CINXE.COM

Big data - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Big data - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"3ba96b01-53d8-43f4-a132-54f9ebb57fef","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Big_data","wgTitle":"Big data","wgCurRevisionId":1258765268,"wgRevisionId":1258765268,"wgArticleId":27051151,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Webarchive template wayback links","CS1 maint: location missing publisher","Articles with short description","Short description is different from Wikidata","Use dmy dates from January 2020","Wikipedia articles in need of updating from June 2024","All Wikipedia articles in need of updating","Articles containing potentially dated statements from 2012","All articles containing potentially dated statements","Wikipedia articles needing page number citations from December 2023", "Pages using page needed template with unknown parameters","All articles lacking reliable references","Articles lacking reliable references from December 2018","Articles containing potentially dated statements from 2017","All articles with unsourced statements","Articles with unsourced statements from September 2011","Articles needing additional references from September 2023","All articles needing additional references","Articles lacking reliable references from November 2018","Articles containing potentially dated statements from 2023","Articles with unsourced statements from January 2021","Articles containing potentially dated statements from 2013","Articles containing potentially dated statements from 2005","Articles containing potentially dated statements from June 2017","Articles containing potentially dated statements from August 2012","Articles with unsourced statements from April 2015","Pages displaying wikidata descriptions as a fallback via Module:Annotated link", "Commons category link from Wikidata","Big data","Data management","Business intelligence terms","Transaction processing","Technology forecasting","Data analysis","Databases"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Big_data","wgRelevantArticleId":27051151,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":200000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false, "wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q858810","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage": "ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/7/7c/Hilbert_InfoGrowth.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="900"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Hilbert_InfoGrowth.png/800px-Hilbert_InfoGrowth.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="600"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Hilbert_InfoGrowth.png/640px-Hilbert_InfoGrowth.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="480"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Big data - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Big_data"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Big_data&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Big_data"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Big_data rootpage-Big_data skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Big+data" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Big+data" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Big+data" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Big+data" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <button aria-controls="toc-Definition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definition subsection</span> </button> <ul id="toc-Definition-sublist" class="vector-toc-list"> <li id="toc-Big_data_vs._business_intelligence" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Big_data_vs._business_intelligence"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Big data vs. business intelligence</span> </div> </a> <ul id="toc-Big_data_vs._business_intelligence-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Characteristics" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Characteristics"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Characteristics</span> </div> </a> <ul id="toc-Characteristics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Architecture" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Architecture"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Architecture</span> </div> </a> <ul id="toc-Architecture-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Technologies" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Technologies"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Technologies</span> </div> </a> <ul id="toc-Technologies-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Applications</span> </div> </a> <button aria-controls="toc-Applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications subsection</span> </button> <ul id="toc-Applications-sublist" class="vector-toc-list"> <li id="toc-Government" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Government"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Government</span> </div> </a> <ul id="toc-Government-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-International_development" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#International_development"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>International development</span> </div> </a> <ul id="toc-International_development-sublist" class="vector-toc-list"> <li id="toc-Benefits" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Benefits"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2.1</span> <span>Benefits</span> </div> </a> <ul id="toc-Benefits-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Challenges" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Challenges"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2.2</span> <span>Challenges</span> </div> </a> <ul id="toc-Challenges-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Finance" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Finance"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Finance</span> </div> </a> <ul id="toc-Finance-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Healthcare" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Healthcare"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Healthcare</span> </div> </a> <ul id="toc-Healthcare-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Education" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Education"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5</span> <span>Education</span> </div> </a> <ul id="toc-Education-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Media" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Media"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.6</span> <span>Media</span> </div> </a> <ul id="toc-Media-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Insurance" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Insurance"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.7</span> <span>Insurance</span> </div> </a> <ul id="toc-Insurance-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Internet_of_things_(IoT)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Internet_of_things_(IoT)"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.8</span> <span>Internet of things (IoT)</span> </div> </a> <ul id="toc-Internet_of_things_(IoT)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Information_technology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Information_technology"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.9</span> <span>Information technology</span> </div> </a> <ul id="toc-Information_technology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Survey_science" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Survey_science"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.10</span> <span>Survey science</span> </div> </a> <ul id="toc-Survey_science-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Marketing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Marketing"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.11</span> <span>Marketing</span> </div> </a> <ul id="toc-Marketing-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Case_studies" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Case_studies"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Case studies</span> </div> </a> <button aria-controls="toc-Case_studies-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Case studies subsection</span> </button> <ul id="toc-Case_studies-sublist" class="vector-toc-list"> <li id="toc-Government_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Government_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Government</span> </div> </a> <ul id="toc-Government_2-sublist" class="vector-toc-list"> <li id="toc-China" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#China"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.1</span> <span>China</span> </div> </a> <ul id="toc-China-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-India" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#India"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.2</span> <span>India</span> </div> </a> <ul id="toc-India-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Israel" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Israel"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.3</span> <span>Israel</span> </div> </a> <ul id="toc-Israel-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-United_Kingdom" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#United_Kingdom"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.4</span> <span>United Kingdom</span> </div> </a> <ul id="toc-United_Kingdom-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-United_States" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#United_States"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.5</span> <span>United States</span> </div> </a> <ul id="toc-United_States-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Retail" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Retail"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Retail</span> </div> </a> <ul id="toc-Retail-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Science" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Science"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Science</span> </div> </a> <ul id="toc-Science-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sports" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sports"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Sports</span> </div> </a> <ul id="toc-Sports-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Technology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Technology"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.5</span> <span>Technology</span> </div> </a> <ul id="toc-Technology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-COVID-19" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#COVID-19"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.6</span> <span>COVID-19</span> </div> </a> <ul id="toc-COVID-19-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Research_activities" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Research_activities"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Research activities</span> </div> </a> <button aria-controls="toc-Research_activities-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Research activities subsection</span> </button> <ul id="toc-Research_activities-sublist" class="vector-toc-list"> <li id="toc-Sampling_big_data" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sampling_big_data"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Sampling big data</span> </div> </a> <ul id="toc-Sampling_big_data-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Critique" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Critique"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Critique</span> </div> </a> <button aria-controls="toc-Critique-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Critique subsection</span> </button> <ul id="toc-Critique-sublist" class="vector-toc-list"> <li id="toc-Critiques_of_the_big_data_paradigm" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Critiques_of_the_big_data_paradigm"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Critiques of the big data paradigm</span> </div> </a> <ul id="toc-Critiques_of_the_big_data_paradigm-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Critiques_of_the_&quot;V&quot;_model" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Critiques_of_the_&quot;V&quot;_model"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Critiques of the "V" model</span> </div> </a> <ul id="toc-Critiques_of_the_&quot;V&quot;_model-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Critiques_of_novelty" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Critiques_of_novelty"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3</span> <span>Critiques of novelty</span> </div> </a> <ul id="toc-Critiques_of_novelty-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Critiques_of_big_data_execution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Critiques_of_big_data_execution"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.4</span> <span>Critiques of big data execution</span> </div> </a> <ul id="toc-Critiques_of_big_data_execution-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Critiques_of_big_data_policing_and_surveillance" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Critiques_of_big_data_policing_and_surveillance"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.5</span> <span>Critiques of big data policing and surveillance</span> </div> </a> <ul id="toc-Critiques_of_big_data_policing_and_surveillance-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliography" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Bibliography"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Bibliography</span> </div> </a> <ul id="toc-Bibliography-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Big data</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 62 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-62" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">62 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A8%D9%8A%D8%A7%D9%86%D8%A7%D8%AA_%D8%B6%D8%AE%D9%85%D8%A9" title="بيانات ضخمة – Arabic" lang="ar" hreflang="ar" data-title="بيانات ضخمة" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%AC%E0%A6%BF%E0%A6%97_%E0%A6%A1%E0%A6%BE%E0%A6%9F%E0%A6%BE" title="বিগ ডাটা – Assamese" lang="as" hreflang="as" data-title="বিগ ডাটা" data-language-autonym="অসমীয়া" data-language-local-name="Assamese" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/B%C3%B6y%C3%BCk_veril%C9%99nl%C9%99r" title="Böyük verilənlər – Azerbaijani" lang="az" hreflang="az" data-title="Böyük verilənlər" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AC%E0%A6%A1%E0%A6%BC_%E0%A6%89%E0%A6%AA%E0%A6%BE%E0%A6%A4%E0%A7%8D%E0%A6%A4" title="বড় উপাত্ত – Bangla" lang="bn" hreflang="bn" data-title="বড় উপাত্ত" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%92%D1%8F%D0%BB%D1%96%D0%BA%D1%96%D1%8F_%D0%B4%D0%B0%D0%BD%D1%8B%D1%8F" title="Вялікія даныя – Belarusian" lang="be" hreflang="be" data-title="Вялікія даныя" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/Big_data" title="Big data – Bulgarian" lang="bg" hreflang="bg" data-title="Big data" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Velika_koli%C4%8Dina_podataka" title="Velika količina podataka – Bosnian" lang="bs" hreflang="bs" data-title="Velika količina podataka" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Dades_massives" title="Dades massives – Catalan" lang="ca" hreflang="ca" data-title="Dades massives" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Velk%C3%A1_data" title="Velká data – Czech" lang="cs" hreflang="cs" data-title="Velká data" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Data_mawr" title="Data mawr – Welsh" lang="cy" hreflang="cy" data-title="Data mawr" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Big_data" title="Big data – Danish" lang="da" hreflang="da" data-title="Big data" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Big_Data" title="Big Data – German" lang="de" hreflang="de" data-title="Big Data" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Suurandmed" title="Suurandmed – Estonian" lang="et" hreflang="et" data-title="Suurandmed" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9C%CE%B5%CE%B3%CE%AC%CE%BB%CE%B1_%CE%B4%CE%B5%CE%B4%CE%BF%CE%BC%CE%AD%CE%BD%CE%B1" title="Μεγάλα δεδομένα – Greek" lang="el" hreflang="el" data-title="Μεγάλα δεδομένα" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Macrodatos" title="Macrodatos – Spanish" lang="es" hreflang="es" data-title="Macrodatos" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Datumarego" title="Datumarego – Esperanto" lang="eo" hreflang="eo" data-title="Datumarego" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Datu_handiak" title="Datu handiak – Basque" lang="eu" hreflang="eu" data-title="Datu handiak" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%DA%A9%D9%84%D8%A7%D9%86%E2%80%8C%D8%AF%D8%A7%D8%AF%D9%87" title="کلان‌داده – Persian" lang="fa" hreflang="fa" data-title="کلان‌داده" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Big_data" title="Big data – French" lang="fr" hreflang="fr" data-title="Big data" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Big_data" title="Big data – Galician" lang="gl" hreflang="gl" data-title="Big data" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%B9%85_%EB%8D%B0%EC%9D%B4%ED%84%B0" title="빅 데이터 – Korean" lang="ko" hreflang="ko" data-title="빅 데이터" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%84%D5%A5%D5%AE_%D5%BF%D5%BE%D5%B5%D5%A1%D5%AC%D5%B6%D5%A5%D6%80" title="Մեծ տվյալներ – Armenian" lang="hy" hreflang="hy" data-title="Մեծ տվյալներ" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AC%E0%A5%83%E0%A4%B9%E0%A4%A4%E0%A5%8D_%E0%A4%86%E0%A4%81%E0%A4%95%E0%A4%A1%E0%A4%BC%E0%A4%BE" title="बृहत् आँकड़ा – Hindi" lang="hi" hreflang="hi" data-title="बृहत् आँकड़ा" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Velika_koli%C4%8Dina_podataka" title="Velika količina podataka – Croatian" lang="hr" hreflang="hr" data-title="Velika količina podataka" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Mahadata" title="Mahadata – Indonesian" lang="id" hreflang="id" data-title="Mahadata" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Gagnagn%C3%B3tt" title="Gagnagnótt – Icelandic" lang="is" hreflang="is" data-title="Gagnagnótt" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Big_data" title="Big data – Italian" lang="it" hreflang="it" data-title="Big data" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/Big_data" title="Big data – Hebrew" lang="he" hreflang="he" data-title="Big data" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D2%AE%D0%BB%D0%BA%D0%B5%D0%BD_%D0%B4%D0%B5%D1%80%D0%B5%D0%BA%D1%82%D0%B5%D1%80" title="Үлкен деректер – Kazakh" lang="kk" hreflang="kk" data-title="Үлкен деректер" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Lielie_dati" title="Lielie dati – Latvian" lang="lv" hreflang="lv" data-title="Lielie dati" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Didieji_duomenys" title="Didieji duomenys – Lithuanian" lang="lt" hreflang="lt" data-title="Didieji duomenys" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Big_data" title="Big data – Hungarian" lang="hu" hreflang="hu" data-title="Big data" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%AC%E0%B4%BF%E0%B4%97%E0%B5%8D_%E0%B4%A1%E0%B4%BE%E0%B4%B1%E0%B5%8D%E0%B4%B1" title="ബിഗ് ഡാറ്റ – Malayalam" lang="ml" hreflang="ml" data-title="ബിഗ് ഡാറ്റ" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Data_besar" title="Data besar – Malay" lang="ms" hreflang="ms" data-title="Data besar" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%98%D1%85_%D3%A9%D0%B3%D3%A9%D0%B3%D0%B4%D3%A9%D0%BB" title="Их өгөгдөл – Mongolian" lang="mn" hreflang="mn" data-title="Их өгөгдөл" data-language-autonym="Монгол" data-language-local-name="Mongolian" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Big_data" title="Big data – Dutch" lang="nl" hreflang="nl" data-title="Big data" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%93%E3%83%83%E3%82%B0%E3%83%87%E3%83%BC%E3%82%BF" title="ビッグデータ – Japanese" lang="ja" hreflang="ja" data-title="ビッグデータ" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Stordata" title="Stordata – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Stordata" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Katta_hajmli_ma%CA%BClumot" title="Katta hajmli maʼlumot – Uzbek" lang="uz" hreflang="uz" data-title="Katta hajmli maʼlumot" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Big_data" title="Big data – Polish" lang="pl" hreflang="pl" data-title="Big data" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Big_data" title="Big data – Portuguese" lang="pt" hreflang="pt" data-title="Big data" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Big_data" title="Big data – Romanian" lang="ro" hreflang="ro" data-title="Big data" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-qu mw-list-item"><a href="https://qu.wikipedia.org/wiki/Hatuchaq_willaku" title="Hatuchaq willaku – Quechua" lang="qu" hreflang="qu" data-title="Hatuchaq willaku" data-language-autonym="Runa Simi" data-language-local-name="Quechua" class="interlanguage-link-target"><span>Runa Simi</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%91%D0%BE%D0%BB%D1%8C%D1%88%D0%B8%D0%B5_%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5" title="Большие данные – Russian" lang="ru" hreflang="ru" data-title="Большие данные" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B7%80%E0%B7%92%E0%B7%83%E0%B6%BD%E0%B7%8A_%E0%B6%AF%E0%B6%AD%E0%B7%8A%E0%B6%AD_%E0%B6%9A%E0%B6%A7%E0%B7%8A%E0%B6%A7%E0%B6%BD" title="විසල් දත්ත කට්ටල – Sinhala" lang="si" hreflang="si" data-title="විසල් දත්ත කට්ටල" data-language-autonym="සිංහල" data-language-local-name="Sinhala" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Big_data" title="Big data – Simple English" lang="en-simple" hreflang="en-simple" data-title="Big data" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Velepodatki" title="Velepodatki – Slovenian" lang="sl" hreflang="sl" data-title="Velepodatki" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%B2%D9%84%D8%AF%D8%B1%D8%A7%D9%88%DB%95" title="زلدراوە – Central Kurdish" lang="ckb" hreflang="ckb" data-title="زلدراوە" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/Big_data" title="Big data – Serbian" lang="sr" hreflang="sr" data-title="Big data" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Big_data" title="Big data – Finnish" lang="fi" hreflang="fi" data-title="Big data" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Big_data" title="Big data – Swedish" lang="sv" hreflang="sv" data-title="Big data" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AA%E0%AF%86%E0%AE%B0%E0%AF%81%E0%AE%A8%E0%AF%8D%E0%AE%A4%E0%AE%B0%E0%AE%B5%E0%AF%81%E0%AE%95%E0%AE%B3%E0%AF%8D" title="பெருந்தரவுகள் – Tamil" lang="ta" hreflang="ta" data-title="பெருந்தரவுகள்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/Big_data" title="Big data – Tatar" lang="tt" hreflang="tt" data-title="Big data" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%AC%E0%B0%BF%E0%B0%97%E0%B1%8D_%E0%B0%A1%E0%B1%87%E0%B0%9F%E0%B0%BE" title="బిగ్ డేటా – Telugu" lang="te" hreflang="te" data-title="బిగ్ డేటా" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%82%E0%B9%89%E0%B8%AD%E0%B8%A1%E0%B8%B9%E0%B8%A5%E0%B8%A1%E0%B8%AB%E0%B8%B1%E0%B8%95" title="ข้อมูลมหัต – Thai" lang="th" hreflang="th" data-title="ข้อมูลมหัต" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/B%C3%BCy%C3%BCk_veri" title="Büyük veri – Turkish" lang="tr" hreflang="tr" data-title="Büyük veri" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%92%D0%B5%D0%BB%D0%B8%D0%BA%D1%96_%D0%B4%D0%B0%D0%BD%D1%96" title="Великі дані – Ukrainian" lang="uk" hreflang="uk" data-title="Великі дані" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%A8%DA%AF_%DA%88%DB%8C%D9%B9%D8%A7" title="بگ ڈیٹا – Urdu" lang="ur" hreflang="ur" data-title="بگ ڈیٹا" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/D%E1%BB%AF_li%E1%BB%87u_l%E1%BB%9Bn" title="Dữ liệu lớn – Vietnamese" lang="vi" hreflang="vi" data-title="Dữ liệu lớn" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%A4%A7%E6%95%B0%E6%8D%AE" title="大数据 – Wu" lang="wuu" hreflang="wuu" data-title="大数据" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%A4%A7%E6%95%B8%E6%93%9A" title="大數據 – Cantonese" lang="yue" hreflang="yue" data-title="大數據" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%A4%A7%E6%95%B8%E6%93%9A" title="大數據 – Chinese" lang="zh" hreflang="zh" data-title="大數據" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q858810#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Big_data" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Big_data" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Big_data"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Big_data&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Big_data&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Big_data"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Big_data&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Big_data&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Big_data" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Big_data" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Big_data&amp;oldid=1258765268" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Big_data&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Big_data&amp;id=1258765268&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBig_data"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBig_data"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Big_data&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Big_data&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Big_data" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiversity mw-list-item"><a href="https://en.wikiversity.org/wiki/Big_Data" hreflang="en"><span>Wikiversity</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q858810" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Extremely large or complex datasets</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about large collections of data. For the band, see <a href="/wiki/Big_Data_(band)" title="Big Data (band)">Big Data (band)</a>. For the practice of buying and selling of personal and consumer data, see <a href="/wiki/Surveillance_capitalism" title="Surveillance capitalism">Surveillance capitalism</a>.</div> <p class="mw-empty-elt"> </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Hilbert_InfoGrowth.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Hilbert_InfoGrowth.png/400px-Hilbert_InfoGrowth.png" decoding="async" width="400" height="300" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Hilbert_InfoGrowth.png/600px-Hilbert_InfoGrowth.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Hilbert_InfoGrowth.png/800px-Hilbert_InfoGrowth.png 2x" data-file-width="960" data-file-height="720" /></a><figcaption>Non-linear growth of digital global information-storage capacity and the waning of analog storage<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Manual_of_Style/Dates_and_numbers#Chronological_items" title="Wikipedia:Manual of Style/Dates and numbers"><span title="The date of the event predicted near this tag has passed. (June 2024)">needs update</span></a></i>&#93;</sup></figcaption></figure> <p><b>Big data</b> primarily refers to <a href="/wiki/Data_set" title="Data set">data sets</a> that are too large or complex to be dealt with by traditional <a href="/wiki/Data_processing" title="Data processing">data-processing</a> <a href="/wiki/Application_software" title="Application software">software</a>. Data with many entries (rows) offer greater <a href="/wiki/Statistical_power" class="mw-redirect" title="Statistical power">statistical power</a>, while data with higher complexity (more attributes or columns) may lead to a higher <a href="/wiki/False_discovery_rate" title="False discovery rate">false discovery rate</a>.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>Big data analysis challenges include <a href="/wiki/Automatic_identification_and_data_capture" title="Automatic identification and data capture">capturing data</a>, <a href="/wiki/Computer_data_storage" title="Computer data storage">data storage</a>, <a href="/wiki/Data_analysis" title="Data analysis">data analysis</a>, search, <a href="/wiki/Data_sharing" title="Data sharing">sharing</a>, <a href="/wiki/Data_transmission" class="mw-redirect" title="Data transmission">transfer</a>, <a href="/wiki/Data_visualization" class="mw-redirect" title="Data visualization">visualization</a>, <a href="/wiki/Query_language" title="Query language">querying</a>, updating, <a href="/wiki/Information_privacy" title="Information privacy">information privacy</a>, and data source. Big data was originally associated with three key concepts: <i>volume</i>, <i>variety</i>, and <i>velocity</i>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> The analysis of big data presents challenges in sampling, and thus previously allowing for only observations and sampling. Thus a fourth concept, <i>veracity,</i> refers to the quality or insightfulness of the data.<sup id="cite_ref-:0_4-0" class="reference"><a href="#cite_note-:0-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> Without sufficient investment in expertise for big data veracity, the volume and variety of data can produce costs and risks that exceed an organization's capacity to create and capture <i>value</i> from big data<i>.</i><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>Current usage of the term <i>big data</i> tends to refer to the use of <a href="/wiki/Predictive_analytics" title="Predictive analytics">predictive analytics</a>, <a href="/wiki/User_behavior_analytics" title="User behavior analytics">user behavior analytics</a>, or certain other advanced data analytics methods that extract <a href="/wiki/Data_valuation" title="Data valuation">value</a> from big data, and seldom to a particular size of data set. "There is little doubt that the quantities of data now available are indeed large, but that's not the most relevant characteristic of this new data ecosystem."<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> Analysis of data sets can find new correlations to "spot business trends, prevent diseases, combat crime and so on".<sup id="cite_ref-Economist_7-0" class="reference"><a href="#cite_note-Economist-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> Scientists, business executives, medical practitioners, advertising and <a href="/wiki/Government_database" title="Government database">governments</a> alike regularly meet difficulties with large data-sets in areas including <a href="/wiki/Web_search_engine" class="mw-redirect" title="Web search engine">Internet searches</a>, <a href="/wiki/Fintech" title="Fintech">fintech</a>, healthcare analytics, geographic information systems, <a href="/wiki/Urban_informatics" title="Urban informatics">urban informatics</a>, and <a href="/wiki/Business_informatics" title="Business informatics">business informatics</a>. Scientists encounter limitations in <a href="/wiki/E-Science" title="E-Science">e-Science</a> work, including <a href="/wiki/Meteorology" title="Meteorology">meteorology</a>, <a href="/wiki/Genomics" title="Genomics">genomics</a>,<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Connectomics" title="Connectomics">connectomics</a>, complex physics simulations, biology, and environmental research.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>The size and number of available data sets have grown rapidly as data is collected by devices such as <a href="/wiki/Mobile_device" title="Mobile device">mobile devices</a>, cheap and numerous information-sensing <a href="/wiki/Internet_of_things" title="Internet of things">Internet of things</a> devices, aerial (<a href="/wiki/Remote_sensing" title="Remote sensing">remote sensing</a>) equipment, software logs, <a href="/wiki/Digital_camera" title="Digital camera">cameras</a>, microphones, <a href="/wiki/Radio-frequency_identification" title="Radio-frequency identification">radio-frequency identification</a> (RFID) readers and <a href="/wiki/Wireless_sensor_networks" class="mw-redirect" title="Wireless sensor networks">wireless sensor networks</a>.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> The world's technological per-capita capacity to store information has roughly doubled every 40 months since the 1980s;<sup id="cite_ref-martinhilbert.net_12-0" class="reference"><a href="#cite_note-martinhilbert.net-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> as of 2012<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Big_data&amp;action=edit">&#91;update&#93;</a></sup>, every day 2.5 <a href="/wiki/Exabyte" class="mw-redirect" title="Exabyte">exabytes</a> (2.17×2<sup>60</sup> bytes) of data are generated.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> Based on an <a href="/wiki/International_Data_Corporation" class="mw-redirect" title="International Data Corporation">IDC</a> report prediction, the global data volume was predicted to grow exponentially from 4.4 <a href="/wiki/Zettabyte" class="mw-redirect" title="Zettabyte">zettabytes</a> to 44 zettabytes between 2013 and 2020. By 2025, IDC predicts there will be 163 zettabytes of data.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> According to IDC, global spending on big data and business analytics (BDA) solutions is estimated to reach $215.7 billion in 2021.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> While <a href="/wiki/Statista" title="Statista">Statista</a> report, the global big data market is forecasted to grow to $103 billion by 2027.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> In 2011 <a href="/wiki/McKinsey_%26_Company" title="McKinsey &amp; Company">McKinsey &amp; Company</a> reported, if US healthcare were to use big data creatively and effectively to drive efficiency and quality, the sector could create more than $300 billion in value every year.<sup id="cite_ref-McKinsey2011_18-0" class="reference"><a href="#cite_note-McKinsey2011-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> In the developed economies of Europe, government administrators could save more than €100 billion ($149 billion) in operational efficiency improvements alone by using big data.<sup id="cite_ref-McKinsey2011_18-1" class="reference"><a href="#cite_note-McKinsey2011-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> And users of services enabled by personal-location data could capture $600 billion in consumer surplus.<sup id="cite_ref-McKinsey2011_18-2" class="reference"><a href="#cite_note-McKinsey2011-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> One question for large enterprises is determining who should own big-data initiatives that affect the entire organization.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Relational_database_management_system" class="mw-redirect" title="Relational database management system">Relational database management systems</a> and desktop statistical software packages used to visualize data often have difficulty processing and analyzing big data. The processing and analysis of big data may require "massively parallel software running on tens, hundreds, or even thousands of servers".<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> What qualifies as "big data" varies depending on the capabilities of those analyzing it and their tools. Furthermore, expanding capabilities make big data a moving target. "For some organizations, facing hundreds of <a href="/wiki/Gigabyte" title="Gigabyte">gigabytes</a> of data for the first time may trigger a need to reconsider data management options. For others, it may take tens or hundreds of terabytes before data size becomes a significant consideration."<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The term <i>big data</i> has been in use since the 1990s, with some giving credit to <a href="/wiki/John_Mashey" title="John Mashey">John Mashey</a> for popularizing the term.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> Big data usually includes data sets with sizes beyond the ability of commonly used software tools to <a href="/wiki/Data_acquisition" title="Data acquisition">capture</a>, <a href="/wiki/Data_curation" title="Data curation">curate</a>, manage, and process data within a tolerable elapsed time.<sup id="cite_ref-FOOTNOTESnijdersMatzatReips2012_24-0" class="reference"><a href="#cite_note-FOOTNOTESnijdersMatzatReips2012-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (December 2023)">page&#160;needed</span></a></i>&#93;</sup> Big data philosophy encompasses unstructured, semi-structured and structured data; however, the main focus is on unstructured data.<sup id="cite_ref-Springer_2017_25-0" class="reference"><a href="#cite_note-Springer_2017-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> Big data "size" is a constantly moving target; as of 2012<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Big_data&amp;action=edit">&#91;update&#93;</a></sup> ranging from a few dozen terabytes to many <a href="/wiki/Zettabyte" class="mw-redirect" title="Zettabyte">zettabytes</a> of data.<sup id="cite_ref-Everts_26-0" class="reference"><a href="#cite_note-Everts-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> Big data requires a set of techniques and technologies with new forms of <a href="/wiki/Data_integration" title="Data integration">integration</a> to reveal insights from <a href="/wiki/Data_set" title="Data set">data-sets</a> that are diverse, complex, and of a massive scale.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> </p><p>"Volume", "variety", "velocity", and various other "Vs" are added by some organizations to describe it, a revision challenged by some industry authorities.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> The Vs of big data were often referred to as the "three Vs", "four Vs", and "five Vs". They represented the qualities of big data in volume, variety, velocity, veracity, and value.<sup id="cite_ref-:0_4-1" class="reference"><a href="#cite_note-:0-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> Variability is often included as an additional quality of big data. </p><p>A 2018 definition states "Big data is where <a href="/wiki/Parallel_computing" title="Parallel computing">parallel computing</a> tools are needed to handle data", and notes, "This represents a distinct and clearly defined change in the computer science used, via parallel programming theories, and losses of some of the guarantees and capabilities made by <a href="/wiki/Relational_database" title="Relational database">Codd's relational model</a>."<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> </p><p>In a comparative study of big datasets, <a href="/wiki/Rob_Kitchin" title="Rob Kitchin">Kitchin</a> and McArdle found that none of the commonly considered characteristics of big data appear consistently across all of the analyzed cases.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> For this reason, other studies identified the redefinition of power dynamics in knowledge discovery as the defining trait.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> Instead of focusing on the intrinsic characteristics of big data, this alternative perspective pushes forward a relational understanding of the object claiming that what matters is the way in which data is collected, stored, made available and analyzed. </p> <div class="mw-heading mw-heading3"><h3 id="Big_data_vs._business_intelligence">Big data vs. business intelligence</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=2" title="Edit section: Big data vs. business intelligence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The growing maturity of the concept more starkly delineates the difference between "big data" and "<a href="/wiki/Business_intelligence" title="Business intelligence">business intelligence</a>":<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li>Business intelligence uses applied mathematics tools and <a href="/wiki/Descriptive_statistics" title="Descriptive statistics">descriptive statistics</a> with data with high information density to measure things, detect trends, etc.</li> <li>Big data uses mathematical analysis, optimization, <a href="/wiki/Inductive_statistics" class="mw-redirect" title="Inductive statistics">inductive statistics</a>, and concepts from <a href="/wiki/Nonlinear_system_identification" title="Nonlinear system identification">nonlinear system identification</a><sup id="cite_ref-SAB1_33-0" class="reference"><a href="#cite_note-SAB1-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> to infer laws (regressions, nonlinear relationships, and causal effects) from large sets of data with low information density<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> to reveal relationships and dependencies, or to perform predictions of outcomes and behaviors.<sup id="cite_ref-SAB1_33-1" class="reference"><a href="#cite_note-SAB1-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:RS#Questionable_sources" class="mw-redirect" title="Wikipedia:RS"><span title="The material in the vicinity of this tag may rely on a promotional source. (December 2018)">promotional source?</span></a></i>&#93;</sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="Characteristics">Characteristics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=3" title="Edit section: Characteristics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Big_Data.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Big_Data.png/220px-Big_Data.png" decoding="async" width="220" height="152" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Big_Data.png/330px-Big_Data.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Big_Data.png/440px-Big_Data.png 2x" data-file-width="612" data-file-height="422" /></a><figcaption>This image shows the growth of big data's primary characteristics of volume, velocity, and variety.</figcaption></figure> <p>Big data can be described by the following characteristics: </p> <dl><dt>Volume</dt> <dd>The quantity of generated and stored data. The size of the data determines the value and potential insight, and whether it can be considered big data or not. The size of big data is usually larger than terabytes and petabytes.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <dl><dt>Variety</dt> <dd>The type and nature of the data. Earlier technologies like RDBMSs were capable to handle structured data efficiently and effectively. However, the change in type and nature from structured to semi-structured or unstructured challenged the existing tools and technologies. Big data technologies evolved with the prime intention to capture, store, and process the semi-structured and unstructured (variety) data generated with high speed (velocity), and huge in size (volume). Later, these tools and technologies were explored and used for handling structured data also but preferable for storage. Eventually, the processing of structured data was still kept as optional, either using big data or traditional RDBMSs. This helps in analyzing data towards effective usage of the hidden insights exposed from the data collected via social media, log files, sensors, etc. Big data draws from text, images, audio, video; plus it completes missing pieces through <a href="/wiki/Data_fusion" title="Data fusion">data fusion</a>.</dd></dl> <dl><dt>Velocity</dt> <dd>The speed at which the data is generated and processed to meet the demands and challenges that lie in the path of growth and development. Big data is often available in real-time. Compared to <a href="/wiki/Small_data" title="Small data">small data</a>, big data is produced more continually. Two kinds of velocity related to big data are the frequency of generation and the frequency of handling, recording, and publishing.<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <dl><dt>Veracity</dt> <dd>The truthfulness or reliability of the data, which refers to the data quality and the data value.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> Big data must not only be large in size, but also must be reliable in order to achieve value in the analysis of it. The <a href="/wiki/Data_quality" title="Data quality">data quality</a> of captured data can vary greatly, affecting an accurate analysis.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <dl><dt>Value</dt> <dd>The worth in information that can be achieved by the processing and analysis of large datasets. Value also can be measured by an assessment of the other qualities of big data.<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> Value may also represent the profitability of information that is retrieved from the analysis of big data.</dd></dl> <dl><dt>Variability</dt> <dd>The characteristic of the changing formats, structure, or sources of big data. Big data can include structured, unstructured, or combinations of structured and unstructured data. Big data analysis may integrate raw data from multiple sources. The processing of raw data may also involve transformations of unstructured data to structured data.</dd></dl> <p>Other possible characteristics of big data are:<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dt>Exhaustive</dt> <dd>Whether the entire system (i.e., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc6e1f880981346a604257ebcacdef24c0aca2d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\textstyle n}"></span>=all) is captured or recorded or not. Big data may or may not include all the available data from sources.</dd></dl> <dl><dt>Fine-grained and uniquely lexical</dt> <dd>Respectively, the proportion of specific data of each element per element collected and if the element and its characteristics are properly indexed or identified.</dd></dl> <dl><dt>Relational</dt> <dd>If the data collected contains common fields that would enable a conjoining, or meta-analysis, of different data sets.</dd></dl> <dl><dt>Extensional</dt> <dd>If new fields in each element of the data collected can be added or changed easily.</dd></dl> <dl><dt>Scalability</dt> <dd>If the size of the big data storage system can expand rapidly.</dd></dl> <div class="mw-heading mw-heading2"><h2 id="Architecture">Architecture</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=4" title="Edit section: Architecture"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Big data repositories have existed in many forms, often built by corporations with a special need. Commercial vendors historically offered parallel database management systems for big data beginning in the 1990s. For many years, WinterCorp published the largest database report.<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:RS#Questionable_sources" class="mw-redirect" title="Wikipedia:RS"><span title="The material in the vicinity of this tag may rely on a promotional source. (December 2018)">promotional source?</span></a></i>&#93;</sup> </p><p><a href="/wiki/Teradata" title="Teradata">Teradata</a> Corporation in 1984 marketed the parallel processing <a href="/wiki/DBC_1012" title="DBC 1012">DBC 1012</a> system. Teradata systems were the first to store and analyze 1 terabyte of data in 1992. Hard disk drives were 2.5 GB in 1991 so the definition of big data continuously evolves. Teradata installed the first petabyte class RDBMS based system in 2007. As of 2017<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Big_data&amp;action=edit">&#91;update&#93;</a></sup>, there are a few dozen petabyte class Teradata relational databases installed, the largest of which exceeds 50 PB. Systems up until 2008 were 100% structured relational data. Since then, Teradata has added semi structured data types including <a href="/wiki/XML" title="XML">XML</a>, <a href="/wiki/JSON" title="JSON">JSON</a>, and <a href="/wiki/Apache_Avro" title="Apache Avro">Avro</a>. </p><p>In 2000, Seisint Inc. (now <a href="/wiki/LexisNexis_Risk_Solutions" title="LexisNexis Risk Solutions">LexisNexis Risk Solutions</a>) developed a <a href="/wiki/C%2B%2B" title="C++">C++</a>-based distributed platform for data processing and querying known as the <a href="/wiki/HPCC_Systems" class="mw-redirect" title="HPCC Systems">HPCC Systems</a> platform. This system automatically partitions, distributes, stores and delivers structured, semi-structured, and unstructured data across multiple commodity servers. Users can write data processing pipelines and queries in a declarative dataflow programming language called ECL. Data analysts working in ECL are not required to define data schemas upfront and can rather focus on the particular problem at hand, reshaping data in the best possible manner as they develop the solution. In 2004, LexisNexis acquired Seisint Inc.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> and their high-speed parallel processing platform and successfully used this platform to integrate the data systems of Choicepoint Inc. when they acquired that company in 2008.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> In 2011, the HPCC systems platform was open-sourced under the Apache v2.0 License. </p><p><a href="/wiki/CERN" title="CERN">CERN</a> and other physics experiments have collected big data sets for many decades, usually analyzed via <a href="/wiki/High-throughput_computing" title="High-throughput computing">high-throughput computing</a> rather than the map-reduce architectures usually meant by the current "big data" movement. </p><p>In 2004, <a href="/wiki/Google" title="Google">Google</a> published a paper on a process called <a href="/wiki/MapReduce" title="MapReduce">MapReduce</a> that uses a similar architecture. The MapReduce concept provides a parallel processing model, and an associated implementation was released to process huge amounts of data. With MapReduce, queries are split and distributed across parallel nodes and processed in parallel (the "map" step). The results are then gathered and delivered (the "reduce" step). The framework was very successful,<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> so others wanted to replicate the algorithm. Therefore, an <a href="/wiki/Implementation" title="Implementation">implementation</a> of the MapReduce framework was adopted by an Apache open-source project named "<a href="/wiki/Apache_Hadoop" title="Apache Hadoop">Hadoop</a>".