper suggests that industrial elements (kilns, molding rooms, piers, etc.) and spiritual elements (temples for ceramic saints or water gods) are located in their intimate natural networks. Furthermore, the functional, spiritual, and natural elements are perceived as a whole and evolve as an interactive system. This paper proposes a local and cognitive approach in heritage, which was initially developed in European Landscape Convention and historic landscape characterization projects, and yet seeks a more tentative and nuanced model based on urban ethnography in a Chinese city. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinese%20city" title="Chinese city">Chinese city</a>, <a href="https://publications.waset.org/abstracts/search?q=historic%20urban%20landscape" title=" historic urban landscape"> historic urban landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=heritage%20conservation" title=" heritage conservation"> heritage conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=network" title=" network"> network</a> </p> <a href="https://publications.waset.org/abstracts/121147/networking-approach-for-historic-urban-landscape-case-study-of-the-porcelain-capital-of-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=landscape%20genetic&amp;page=4" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=landscape%20genetic&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=landscape%20genetic&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=landscape%20genetic&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=landscape%20genetic&amp;page=4">4</a></li> <li class="page-item active"><span class="page-link">5</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=landscape%20genetic&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=landscape%20genetic&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=landscape%20genetic&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=landscape%20genetic&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=landscape%20genetic&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=landscape%20genetic&amp;page=89">89</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=landscape%20genetic&amp;page=90">90</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=landscape%20genetic&amp;page=6" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10