<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Apache_Spark" title="Apache Spark">Apache Spark</a> was developed in 2012 in response to limitations in the MapReduce paradigm, as it adds <a href="/wiki/In-memory_processing" title="In-memory processing">in-memory processing</a> and the ability to set up many operations (not just map followed by reducing). </p><p><a href="/wiki/MIKE2.0_Methodology" class="mw-redirect" title="MIKE2.0 Methodology">MIKE2.0</a> is an open approach to information management that acknowledges the need for revisions due to big data implications identified in an article titled "Big Data Solution Offering".<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> The methodology addresses handling big data in terms of useful <a href="/wiki/Permutation" title="Permutation">permutations</a> of data sources, <a href="/wiki/Complexity" title="Complexity">complexity</a> in interrelationships, and difficulty in deleting (or modifying) individual records.<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> </p><p>Studies in 2012 showed that a multiple-layer architecture was one option to address the issues that big data presents. A <a href="/wiki/List_of_file_systems#Distributed_parallel_file_systems" title="List of file systems">distributed parallel</a> architecture distributes data across multiple servers; these parallel execution environments can dramatically improve data processing speeds. This type of architecture inserts data into a parallel DBMS, which implements the use of MapReduce and Hadoop frameworks. This type of framework looks to make the processing power transparent to the end-user by using a front-end application server.<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> </p><p>The <a href="/wiki/Data_lake" title="Data lake">data lake</a> allows an organization to shift its focus from centralized control to a shared model to respond to the changing dynamics of information management. This enables quick segregation of data into the data lake, thereby reducing the overhead time.<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Technologies">Technologies</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=5" title="Edit section: Technologies"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A 2011 <a href="/wiki/McKinsey_%26_Company" title="McKinsey &amp; Company">McKinsey Global Institute</a> report characterizes the main components and ecosystem of big data as follows:<sup id="cite_ref-McKinsey_52-0" class="reference"><a href="#cite_note-McKinsey-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li>Techniques for analyzing data, such as <a href="/wiki/A/B_testing" title="A/B testing">A/B testing</a>, <a href="/wiki/Machine_learning" title="Machine learning">machine learning</a>, and <a href="/wiki/Natural_language_processing" title="Natural language processing">natural language processing</a></li> <li>Big data technologies, like <a href="/wiki/Business_intelligence" title="Business intelligence">business intelligence</a>, <a href="/wiki/Cloud_computing" title="Cloud computing">cloud computing</a>, and <a href="/wiki/Database" title="Database">databases</a></li> <li>Visualization, such as charts, graphs, and other displays of the data</li></ul> <p>Multidimensional big data can also be represented as <a href="/wiki/OLAP" class="mw-redirect" title="OLAP">OLAP</a> data cubes or, mathematically, <a href="/wiki/Tensor" title="Tensor">tensors</a>. <a href="/wiki/Array_DBMS" title="Array DBMS">Array database systems</a> have set out to provide storage and high-level query support on this data type. Additional technologies being applied to big data include efficient tensor-based computation,<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> such as <a href="/wiki/Multilinear_subspace_learning" title="Multilinear subspace learning">multilinear subspace learning</a>,<sup id="cite_ref-MSLsurvey_54-0" class="reference"><a href="#cite_note-MSLsurvey-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> massively parallel-processing (<a href="/wiki/Massive_parallel_processing" class="mw-redirect" title="Massive parallel processing">MPP</a>) databases, <a href="/wiki/Search-based_application" title="Search-based application">search-based applications</a>, <a href="/wiki/Data_mining" title="Data mining">data mining</a>,<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Distributed_file_system" class="mw-redirect" title="Distributed file system">distributed file systems</a>, distributed cache (e.g., <a href="/wiki/Burst_buffer" title="Burst buffer">burst buffer</a> and <a href="/wiki/Memcached" title="Memcached">Memcached</a>), <a href="/wiki/Distributed_database" title="Distributed database">distributed databases</a>, <a href="/wiki/Cloud_computing" title="Cloud computing">cloud</a> and <a href="/wiki/Supercomputer" title="Supercomputer">HPC-based</a> infrastructure (applications, storage and computing resources),<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> and the Internet.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (September 2011)">citation needed</span></a></i>&#93;</sup> Although, many approaches and technologies have been developed, it still remains difficult to carry out machine learning with big data.<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> </p><p>Some <a href="/wiki/Massive_parallel_processing" class="mw-redirect" title="Massive parallel processing">MPP</a> relational databases have the ability to store and manage petabytes of data. Implicit is the ability to load, monitor, back up, and optimize the use of the large data tables in the <a href="/wiki/RDBMS" class="mw-redirect" title="RDBMS">RDBMS</a>.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:RS#Questionable_sources" class="mw-redirect" title="Wikipedia:RS"><span title="The material in the vicinity of this tag may rely on a promotional source. (December 2018)">promotional source?</span></a></i>&#93;</sup> </p><p><a href="/wiki/DARPA" title="DARPA">DARPA</a>'s <a href="/wiki/Topological_Data_Analysis" class="mw-redirect" title="Topological Data Analysis">Topological Data Analysis</a> program seeks the fundamental structure of massive data sets and in 2008 the technology went public with the launch of a company called "Ayasdi".<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template noprint Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Independent_sources" title="Wikipedia:Independent sources"><span title="This claim needs a reference to a independent, third-party source. (December 2018)">third-party source needed</span></a></i>&#93;</sup> </p><p>The practitioners of big data analytics processes are generally hostile to slower shared storage,<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> preferring direct-attached storage (<a href="/wiki/Direct-attached_storage" title="Direct-attached storage">DAS</a>) in its various forms from solid state drive (<a href="/wiki/SSD" class="mw-redirect" title="SSD">SSD</a>) to high capacity <a href="/wiki/Serial_ATA" class="mw-redirect" title="Serial ATA">SATA</a> disk buried inside parallel processing nodes. The perception of shared storage architectures—<a href="/wiki/Storage_area_network" title="Storage area network">storage area network</a> (SAN) and <a href="/wiki/Network-attached_storage" title="Network-attached storage">network-attached storage</a> (NAS)— is that they are relatively slow, complex, and expensive. These qualities are not consistent with big data analytics systems that thrive on system performance, commodity infrastructure, and low cost. </p><p>Real or near-real-time information delivery is one of the defining characteristics of big data analytics. Latency is therefore avoided whenever and wherever possible. Data in direct-attached memory or disk is good—data on memory or disk at the other end of an <a href="/wiki/Fiber_connector" class="mw-redirect" title="Fiber connector">FC</a> <a href="/wiki/Storage_area_network" title="Storage area network">SAN</a> connection is not. The cost of an <a href="/wiki/Storage_area_network" title="Storage area network">SAN</a> at the scale needed for analytics applications is much higher than other storage techniques. </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=6" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:2013-09-11_Bus_wrapped_with_SAP_Big_Data_parked_outside_IDF13_(9730051783).jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/2013-09-11_Bus_wrapped_with_SAP_Big_Data_parked_outside_IDF13_%289730051783%29.jpg/220px-2013-09-11_Bus_wrapped_with_SAP_Big_Data_parked_outside_IDF13_%289730051783%29.jpg" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/2013-09-11_Bus_wrapped_with_SAP_Big_Data_parked_outside_IDF13_%289730051783%29.jpg/330px-2013-09-11_Bus_wrapped_with_SAP_Big_Data_parked_outside_IDF13_%289730051783%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8d/2013-09-11_Bus_wrapped_with_SAP_Big_Data_parked_outside_IDF13_%289730051783%29.jpg/440px-2013-09-11_Bus_wrapped_with_SAP_Big_Data_parked_outside_IDF13_%289730051783%29.jpg 2x" data-file-width="2048" data-file-height="1536" /></a><figcaption>Bus wrapped with <a href="/wiki/SAP_AG" class="mw-redirect" title="SAP AG">SAP</a> big data parked outside <a href="/wiki/Intel_Developer_Forum" title="Intel Developer Forum">IDF13</a></figcaption></figure> <p>Big data has increased the demand of information management specialists so much so that <a href="/wiki/Software_AG" title="Software AG">Software AG</a>, <a href="/wiki/Oracle_Corporation" title="Oracle Corporation">Oracle Corporation</a>, <a href="/wiki/IBM" title="IBM">IBM</a>, <a href="/wiki/Microsoft" title="Microsoft">Microsoft</a>, <a href="/wiki/SAP_AG" class="mw-redirect" title="SAP AG">SAP</a>, <a href="/wiki/EMC_Corporation" class="mw-redirect" title="EMC Corporation">EMC</a>, <a href="/wiki/Hewlett-Packard" title="Hewlett-Packard">HP</a>, and <a href="/wiki/Dell" title="Dell">Dell</a> have spent more than $15&#160;billion on software firms specializing in data management and analytics. In 2010, this industry was worth more than $100&#160;billion and was growing at almost 10&#160;percent a year, about twice as fast as the software business as a whole.<sup id="cite_ref-Economist_7-1" class="reference"><a href="#cite_note-Economist-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p><p>Developed economies increasingly use data-intensive technologies. There are 4.6&#160;billion mobile-phone subscriptions worldwide, and between 1&#160;billion and 2&#160;billion people accessing the internet.<sup id="cite_ref-Economist_7-2" class="reference"><a href="#cite_note-Economist-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> Between 1990 and 2005, more than 1&#160;billion people worldwide entered the middle class, which means more people became more literate, which in turn led to information growth. The world's effective capacity to exchange information through telecommunication networks was 281 <a href="/wiki/Petabytes" class="mw-redirect" title="Petabytes">petabytes</a> in 1986, 471 <a href="/wiki/Petabytes" class="mw-redirect" title="Petabytes">petabytes</a> in 1993, 2.2 exabytes in 2000, 65 <a href="/wiki/Exabytes" class="mw-redirect" title="Exabytes">exabytes</a> in 2007<sup id="cite_ref-martinhilbert.net_12-1" class="reference"><a href="#cite_note-martinhilbert.net-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> and predictions put the amount of internet traffic at 667 exabytes annually by 2014.<sup id="cite_ref-Economist_7-3" class="reference"><a href="#cite_note-Economist-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> According to one estimate, one-third of the globally stored information is in the form of alphanumeric text and still image data,<sup id="cite_ref-HilbertContent_61-0" class="reference"><a href="#cite_note-HilbertContent-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> which is the format most useful for most big data applications. This also shows the potential of yet unused data (i.e. in the form of video and audio content). </p><p>While many vendors offer off-the-shelf products for big data, experts promote the development of in-house custom-tailored systems if the company has sufficient technical capabilities.<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Government">Government</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=7" title="Edit section: Government"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Government_by_algorithm" title="Government by algorithm">Government by algorithm</a></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_citations_needed plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Big_data" title="Special:EditPage/Big data">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>&#32;in this section. Unsourced material may be challenged and removed.<br /><small><span class="plainlinks"><i>Find sources:</i>&#160;<a rel="nofollow" class="external text" href="https://www.google.com/search?as_eq=wikipedia&amp;q=%22Big+data%22">"Big data"</a>&#160;–&#160;<a rel="nofollow" class="external text" href="https://www.google.com/search?tbm=nws&amp;q=%22Big+data%22+-wikipedia&amp;tbs=ar:1">news</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?&amp;q=%22Big+data%22&amp;tbs=bkt:s&amp;tbm=bks">newspapers</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?tbs=bks:1&amp;q=%22Big+data%22+-wikipedia">books</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://scholar.google.com/scholar?q=%22Big+data%22">scholar</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.jstor.org/action/doBasicSearch?Query=%22Big+data%22&amp;acc=on&amp;wc=on">JSTOR</a></span></small></span> <span class="date-container"><i>(<span class="date">September 2023</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>The use and adoption of big data within governmental processes allows efficiencies in terms of cost, productivity, and innovation,<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> but comes with flaws. Data analysis often requires multiple parts of government (central and local) to work in collaboration and create new and innovative processes to deliver the desired outcome. A common government organization that makes use of big data is the National Security Administration (<a href="/wiki/National_Security_Agency" title="National Security Agency">NSA</a>), which monitors the activities of the Internet constantly in search for potential patterns of suspicious or illegal activities their system may pick up. </p><p><a href="/wiki/Civil_registration_and_vital_statistics" title="Civil registration and vital statistics">Civil registration and vital statistics</a> (CRVS) collects all certificates status from birth to death. CRVS is a source of big data for governments. </p> <div class="mw-heading mw-heading3"><h3 id="International_development">International development</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=8" title="Edit section: International development"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Research on the effective usage of information and communication technologies for development (also known as "ICT4D") suggests that big data technology can make important contributions but also present unique challenges to <a href="/wiki/International_development" title="International development">international development</a>.<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> Advancements in big data analysis offer cost-effective opportunities to improve decision-making in critical development areas such as health care, employment, <a href="/wiki/Economic_productivity" class="mw-redirect" title="Economic productivity">economic productivity</a>, crime, security, and <a href="/wiki/Natural_disaster" title="Natural disaster">natural disaster</a> and resource management.<sup id="cite_ref-FOOTNOTEHilbert2016_66-0" class="reference"><a href="#cite_note-FOOTNOTEHilbert2016-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (December 2023)">page&#160;needed</span></a></i>&#93;</sup><sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> Additionally, user-generated data offers new opportunities to give the unheard a voice.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> However, longstanding challenges for developing regions such as inadequate technological infrastructure and economic and human resource scarcity exacerbate existing concerns with big data such as privacy, imperfect methodology, and interoperability issues.<sup id="cite_ref-FOOTNOTEHilbert2016_66-1" class="reference"><a href="#cite_note-FOOTNOTEHilbert2016-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (December 2023)">page&#160;needed</span></a></i>&#93;</sup> The challenge of "big data for development"<sup id="cite_ref-FOOTNOTEHilbert2016_66-2" class="reference"><a href="#cite_note-FOOTNOTEHilbert2016-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (December 2023)">page&#160;needed</span></a></i>&#93;</sup> is currently evolving toward the application of this data through machine learning, known as "artificial intelligence for development (AI4D).<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Benefits">Benefits</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=9" title="Edit section: Benefits"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A major practical application of big data for development has been "fighting poverty with data".<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> In 2015, Blumenstock and colleagues estimated predicted poverty and wealth from mobile phone metadata<sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup> and in 2016 Jean and colleagues combined satellite imagery and machine learning to predict poverty.<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> Using digital trace data to study the labor market and the digital economy in Latin America, <a href="/wiki/Martin_Hilbert" title="Martin Hilbert">Hilbert</a> and colleagues <sup id="cite_ref-HilbertJobMarket_74-0" class="reference"><a href="#cite_note-HilbertJobMarket-74"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup> argue that digital trace data has several benefits such as: </p> <ul><li>Thematic coverage: including areas that were previously difficult or impossible to measure</li> <li>Geographical coverage: providing sizable and comparable data for almost all countries, including many small countries that usually are not included in international inventories</li> <li>Level of detail: providing fine-grained data with many interrelated variables, and new aspects, like network connections</li> <li>Timeliness and timeseries: graphs can be produced within days of being collected</li></ul> <div class="mw-heading mw-heading4"><h4 id="Challenges">Challenges</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=10" title="Edit section: Challenges"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>At the same time, working with digital trace data instead of traditional survey data does not eliminate the traditional challenges involved when working in the field of international quantitative analysis. Priorities change, but the basic discussions remain the same. Among the main challenges are: </p> <ul><li>Representativeness. While traditional development statistics is mainly concerned with the representativeness of random survey samples, digital trace data is never a random sample.<sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup></li> <li>Generalizability. While observational data always represents this source very well, it only represents what it represents, and nothing more. While it is tempting to generalize from specific observations of one platform to broader settings, this is often very deceptive.</li> <li>Harmonization. Digital trace data still requires international harmonization of indicators. It adds the challenge of so-called "data-fusion", the harmonization of different sources.</li> <li>Data overload. Analysts and institutions are not used to effectively deal with a large number of variables, which is efficiently done with interactive dashboards. Practitioners still lack a standard workflow that would allow researchers, users and policymakers to efficiently and effectively deal with data.<sup id="cite_ref-HilbertJobMarket_74-1" class="reference"><a href="#cite_note-HilbertJobMarket-74"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Finance">Finance</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=11" title="Edit section: Finance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Big Data is being rapidly adopted in Finance to 1) speed up processing and 2) deliver better, more informed inferences, both internally and to the clients of the financial institutions.<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup> The financial applications of Big Data range from investing decisions and trading (processing volumes of available price data, limit order books, economic data and more, all at the same time), portfolio management (optimizing over an increasingly large array of financial instruments, potentially selected from different asset classes), risk management (credit rating based on extended information), and any other aspect where the data inputs are large.<sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup> Big Data has also been a typical concept within the field of <a href="/wiki/Alternative_financial_service" title="Alternative financial service">alternative financial service</a>. Some of the major areas involve crowd-funding platforms and crypto currency exchanges.<sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Healthcare">Healthcare</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=12" title="Edit section: Healthcare"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Big data analytics has been used in healthcare in providing personalized medicine and <a href="/wiki/Prescriptive_analytics" title="Prescriptive analytics">prescriptive analytics</a>, clinical risk intervention and predictive analytics, waste and care variability reduction, automated external and internal reporting of patient data, standardized medical terms and patient registries.<sup id="cite_ref-ref135_80-0" class="reference"><a href="#cite_note-ref135-80"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup> Some areas of improvement are more aspirational than actually implemented. The level of data generated within <a href="/wiki/Health_system" title="Health system">healthcare systems</a> is not trivial. With the added adoption of mHealth, eHealth and wearable technologies the volume of data will continue to increase. This includes <a href="/wiki/Electronic_health_record" title="Electronic health record">electronic health record</a> data, imaging data, patient generated data, sensor data, and other forms of difficult to process data. There is now an even greater need for such environments to pay greater attention to data and information quality.<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">&#91;</span>84<span class="cite-bracket">&#93;</span></a></sup> "Big data very often means '<a href="/wiki/Dirty_data" title="Dirty data">dirty data</a>' and the fraction of data inaccuracies increases with data volume growth." Human inspection at the big data scale is impossible and there is a desperate need in health service for intelligent tools for accuracy and believability control and handling of information missed.<sup id="cite_ref-Mirkes2016_85-0" class="reference"><a href="#cite_note-Mirkes2016-85"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup> While extensive information in healthcare is now electronic, it fits under the big data umbrella as most is unstructured and difficult to use.<sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup> The use of big data in healthcare has raised significant ethical challenges ranging from risks for individual rights, privacy and <a href="/wiki/Autonomy" title="Autonomy">autonomy</a>, to transparency and trust.<sup id="cite_ref-87" class="reference"><a href="#cite_note-87"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup> </p><p>Big data in health research is particularly promising in terms of exploratory biomedical research, as data-driven analysis can move forward more quickly than hypothesis-driven research.<sup id="cite_ref-88" class="reference"><a href="#cite_note-88"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> Then, trends seen in data analysis can be tested in traditional, hypothesis-driven follow up biological research and eventually clinical research. </p><p>A related application sub-area, that heavily relies on big data, within the healthcare field is that of <a href="/wiki/Computer-aided_diagnosis" title="Computer-aided diagnosis">computer-aided diagnosis</a> in medicine.<sup id="cite_ref-FOOTNOTEYanaseTriantaphyllou2019_89-0" class="reference"><a href="#cite_note-FOOTNOTEYanaseTriantaphyllou2019-89"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (December 2023)">page&#160;needed</span></a></i>&#93;</sup> For instance, for <a href="/wiki/Epilepsy" title="Epilepsy">epilepsy</a> monitoring it is customary to create 5 to 10 GB of data daily.<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup> Similarly, a single uncompressed image of breast <a href="/wiki/Tomosynthesis" title="Tomosynthesis">tomosynthesis</a> averages 450 MB of data.<sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">&#91;</span>91<span class="cite-bracket">&#93;</span></a></sup> These are just a few of the many examples where <a href="/wiki/Computer-aided_diagnosis" title="Computer-aided diagnosis">computer-aided diagnosis</a> uses big data. For this reason, big data has been recognized as one of the seven key challenges that computer-aided diagnosis systems need to overcome in order to reach the next level of performance.<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">&#91;</span>92<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Education">Education</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=13" title="Edit section: Education"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/McKinsey_%26_Company" title="McKinsey &amp; Company">McKinsey Global Institute</a> study found a shortage of 1.5 million highly trained data professionals and managers<sup id="cite_ref-McKinsey_52-1" class="reference"><a href="#cite_note-McKinsey-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> and a number of universities<sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">&#91;</span>93<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template noprint noexcerpt Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:NOTRS" class="mw-redirect" title="Wikipedia:NOTRS"><span title="www.forbes.com/sites by contributors rather than staff are blogs, not reliable sources for facts. (November 2018)">better&#160;source&#160;needed</span></a></i>&#93;</sup> including <a href="/wiki/University_of_Tennessee" title="University of Tennessee">University of Tennessee</a> and <a href="/wiki/UC_Berkeley" class="mw-redirect" title="UC Berkeley">UC Berkeley</a>, have created masters programs to meet this demand. Private boot camps have also developed programs to meet that demand, including paid programs like <a href="/wiki/The_Data_Incubator" title="The Data Incubator">The Data Incubator</a> or <a href="/wiki/General_Assembly" class="mw-redirect" title="General Assembly">General Assembly</a>.<sup id="cite_ref-94" class="reference"><a href="#cite_note-94"><span class="cite-bracket">&#91;</span>94<span class="cite-bracket">&#93;</span></a></sup> In the specific field of marketing, one of the problems stressed by Wedel and Kannan<sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">&#91;</span>95<span class="cite-bracket">&#93;</span></a></sup> is that marketing has several sub domains (e.g., advertising, promotions, product development, branding) that all use different types of data. </p> <div class="mw-heading mw-heading3"><h3 id="Media">Media</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=14" title="Edit section: Media"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>To understand how the media uses big data, it is first necessary to provide some context into the mechanism used for media process. It has been suggested by Nick Couldry and Joseph Turow that practitioners in media and advertising approach big data as many actionable points of information about millions of individuals. The industry appears to be moving away from the traditional approach of using specific media environments such as newspapers, magazines, or television shows and instead taps into consumers with technologies that reach targeted people at optimal times in optimal locations. The ultimate aim is to serve or convey, a message or content that is (statistically speaking) in line with the consumer's mindset. For example, publishing environments are increasingly tailoring messages (advertisements) and content (articles) to appeal to consumers that have been exclusively gleaned through various <a href="/wiki/Data-mining" class="mw-redirect" title="Data-mining">data-mining</a> activities.<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">&#91;</span>96<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li>Targeting of consumers (for advertising by marketers)<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">&#91;</span>97<span class="cite-bracket">&#93;</span></a></sup></li> <li>Data capture</li> <li><a href="/wiki/Data_journalism" title="Data journalism">Data journalism</a>: publishers and journalists use big data tools to provide unique and innovative insights and <a href="/wiki/Infographic" title="Infographic">infographics</a>.</li></ul> <p><a href="/wiki/Channel_4" title="Channel 4">Channel 4</a>, the British <a href="/wiki/Public_service_broadcasting_in_the_United_Kingdom" title="Public service broadcasting in the United Kingdom">public-service</a> television broadcaster, is a leader in the field of big data and <a href="/wiki/Data_analysis" title="Data analysis">data analysis</a>.<sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">&#91;</span>98<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Insurance">Insurance</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=15" title="Edit section: Insurance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Health insurance providers are collecting data on <a href="/wiki/Social_determinants_of_health" title="Social determinants of health">social "determinants of health"</a> such as food and <a href="/wiki/Television_consumption" title="Television consumption">TV consumption</a>, marital status, clothing size, and purchasing habits, from which they make predictions on health costs, in order to spot health issues in their clients. It is controversial whether these predictions are currently being used for pricing.<sup id="cite_ref-99" class="reference"><a href="#cite_note-99"><span class="cite-bracket">&#91;</span>99<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Internet_of_things_(IoT)"><span id="Internet_of_things_.28IoT.29"></span>Internet of things (IoT)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=16" title="Edit section: Internet of things (IoT)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Internet_of_things" title="Internet of things">Internet of things</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Edge_computing" title="Edge computing">Edge computing</a></div> <p>Big data and the IoT work in conjunction. Data extracted from IoT devices provides a mapping of device inter-connectivity. Such mappings have been used by the media industry, companies, and governments to more accurately target their audience and increase media efficiency. The IoT is also increasingly adopted as a means of gathering sensory data, and this sensory data has been used in medical,<sup id="cite_ref-100" class="reference"><a href="#cite_note-100"><span class="cite-bracket">&#91;</span>100<span class="cite-bracket">&#93;</span></a></sup> manufacturing<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">&#91;</span>101<span class="cite-bracket">&#93;</span></a></sup> and transportation<sup id="cite_ref-BigDataIoT16_102-0" class="reference"><a href="#cite_note-BigDataIoT16-102"><span class="cite-bracket">&#91;</span>102<span class="cite-bracket">&#93;</span></a></sup> contexts. </p><p><a href="/wiki/Kevin_Ashton" title="Kevin Ashton">Kevin Ashton</a>, the digital innovation expert who is credited with coining the term,<sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">&#91;</span>103<span class="cite-bracket">&#93;</span></a></sup> defines the Internet of things in this quote: "If we had computers that knew everything there was to know about things—using data they gathered without any help from us—we would be able to track and count everything, and greatly reduce waste, loss, and cost. We would know when things needed replacing, repairing, or recalling, and whether they were fresh or past their best." </p> <div class="mw-heading mw-heading3"><h3 id="Information_technology">Information technology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=17" title="Edit section: Information technology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Especially since 2015, big data has come to prominence within <a href="/wiki/Business_operations" title="Business operations">business operations</a> as a tool to help employees work more efficiently and streamline the collection and distribution of <a href="/wiki/Information_technology" title="Information technology">information technology</a> (IT). The use of big data to resolve IT and <a href="/wiki/Data_collection" title="Data collection">data collection</a> issues within an enterprise is called <a href="/wiki/IT_operations_analytics" title="IT operations analytics">IT operations analytics</a> (ITOA).<sup id="cite_ref-ITOA1_104-0" class="reference"><a href="#cite_note-ITOA1-104"><span class="cite-bracket">&#91;</span>104<span class="cite-bracket">&#93;</span></a></sup> By applying big data principles into the concepts of <a href="/wiki/Machine_intelligence" class="mw-redirect" title="Machine intelligence">machine intelligence</a> and deep computing, IT departments can predict potential issues and prevent them.<sup id="cite_ref-ITOA1_104-1" class="reference"><a href="#cite_note-ITOA1-104"><span class="cite-bracket">&#91;</span>104<span class="cite-bracket">&#93;</span></a></sup> ITOA businesses offer platforms for <a href="/wiki/Systems_management" title="Systems management">systems management</a> that bring <a href="/wiki/Data_silos" class="mw-redirect" title="Data silos">data silos</a> together and generate insights from the whole of the system rather than from isolated pockets of data. </p> <div class="mw-heading mw-heading3"><h3 id="Survey_science">Survey science</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=18" title="Edit section: Survey science"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Compared to <a href="/wiki/Survey_methodology" title="Survey methodology">survey</a>-based data collection, big data has low cost per data point, applies analysis techniques via <a href="/wiki/Machine_learning" title="Machine learning">machine learning</a> and <a href="/wiki/Data_mining" title="Data mining">data mining</a>, and includes diverse and new data sources, e.g., registers, social media, apps, and other forms digital data. Since 2018, survey scientists have started to examine how big data and survey science can complement each other to allow researchers and practitioners to improve the production of statistics and its quality. There have been three Big Data Meets Survey Science (BigSurv) conferences in 2018, 2020 (virtual), 2023, and as of 2023<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Big_data&amp;action=edit">&#91;update&#93;</a></sup> one conference forthcoming in 2025,<sup id="cite_ref-105" class="reference"><a href="#cite_note-105"><span class="cite-bracket">&#91;</span>105<span class="cite-bracket">&#93;</span></a></sup> a special issue in the <i><a href="/wiki/Social_Science_Computer_Review" title="Social Science Computer Review">Social Science Computer Review</a></i>,<sup id="cite_ref-106" class="reference"><a href="#cite_note-106"><span class="cite-bracket">&#91;</span>106<span class="cite-bracket">&#93;</span></a></sup> a special issue in <i><a href="/wiki/Journal_of_the_Royal_Statistical_Society" title="Journal of the Royal Statistical Society">Journal of the Royal Statistical Society</a></i>,<sup id="cite_ref-107" class="reference"><a href="#cite_note-107"><span class="cite-bracket">&#91;</span>107<span class="cite-bracket">&#93;</span></a></sup> and a special issue in <a href="/wiki/European_Physical_Journal" title="European Physical Journal"><i>EP J Data Science</i></a>,<sup id="cite_ref-108" class="reference"><a href="#cite_note-108"><span class="cite-bracket">&#91;</span>108<span class="cite-bracket">&#93;</span></a></sup> and a book called <i>Big Data Meets Social Sciences</i><sup id="cite_ref-109" class="reference"><a href="#cite_note-109"><span class="cite-bracket">&#91;</span>109<span class="cite-bracket">&#93;</span></a></sup> edited by <a href="/wiki/Craig_A._Hill" title="Craig A. Hill">Craig Hill</a> and five other <a href="/wiki/List_of_fellows_of_the_American_Statistical_Association" title="List of fellows of the American Statistical Association">Fellows of the American Statistical Association</a>. In 2021, the founding members of BigSurv received the Warren J. Mitofsky Innovators Award from the <a href="/wiki/American_Association_for_Public_Opinion_Research" title="American Association for Public Opinion Research">American Association for Public Opinion Research</a>.<sup id="cite_ref-110" class="reference"><a href="#cite_note-110"><span class="cite-bracket">&#91;</span>110<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Marketing">Marketing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=19" title="Edit section: Marketing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Big data is notable in marketing due to the constant "datafication"<sup id="cite_ref-:1_111-0" class="reference"><a href="#cite_note-:1-111"><span class="cite-bracket">&#91;</span>111<span class="cite-bracket">&#93;</span></a></sup> of everyday consumers of the internet, in which all forms of data are tracked. The datafication of consumers can be defined as quantifying many of or all human behaviors for the purpose of marketing.<sup id="cite_ref-:1_111-1" class="reference"><a href="#cite_note-:1-111"><span class="cite-bracket">&#91;</span>111<span class="cite-bracket">&#93;</span></a></sup> The increasingly digital world of rapid datafication makes this idea relevant to marketing because the amount of data constantly grows exponentially. It is predicted to increase from 44 to 163 zettabytes within the span of five years.<sup id="cite_ref-112" class="reference"><a href="#cite_note-112"><span class="cite-bracket">&#91;</span>112<span class="cite-bracket">&#93;</span></a></sup> The size of big data can often be difficult to navigate for marketers.<sup id="cite_ref-113" class="reference"><a href="#cite_note-113"><span class="cite-bracket">&#91;</span>113<span class="cite-bracket">&#93;</span></a></sup> As a result, adopters of big data may find themselves at a disadvantage. Algorithmic findings can be difficult to achieve with such large datasets.<sup id="cite_ref-114" class="reference"><a href="#cite_note-114"><span class="cite-bracket">&#91;</span>114<span class="cite-bracket">&#93;</span></a></sup> Big data in marketing is a highly lucrative tool that can be used for large corporations, its value being as a result of the possibility of predicting significant trends, interests, or statistical outcomes in a consumer-based manner.<sup id="cite_ref-115" class="reference"><a href="#cite_note-115"><span class="cite-bracket">&#91;</span>115<span class="cite-bracket">&#93;</span></a></sup> </p><p>There are three significant factors in the use of big data in marketing: </p> <ol><li>Big data provides customer behavior pattern spotting for marketers, since all human actions are being quantified into readable numbers for marketers to analyze and use for their research.<sup id="cite_ref-ReferenceA_116-0" class="reference"><a href="#cite_note-ReferenceA-116"><span class="cite-bracket">&#91;</span>116<span class="cite-bracket">&#93;</span></a></sup> In addition, big data can also be seen as a customized product recommendation tool. Specifically, since big data is effective in analyzing customers' purchase behaviors and browsing patterns, this technology can assist companies in promoting specific personalized products to specific customers.<sup id="cite_ref-117" class="reference"><a href="#cite_note-117"><span class="cite-bracket">&#91;</span>117<span class="cite-bracket">&#93;</span></a></sup></li> <li>Real-time market responsiveness is important for marketers because of the ability to shift marketing efforts and correct to current trends, which is helpful in maintaining relevance to consumers. This can supply corporations with the information necessary to predict the wants and needs of consumers in advance.<sup id="cite_ref-ReferenceA_116-1" class="reference"><a href="#cite_note-ReferenceA-116"><span class="cite-bracket">&#91;</span>116<span class="cite-bracket">&#93;</span></a></sup></li> <li>Data-driven market ambidexterity are being highly fueled by big data.<sup id="cite_ref-ReferenceA_116-2" class="reference"><a href="#cite_note-ReferenceA-116"><span class="cite-bracket">&#91;</span>116<span class="cite-bracket">&#93;</span></a></sup> New models and algorithms are being developed to make significant predictions about certain economic and social situations.<sup id="cite_ref-118" class="reference"><a href="#cite_note-118"><span class="cite-bracket">&#91;</span>118<span class="cite-bracket">&#93;</span></a></sup></li></ol> <div class="mw-heading mw-heading2"><h2 id="Case_studies">Case studies</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=20" title="Edit section: Case studies"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Government_2">Government</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=21" title="Edit section: Government"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="China">China</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=22" title="Edit section: China"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The Integrated Joint Operations Platform (IJOP, 一体化联合作战平台) is used by the government to monitor the population, particularly <a href="/wiki/Uyghurs" title="Uyghurs">Uyghurs</a>.<sup id="cite_ref-WP8218_119-0" class="reference"><a href="#cite_note-WP8218-119"><span class="cite-bracket">&#91;</span>119<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Biometrics" title="Biometrics">Biometrics</a>, including DNA samples, are gathered through a program of free physicals.<sup id="cite_ref-how022618_120-0" class="reference"><a href="#cite_note-how022618-120"><span class="cite-bracket">&#91;</span>120<span class="cite-bracket">&#93;</span></a></sup></li> <li>By 2020, China plans to give all its citizens a personal "social credit" score based on how they behave.<sup id="cite_ref-121" class="reference"><a href="#cite_note-121"><span class="cite-bracket">&#91;</span>121<span class="cite-bracket">&#93;</span></a></sup> The <a href="/wiki/Social_Credit_System" title="Social Credit System">Social Credit System</a>, now being piloted in a number of Chinese cities, is considered a form of <a href="/wiki/Mass_surveillance_in_China" title="Mass surveillance in China">mass surveillance</a> which uses big data analysis technology.<sup id="cite_ref-122" class="reference"><a href="#cite_note-122"><span class="cite-bracket">&#91;</span>122<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-123" class="reference"><a href="#cite_note-123"><span class="cite-bracket">&#91;</span>123<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading4"><h4 id="India">India</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=23" title="Edit section: India"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Big data analysis was tried out for the <a href="/wiki/Bharatiya_Janata_Party" title="Bharatiya Janata Party">BJP</a> to win the 2014 Indian General Election.<sup id="cite_ref-124" class="reference"><a href="#cite_note-124"><span class="cite-bracket">&#91;</span>124<span class="cite-bracket">&#93;</span></a></sup></li> <li>The <a href="/wiki/Government_of_India" title="Government of India">Indian government</a> uses numerous techniques to ascertain how the Indian electorate is responding to government action, as well as ideas for policy augmentation.</li></ul> <div class="mw-heading mw-heading4"><h4 id="Israel">Israel</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=24" title="Edit section: Israel"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Personalized diabetic treatments can be created through GlucoMe's big data solution.<sup id="cite_ref-125" class="reference"><a href="#cite_note-125"><span class="cite-bracket">&#91;</span>125<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading4"><h4 id="United_Kingdom">United Kingdom</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=25" title="Edit section: United Kingdom"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Examples of uses of big data in public services: </p> <ul><li>Data on prescription drugs: by connecting origin, location and the time of each prescription, a research unit was able to exemplify and examine the considerable delay between the release of any given drug, and a UK-wide adaptation of the <a href="/wiki/National_Institute_for_Health_and_Care_Excellence" title="National Institute for Health and Care Excellence">National Institute for Health and Care Excellence</a> guidelines. This suggests that new or most up-to-date drugs take some time to filter through to the general patient.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (January 2021)">citation needed</span></a></i>&#93;</sup><sup id="cite_ref-126" class="reference"><a href="#cite_note-126"><span class="cite-bracket">&#91;</span>126<span class="cite-bracket">&#93;</span></a></sup></li> <li>Joining up data: a local authority <a href="/wiki/Data_blending" title="Data blending">blended data</a> about services, such as road gritting rotas, with services for people at risk, such as <a href="/wiki/Meals_on_Wheels" title="Meals on Wheels">Meals on Wheels</a>. The connection of data allowed the local authority to avoid any weather-related delay.<sup id="cite_ref-127" class="reference"><a href="#cite_note-127"><span class="cite-bracket">&#91;</span>127<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading4"><h4 id="United_States">United States</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=26" title="Edit section: United States"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>In 2012, the <a href="/wiki/Presidency_of_Barack_Obama" title="Presidency of Barack Obama">Obama administration</a> announced the Big Data Research and Development Initiative, to explore how big data could be used to address important problems faced by the government.<sup id="cite_ref-WH_Big_Data_128-0" class="reference"><a href="#cite_note-WH_Big_Data-128"><span class="cite-bracket">&#91;</span>128<span class="cite-bracket">&#93;</span></a></sup> The initiative is composed of 84 different big data programs spread across six departments.<sup id="cite_ref-129" class="reference"><a href="#cite_note-129"><span class="cite-bracket">&#91;</span>129<span class="cite-bracket">&#93;</span></a></sup></li> <li>Big data analysis played a large role in <a href="/wiki/Barack_Obama" title="Barack Obama">Barack Obama</a>'s successful <a href="/wiki/Barack_Obama_presidential_campaign,_2012" class="mw-redirect" title="Barack Obama presidential campaign, 2012">2012 re-election campaign</a>.<sup id="cite_ref-infoworld_bigdata_130-0" class="reference"><a href="#cite_note-infoworld_bigdata-130"><span class="cite-bracket">&#91;</span>130<span class="cite-bracket">&#93;</span></a></sup></li> <li>The <a href="/wiki/United_States_Federal_Government" class="mw-redirect" title="United States Federal Government">United States Federal Government</a> owns four of the ten most powerful <a href="/wiki/Supercomputer" title="Supercomputer">supercomputers</a> in the world.<sup id="cite_ref-131" class="reference"><a href="#cite_note-131"><span class="cite-bracket">&#91;</span>131<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-132" class="reference"><a href="#cite_note-132"><span class="cite-bracket">&#91;</span>132<span class="cite-bracket">&#93;</span></a></sup></li> <li>The <a href="/wiki/Utah_Data_Center" title="Utah Data Center">Utah Data Center</a> has been constructed by the United States <a href="/wiki/National_Security_Agency" title="National Security Agency">National Security Agency</a>. When finished, the facility will be able to handle a large amount of information collected by the NSA over the Internet. The exact amount of storage space is unknown, but more recent sources claim it will be on the order of a few <a href="/wiki/Exabyte" class="mw-redirect" title="Exabyte">exabytes</a>.<sup id="cite_ref-133" class="reference"><a href="#cite_note-133"><span class="cite-bracket">&#91;</span>133<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-134" class="reference"><a href="#cite_note-134"><span class="cite-bracket">&#91;</span>134<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-135" class="reference"><a href="#cite_note-135"><span class="cite-bracket">&#91;</span>135<span class="cite-bracket">&#93;</span></a></sup> This has posed security concerns regarding the anonymity of the data collected.<sup id="cite_ref-136" class="reference"><a href="#cite_note-136"><span class="cite-bracket">&#91;</span>136<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Retail">Retail</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=27" title="Edit section: Retail"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Walmart" title="Walmart">Walmart</a> handles more than 1 million customer transactions every hour, which are imported into databases estimated to contain more than 2.5 petabytes (2560 terabytes) of data—the equivalent of 167 times the information contained in all the books in the US <a href="/wiki/Library_of_Congress" title="Library of Congress">Library of Congress</a>.<sup id="cite_ref-Economist_7-4" class="reference"><a href="#cite_note-Economist-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Windermere_Real_Estate" title="Windermere Real Estate">Windermere Real Estate</a> uses location information from nearly 100 million drivers to help new home buyers determine their typical drive times to and from work throughout various times of the day.<sup id="cite_ref-137" class="reference"><a href="#cite_note-137"><span class="cite-bracket">&#91;</span>137<span class="cite-bracket">&#93;</span></a></sup></li> <li>FICO Card Detection System protects accounts worldwide.<sup id="cite_ref-fico.com_138-0" class="reference"><a href="#cite_note-fico.com-138"><span class="cite-bracket">&#91;</span>138<span class="cite-bracket">&#93;</span></a></sup></li> <li>Omnichannel retailing<sup id="cite_ref-139" class="reference"><a href="#cite_note-139"><span class="cite-bracket">&#91;</span>139<span class="cite-bracket">&#93;</span></a></sup> leverages online big data to improve offline experiences.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Science">Science</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=28" title="Edit section: Science"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The <a href="/wiki/Large_Hadron_Collider" title="Large Hadron Collider">Large Hadron Collider</a> experiments represent about 150 million sensors delivering data 40&#160;million times per second. There are nearly 600&#160;million collisions per second. After filtering and refraining from recording more than 99.99995%<sup id="cite_ref-140" class="reference"><a href="#cite_note-140"><span class="cite-bracket">&#91;</span>140<span class="cite-bracket">&#93;</span></a></sup> of these streams, there are 1,000 collisions of interest per second.<sup id="cite_ref-141" class="reference"><a href="#cite_note-141"><span class="cite-bracket">&#91;</span>141<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-142" class="reference"><a href="#cite_note-142"><span class="cite-bracket">&#91;</span>142<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-nature_143-0" class="reference"><a href="#cite_note-nature-143"><span class="cite-bracket">&#91;</span>143<span class="cite-bracket">&#93;</span></a></sup> <ul><li>As a result, only working with less than 0.001% of the sensor stream data, the data flow from all four LHC experiments represents 25 petabytes annual rate before replication (as of 2012<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Big_data&amp;action=edit">&#91;update&#93;</a></sup>). This becomes nearly 200 petabytes after replication.</li> <li>If all sensor data were recorded in LHC, the data flow would be extremely hard to work with. The data flow would exceed 150 million petabytes annual rate, or nearly 500 <a href="/wiki/Exabyte" class="mw-redirect" title="Exabyte">exabytes</a> per day, before replication. To put the number in perspective, this is equivalent to 500 <a href="/wiki/Quintillion" class="mw-redirect" title="Quintillion">quintillion</a> (5×10<sup>20</sup>) bytes per day, almost 200 times more than all the other sources combined in the world.</li></ul></li> <li>The <a href="/wiki/Square_Kilometre_Array" title="Square Kilometre Array">Square Kilometre Array</a> is a radio telescope built of thousands of antennas. It is expected to be operational by 2024. Collectively, these antennas are expected to gather 14 exabytes and store one petabyte per day.<sup id="cite_ref-144" class="reference"><a href="#cite_note-144"><span class="cite-bracket">&#91;</span>144<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-145" class="reference"><a href="#cite_note-145"><span class="cite-bracket">&#91;</span>145<span class="cite-bracket">&#93;</span></a></sup> It is considered one of the most ambitious scientific projects ever undertaken.<sup id="cite_ref-146" class="reference"><a href="#cite_note-146"><span class="cite-bracket">&#91;</span>146<span class="cite-bracket">&#93;</span></a></sup></li> <li>When the <a href="/wiki/Sloan_Digital_Sky_Survey" title="Sloan Digital Sky Survey">Sloan Digital Sky Survey</a> (SDSS) began to collect astronomical data in 2000, it amassed more in its first few weeks than all data collected in the history of astronomy previously. Continuing at a rate of about 200&#160;GB per night, SDSS has amassed more than 140 terabytes of information.<sup id="cite_ref-Economist_7-5" class="reference"><a href="#cite_note-Economist-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> When the <a href="/wiki/Large_Synoptic_Survey_Telescope" class="mw-redirect" title="Large Synoptic Survey Telescope">Large Synoptic Survey Telescope</a>, successor to SDSS, comes online in 2020, its designers expect it to acquire that amount of data every five days.<sup id="cite_ref-Economist_7-6" class="reference"><a href="#cite_note-Economist-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Human_Genome_Project" title="Human Genome Project">Decoding the human genome</a> originally took 10 years to process; now it can be achieved in less than a day. The DNA sequencers have divided the sequencing cost by 10,000 in the last ten years, which is 100 times less expensive than the reduction in cost predicted by <a href="/wiki/Moore%27s_law" title="Moore&#39;s law">Moore's law</a>.<sup id="cite_ref-147" class="reference"><a href="#cite_note-147"><span class="cite-bracket">&#91;</span>147<span class="cite-bracket">&#93;</span></a></sup></li> <li>The <a href="/wiki/NASA" title="NASA">NASA</a> Center for Climate Simulation (NCCS) stores 32 petabytes of climate observations and simulations on the Discover supercomputing cluster.<sup id="cite_ref-148" class="reference"><a href="#cite_note-148"><span class="cite-bracket">&#91;</span>148<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-149" class="reference"><a href="#cite_note-149"><span class="cite-bracket">&#91;</span>149<span class="cite-bracket">&#93;</span></a></sup></li> <li>Google's DNAStack compiles and organizes DNA samples of genetic data from around the world to identify diseases and other medical defects. These fast and exact calculations eliminate any "friction points", or human errors that could be made by one of the numerous science and biology experts working with the DNA. DNAStack, a part of Google Genomics, allows scientists to use the vast sample of resources from Google's search server to scale social experiments that would usually take years, instantly.<sup id="cite_ref-150" class="reference"><a href="#cite_note-150"><span class="cite-bracket">&#91;</span>150<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-151" class="reference"><a href="#cite_note-151"><span class="cite-bracket">&#91;</span>151<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/23andme" class="mw-redirect" title="23andme">23andme</a>'s <a href="/wiki/DNA_database" title="DNA database">DNA database</a> contains the genetic information of over 1,000,000 people worldwide.<sup id="cite_ref-152" class="reference"><a href="#cite_note-152"><span class="cite-bracket">&#91;</span>152<span class="cite-bracket">&#93;</span></a></sup> The company explores selling the "anonymous aggregated genetic data" to other researchers and pharmaceutical companies for research purposes if patients give their consent.<sup id="cite_ref-verge1_153-0" class="reference"><a href="#cite_note-verge1-153"><span class="cite-bracket">&#91;</span>153<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-154" class="reference"><a href="#cite_note-154"><span class="cite-bracket">&#91;</span>154<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-155" class="reference"><a href="#cite_note-155"><span class="cite-bracket">&#91;</span>155<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-156" class="reference"><a href="#cite_note-156"><span class="cite-bracket">&#91;</span>156<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-157" class="reference"><a href="#cite_note-157"><span class="cite-bracket">&#91;</span>157<span class="cite-bracket">&#93;</span></a></sup> Ahmad Hariri, professor of psychology and neuroscience at <a href="/wiki/Duke_University" title="Duke University">Duke University</a> who has been using 23andMe in his research since 2009 states that the most important aspect of the company's new service is that it makes genetic research accessible and relatively cheap for scientists.<sup id="cite_ref-verge1_153-1" class="reference"><a href="#cite_note-verge1-153"><span class="cite-bracket">&#91;</span>153<span class="cite-bracket">&#93;</span></a></sup> A study that identified 15 genome sites linked to depression in 23andMe's database lead to a surge in demands to access the repository with 23andMe fielding nearly 20 requests to access the depression data in the two weeks after publication of the paper.<sup id="cite_ref-158" class="reference"><a href="#cite_note-158"><span class="cite-bracket">&#91;</span>158<span class="cite-bracket">&#93;</span></a></sup></li> <li>Computational fluid dynamics (<a href="/wiki/Computational_fluid_dynamics" title="Computational fluid dynamics">CFD</a>) and hydrodynamic <a href="/wiki/Turbulence" title="Turbulence">turbulence</a> research generate massive data sets. The Johns Hopkins Turbulence Databases (<a rel="nofollow" class="external text" href="http://turbulence.pha.jhu.edu">JHTDB</a>) contains over 350 terabytes of spatiotemporal fields from Direct Numerical simulations of various turbulent flows. Such data have been difficult to share using traditional methods such as downloading flat simulation output files. The data within JHTDB can be accessed using "virtual sensors" with various access modes ranging from direct web-browser queries, access through Matlab, Python, Fortran and C programs executing on clients' platforms, to cut out services to download raw data. The data have been used in over 150 scientific publications.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Sports">Sports</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=29" title="Edit section: Sports"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Big data can be used to improve training and understanding competitors, using sport sensors. It is also possible to predict winners in a match using big data analytics.<sup id="cite_ref-159" class="reference"><a href="#cite_note-159"><span class="cite-bracket">&#91;</span>159<span class="cite-bracket">&#93;</span></a></sup> Future performance of players could be predicted as well.<sup id="cite_ref-160" class="reference"><a href="#cite_note-160"><span class="cite-bracket">&#91;</span>160<span class="cite-bracket">&#93;</span></a></sup> Thus, players' value and salary is determined by data collected throughout the season.<sup id="cite_ref-161" class="reference"><a href="#cite_note-161"><span class="cite-bracket">&#91;</span>161<span class="cite-bracket">&#93;</span></a></sup> </p><p>In <a href="/wiki/Formula_One" title="Formula One">Formula One</a> races, race cars with hundreds of sensors generate terabytes of data. These sensors collect data points from tire pressure to fuel burn efficiency.<sup id="cite_ref-162" class="reference"><a href="#cite_note-162"><span class="cite-bracket">&#91;</span>162<span class="cite-bracket">&#93;</span></a></sup> Based on the data, engineers and data analysts decide whether adjustments should be made in order to win a race. Besides, using big data, race teams try to predict the time they will finish the race beforehand, based on simulations using data collected over the season.<sup id="cite_ref-163" class="reference"><a href="#cite_note-163"><span class="cite-bracket">&#91;</span>163<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Technology">Technology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=30" title="Edit section: Technology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>As of 2013<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Big_data&amp;action=edit">&#91;update&#93;</a></sup>, <a href="/wiki/EBay.com" class="mw-redirect" title="EBay.com">eBay.com</a> uses two <a href="/wiki/Data_warehouse" title="Data warehouse">data warehouses</a> at 7.5 <a href="/wiki/Petabytes" class="mw-redirect" title="Petabytes">petabytes</a> and 40PB as well as a 40PB <a href="/wiki/Hadoop" class="mw-redirect" title="Hadoop">Hadoop</a> cluster for search, consumer recommendations, and merchandising.<sup id="cite_ref-164" class="reference"><a href="#cite_note-164"><span class="cite-bracket">&#91;</span>164<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Amazon.com" class="mw-redirect" title="Amazon.com">Amazon.com</a> handles millions of back-end operations every day, as well as queries from more than half a million third-party sellers. The core technology that keeps Amazon running is Linux-based and as of 2005<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Big_data&amp;action=edit">&#91;update&#93;</a></sup> they had the world's three largest Linux databases, with capacities of 7.8 TB, 18.5 TB, and 24.7 TB.<sup id="cite_ref-165" class="reference"><a href="#cite_note-165"><span class="cite-bracket">&#91;</span>165<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Facebook" title="Facebook">Facebook</a> handles 50&#160;billion photos from its user base.<sup id="cite_ref-166" class="reference"><a href="#cite_note-166"><span class="cite-bracket">&#91;</span>166<span class="cite-bracket">&#93;</span></a></sup> As of June&#160;2017<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Big_data&amp;action=edit">&#91;update&#93;</a></sup>, Facebook reached 2 billion <a href="/wiki/Monthly_active_users" class="mw-redirect" title="Monthly active users">monthly active users</a>.<sup id="cite_ref-167" class="reference"><a href="#cite_note-167"><span class="cite-bracket">&#91;</span>167<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Google" title="Google">Google</a> was handling roughly 100&#160;billion searches per month as of August&#160;2012<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Big_data&amp;action=edit">&#91;update&#93;</a></sup>.<sup id="cite_ref-168" class="reference"><a href="#cite_note-168"><span class="cite-bracket">&#91;</span>168<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="COVID-19">COVID-19</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=31" title="Edit section: COVID-19"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>During the <a href="/wiki/COVID-19_pandemic" title="COVID-19 pandemic">COVID-19 pandemic</a>, big data was raised as a way to minimise the impact of the disease. Significant applications of big data included minimising the spread of the virus, case identification and development of medical treatment.<sup id="cite_ref-169" class="reference"><a href="#cite_note-169"><span class="cite-bracket">&#91;</span>169<span class="cite-bracket">&#93;</span></a></sup> </p><p>Governments used big data to track infected people to minimise spread. Early adopters included China, Taiwan, South Korea, and Israel.<sup id="cite_ref-170" class="reference"><a href="#cite_note-170"><span class="cite-bracket">&#91;</span>170<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-171" class="reference"><a href="#cite_note-171"><span class="cite-bracket">&#91;</span>171<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-172" class="reference"><a href="#cite_note-172"><span class="cite-bracket">&#91;</span>172<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Research_activities">Research activities</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=32" title="Edit section: Research activities"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Encrypted search and cluster formation in big data were demonstrated in March 2014 at the American Society of Engineering Education. Gautam Siwach engaged at <i>Tackling the challenges of Big Data</i> by <a href="/wiki/MIT_Computer_Science_and_Artificial_Intelligence_Laboratory" title="MIT Computer Science and Artificial Intelligence Laboratory">MIT Computer Science and Artificial Intelligence Laboratory</a> and Amir Esmailpour at the UNH Research Group investigated the key features of big data as the formation of clusters and their interconnections. They focused on the security of big data and the orientation of the term towards the presence of different types of data in an encrypted form at cloud interface by providing the raw definitions and real-time examples within the technology. Moreover, they proposed an approach for identifying the encoding technique to advance towards an expedited search over encrypted text leading to the security enhancements in big data.<sup id="cite_ref-173" class="reference"><a href="#cite_note-173"><span class="cite-bracket">&#91;</span>173<span class="cite-bracket">&#93;</span></a></sup> </p><p>In March 2012, The White House announced a national "Big Data Initiative" that consisted of six federal departments and agencies committing more than $200&#160;million to big data research projects.<sup id="cite_ref-174" class="reference"><a href="#cite_note-174"><span class="cite-bracket">&#91;</span>174<span class="cite-bracket">&#93;</span></a></sup> </p><p>The initiative included a National Science Foundation "Expeditions in Computing" grant of $10 million over five years to the AMPLab<sup id="cite_ref-175" class="reference"><a href="#cite_note-175"><span class="cite-bracket">&#91;</span>175<span class="cite-bracket">&#93;</span></a></sup> at the University of California, Berkeley.<sup id="cite_ref-176" class="reference"><a href="#cite_note-176"><span class="cite-bracket">&#91;</span>176<span class="cite-bracket">&#93;</span></a></sup> The AMPLab also received funds from <a href="/wiki/DARPA" title="DARPA">DARPA</a>, and over a dozen industrial sponsors and uses big data to attack a wide range of problems from predicting traffic congestion<sup id="cite_ref-177" class="reference"><a href="#cite_note-177"><span class="cite-bracket">&#91;</span>177<span class="cite-bracket">&#93;</span></a></sup> to fighting cancer.<sup id="cite_ref-178" class="reference"><a href="#cite_note-178"><span class="cite-bracket">&#91;</span>178<span class="cite-bracket">&#93;</span></a></sup> </p><p>The White House Big Data Initiative also included a commitment by the Department of Energy to provide $25 million in funding over five years to establish the Scalable Data Management, Analysis and Visualization (SDAV) Institute,<sup id="cite_ref-179" class="reference"><a href="#cite_note-179"><span class="cite-bracket">&#91;</span>179<span class="cite-bracket">&#93;</span></a></sup> led by the Energy Department's <a href="/wiki/Lawrence_Berkeley_National_Laboratory" title="Lawrence Berkeley National Laboratory">Lawrence Berkeley National Laboratory</a>. The SDAV Institute aims to bring together the expertise of six national laboratories and seven universities to develop new tools to help scientists manage and visualize data on the department's supercomputers. </p><p>The U.S. state of <a href="/wiki/Massachusetts" title="Massachusetts">Massachusetts</a> announced the Massachusetts Big Data Initiative in May 2012, which provides funding from the state government and private companies to a variety of research institutions.<sup id="cite_ref-180" class="reference"><a href="#cite_note-180"><span class="cite-bracket">&#91;</span>180<span class="cite-bracket">&#93;</span></a></sup> The <a href="/wiki/Massachusetts_Institute_of_Technology" title="Massachusetts Institute of Technology">Massachusetts Institute of Technology</a> hosts the Intel Science and Technology Center for Big Data in the <a href="/wiki/MIT_Computer_Science_and_Artificial_Intelligence_Laboratory" title="MIT Computer Science and Artificial Intelligence Laboratory">MIT Computer Science and Artificial Intelligence Laboratory</a>, combining government, corporate, and institutional funding and research efforts.<sup id="cite_ref-181" class="reference"><a href="#cite_note-181"><span class="cite-bracket">&#91;</span>181<span class="cite-bracket">&#93;</span></a></sup> </p><p>The European Commission is funding the two-year-long Big Data Public Private Forum through their Seventh Framework Program to engage companies, academics and other stakeholders in discussing big data issues. The project aims to define a strategy in terms of research and innovation to guide supporting actions from the European Commission in the successful implementation of the big data economy. Outcomes of this project will be used as input for <a href="/wiki/Horizon_2020" class="mw-redirect" title="Horizon 2020">Horizon 2020</a>, their next <a href="/wiki/Framework_Programmes_for_Research_and_Technological_Development" title="Framework Programmes for Research and Technological Development">framework program</a>.<sup id="cite_ref-182" class="reference"><a href="#cite_note-182"><span class="cite-bracket">&#91;</span>182<span class="cite-bracket">&#93;</span></a></sup> </p><p>The British government announced in March 2014 the founding of the <a href="/wiki/Alan_Turing_Institute" title="Alan Turing Institute">Alan Turing Institute</a>, named after the computer pioneer and code-breaker, which will focus on new ways to collect and analyze large data sets.<sup id="cite_ref-183" class="reference"><a href="#cite_note-183"><span class="cite-bracket">&#91;</span>183<span class="cite-bracket">&#93;</span></a></sup> </p><p>At the <a href="/wiki/University_of_Waterloo_Stratford_Campus" class="mw-redirect" title="University of Waterloo Stratford Campus">University of Waterloo Stratford Campus</a> Canadian Open Data Experience (CODE) Inspiration Day, participants demonstrated how using data visualization can increase the understanding and appeal of big data sets and communicate their story to the world.<sup id="cite_ref-184" class="reference"><a href="#cite_note-184"><span class="cite-bracket">&#91;</span>184<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Computational_social_science" title="Computational social science">Computational social sciences</a>&#160;– Anyone can use application programming interfaces (APIs) provided by big data holders, such as Google and Twitter, to do research in the social and behavioral sciences.<sup id="cite_ref-pigdata_185-0" class="reference"><a href="#cite_note-pigdata-185"><span class="cite-bracket">&#91;</span>185<span class="cite-bracket">&#93;</span></a></sup> Often these APIs are provided for free.<sup id="cite_ref-pigdata_185-1" class="reference"><a href="#cite_note-pigdata-185"><span class="cite-bracket">&#91;</span>185<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Tobias_Preis" title="Tobias Preis">Tobias Preis</a> et al. used <a href="/wiki/Google_Trends" title="Google Trends">Google Trends</a> data to demonstrate that Internet users from countries with a higher per capita gross domestic products (GDPs) are more likely to search for information about the future than information about the past. The findings suggest there may be a link between online behaviors and real-world economic indicators.<sup id="cite_ref-186" class="reference"><a href="#cite_note-186"><span class="cite-bracket">&#91;</span>186<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-187" class="reference"><a href="#cite_note-187"><span class="cite-bracket">&#91;</span>187<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-188" class="reference"><a href="#cite_note-188"><span class="cite-bracket">&#91;</span>188<span class="cite-bracket">&#93;</span></a></sup> The authors of the study examined Google queries logs made by ratio of the volume of searches for the coming year (2011) to the volume of searches for the previous year (2009), which they call the "<a href="/wiki/Future_orientation_index" class="mw-redirect" title="Future orientation index">future orientation index</a>".<sup id="cite_ref-189" class="reference"><a href="#cite_note-189"><span class="cite-bracket">&#91;</span>189<span class="cite-bracket">&#93;</span></a></sup> They compared the future orientation index to the per capita GDP of each country, and found a strong tendency for countries where Google users inquire more about the future to have a higher GDP. </p><p><a href="/wiki/Tobias_Preis" title="Tobias Preis">Tobias Preis</a> and his colleagues Helen Susannah Moat and <a href="/wiki/H._Eugene_Stanley" title="H. Eugene Stanley">H. Eugene Stanley</a> introduced a method to identify online precursors for stock market moves, using trading strategies based on search volume data provided by Google Trends.<sup id="cite_ref-190" class="reference"><a href="#cite_note-190"><span class="cite-bracket">&#91;</span>190<span class="cite-bracket">&#93;</span></a></sup> Their analysis of <a href="/wiki/Google" title="Google">Google</a> search volume for 98 terms of varying financial relevance, published in <i><a href="/wiki/Scientific_Reports" title="Scientific Reports">Scientific Reports</a></i>,<sup id="cite_ref-191" class="reference"><a href="#cite_note-191"><span class="cite-bracket">&#91;</span>191<span class="cite-bracket">&#93;</span></a></sup> suggests that increases in search volume for financially relevant search terms tend to precede large losses in financial markets.<sup id="cite_ref-192" class="reference"><a href="#cite_note-192"><span class="cite-bracket">&#91;</span>192<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-193" class="reference"><a href="#cite_note-193"><span class="cite-bracket">&#91;</span>193<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-194" class="reference"><a href="#cite_note-194"><span class="cite-bracket">&#91;</span>194<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-195" class="reference"><a href="#cite_note-195"><span class="cite-bracket">&#91;</span>195<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-196" class="reference"><a href="#cite_note-196"><span class="cite-bracket">&#91;</span>196<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-197" class="reference"><a href="#cite_note-197"><span class="cite-bracket">&#91;</span>197<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-198" class="reference"><a href="#cite_note-198"><span class="cite-bracket">&#91;</span>198<span class="cite-bracket">&#93;</span></a></sup> </p><p>Big data sets come with algorithmic challenges that previously did not exist. Hence, there is seen by some to be a need to fundamentally change the processing ways.<sup id="cite_ref-199" class="reference"><a href="#cite_note-199"><span class="cite-bracket">&#91;</span>199<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Sampling_big_data">Sampling big data</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=33" title="Edit section: Sampling big data"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A research question that is asked about big data sets is whether it is necessary to look at the full data to draw certain conclusions about the properties of the data or if is a sample is good enough. The name big data itself contains a term related to size and this is an important characteristic of big data. But <a href="/wiki/Sampling_(statistics)" title="Sampling (statistics)">sampling</a> enables the selection of right data points from within the larger data set to estimate the characteristics of the whole population. In manufacturing different types of sensory data such as acoustics, vibration, pressure, current, voltage, and controller data are available at short time intervals. To predict downtime it may not be necessary to look at all the data but a sample may be sufficient. Big data can be broken down by various data point categories such as demographic, psychographic, behavioral, and transactional data. With large sets of data points, marketers are able to create and use more customized segments of consumers for more strategic targeting. </p> <div class="mw-heading mw-heading2"><h2 id="Critique">Critique</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=34" title="Edit section: Critique"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Critiques of the big data paradigm come in two flavors: those that question the implications of the approach itself, and those that question the way it is currently done.<sup id="cite_ref-Kimble_and_Milolidakis_(2015)_200-0" class="reference"><a href="#cite_note-Kimble_and_Milolidakis_(2015)-200"><span class="cite-bracket">&#91;</span>200<span class="cite-bracket">&#93;</span></a></sup> One approach to this criticism is the field of <a href="/wiki/Critical_data_studies" title="Critical data studies">critical data studies</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Critiques_of_the_big_data_paradigm">Critiques of the big data paradigm</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=35" title="Edit section: Critiques of the big data paradigm"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>"A crucial problem is that we do not know much about the underlying empirical micro-processes that lead to the emergence of the[se] typical network characteristics of Big Data."<sup id="cite_ref-FOOTNOTESnijdersMatzatReips2012_24-1" class="reference"><a href="#cite_note-FOOTNOTESnijdersMatzatReips2012-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (December 2023)">page&#160;needed</span></a></i>&#93;</sup> In their critique, Snijders, Matzat, and <a href="/wiki/Ulf-Dietrich_Reips" title="Ulf-Dietrich Reips">Reips</a> point out that often very strong assumptions are made about mathematical properties that may not at all reflect what is really going on at the level of micro-processes. Mark Graham has leveled broad critiques at <a href="/wiki/Chris_Anderson_(writer)" title="Chris Anderson (writer)">Chris Anderson</a>'s assertion that big data will spell the end of theory:<sup id="cite_ref-201" class="reference"><a href="#cite_note-201"><span class="cite-bracket">&#91;</span>201<span class="cite-bracket">&#93;</span></a></sup> focusing in particular on the notion that big data must always be contextualized in their social, economic, and political contexts.<sup id="cite_ref-202" class="reference"><a href="#cite_note-202"><span class="cite-bracket">&#91;</span>202<span class="cite-bracket">&#93;</span></a></sup> Even as companies invest eight- and nine-figure sums to derive insight from information streaming in from suppliers and customers, less than 40% of employees have sufficiently mature processes and skills to do so. To overcome this insight deficit, big data, no matter how comprehensive or well analyzed, must be complemented by "big judgment", according to an article in the <i><a href="/wiki/Harvard_Business_Review" title="Harvard Business Review">Harvard Business Review</a></i>.<sup id="cite_ref-203" class="reference"><a href="#cite_note-203"><span class="cite-bracket">&#91;</span>203<span class="cite-bracket">&#93;</span></a></sup> </p><p>Much in the same line, it has been pointed out that the decisions based on the analysis of big data are inevitably "informed by the world as it was in the past, or, at best, as it currently is".<sup id="cite_ref-FOOTNOTEHilbert2016_66-3" class="reference"><a href="#cite_note-FOOTNOTEHilbert2016-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (December 2023)">page&#160;needed</span></a></i>&#93;</sup> Fed by a large number of data on past experiences, algorithms can predict future development if the future is similar to the past.<sup id="cite_ref-HilbertTEDx_204-0" class="reference"><a href="#cite_note-HilbertTEDx-204"><span class="cite-bracket">&#91;</span>204<span class="cite-bracket">&#93;</span></a></sup> If the system's dynamics of the future change (if it is not a <a href="/wiki/Stationary_process" title="Stationary process">stationary process</a>), the past can say little about the future. In order to make predictions in changing environments, it would be necessary to have a thorough understanding of the systems dynamic, which requires theory.<sup id="cite_ref-HilbertTEDx_204-1" class="reference"><a href="#cite_note-HilbertTEDx-204"><span class="cite-bracket">&#91;</span>204<span class="cite-bracket">&#93;</span></a></sup> As a response to this critique Alemany Oliver and Vayre suggest to use "abductive reasoning as a first step in the research process in order to bring context to consumers' digital traces and make new theories emerge".<sup id="cite_ref-205" class="reference"><a href="#cite_note-205"><span class="cite-bracket">&#91;</span>205<span class="cite-bracket">&#93;</span></a></sup> Additionally, it has been suggested to combine big data approaches with computer simulations, such as <a href="/wiki/Agent-based_model" title="Agent-based model">agent-based models</a><sup id="cite_ref-FOOTNOTEHilbert2016_66-4" class="reference"><a href="#cite_note-FOOTNOTEHilbert2016-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (December 2023)">page&#160;needed</span></a></i>&#93;</sup> and <a href="/wiki/Complex_systems" class="mw-redirect" title="Complex systems">complex systems</a>. Agent-based models are increasingly getting better in predicting the outcome of social complexities of even unknown future scenarios through computer simulations that are based on a collection of mutually interdependent algorithms.<sup id="cite_ref-206" class="reference"><a href="#cite_note-206"><span class="cite-bracket">&#91;</span>206<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-207" class="reference"><a href="#cite_note-207"><span class="cite-bracket">&#91;</span>207<span class="cite-bracket">&#93;</span></a></sup> Finally, the use of multivariate methods that probe for the latent structure of the data, such as <a href="/wiki/Factor_analysis" title="Factor analysis">factor analysis</a> and <a href="/wiki/Cluster_analysis" title="Cluster analysis">cluster analysis</a>, have proven useful as analytic approaches that go well beyond the bi-variate approaches (e.g. <a href="/wiki/Contingency_table" title="Contingency table">contingency tables</a>) typically employed with smaller data sets. </p><p>In health and biology, conventional scientific approaches are based on experimentation. For these approaches, the limiting factor is the relevant data that can confirm or refute the initial hypothesis.<sup id="cite_ref-208" class="reference"><a href="#cite_note-208"><span class="cite-bracket">&#91;</span>208<span class="cite-bracket">&#93;</span></a></sup> A new postulate is accepted now in biosciences: the information provided by the data in huge volumes (<a href="/wiki/Omics" title="Omics">omics</a>) without prior hypothesis is complementary and sometimes necessary to conventional approaches based on experimentation.<sup id="cite_ref-209" class="reference"><a href="#cite_note-209"><span class="cite-bracket">&#91;</span>209<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-210" class="reference"><a href="#cite_note-210"><span class="cite-bracket">&#91;</span>210<span class="cite-bracket">&#93;</span></a></sup> In the massive approaches it is the formulation of a relevant hypothesis to explain the data that is the limiting factor.<sup id="cite_ref-211" class="reference"><a href="#cite_note-211"><span class="cite-bracket">&#91;</span>211<span class="cite-bracket">&#93;</span></a></sup> The search logic is reversed and the limits of induction ("Glory of Science and Philosophy scandal", <a href="/wiki/C._D._Broad" title="C. D. Broad">C. D. Broad</a>, 1926) are to be considered.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (April 2015)">citation needed</span></a></i>&#93;</sup> </p><p><a href="/wiki/Consumer_privacy" title="Consumer privacy">Privacy</a> advocates are concerned about the threat to privacy represented by increasing storage and integration of <a href="/wiki/Personally_identifiable_information" class="mw-redirect" title="Personally identifiable information">personally identifiable information</a>; expert panels have released various policy recommendations to conform practice to expectations of privacy.<sup id="cite_ref-212" class="reference"><a href="#cite_note-212"><span class="cite-bracket">&#91;</span>212<span class="cite-bracket">&#93;</span></a></sup> The misuse of big data in several cases by media, companies, and even the government has allowed for abolition of trust in almost every fundamental institution holding up society.<sup id="cite_ref-213" class="reference"><a href="#cite_note-213"><span class="cite-bracket">&#91;</span>213<span class="cite-bracket">&#93;</span></a></sup> </p><p>Barocas and Nissenbaum argue that one way of protecting individual users is by being informed about the types of information being collected, with whom it is shared, under what constraints and for what purposes.<sup id="cite_ref-214" class="reference"><a href="#cite_note-214"><span class="cite-bracket">&#91;</span>214<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Critiques_of_the_&quot;V&quot;_model"><span id="Critiques_of_the_.22V.22_model"></span>Critiques of the "V" model</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=36" title="Edit section: Critiques of the &quot;V&quot; model"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The "V" model of big data is concerning as it centers around computational scalability and lacks in a loss around the perceptibility and understandability of information. This led to the framework of <a href="/w/index.php?title=Cognitive_big_data&amp;action=edit&amp;redlink=1" class="new" title="Cognitive big data (page does not exist)">cognitive big data</a>, which characterizes big data applications according to:<sup id="cite_ref-CSO_1_215-0" class="reference"><a href="#cite_note-CSO_1-215"><span class="cite-bracket">&#91;</span>215<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li>Data completeness: understanding of the non-obvious from data</li> <li>Data correlation, causation, and predictability: causality as not essential requirement to achieve predictability</li> <li>Explainability and interpretability: humans desire to understand and accept what they understand, where algorithms do not cope with this</li> <li>Level of <a href="/wiki/Automated_decision-making" title="Automated decision-making">automated decision-making</a>: algorithms that support automated decision making and algorithmic self-learning</li></ul> <div class="mw-heading mw-heading3"><h3 id="Critiques_of_novelty">Critiques of novelty</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=37" title="Edit section: Critiques of novelty"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Large data sets have been analyzed by computing machines for well over a century, including the US census analytics performed by <a href="/wiki/IBM" title="IBM">IBM</a>'s punch-card machines which computed statistics including means and variances of populations across the whole continent. In more recent decades, science experiments such as <a href="/wiki/CERN" title="CERN">CERN</a> have produced data on similar scales to current commercial "big data". However, science experiments have tended to analyze their data using specialized custom-built <a href="/wiki/High-performance_computing" title="High-performance computing">high-performance computing</a> (super-computing) clusters and grids, rather than clouds of cheap commodity computers as in the current commercial wave, implying a difference in both culture and technology stack. </p> <div class="mw-heading mw-heading3"><h3 id="Critiques_of_big_data_execution">Critiques of big data execution</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=38" title="Edit section: Critiques of big data execution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Ulf-Dietrich_Reips" title="Ulf-Dietrich Reips">Ulf-Dietrich Reips</a> and Uwe Matzat wrote in 2014 that big data had become a "fad" in scientific research.<sup id="cite_ref-pigdata_185-2" class="reference"><a href="#cite_note-pigdata-185"><span class="cite-bracket">&#91;</span>185<span class="cite-bracket">&#93;</span></a></sup> Researcher <a href="/wiki/Danah_Boyd" class="mw-redirect" title="Danah Boyd">Danah Boyd</a> has raised concerns about the use of big data in science neglecting principles such as choosing a <a href="/wiki/Sampling_(statistics)" title="Sampling (statistics)">representative sample</a> by being too concerned about handling the huge amounts of data.<sup id="cite_ref-danah_216-0" class="reference"><a href="#cite_note-danah-216"><span class="cite-bracket">&#91;</span>216<span class="cite-bracket">&#93;</span></a></sup> This approach may lead to results that have a <a href="/wiki/Bias_(statistics)" title="Bias (statistics)">bias</a> in one way or another.<sup id="cite_ref-217" class="reference"><a href="#cite_note-217"><span class="cite-bracket">&#91;</span>217<span class="cite-bracket">&#93;</span></a></sup> Integration across heterogeneous data resources—some that might be considered big data and others not—presents formidable logistical as well as analytical challenges, but many researchers argue that such integrations are likely to represent the most promising new frontiers in science.<sup id="cite_ref-218" class="reference"><a href="#cite_note-218"><span class="cite-bracket">&#91;</span>218<span class="cite-bracket">&#93;</span></a></sup> In the provocative article "Critical Questions for Big Data",<sup id="cite_ref-danah2_219-0" class="reference"><a href="#cite_note-danah2-219"><span class="cite-bracket">&#91;</span>219<span class="cite-bracket">&#93;</span></a></sup> the authors title big data a part of <a href="/wiki/Mythology" class="mw-redirect" title="Mythology">mythology</a>: "large data sets offer a higher form of intelligence and knowledge [...], with the aura of truth, objectivity, and accuracy". Users of big data are often "lost in the sheer volume of numbers", and "working with Big Data is still subjective, and what it quantifies does not necessarily have a closer claim on objective truth".<sup id="cite_ref-danah2_219-1" class="reference"><a href="#cite_note-danah2-219"><span class="cite-bracket">&#91;</span>219<span class="cite-bracket">&#93;</span></a></sup> Recent developments in BI domain, such as pro-active reporting especially target improvements in the usability of big data, through automated <a href="/wiki/Filter_(software)" title="Filter (software)">filtering</a> of <a href="/wiki/Spurious_relationship" title="Spurious relationship">non-useful data and correlations</a>.<sup id="cite_ref-Big_Decisions_White_Paper_220-0" class="reference"><a href="#cite_note-Big_Decisions_White_Paper-220"><span class="cite-bracket">&#91;</span>220<span class="cite-bracket">&#93;</span></a></sup> Big structures are full of spurious correlations<sup id="cite_ref-221" class="reference"><a href="#cite_note-221"><span class="cite-bracket">&#91;</span>221<span class="cite-bracket">&#93;</span></a></sup> either because of non-causal coincidences (<a href="/wiki/Law_of_truly_large_numbers" title="Law of truly large numbers">law of truly large numbers</a>), solely nature of big randomness<sup id="cite_ref-222" class="reference"><a href="#cite_note-222"><span class="cite-bracket">&#91;</span>222<span class="cite-bracket">&#93;</span></a></sup> (<a href="/wiki/Ramsey_theory" title="Ramsey theory">Ramsey theory</a>), or existence of <a href="/wiki/Confounding_factor" class="mw-redirect" title="Confounding factor">non-included factors</a> so the hope, of early experimenters to make large databases of numbers "speak for themselves" and revolutionize scientific method, is questioned.<sup id="cite_ref-223" class="reference"><a href="#cite_note-223"><span class="cite-bracket">&#91;</span>223<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Catherine_Tucker" title="Catherine Tucker">Catherine Tucker</a> has pointed to "hype" around big data, writing "By itself, big data is unlikely to be valuable." The article explains: "The many contexts where data is cheap relative to the cost of retaining talent to process it, suggests that processing skills are more important than data itself in creating value for a firm."<sup id="cite_ref-224" class="reference"><a href="#cite_note-224"><span class="cite-bracket">&#91;</span>224<span class="cite-bracket">&#93;</span></a></sup> </p><p>Big data analysis is often shallow compared to analysis of smaller data sets.<sup id="cite_ref-kdnuggets-berchthold_225-0" class="reference"><a href="#cite_note-kdnuggets-berchthold-225"><span class="cite-bracket">&#91;</span>225<span class="cite-bracket">&#93;</span></a></sup> In many big data projects, there is no large data analysis happening, but the challenge is the <a href="/wiki/Extract,_transform,_load" title="Extract, transform, load">extract, transform, load</a> part of data pre-processing.<sup id="cite_ref-kdnuggets-berchthold_225-1" class="reference"><a href="#cite_note-kdnuggets-berchthold-225"><span class="cite-bracket">&#91;</span>225<span class="cite-bracket">&#93;</span></a></sup> </p><p>Big data is a <a href="/wiki/Buzzword" title="Buzzword">buzzword</a> and a "vague term",<sup id="cite_ref-226" class="reference"><a href="#cite_note-226"><span class="cite-bracket">&#91;</span>226<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-ft-harford_227-0" class="reference"><a href="#cite_note-ft-harford-227"><span class="cite-bracket">&#91;</span>227<span class="cite-bracket">&#93;</span></a></sup> but at the same time an "obsession"<sup id="cite_ref-ft-harford_227-1" class="reference"><a href="#cite_note-ft-harford-227"><span class="cite-bracket">&#91;</span>227<span class="cite-bracket">&#93;</span></a></sup> with entrepreneurs, consultants, scientists, and the media. Big data showcases such as <a href="/wiki/Google_Flu_Trends" title="Google Flu Trends">Google Flu Trends</a> failed to deliver good predictions in recent years, overstating the flu outbreaks by a factor of two. Similarly, <a href="/wiki/Academy_awards" class="mw-redirect" title="Academy awards">Academy awards</a> and election predictions solely based on Twitter were more often off than on target. Big data often poses the same challenges as small data; adding more data does not solve problems of bias, but may emphasize other problems. In particular data sources such as Twitter are not representative of the overall population, and results drawn from such sources may then lead to wrong conclusions. <a href="/wiki/Google_Translate" title="Google Translate">Google Translate</a>—which is based on big data statistical analysis of text—does a good job at translating web pages. However, results from specialized domains may be dramatically skewed. On the other hand, big data may also introduce new problems, such as the <a href="/wiki/Multiple_comparisons_problem" title="Multiple comparisons problem">multiple comparisons problem</a>: simultaneously testing a large set of hypotheses is likely to produce many false results that mistakenly appear significant. Ioannidis argued that "most published research findings are false"<sup id="cite_ref-Ioannidis_228-0" class="reference"><a href="#cite_note-Ioannidis-228"><span class="cite-bracket">&#91;</span>228<span class="cite-bracket">&#93;</span></a></sup> due to essentially the same effect: when many scientific teams and researchers each perform many experiments (i.e. process a big amount of scientific data; although not with big data technology), the likelihood of a "significant" result being false grows fast – even more so, when only positive results are published. Furthermore, big data analytics results are only as good as the model on which they are predicated. In an example, big data took part in attempting to predict the results of the 2016 U.S. presidential election<sup id="cite_ref-229" class="reference"><a href="#cite_note-229"><span class="cite-bracket">&#91;</span>229<span class="cite-bracket">&#93;</span></a></sup> with varying degrees of success. </p> <div class="mw-heading mw-heading3"><h3 id="Critiques_of_big_data_policing_and_surveillance">Critiques of big data policing and surveillance</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=39" title="Edit section: Critiques of big data policing and surveillance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Big data has been used in policing and surveillance by institutions like <a href="/wiki/Law_enforcement_in_the_United_States" title="Law enforcement in the United States">law enforcement</a> and <a href="/wiki/Corporate_surveillance" title="Corporate surveillance">corporations</a>.<sup id="cite_ref-230" class="reference"><a href="#cite_note-230"><span class="cite-bracket">&#91;</span>230<span class="cite-bracket">&#93;</span></a></sup> Due to the less visible nature of data-based surveillance as compared to traditional methods of policing, objections to big data policing are less likely to arise. According to Sarah Brayne's <i>Big Data Surveillance: The Case of Policing</i>,<sup id="cite_ref-231" class="reference"><a href="#cite_note-231"><span class="cite-bracket">&#91;</span>231<span class="cite-bracket">&#93;</span></a></sup> big data policing can reproduce existing <a href="/wiki/Social_inequality" title="Social inequality">societal inequalities</a> in three ways: </p> <ul><li>Placing people under increased surveillance by using the justification of a mathematical and therefore unbiased algorithm</li> <li>Increasing the scope and number of people that are subject to law enforcement tracking and exacerbating existing <a href="/wiki/Race_in_the_United_States_criminal_justice_system#Racial_inequality_in_incarceration" title="Race in the United States criminal justice system">racial overrepresentation</a> in the criminal justice system</li> <li>Encouraging members of society to abandon interactions with institutions that would create a digital trace, thus creating obstacles to social inclusion</li></ul> <p>If these potential problems are not corrected or regulated, the effects of big data policing may continue to shape societal hierarchies. Conscientious usage of big data policing could prevent individual level biases from becoming institutional biases, Brayne also notes. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=40" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable selfref">For a list of companies, and tools, see also: <a href="/wiki/Category:Big_data" title="Category:Big data">Category:Big data</a></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 15em;"> <ul><li><a href="/wiki/Big_data_ethics" title="Big data ethics">Big data ethics</a>&#160;– Ethics of mass data analytics</li> <li><a href="/wiki/Big_data_maturity_model" title="Big data maturity model">Big data maturity model</a>&#160;– Aspect of computer science</li> <li><a href="/wiki/Big_memory" title="Big memory">Big memory</a>&#160;– A large amount of random-access memory</li> <li><a href="/wiki/Data_curation" title="Data curation">Data curation</a>&#160;– Organization of collected data</li> <li><a href="/wiki/Data_defined_storage" title="Data defined storage">Data defined storage</a>&#160;– Marketing term for managing data by combining application, information and storage tiers</li> <li><a href="/wiki/Data_engineering" title="Data engineering">Data engineering</a>&#160;– Software engineering approach to designing and developing information systems</li> <li><a href="/wiki/Data_lineage" title="Data lineage">Data lineage</a>&#160;– Origins and events of data</li> <li><a href="/wiki/Data_philanthropy" title="Data philanthropy">Data philanthropy</a>&#160;– Aspect of culture</li> <li><a href="/wiki/Data_science" title="Data science">Data science</a>&#160;– Field of study to extract insights from data</li> <li><a href="/wiki/Datafication" title="Datafication">Datafication</a>&#160;– Technological trend</li> <li><a href="/wiki/Document-oriented_database" title="Document-oriented database">Document-oriented database</a>&#160;– Type of computer program</li> <li><a href="/wiki/List_of_big_data_companies" title="List of big data companies">List of big data companies</a></li> <li><a href="/wiki/Very_large_database" title="Very large database">Very large database</a>&#160;– Database that contains a very large amount of data</li> <li><a href="/wiki/XLDB" title="XLDB">XLDB</a>&#160;– annual conference series on databases, data management and analytics<span style="display:none" class="category-wikidata-fallback-annotation">Pages displaying wikidata descriptions as a fallback</span></li></ul></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=41" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFHilbertLópez2011" class="citation journal cs1">Hilbert, Martin; López, Priscila (2011). <a rel="nofollow" class="external text" href="http://www.martinhilbert.net/WorldInfoCapacity.html">"The World's Technological Capacity to Store, Communicate, and Compute Information"</a>. <i>Science</i>. <b>332</b> (6025): 60–65. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011Sci...332...60H">2011Sci...332...60H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1200970">10.1126/science.1200970</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21310967">21310967</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:206531385">206531385</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160414233810/http://www.martinhilbert.net/WorldInfoCapacity.html/">Archived</a> from the original on 14 April 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">13 April</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=The+World%27s+Technological+Capacity+to+Store%2C+Communicate%2C+and+Compute+Information&amp;rft.volume=332&amp;rft.issue=6025&amp;rft.pages=60-65&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.1200970&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A206531385%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F21310967&amp;rft_id=info%3Abibcode%2F2011Sci...332...60H&amp;rft.aulast=Hilbert&amp;rft.aufirst=Martin&amp;rft.au=L%C3%B3pez%2C+Priscila&amp;rft_id=http%3A%2F%2Fwww.martinhilbert.net%2FWorldInfoCapacity.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBreur2016" class="citation journal cs1">Breur, Tom (July 2016). <a rel="nofollow" class="external text" href="https://doi.org/10.1057%2Fs41270-016-0001-3">"Statistical Power Analysis and the contemporary "crisis" in social sciences"</a>. <i>Journal of Marketing Analytics</i>. <b>4</b> (2–3). London, England: <a href="/wiki/Palgrave_Macmillan" title="Palgrave Macmillan">Palgrave Macmillan</a>: 61–65. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1057%2Fs41270-016-0001-3">10.1057/s41270-016-0001-3</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2050-3318">2050-3318</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Marketing+Analytics&amp;rft.atitle=Statistical+Power+Analysis+and+the+contemporary+%22crisis%22+in+social+sciences&amp;rft.volume=4&amp;rft.issue=2%E2%80%933&amp;rft.pages=61-65&amp;rft.date=2016-07&amp;rft_id=info%3Adoi%2F10.1057%2Fs41270-016-0001-3&amp;rft.issn=2050-3318&amp;rft.aulast=Breur&amp;rft.aufirst=Tom&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1057%252Fs41270-016-0001-3&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcAfeeBrynjolfsson2012" class="citation journal cs1">McAfee, Andrew; Brynjolfsson, Erik (1 October 2012). <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23074865/">"Big data: the management revolution"</a>. <i>Harvard Business Review</i>. <b>90</b> (10): 60–66, 68, 128. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0017-8012">0017-8012</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23074865">23074865</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Harvard+Business+Review&amp;rft.atitle=Big+data%3A+the+management+revolution&amp;rft.volume=90&amp;rft.issue=10&amp;rft.pages=60-66%2C+68%2C+128&amp;rft.date=2012-10-01&amp;rft_id=info%3Apmid%2F23074865&amp;rft.issn=0017-8012&amp;rft.aulast=McAfee&amp;rft.aufirst=Andrew&amp;rft.au=Brynjolfsson%2C+Erik&amp;rft_id=https%3A%2F%2Fpubmed.ncbi.nlm.nih.gov%2F23074865%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-:0-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.ibm.com/blogs/watson-health/the-5-vs-of-big-data/">"The 5 V's of big data"</a>. <i>Watson Health Perspectives</i>. 17 September 2016. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210118085939/https://www.ibm.com/blogs/watson-health/the-5-vs-of-big-data/">Archived</a> from the original on 18 January 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">20 January</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Watson+Health+Perspectives&amp;rft.atitle=The+5+V%27s+of+big+data&amp;rft.date=2016-09-17&amp;rft_id=https%3A%2F%2Fwww.ibm.com%2Fblogs%2Fwatson-health%2Fthe-5-vs-of-big-data%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCappaOrianiPeruffoMcCarthy2021" class="citation journal cs1">Cappa, Francesco; Oriani, Raffaele; Peruffo, Enzo; McCarthy, Ian (2021). <a rel="nofollow" class="external text" href="https://onlinelibrary.wiley.com/doi/10.1111/jpim.12545">"Big Data for Creating and Capturing Value in the Digitalized Environment: Unpacking the Effects of Volume, Variety, and Veracity on Firm Performance"</a>. <i>Journal of Product Innovation Management</i>. <b>38</b> (1): 49–67. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fjpim.12545">10.1111/jpim.12545</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0737-6782">0737-6782</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:225209179">225209179</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Product+Innovation+Management&amp;rft.atitle=Big+Data+for+Creating+and+Capturing+Value+in+the+Digitalized+Environment%3A+Unpacking+the+Effects+of+Volume%2C+Variety%2C+and+Veracity+on+Firm+Performance&amp;rft.volume=38&amp;rft.issue=1&amp;rft.pages=49-67&amp;rft.date=2021&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A225209179%23id-name%3DS2CID&amp;rft.issn=0737-6782&amp;rft_id=info%3Adoi%2F10.1111%2Fjpim.12545&amp;rft.aulast=Cappa&amp;rft.aufirst=Francesco&amp;rft.au=Oriani%2C+Raffaele&amp;rft.au=Peruffo%2C+Enzo&amp;rft.au=McCarthy%2C+Ian&amp;rft_id=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1111%2Fjpim.12545&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFboydCrawford2011" class="citation journal cs1">boyd, dana; Crawford, Kate (21 September 2011). <a rel="nofollow" class="external text" href="http://osf.io/nrjhn/">"Six Provocations for Big Data"</a>. <i>Social Science Research Network: A Decade in Internet Time: Symposium on the Dynamics of the Internet and Society</i>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2139%2Fssrn.1926431">10.2139/ssrn.1926431</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:148610111">148610111</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200228015558/https://osf.io/nrjhn/">Archived</a> from the original on 28 February 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">12 July</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Social+Science+Research+Network%3A+A+Decade+in+Internet+Time%3A+Symposium+on+the+Dynamics+of+the+Internet+and+Society&amp;rft.atitle=Six+Provocations+for+Big+Data&amp;rft.date=2011-09-21&amp;rft_id=info%3Adoi%2F10.2139%2Fssrn.1926431&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A148610111%23id-name%3DS2CID&amp;rft.aulast=boyd&amp;rft.aufirst=dana&amp;rft.au=Crawford%2C+Kate&amp;rft_id=http%3A%2F%2Fosf.io%2Fnrjhn%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-Economist-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-Economist_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Economist_7-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Economist_7-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Economist_7-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Economist_7-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Economist_7-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Economist_7-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="http://www.economist.com/node/15557443">"Data, data everywhere"</a>. <i>The Economist</i>. 25 February 2010. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180527012646/https://www.economist.com/node/15557443">Archived</a> from the original on 27 May 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">9 December</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Economist&amp;rft.atitle=Data%2C+data+everywhere&amp;rft.date=2010-02-25&amp;rft_id=http%3A%2F%2Fwww.economist.com%2Fnode%2F15557443&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation journal cs1"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F455001a">"Community cleverness required"</a>. <i>Nature</i>. <b>455</b> (7209): 1. September 2008. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008Natur.455....1.">2008Natur.455....1.</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F455001a">10.1038/455001a</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18769385">18769385</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Community+cleverness+required&amp;rft.volume=455&amp;rft.issue=7209&amp;rft.pages=1&amp;rft.date=2008-09&amp;rft_id=info%3Apmid%2F18769385&amp;rft_id=info%3Adoi%2F10.1038%2F455001a&amp;rft_id=info%3Abibcode%2F2008Natur.455....1.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252F455001a&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReichmanJonesSchildhauer2011" class="citation journal cs1">Reichman OJ, Jones MB, Schildhauer MP (February 2011). <a rel="nofollow" class="external text" href="https://escholarship.org/uc/item/7627s45z">"Challenges and opportunities of open data in ecology"</a>. <i>Science</i>. <b>331</b> (6018): 703–5. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011Sci...331..703R">2011Sci...331..703R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1197962">10.1126/science.1197962</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21311007">21311007</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:22686503">22686503</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20201019060839/https://escholarship.org/uc/item/7627s45z">Archived</a> from the original on 19 October 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">12 July</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Challenges+and+opportunities+of+open+data+in+ecology&amp;rft.volume=331&amp;rft.issue=6018&amp;rft.pages=703-5&amp;rft.date=2011-02&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.1197962&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A22686503%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F21311007&amp;rft_id=info%3Abibcode%2F2011Sci...331..703R&amp;rft.aulast=Reichman&amp;rft.aufirst=OJ&amp;rft.au=Jones%2C+MB&amp;rft.au=Schildhauer%2C+MP&amp;rft_id=https%3A%2F%2Fescholarship.org%2Fuc%2Fitem%2F7627s45z&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHellerstein,_Joe2008" class="citation web cs1">Hellerstein, Joe (9 November 2008). <a rel="nofollow" class="external text" href="http://gigaom.com/2008/11/09/mapreduce-leads-the-way-for-parallel-programming/">"Parallel Programming in the Age of Big Data"</a>. <i>Gigaom Blog</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20121007033928/http://gigaom.com/2008/11/09/mapreduce-leads-the-way-for-parallel-programming/">Archived</a> from the original on 7 October 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">21 April</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Gigaom+Blog&amp;rft.atitle=Parallel+Programming+in+the+Age+of+Big+Data&amp;rft.date=2008-11-09&amp;rft.au=Hellerstein%2C+Joe&amp;rft_id=http%3A%2F%2Fgigaom.com%2F2008%2F11%2F09%2Fmapreduce-leads-the-way-for-parallel-programming%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSegaranHammerbacher2009" class="citation book cs1">Segaran, Toby; Hammerbacher, Jeff (2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=zxNglqU1FKgC"><i>Beautiful Data: The Stories Behind Elegant Data Solutions</i></a>. O'Reilly Media. p.&#160;257. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-596-15711-1" title="Special:BookSources/978-0-596-15711-1"><bdi>978-0-596-15711-1</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160512110157/https://books.google.com/books?id=zxNglqU1FKgC">Archived</a> from the original on 12 May 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">31 December</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Beautiful+Data%3A+The+Stories+Behind+Elegant+Data+Solutions&amp;rft.pages=257&amp;rft.pub=O%27Reilly+Media&amp;rft.date=2009&amp;rft.isbn=978-0-596-15711-1&amp;rft.aulast=Segaran&amp;rft.aufirst=Toby&amp;rft.au=Hammerbacher%2C+Jeff&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DzxNglqU1FKgC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-martinhilbert.net-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-martinhilbert.net_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-martinhilbert.net_12-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHilbertLópez2011" class="citation journal cs1">Hilbert M, López P (April 2011). <a rel="nofollow" class="external text" href="http://www.uvm.edu/pdodds/files/papers/others/2011/hilbert2011a.pdf">"The world's technological capacity to store, communicate, and compute information"</a> <span class="cs1-format">(PDF)</span>. <i>Science</i>. <b>332</b> (6025): 60–5. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011Sci...332...60H">2011Sci...332...60H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1200970">10.1126/science.1200970</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21310967">21310967</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:206531385">206531385</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190819122943/http://www.uvm.edu/pdodds/files/papers/others/2011/hilbert2011a.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 19 August 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">11 May</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=The+world%27s+technological+capacity+to+store%2C+communicate%2C+and+compute+information&amp;rft.volume=332&amp;rft.issue=6025&amp;rft.pages=60-5&amp;rft.date=2011-04&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.1200970&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A206531385%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F21310967&amp;rft_id=info%3Abibcode%2F2011Sci...332...60H&amp;rft.aulast=Hilbert&amp;rft.aufirst=M&amp;rft.au=L%C3%B3pez%2C+P&amp;rft_id=http%3A%2F%2Fwww.uvm.edu%2Fpdodds%2Ffiles%2Fpapers%2Fothers%2F2011%2Fhilbert2011a.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.ibm.com/big-data/us/en/">"IBM What is big data? – Bringing big data to the enterprise"</a>. ibm.com. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130824213031/http://www.ibm.com/big-data/us/en/">Archived</a> from the original on 24 August 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">26 August</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=IBM+What+is+big+data%3F+%E2%80%93+Bringing+big+data+to+the+enterprise&amp;rft.pub=ibm.com&amp;rft_id=http%3A%2F%2Fwww.ibm.com%2Fbig-data%2Fus%2Fen%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReinselGantzRydning2017" class="citation web cs1">Reinsel, David; Gantz, John; Rydning, John (13 April 2017). <a rel="nofollow" class="external text" href="https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf">"Data Age 2025: The Evolution of Data to Life-Critical"</a> <span class="cs1-format">(PDF)</span>. <i>seagate.com</i>. Framingham, MA, US: <a href="/wiki/International_Data_Corporation" class="mw-redirect" title="International Data Corporation">International Data Corporation</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20171208010603/https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 8 December 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">2 November</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=seagate.com&amp;rft.atitle=Data+Age+2025%3A+The+Evolution+of+Data+to+Life-Critical&amp;rft.date=2017-04-13&amp;rft.aulast=Reinsel&amp;rft.aufirst=David&amp;rft.au=Gantz%2C+John&amp;rft.au=Rydning%2C+John&amp;rft_id=https%3A%2F%2Fwww.seagate.com%2Ffiles%2Fwww-content%2Four-story%2Ftrends%2Ffiles%2FSeagate-WP-DataAge2025-March-2017.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20220723034825/https://www.idc.com/getdoc.jsp?containerId=prUS48165721">"Global Spending on Big Data and Analytics Solutions Will Reach $215.7 Billion in 2021, According to a New IDC Spending Guide"</a>. Archived from <a rel="nofollow" class="external text" href="https://www.idc.com/getdoc.jsp?containerId=prUS48165721">the original</a> on 23 July 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">31 July</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Global+Spending+on+Big+Data+and+Analytics+Solutions+Will+Reach+%24215.7+Billion+in+2021%2C+According+to+a+New+IDC+Spending+Guide&amp;rft_id=https%3A%2F%2Fwww.idc.com%2Fgetdoc.jsp%3FcontainerId%3DprUS48165721&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.statista.com/statistics/551501/worldwide-big-data-business-analytics-revenue/">"Big data and business analytics revenue 2022"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Big+data+and+business+analytics+revenue+2022&amp;rft_id=https%3A%2F%2Fwww.statista.com%2Fstatistics%2F551501%2Fworldwide-big-data-business-analytics-revenue%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.statista.com/statistics/254266/global-big-data-market-forecast/">"Global big data industry market size 2011-2027"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Global+big+data+industry+market+size+2011-2027&amp;rft_id=https%3A%2F%2Fwww.statista.com%2Fstatistics%2F254266%2Fglobal-big-data-market-forecast%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-McKinsey2011-18"><span class="mw-cite-backlink">^ <a href="#cite_ref-McKinsey2011_18-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-McKinsey2011_18-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-McKinsey2011_18-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.mckinsey.com/~/media/mckinsey/business%20functions/mckinsey%20digital/our%20insights/big%20data%20the%20next%20frontier%20for%20innovation/mgi_big_data_exec_summary.pdf">Big data: The next frontier for innovation, competition, and productivity</a> McKinsey Global Institute May 2011</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text">Oracle and FSN, <a rel="nofollow" class="external text" href="http://www.fsn.co.uk/channel_bi_bpm_cpm/mastering_big_data_cfo_strategies_to_transform_insight_into_opportunity">"Mastering Big Data: CFO Strategies to Transform Insight into Opportunity"</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130804062518/http://www.fsn.co.uk/channel_bi_bpm_cpm/mastering_big_data_cfo_strategies_to_transform_insight_into_opportunity">Archived</a> 4 August 2013 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>, December 2012</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJacobs,_A.2009" class="citation web cs1">Jacobs, A. (6 July 2009). <a rel="nofollow" class="external text" href="http://queue.acm.org/detail.cfm?id=1563874">"The Pathologies of Big Data"</a>. <i>ACMQueue</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20151208072827/http://queue.acm.org/detail.cfm?id=1563874">Archived</a> from the original on 8 December 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">21 April</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=ACMQueue&amp;rft.atitle=The+Pathologies+of+Big+Data&amp;rft.date=2009-07-06&amp;rft.au=Jacobs%2C+A.&amp;rft_id=http%3A%2F%2Fqueue.acm.org%2Fdetail.cfm%3Fid%3D1563874&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMagoulasLorica2009" class="citation journal cs1">Magoulas, Roger; Lorica, Ben (February 2009). <a rel="nofollow" class="external text" href="https://academics.uccs.edu/~ooluwada/courses/datamining/ExtraReading/BigData">"Introduction to Big Data"</a>. <i>Release 2.0</i> (11). Sebastopol, CA: O'Reilly Media. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20211102185002/https://academics.uccs.edu/~ooluwada/courses/datamining/ExtraReading/BigData">Archived</a> from the original on 2 November 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">26 February</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Release+2.0&amp;rft.atitle=Introduction+to+Big+Data&amp;rft.issue=11&amp;rft.date=2009-02&amp;rft.aulast=Magoulas&amp;rft.aufirst=Roger&amp;rft.au=Lorica%2C+Ben&amp;rft_id=https%3A%2F%2Facademics.uccs.edu%2F~ooluwada%2Fcourses%2Fdatamining%2FExtraReading%2FBigData&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohn_R._Mashey1998" class="citation web cs1">John R. Mashey (25 April 1998). <a rel="nofollow" class="external text" href="http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf">"Big Data… and the Next Wave of InfraStress"</a> <span class="cs1-format">(PDF)</span>. <i>Slides from invited talk</i>. Usenix. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161012095743/http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 12 October 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">28 September</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Slides+from+invited+talk&amp;rft.atitle=Big+Data%E2%80%A6+and+the+Next+Wave+of+InfraStress&amp;rft.date=1998-04-25&amp;rft.au=John+R.+Mashey&amp;rft_id=http%3A%2F%2Fstatic.usenix.org%2Fevent%2Fusenix99%2Finvited_talks%2Fmashey.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteve_Lohr2013" class="citation news cs1">Steve Lohr (1 February 2013). <a rel="nofollow" class="external text" href="http://bits.blogs.nytimes.com/2013/02/01/the-origins-of-big-data-an-etymological-detective-story/">"The Origins of 'Big Data': An Etymological Detective Story"</a>. <i><a href="/wiki/The_New_York_Times" title="The New York Times">The New York Times</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160306042217/http://bits.blogs.nytimes.com/2013/02/01/the-origins-of-big-data-an-etymological-detective-story/">Archived</a> from the original on 6 March 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">28 September</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+New+York+Times&amp;rft.atitle=The+Origins+of+%27Big+Data%27%3A+An+Etymological+Detective+Story&amp;rft.date=2013-02-01&amp;rft.au=Steve+Lohr&amp;rft_id=http%3A%2F%2Fbits.blogs.nytimes.com%2F2013%2F02%2F01%2Fthe-origins-of-big-data-an-etymological-detective-story%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTESnijdersMatzatReips2012-24"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTESnijdersMatzatReips2012_24-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTESnijdersMatzatReips2012_24-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFSnijdersMatzatReips2012">Snijders, Matzat &amp; Reips 2012</a>.</span> </li> <li id="cite_note-Springer_2017-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-Springer_2017_25-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDedićStanier2017" class="citation book cs1">Dedić, N.; Stanier, C. (2017). <a rel="nofollow" class="external text" href="http://eprints.staffs.ac.uk/3551/1/Towards%20Differentiating%20Business%20Intelligence%20Big%20Data%20Data%20Analytics%20and%20Knowldge%20Discovery.docx">"Towards Differentiating Business Intelligence, Big Data, Data Analytics and Knowledge Discovery"</a>. <i>Innovations in Enterprise Information Systems Management and Engineering</i>. Lecture Notes in Business Information Processing. Vol.&#160;285. Berlin; Heidelberg: Springer International Publishing. pp.&#160;114–22. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-319-58801-8_10">10.1007/978-3-319-58801-8_10</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-58800-1" title="Special:BookSources/978-3-319-58800-1"><bdi>978-3-319-58800-1</bdi></a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1865-1356">1865-1356</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/909580101">909580101</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20201127065236/http://eprints.staffs.ac.uk/3551/1/Towards%20Differentiating%20Business%20Intelligence%20Big%20Data%20Data%20Analytics%20and%20Knowldge%20Discovery.docx">Archived</a> from the original on 27 November 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">7 September</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Towards+Differentiating+Business+Intelligence%2C+Big+Data%2C+Data+Analytics+and+Knowledge+Discovery&amp;rft.btitle=Innovations+in+Enterprise+Information+Systems+Management+and+Engineering&amp;rft.place=Berlin%3B+Heidelberg&amp;rft.series=Lecture+Notes+in+Business+Information+Processing&amp;rft.pages=114-22&amp;rft.pub=Springer+International+Publishing&amp;rft.date=2017&amp;rft_id=info%3Aoclcnum%2F909580101&amp;rft.issn=1865-1356&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-319-58801-8_10&amp;rft.isbn=978-3-319-58800-1&amp;rft.aulast=Dedi%C4%87&amp;rft.aufirst=N.&amp;rft.au=Stanier%2C+C.&amp;rft_id=http%3A%2F%2Feprints.staffs.ac.uk%2F3551%2F1%2FTowards%2520Differentiating%2520Business%2520Intelligence%2520Big%2520Data%2520Data%2520Analytics%2520and%2520Knowldge%2520Discovery.docx&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-Everts-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-Everts_26-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEverts2016" class="citation magazine cs1">Everts, Sarah (2016). <a rel="nofollow" class="external text" href="https://www.sciencehistory.org/distillations/magazine/information-overload">"Information Overload"</a>. <i><a href="/wiki/Distillations_(magazine)" class="mw-redirect" title="Distillations (magazine)">Distillations</a></i>. Vol.&#160;2, no.&#160;2. pp.&#160;26–33. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190403133511/https://www.sciencehistory.org/distillations/magazine/information-overload">Archived</a> from the original on 3 April 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">22 March</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Distillations&amp;rft.atitle=Information+Overload&amp;rft.volume=2&amp;rft.issue=2&amp;rft.pages=26-33&amp;rft.date=2016&amp;rft.aulast=Everts&amp;rft.aufirst=Sarah&amp;rft_id=https%3A%2F%2Fwww.sciencehistory.org%2Fdistillations%2Fmagazine%2Finformation-overload&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIbrahimTargio_HashemYaqoobBadrul_Anuar2015" class="citation journal cs1">Ibrahim; Targio Hashem, Abaker; Yaqoob, Ibrar; Badrul Anuar, Nor; Mokhtar, Salimah; Gani, Abdullah; Ullah Khan, Samee (2015). "big data" on cloud computing: Review and open research issues". <i>Information Systems</i>. <b>47</b>: 98–115. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.is.2014.07.006">10.1016/j.is.2014.07.006</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:205488005">205488005</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Information+Systems&amp;rft.atitle=big+data%22+on+cloud+computing%3A+Review+and+open+research+issues&amp;rft.volume=47&amp;rft.pages=98-115&amp;rft.date=2015&amp;rft_id=info%3Adoi%2F10.1016%2Fj.is.2014.07.006&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A205488005%23id-name%3DS2CID&amp;rft.au=Ibrahim&amp;rft.au=Targio+Hashem%2C+Abaker&amp;rft.au=Yaqoob%2C+Ibrar&amp;rft.au=Badrul+Anuar%2C+Nor&amp;rft.au=Mokhtar%2C+Salimah&amp;rft.au=Gani%2C+Abdullah&amp;rft.au=Ullah+Khan%2C+Samee&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrimes" class="citation magazine cs1">Grimes, Seth. <a rel="nofollow" class="external text" href="http://www.informationweek.com/big-data/big-data-analytics/big-data-avoid-wanna-v-confusion/d/d-id/1111077">"Big Data: Avoid 'Wanna V' Confusion"</a>. <i><a href="/wiki/InformationWeek" title="InformationWeek">InformationWeek</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20151223185813/http://www.informationweek.com/big-data/big-data-analytics/big-data-avoid-wanna-v-confusion/d/d-id/1111077">Archived</a> from the original on 23 December 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">5 January</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=InformationWeek&amp;rft.atitle=Big+Data%3A+Avoid+%27Wanna+V%27+Confusion&amp;rft.aulast=Grimes&amp;rft.aufirst=Seth&amp;rft_id=http%3A%2F%2Fwww.informationweek.com%2Fbig-data%2Fbig-data-analytics%2Fbig-data-avoid-wanna-v-confusion%2Fd%2Fd-id%2F1111077&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFox2018" class="citation book cs1">Fox, Charles (25 March 2018). <a rel="nofollow" class="external text" href="https://www.springer.com/us/book/9783319729527"><i>Data Science for Transport</i></a>. Springer Textbooks in Earth Sciences, Geography and Environment. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9783319729527" title="Special:BookSources/9783319729527"><bdi>9783319729527</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180401144520/https://www.springer.com/us/book/9783319729527">Archived</a> from the original on 1 April 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">31 March</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Data+Science+for+Transport&amp;rft.series=Springer+Textbooks+in+Earth+Sciences%2C+Geography+and+Environment&amp;rft.pub=Springer&amp;rft.date=2018-03-25&amp;rft.isbn=9783319729527&amp;rft.aulast=Fox&amp;rft.aufirst=Charles&amp;rft_id=https%3A%2F%2Fwww.springer.com%2Fus%2Fbook%2F9783319729527&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKitchinMcArdle2016" class="citation journal cs1">Kitchin, Rob; McArdle, Gavin (2016). <a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F2053951716631130">"What makes Big Data, Big Data? Exploring the ontological characteristics of 26 datasets"</a>. <i>Big Data &amp; Society</i>. <b>3</b>: 1–10. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F2053951716631130">10.1177/2053951716631130</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:55539845">55539845</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Big+Data+%26+Society&amp;rft.atitle=What+makes+Big+Data%2C+Big+Data%3F+Exploring+the+ontological+characteristics+of+26+datasets&amp;rft.volume=3&amp;rft.pages=1-10&amp;rft.date=2016&amp;rft_id=info%3Adoi%2F10.1177%2F2053951716631130&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A55539845%23id-name%3DS2CID&amp;rft.aulast=Kitchin&amp;rft.aufirst=Rob&amp;rft.au=McArdle%2C+Gavin&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1177%252F2053951716631130&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBalazkaRodighiero2020" class="citation journal cs1">Balazka, Dominik; Rodighiero, Dario (2020). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931920">"Big Data and the Little Big Bang: An Epistemological (R)evolution"</a>. <i>Frontiers in Big Data</i>. <b>3</b>: 31. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffdata.2020.00031">10.3389/fdata.2020.00031</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/1721.1%2F128865">1721.1/128865</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931920">7931920</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33693404">33693404</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Frontiers+in+Big+Data&amp;rft.atitle=Big+Data+and+the+Little+Big+Bang%3A+An+Epistemological+%28R%29evolution&amp;rft.volume=3&amp;rft.pages=31&amp;rft.date=2020&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7931920%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F33693404&amp;rft_id=info%3Ahdl%2F1721.1%2F128865&amp;rft_id=info%3Adoi%2F10.3389%2Ffdata.2020.00031&amp;rft.aulast=Balazka&amp;rft.aufirst=Dominik&amp;rft.au=Rodighiero%2C+Dario&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7931920&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20210225014647/https://www.bigdataparis.com/presentation/mercredi/PDelort.pdf?PHPSESSID=tv7k70pcr3egpi2r6fi3qbjtj6#page=4">"avec focalisation sur Big Data &amp; Analytique"</a> <span class="cs1-format">(PDF)</span>. <i>Bigdataparis.com</i>. Archived from <a rel="nofollow" class="external text" href="http://www.bigdataparis.com/presentation/mercredi/PDelort.pdf?PHPSESSID=tv7k70pcr3egpi2r6fi3qbjtj6#page=4">the original</a> <span class="cs1-format">(PDF)</span> on 25 February 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">8 October</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Bigdataparis.com&amp;rft.atitle=avec+focalisation+sur+Big+Data+%26+Analytique&amp;rft_id=http%3A%2F%2Fwww.bigdataparis.com%2Fpresentation%2Fmercredi%2FPDelort.pdf%3FPHPSESSID%3Dtv7k70pcr3egpi2r6fi3qbjtj6%23page%3D4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-SAB1-33"><span class="mw-cite-backlink">^ <a href="#cite_ref-SAB1_33-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-SAB1_33-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Billings S.A. "Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains". Wiley, 2013</span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.andsi.fr/tag/dsi-big-data/">"le Blog ANDSI&#160;» DSI Big Data"</a>. <i>Andsi.fr</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20171010205333/http://www.andsi.fr/tag/dsi-big-data/">Archived</a> from the original on 10 October 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">8 October</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Andsi.fr&amp;rft.atitle=le+Blog+ANDSI+%C2%BB+DSI+Big+Data&amp;rft_id=http%3A%2F%2Fwww.andsi.fr%2Ftag%2Fdsi-big-data%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLes_Echos2013" class="citation web cs1">Les Echos (3 April 2013). <a rel="nofollow" class="external text" href="http://lecercle.lesechos.fr/entrepreneur/tendances-innovation/221169222/big-data-low-density-data-faible-densite-information-com">"Les Echos – Big Data car Low-Density Data&#160;? La faible densité en information comme facteur discriminant – Archives"</a>. <i>Lesechos.fr</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140430153257/http://lecercle.lesechos.fr/entrepreneur/tendances-innovation/221169222/big-data-low-density-data-faible-densite-information-com">Archived</a> from the original on 30 April 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">8 October</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Lesechos.fr&amp;rft.atitle=Les+Echos+%E2%80%93+Big+Data+car+Low-Density+Data+%3F+La+faible+densit%C3%A9+en+information+comme+facteur+discriminant+%E2%80%93+Archives&amp;rft.date=2013-04-03&amp;rft.au=Les+Echos&amp;rft_id=http%3A%2F%2Flecercle.lesechos.fr%2Fentrepreneur%2Ftendances-innovation%2F221169222%2Fbig-data-low-density-data-faible-densite-information-com&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSagiroglu2013" class="citation book cs1">Sagiroglu, Seref (2013). "Big data: A review". <i>2013 International Conference on Collaboration Technologies and Systems (CTS)</i>. pp.&#160;42–47. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FCTS.2013.6567202">10.1109/CTS.2013.6567202</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4673-6404-1" title="Special:BookSources/978-1-4673-6404-1"><bdi>978-1-4673-6404-1</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5724608">5724608</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Big+data%3A+A+review&amp;rft.btitle=2013+International+Conference+on+Collaboration+Technologies+and+Systems+%28CTS%29&amp;rft.pages=42-47&amp;rft.date=2013&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5724608%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FCTS.2013.6567202&amp;rft.isbn=978-1-4673-6404-1&amp;rft.aulast=Sagiroglu&amp;rft.aufirst=Seref&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKitchinMcArdle2016" class="citation journal cs1">Kitchin, Rob; McArdle, Gavin (17 February 2016). <a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F2053951716631130">"What makes Big Data, Big Data? Exploring the ontological characteristics of 26 datasets"</a>. <i>Big Data &amp; Society</i>. <b>3</b> (1): 205395171663113. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F2053951716631130">10.1177/2053951716631130</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Big+Data+%26+Society&amp;rft.atitle=What+makes+Big+Data%2C+Big+Data%3F+Exploring+the+ontological+characteristics+of+26+datasets&amp;rft.volume=3&amp;rft.issue=1&amp;rft.pages=205395171663113&amp;rft.date=2016-02-17&amp;rft_id=info%3Adoi%2F10.1177%2F2053951716631130&amp;rft.aulast=Kitchin&amp;rft.aufirst=Rob&amp;rft.au=McArdle%2C+Gavin&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1177%252F2053951716631130&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOnayÖztürk2018" class="citation journal cs1">Onay, Ceylan; Öztürk, Elif (2018). "A review of credit scoring research in the age of Big Data". <i>Journal of Financial Regulation and Compliance</i>. <b>26</b> (3): 382–405. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1108%2FJFRC-06-2017-0054">10.1108/JFRC-06-2017-0054</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:158895306">158895306</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Financial+Regulation+and+Compliance&amp;rft.atitle=A+review+of+credit+scoring+research+in+the+age+of+Big+Data&amp;rft.volume=26&amp;rft.issue=3&amp;rft.pages=382-405&amp;rft.date=2018&amp;rft_id=info%3Adoi%2F10.1108%2FJFRC-06-2017-0054&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A158895306%23id-name%3DS2CID&amp;rft.aulast=Onay&amp;rft.aufirst=Ceylan&amp;rft.au=%C3%96zt%C3%BCrk%2C+Elif&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20180731105912/https://spotlessdata.com/blog/big-datas-fourth-v">Big Data's Fourth V</a></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.ibmbigdatahub.com/blog/measuring-business-value-big-data">"Measuring the Business Value of Big Data | IBM Big Data &amp; Analytics Hub"</a>. <i>www.ibmbigdatahub.com</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210128191754/https://www.ibmbigdatahub.com/blog/measuring-business-value-big-data">Archived</a> from the original on 28 January 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">20 January</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.ibmbigdatahub.com&amp;rft.atitle=Measuring+the+Business+Value+of+Big+Data+%7C+IBM+Big+Data+%26+Analytics+Hub&amp;rft_id=https%3A%2F%2Fwww.ibmbigdatahub.com%2Fblog%2Fmeasuring-business-value-big-data&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKitchinMcArdle2016" class="citation journal cs1">Kitchin, Rob; McArdle, Gavin (5 January 2016). <a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F2053951716631130">"What makes Big Data, Big Data? Exploring the ontological characteristics of 26 datasets"</a>. <i>Big Data &amp; Society</i>. <b>3</b> (1): 205395171663113. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F2053951716631130">10.1177/2053951716631130</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2053-9517">2053-9517</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Big+Data+%26+Society&amp;rft.atitle=What+makes+Big+Data%2C+Big+Data%3F+Exploring+the+ontological+characteristics+of+26+datasets&amp;rft.volume=3&amp;rft.issue=1&amp;rft.pages=205395171663113&amp;rft.date=2016-01-05&amp;rft_id=info%3Adoi%2F10.1177%2F2053951716631130&amp;rft.issn=2053-9517&amp;rft.aulast=Kitchin&amp;rft.aufirst=Rob&amp;rft.au=McArdle%2C+Gavin&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1177%252F2053951716631130&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.eweek.com/database/survey-biggest-databases-approach-30-terabytes">"Survey: Biggest Databases Approach 30 Terabytes"</a>. <i>Eweek.com</i>. 8 November 2003<span class="reference-accessdate">. Retrieved <span class="nowrap">8 October</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Eweek.com&amp;rft.atitle=Survey%3A+Biggest+Databases+Approach+30+Terabytes&amp;rft.date=2003-11-08&amp;rft_id=http%3A%2F%2Fwww.eweek.com%2Fdatabase%2Fsurvey-biggest-databases-approach-30-terabytes&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.washingtonpost.com/wp-dyn/articles/A50577-2004Jul14.html">"LexisNexis To Buy Seisint For $775 Million"</a>. <i><a href="/wiki/The_Washington_Post" title="The Washington Post">The Washington Post</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080724195717/http://www.washingtonpost.com/wp-dyn/articles/A50577-2004Jul14.html">Archived</a> from the original on 24 July 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">15 July</span> 2004</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Washington+Post&amp;rft.atitle=LexisNexis+To+Buy+Seisint+For+%24775+Million&amp;rft_id=https%3A%2F%2Fwww.washingtonpost.com%2Fwp-dyn%2Farticles%2FA50577-2004Jul14.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.washingtonpost.com/wp-dyn/content/article/2008/02/21/AR2008022100809.html">"The Washington Post"</a>. <i><a href="/wiki/The_Washington_Post" title="The Washington Post">The Washington Post</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161019022657/http://www.washingtonpost.com/wp-dyn/content/article/2008/02/21/AR2008022100809.html">Archived</a> from the original on 19 October 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">24 August</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Washington+Post&amp;rft.atitle=The+Washington+Post&amp;rft_id=https%3A%2F%2Fwww.washingtonpost.com%2Fwp-dyn%2Fcontent%2Farticle%2F2008%2F02%2F21%2FAR2008022100809.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text">Bertolucci, Jeff <a rel="nofollow" class="external text" href="http://www.informationweek.com/software/hadoop-from-experiment-to-leading-big-data-platform/d/d-id/1110491">"Hadoop: From Experiment To Leading Big Data Platform"</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20201123153924/https://www.informationweek.com/software/hadoop-from-experiment-to-leading-big-data-platform/d/d-id/1110491">Archived</a> 23 November 2020 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>, "Information Week", 2013. Retrieved on 14 November 2013.</span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text">Webster, John. <a rel="nofollow" class="external text" href="http://research.google.com/archive/mapreduce-osdi04.pdf">"MapReduce: Simplified Data Processing on Large Clusters"</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20091214180106/http://research.google.com/archive/mapreduce-osdi04.pdf">Archived</a> 14 December 2009 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>, "Search Storage", 2004. Retrieved on 25 March 2013.</span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://mike2.openmethodology.org/wiki/Big_Data_Solution_Offering">"Big Data Solution Offering"</a>. MIKE2.0. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130316050909/http://mike2.openmethodology.org/wiki/Big_Data_Solution_Offering">Archived</a> from the original on 16 March 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">8 December</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Big+Data+Solution+Offering&amp;rft.pub=MIKE2.0&amp;rft_id=http%3A%2F%2Fmike2.openmethodology.org%2Fwiki%2FBig_Data_Solution_Offering&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://mike2.openmethodology.org/wiki/Big_Data_Definition">"Big Data Definition"</a>. MIKE2.0. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180925030939/http://mike2.openmethodology.org/wiki/Big_Data_Definition">Archived</a> from the original on 25 September 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">9 March</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Big+Data+Definition&amp;rft.pub=MIKE2.0&amp;rft_id=http%3A%2F%2Fmike2.openmethodology.org%2Fwiki%2FBig_Data_Definition&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBojaPocovnicu,_ABătăgan,_L.2012" class="citation journal cs1">Boja, C; Pocovnicu, A; Bătăgan, L. (2012). "Distributed Parallel Architecture for Big Data". <i>Informatica Economica</i>. <b>16</b> (2): 116–127.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Informatica+Economica&amp;rft.atitle=Distributed+Parallel+Architecture+for+Big+Data&amp;rft.volume=16&amp;rft.issue=2&amp;rft.pages=116-127&amp;rft.date=2012&amp;rft.aulast=Boja&amp;rft.aufirst=C&amp;rft.au=Pocovnicu%2C+A&amp;rft.au=B%C4%83t%C4%83gan%2C+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.hcltech.com/sites/default/files/solving_key_businesschallenges_with_big_data_lake_0.pdf">"Solving Key Business Challenges With a Big Data Lake"</a> <span class="cs1-format">(PDF)</span>. <i>Hcltech.com</i>. August 2014. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170703074658/https://www.hcltech.com/sites/default/files/solving_key_businesschallenges_with_big_data_lake_0.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 3 July 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">8 October</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Hcltech.com&amp;rft.atitle=Solving+Key+Business+Challenges+With+a+Big+Data+Lake&amp;rft.date=2014-08&amp;rft_id=http%3A%2F%2Fwww.hcltech.com%2Fsites%2Fdefault%2Ffiles%2Fsolving_key_businesschallenges_with_big_data_lake_0.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://secplab.ppgia.pucpr.br/files/papers/2015-0.pdf">"Method for testing the fault tolerance of MapReduce frameworks"</a> <span class="cs1-format">(PDF)</span>. Computer Networks. 2015. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160722133706/https://secplab.ppgia.pucpr.br/files/papers/2015-0.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 22 July 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">13 April</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Method+for+testing+the+fault+tolerance+of+MapReduce+frameworks&amp;rft.pub=Computer+Networks&amp;rft.date=2015&amp;rft_id=https%3A%2F%2Fsecplab.ppgia.pucpr.br%2Ffiles%2Fpapers%2F2015-0.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-McKinsey-52"><span class="mw-cite-backlink">^ <a href="#cite_ref-McKinsey_52-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-McKinsey_52-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFManyikaChuiBughinBrown2011" class="citation web cs1">Manyika, James; Chui, Michael; Bughin, Jaques; Brown, Brad; Dobbs, Richard; Roxburgh, Charles; Byers, Angela Hung (May 2011). <a rel="nofollow" class="external text" href="https://www.mckinsey.com/~/media/mckinsey/business%20functions/mckinsey%20digital/our%20insights/big%20data%20the%20next%20frontier%20for%20innovation/mgi_big_data_full_report.pdf">"Big Data: The next frontier for innovation, competition, and productivity"</a> <span class="cs1-format">(PDF)</span>. McKinsey Global Institute. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210725123303/https://www.mckinsey.com/~/media/mckinsey/business%20functions/mckinsey%20digital/our%20insights/big%20data%20the%20next%20frontier%20for%20innovation/mgi_big_data_full_report.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 25 July 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">22 May</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Big+Data%3A+The+next+frontier+for+innovation%2C+competition%2C+and+productivity&amp;rft.pub=McKinsey+Global+Institute&amp;rft.date=2011-05&amp;rft.aulast=Manyika&amp;rft.aufirst=James&amp;rft.au=Chui%2C+Michael&amp;rft.au=Bughin%2C+Jaques&amp;rft.au=Brown%2C+Brad&amp;rft.au=Dobbs%2C+Richard&amp;rft.au=Roxburgh%2C+Charles&amp;rft.au=Byers%2C+Angela+Hung&amp;rft_id=https%3A%2F%2Fwww.mckinsey.com%2F~%2Fmedia%2Fmckinsey%2Fbusiness%2520functions%2Fmckinsey%2520digital%2Four%2520insights%2Fbig%2520data%2520the%2520next%2520frontier%2520for%2520innovation%2Fmgi_big_data_full_report.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.cs.cornell.edu/cv/tenwork/finalreport.pdf">"Future Directions in Tensor-Based Computation and Modeling"</a> <span class="cs1-format">(PDF)</span>. May 2009. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180417231223/http://www.cs.cornell.edu/CV/TenWork/FinalReport.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 17 April 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">4 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Future+Directions+in+Tensor-Based+Computation+and+Modeling&amp;rft.date=2009-05&amp;rft_id=http%3A%2F%2Fwww.cs.cornell.edu%2Fcv%2Ftenwork%2Ffinalreport.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-MSLsurvey-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-MSLsurvey_54-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLuPlataniotisVenetsanopoulos2011" class="citation journal cs1">Lu, Haiping; Plataniotis, K.N.; Venetsanopoulos, A.N. (2011). <a rel="nofollow" class="external text" href="http://www.dsp.utoronto.ca/~haiping/Publication/SurveyMSL_PR2011.pdf">"A Survey of Multilinear Subspace Learning for Tensor Data"</a> <span class="cs1-format">(PDF)</span>. <i>Pattern Recognition</i>. <b>44</b> (7): 1540–1551. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011PatRe..44.1540L">2011PatRe..44.1540L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.patcog.2011.01.004">10.1016/j.patcog.2011.01.004</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190710225429/http://www.dsp.utoronto.ca/~haiping/Publication/SurveyMSL_PR2011.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 10 July 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">21 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Pattern+Recognition&amp;rft.atitle=A+Survey+of+Multilinear+Subspace+Learning+for+Tensor+Data&amp;rft.volume=44&amp;rft.issue=7&amp;rft.pages=1540-1551&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.1016%2Fj.patcog.2011.01.004&amp;rft_id=info%3Abibcode%2F2011PatRe..44.1540L&amp;rft.aulast=Lu&amp;rft.aufirst=Haiping&amp;rft.au=Plataniotis%2C+K.N.&amp;rft.au=Venetsanopoulos%2C+A.N.&amp;rft_id=http%3A%2F%2Fwww.dsp.utoronto.ca%2F~haiping%2FPublication%2FSurveyMSL_PR2011.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPllanaJanciakBrezanyWöhrer2016" class="citation book cs1">Pllana, Sabri; Janciak, Ivan; Brezany, Peter; Wöhrer, Alexander (2016). "A Survey of the State of the Art in Data Mining and Integration Query Languages". <i>2011 14th International Conference on Network-Based Information Systems</i>. IEEE Computer Society. pp.&#160;341–348. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1603.01113">1603.01113</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016arXiv160301113P">2016arXiv160301113P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FNBiS.2011.58">10.1109/NBiS.2011.58</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4577-0789-6" title="Special:BookSources/978-1-4577-0789-6"><bdi>978-1-4577-0789-6</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9285984">9285984</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=A+Survey+of+the+State+of+the+Art+in+Data+Mining+and+Integration+Query+Languages&amp;rft.btitle=2011+14th+International+Conference+on+Network-Based+Information+Systems&amp;rft.pages=341-348&amp;rft.pub=IEEE+Computer+Society&amp;rft.date=2016&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9285984%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2016arXiv160301113P&amp;rft_id=info%3Aarxiv%2F1603.01113&amp;rft_id=info%3Adoi%2F10.1109%2FNBiS.2011.58&amp;rft.isbn=978-1-4577-0789-6&amp;rft.aulast=Pllana&amp;rft.aufirst=Sabri&amp;rft.au=Janciak%2C+Ivan&amp;rft.au=Brezany%2C+Peter&amp;rft.au=W%C3%B6hrer%2C+Alexander&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWangGoldstoneYuWang2014" class="citation book cs1">Wang, Yandong; Goldstone, Robin; Yu, Weikuan; Wang, Teng (October 2014). "Characterization and Optimization of Memory-Resident MapReduce on HPC Systems". <i>2014 IEEE 28th International Parallel and Distributed Processing Symposium</i>. IEEE. pp.&#160;799–808. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FIPDPS.2014.87">10.1109/IPDPS.2014.87</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4799-3800-1" title="Special:BookSources/978-1-4799-3800-1"><bdi>978-1-4799-3800-1</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11157612">11157612</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Characterization+and+Optimization+of+Memory-Resident+MapReduce+on+HPC+Systems&amp;rft.btitle=2014+IEEE+28th+International+Parallel+and+Distributed+Processing+Symposium&amp;rft.pages=799-808&amp;rft.pub=IEEE&amp;rft.date=2014-10&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11157612%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FIPDPS.2014.87&amp;rft.isbn=978-1-4799-3800-1&amp;rft.aulast=Wang&amp;rft.aufirst=Yandong&amp;rft.au=Goldstone%2C+Robin&amp;rft.au=Yu%2C+Weikuan&amp;rft.au=Wang%2C+Teng&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFL&#39;HeureuxGrolingerElyamanyCapretz2017" class="citation journal cs1">L'Heureux, A.; Grolinger, K.; Elyamany, H. F.; Capretz, M. A. M. (2017). <a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FACCESS.2017.2696365">"Machine Learning With Big Data: Challenges and Approaches"</a>. <i>IEEE Access</i>. <b>5</b>: 7776–7797. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017IEEEA...5.7776L">2017IEEEA...5.7776L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FACCESS.2017.2696365">10.1109/ACCESS.2017.2696365</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2169-3536">2169-3536</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Access&amp;rft.atitle=Machine+Learning+With+Big+Data%3A+Challenges+and+Approaches&amp;rft.volume=5&amp;rft.pages=7776-7797&amp;rft.date=2017&amp;rft.issn=2169-3536&amp;rft_id=info%3Adoi%2F10.1109%2FACCESS.2017.2696365&amp;rft_id=info%3Abibcode%2F2017IEEEA...5.7776L&amp;rft.aulast=L%27Heureux&amp;rft.aufirst=A.&amp;rft.au=Grolinger%2C+K.&amp;rft.au=Elyamany%2C+H.+F.&amp;rft.au=Capretz%2C+M.+A.+M.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1109%252FACCESS.2017.2696365&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMonash,_Curt2009" class="citation web cs1">Monash, Curt (30 April 2009). <a rel="nofollow" class="external text" href="http://www.dbms2.com/2009/04/30/ebays-two-enormous-data-warehouses/">"eBay's two enormous data warehouses"</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190331110659/http://www.dbms2.com/2009/04/30/ebays-two-enormous-data-warehouses/">Archived</a> from the original on 31 March 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">11 November</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=eBay%27s+two+enormous+data+warehouses&amp;rft.date=2009-04-30&amp;rft.au=Monash%2C+Curt&amp;rft_id=http%3A%2F%2Fwww.dbms2.com%2F2009%2F04%2F30%2Febays-two-enormous-data-warehouses%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span><br /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMonash,_Curt2010" class="citation web cs1">Monash, Curt (6 October 2010). <a rel="nofollow" class="external text" href="http://www.dbms2.com/2010/10/06/ebay-followup-greenplum-out-teradata-10-petabytes-hadoop-has-some-value-and-more/">"eBay followup&#160;– Greenplum out, Teradata &gt; 10 petabytes, Hadoop has some value, and more"</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190331133707/http://www.dbms2.com/2010/10/06/ebay-followup-greenplum-out-teradata-10-petabytes-hadoop-has-some-value-and-more/">Archived</a> from the original on 31 March 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">11 November</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=eBay+followup+%E2%80%93+Greenplum+out%2C+Teradata+%3E+10+petabytes%2C+Hadoop+has+some+value%2C+and+more&amp;rft.date=2010-10-06&amp;rft.au=Monash%2C+Curt&amp;rft_id=http%3A%2F%2Fwww.dbms2.com%2F2010%2F10%2F06%2Febay-followup-greenplum-out-teradata-10-petabytes-hadoop-has-some-value-and-more%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.ayasdi.com/resources/">"Resources on how Topological Data Analysis is used to analyze big data"</a>. Ayasdi. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130303225426/http://www.ayasdi.com/resources/">Archived</a> from the original on 3 March 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">5 March</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Resources+on+how+Topological+Data+Analysis+is+used+to+analyze+big+data&amp;rft.pub=Ayasdi&amp;rft_id=http%3A%2F%2Fwww.ayasdi.com%2Fresources%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCNET_News2011" class="citation web cs1">CNET News (1 April 2011). <a rel="nofollow" class="external text" href="http://news.cnet.com/8301-21546_3-20049693-10253464.html">"Storage area networks need not apply"</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131018042918/http://news.cnet.com/8301-21546_3-20049693-10253464.html">Archived</a> from the original on 18 October 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">17 April</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Storage+area+networks+need+not+apply&amp;rft.date=2011-04-01&amp;rft.au=CNET+News&amp;rft_id=http%3A%2F%2Fnews.cnet.com%2F8301-21546_3-20049693-10253464.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-HilbertContent-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-HilbertContent_61-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHilbert2014" class="citation journal cs1">Hilbert, Martin (2014). <a rel="nofollow" class="external text" href="https://escholarship.org/uc/item/87w5f6wb">"What is the Content of the World's Technologically Mediated Information and Communication Capacity: How Much Text, Image, Audio, and Video?"</a>. <i>The Information Society</i>. <b>30</b> (2): 127–143. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F01972243.2013.873748">10.1080/01972243.2013.873748</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:45759014">45759014</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200624012730/https://escholarship.org/uc/item/87w5f6wb">Archived</a> from the original on 24 June 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">12 July</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Information+Society&amp;rft.atitle=What+is+the+Content+of+the+World%27s+Technologically+Mediated+Information+and+Communication+Capacity%3A+How+Much+Text%2C+Image%2C+Audio%2C+and+Video%3F&amp;rft.volume=30&amp;rft.issue=2&amp;rft.pages=127-143&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.1080%2F01972243.2013.873748&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A45759014%23id-name%3DS2CID&amp;rft.aulast=Hilbert&amp;rft.aufirst=Martin&amp;rft_id=https%3A%2F%2Fescholarship.org%2Fuc%2Fitem%2F87w5f6wb&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRajpurohit2014" class="citation web cs1">Rajpurohit, Anmol (11 July 2014). <a rel="nofollow" class="external text" href="http://www.kdnuggets.com/2014/07/interview-amy-gershkoff-ebay-in-house-BI-tools.html">"Interview: Amy Gershkoff, Director of Customer Analytics &amp; Insights, eBay on How to Design Custom In-House BI Tools"</a>. <i>KDnuggets</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140714145352/http://www.kdnuggets.com/2014/07/interview-amy-gershkoff-ebay-in-house-BI-tools.html">Archived</a> from the original on 14 July 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">14 July</span> 2014</span>. <q>Generally, I find that off-the-shelf business intelligence tools do not meet the needs of clients who want to derive custom insights from their data. Therefore, for medium-to-large organizations with access to strong technical talent, I usually recommend building custom, in-house solutions.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=KDnuggets&amp;rft.atitle=Interview%3A+Amy+Gershkoff%2C+Director+of+Customer+Analytics+%26+Insights%2C+eBay+on+How+to+Design+Custom+In-House+BI+Tools&amp;rft.date=2014-07-11&amp;rft.aulast=Rajpurohit&amp;rft.aufirst=Anmol&amp;rft_id=http%3A%2F%2Fwww.kdnuggets.com%2F2014%2F07%2Finterview-amy-gershkoff-ebay-in-house-BI-tools.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation magazine cs1"><a rel="nofollow" class="external text" href="http://www.computerworld.com/article/2472667/government-it/the-government-and-big-data--use--problems-and-potential.html">"The Government and big data: Use, problems and potential"</a>. <i><a href="/wiki/Computerworld" title="Computerworld">Computerworld</a></i>. 21 March 2012. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160915110613/http://www.computerworld.com/article/2472667/government-it/the-government-and-big-data--use--problems-and-potential.html">Archived</a> from the original on 15 September 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">12 September</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Computerworld&amp;rft.atitle=The+Government+and+big+data%3A+Use%2C+problems+and+potential&amp;rft.date=2012-03-21&amp;rft_id=http%3A%2F%2Fwww.computerworld.com%2Farticle%2F2472667%2Fgovernment-it%2Fthe-government-and-big-data--use--problems-and-potential.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.unglobalpulse.org/projects/BigDataforDevelopment">"White Paper: Big Data for Development: Opportunities &amp; Challenges"</a>. <i>Global Pulse</i>. United Nations. 2012. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200601215207/https://www.unglobalpulse.org/document/big-data-for-development-opportunities-and-challenges-white-paper//">Archived</a> from the original on 1 June 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">13 April</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Global+Pulse&amp;rft.atitle=White+Paper%3A+Big+Data+for+Development%3A+Opportunities+%26+Challenges&amp;rft.date=2012&amp;rft_id=http%3A%2F%2Fwww.unglobalpulse.org%2Fprojects%2FBigDataforDevelopment&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.weforum.org/reports/big-data-big-impact-new-possibilities-international-development">"Big Data, Big Impact: New Possibilities for International Development"</a>. World Economic Forum &amp; Vital Wave Consulting. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200601215225/https://www.weforum.org/reports/big-data-big-impact-new-possibilities-international-development/">Archived</a> from the original on 1 June 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">24 August</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Big+Data%2C+Big+Impact%3A+New+Possibilities+for+International+Development&amp;rft.pub=World+Economic+Forum+%26+Vital+Wave+Consulting&amp;rft_id=http%3A%2F%2Fwww.weforum.org%2Freports%2Fbig-data-big-impact-new-possibilities-international-development&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEHilbert2016-66"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEHilbert2016_66-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEHilbert2016_66-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTEHilbert2016_66-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-FOOTNOTEHilbert2016_66-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-FOOTNOTEHilbert2016_66-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFHilbert2016">Hilbert 2016</a>.</span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://blogs.worldbank.org/ic4d/four-ways-to-talk-about-big-data/">"Elena Kvochko, Four Ways To talk About Big Data (Information Communication Technologies for Development Series)"</a>. worldbank.org. 4 December 2012. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20121215132444/http://blogs.worldbank.org/ic4d/four-ways-to-talk-about-big-data">Archived</a> from the original on 15 December 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">30 May</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Elena+Kvochko%2C+Four+Ways+To+talk+About+Big+Data+%28Information+Communication+Technologies+for+Development+Series%29&amp;rft.pub=worldbank.org&amp;rft.date=2012-12-04&amp;rft_id=http%3A%2F%2Fblogs.worldbank.org%2Fic4d%2Ffour-ways-to-talk-about-big-data%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20150617211645/http://www.statisticsviews.com/details/feature/5393251/Big-Data--Business-An-on-going-revolution.html">"Daniele Medri: Big Data &amp; Business: An on-going revolution"</a>. Statistics Views. 21 October 2013. Archived from <a rel="nofollow" class="external text" href="http://www.statisticsviews.com/details/feature/5393251/Big-Data--Business-An-on-going-revolution.html">the original</a> on 17 June 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">21 June</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Daniele+Medri%3A+Big+Data+%26+Business%3A+An+on-going+revolution&amp;rft.pub=Statistics+Views&amp;rft.date=2013-10-21&amp;rft_id=http%3A%2F%2Fwww.statisticsviews.com%2Fdetails%2Ffeature%2F5393251%2FBig-Data--Business-An-on-going-revolution.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTobias_Knobloch_and_Julia_Manske2016" class="citation web cs1">Tobias Knobloch and Julia Manske (11 January 2016). <a rel="nofollow" class="external text" href="http://www.dandc.eu/en/article/opportunities-and-risks-user-generated-and-automatically-compiled-data">"Responsible use of data"</a>. <i>D+C, Development and Cooperation</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170113111907/http://www.dandc.eu/en/article/opportunities-and-risks-user-generated-and-automatically-compiled-data">Archived</a> from the original on 13 January 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">11 January</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=D%2BC%2C+Development+and+Cooperation&amp;rft.atitle=Responsible+use+of+data&amp;rft.date=2016-01-11&amp;rft.au=Tobias+Knobloch+and+Julia+Manske&amp;rft_id=http%3A%2F%2Fwww.dandc.eu%2Fen%2Farticle%2Fopportunities-and-risks-user-generated-and-automatically-compiled-data&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text">Mann, S., &amp; Hilbert, M. (2020). AI4D: Artificial Intelligence for Development. International Journal of Communication, 14(0), 21. <a rel="nofollow" class="external free" href="https://www.martinhilbert.net/ai4d-artificial-intelligence-for-development/">https://www.martinhilbert.net/ai4d-artificial-intelligence-for-development/</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210422113444/https://www.martinhilbert.net/ai4d-artificial-intelligence-for-development/">Archived</a> 22 April 2021 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text">Blumenstock, J. E. (2016). Fighting poverty with data. Science, 353(6301), 753–754. <a rel="nofollow" class="external free" href="https://doi.org/10.1126/science.aah5217">https://doi.org/10.1126/science.aah5217</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220601224735/https://www.science.org/doi/10.1126/science.aah5217">Archived</a> 1 June 2022 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text">Blumenstock, J., Cadamuro, G., &amp; On, R. (2015). Predicting poverty and wealth from mobile phone metadata. Science, 350(6264), 1073–1076. <a rel="nofollow" class="external free" href="https://doi.org/10.1126/science.aac4420">https://doi.org/10.1126/science.aac4420</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220601224737/https://www.science.org/doi/10.1126/science.aac4420">Archived</a> 1 June 2022 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text">Jean, N., Burke, M., Xie, M., Davis, W. M., Lobell, D. B., &amp; Ermon, S. (2016). Combining satellite imagery and machine learning to predict poverty. Science, 353(6301), 790–794. <a rel="nofollow" class="external free" href="https://doi.org/10.1126/science.aaf7894">https://doi.org/10.1126/science.aaf7894</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220601224736/https://www.science.org/doi/10.1126/science.aaf7894">Archived</a> 1 June 2022 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></span> </li> <li id="cite_note-HilbertJobMarket-74"><span class="mw-cite-backlink">^ <a href="#cite_ref-HilbertJobMarket_74-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-HilbertJobMarket_74-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Hilbert, M., &amp; Lu, K. (2020). The online job market trace in Latin America and the Caribbean (UN ECLAC LC/TS.2020/83; p. 79). United Nations Economic Commission for Latin America and the Caribbean. <a rel="nofollow" class="external free" href="https://www.cepal.org/en/publications/45892-online-job-market-trace-latin-america-and-caribbean">https://www.cepal.org/en/publications/45892-online-job-market-trace-latin-america-and-caribbean</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200922023629/https://www.cepal.org/en/publications/45892-online-job-market-trace-latin-america-and-caribbean">Archived</a> 22 September 2020 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text">UN ECLAC, (United Nations Economic Commission for Latin America and the Caribbean). (2020). Tracking the digital footprint in Latin America and the Caribbean: Lessons learned from using big data to assess the digital economy (Productive Development, Gender Affairs LC/TS.2020/12; Documentos de Proyecto). United Nations ECLAC. <a rel="nofollow" class="external free" href="https://repositorio.cepal.org/handle/11362/45484">https://repositorio.cepal.org/handle/11362/45484</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200918174030/https://repositorio.cepal.org/handle/11362/45484">Archived</a> 18 September 2020 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBanerjeeChaudhury2010" class="citation journal cs1">Banerjee, Amitav; Chaudhury, Suprakash (2010). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3105563">"Statistics without tears: Populations and samples"</a>. <i>Industrial Psychiatry Journal</i>. <b>19</b> (1): 60–65. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4103%2F0972-6748.77642">10.4103/0972-6748.77642</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0972-6748">0972-6748</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3105563">3105563</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21694795">21694795</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Industrial+Psychiatry+Journal&amp;rft.atitle=Statistics+without+tears%3A+Populations+and+samples&amp;rft.volume=19&amp;rft.issue=1&amp;rft.pages=60-65&amp;rft.date=2010&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3105563%23id-name%3DPMC&amp;rft.issn=0972-6748&amp;rft_id=info%3Apmid%2F21694795&amp;rft_id=info%3Adoi%2F10.4103%2F0972-6748.77642&amp;rft.aulast=Banerjee&amp;rft.aufirst=Amitav&amp;rft.au=Chaudhury%2C+Suprakash&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3105563&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAldridge2016" class="citation book cs1">Aldridge, Irene (2016). <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/972292212"><i>Real-Time Risk&#160;: What Investors Should Know about FinTech, High-Frequency Trading, and Flash Crashes</i></a>. Steven Krawciw. Somerset: John Wiley &amp; Sons, Incorporated. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-119-31906-1" title="Special:BookSources/978-1-119-31906-1"><bdi>978-1-119-31906-1</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/972292212">972292212</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Real-Time+Risk+%3A+What+Investors+Should+Know+about+FinTech%2C+High-Frequency+Trading%2C+and+Flash+Crashes.&amp;rft.place=Somerset&amp;rft.pub=John+Wiley+%26+Sons%2C+Incorporated&amp;rft.date=2016&amp;rft_id=info%3Aoclcnum%2F972292212&amp;rft.isbn=978-1-119-31906-1&amp;rft.aulast=Aldridge&amp;rft.aufirst=Irene&amp;rft_id=https%3A%2F%2Fwww.worldcat.org%2Foclc%2F972292212&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAldridge2021" class="citation book cs1">Aldridge, Irene (2021). <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/1184122216"><i>Big data science in finance</i></a>. Marco Avellaneda. Hoboken, New Jersey: Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-119-60297-2" title="Special:BookSources/978-1-119-60297-2"><bdi>978-1-119-60297-2</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1184122216">1184122216</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Big+data+science+in+finance&amp;rft.place=Hoboken%2C+New+Jersey&amp;rft.pub=Wiley&amp;rft.date=2021&amp;rft_id=info%3Aoclcnum%2F1184122216&amp;rft.isbn=978-1-119-60297-2&amp;rft.aulast=Aldridge&amp;rft.aufirst=Irene&amp;rft_id=https%3A%2F%2Fwww.worldcat.org%2Foclc%2F1184122216&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHasanPoppOláh2020" class="citation journal cs1">Hasan, Md. Morshadul; Popp, József; Oláh, Judit (12 March 2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1186%2Fs40537-020-00291-z">"Current landscape and influence of big data on finance"</a>. <i>Journal of Big Data</i>. <b>7</b> (1): 21. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1186%2Fs40537-020-00291-z">10.1186/s40537-020-00291-z</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2196-1115">2196-1115</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Big+Data&amp;rft.atitle=Current+landscape+and+influence+of+big+data+on+finance&amp;rft.volume=7&amp;rft.issue=1&amp;rft.pages=21&amp;rft.date=2020-03-12&amp;rft_id=info%3Adoi%2F10.1186%2Fs40537-020-00291-z&amp;rft.issn=2196-1115&amp;rft.aulast=Hasan&amp;rft.aufirst=Md.+Morshadul&amp;rft.au=Popp%2C+J%C3%B3zsef&amp;rft.au=Ol%C3%A1h%2C+Judit&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1186%252Fs40537-020-00291-z&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-ref135-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-ref135_80-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuserCimino2016" class="citation journal cs1">Huser V, Cimino JJ (July 2016). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860172">"Impending Challenges for the Use of Big Data"</a>. <i>International Journal of Radiation Oncology, Biology, Physics</i>. <b>95</b> (3): 890–894. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ijrobp.2015.10.060">10.1016/j.ijrobp.2015.10.060</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860172">4860172</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26797535">26797535</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Radiation+Oncology%2C+Biology%2C+Physics&amp;rft.atitle=Impending+Challenges+for+the+Use+of+Big+Data&amp;rft.volume=95&amp;rft.issue=3&amp;rft.pages=890-894&amp;rft.date=2016-07&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4860172%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F26797535&amp;rft_id=info%3Adoi%2F10.1016%2Fj.ijrobp.2015.10.060&amp;rft.aulast=Huser&amp;rft.aufirst=V&amp;rft.au=Cimino%2C+JJ&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4860172&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSejdicFalk2018" class="citation book cs1">Sejdic, Ervin; Falk, Tiago H. (4 July 2018). <i>Signal Processing and Machine Learning for Biomedical Big Data</i>. Sejdić, Ervin, Falk, Tiago H. [Place of publication not identified]. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781351061216" title="Special:BookSources/9781351061216"><bdi>9781351061216</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1044733829">1044733829</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Signal+Processing+and+Machine+Learning+for+Biomedical+Big+Data.&amp;rft.place=%5BPlace+of+publication+not+identified%5D&amp;rft.date=2018-07-04&amp;rft_id=info%3Aoclcnum%2F1044733829&amp;rft.isbn=9781351061216&amp;rft.aulast=Sejdic&amp;rft.aufirst=Ervin&amp;rft.au=Falk%2C+Tiago+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span></span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRaghupathiRaghupathi2014" class="citation journal cs1">Raghupathi W, Raghupathi V (December 2014). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341817">"Big data analytics in healthcare: promise and potential"</a>. <i>Health Information Science and Systems</i>. <b>2</b> (1): 3. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1186%2F2047-2501-2-3">10.1186/2047-2501-2-3</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341817">4341817</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25825667">25825667</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Health+Information+Science+and+Systems&amp;rft.atitle=Big+data+analytics+in+healthcare%3A+promise+and+potential&amp;rft.volume=2&amp;rft.issue=1&amp;rft.pages=3&amp;rft.date=2014-12&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4341817%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F25825667&amp;rft_id=info%3Adoi%2F10.1186%2F2047-2501-2-3&amp;rft.aulast=Raghupathi&amp;rft.aufirst=W&amp;rft.au=Raghupathi%2C+V&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4341817&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVicecontiHunterHose2015" class="citation journal cs1">Viceconti M, Hunter P, Hose R (July 2015). <a rel="nofollow" class="external text" href="http://eprints.whiterose.ac.uk/89104/1/pap%20JBHI%20BigData%20in%20VPH%20revision%20v2.pdf">"Big data, big knowledge: big data for personalized healthcare"</a> <span class="cs1-format">(PDF)</span>. <i>IEEE Journal of Biomedical and Health Informatics</i>. <b>19</b> (4): 1209–15. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FJBHI.2015.2406883">10.1109/JBHI.2015.2406883</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26218867">26218867</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14710821">14710821</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180723201503/http://eprints.whiterose.ac.uk/89104/1/pap%20JBHI%20BigData%20in%20VPH%20revision%20v2.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 23 July 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">21 September</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Journal+of+Biomedical+and+Health+Informatics&amp;rft.atitle=Big+data%2C+big+knowledge%3A+big+data+for+personalized+healthcare&amp;rft.volume=19&amp;rft.issue=4&amp;rft.pages=1209-15&amp;rft.date=2015-07&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14710821%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F26218867&amp;rft_id=info%3Adoi%2F10.1109%2FJBHI.2015.2406883&amp;rft.aulast=Viceconti&amp;rft.aufirst=M&amp;rft.au=Hunter%2C+P&amp;rft.au=Hose%2C+R&amp;rft_id=http%3A%2F%2Feprints.whiterose.ac.uk%2F89104%2F1%2Fpap%2520JBHI%2520BigData%2520in%2520VPH%2520revision%2520v2.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO&#39;DonoghueHerbert2012" class="citation journal cs1">O'Donoghue, John; Herbert, John (1 October 2012). "Data Management Within mHealth Environments: Patient Sensors, Mobile Devices, and Databases". <i>Journal of Data and Information Quality</i>. <b>4</b> (1): 5:1–5:20. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F2378016.2378021">10.1145/2378016.2378021</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2318649">2318649</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Data+and+Information+Quality&amp;rft.atitle=Data+Management+Within+mHealth+Environments%3A+Patient+Sensors%2C+Mobile+Devices%2C+and+Databases&amp;rft.volume=4&amp;rft.issue=1&amp;rft.pages=5%3A1-5%3A20&amp;rft.date=2012-10-01&amp;rft_id=info%3Adoi%2F10.1145%2F2378016.2378021&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2318649%23id-name%3DS2CID&amp;rft.aulast=O%27Donoghue&amp;rft.aufirst=John&amp;rft.au=Herbert%2C+John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-Mirkes2016-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-Mirkes2016_85-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMirkesCoatsLevesleyGorban2016" class="citation journal cs1">Mirkes EM, Coats TJ, Levesley J, Gorban AN (August 2016). "Handling missing data in large healthcare dataset: A case study of unknown trauma outcomes". <i>Computers in Biology and Medicine</i>. <b>75</b>: 203–16. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1604.00627">1604.00627</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016arXiv160400627M">2016arXiv160400627M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.compbiomed.2016.06.004">10.1016/j.compbiomed.2016.06.004</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27318570">27318570</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5874067">5874067</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Computers+in+Biology+and+Medicine&amp;rft.atitle=Handling+missing+data+in+large+healthcare+dataset%3A+A+case+study+of+unknown+trauma+outcomes&amp;rft.volume=75&amp;rft.pages=203-16&amp;rft.date=2016-08&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5874067%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2016arXiv160400627M&amp;rft_id=info%3Aarxiv%2F1604.00627&amp;rft_id=info%3Apmid%2F27318570&amp;rft_id=info%3Adoi%2F10.1016%2Fj.compbiomed.2016.06.004&amp;rft.aulast=Mirkes&amp;rft.aufirst=EM&amp;rft.au=Coats%2C+TJ&amp;rft.au=Levesley%2C+J&amp;rft.au=Gorban%2C+AN&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-86">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMurdochDetsky2013" class="citation journal cs1">Murdoch TB, Detsky AS (April 2013). "The inevitable application of big data to health care". <i>JAMA</i>. <b>309</b> (13): 1351–2. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1001%2Fjama.2013.393">10.1001/jama.2013.393</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23549579">23549579</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:20462354">20462354</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=JAMA&amp;rft.atitle=The+inevitable+application+of+big+data+to+health+care&amp;rft.volume=309&amp;rft.issue=13&amp;rft.pages=1351-2&amp;rft.date=2013-04&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A20462354%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F23549579&amp;rft_id=info%3Adoi%2F10.1001%2Fjama.2013.393&amp;rft.aulast=Murdoch&amp;rft.aufirst=TB&amp;rft.au=Detsky%2C+AS&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-87">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVayenaSalathéMadoffBrownstein2015" class="citation journal cs1">Vayena E, Salathé M, Madoff LC, Brownstein JS (February 2015). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4321985">"Ethical challenges of big data in public health"</a>. <i>PLOS Computational Biology</i>. <b>11</b> (2): e1003904. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015PLSCB..11E3904V">2015PLSCB..11E3904V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1371%2Fjournal.pcbi.1003904">10.1371/journal.pcbi.1003904</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4321985">4321985</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25664461">25664461</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=PLOS+Computational+Biology&amp;rft.atitle=Ethical+challenges+of+big+data+in+public+health&amp;rft.volume=11&amp;rft.issue=2&amp;rft.pages=e1003904&amp;rft.date=2015-02&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4321985%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F25664461&amp;rft_id=info%3Adoi%2F10.1371%2Fjournal.pcbi.1003904&amp;rft_id=info%3Abibcode%2F2015PLSCB..11E3904V&amp;rft.aulast=Vayena&amp;rft.aufirst=E&amp;rft.au=Salath%C3%A9%2C+M&amp;rft.au=Madoff%2C+LC&amp;rft.au=Brownstein%2C+JS&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4321985&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-88">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCopeland2017" class="citation journal cs1">Copeland, CS (July–August 2017). <a rel="nofollow" class="external text" href="http://claudiacopeland.com/uploads/3/5/5/6/35560346/_hjno_data_driving_discovery_2pv.pdf">"Data Driving Discovery"</a> <span class="cs1-format">(PDF)</span>. <i>Healthcare Journal of New Orleans</i>: 22–27. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20191205195456/http://claudiacopeland.com/uploads/3/5/5/6/35560346/_hjno_data_driving_discovery_2pv.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 5 December 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">5 December</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Healthcare+Journal+of+New+Orleans&amp;rft.atitle=Data+Driving+Discovery&amp;rft.pages=22-27&amp;rft.date=2017-07%2F2017-08&amp;rft.aulast=Copeland&amp;rft.aufirst=CS&amp;rft_id=http%3A%2F%2Fclaudiacopeland.com%2Fuploads%2F3%2F5%2F5%2F6%2F35560346%2F_hjno_data_driving_discovery_2pv.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEYanaseTriantaphyllou2019-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEYanaseTriantaphyllou2019_89-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFYanaseTriantaphyllou2019">Yanase &amp; Triantaphyllou 2019</a>.</span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDongBahroosSadhuJackson2013" class="citation journal cs1">Dong X, Bahroos N, Sadhu E, Jackson T, Chukhman M, Johnson R, Boyd A, Hynes D (2013). "Leverage Hadoop framework for large scale clinical informatics applications". <i>AMIA Joint Summits on Translational Science Proceedings. AMIA Joint Summits on Translational Science</i>. <b>2013</b>: 53. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24303235">24303235</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=AMIA+Joint+Summits+on+Translational+Science+Proceedings.+AMIA+Joint+Summits+on+Translational+Science&amp;rft.atitle=Leverage+Hadoop+framework+for+large+scale+clinical+informatics+applications&amp;rft.volume=2013&amp;rft.pages=53&amp;rft.date=2013&amp;rft_id=info%3Apmid%2F24303235&amp;rft.aulast=Dong&amp;rft.aufirst=X&amp;rft.au=Bahroos%2C+N&amp;rft.au=Sadhu%2C+E&amp;rft.au=Jackson%2C+T&amp;rft.au=Chukhman%2C+M&amp;rft.au=Johnson%2C+R&amp;rft.au=Boyd%2C+A&amp;rft.au=Hynes%2C+D&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClunie,_D.2013" class="citation web cs1">Clunie, D. (2013). <a rel="nofollow" class="external text" href="http://www.auntminnie.com/index.aspx?sec=prtf&amp;sub=def&amp;pag=dis&amp;itemId=102872&amp;printpage=true&amp;fsec=ser&amp;fsub=def">"Breast tomosynthesis challenges digital imaging infrastructure"</a>. Science and Medicine Group. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210224135732/https://www.auntminnie.com/index.aspx?sec=prtf&amp;sub=def&amp;pag=dis&amp;itemId=102872&amp;printpage=true&amp;fsec=ser&amp;fsub=def">Archived</a> from the original on 24 February 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">28 November</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Breast+tomosynthesis+challenges+digital+imaging+infrastructure&amp;rft.pub=Science+and+Medicine+Group&amp;rft.date=2013&amp;rft.au=Clunie%2C+D.&amp;rft_id=http%3A%2F%2Fwww.auntminnie.com%2Findex.aspx%3Fsec%3Dprtf%26sub%3Ddef%26pag%3Ddis%26itemId%3D102872%26printpage%3Dtrue%26fsec%3Dser%26fsub%3Ddef&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYanaseTriantaphyllou2019b" class="citation journal cs1">Yanase J, Triantaphyllou E (2019b). "The Seven Key Challenges for the Future of Computer-Aided Diagnosis in Medicine". <i>International Journal of Medical Informatics</i>. <b>129</b>: 413–22. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ijmedinf.2019.06.017">10.1016/j.ijmedinf.2019.06.017</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31445285">31445285</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:198287435">198287435</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Medical+Informatics&amp;rft.atitle=The+Seven+Key+Challenges+for+the+Future+of+Computer-Aided+Diagnosis+in+Medicine&amp;rft.volume=129&amp;rft.pages=413-22&amp;rft.date=2019&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A198287435%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F31445285&amp;rft_id=info%3Adoi%2F10.1016%2Fj.ijmedinf.2019.06.017&amp;rft.aulast=Yanase&amp;rft.aufirst=J&amp;rft.au=Triantaphyllou%2C+E&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.forbes.com/sites/jmaureenhenderson/2013/07/30/degrees-in-big-data-fad-or-fast-track-to-career-success/">"Degrees in Big Data: Fad or Fast Track to Career Success"</a>. <i><a href="/wiki/Forbes" title="Forbes">Forbes</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160303210044/http://www.forbes.com/sites/jmaureenhenderson/2013/07/30/degrees-in-big-data-fad-or-fast-track-to-career-success/">Archived</a> from the original on 3 March 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">21 February</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Forbes&amp;rft.atitle=Degrees+in+Big+Data%3A+Fad+or+Fast+Track+to+Career+Success&amp;rft_id=https%3A%2F%2Fwww.forbes.com%2Fsites%2Fjmaureenhenderson%2F2013%2F07%2F30%2Fdegrees-in-big-data-fad-or-fast-track-to-career-success%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-94">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://venturebeat.com/2014/04/15/ny-gets-new-bootcamp-for-data-scientists-its-free-but-harder-to-get-into-than-harvard/">"NY gets new boot camp for data scientists: It's free but harder to get into than Harvard"</a>. <i>Venture Beat</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160215235820/http://venturebeat.com/2014/04/15/ny-gets-new-bootcamp-for-data-scientists-its-free-but-harder-to-get-into-than-harvard/">Archived</a> from the original on 15 February 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">21 February</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Venture+Beat&amp;rft.atitle=NY+gets+new+boot+camp+for+data+scientists%3A+It%27s+free+but+harder+to+get+into+than+Harvard&amp;rft_id=https%3A%2F%2Fventurebeat.com%2F2014%2F04%2F15%2Fny-gets-new-bootcamp-for-data-scientists-its-free-but-harder-to-get-into-than-harvard%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWedelKannan,_PK2016" class="citation journal cs1">Wedel, Michel; Kannan, PK (2016). "Marketing Analytics for Data-Rich Environments". <i>Journal of Marketing</i>. <b>80</b> (6): 97–121. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1509%2Fjm.15.0413">10.1509/jm.15.0413</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:168410284">168410284</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Marketing&amp;rft.atitle=Marketing+Analytics+for+Data-Rich+Environments&amp;rft.volume=80&amp;rft.issue=6&amp;rft.pages=97-121&amp;rft.date=2016&amp;rft_id=info%3Adoi%2F10.1509%2Fjm.15.0413&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A168410284%23id-name%3DS2CID&amp;rft.aulast=Wedel&amp;rft.aufirst=Michel&amp;rft.au=Kannan%2C+PK&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCouldryTurow2014" class="citation journal cs1">Couldry, Nick; Turow, Joseph (2014). "Advertising, Big Data, and the Clearance of the Public Realm: Marketers' New Approaches to the Content Subsidy". <i>International Journal of Communication</i>. <b>8</b>: 1710–1726.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Communication&amp;rft.atitle=Advertising%2C+Big+Data%2C+and+the+Clearance+of+the+Public+Realm%3A+Marketers%27+New+Approaches+to+the+Content+Subsidy&amp;rft.volume=8&amp;rft.pages=1710-1726&amp;rft.date=2014&amp;rft.aulast=Couldry&amp;rft.aufirst=Nick&amp;rft.au=Turow%2C+Joseph&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20190212174722/https://ishti.org/2018/04/15/why-digital-advertising-agencies-suck-at-acquisition-and-are-in-dire-need-of-an-ai-assisted-upgrade/">"Why Digital Advertising Agencies Suck at Acquisition and are in Dire Need of an AI Assisted Upgrade"</a>. <i>Ishti.org</i>. 15 April 2018. Archived from <a rel="nofollow" class="external text" href="https://ishti.org/2018/04/15/why-digital-advertising-agencies-suck-at-acquisition-and-are-in-dire-need-of-an-ai-assisted-upgrade/">the original</a> on 12 February 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">15 April</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Ishti.org&amp;rft.atitle=Why+Digital+Advertising+Agencies+Suck+at+Acquisition+and+are+in+Dire+Need+of+an+AI+Assisted+Upgrade&amp;rft.date=2018-04-15&amp;rft_id=https%3A%2F%2Fishti.org%2F2018%2F04%2F15%2Fwhy-digital-advertising-agencies-suck-at-acquisition-and-are-in-dire-need-of-an-ai-assisted-upgrade%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.ibc.org/tech-advances/big-data-and-analytics-c4-and-genius-digital/1076.article">"Big data and analytics: C4 and Genius Digital"</a>. <i>Ibc.org</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20171008231909/https://www.ibc.org/tech-advances/big-data-and-analytics-c4-and-genius-digital/1076.article">Archived</a> from the original on 8 October 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">8 October</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Ibc.org&amp;rft.atitle=Big+data+and+analytics%3A+C4+and+Genius+Digital&amp;rft_id=https%3A%2F%2Fwww.ibc.org%2Ftech-advances%2Fbig-data-and-analytics-c4-and-genius-digital%2F1076.article&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-99">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarshall_Allen2018" class="citation web cs1">Marshall Allen (17 July 2018). <a rel="nofollow" class="external text" href="https://www.propublica.org/article/health-insurers-are-vacuuming-up-details-about-you-and-it-could-raise-your-rates">"Health Insurers Are Vacuuming Up Details About You – And It Could Raise Your Rates"</a>. <i>www.propublica.org</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180721011923/https://www.propublica.org/article/health-insurers-are-vacuuming-up-details-about-you-and-it-could-raise-your-rates">Archived</a> from the original on 21 July 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">21 July</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.propublica.org&amp;rft.atitle=Health+Insurers+Are+Vacuuming+Up+Details+About+You+%E2%80%93+And+It+Could+Raise+Your+Rates&amp;rft.date=2018-07-17&amp;rft.au=Marshall+Allen&amp;rft_id=https%3A%2F%2Fwww.propublica.org%2Farticle%2Fhealth-insurers-are-vacuuming-up-details-about-you-and-it-could-raise-your-rates&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-100">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.businesswire.com/news/home/20170109006500/en/QuiO-Named-Innovation-Champion-Accenture-HealthTech-Innovation">"QuiO Named Innovation Champion of the Accenture HealthTech Innovation Challenge"</a>. <i>Businesswire.com</i>. 10 January 2017. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170322111851/http://www.businesswire.com/news/home/20170109006500/en/QuiO-Named-Innovation-Champion-Accenture-HealthTech-Innovation">Archived</a> from the original on 22 March 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">8 October</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Businesswire.com&amp;rft.atitle=QuiO+Named+Innovation+Champion+of+the+Accenture+HealthTech+Innovation+Challenge&amp;rft.date=2017-01-10&amp;rft_id=http%3A%2F%2Fwww.businesswire.com%2Fnews%2Fhome%2F20170109006500%2Fen%2FQuiO-Named-Innovation-Champion-Accenture-HealthTech-Innovation&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-101">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20170322111812/https://www.predix.com/sites/default/files/IDC_OT_Final_whitepaper_249120.pdf">"A Software Platform for Operational Technology Innovation"</a> <span class="cs1-format">(PDF)</span>. <i>Predix.com</i>. Archived from <a rel="nofollow" class="external text" href="https://www.predix.com/sites/default/files/IDC_OT_Final_whitepaper_249120.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 22 March 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">8 October</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Predix.com&amp;rft.atitle=A+Software+Platform+for+Operational+Technology+Innovation&amp;rft_id=https%3A%2F%2Fwww.predix.com%2Fsites%2Fdefault%2Ffiles%2FIDC_OT_Final_whitepaper_249120.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-BigDataIoT16-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-BigDataIoT16_102-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZ._Jenipher_Wang2017" class="citation web cs1">Z. Jenipher Wang (March 2017). <a rel="nofollow" class="external text" href="http://www.wiomax.com/big-data-driven-smart-transportation-the-underlying-big-story-of-smart-iot-transformed-mobility/">"Big Data Driven Smart Transportation: the Underlying Story of IoT Transformed Mobility"</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180704093429/http://www.wiomax.com/big-data-driven-smart-transportation-the-underlying-big-story-of-smart-iot-transformed-mobility/">Archived</a> from the original on 4 July 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">4 July</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Big+Data+Driven+Smart+Transportation%3A+the+Underlying+Story+of+IoT+Transformed+Mobility&amp;rft.date=2017-03&amp;rft.au=Z.+Jenipher+Wang&amp;rft_id=http%3A%2F%2Fwww.wiomax.com%2Fbig-data-driven-smart-transportation-the-underlying-big-story-of-smart-iot-transformed-mobility%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-103">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20130502134112/http://www.rfidjournal.com/articles/view?4986">"That Internet Of Things Thing"</a>. 22 June 2009. Archived from <a rel="nofollow" class="external text" href="http://www.rfidjournal.com/articles/view?4986">the original</a> on 2 May 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">29 December</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=That+Internet+Of+Things+Thing.&amp;rft.date=2009-06-22&amp;rft_id=http%3A%2F%2Fwww.rfidjournal.com%2Farticles%2Fview%3F4986&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-ITOA1-104"><span class="mw-cite-backlink">^ <a href="#cite_ref-ITOA1_104-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ITOA1_104-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSolnik" class="citation web cs1">Solnik, Ray. <a rel="nofollow" class="external text" href="http://www.datacenterjournal.com/time-analytics-delivers-operations/">"The Time Has Come: Analytics Delivers for IT Operations"</a>. <i>Data Center Journal</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160804175315/http://www.datacenterjournal.com/time-analytics-delivers-operations/">Archived</a> from the original on 4 August 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">21 June</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Data+Center+Journal&amp;rft.atitle=The+Time+Has+Come%3A+Analytics+Delivers+for+IT+Operations&amp;rft.aulast=Solnik&amp;rft.aufirst=Ray&amp;rft_id=http%3A%2F%2Fwww.datacenterjournal.com%2Ftime-analytics-delivers-operations%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-105">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.bigsurv.org/">"BigSurv: Big Data Meets Survey Science"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">15 October</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=BigSurv%3A+Big+Data+Meets+Survey+Science&amp;rft_id=https%3A%2F%2Fwww.bigsurv.org%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-106"><span class="mw-cite-backlink"><b><a href="#cite_ref-106">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEckCazarCallegaroBiemer2021" class="citation journal cs1">Eck, Adam; Cazar, Ana Lucía Córdova; Callegaro, Mario; Biemer, Paul (2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F0894439319883393">"<span class="cs1-kern-left"></span>"Big Data Meets Survey Science"<span class="cs1-kern-right"></span>"</a>. <i>Social Science Computer Review</i>. <b>39</b> (4): 484–488. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F0894439319883393">10.1177/0894439319883393</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Social+Science+Computer+Review&amp;rft.atitle=%22Big+Data+Meets+Survey+Science%22&amp;rft.volume=39&amp;rft.issue=4&amp;rft.pages=484-488&amp;rft.date=2021&amp;rft_id=info%3Adoi%2F10.1177%2F0894439319883393&amp;rft.aulast=Eck&amp;rft.aufirst=Adam&amp;rft.au=Cazar%2C+Ana+Luc%C3%ADa+C%C3%B3rdova&amp;rft.au=Callegaro%2C+Mario&amp;rft.au=Biemer%2C+Paul&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1177%252F0894439319883393&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-107">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation journal cs1"><a rel="nofollow" class="external text" href="https://rss.onlinelibrary.wiley.com/toc/1467985x/current">"Special issue: Big data meets survey science"</a>. <i>Journal of the Royal Statistical Society, Series A</i>. <b>185</b> (S2): S165–S166.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Royal+Statistical+Society%2C+Series+A&amp;rft.atitle=Special+issue%3A+Big+data+meets+survey+science&amp;rft.volume=185&amp;rft.issue=S2&amp;rft.pages=S165-S166&amp;rft_id=https%3A%2F%2Frss.onlinelibrary.wiley.com%2Ftoc%2F1467985x%2Fcurrent&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-108">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.springeropen.com/collections/BigSurv20">"Integrating Survey and Non-survey Data to Measure Behavior and Public Opinion"</a>. <i>www.springeropen.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">19 October</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.springeropen.com&amp;rft.atitle=Integrating+Survey+and+Non-survey+Data+to+Measure+Behavior+and+Public+Opinion&amp;rft_id=https%3A%2F%2Fwww.springeropen.com%2Fcollections%2FBigSurv20&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-109">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHillBiemerBuskirkJapec2020" class="citation book cs1">Hill, Craig A.; Biemer, Paul P.; Buskirk, Trent D.; Japec, Lilli; Kirchner, Antje; Kolenikov, Stas; Lyberg, Lars E., eds. (13 October 2020). <a rel="nofollow" class="external text" href="https://onlinelibrary.wiley.com/doi/book/10.1002/9781118976357"><i>Big Data Meets Survey Science: A Collection of Innovative Methods</i></a> (1&#160;ed.). Wiley. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F9781118976357">10.1002/9781118976357</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-118-97632-6" title="Special:BookSources/978-1-118-97632-6"><bdi>978-1-118-97632-6</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:240797608">240797608</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Big+Data+Meets+Survey+Science%3A+A+Collection+of+Innovative+Methods&amp;rft.edition=1&amp;rft.pub=Wiley&amp;rft.date=2020-10-13&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A240797608%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2F9781118976357&amp;rft.isbn=978-1-118-97632-6&amp;rft_id=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2Fbook%2F10.1002%2F9781118976357&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-110">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://aapor.org/past-mitofsky/">"Past Warren J. Mitofsky Innovators Award Winners - AAPOR"</a>. 7 June 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">19 October</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Past+Warren+J.+Mitofsky+Innovators+Award+Winners+-+AAPOR&amp;rft.date=2023-06-07&amp;rft_id=https%3A%2F%2Faapor.org%2Fpast-mitofsky%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-:1-111"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_111-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_111-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStrong2015" class="citation book cs1">Strong, Colin (2015). <i>Humanizing big data: marketing at the meeting of data, social science and consumer insight</i>. London: Kogan Page. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-7494-7211-5" title="Special:BookSources/978-0-7494-7211-5"><bdi>978-0-7494-7211-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Humanizing+big+data%3A+marketing+at+the+meeting+of+data%2C+social+science+and+consumer+insight&amp;rft.place=London&amp;rft.pub=Kogan+Page&amp;rft.date=2015&amp;rft.isbn=978-0-7494-7211-5&amp;rft.aulast=Strong&amp;rft.aufirst=Colin&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-112">^</a></b></span> <span class="reference-text">Berisha, B., Mëziu, E., &amp; Shabani, I. (2022). Big data analytics in Cloud computing: An overview. <i>Journal of Cloud Computing</i>, <i>11</i>(1), 1-10. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1186%2Fs13677-022-00301-w">10.1186/s13677-022-00301-w</a></span> </li> <li id="cite_note-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-113">^</a></b></span> <span class="reference-text">Bosch, Volker (2016-11-01). "Big Data in Market Research: Why More Data Does Not Automatically Mean Better Information". <i>NIM Marketing Intelligence Review</i>. <b>8</b> (2): 56–63. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1515%2Fgfkmir-2016-0017">10.1515/gfkmir-2016-0017</a>.</span> </li> <li id="cite_note-114"><span class="mw-cite-backlink"><b><a href="#cite_ref-114">^</a></b></span> <span class="reference-text">McFarland, Daniel A; McFarland, H Richard (2015-12-01). "Big Data and the danger of being precisely inaccurate". <i>Big Data &amp; Society</i>. <b>2</b>(2): 205395171560249. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F2053951715602495">10.1177/2053951715602495</a>. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://www.worldcat.org/search?fq=x0:jrnl&amp;q=n2:2053-9517">2053-9517</a>.</span> </li> <li id="cite_note-115"><span class="mw-cite-backlink"><b><a href="#cite_ref-115">^</a></b></span> <span class="reference-text">Sivarajah, Uthayasankar; Kamal, Muhammad Mustafa; Irani, Zahir; Weerakkody, Vishanth (2017-01-01). "Critical analysis of Big Data challenges and analytical methods". <i>Journal of Business Research</i>. <b>70</b>: 263–286. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jbusres.2016.08.001">10.1016/j.jbusres.2016.08.001</a>. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://www.worldcat.org/search?fq=x0:jrnl&amp;q=n2:0148-2963">0148-2963</a>.</span> </li> <li id="cite_note-ReferenceA-116"><span class="mw-cite-backlink">^ <a href="#cite_ref-ReferenceA_116-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ReferenceA_116-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-ReferenceA_116-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">De Luca, Luigi M.; Herhausen, Dennis; Troilo, Gabriele; Rossi, Andrea (2021-07-01). "How and when do big data investments pay off? The role of marketing affordances and service innovation". <i>Journal of the Academy of Marketing Science</i>. <b>49</b> (4): 790–810.</span> </li> <li id="cite_note-117"><span class="mw-cite-backlink"><b><a href="#cite_ref-117">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGhasemaghaeiCalic2020" class="citation journal cs1">Ghasemaghaei, Maryam; Calic, Goran (January 2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1016/j.jbusres.2019.09.062">"Assessing the impact of big data on firm innovation performance: Big data is not always better data"</a>. <i>Journal of Business Research</i>. <b>108</b>: 147–162. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jbusres.2019.09.062">10.1016/j.jbusres.2019.09.062</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0148-2963">0148-2963</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Business+Research&amp;rft.atitle=Assessing+the+impact+of+big+data+on+firm+innovation+performance%3A+Big+data+is+not+always+better+data&amp;rft.volume=108&amp;rft.pages=147-162&amp;rft.date=2020-01&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jbusres.2019.09.062&amp;rft.issn=0148-2963&amp;rft.aulast=Ghasemaghaei&amp;rft.aufirst=Maryam&amp;rft.au=Calic%2C+Goran&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%2Fj.jbusres.2019.09.062&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-118"><span class="mw-cite-backlink"><b><a href="#cite_ref-118">^</a></b></span> <span class="reference-text">Grybauskas, Andrius; Pilinkienė, Vaida; Stundžienė, Alina (2021-08-03). "Predictive analytics using Big Data for the real estate market during the COVID-19 pandemic". <i>Journal of Big Data</i>. <b>8</b>(1): 105. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1186%2Fs40537-021-00476-0">10.1186/s40537-021-00476-0</a>. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://www.worldcat.org/search?fq=x0:jrnl&amp;q=n2:2196-1115">2196-1115</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> 8329615. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> 34367876.</span> </li> <li id="cite_note-WP8218-119"><span class="mw-cite-backlink"><b><a href="#cite_ref-WP8218_119-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJosh_Rogin2018" class="citation news cs1">Josh Rogin (2 August 2018). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190331161843/https://www.washingtonpost.com/opinions/global-opinions/ethnic-cleansing-makes-a-comeback--in-china/2018/08/02/">"Ethnic cleansing makes a comeback – in China"</a>. No.&#160;Washington Post. Archived from <a rel="nofollow" class="external text" href="https://www.washingtonpost.com/opinions/global-opinions/ethnic-cleansing-makes-a-comeback--in-china/2018/08/02/">the original</a> on 31 March 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">4 August</span> 2018</span>. <q>Add to that the unprecedented security and surveillance state in Xinjiang, which includes all-encompassing monitoring based on identity cards, checkpoints, facial recognition and the collection of DNA from millions of individuals. The authorities feed all this data into an artificial-intelligence machine that rates people's loyalty to the Communist Party in order to control every aspect of their lives.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Ethnic+cleansing+makes+a+comeback+%E2%80%93+in+China&amp;rft.issue=Washington+Post&amp;rft.date=2018-08-02&amp;rft.au=Josh+Rogin&amp;rft_id=https%3A%2F%2Fwww.washingtonpost.com%2Fopinions%2Fglobal-opinions%2Fethnic-cleansing-makes-a-comeback--in-china%2F2018%2F08%2F02%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-how022618-120"><span class="mw-cite-backlink"><b><a href="#cite_ref-how022618_120-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.hrw.org/news/2018/02/26/china-big-data-fuels-crackdown-minority-region">"China: Big Data Fuels Crackdown in Minority Region: Predictive Policing Program Flags Individuals for Investigations, Detentions"</a>. <i>hrw.org</i>. Human Rights Watch. 26 February 2018. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20191221181307/https://www.hrw.org/news/2018/02/26/china-big-data-fuels-crackdown-minority-region">Archived</a> from the original on 21 December 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">4 August</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=hrw.org&amp;rft.atitle=China%3A+Big+Data+Fuels+Crackdown+in+Minority+Region%3A+Predictive+Policing+Program+Flags+Individuals+for+Investigations%2C+Detentions&amp;rft.date=2018-02-26&amp;rft_id=https%3A%2F%2Fwww.hrw.org%2Fnews%2F2018%2F02%2F26%2Fchina-big-data-fuels-crackdown-minority-region&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-121"><span class="mw-cite-backlink"><b><a href="#cite_ref-121">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.thenation.com/article/china-social-credit-system/">"Discipline and Punish: The Birth of China's Social-Credit System"</a>. <i>The Nation</i>. 23 January 2019. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190913003747/https://www.thenation.com/article/china-social-credit-system/">Archived</a> from the original on 13 September 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">8 August</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Nation&amp;rft.atitle=Discipline+and+Punish%3A+The+Birth+of+China%27s+Social-Credit+System&amp;rft.date=2019-01-23&amp;rft_id=https%3A%2F%2Fwww.thenation.com%2Farticle%2Fchina-social-credit-system%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-122"><span class="mw-cite-backlink"><b><a href="#cite_ref-122">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.cbsnews.com/news/china-social-credit-system-surveillance-cameras/">"China's behavior monitoring system bars some from travel, purchasing property"</a>. <i>CBS News</i>. 24 April 2018. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190813005333/https://www.cbsnews.com/news/china-social-credit-system-surveillance-cameras/">Archived</a> from the original on 13 August 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">8 August</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=CBS+News&amp;rft.atitle=China%27s+behavior+monitoring+system+bars+some+from+travel%2C+purchasing+property&amp;rft.date=2018-04-24&amp;rft_id=https%3A%2F%2Fwww.cbsnews.com%2Fnews%2Fchina-social-credit-system-surveillance-cameras%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-123"><span class="mw-cite-backlink"><b><a href="#cite_ref-123">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation magazine cs1"><a rel="nofollow" class="external text" href="https://www.wired.co.uk/article/china-social-credit-system-explained">"The complicated truth about China's social credit system"</a>. <i>WIRED</i>. 21 January 2019. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190808115110/https://www.wired.co.uk/article/china-social-credit-system-explained">Archived</a> from the original on 8 August 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">8 August</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=WIRED&amp;rft.atitle=The+complicated+truth+about+China%27s+social+credit+system&amp;rft.date=2019-01-21&amp;rft_id=https%3A%2F%2Fwww.wired.co.uk%2Farticle%2Fchina-social-credit-system-explained&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-124"><span class="mw-cite-backlink"><b><a href="#cite_ref-124">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.livemint.com/Industry/bUQo8xQ3gStSAy5II9lxoK/Are-Indian-companies-making-enough-sense-of-Big-Data.html">"News: Live Mint"</a>. <i>Are Indian companies making enough sense of Big Data?</i>. Live Mint. 23 June 2014. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20141129063451/http://www.livemint.com/Industry/bUQo8xQ3gStSAy5II9lxoK/Are-Indian-companies-making-enough-sense-of-Big-Data.html">Archived</a> from the original on 29 November 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">22 November</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Are+Indian+companies+making+enough+sense+of+Big+Data%3F&amp;rft.atitle=News%3A+Live+Mint&amp;rft.date=2014-06-23&amp;rft_id=http%3A%2F%2Fwww.livemint.com%2FIndustry%2FbUQo8xQ3gStSAy5II9lxoK%2FAre-Indian-companies-making-enough-sense-of-Big-Data.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-125"><span class="mw-cite-backlink"><b><a href="#cite_ref-125">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.timesofisrael.com/israeli-startup-uses-big-data-minimal-hardware-to-treat-diabetes/">"Israeli startup uses big data, minimal hardware to treat diabetes"</a>. <i><a href="/wiki/The_Times_of_Israel" title="The Times of Israel">The Times of Israel</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180301105651/https://www.timesofisrael.com/israeli-startup-uses-big-data-minimal-hardware-to-treat-diabetes/">Archived</a> from the original on 1 March 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">28 February</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Times+of+Israel&amp;rft.atitle=Israeli+startup+uses+big+data%2C+minimal+hardware+to+treat+diabetes&amp;rft_id=https%3A%2F%2Fwww.timesofisrael.com%2Fisraeli-startup-uses-big-data-minimal-hardware-to-treat-diabetes%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-126"><span class="mw-cite-backlink"><b><a href="#cite_ref-126">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSinghSchulthessHughesVannieuwenhuyse2018" class="citation journal cs1">Singh, Gurparkash; Schulthess, Duane; Hughes, Nigel; Vannieuwenhuyse, Bart; Kalra, Dipak (2018). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.drudis.2017.12.002">"Real world big data for clinical research and drug development"</a>. <i>Drug Discovery Today</i>. <b>23</b> (3): 652–660. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.drudis.2017.12.002">10.1016/j.drudis.2017.12.002</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29294362">29294362</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Drug+Discovery+Today&amp;rft.atitle=Real+world+big+data+for+clinical+research+and+drug+development&amp;rft.volume=23&amp;rft.issue=3&amp;rft.pages=652-660&amp;rft.date=2018&amp;rft_id=info%3Adoi%2F10.1016%2Fj.drudis.2017.12.002&amp;rft_id=info%3Apmid%2F29294362&amp;rft.aulast=Singh&amp;rft.aufirst=Gurparkash&amp;rft.au=Schulthess%2C+Duane&amp;rft.au=Hughes%2C+Nigel&amp;rft.au=Vannieuwenhuyse%2C+Bart&amp;rft.au=Kalra%2C+Dipak&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.drudis.2017.12.002&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-127"><span class="mw-cite-backlink"><b><a href="#cite_ref-127">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/297762848">"Recent advances delivered by Mobile Cloud Computing and Internet of Things for Big Data applications: a survey"</a>. International Journal of Network Management. 11 March 2016. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220601224735/https://www.researchgate.net/publication/297762848">Archived</a> from the original on 1 June 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">14 September</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Recent+advances+delivered+by+Mobile+Cloud+Computing+and+Internet+of+Things+for+Big+Data+applications%3A+a+survey&amp;rft.pub=International+Journal+of+Network+Management&amp;rft.date=2016-03-11&amp;rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F297762848&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-WH_Big_Data-128"><span class="mw-cite-backlink"><b><a href="#cite_ref-WH_Big_Data_128-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKalil2012" class="citation web cs1">Kalil, Tom (29 March 2012). <a rel="nofollow" class="external text" href="https://obamawhitehouse.archives.gov/blog/2012/03/29/big-data-big-deal">"Big Data is a Big Deal"</a>. <i><a href="/wiki/Whitehouse.gov" title="Whitehouse.gov">whitehouse.gov</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170110083537/https://www.whitehouse.gov/blog/2012/03/29/big-data-big-deal">Archived</a> from the original on 10 January 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">26 September</span> 2012</span> &#8211; via <a href="/wiki/NARA" class="mw-redirect" title="NARA">National Archives</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=whitehouse.gov&amp;rft.atitle=Big+Data+is+a+Big+Deal&amp;rft.date=2012-03-29&amp;rft.aulast=Kalil&amp;rft.aufirst=Tom&amp;rft_id=https%3A%2F%2Fobamawhitehouse.archives.gov%2Fblog%2F2012%2F03%2F29%2Fbig-data-big-deal&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-129"><span class="mw-cite-backlink"><b><a href="#cite_ref-129">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFExecutive_Office_of_the_President2012" class="citation web cs1">Executive Office of the President (March 2012). <a rel="nofollow" class="external text" href="https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/big_data_fact_sheet_final_1.pdf">"Big Data Across the Federal Government"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Office_of_Science_and_Technology_Policy" title="Office of Science and Technology Policy">Office of Science and Technology Policy</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170121233257/https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/big_data_fact_sheet_final_1.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 21 January 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">26 September</span> 2012</span> &#8211; via <a href="/wiki/NARA" class="mw-redirect" title="NARA">National Archives</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Office+of+Science+and+Technology+Policy&amp;rft.atitle=Big+Data+Across+the+Federal+Government&amp;rft.date=2012-03&amp;rft.au=Executive+Office+of+the+President&amp;rft_id=https%3A%2F%2Fobamawhitehouse.archives.gov%2Fsites%2Fdefault%2Ffiles%2Fmicrosites%2Fostp%2Fbig_data_fact_sheet_final_1.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-infoworld_bigdata-130"><span class="mw-cite-backlink"><b><a href="#cite_ref-infoworld_bigdata_130-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLampitt2013" class="citation web cs1">Lampitt, Andrew (14 February 2013). <a rel="nofollow" class="external text" href="http://www.infoworld.com/d/big-data/the-real-story-of-how-big-data-analytics-helped-obama-win-212862">"The real story of how big data analytics helped Obama win"</a>. <i><a href="/wiki/InfoWorld" title="InfoWorld">InfoWorld</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140705220107/http://www.infoworld.com/d/big-data/the-real-story-of-how-big-data-analytics-helped-obama-win-212862">Archived</a> from the original on 5 July 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">31 May</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=InfoWorld&amp;rft.atitle=The+real+story+of+how+big+data+analytics+helped+Obama+win&amp;rft.date=2013-02-14&amp;rft.aulast=Lampitt&amp;rft.aufirst=Andrew&amp;rft_id=http%3A%2F%2Fwww.infoworld.com%2Fd%2Fbig-data%2Fthe-real-story-of-how-big-data-analytics-helped-obama-win-212862&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-131"><span class="mw-cite-backlink"><b><a href="#cite_ref-131">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.top500.org/lists/top500/2023/11/">"November 2023 | TOP500"</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20240407010056/https://www.top500.org/lists/top500/2023/11/">Archived</a> from the original on 7 April 2024<span class="reference-accessdate">. Retrieved <span class="nowrap">20 April</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=November+2023+%7C+TOP500&amp;rft_id=https%3A%2F%2Fwww.top500.org%2Flists%2Ftop500%2F2023%2F11%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-132"><span class="mw-cite-backlink"><b><a href="#cite_ref-132">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHoover" class="citation web cs1">Hoover, J. Nicholas. <a rel="nofollow" class="external text" href="http://www.informationweek.com/government/enterprise-applications/image-gallery-governments-10-most-powerf/224700271">"Government's 10 Most Powerful Supercomputers"</a>. <i>Information Week</i>. UBM. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131016082026/http://www.informationweek.com/government/enterprise-applications/image-gallery-governments-10-most-powerf/224700271">Archived</a> from the original on 16 October 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">26 September</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Information+Week&amp;rft.atitle=Government%27s+10+Most+Powerful+Supercomputers&amp;rft.aulast=Hoover&amp;rft.aufirst=J.+Nicholas&amp;rft_id=http%3A%2F%2Fwww.informationweek.com%2Fgovernment%2Fenterprise-applications%2Fimage-gallery-governments-10-most-powerf%2F224700271&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-133"><span class="mw-cite-backlink"><b><a href="#cite_ref-133">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBamford2012" class="citation magazine cs1">Bamford, James (15 March 2012). <a rel="nofollow" class="external text" href="https://www.wired.com/threatlevel/2012/03/ff_nsadatacenter/all/1">"The NSA Is Building the Country's Biggest Spy Center (Watch What You Say)"</a>. <i><a href="/wiki/Wired_(magazine)" title="Wired (magazine)">Wired</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120404172946/http://www.wired.com/threatlevel/2012/03/ff_nsadatacenter/all/1">Archived</a> from the original on 4 April 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">18 March</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Wired&amp;rft.atitle=The+NSA+Is+Building+the+Country%27s+Biggest+Spy+Center+%28Watch+What+You+Say%29&amp;rft.date=2012-03-15&amp;rft.aulast=Bamford&amp;rft.aufirst=James&amp;rft_id=https%3A%2F%2Fwww.wired.com%2Fthreatlevel%2F2012%2F03%2Fff_nsadatacenter%2Fall%2F1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-134"><span class="mw-cite-backlink"><b><a href="#cite_ref-134">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20130905055004/http://www.nsa.gov/public_info/press_room/2011/utah_groundbreaking_ceremony.shtml">"Groundbreaking Ceremony Held for $1.2 Billion Utah Data Center"</a>. National Security Agency Central Security Service. Archived from <a rel="nofollow" class="external text" href="http://www.nsa.gov/public_info/press_room/2011/utah_groundbreaking_ceremony.shtml">the original</a> on 5 September 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">18 March</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Groundbreaking+Ceremony+Held+for+%241.2+Billion+Utah+Data+Center&amp;rft.pub=National+Security+Agency+Central+Security+Service&amp;rft_id=http%3A%2F%2Fwww.nsa.gov%2Fpublic_info%2Fpress_room%2F2011%2Futah_groundbreaking_ceremony.shtml&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-135"><span class="mw-cite-backlink"><b><a href="#cite_ref-135">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHill" class="citation magazine cs1">Hill, Kashmir. <a rel="nofollow" class="external text" href="https://www.forbes.com/sites/kashmirhill/2013/07/24/blueprints-of-nsa-data-center-in-utah-suggest-its-storage-capacity-is-less-impressive-than-thought/">"Blueprints of NSA's Ridiculously Expensive Data Center in Utah Suggest It Holds Less Info Than Thought"</a>. <i>Forbes</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180329214044/https://www.forbes.com/sites/kashmirhill/2013/07/24/blueprints-of-nsa-data-center-in-utah-suggest-its-storage-capacity-is-less-impressive-than-thought/">Archived</a> from the original on 29 March 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">31 October</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Forbes&amp;rft.atitle=Blueprints+of+NSA%27s+Ridiculously+Expensive+Data+Center+in+Utah+Suggest+It+Holds+Less+Info+Than+Thought&amp;rft.aulast=Hill&amp;rft.aufirst=Kashmir&amp;rft_id=https%3A%2F%2Fwww.forbes.com%2Fsites%2Fkashmirhill%2F2013%2F07%2F24%2Fblueprints-of-nsa-data-center-in-utah-suggest-its-storage-capacity-is-less-impressive-than-thought%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-136"><span class="mw-cite-backlink"><b><a href="#cite_ref-136">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmithHallman2013" class="citation news cs1">Smith, Gerry; Hallman, Ben (12 June 2013). <a rel="nofollow" class="external text" href="https://www.huffingtonpost.com/2013/06/12/nsa-big-data_n_3423482.html">"NSA Spying Controversy Highlights Embrace of Big Data"</a>. <i>Huffington Post</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170719123431/http://www.huffingtonpost.com/2013/06/12/nsa-big-data_n_3423482.html">Archived</a> from the original on 19 July 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">7 May</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Huffington+Post&amp;rft.atitle=NSA+Spying+Controversy+Highlights+Embrace+of+Big+Data&amp;rft.date=2013-06-12&amp;rft.aulast=Smith&amp;rft.aufirst=Gerry&amp;rft.au=Hallman%2C+Ben&amp;rft_id=https%3A%2F%2Fwww.huffingtonpost.com%2F2013%2F06%2F12%2Fnsa-big-data_n_3423482.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-137"><span class="mw-cite-backlink"><b><a href="#cite_ref-137">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWingfield2013" class="citation news cs1">Wingfield, Nick (12 March 2013). <a rel="nofollow" class="external text" href="http://bits.blogs.nytimes.com/2013/03/12/predicting-commutes-more-accurately-for-would-be-home-buyers/">"Predicting Commutes More Accurately for Would-Be Home Buyers"</a>. <i>The New York Times</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130529090534/http://bits.blogs.nytimes.com/2013/03/12/predicting-commutes-more-accurately-for-would-be-home-buyers/">Archived</a> from the original on 29 May 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">21 July</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+New+York+Times&amp;rft.atitle=Predicting+Commutes+More+Accurately+for+Would-Be+Home+Buyers&amp;rft.date=2013-03-12&amp;rft.aulast=Wingfield&amp;rft.aufirst=Nick&amp;rft_id=http%3A%2F%2Fbits.blogs.nytimes.com%2F2013%2F03%2F12%2Fpredicting-commutes-more-accurately-for-would-be-home-buyers%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-fico.com-138"><span class="mw-cite-backlink"><b><a href="#cite_ref-fico.com_138-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.fico.com/en/Products/DMApps/Pages/FICO-Falcon-Fraud-Manager.aspx">"FICO® Falcon® Fraud Manager"</a>. Fico.com. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20121111060238/http://www.fico.com/en/products/dmapps/pages/fico-falcon-fraud-manager.aspx">Archived</a> from the original on 11 November 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">21 July</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=FICO%C2%AE+Falcon%C2%AE+Fraud+Manager&amp;rft.pub=Fico.com&amp;rft_id=http%3A%2F%2Fwww.fico.com%2Fen%2FProducts%2FDMApps%2FPages%2FFICO-Falcon-Fraud-Manager.aspx&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-139"><span class="mw-cite-backlink"><b><a href="#cite_ref-139">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrynjolfssonHuRahman2013" class="citation journal cs1">Brynjolfsson, Erik; Hu, Yu Jeffrey; Rahman, Mohammad S. (21 May 2013). <a rel="nofollow" class="external text" href="https://sloanreview.mit.edu/article/competing-in-the-age-of-omnichannel-retailing/">"Competing in the Age of Omnichannel Retailing"</a>. <i>MIT Sloan Management Review</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=MIT+Sloan+Management+Review&amp;rft.atitle=Competing+in+the+Age+of+Omnichannel+Retailing&amp;rft.date=2013-05-21&amp;rft.aulast=Brynjolfsson&amp;rft.aufirst=Erik&amp;rft.au=Hu%2C+Yu+Jeffrey&amp;rft.au=Rahman%2C+Mohammad+S.&amp;rft_id=https%3A%2F%2Fsloanreview.mit.edu%2Farticle%2Fcompeting-in-the-age-of-omnichannel-retailing%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-140"><span class="mw-cite-backlink"><b><a href="#cite_ref-140">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlexandru" class="citation web cs1">Alexandru, Dan. <a rel="nofollow" class="external text" href="https://cds.cern.ch/record/1504817/files/CERN-THESIS-2013-004.pdf">"Prof"</a> <span class="cs1-format">(PDF)</span>. <i>cds.cern.ch</i>. CERN. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170715091845/https://cds.cern.ch/record/1504817/files/CERN-THESIS-2013-004.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 15 July 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">24 March</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=cds.cern.ch&amp;rft.atitle=Prof&amp;rft.aulast=Alexandru&amp;rft.aufirst=Dan&amp;rft_id=https%3A%2F%2Fcds.cern.ch%2Frecord%2F1504817%2Ffiles%2FCERN-THESIS-2013-004.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-141"><span class="mw-cite-backlink"><b><a href="#cite_ref-141">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://cds.cern.ch/record/1278169?ln=en">"LHC Brochure, English version. A presentation of the largest and the most powerful particle accelerator in the world, the Large Hadron Collider (LHC), which started up in 2008. Its role, characteristics, technologies, etc. are explained for the general public"</a>. <i>CERN-Brochure-2010-006-Eng. LHC Brochure, English version</i>. CERN. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190319224056/https://cds.cern.ch/record/1278169?ln=en">Archived</a> from the original on 19 March 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">20 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=CERN-Brochure-2010-006-Eng.+LHC+Brochure%2C+English+version.&amp;rft.atitle=LHC+Brochure%2C+English+version.+A+presentation+of+the+largest+and+the+most+powerful+particle+accelerator+in+the+world%2C+the+Large+Hadron+Collider+%28LHC%29%2C+which+started+up+in+2008.+Its+role%2C+characteristics%2C+technologies%2C+etc.+are+explained+for+the+general+public.&amp;rft_id=https%3A%2F%2Fcds.cern.ch%2Frecord%2F1278169%3Fln%3Den&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-142"><span class="mw-cite-backlink"><b><a href="#cite_ref-142">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://cds.cern.ch/record/1092437?ln=en">"LHC Guide, English version. A collection of facts and figures about the Large Hadron Collider (LHC) in the form of questions and answers"</a>. <i>CERN-Brochure-2008-001-Eng. LHC Guide, English version</i>. CERN. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200407070110/https://login.cern.ch/adfs/ls/?wa=wsignin1.0&amp;wreply=https%3A%2F%2Fcds.cern.ch%2FShibboleth.sso%2FADFS&amp;wct=2020-04-07T07%3A01%3A09Z&amp;wtrealm=https%3A%2F%2Fcds.cern.ch%2FShibboleth.sso%2FADFS&amp;wctx=cookie%3A1586242869_c84d">Archived</a> from the original on 7 April 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">20 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=CERN-Brochure-2008-001-Eng.+LHC+Guide%2C+English+version.&amp;rft.atitle=LHC+Guide%2C+English+version.+A+collection+of+facts+and+figures+about+the+Large+Hadron+Collider+%28LHC%29+in+the+form+of+questions+and+answers.&amp;rft_id=https%3A%2F%2Fcds.cern.ch%2Frecord%2F1092437%3Fln%3Den&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-nature-143"><span class="mw-cite-backlink"><b><a href="#cite_ref-nature_143-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrumfiel2011" class="citation journal cs1">Brumfiel, Geoff (19 January 2011). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F469282a">"High-energy physics: Down the petabyte highway"</a>. <i>Nature</i>. <b>469</b> (7330): 282–83. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011Natur.469..282B">2011Natur.469..282B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F469282a">10.1038/469282a</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21248814">21248814</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:533166">533166</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=High-energy+physics%3A+Down+the+petabyte+highway&amp;rft.volume=469&amp;rft.issue=7330&amp;rft.pages=282-83&amp;rft.date=2011-01-19&amp;rft_id=info%3Adoi%2F10.1038%2F469282a&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A533166%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F21248814&amp;rft_id=info%3Abibcode%2F2011Natur.469..282B&amp;rft.aulast=Brumfiel&amp;rft.aufirst=Geoff&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252F469282a&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-144"><span class="mw-cite-backlink"><b><a href="#cite_ref-144">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.zurich.ibm.com/pdf/astron/CeBIT+2013+Background+DOME.pdf">"IBM Research – Zurich"</a> <span class="cs1-format">(PDF)</span>. <i>Zurich.ibm.com</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220601224737/https://www.zurich.ibm.com">Archived</a> from the original on 1 June 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">8 October</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Zurich.ibm.com&amp;rft.atitle=IBM+Research+%E2%80%93+Zurich&amp;rft_id=http%3A%2F%2Fwww.zurich.ibm.com%2Fpdf%2Fastron%2FCeBIT%2B2013%2BBackground%2BDOME.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-145"><span class="mw-cite-backlink"><b><a href="#cite_ref-145">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://arstechnica.com/science/2012/04/future-telescope-array-drives-development-of-exabyte-processing/">"Future telescope array drives development of Exabyte processing"</a>. <i>Ars Technica</i>. 2 April 2012. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190331030706/https://arstechnica.com/science/2012/04/future-telescope-array-drives-development-of-exabyte-processing/">Archived</a> from the original on 31 March 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">15 April</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Ars+Technica&amp;rft.atitle=Future+telescope+array+drives+development+of+Exabyte+processing&amp;rft.date=2012-04-02&amp;rft_id=https%3A%2F%2Farstechnica.com%2Fscience%2F2012%2F04%2Ffuture-telescope-array-drives-development-of-exabyte-processing%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-146"><span class="mw-cite-backlink"><b><a href="#cite_ref-146">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://theconversation.com/australias-bid-for-the-square-kilometre-array-an-insiders-perspective-4891">"Australia's bid for the Square Kilometre Array – an insider's perspective"</a>. <a href="/wiki/The_Conversation_(website)" title="The Conversation (website)">The Conversation</a>. 1 February 2012. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161012094526/http://theconversation.com/australias-bid-for-the-square-kilometre-array-an-insiders-perspective-4891">Archived</a> from the original on 12 October 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">27 September</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Australia%27s+bid+for+the+Square+Kilometre+Array+%E2%80%93+an+insider%27s+perspective&amp;rft.pub=The+Conversation&amp;rft.date=2012-02-01&amp;rft_id=http%3A%2F%2Ftheconversation.com%2Faustralias-bid-for-the-square-kilometre-array-an-insiders-perspective-4891&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-147"><span class="mw-cite-backlink"><b><a href="#cite_ref-147">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.oecd.org/sti/ieconomy/Session_3_Delort.pdf#page=6">"Delort P., OECD ICCP Technology Foresight Forum, 2012"</a> <span class="cs1-format">(PDF)</span>. <i>Oecd.org</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170619214305/http://www.oecd.org/sti/ieconomy/Session_3_Delort.pdf#page=6">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 19 June 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">8 October</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Oecd.org&amp;rft.atitle=Delort+P.%2C+OECD+ICCP+Technology+Foresight+Forum%2C+2012.&amp;rft_id=http%3A%2F%2Fwww.oecd.org%2Fsti%2Fieconomy%2FSession_3_Delort.pdf%23page%3D6&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-148"><span class="mw-cite-backlink"><b><a href="#cite_ref-148">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.nasa.gov/centers/goddard/news/releases/2010/10-051.html">"NASA – NASA Goddard Introduces the NASA Center for Climate Simulation"</a>. <i>Nasa.gov</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160403061211/http://www.nasa.gov/centers/goddard/news/releases/2010/10-051.html">Archived</a> from the original on 3 April 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">13 April</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Nasa.gov&amp;rft.atitle=NASA+%E2%80%93+NASA+Goddard+Introduces+the+NASA+Center+for+Climate+Simulation&amp;rft_id=http%3A%2F%2Fwww.nasa.gov%2Fcenters%2Fgoddard%2Fnews%2Freleases%2F2010%2F10-051.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-149"><span class="mw-cite-backlink"><b><a href="#cite_ref-149">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWebster" class="citation web cs1">Webster, Phil. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130104220150/http://www.csc.com/cscworld/publications/81769/81773-supercomputing_the_climate_nasa_s_big_data_mission">"Supercomputing the Climate: NASA's Big Data Mission"</a>. <i>CSC World</i>. Computer Sciences Corporation. Archived from <a rel="nofollow" class="external text" href="http://www.csc.com/cscworld/publications/81769/81773-supercomputing_the_climate_nasa_s_big_data_mission">the original</a> on 4 January 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">18 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=CSC+World&amp;rft.atitle=Supercomputing+the+Climate%3A+NASA%27s+Big+Data+Mission&amp;rft.aulast=Webster&amp;rft.aufirst=Phil&amp;rft_id=http%3A%2F%2Fwww.csc.com%2Fcscworld%2Fpublications%2F81769%2F81773-supercomputing_the_climate_nasa_s_big_data_mission&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-150"><span class="mw-cite-backlink"><b><a href="#cite_ref-150">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.theglobeandmail.com/life/health-and-fitness/health/these-six-great-neuroscience-ideas-could-make-the-leap-from-lab-to-market/article21681731/">"These six great neuroscience ideas could make the leap from lab to market"</a>. <i><a href="/wiki/The_Globe_and_Mail" title="The Globe and Mail">The Globe and Mail</a></i>. 20 November 2014. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161011132848/http://www.theglobeandmail.com/life/health-and-fitness/health/these-six-great-neuroscience-ideas-could-make-the-leap-from-lab-to-market/article21681731/">Archived</a> from the original on 11 October 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">1 October</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Globe+and+Mail&amp;rft.atitle=These+six+great+neuroscience+ideas+could+make+the+leap+from+lab+to+market&amp;rft.date=2014-11-20&amp;rft_id=https%3A%2F%2Fwww.theglobeandmail.com%2Flife%2Fhealth-and-fitness%2Fhealth%2Fthese-six-great-neuroscience-ideas-could-make-the-leap-from-lab-to-market%2Farticle21681731%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-151"><span class="mw-cite-backlink"><b><a href="#cite_ref-151">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://cloud.google.com/customers/dnastack/">"DNAstack tackles massive, complex DNA datasets with Google Genomics"</a>. Google Cloud Platform. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160924212549/https://cloud.google.com/customers/dnastack/">Archived</a> from the original on 24 September 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">1 October</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=DNAstack+tackles+massive%2C+complex+DNA+datasets+with+Google+Genomics&amp;rft.pub=Google+Cloud+Platform&amp;rft_id=https%3A%2F%2Fcloud.google.com%2Fcustomers%2Fdnastack%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-152"><span class="mw-cite-backlink"><b><a href="#cite_ref-152">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.23andme.com/en-int/ancestry/">"23andMe – Ancestry"</a>. <i>23andme.com</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161218134337/https://www.23andme.com/en-int/ancestry/">Archived</a> from the original on 18 December 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">29 December</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=23andme.com&amp;rft.atitle=23andMe+%E2%80%93+Ancestry&amp;rft_id=https%3A%2F%2Fwww.23andme.com%2Fen-int%2Fancestry%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-verge1-153"><span class="mw-cite-backlink">^ <a href="#cite_ref-verge1_153-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-verge1_153-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPotenza2016" class="citation web cs1">Potenza, Alessandra (13 July 2016). <a rel="nofollow" class="external text" href="https://www.theverge.com/2016/7/13/12166960/23andme-genetic-testing-database-genotyping-research">"23andMe wants researchers to use its kits, in a bid to expand its collection of genetic data"</a>. <i>The Verge</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161229171240/http://www.theverge.com/2016/7/13/12166960/23andme-genetic-testing-database-genotyping-research">Archived</a> from the original on 29 December 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">29 December</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=The+Verge&amp;rft.atitle=23andMe+wants+researchers+to+use+its+kits%2C+in+a+bid+to+expand+its+collection+of+genetic+data&amp;rft.date=2016-07-13&amp;rft.aulast=Potenza&amp;rft.aufirst=Alessandra&amp;rft_id=https%3A%2F%2Fwww.theverge.com%2F2016%2F7%2F13%2F12166960%2F23andme-genetic-testing-database-genotyping-research&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-154"><span class="mw-cite-backlink"><b><a href="#cite_ref-154">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation magazine cs1"><a rel="nofollow" class="external text" href="https://www.fastcompany.com/3066775/innovation-agents/this-startup-will-sequence-your-dna-so-you-can-contribute-to-medical-resea">"This Startup Will Sequence Your DNA, So You Can Contribute To Medical Research"</a>. <i><a href="/wiki/Fast_Company" title="Fast Company">Fast Company</a></i>. 23 December 2016. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161229102128/https://www.fastcompany.com/3066775/innovation-agents/this-startup-will-sequence-your-dna-so-you-can-contribute-to-medical-resea">Archived</a> from the original on 29 December 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">29 December</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fast+Company&amp;rft.atitle=This+Startup+Will+Sequence+Your+DNA%2C+So+You+Can+Contribute+To+Medical+Research&amp;rft.date=2016-12-23&amp;rft_id=https%3A%2F%2Fwww.fastcompany.com%2F3066775%2Finnovation-agents%2Fthis-startup-will-sequence-your-dna-so-you-can-contribute-to-medical-resea&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-155"><span class="mw-cite-backlink"><b><a href="#cite_ref-155">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSeife" class="citation magazine cs1">Seife, Charles. <a rel="nofollow" class="external text" href="https://www.scientificamerican.com/article/23andme-is-terrifying-but-not-for-the-reasons-the-fda-thinks/">"23andMe Is Terrifying, but Not for the Reasons the FDA Thinks"</a>. <i><a href="/wiki/Scientific_American" title="Scientific American">Scientific American</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161229170606/https://www.scientificamerican.com/article/23andme-is-terrifying-but-not-for-the-reasons-the-fda-thinks/">Archived</a> from the original on 29 December 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">29 December</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scientific+American&amp;rft.atitle=23andMe+Is+Terrifying%2C+but+Not+for+the+Reasons+the+FDA+Thinks&amp;rft.aulast=Seife&amp;rft.aufirst=Charles&amp;rft_id=https%3A%2F%2Fwww.scientificamerican.com%2Farticle%2F23andme-is-terrifying-but-not-for-the-reasons-the-fda-thinks%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-156"><span class="mw-cite-backlink"><b><a href="#cite_ref-156">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZaleski2016" class="citation web cs1">Zaleski, Andrew (22 June 2016). <a rel="nofollow" class="external text" href="https://www.cnbc.com/2016/06/22/23andme-thinks-your-genes-are-the-key-to-blockbuster-drugs.html">"This biotech start-up is betting your genes will yield the next wonder drug"</a>. CNBC. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161229101419/http://www.cnbc.com/2016/06/22/23andme-thinks-your-genes-are-the-key-to-blockbuster-drugs.html">Archived</a> from the original on 29 December 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">29 December</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=This+biotech+start-up+is+betting+your+genes+will+yield+the+next+wonder+drug&amp;rft.pub=CNBC&amp;rft.date=2016-06-22&amp;rft.aulast=Zaleski&amp;rft.aufirst=Andrew&amp;rft_id=https%3A%2F%2Fwww.cnbc.com%2F2016%2F06%2F22%2F23andme-thinks-your-genes-are-the-key-to-blockbuster-drugs.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-157"><span class="mw-cite-backlink"><b><a href="#cite_ref-157">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRegalado" class="citation magazine cs1">Regalado, Antonio. <a rel="nofollow" class="external text" href="https://www.technologyreview.com/s/601506/23andme-sells-data-for-drug-search/">"How 23andMe turned your DNA into a $1 billion drug discovery machine"</a>. <i><a href="/wiki/MIT_Technology_Review" title="MIT Technology Review">MIT Technology Review</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161229100618/https://www.technologyreview.com/s/601506/23andme-sells-data-for-drug-search/">Archived</a> from the original on 29 December 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">29 December</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=MIT+Technology+Review&amp;rft.atitle=How+23andMe+turned+your+DNA+into+a+%241+billion+drug+discovery+machine&amp;rft.aulast=Regalado&amp;rft.aufirst=Antonio&amp;rft_id=https%3A%2F%2Fwww.technologyreview.com%2Fs%2F601506%2F23andme-sells-data-for-drug-search%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-158"><span class="mw-cite-backlink"><b><a href="#cite_ref-158">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.fiercebiotech.com/it/23andme-reports-jump-requests-for-data-wake-pfizer-depression-study">"23andMe reports jump in requests for data in wake of Pfizer depression study | FierceBiotech"</a>. <i>fiercebiotech.com</i>. 22 August 2016. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161229102058/http://www.fiercebiotech.com/it/23andme-reports-jump-requests-for-data-wake-pfizer-depression-study">Archived</a> from the original on 29 December 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">29 December</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=fiercebiotech.com&amp;rft.atitle=23andMe+reports+jump+in+requests+for+data+in+wake+of+Pfizer+depression+study+%7C+FierceBiotech&amp;rft.date=2016-08-22&amp;rft_id=http%3A%2F%2Fwww.fiercebiotech.com%2Fit%2F23andme-reports-jump-requests-for-data-wake-pfizer-depression-study&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-159"><span class="mw-cite-backlink"><b><a href="#cite_ref-159">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAdmire_Moyo2015" class="citation web cs1">Admire Moyo (23 October 2015). <a rel="nofollow" class="external text" href="http://www.itweb.co.za/index.php?option=com_content&amp;view=article&amp;id=147241">"Data scientists predict Springbok defeat"</a>. <i>itweb.co.za</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20151222123957/http://www.itweb.co.za/index.php?option=com_content&amp;view=article&amp;id=147241">Archived</a> from the original on 22 December 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">12 December</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=itweb.co.za&amp;rft.atitle=Data+scientists+predict+Springbok+defeat&amp;rft.date=2015-10-23&amp;rft.au=Admire+Moyo&amp;rft_id=http%3A%2F%2Fwww.itweb.co.za%2Findex.php%3Foption%3Dcom_content%26view%3Darticle%26id%3D147241&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-160"><span class="mw-cite-backlink"><b><a href="#cite_ref-160">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaiBai2021" class="citation journal cs1">Bai, Zhongbo; Bai, Xiaomei (2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2021%2F6676297">"Sports Big Data: Management, Analysis, Applications, and Challenges"</a>. <i>Complexity</i>. <b>2021</b>: 1–11. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2021%2F6676297">10.1155/2021/6676297</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Complexity&amp;rft.atitle=Sports+Big+Data%3A+Management%2C+Analysis%2C+Applications%2C+and+Challenges&amp;rft.volume=2021&amp;rft.pages=1-11&amp;rft.date=2021&amp;rft_id=info%3Adoi%2F10.1155%2F2021%2F6676297&amp;rft.aulast=Bai&amp;rft.aufirst=Zhongbo&amp;rft.au=Bai%2C+Xiaomei&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1155%252F2021%252F6676297&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-161"><span class="mw-cite-backlink"><b><a href="#cite_ref-161">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRegina_Pazvakavambwa2015" class="citation web cs1">Regina Pazvakavambwa (17 November 2015). <a rel="nofollow" class="external text" href="http://www.itweb.co.za/index.php?option=com_content&amp;view=article&amp;id=147852">"Predictive analytics, big data transform sports"</a>. <i>itweb.co.za</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20151222085858/http://www.itweb.co.za/index.php?option=com_content&amp;view=article&amp;id=147852">Archived</a> from the original on 22 December 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">12 December</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=itweb.co.za&amp;rft.atitle=Predictive+analytics%2C+big+data+transform+sports&amp;rft.date=2015-11-17&amp;rft.au=Regina+Pazvakavambwa&amp;rft_id=http%3A%2F%2Fwww.itweb.co.za%2Findex.php%3Foption%3Dcom_content%26view%3Darticle%26id%3D147852&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-162"><span class="mw-cite-backlink"><b><a href="#cite_ref-162">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDave_Ryan2015" class="citation web cs1">Dave Ryan (13 November 2015). <a rel="nofollow" class="external text" href="https://www.huffingtonpost.com/dave-ryan/sports-where-big-data-fin_b_8553884.html">"Sports: Where Big Data Finally Makes Sense"</a>. <i>huffingtonpost.com</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20151222163418/http://www.huffingtonpost.com/dave-ryan/sports-where-big-data-fin_b_8553884.html">Archived</a> from the original on 22 December 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">12 December</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=huffingtonpost.com&amp;rft.atitle=Sports%3A+Where+Big+Data+Finally+Makes+Sense&amp;rft.date=2015-11-13&amp;rft.au=Dave+Ryan&amp;rft_id=https%3A%2F%2Fwww.huffingtonpost.com%2Fdave-ryan%2Fsports-where-big-data-fin_b_8553884.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-163"><span class="mw-cite-backlink"><b><a href="#cite_ref-163">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrank_Bi" class="citation magazine cs1">Frank Bi. <a rel="nofollow" class="external text" href="https://www.forbes.com/sites/frankbi/2014/11/13/how-formula-one-teams-are-using-big-data-to-get-the-inside-edge/">"How Formula One Teams Are Using Big Data To Get The Inside Edge"</a>. <i>Forbes</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20151220134302/http://www.forbes.com/sites/frankbi/2014/11/13/how-formula-one-teams-are-using-big-data-to-get-the-inside-edge/">Archived</a> from the original on 20 December 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">12 December</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Forbes&amp;rft.atitle=How+Formula+One+Teams+Are+Using+Big+Data+To+Get+The+Inside+Edge&amp;rft.au=Frank+Bi&amp;rft_id=https%3A%2F%2Fwww.forbes.com%2Fsites%2Ffrankbi%2F2014%2F11%2F13%2Fhow-formula-one-teams-are-using-big-data-to-get-the-inside-edge%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-164"><span class="mw-cite-backlink"><b><a href="#cite_ref-164">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTay" class="citation web cs1">Tay, Liz. <a rel="nofollow" class="external text" href="http://www.itnews.com.au/news/inside-ebay8217s-90pb-data-warehouse-342615">"Inside eBay's 90PB data warehouse"</a>. ITNews. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160215123809/http://www.itnews.com.au/news/inside-ebay8217s-90pb-data-warehouse-342615">Archived</a> from the original on 15 February 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">12 February</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Inside+eBay%27s+90PB+data+warehouse&amp;rft.pub=ITNews&amp;rft.aulast=Tay&amp;rft.aufirst=Liz&amp;rft_id=http%3A%2F%2Fwww.itnews.com.au%2Fnews%2Finside-ebay8217s-90pb-data-warehouse-342615&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-165"><span class="mw-cite-backlink"><b><a href="#cite_ref-165">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLayton2006" class="citation web cs1">Layton, Julia (25 January 2006). <a rel="nofollow" class="external text" href="http://money.howstuffworks.com/amazon1.htm">"Amazon Technology"</a>. Money.howstuffworks.com. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130228040458/http://money.howstuffworks.com/amazon1.htm">Archived</a> from the original on 28 February 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">5 March</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Amazon+Technology&amp;rft.pub=Money.howstuffworks.com&amp;rft.date=2006-01-25&amp;rft.aulast=Layton&amp;rft.aufirst=Julia&amp;rft_id=http%3A%2F%2Fmoney.howstuffworks.com%2Famazon1.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-166"><span class="mw-cite-backlink"><b><a href="#cite_ref-166">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.facebook.com/notes/facebook-engineering/scaling-facebook-to-500-million-users-and-beyond/409881258919">"Scaling Facebook to 500 Million Users and Beyond"</a>. Facebook.com. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130705180356/https://www.facebook.com/notes/facebook-engineering/scaling-facebook-to-500-million-users-and-beyond/409881258919">Archived</a> from the original on 5 July 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">21 July</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Scaling+Facebook+to+500+Million+Users+and+Beyond&amp;rft.pub=Facebook.com&amp;rft_id=https%3A%2F%2Fwww.facebook.com%2Fnotes%2Ffacebook-engineering%2Fscaling-facebook-to-500-million-users-and-beyond%2F409881258919&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-167"><span class="mw-cite-backlink"><b><a href="#cite_ref-167">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFConstine2017" class="citation news cs1">Constine, Josh (27 June 2017). <a rel="nofollow" class="external text" href="https://techcrunch.com/2017/06/27/facebook-2-billion-users/">"Facebook now has 2 billion monthly users… and responsibility"</a>. <i>TechCrunch</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20201227043624/https://techcrunch.com/2017/06/27/facebook-2-billion-users/">Archived</a> from the original on 27 December 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">3 September</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=TechCrunch&amp;rft.atitle=Facebook+now+has+2+billion+monthly+users%E2%80%A6+and+responsibility&amp;rft.date=2017-06-27&amp;rft.aulast=Constine&amp;rft.aufirst=Josh&amp;rft_id=https%3A%2F%2Ftechcrunch.com%2F2017%2F06%2F27%2Ffacebook-2-billion-users%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-168"><span class="mw-cite-backlink"><b><a href="#cite_ref-168">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://searchengineland.com/google-1-trillion-searches-per-year-212940">"Google Still Doing at Least 1 Trillion Searches Per Year"</a>. <i>Search Engine Land</i>. 16 January 2015. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150415121237/http://searchengineland.com/google-1-trillion-searches-per-year-212940">Archived</a> from the original on 15 April 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">15 April</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Search+Engine+Land&amp;rft.atitle=Google+Still+Doing+at+Least+1+Trillion+Searches+Per+Year&amp;rft.date=2015-01-16&amp;rft_id=http%3A%2F%2Fsearchengineland.com%2Fgoogle-1-trillion-searches-per-year-212940&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-169"><span class="mw-cite-backlink"><b><a href="#cite_ref-169">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHaleemJavaidKhanVaishya2020" class="citation journal cs1">Haleem, Abid; Javaid, Mohd; Khan, Ibrahim; Vaishya, Raju (2020). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7204193">"Significant Applications of Big Data in COVID-19 Pandemic"</a>. <i>Indian Journal of Orthopaedics</i>. <b>54</b> (4): 526–528. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs43465-020-00129-z">10.1007/s43465-020-00129-z</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7204193">7204193</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32382166">32382166</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Indian+Journal+of+Orthopaedics&amp;rft.atitle=Significant+Applications+of+Big+Data+in+COVID-19+Pandemic&amp;rft.volume=54&amp;rft.issue=4&amp;rft.pages=526-528&amp;rft.date=2020&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7204193%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F32382166&amp;rft_id=info%3Adoi%2F10.1007%2Fs43465-020-00129-z&amp;rft.aulast=Haleem&amp;rft.aufirst=Abid&amp;rft.au=Javaid%2C+Mohd&amp;rft.au=Khan%2C+Ibrahim&amp;rft.au=Vaishya%2C+Raju&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7204193&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-170"><span class="mw-cite-backlink"><b><a href="#cite_ref-170">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFManancourt2020" class="citation news cs1">Manancourt, Vincent (10 March 2020). <a rel="nofollow" class="external text" href="https://www.politico.eu/article/coronavirus-tests-europe-resolve-on-privacy-tracking-apps-germany-italy/">"Coronavirus tests Europe's resolve on privacy"</a>. <i>Politico</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200320105744/https://www.politico.eu/article/coronavirus-tests-europe-resolve-on-privacy-tracking-apps-germany-italy/">Archived</a> from the original on 20 March 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">30 October</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Politico&amp;rft.atitle=Coronavirus+tests+Europe%27s+resolve+on+privacy&amp;rft.date=2020-03-10&amp;rft.aulast=Manancourt&amp;rft.aufirst=Vincent&amp;rft_id=https%3A%2F%2Fwww.politico.eu%2Farticle%2Fcoronavirus-tests-europe-resolve-on-privacy-tracking-apps-germany-italy%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-171"><span class="mw-cite-backlink"><b><a href="#cite_ref-171">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChoudhury2020" class="citation news cs1">Choudhury, Amit Roy (27 March 2020). <a rel="nofollow" class="external text" href="https://govinsider.asia/innovation/gov-in-the-time-of-corona/">"Gov in the Time of Corona"</a>. <i>Gov Insider</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200320125215/https://govinsider.asia/innovation/gov-in-the-time-of-corona/">Archived</a> from the original on 20 March 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">30 October</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Gov+Insider&amp;rft.atitle=Gov+in+the+Time+of+Corona&amp;rft.date=2020-03-27&amp;rft.aulast=Choudhury&amp;rft.aufirst=Amit+Roy&amp;rft_id=https%3A%2F%2Fgovinsider.asia%2Finnovation%2Fgov-in-the-time-of-corona%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-172"><span class="mw-cite-backlink"><b><a href="#cite_ref-172">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCellan-Jones2020" class="citation news cs1">Cellan-Jones, Rory (11 February 2020). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200228003957/https://www.bbc.com/news/technology-51439401">"China launches coronavirus 'close contact detector' app"</a>. <i>BBC</i>. Archived from <a rel="nofollow" class="external text" href="https://www.bbc.com/news/technology-51439401">the original</a> on 28 February 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">30 October</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=BBC&amp;rft.atitle=China+launches+coronavirus+%27close+contact+detector%27+app&amp;rft.date=2020-02-11&amp;rft.aulast=Cellan-Jones&amp;rft.aufirst=Rory&amp;rft_id=https%3A%2F%2Fwww.bbc.com%2Fnews%2Ftechnology-51439401&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-173"><span class="mw-cite-backlink"><b><a href="#cite_ref-173">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSiwachEsmailpour2014" class="citation conference cs1">Siwach, Gautam; Esmailpour, Amir (March 2014). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140809045242/http://asee-ne.org/proceedings/2014/Student%20Papers/210.pdf"><i>Encrypted Search &amp; Cluster Formation in Big Data</i></a> <span class="cs1-format">(PDF)</span>. <a rel="nofollow" class="external text" href="http://ubconferences.org/">ASEE 2014 Zone I Conference</a>. <a href="/wiki/University_of_Bridgeport" title="University of Bridgeport">University of Bridgeport</a>, <a href="/wiki/Bridgeport,_Connecticut" title="Bridgeport, Connecticut">Bridgeport</a>, Connecticut, US. Archived from <a rel="nofollow" class="external text" href="http://asee-ne.org/proceedings/2014/Student%20Papers/210.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 9 August 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">26 July</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Encrypted+Search+%26+Cluster+Formation+in+Big+Data&amp;rft.place=University+of+Bridgeport%2C+Bridgeport%2C+Connecticut%2C+US&amp;rft.date=2014-03&amp;rft.aulast=Siwach&amp;rft.aufirst=Gautam&amp;rft.au=Esmailpour%2C+Amir&amp;rft_id=http%3A%2F%2Fasee-ne.org%2Fproceedings%2F2014%2FStudent%2520Papers%2F210.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-174"><span class="mw-cite-backlink"><b><a href="#cite_ref-174">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/big_data_press_release_final_2.pdf">"Obama Administration Unveils "Big Data" Initiative:Announces $200 Million in New R&amp;D Investments"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Office_of_Science_and_Technology_Policy" title="Office of Science and Technology Policy">Office of Science and Technology Policy</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170121233309/https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/big_data_press_release_final_2.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 21 January 2017 &#8211; via <a href="/wiki/NARA" class="mw-redirect" title="NARA">National Archives</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Office+of+Science+and+Technology+Policy&amp;rft.atitle=Obama+Administration+Unveils+%22Big+Data%22+Initiative%3AAnnounces+%24200+Million+in+New+R%26D+Investments&amp;rft_id=https%3A%2F%2Fobamawhitehouse.archives.gov%2Fsites%2Fdefault%2Ffiles%2Fmicrosites%2Fostp%2Fbig_data_press_release_final_2.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-175"><span class="mw-cite-backlink"><b><a href="#cite_ref-175">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://amplab.cs.berkeley.edu">"AMPLab at the University of California, Berkeley"</a>. Amplab.cs.berkeley.edu. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110506051646/http://amplab.cs.berkeley.edu/">Archived</a> from the original on 6 May 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">5 March</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=AMPLab+at+the+University+of+California%2C+Berkeley&amp;rft.pub=Amplab.cs.berkeley.edu&amp;rft_id=http%3A%2F%2Famplab.cs.berkeley.edu&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-176"><span class="mw-cite-backlink"><b><a href="#cite_ref-176">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.nsf.gov/news/news_summ.jsp?cntn_id=123607&amp;org=NSF&amp;from=news">"NSF Leads Federal Efforts in Big Data"</a>. National Science Foundation (NSF). 29 March 2012. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190331113404/https://www.nsf.gov/news/news_summ.jsp?cntn_id=123607&amp;org=NSF&amp;from=news">Archived</a> from the original on 31 March 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">6 April</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=NSF+Leads+Federal+Efforts+in+Big+Data&amp;rft.pub=National+Science+Foundation+%28NSF%29&amp;rft.date=2012-03-29&amp;rft_id=https%3A%2F%2Fwww.nsf.gov%2Fnews%2Fnews_summ.jsp%3Fcntn_id%3D123607%26org%3DNSF%26from%3Dnews&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-177"><span class="mw-cite-backlink"><b><a href="#cite_ref-177">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTimothy_HunterTeodor_MoldovanMatei_ZahariaJustin_Ma2011" class="citation conference cs1">Timothy Hunter; Teodor Moldovan; Matei Zaharia; Justin Ma; Michael Franklin; <a href="/wiki/Pieter_Abbeel" title="Pieter Abbeel">Pieter Abbeel</a>; Alexandre Bayen (October 2011). <a rel="nofollow" class="external text" href="https://amplab.cs.berkeley.edu/publication/scaling-the-mobile-millennium-system-in-the-cloud-2/"><i>Scaling the Mobile Millennium System in the Cloud</i></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190331073928/https://amplab.cs.berkeley.edu/publication/scaling-the-mobile-millennium-system-in-the-cloud-2/">Archived</a> from the original on 31 March 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">2 November</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Scaling+the+Mobile+Millennium+System+in+the+Cloud&amp;rft.date=2011-10&amp;rft.au=Timothy+Hunter&amp;rft.au=Teodor+Moldovan&amp;rft.au=Matei+Zaharia&amp;rft.au=Justin+Ma&amp;rft.au=Michael+Franklin&amp;rft.au=Pieter+Abbeel&amp;rft.au=Alexandre+Bayen&amp;rft_id=https%3A%2F%2Famplab.cs.berkeley.edu%2Fpublication%2Fscaling-the-mobile-millennium-system-in-the-cloud-2%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-178"><span class="mw-cite-backlink"><b><a href="#cite_ref-178">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid_Patterson2011" class="citation news cs1">David Patterson (5 December 2011). <a rel="nofollow" class="external text" href="https://www.nytimes.com/2011/12/06/science/david-patterson-enlist-computer-scientists-in-cancer-fight.html">"Computer Scientists May Have What It Takes to Help Cure Cancer"</a>. <i>The New York Times</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170130045503/http://www.nytimes.com/2011/12/06/science/david-patterson-enlist-computer-scientists-in-cancer-fight.html">Archived</a> from the original on 30 January 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">26 February</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+New+York+Times&amp;rft.atitle=Computer+Scientists+May+Have+What+It+Takes+to+Help+Cure+Cancer&amp;rft.date=2011-12-05&amp;rft.au=David+Patterson&amp;rft_id=https%3A%2F%2Fwww.nytimes.com%2F2011%2F12%2F06%2Fscience%2Fdavid-patterson-enlist-computer-scientists-in-cancer-fight.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-179"><span class="mw-cite-backlink"><b><a href="#cite_ref-179">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://energy.gov/articles/secretary-chu-announces-new-institute-help-scientists-improve-massive-data-set-research-doe">"Secretary Chu Announces New Institute to Help Scientists Improve Massive Data Set Research on DOE Supercomputers"</a>. energy.gov. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190403084845/https://www.energy.gov/articles/secretary-chu-announces-new-institute-help-scientists-improve-massive-data-set-research-doe">Archived</a> from the original on 3 April 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">2 November</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Secretary+Chu+Announces+New+Institute+to+Help+Scientists+Improve+Massive+Data+Set+Research+on+DOE+Supercomputers&amp;rft.pub=energy.gov&amp;rft_id=http%3A%2F%2Fenergy.gov%2Farticles%2Fsecretary-chu-announces-new-institute-help-scientists-improve-massive-data-set-research-doe&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-180"><span class="mw-cite-backlink"><b><a href="#cite_ref-180">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYoung2012" class="citation news cs1">Young, Shannon (30 May 2012). <a rel="nofollow" class="external text" href="http://archive.boston.com/news/local/massachusetts/articles/2012/05/30/mass_gov_and_mit_to_announce_data_initiative/">"Mass. governor, MIT announce big data initiative"</a>. <i>Boston.com</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210729153535/http://archive.boston.com/news/local/massachusetts/articles/2012/05/30/mass_gov_and_mit_to_announce_data_initiative/">Archived</a> from the original on 29 July 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">29 July</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Boston.com&amp;rft.atitle=Mass.+governor%2C+MIT+announce+big+data+initiative&amp;rft.date=2012-05-30&amp;rft.aulast=Young&amp;rft.aufirst=Shannon&amp;rft_id=http%3A%2F%2Farchive.boston.com%2Fnews%2Flocal%2Fmassachusetts%2Farticles%2F2012%2F05%2F30%2Fmass_gov_and_mit_to_announce_data_initiative%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-181"><span class="mw-cite-backlink"><b><a href="#cite_ref-181">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20130330022413/http://bigdata.csail.mit.edu/">"Big Data @ CSAIL"</a>. Bigdata.csail.mit.edu. 22 February 2013. Archived from <a rel="nofollow" class="external text" href="http://bigdata.csail.mit.edu/">the original</a> on 30 March 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">5 March</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Big+Data+%40+CSAIL&amp;rft.pub=Bigdata.csail.mit.edu&amp;rft.date=2013-02-22&amp;rft_id=http%3A%2F%2Fbigdata.csail.mit.edu%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-182"><span class="mw-cite-backlink"><b><a href="#cite_ref-182">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://cordis.europa.eu/project/id/318062">"Big Data Public Private Forum"</a>. cordis.europa.eu. 1 September 2012. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210309035521/https://cordis.europa.eu/project/id/318062">Archived</a> from the original on 9 March 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">16 March</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Big+Data+Public+Private+Forum&amp;rft.pub=cordis.europa.eu&amp;rft.date=2012-09-01&amp;rft_id=https%3A%2F%2Fcordis.europa.eu%2Fproject%2Fid%2F318062&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-183"><span class="mw-cite-backlink"><b><a href="#cite_ref-183">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.bbc.co.uk/news/technology-26651179">"Alan Turing Institute to be set up to research big data"</a>. <i><a href="/wiki/BBC_News" title="BBC News">BBC News</a></i>. 19 March 2014. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210818142000/https://www.bbc.co.uk/news/technology-26651179">Archived</a> from the original on 18 August 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">19 March</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=BBC+News&amp;rft.atitle=Alan+Turing+Institute+to+be+set+up+to+research+big+data&amp;rft.date=2014-03-19&amp;rft_id=https%3A%2F%2Fwww.bbc.co.uk%2Fnews%2Ftechnology-26651179&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-184"><span class="mw-cite-backlink"><b><a href="#cite_ref-184">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20140226181442/http://www.betakit.com/event/inspiration-day-at-university-of-waterloo-stratford-campus/">"Inspiration day at University of Waterloo, Stratford Campus"</a>. betakit.com/. Archived from <a rel="nofollow" class="external text" href="http://www.betakit.com/event/inspiration-day-at-university-of-waterloo-stratford-campus/">the original</a> on 26 February 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">28 February</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Inspiration+day+at+University+of+Waterloo%2C+Stratford+Campus&amp;rft.pub=betakit.com%2F&amp;rft_id=http%3A%2F%2Fwww.betakit.com%2Fevent%2Finspiration-day-at-university-of-waterloo-stratford-campus%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-pigdata-185"><span class="mw-cite-backlink">^ <a href="#cite_ref-pigdata_185-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pigdata_185-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-pigdata_185-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReipsMatzat,_Uwe2014" class="citation journal cs1">Reips, Ulf-Dietrich; Matzat, Uwe (2014). <a rel="nofollow" class="external text" href="http://www.ijis.net/ijis9_1/ijis9_1_editorial_pre.html">"Mining "Big Data" using Big Data Services"</a>. <i>International Journal of Internet Science</i>. <b>1</b> (1): 1–8. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140814194342/http://www.ijis.net/ijis9_1/ijis9_1_editorial_pre.html">Archived</a> from the original on 14 August 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">14 August</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Internet+Science&amp;rft.atitle=Mining+%22Big+Data%22+using+Big+Data+Services&amp;rft.volume=1&amp;rft.issue=1&amp;rft.pages=1-8&amp;rft.date=2014&amp;rft.aulast=Reips&amp;rft.aufirst=Ulf-Dietrich&amp;rft.au=Matzat%2C+Uwe&amp;rft_id=http%3A%2F%2Fwww.ijis.net%2Fijis9_1%2Fijis9_1_editorial_pre.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-186"><span class="mw-cite-backlink"><b><a href="#cite_ref-186">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPreisMoatStanleyBishop2012" class="citation journal cs1">Preis T, Moat HS, Stanley HE, Bishop SR (2012). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320057">"Quantifying the advantage of looking forward"</a>. <i>Scientific Reports</i>. <b>2</b>: 350. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012NatSR...2..350P">2012NatSR...2..350P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fsrep00350">10.1038/srep00350</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320057">3320057</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22482034">22482034</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scientific+Reports&amp;rft.atitle=Quantifying+the+advantage+of+looking+forward&amp;rft.volume=2&amp;rft.pages=350&amp;rft.date=2012&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3320057%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F22482034&amp;rft_id=info%3Adoi%2F10.1038%2Fsrep00350&amp;rft_id=info%3Abibcode%2F2012NatSR...2..350P&amp;rft.aulast=Preis&amp;rft.aufirst=T&amp;rft.au=Moat%2C+HS&amp;rft.au=Stanley%2C+HE&amp;rft.au=Bishop%2C+SR&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3320057&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-187"><span class="mw-cite-backlink"><b><a href="#cite_ref-187">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarks2012" class="citation news cs1">Marks, Paul (5 April 2012). <a rel="nofollow" class="external text" href="https://www.newscientist.com/article/dn21678-online-searches-for-future-linked-to-economic-success.html">"Online searches for future linked to economic success"</a>. <i>New Scientist</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120408184531/http://www.newscientist.com/article/dn21678-online-searches-for-future-linked-to-economic-success.html">Archived</a> from the original on 8 April 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">9 April</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=New+Scientist&amp;rft.atitle=Online+searches+for+future+linked+to+economic+success&amp;rft.date=2012-04-05&amp;rft.aulast=Marks&amp;rft.aufirst=Paul&amp;rft_id=https%3A%2F%2Fwww.newscientist.com%2Farticle%2Fdn21678-online-searches-for-future-linked-to-economic-success.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-188"><span class="mw-cite-backlink"><b><a href="#cite_ref-188">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnston2012" class="citation news cs1">Johnston, Casey (6 April 2012). <a rel="nofollow" class="external text" href="https://arstechnica.com/gadgets/news/2012/04/google-trends-reveals-clues-about-the-mentality-of-richer-nations.ars">"Google Trends reveals clues about the mentality of richer nations"</a>. <i>Ars Technica</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120407171138/http://arstechnica.com/gadgets/news/2012/04/google-trends-reveals-clues-about-the-mentality-of-richer-nations.ars">Archived</a> from the original on 7 April 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">9 April</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Ars+Technica&amp;rft.atitle=Google+Trends+reveals+clues+about+the+mentality+of+richer+nations&amp;rft.date=2012-04-06&amp;rft.aulast=Johnston&amp;rft.aufirst=Casey&amp;rft_id=https%3A%2F%2Farstechnica.com%2Fgadgets%2Fnews%2F2012%2F04%2Fgoogle-trends-reveals-clues-about-the-mentality-of-richer-nations.ars&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-189"><span class="mw-cite-backlink"><b><a href="#cite_ref-189">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTobias_Preis2012" class="citation web cs1">Tobias Preis (24 May 2012). <a rel="nofollow" class="external text" href="https://www.tobiaspreis.de/bigdata/future_orientation_index.pdf">"Supplementary Information: The Future Orientation Index is available for download"</a> <span class="cs1-format">(PDF)</span>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130117211931/http://www.tobiaspreis.de/bigdata/future_orientation_index.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 17 January 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">24 May</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Supplementary+Information%3A+The+Future+Orientation+Index+is+available+for+download&amp;rft.date=2012-05-24&amp;rft.au=Tobias+Preis&amp;rft_id=http%3A%2F%2Fwww.tobiaspreis.de%2Fbigdata%2Ffuture_orientation_index.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-190"><span class="mw-cite-backlink"><b><a href="#cite_ref-190">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPhilip_Ball2013" class="citation journal cs1"><a href="/wiki/Philip_Ball" title="Philip Ball">Philip Ball</a> (26 April 2013). <a rel="nofollow" class="external text" href="http://www.nature.com/news/counting-google-searches-predicts-market-movements-1.12879">"Counting Google searches predicts market movements"</a>. <i>Nature</i>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature.2013.12879">10.1038/nature.2013.12879</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:167357427">167357427</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130927152926/http://www.nature.com/news/counting-google-searches-predicts-market-movements-1.12879">Archived</a> from the original on 27 September 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">9 August</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Counting+Google+searches+predicts+market+movements&amp;rft.date=2013-04-26&amp;rft_id=info%3Adoi%2F10.1038%2Fnature.2013.12879&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A167357427%23id-name%3DS2CID&amp;rft.au=Philip+Ball&amp;rft_id=http%3A%2F%2Fwww.nature.com%2Fnews%2Fcounting-google-searches-predicts-market-movements-1.12879&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-191"><span class="mw-cite-backlink"><b><a href="#cite_ref-191">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPreisMoatStanley2013" class="citation journal cs1">Preis T, Moat HS, Stanley HE (2013). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3635219">"Quantifying trading behavior in financial markets using Google Trends"</a>. <i>Scientific Reports</i>. <b>3</b>: 1684. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013NatSR...3.1684P">2013NatSR...3.1684P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fsrep01684">10.1038/srep01684</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3635219">3635219</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23619126">23619126</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scientific+Reports&amp;rft.atitle=Quantifying+trading+behavior+in+financial+markets+using+Google+Trends&amp;rft.volume=3&amp;rft.pages=1684&amp;rft.date=2013&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3635219%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F23619126&amp;rft_id=info%3Adoi%2F10.1038%2Fsrep01684&amp;rft_id=info%3Abibcode%2F2013NatSR...3.1684P&amp;rft.aulast=Preis&amp;rft.aufirst=T&amp;rft.au=Moat%2C+HS&amp;rft.au=Stanley%2C+HE&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3635219&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-192"><span class="mw-cite-backlink"><b><a href="#cite_ref-192">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNick_Bilton2013" class="citation news cs1">Nick Bilton (26 April 2013). <a rel="nofollow" class="external text" href="http://bits.blogs.nytimes.com/2013/04/26/google-search-terms-can-predict-stock-market-study-finds/">"Google Search Terms Can Predict Stock Market, Study Finds"</a>. <i><a href="/wiki/The_New_York_Times" title="The New York Times">The New York Times</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130602104710/http://bits.blogs.nytimes.com/2013/04/26/google-search-terms-can-predict-stock-market-study-finds/">Archived</a> from the original on 2 June 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">9 August</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+New+York+Times&amp;rft.atitle=Google+Search+Terms+Can+Predict+Stock+Market%2C+Study+Finds&amp;rft.date=2013-04-26&amp;rft.au=Nick+Bilton&amp;rft_id=http%3A%2F%2Fbits.blogs.nytimes.com%2F2013%2F04%2F26%2Fgoogle-search-terms-can-predict-stock-market-study-finds%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-193"><span class="mw-cite-backlink"><b><a href="#cite_ref-193">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChristopher_Matthews2013" class="citation magazine cs1">Christopher Matthews (26 April 2013). <a rel="nofollow" class="external text" href="https://business.time.com/2013/04/26/trouble-with-your-investment-portfolio-google-it/">"Trouble With Your Investment Portfolio? Google It!"</a>. <i><a href="/wiki/Time_(magazine)" title="Time (magazine)">Time</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130821075908/http://business.time.com/2013/04/26/trouble-with-your-investment-portfolio-google-it/">Archived</a> from the original on 21 August 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">9 August</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Time&amp;rft.atitle=Trouble+With+Your+Investment+Portfolio%3F+Google+It%21&amp;rft.date=2013-04-26&amp;rft.au=Christopher+Matthews&amp;rft_id=https%3A%2F%2Fbusiness.time.com%2F2013%2F04%2F26%2Ftrouble-with-your-investment-portfolio-google-it%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-194"><span class="mw-cite-backlink"><b><a href="#cite_ref-194">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPhilip_Ball2013" class="citation journal cs1">Philip Ball (26 April 2013). <a rel="nofollow" class="external text" href="http://www.nature.com/news/counting-google-searches-predicts-market-movements-1.12879">"Counting Google searches predicts market movements"</a>. <i><a href="/wiki/Nature_(journal)" title="Nature (journal)">Nature</a></i>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature.2013.12879">10.1038/nature.2013.12879</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:167357427">167357427</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130927152926/http://www.nature.com/news/counting-google-searches-predicts-market-movements-1.12879">Archived</a> from the original on 27 September 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">9 August</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Counting+Google+searches+predicts+market+movements&amp;rft.date=2013-04-26&amp;rft_id=info%3Adoi%2F10.1038%2Fnature.2013.12879&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A167357427%23id-name%3DS2CID&amp;rft.au=Philip+Ball&amp;rft_id=http%3A%2F%2Fwww.nature.com%2Fnews%2Fcounting-google-searches-predicts-market-movements-1.12879&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-195"><span class="mw-cite-backlink"><b><a href="#cite_ref-195">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernhard_Warner2013" class="citation news cs1">Bernhard Warner (25 April 2013). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130723195732/http://www.businessweek.com/articles/2013-04-25/big-data-researchers-turn-to-google-to-beat-the-markets">"<span class="cs1-kern-left"></span>'Big Data' Researchers Turn to Google to Beat the Markets"</a>. <i><a href="/wiki/Bloomberg_Businessweek" title="Bloomberg Businessweek">Bloomberg Businessweek</a></i>. Archived from <a rel="nofollow" class="external text" href="http://www.businessweek.com/articles/2013-04-25/big-data-researchers-turn-to-google-to-beat-the-markets">the original</a> on 23 July 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">9 August</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bloomberg+Businessweek&amp;rft.atitle=%27Big+Data%27+Researchers+Turn+to+Google+to+Beat+the+Markets&amp;rft.date=2013-04-25&amp;rft.au=Bernhard+Warner&amp;rft_id=http%3A%2F%2Fwww.businessweek.com%2Farticles%2F2013-04-25%2Fbig-data-researchers-turn-to-google-to-beat-the-markets&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-196"><span class="mw-cite-backlink"><b><a href="#cite_ref-196">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHamish_McRae2013" class="citation news cs1">Hamish McRae (28 April 2013). <a rel="nofollow" class="external text" href="https://www.independent.co.uk/news/business/comment/hamish-mcrae/hamish-mcrae-need-a-valuable-handle-on-investor-sentiment-google-it-8590991.html">"Hamish McRae: Need a valuable handle on investor sentiment? Google it"</a>. <i><a href="/wiki/The_Independent" title="The Independent">The Independent</a></i>. London. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180725072017/https://www.independent.co.uk/news/business/comment/hamish-mcrae/hamish-mcrae-need-a-valuable-handle-on-investor-sentiment-google-it-8590991.html">Archived</a> from the original on 25 July 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">9 August</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Independent&amp;rft.atitle=Hamish+McRae%3A+Need+a+valuable+handle+on+investor+sentiment%3F+Google+it&amp;rft.date=2013-04-28&amp;rft.au=Hamish+McRae&amp;rft_id=https%3A%2F%2Fwww.independent.co.uk%2Fnews%2Fbusiness%2Fcomment%2Fhamish-mcrae%2Fhamish-mcrae-need-a-valuable-handle-on-investor-sentiment-google-it-8590991.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-197"><span class="mw-cite-backlink"><b><a href="#cite_ref-197">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRichard_Waters2013" class="citation web cs1">Richard Waters (25 April 2013). <a rel="nofollow" class="external text" href="https://www.ft.com/intl/cms/s/0/e5d959b8-acf2-11e2-b27f-00144feabdc0.html">"Google search proves to be new word in stock market prediction"</a>. <i><a href="/wiki/Financial_Times" title="Financial Times">Financial Times</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220601224737/https://www.ft.com/content/e5d959b8-acf2-11e2-b27f-00144feabdc0">Archived</a> from the original on 1 June 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">9 August</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Financial+Times&amp;rft.atitle=Google+search+proves+to+be+new+word+in+stock+market+prediction&amp;rft.date=2013-04-25&amp;rft.au=Richard+Waters&amp;rft_id=http%3A%2F%2Fwww.ft.com%2Fintl%2Fcms%2Fs%2F0%2Fe5d959b8-acf2-11e2-b27f-00144feabdc0.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-198"><span class="mw-cite-backlink"><b><a href="#cite_ref-198">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJason_Palmer2013" class="citation news cs1">Jason Palmer (25 April 2013). <a rel="nofollow" class="external text" href="https://www.bbc.co.uk/news/science-environment-22293693">"Google searches predict market moves"</a>. <i><a href="/wiki/BBC" title="BBC">BBC</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130605173345/http://www.bbc.co.uk/news/science-environment-22293693">Archived</a> from the original on 5 June 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">9 August</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=BBC&amp;rft.atitle=Google+searches+predict+market+moves&amp;rft.date=2013-04-25&amp;rft.au=Jason+Palmer&amp;rft_id=https%3A%2F%2Fwww.bbc.co.uk%2Fnews%2Fscience-environment-22293693&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-199"><span class="mw-cite-backlink"><b><a href="#cite_ref-199">^</a></b></span> <span class="reference-text">E. Sejdić (March 2014). "Adapt current tools for use with big data". <i>Nature</i>. <b>507</b> (7492): 306.</span> </li> <li id="cite_note-Kimble_and_Milolidakis_(2015)-200"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kimble_and_Milolidakis_(2015)_200-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChris_KimbleGiannis_Milolidakis2015" class="citation journal cs1">Chris Kimble; Giannis Milolidakis (7 October 2015). "Big Data and Business Intelligence: Debunking the Myths". <i>Global Business and Organizational Excellence</i>. <b>35</b> (1): 23–34. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1511.03085">1511.03085</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2FJOE.21642">10.1002/JOE.21642</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1932-2054">1932-2054</a>. <a href="/wiki/WDQ_(identifier)" class="mw-redirect" title="WDQ (identifier)">Wikidata</a>&#160;<a href="https://www.wikidata.org/wiki/Q56532925" class="extiw" title="d:Q56532925">Q56532925</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Global+Business+and+Organizational+Excellence&amp;rft.atitle=Big+Data+and+Business+Intelligence%3A+Debunking+the+Myths&amp;rft.volume=35&amp;rft.issue=1&amp;rft.pages=23-34&amp;rft.date=2015-10-07&amp;rft_id=info%3Aarxiv%2F1511.03085&amp;rft.issn=1932-2054&amp;rft_id=info%3Adoi%2F10.1002%2FJOE.21642&amp;rft.au=Chris+Kimble&amp;rft.au=Giannis+Milolidakis&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-201"><span class="mw-cite-backlink"><b><a href="#cite_ref-201">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChris_Anderson2008" class="citation magazine cs1">Chris Anderson (23 June 2008). <a rel="nofollow" class="external text" href="https://www.wired.com/science/discoveries/magazine/16-07/pb_theory">"The End of Theory: The Data Deluge Makes the Scientific Method Obsolete"</a>. <i>Wired</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140327145018/http://www.wired.com/science/discoveries/magazine/16-07/pb_theory/">Archived</a> from the original on 27 March 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">5 March</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Wired&amp;rft.atitle=The+End+of+Theory%3A+The+Data+Deluge+Makes+the+Scientific+Method+Obsolete&amp;rft.date=2008-06-23&amp;rft.au=Chris+Anderson&amp;rft_id=https%3A%2F%2Fwww.wired.com%2Fscience%2Fdiscoveries%2Fmagazine%2F16-07%2Fpb_theory&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-202"><span class="mw-cite-backlink"><b><a href="#cite_ref-202">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGraham_M.2012" class="citation news cs1">Graham M. (9 March 2012). <a rel="nofollow" class="external text" href="https://www.theguardian.com/news/datablog/2012/mar/09/big-data-theory">"Big data and the end of theory?"</a>. <i>The Guardian</i>. London. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130724152353/http://www.guardian.co.uk/news/datablog/2012/mar/09/big-data-theory">Archived</a> from the original on 24 July 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">14 December</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Guardian&amp;rft.atitle=Big+data+and+the+end+of+theory%3F&amp;rft.date=2012-03-09&amp;rft.au=Graham+M.&amp;rft_id=https%3A%2F%2Fwww.theguardian.com%2Fnews%2Fdatablog%2F2012%2Fmar%2F09%2Fbig-data-theory&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-203"><span class="mw-cite-backlink"><b><a href="#cite_ref-203">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShah,_ShvetankHorne,_AndrewCapellá,_Jaime2012" class="citation journal cs1">Shah, Shvetank; Horne, Andrew; Capellá, Jaime (April 2012). <a rel="nofollow" class="external text" href="http://hbr.org/2012/04/good-data-wont-guarantee-good-decisions/ar/1">"Good Data Won't Guarantee Good Decisions"</a>. <i><a href="/wiki/Harvard_Business_Review" title="Harvard Business Review">Harvard Business Review</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120911235259/http://hbr.org/2012/04/good-data-wont-guarantee-good-decisions/ar/1">Archived</a> from the original on 11 September 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">8 September</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Harvard+Business+Review&amp;rft.atitle=Good+Data+Won%27t+Guarantee+Good+Decisions&amp;rft.date=2012-04&amp;rft.au=Shah%2C+Shvetank&amp;rft.au=Horne%2C+Andrew&amp;rft.au=Capell%C3%A1%2C+Jaime&amp;rft_id=http%3A%2F%2Fhbr.org%2F2012%2F04%2Fgood-data-wont-guarantee-good-decisions%2Far%2F1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-HilbertTEDx-204"><span class="mw-cite-backlink">^ <a href="#cite_ref-HilbertTEDx_204-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-HilbertTEDx_204-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=UXef6yfJZAI">Big Data requires Big Visions for Big Change.</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161202010931/https://www.youtube.com/watch?v=UXef6yfJZAI">Archived</a> 2 December 2016 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>, Hilbert, M. (2014). London: TEDx UCL, x=independently organized TED talks</span> </li> <li id="cite_note-205"><span class="mw-cite-backlink"><b><a href="#cite_ref-205">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlemany_OliverVayre,_Jean-Sebastien2015" class="citation journal cs1">Alemany Oliver, Mathieu; Vayre, Jean-Sebastien (2015). "Big Data and the Future of Knowledge Production in Marketing Research: Ethics, Digital Traces, and Abductive Reasoning". <i>Journal of Marketing Analytics</i>. <b>3</b> (1): 5–13. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1057%2Fjma.2015.1">10.1057/jma.2015.1</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:111360835">111360835</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Marketing+Analytics&amp;rft.atitle=Big+Data+and+the+Future+of+Knowledge+Production+in+Marketing+Research%3A+Ethics%2C+Digital+Traces%2C+and+Abductive+Reasoning&amp;rft.volume=3&amp;rft.issue=1&amp;rft.pages=5-13&amp;rft.date=2015&amp;rft_id=info%3Adoi%2F10.1057%2Fjma.2015.1&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A111360835%23id-name%3DS2CID&amp;rft.aulast=Alemany+Oliver&amp;rft.aufirst=Mathieu&amp;rft.au=Vayre%2C+Jean-Sebastien&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-206"><span class="mw-cite-backlink"><b><a href="#cite_ref-206">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJonathan_Rauch2002" class="citation web cs1">Jonathan Rauch (1 April 2002). <a rel="nofollow" class="external text" href="https://www.theatlantic.com/magazine/archive/2002/04/seeing-around-corners/302471/">"Seeing Around Corners"</a>. <i><a href="/wiki/The_Atlantic" title="The Atlantic">The Atlantic</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170404134619/https://www.theatlantic.com/magazine/archive/2002/04/seeing-around-corners/302471/">Archived</a> from the original on 4 April 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">5 March</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=The+Atlantic&amp;rft.atitle=Seeing+Around+Corners&amp;rft.date=2002-04-01&amp;rft.au=Jonathan+Rauch&amp;rft_id=https%3A%2F%2Fwww.theatlantic.com%2Fmagazine%2Farchive%2F2002%2F04%2Fseeing-around-corners%2F302471%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-207"><span class="mw-cite-backlink"><b><a href="#cite_ref-207">^</a></b></span> <span class="reference-text">Epstein, J. M., &amp; Axtell, R. L. (1996). Growing Artificial Societies: Social Science from the Bottom Up. A Bradford Book.</span> </li> <li id="cite_note-208"><span class="mw-cite-backlink"><b><a href="#cite_ref-208">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20160730211146/http://www.bigdataparis.com/documents/Pierre-Delort-INSERM.pdf#page=5">"Delort P., Big data in Biosciences, Big Data Paris, 2012"</a> <span class="cs1-format">(PDF)</span>. <i>Bigdata Paris</i>. Archived from <a rel="nofollow" class="external text" href="http://www.bigdataparis.com/documents/Pierre-Delort-INSERM.pdf#page=5">the original</a> <span class="cs1-format">(PDF)</span> on 30 July 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">8 October</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Bigdata+Paris&amp;rft.atitle=Delort+P.%2C+Big+data+in+Biosciences%2C+Big+Data+Paris%2C+2012&amp;rft_id=http%3A%2F%2Fwww.bigdataparis.com%2Fdocuments%2FPierre-Delort-INSERM.pdf%23page%3D5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-209"><span class="mw-cite-backlink"><b><a href="#cite_ref-209">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.cs.cmu.edu/~durand/03-711/2011/Literature/Next-Gen-Genomics-NRG-2010.pdf">"Next-generation genomics: an integrative approach"</a> <span class="cs1-format">(PDF)</span>. nature. July 2010. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170813145203/http://www.cs.cmu.edu/%7Edurand/03-711/2011/Literature/Next-Gen-Genomics-NRG-2010.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 13 August 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">18 October</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Next-generation+genomics%3A+an+integrative+approach&amp;rft.pub=nature&amp;rft.date=2010-07&amp;rft_id=https%3A%2F%2Fwww.cs.cmu.edu%2F~durand%2F03-711%2F2011%2FLiterature%2FNext-Gen-Genomics-NRG-2010.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-210"><span class="mw-cite-backlink"><b><a href="#cite_ref-210">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/283298499">"Big Data in Biosciences"</a>. October 2015. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220601224842/https://www.researchgate.net/publication/283298499">Archived</a> from the original on 1 June 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">18 October</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Big+Data+in+Biosciences&amp;rft.date=2015-10&amp;rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F283298499&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-211"><span class="mw-cite-backlink"><b><a href="#cite_ref-211">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://next.ft.com/content/21a6e7d8-b479-11e3-a09a-00144feabdc0">"Big data: are we making a big mistake?"</a>. <i>Financial Times</i>. 28 March 2014. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160630160149/https://next.ft.com/content/21a6e7d8-b479-11e3-a09a-00144feabdc0">Archived</a> from the original on 30 June 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">20 October</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Financial+Times&amp;rft.atitle=Big+data%3A+are+we+making+a+big+mistake%3F&amp;rft.date=2014-03-28&amp;rft_id=https%3A%2F%2Fnext.ft.com%2Fcontent%2F21a6e7d8-b479-11e3-a09a-00144feabdc0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-212"><span class="mw-cite-backlink"><b><a href="#cite_ref-212">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOhm2012" class="citation magazine cs1">Ohm, Paul (23 August 2012). <a rel="nofollow" class="external text" href="http://blogs.hbr.org/cs/2012/08/dont_build_a_database_of_ruin.html">"Don't Build a Database of Ruin"</a>. <i>Harvard Business Review</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120830045712/http://blogs.hbr.org/cs/2012/08/dont_build_a_database_of_ruin.html">Archived</a> from the original on 30 August 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">29 August</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Harvard+Business+Review&amp;rft.atitle=Don%27t+Build+a+Database+of+Ruin&amp;rft.date=2012-08-23&amp;rft.aulast=Ohm&amp;rft.aufirst=Paul&amp;rft_id=http%3A%2F%2Fblogs.hbr.org%2Fcs%2F2012%2F08%2Fdont_build_a_database_of_ruin.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-213"><span class="mw-cite-backlink"><b><a href="#cite_ref-213">^</a></b></span> <span class="reference-text">Bond-Graham, Darwin (2018). <a rel="nofollow" class="external text" href="https://www.theperspective.com/debates/the-perspective-on-big-data/">"The Perspective on Big Data"</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20201109030023/https://www.theperspective.com/debates/the-perspective-on-big-data/">Archived</a> 9 November 2020 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. <a href="/wiki/The_Perspective" title="The Perspective">The Perspective</a>.</span> </li> <li id="cite_note-214"><span class="mw-cite-backlink"><b><a href="#cite_ref-214">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarocasNissenbaumLaneStodden2014" class="citation book cs1">Barocas, Solon; Nissenbaum, Helen; Lane, Julia; Stodden, Victoria; Bender, Stefan; Nissenbaum, Helen (June 2014). <i>Big Data's End Run around Anonymity and Consent</i>. Cambridge University Press. pp.&#160;44–75. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2Fcbo9781107590205.004">10.1017/cbo9781107590205.004</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781107067356" title="Special:BookSources/9781107067356"><bdi>9781107067356</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:152939392">152939392</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Big+Data%27s+End+Run+around+Anonymity+and+Consent&amp;rft.pages=44-75&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2014-06&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A152939392%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1017%2Fcbo9781107590205.004&amp;rft.isbn=9781107067356&amp;rft.aulast=Barocas&amp;rft.aufirst=Solon&amp;rft.au=Nissenbaum%2C+Helen&amp;rft.au=Lane%2C+Julia&amp;rft.au=Stodden%2C+Victoria&amp;rft.au=Bender%2C+Stefan&amp;rft.au=Nissenbaum%2C+Helen&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-CSO_1-215"><span class="mw-cite-backlink"><b><a href="#cite_ref-CSO_1_215-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLugmayr,_A.Stockleben,_BScheib,_C.Mailaparampil,_M.2016" class="citation web cs1">Lugmayr, A.; Stockleben, B; Scheib, C.; Mailaparampil, M.; Mesia, N.; Ranta, H.; Lab, E. (1 June 2016). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/304784955">"A Comprehensive Survey On Big-Data Research and Its Implications – What is Really 'New' in Big Data? – It's Cognitive Big Data!"</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220601224740/https://www.researchgate.net/publication/304784955">Archived</a> from the original on 1 June 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">27 November</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=A+Comprehensive+Survey+On+Big-Data+Research+and+Its+Implications+%E2%80%93+What+is+Really+%27New%27+in+Big+Data%3F+%E2%80%93+It%27s+Cognitive+Big+Data%21&amp;rft.date=2016-06-01&amp;rft.au=Lugmayr%2C+A.&amp;rft.au=Stockleben%2C+B&amp;rft.au=Scheib%2C+C.&amp;rft.au=Mailaparampil%2C+M.&amp;rft.au=Mesia%2C+N.&amp;rft.au=Ranta%2C+H.&amp;rft.au=Lab%2C+E.&amp;rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F304784955&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-danah-216"><span class="mw-cite-backlink"><b><a href="#cite_ref-danah_216-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDanah_Boyd2010" class="citation web cs1"><a href="/wiki/Danah_boyd" title="Danah boyd">Danah Boyd</a> (29 April 2010). <a rel="nofollow" class="external text" href="http://www.danah.org/papers/talks/2010/WWW2010.html">"Privacy and Publicity in the Context of Big Data"</a>. <i><a href="/wiki/World_Wide_Web_Conference" class="mw-redirect" title="World Wide Web Conference">WWW 2010 conference</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20181022043331/http://www.danah.org/papers/talks/2010/WWW2010.html">Archived</a> from the original on 22 October 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">18 April</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=WWW+2010+conference&amp;rft.atitle=Privacy+and+Publicity+in+the+Context+of+Big+Data&amp;rft.date=2010-04-29&amp;rft.au=Danah+Boyd&amp;rft_id=http%3A%2F%2Fwww.danah.org%2Fpapers%2Ftalks%2F2010%2FWWW2010.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-217"><span class="mw-cite-backlink"><b><a href="#cite_ref-217">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKatyal2019" class="citation journal cs1">Katyal, Sonia K. (2019). <a rel="nofollow" class="external text" href="https://muse.jhu.edu/article/745987">"Artificial Intelligence, Advertising, and Disinformation"</a>. <i>Advertising &amp; Society Quarterly</i>. <b>20</b> (4). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1353%2Fasr.2019.0026">10.1353/asr.2019.0026</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2475-1790">2475-1790</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:213397212">213397212</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20201028213611/https://muse.jhu.edu/article/745987">Archived</a> from the original on 28 October 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">18 November</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advertising+%26+Society+Quarterly&amp;rft.atitle=Artificial+Intelligence%2C+Advertising%2C+and+Disinformation&amp;rft.volume=20&amp;rft.issue=4&amp;rft.date=2019&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A213397212%23id-name%3DS2CID&amp;rft.issn=2475-1790&amp;rft_id=info%3Adoi%2F10.1353%2Fasr.2019.0026&amp;rft.aulast=Katyal&amp;rft.aufirst=Sonia+K.&amp;rft_id=https%3A%2F%2Fmuse.jhu.edu%2Farticle%2F745987&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-218"><span class="mw-cite-backlink"><b><a href="#cite_ref-218">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJonesSchildhauerReichmanBowers2006" class="citation journal cs1">Jones, MB; Schildhauer, MP; Reichman, OJ; Bowers, S (2006). <a rel="nofollow" class="external text" href="http://www.pnamp.org/sites/default/files/Jones2006_AREES.pdf">"The New Bioinformatics: Integrating Ecological Data from the Gene to the Biosphere"</a> <span class="cs1-format">(PDF)</span>. <i>Annual Review of Ecology, Evolution, and Systematics</i>. <b>37</b> (1): 519–544. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1146%2Fannurev.ecolsys.37.091305.110031">10.1146/annurev.ecolsys.37.091305.110031</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190708212441/https://www.pnamp.org/sites/default/files/Jones2006_AREES.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 8 July 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">19 September</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annual+Review+of+Ecology%2C+Evolution%2C+and+Systematics&amp;rft.atitle=The+New+Bioinformatics%3A+Integrating+Ecological+Data+from+the+Gene+to+the+Biosphere&amp;rft.volume=37&amp;rft.issue=1&amp;rft.pages=519-544&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.1146%2Fannurev.ecolsys.37.091305.110031&amp;rft.aulast=Jones&amp;rft.aufirst=MB&amp;rft.au=Schildhauer%2C+MP&amp;rft.au=Reichman%2C+OJ&amp;rft.au=Bowers%2C+S&amp;rft_id=http%3A%2F%2Fwww.pnamp.org%2Fsites%2Fdefault%2Ffiles%2FJones2006_AREES.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-danah2-219"><span class="mw-cite-backlink">^ <a href="#cite_ref-danah2_219-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-danah2_219-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoydCrawford2012" class="citation journal cs1">Boyd, D.; Crawford, K. (2012). "Critical Questions for Big Data". <i>Information, Communication &amp; Society</i>. <b>15</b> (5): 662–679. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F1369118X.2012.678878">10.1080/1369118X.2012.678878</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10983%2F1320">10983/1320</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:51843165">51843165</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Information%2C+Communication+%26+Society&amp;rft.atitle=Critical+Questions+for+Big+Data&amp;rft.volume=15&amp;rft.issue=5&amp;rft.pages=662-679&amp;rft.date=2012&amp;rft_id=info%3Ahdl%2F10983%2F1320&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A51843165%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1080%2F1369118X.2012.678878&amp;rft.aulast=Boyd&amp;rft.aufirst=D.&amp;rft.au=Crawford%2C+K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-Big_Decisions_White_Paper-220"><span class="mw-cite-backlink"><b><a href="#cite_ref-Big_Decisions_White_Paper_220-0">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.fortewares.com/Administrator/userfiles/Banner/forte-wares--pro-active-reporting_EN.pdf">Failure to Launch: From Big Data to Big Decisions</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161206145026/http://www.fortewares.com/Administrator/userfiles/Banner/forte-wares--pro-active-reporting_EN.pdf">Archived</a> 6 December 2016 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>, Forte Wares.</span> </li> <li id="cite_note-221"><span class="mw-cite-backlink"><b><a href="#cite_ref-221">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.tylervigen.com/spurious-correlations">"15 Insane Things That Correlate with Each Other"</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190627155800/http://tylervigen.com/spurious-correlations">Archived</a> from the original on 27 June 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">27 June</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=15+Insane+Things+That+Correlate+with+Each+Other&amp;rft_id=https%3A%2F%2Fwww.tylervigen.com%2Fspurious-correlations&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-222"><span class="mw-cite-backlink"><b><a href="#cite_ref-222">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://onlinelibrary.wiley.com/loi/10982418">"Random structures &amp; algorithms"</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190627171127/https://onlinelibrary.wiley.com/loi/10982418">Archived</a> from the original on 27 June 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">27 June</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Random+structures+%26+algorithms&amp;rft_id=https%3A%2F%2Fonlinelibrary.wiley.com%2Floi%2F10982418&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-223"><span class="mw-cite-backlink"><b><a href="#cite_ref-223">^</a></b></span> <span class="reference-text">Cristian S. Calude, Giuseppe Longo, (2016), The Deluge of Spurious Correlations in Big Data, <a href="/wiki/Foundations_of_Science" title="Foundations of Science">Foundations of Science</a></span> </li> <li id="cite_note-224"><span class="mw-cite-backlink"><b><a href="#cite_ref-224">^</a></b></span> <span class="reference-text">Anja Lambrecht and Catherine Tucker (2016) "The 4 Mistakes Most Managers Make with Analytics," <i>Harvard Business Review</i>, July 12. <a rel="nofollow" class="external free" href="https://hbr.org/2016/07/the-4-mistakes-most-managers-make-with-analytics">https://hbr.org/2016/07/the-4-mistakes-most-managers-make-with-analytics</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220126145830/https://hbr.org/2016/07/the-4-mistakes-most-managers-make-with-analytics">Archived</a> 26 January 2022 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></span> </li> <li id="cite_note-kdnuggets-berchthold-225"><span class="mw-cite-backlink">^ <a href="#cite_ref-kdnuggets-berchthold_225-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-kdnuggets-berchthold_225-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGregory_Piatetsky2014" class="citation web cs1"><a href="/wiki/Gregory_I._Piatetsky-Shapiro" class="mw-redirect" title="Gregory I. Piatetsky-Shapiro">Gregory Piatetsky</a> (12 August 2014). <a rel="nofollow" class="external text" href="http://www.kdnuggets.com/2014/08/interview-michael-berthold-knime-research-big-data-privacy-part2.html">"Interview: Michael Berthold, KNIME Founder, on Research, Creativity, Big Data, and Privacy, Part 2"</a>. KDnuggets. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140813212203/http://www.kdnuggets.com/2014/08/interview-michael-berthold-knime-research-big-data-privacy-part2.html">Archived</a> from the original on 13 August 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">13 August</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Interview%3A+Michael+Berthold%2C+KNIME+Founder%2C+on+Research%2C+Creativity%2C+Big+Data%2C+and+Privacy%2C+Part+2&amp;rft.pub=KDnuggets&amp;rft.date=2014-08-12&amp;rft.au=Gregory+Piatetsky&amp;rft_id=http%3A%2F%2Fwww.kdnuggets.com%2F2014%2F08%2Finterview-michael-berthold-knime-research-big-data-privacy-part2.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-226"><span class="mw-cite-backlink"><b><a href="#cite_ref-226">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPelt2015" class="citation news cs1">Pelt, Mason (26 October 2015). <a rel="nofollow" class="external text" href="http://siliconangle.com/blog/2015/10/26/big-data-is-an-over-used-buzzword-and-this-twitter-bot-proves-it/">"<span class="cs1-kern-left"></span>"Big Data" is an over used buzzword and this Twitter bot proves it"</a>. <i>Siliconangle</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20151030044002/http://siliconangle.com/blog/2015/10/26/big-data-is-an-over-used-buzzword-and-this-twitter-bot-proves-it/">Archived</a> from the original on 30 October 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">4 November</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Siliconangle&amp;rft.atitle=%22Big+Data%22+is+an+over+used+buzzword+and+this+Twitter+bot+proves+it&amp;rft.date=2015-10-26&amp;rft.aulast=Pelt&amp;rft.aufirst=Mason&amp;rft_id=http%3A%2F%2Fsiliconangle.com%2Fblog%2F2015%2F10%2F26%2Fbig-data-is-an-over-used-buzzword-and-this-twitter-bot-proves-it%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-ft-harford-227"><span class="mw-cite-backlink">^ <a href="#cite_ref-ft-harford_227-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ft-harford_227-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHarford2014" class="citation web cs1">Harford, Tim (28 March 2014). <a rel="nofollow" class="external text" href="https://www.ft.com/cms/s/2/21a6e7d8-b479-11e3-a09a-00144feabdc0.html">"Big data: are we making a big mistake?"</a>. <i><a href="/wiki/Financial_Times" title="Financial Times">Financial Times</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140407024216/http://www.ft.com/cms/s/2/21a6e7d8-b479-11e3-a09a-00144feabdc0.html">Archived</a> from the original on 7 April 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">7 April</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Financial+Times&amp;rft.atitle=Big+data%3A+are+we+making+a+big+mistake%3F&amp;rft.date=2014-03-28&amp;rft.aulast=Harford&amp;rft.aufirst=Tim&amp;rft_id=http%3A%2F%2Fwww.ft.com%2Fcms%2Fs%2F2%2F21a6e7d8-b479-11e3-a09a-00144feabdc0.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-Ioannidis-228"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ioannidis_228-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIoannidis2005" class="citation journal cs1"><a href="/wiki/John_P._A._Ioannidis" class="mw-redirect" title="John P. A. Ioannidis">Ioannidis JP</a> (August 2005). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1182327">"Why most published research findings are false"</a>. <i>PLOS Medicine</i>. <b>2</b> (8): e124. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1371%2Fjournal.pmed.0020124">10.1371/journal.pmed.0020124</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1182327">1182327</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16060722">16060722</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=PLOS+Medicine&amp;rft.atitle=Why+most+published+research+findings+are+false&amp;rft.volume=2&amp;rft.issue=8&amp;rft.pages=e124&amp;rft.date=2005-08&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1182327%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F16060722&amp;rft_id=info%3Adoi%2F10.1371%2Fjournal.pmed.0020124&amp;rft.aulast=Ioannidis&amp;rft.aufirst=JP&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1182327&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-229"><span class="mw-cite-backlink"><b><a href="#cite_ref-229">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLohrSinger2016" class="citation news cs1">Lohr, Steve; Singer, Natasha (10 November 2016). <a rel="nofollow" class="external text" href="https://www.nytimes.com/2016/11/10/technology/the-data-said-clinton-would-win-why-you-shouldnt-have-believed-it.html">"How Data Failed Us in Calling an Election"</a>. <i>The New York Times</i>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0362-4331">0362-4331</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161125203904/http://www.nytimes.com/2016/11/10/technology/the-data-said-clinton-would-win-why-you-shouldnt-have-believed-it.html">Archived</a> from the original on 25 November 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">27 November</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+New+York+Times&amp;rft.atitle=How+Data+Failed+Us+in+Calling+an+Election&amp;rft.date=2016-11-10&amp;rft.issn=0362-4331&amp;rft.aulast=Lohr&amp;rft.aufirst=Steve&amp;rft.au=Singer%2C+Natasha&amp;rft_id=https%3A%2F%2Fwww.nytimes.com%2F2016%2F11%2F10%2Ftechnology%2Fthe-data-said-clinton-would-win-why-you-shouldnt-have-believed-it.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-230"><span class="mw-cite-backlink"><b><a href="#cite_ref-230">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.economist.com/open-future/2018/06/04/how-data-driven-policing-threatens-human-freedom">"How data-driven policing threatens human freedom"</a>. <i>The Economist</i>. 4 June 2018. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0013-0613">0013-0613</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20191027164113/https://www.economist.com/open-future/2018/06/04/how-data-driven-policing-threatens-human-freedom">Archived</a> from the original on 27 October 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">27 October</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Economist&amp;rft.atitle=How+data-driven+policing+threatens+human+freedom&amp;rft.date=2018-06-04&amp;rft.issn=0013-0613&amp;rft_id=https%3A%2F%2Fwww.economist.com%2Fopen-future%2F2018%2F06%2F04%2Fhow-data-driven-policing-threatens-human-freedom&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> <li id="cite_note-231"><span class="mw-cite-backlink"><b><a href="#cite_ref-231">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrayne2017" class="citation journal cs1">Brayne, Sarah (29 August 2017). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10846878">"Big Data Surveillance: The Case of Policing"</a>. <i>American Sociological Review</i>. <b>82</b> (5): 977–1008. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F0003122417725865">10.1177/0003122417725865</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10846878">10846878</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/38322733">38322733</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:3609838">3609838</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Sociological+Review&amp;rft.atitle=Big+Data+Surveillance%3A+The+Case+of+Policing&amp;rft.volume=82&amp;rft.issue=5&amp;rft.pages=977-1008&amp;rft.date=2017-08-29&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC10846878%23id-name%3DPMC&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A3609838%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F38322733&amp;rft_id=info%3Adoi%2F10.1177%2F0003122417725865&amp;rft.aulast=Brayne&amp;rft.aufirst=Sarah&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC10846878&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Bibliography">Bibliography</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=42" title="Edit section: Bibliography"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHilbert2016" class="citation cs2">Hilbert, M (2016), "Big Data for Development: A Review of Promises and Challenges", <i>Development Policy Review</i>, <b>34</b> (1): 135–74, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fdpr.12142">10.1111/dpr.12142</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Development+Policy+Review&amp;rft.atitle=Big+Data+for+Development%3A+A+Review+of+Promises+and+Challenges&amp;rft.volume=34&amp;rft.issue=1&amp;rft.pages=135-74&amp;rft.date=2016&amp;rft_id=info%3Adoi%2F10.1111%2Fdpr.12142&amp;rft.aulast=Hilbert&amp;rft.aufirst=M&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span>; <a rel="nofollow" class="external text" href="https://www.martinhilbert.net/big-data-for-development/">free access</a>, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210421222027/https://www.martinhilbert.net/big-data-for-development/">Archived</a> 21 April 2021 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSnijdersMatzatReips2012" class="citation journal cs1">Snijders, C.; Matzat, U.; Reips, U.-D. (2012). <a rel="nofollow" class="external text" href="http://www.ijis.net/ijis7_1/ijis7_1_editorial.html">"<span class="cs1-kern-left"></span>'Big Data': Big gaps of knowledge in the field of Internet"</a>. <i>International Journal of Internet Science</i>. <b>7</b>: 1–5. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20191123051001/http://www.ijis.net/ijis7_1/ijis7_1_editorial.html">Archived</a> from the original on 23 November 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">13 April</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Internet+Science&amp;rft.atitle=%27Big+Data%27%3A+Big+gaps+of+knowledge+in+the+field+of+Internet&amp;rft.volume=7&amp;rft.pages=1-5&amp;rft.date=2012&amp;rft.aulast=Snijders&amp;rft.aufirst=C.&amp;rft.au=Matzat%2C+U.&amp;rft.au=Reips%2C+U.-D.&amp;rft_id=http%3A%2F%2Fwww.ijis.net%2Fijis7_1%2Fijis7_1_editorial.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYanaseTriantaphyllou2019" class="citation journal cs1">Yanase, J; Triantaphyllou, E (2019). "A Systematic Survey of Computer-Aided Diagnosis in Medicine: Past and Present Developments". <i>Expert Systems with Applications</i>. <b>138</b>: 112821. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.eswa.2019.112821">10.1016/j.eswa.2019.112821</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:199019309">199019309</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Expert+Systems+with+Applications&amp;rft.atitle=A+Systematic+Survey+of+Computer-Aided+Diagnosis+in+Medicine%3A+Past+and+Present+Developments&amp;rft.volume=138&amp;rft.pages=112821&amp;rft.date=2019&amp;rft_id=info%3Adoi%2F10.1016%2Fj.eswa.2019.112821&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A199019309%23id-name%3DS2CID&amp;rft.aulast=Yanase&amp;rft.aufirst=J&amp;rft.au=Triantaphyllou%2C+E&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=43" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><div class="side-box metadata side-box-right"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-abovebelow"> <a href="/wiki/Wikipedia:The_Wikipedia_Library" title="Wikipedia:The Wikipedia Library">Library resources</a> about <br /> <b>Big data</b> <hr /></div> <div class="side-box-flex"> <div class="side-box-text plainlist"><ul><li><a class="external text" href="https://ftl.toolforge.org/cgi-bin/ftl?st=wp&amp;su=Big+data">Resources in your library</a></li> <li><a class="external text" href="https://ftl.toolforge.org/cgi-bin/ftl?st=wp&amp;su=Big+data&amp;library=0CHOOSE0">Resources in other libraries</a></li> </ul></div></div> </div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeter_KinnairdInbal_Talgam-Cohen2012" class="citation magazine cs1">Peter Kinnaird; Inbal Talgam-Cohen, eds. (2012). <a rel="nofollow" class="external text" href="http://dl.acm.org/citation.cfm?id=2331042">"Big Data"</a>. <i><a href="/wiki/XRDS_(magazine)" title="XRDS (magazine)">XRDS: Crossroads, The ACM Magazine for Students</a></i>. Vol.&#160;19, no.&#160;1. <a href="/wiki/Association_for_Computing_Machinery" title="Association for Computing Machinery">Association for Computing Machinery</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1528-4980">1528-4980</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/779657714">779657714</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=XRDS%3A+Crossroads%2C+The+ACM+Magazine+for+Students&amp;rft.atitle=Big+Data&amp;rft.volume=19&amp;rft.issue=1&amp;rft.date=2012&amp;rft_id=info%3Aoclcnum%2F779657714&amp;rft.issn=1528-4980&amp;rft_id=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D2331042&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJure_LeskovecAnand_RajaramanJeffrey_D._Ullman2014" class="citation book cs1"><a href="/wiki/Jure_Leskovec" title="Jure Leskovec">Jure Leskovec</a>; <a href="/wiki/Anand_Rajaraman" title="Anand Rajaraman">Anand Rajaraman</a>; <a href="/wiki/Jeffrey_D._Ullman" class="mw-redirect" title="Jeffrey D. Ullman">Jeffrey D. Ullman</a> (2014). <a rel="nofollow" class="external text" href="http://mmds.org/"><i>Mining of massive datasets</i></a>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-10707723-2" title="Special:BookSources/978-1-10707723-2"><bdi>978-1-10707723-2</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/888463433">888463433</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mining+of+massive+datasets&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2014&amp;rft_id=info%3Aoclcnum%2F888463433&amp;rft.isbn=978-1-10707723-2&amp;rft.au=Jure+Leskovec&amp;rft.au=Anand+Rajaraman&amp;rft.au=Jeffrey+D.+Ullman&amp;rft_id=http%3A%2F%2Fmmds.org%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFViktor_Mayer-SchönbergerKenneth_Cukier2013" class="citation book cs1"><a href="/wiki/Viktor_Mayer-Sch%C3%B6nberger" title="Viktor Mayer-Schönberger">Viktor Mayer-Schönberger</a>; <a href="/wiki/Kenneth_Cukier" title="Kenneth Cukier">Kenneth Cukier</a> (2013). <i>Big Data: A Revolution that Will Transform how We Live, Work, and Think</i>. Houghton Mifflin Harcourt. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-29990302-9" title="Special:BookSources/978-1-29990302-9"><bdi>978-1-29990302-9</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/828620988">828620988</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Big+Data%3A+A+Revolution+that+Will+Transform+how+We+Live%2C+Work%2C+and+Think&amp;rft.pub=Houghton+Mifflin+Harcourt&amp;rft.date=2013&amp;rft_id=info%3Aoclcnum%2F828620988&amp;rft.isbn=978-1-29990302-9&amp;rft.au=Viktor+Mayer-Sch%C3%B6nberger&amp;rft.au=Kenneth+Cukier&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPress2013" class="citation news cs1">Press, Gil (9 May 2013). <a rel="nofollow" class="external text" href="https://www.forbes.com/sites/gilpress/2013/05/09/a-very-short-history-of-big-data">"A Very Short History of Big Data"</a>. <i>forbes.com</i>. Jersey City, NJ<span class="reference-accessdate">. Retrieved <span class="nowrap">17 September</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=forbes.com&amp;rft.atitle=A+Very+Short+History+of+Big+Data&amp;rft.date=2013-05-09&amp;rft.aulast=Press&amp;rft.aufirst=Gil&amp;rft_id=https%3A%2F%2Fwww.forbes.com%2Fsites%2Fgilpress%2F2013%2F05%2F09%2Fa-very-short-history-of-big-data&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStephens-Davidowitz2017" class="citation book cs1">Stephens-Davidowitz, Seth (2017). <i>Everybody Lies: Big Data, New Data, and What the Internet Can Tell Us About Who We Really Are</i>. Dey Street Books. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-06239085-1" title="Special:BookSources/978-0-06239085-1"><bdi>978-0-06239085-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Everybody+Lies%3A+Big+Data%2C+New+Data%2C+and+What+the+Internet+Can+Tell+Us+About+Who+We+Really+Are&amp;rft.pub=Dey+Street+Books&amp;rft.date=2017&amp;rft.isbn=978-0-06239085-1&amp;rft.aulast=Stephens-Davidowitz&amp;rft.aufirst=Seth&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation magazine cs1"><a rel="nofollow" class="external text" href="https://hbr.org/2012/10/big-data-the-management-revolution">"Big Data: The Management Revolution"</a>. <i>Harvard Business Review</i>. October 2012.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Harvard+Business+Review&amp;rft.atitle=Big+Data%3A+The+Management+Revolution&amp;rft.date=2012-10&amp;rft_id=https%3A%2F%2Fhbr.org%2F2012%2F10%2Fbig-data-the-management-revolution&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO&#39;Neil2017" class="citation book cs1">O'Neil, Cathy (2017). <i>Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy</i>. Broadway Books. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-55341883-5" title="Special:BookSources/978-0-55341883-5"><bdi>978-0-55341883-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Weapons+of+Math+Destruction%3A+How+Big+Data+Increases+Inequality+and+Threatens+Democracy&amp;rft.pub=Broadway+Books&amp;rft.date=2017&amp;rft.isbn=978-0-55341883-5&amp;rft.aulast=O%27Neil&amp;rft.aufirst=Cathy&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABig+data" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Big_data&amp;action=edit&amp;section=44" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Commons-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> Media related to <a href="https://commons.wikimedia.org/wiki/Category:Big_data" class="extiw" title="commons:Category:Big data">Big data</a> at Wikimedia Commons</li> <li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wiktionary-logo-en-v2.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/16px-Wiktionary-logo-en-v2.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/24px-Wiktionary-logo-en-v2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/32px-Wiktionary-logo-en-v2.svg.png 2x" data-file-width="512" data-file-height="512" /></a></span> The dictionary definition of <a href="https://en.wiktionary.org/wiki/big_data" class="extiw" title="wiktionary:big data"><i>big data</i></a> at Wiktionary</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Data" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Data" title="Template:Data"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Data" title="Template talk:Data"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Data" title="Special:EditPage/Template:Data"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Data" style="font-size:114%;margin:0 4em"><a href="/wiki/Data" title="Data">Data</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Data_acquisition" title="Data acquisition">Acquisition</a></li> <li><a href="/wiki/Data_augmentation" title="Data augmentation">Augmentation</a></li> <li><a href="/wiki/Data_analysis" title="Data analysis">Analysis</a></li> <li><a href="/wiki/Data_archaeology" title="Data archaeology">Archaeology</a></li> <li><a class="mw-selflink selflink">Big</a></li> <li><a href="/wiki/Data_cleansing" title="Data cleansing">Cleansing</a></li> <li><a href="/wiki/Data_collection" title="Data collection">Collection</a></li> <li><a href="/wiki/Data_compression" title="Data compression">Compression</a></li> <li><a href="/wiki/Data_corruption" title="Data corruption">Corruption</a></li> <li><a href="/wiki/Data_curation" title="Data curation">Curation</a></li> <li><a href="/wiki/Data_degradation" title="Data degradation">Degradation</a></li> <li><a href="/wiki/Data_ecosystem" title="Data ecosystem">Ecosystem</a></li> <li><a href="/wiki/Data_editing" title="Data editing">Editing</a></li> <li><a href="/wiki/Extract,_transform,_load" title="Extract, transform, load">ETL</a>/<a href="/wiki/Extract,_load,_transform" title="Extract, load, transform">ELT</a> <ul><li><a href="/wiki/Data_extraction" title="Data extraction">Extract</a></li> <li><a href="/wiki/Data_transformation" class="mw-redirect" title="Data transformation">Transform</a></li> <li><a href="/wiki/Data_loading" title="Data loading">Load</a></li></ul></li> <li><a href="/wiki/Data_ethics" class="mw-redirect" title="Data ethics">Ethics</a></li> <li><a href="/wiki/Data_farming" title="Data farming">Farming</a></li> <li><a href="/wiki/Data_format_management" title="Data format management">Format management</a></li> <li><a href="/wiki/Data_fusion" title="Data fusion">Fusion</a></li> <li><a href="/wiki/Data_governance" title="Data governance">Governance</a> <ul><li><a href="/wiki/Data_cooperative" title="Data cooperative">Cooperatives</a></li></ul></li> <li><a href="/wiki/Data_infrastructure" title="Data infrastructure">Infrastructure</a></li> <li><a href="/wiki/Data_integration" title="Data integration">Integration</a></li> <li><a href="/wiki/Data_integrity" title="Data integrity">Integrity</a></li> <li><a href="/wiki/Data_library" class="mw-redirect" title="Data library">Library</a></li> <li><a href="/wiki/Data_lineage" title="Data lineage">Lineage</a></li> <li><a href="/wiki/Data_loss" title="Data loss">Loss</a></li> <li><a href="/wiki/Data_management" title="Data management">Management</a></li> <li><a href="/wiki/Data_migration" title="Data migration">Migration</a></li> <li><a href="/wiki/Data_mining" title="Data mining">Mining</a></li> <li><a href="/wiki/Data_philanthropy" title="Data philanthropy">Philanthropy</a></li> <li><a href="/wiki/Data_pre-processing" class="mw-redirect" title="Data pre-processing">Pre-processing</a></li> <li><a href="/wiki/Data_preservation" title="Data preservation">Preservation</a></li> <li><a href="/wiki/Data_processing" title="Data processing">Processing</a></li> <li><a href="/wiki/Information_privacy" title="Information privacy">Protection (privacy)</a></li> <li><a href="/wiki/Data_publishing" title="Data publishing">Publishing</a> <ul><li><a href="/wiki/Open_data" title="Open data">Open data</a></li></ul></li> <li><a href="/wiki/Data_recovery" title="Data recovery">Recovery</a></li> <li><a href="/wiki/Data_reduction" title="Data reduction">Reduction</a></li> <li><a href="/wiki/Data_retention" title="Data retention">Retention</a></li> <li><a href="/wiki/Data_quality" title="Data quality">Quality</a></li> <li><a href="/wiki/Data_science" title="Data science">Science</a></li> <li><a href="/wiki/Data_scraping" title="Data scraping">Scraping</a></li> <li><a href="/wiki/Data_scrubbing" title="Data scrubbing">Scrubbing</a></li> <li><a href="/wiki/Data_security" title="Data security">Security</a></li> <li><a href="/wiki/Data_steward" title="Data steward">Stewardship</a></li> <li><a href="/wiki/Data_storage" title="Data storage">Storage</a></li> <li><a href="/wiki/Data_synchronization" title="Data synchronization">Synchronization</a></li> <li><a href="/wiki/Data_type" title="Data type">Type</a></li> <li><a href="/wiki/Data_validation" title="Data validation">Validation</a></li> <li><a href="/wiki/Data_warehouse" title="Data warehouse">Warehouse</a></li> <li><a href="/wiki/Data_wrangling" title="Data wrangling">Wrangling/munging</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q858810#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4802620-7">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh2012003227">United States</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Données massives"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb16657853j">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Données massives"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb16657853j">BnF data</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/001147262">Japan</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="big data"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph836790&amp;CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Datos masivos"><a rel="nofollow" class="external text" href="http://catalogo.bne.es/uhtbin/authoritybrowse.cgi?action=display&amp;authority_id=XX5324756">Spain</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007593186405171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐694cf4987f‐59694 Cached time: 20241126064830 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 2.500 seconds Real time usage: 2.913 seconds Preprocessor visited node count: 22430/1000000 Post‐expand include size: 557980/2097152 bytes Template argument size: 23205/2097152 bytes Highest expansion depth: 23/100 Expensive parser function count: 23/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 842271/5000000 bytes Lua time usage: 1.632/10.000 seconds Lua memory usage: 18302874/52428800 bytes Lua Profile: MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 260 ms 14.8% ? 260 ms 14.8% dataWrapper <mw.lua:672> 200 ms 11.4% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::gsub 160 ms 9.1% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getExpandedArgument 100 ms 5.7% (for generator) 60 ms 3.4% tostring 60 ms 3.4% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::find 60 ms 3.4% type 60 ms 3.4% recursiveClone <mwInit.lua:45> 60 ms 3.4% [others] 480 ms 27.3% Number of Wikibase entities loaded: 3/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 2613.551 1 -total 52.70% 1377.400 1 Template:Reflist 17.06% 445.851 93 Template:Cite_web 14.73% 385.066 55 Template:Cite_journal 7.38% 192.845 1 Template:Columns-list 6.89% 180.078 17 Template:Fix 6.78% 177.243 14 Template:Annotated_link 5.51% 144.046 8 Template:Sfn 4.69% 122.635 31 Template:Cite_news 4.60% 120.244 25 Template:Delink --> <!-- Saved in parser cache with key enwiki:pcache:idhash:27051151-0!canonical and timestamp 20241126064830 and revision id 1258765268. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Big_data&amp;oldid=1258765268">https://en.wikipedia.org/w/index.php?title=Big_data&amp;oldid=1258765268</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Big_data" title="Category:Big data">Big data</a></li><li><a href="/wiki/Category:Data_management" title="Category:Data management">Data management</a></li><li><a href="/wiki/Category:Business_intelligence_terms" title="Category:Business intelligence terms">Business intelligence terms</a></li><li><a href="/wiki/Category:Transaction_processing" title="Category:Transaction processing">Transaction processing</a></li><li><a href="/wiki/Category:Technology_forecasting" title="Category:Technology forecasting">Technology forecasting</a></li><li><a href="/wiki/Category:Data_analysis" title="Category:Data analysis">Data analysis</a></li><li><a href="/wiki/Category:Databases" title="Category:Databases">Databases</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">CS1 maint: location missing publisher</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_January_2020" title="Category:Use dmy dates from January 2020">Use dmy dates from January 2020</a></li><li><a href="/wiki/Category:Wikipedia_articles_in_need_of_updating_from_June_2024" title="Category:Wikipedia articles in need of updating from June 2024">Wikipedia articles in need of updating from June 2024</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_in_need_of_updating" title="Category:All Wikipedia articles in need of updating">All Wikipedia articles in need of updating</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_2012" title="Category:Articles containing potentially dated statements from 2012">Articles containing potentially dated statements from 2012</a></li><li><a href="/wiki/Category:All_articles_containing_potentially_dated_statements" title="Category:All articles containing potentially dated statements">All articles containing potentially dated statements</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_page_number_citations_from_December_2023" title="Category:Wikipedia articles needing page number citations from December 2023">Wikipedia articles needing page number citations from December 2023</a></li><li><a href="/wiki/Category:Pages_using_page_needed_template_with_unknown_parameters" title="Category:Pages using page needed template with unknown parameters">Pages using page needed template with unknown parameters</a></li><li><a href="/wiki/Category:All_articles_lacking_reliable_references" title="Category:All articles lacking reliable references">All articles lacking reliable references</a></li><li><a href="/wiki/Category:Articles_lacking_reliable_references_from_December_2018" title="Category:Articles lacking reliable references from December 2018">Articles lacking reliable references from December 2018</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_2017" title="Category:Articles containing potentially dated statements from 2017">Articles containing potentially dated statements from 2017</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_September_2011" title="Category:Articles with unsourced statements from September 2011">Articles with unsourced statements from September 2011</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_September_2023" title="Category:Articles needing additional references from September 2023">Articles needing additional references from September 2023</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:Articles_lacking_reliable_references_from_November_2018" title="Category:Articles lacking reliable references from November 2018">Articles lacking reliable references from November 2018</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_2023" title="Category:Articles containing potentially dated statements from 2023">Articles containing potentially dated statements from 2023</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_January_2021" title="Category:Articles with unsourced statements from January 2021">Articles with unsourced statements from January 2021</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_2013" title="Category:Articles containing potentially dated statements from 2013">Articles containing potentially dated statements from 2013</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_2005" title="Category:Articles containing potentially dated statements from 2005">Articles containing potentially dated statements from 2005</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_June_2017" title="Category:Articles containing potentially dated statements from June 2017">Articles containing potentially dated statements from June 2017</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_August_2012" title="Category:Articles containing potentially dated statements from August 2012">Articles containing potentially dated statements from August 2012</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_April_2015" title="Category:Articles with unsourced statements from April 2015">Articles with unsourced statements from April 2015</a></li><li><a href="/wiki/Category:Pages_displaying_wikidata_descriptions_as_a_fallback_via_Module:Annotated_link" title="Category:Pages displaying wikidata descriptions as a fallback via Module:Annotated link">Pages displaying wikidata descriptions as a fallback via Module:Annotated link</a></li><li><a href="/wiki/Category:Commons_category_link_from_Wikidata" title="Category:Commons category link from Wikidata">Commons category link from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 21 November 2024, at 14:24<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Big_data&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-694cf4987f-8fbzx","wgBackendResponseTime":212,"wgPageParseReport":{"limitreport":{"cputime":"2.500","walltime":"2.913","ppvisitednodes":{"value":22430,"limit":1000000},"postexpandincludesize":{"value":557980,"limit":2097152},"templateargumentsize":{"value":23205,"limit":2097152},"expansiondepth":{"value":23,"limit":100},"expensivefunctioncount":{"value":23,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":842271,"limit":5000000},"entityaccesscount":{"value":3,"limit":400},"timingprofile":["100.00% 2613.551 1 -total"," 52.70% 1377.400 1 Template:Reflist"," 17.06% 445.851 93 Template:Cite_web"," 14.73% 385.066 55 Template:Cite_journal"," 7.38% 192.845 1 Template:Columns-list"," 6.89% 180.078 17 Template:Fix"," 6.78% 177.243 14 Template:Annotated_link"," 5.51% 144.046 8 Template:Sfn"," 4.69% 122.635 31 Template:Cite_news"," 4.60% 120.244 25 Template:Delink"]},"scribunto":{"limitreport-timeusage":{"value":"1.632","limit":"10.000"},"limitreport-memusage":{"value":18302874,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAdmire_Moyo2015\"] = 1,\n [\"CITEREFAldridge2016\"] = 1,\n [\"CITEREFAldridge2021\"] = 1,\n [\"CITEREFAlemany_OliverVayre,_Jean-Sebastien2015\"] = 1,\n [\"CITEREFAlexandru\"] = 1,\n [\"CITEREFBaiBai2021\"] = 1,\n [\"CITEREFBalazkaRodighiero2020\"] = 1,\n [\"CITEREFBamford2012\"] = 1,\n [\"CITEREFBanerjeeChaudhury2010\"] = 1,\n [\"CITEREFBarocasNissenbaumLaneStodden2014\"] = 1,\n [\"CITEREFBernhard_Warner2013\"] = 1,\n [\"CITEREFBojaPocovnicu,_ABătăgan,_L.2012\"] = 1,\n [\"CITEREFBoydCrawford2012\"] = 1,\n [\"CITEREFBrayne2017\"] = 1,\n [\"CITEREFBreur2016\"] = 1,\n [\"CITEREFBrumfiel2011\"] = 1,\n [\"CITEREFBrynjolfssonHuRahman2013\"] = 1,\n [\"CITEREFCNET_News2011\"] = 1,\n [\"CITEREFCappaOrianiPeruffoMcCarthy2021\"] = 1,\n [\"CITEREFCellan-Jones2020\"] = 1,\n [\"CITEREFChoudhury2020\"] = 1,\n [\"CITEREFChris_Anderson2008\"] = 1,\n [\"CITEREFChristopher_Matthews2013\"] = 1,\n [\"CITEREFClunie,_D.2013\"] = 1,\n [\"CITEREFConstine2017\"] = 1,\n [\"CITEREFCopeland2017\"] = 1,\n [\"CITEREFCouldryTurow2014\"] = 1,\n [\"CITEREFDanah_Boyd2010\"] = 1,\n [\"CITEREFDave_Ryan2015\"] = 1,\n [\"CITEREFDavid_Patterson2011\"] = 1,\n [\"CITEREFDedićStanier2017\"] = 1,\n [\"CITEREFDongBahroosSadhuJackson2013\"] = 1,\n [\"CITEREFEckCazarCallegaroBiemer2021\"] = 1,\n [\"CITEREFEverts2016\"] = 1,\n [\"CITEREFExecutive_Office_of_the_President2012\"] = 1,\n [\"CITEREFFox2018\"] = 1,\n [\"CITEREFFrank_Bi\"] = 1,\n [\"CITEREFGhasemaghaeiCalic2020\"] = 1,\n [\"CITEREFGraham_M.2012\"] = 1,\n [\"CITEREFGregory_Piatetsky2014\"] = 1,\n [\"CITEREFGrimes\"] = 1,\n [\"CITEREFHaleemJavaidKhanVaishya2020\"] = 1,\n [\"CITEREFHamish_McRae2013\"] = 1,\n [\"CITEREFHarford2014\"] = 1,\n [\"CITEREFHasanPoppOláh2020\"] = 1,\n [\"CITEREFHellerstein,_Joe2008\"] = 1,\n [\"CITEREFHilbert2014\"] = 1,\n [\"CITEREFHilbert2016\"] = 1,\n [\"CITEREFHilbertLópez2011\"] = 2,\n [\"CITEREFHill\"] = 1,\n [\"CITEREFHillBiemerBuskirkJapec2020\"] = 1,\n [\"CITEREFHoover\"] = 1,\n [\"CITEREFHuserCimino2016\"] = 1,\n [\"CITEREFIbrahimTargio_HashemYaqoobBadrul_Anuar2015\"] = 1,\n [\"CITEREFIoannidis2005\"] = 1,\n [\"CITEREFJacobs,_A.2009\"] = 1,\n [\"CITEREFJason_Palmer2013\"] = 1,\n [\"CITEREFJohn_R._Mashey1998\"] = 1,\n [\"CITEREFJohnston2012\"] = 1,\n [\"CITEREFJonathan_Rauch2002\"] = 1,\n [\"CITEREFJonesSchildhauerReichmanBowers2006\"] = 1,\n [\"CITEREFJosh_Rogin2018\"] = 1,\n [\"CITEREFJure_LeskovecAnand_RajaramanJeffrey_D._Ullman2014\"] = 1,\n [\"CITEREFKalil2012\"] = 1,\n [\"CITEREFKatyal2019\"] = 1,\n [\"CITEREFKitchinMcArdle2016\"] = 3,\n [\"CITEREFL\u0026#039;HeureuxGrolingerElyamanyCapretz2017\"] = 1,\n [\"CITEREFLampitt2013\"] = 1,\n [\"CITEREFLayton2006\"] = 1,\n [\"CITEREFLes_Echos2013\"] = 1,\n [\"CITEREFLohrSinger2016\"] = 1,\n [\"CITEREFLuPlataniotisVenetsanopoulos2011\"] = 1,\n [\"CITEREFLugmayr,_A.Stockleben,_BScheib,_C.Mailaparampil,_M.2016\"] = 1,\n [\"CITEREFMagoulasLorica2009\"] = 1,\n [\"CITEREFManancourt2020\"] = 1,\n [\"CITEREFManyikaChuiBughinBrown2011\"] = 1,\n [\"CITEREFMarks2012\"] = 1,\n [\"CITEREFMarshall_Allen2018\"] = 1,\n [\"CITEREFMcAfeeBrynjolfsson2012\"] = 1,\n [\"CITEREFMirkesCoatsLevesleyGorban2016\"] = 1,\n [\"CITEREFMonash,_Curt2009\"] = 1,\n [\"CITEREFMonash,_Curt2010\"] = 1,\n [\"CITEREFMurdochDetsky2013\"] = 1,\n [\"CITEREFNick_Bilton2013\"] = 1,\n [\"CITEREFO\u0026#039;DonoghueHerbert2012\"] = 1,\n [\"CITEREFO\u0026#039;Neil2017\"] = 1,\n [\"CITEREFOhm2012\"] = 1,\n [\"CITEREFOnayÖztürk2018\"] = 1,\n [\"CITEREFPelt2015\"] = 1,\n [\"CITEREFPeter_KinnairdInbal_Talgam-Cohen2012\"] = 1,\n [\"CITEREFPhilip_Ball2013\"] = 2,\n [\"CITEREFPllanaJanciakBrezanyWöhrer2016\"] = 1,\n [\"CITEREFPotenza2016\"] = 1,\n [\"CITEREFPreisMoatStanley2013\"] = 1,\n [\"CITEREFPreisMoatStanleyBishop2012\"] = 1,\n [\"CITEREFPress2013\"] = 1,\n [\"CITEREFRaghupathiRaghupathi2014\"] = 1,\n [\"CITEREFRajpurohit2014\"] = 1,\n [\"CITEREFRegalado\"] = 1,\n [\"CITEREFRegina_Pazvakavambwa2015\"] = 1,\n [\"CITEREFReichmanJonesSchildhauer2011\"] = 1,\n [\"CITEREFReinselGantzRydning2017\"] = 1,\n [\"CITEREFReipsMatzat,_Uwe2014\"] = 1,\n [\"CITEREFRichard_Waters2013\"] = 1,\n [\"CITEREFSagiroglu2013\"] = 1,\n [\"CITEREFSegaranHammerbacher2009\"] = 1,\n [\"CITEREFSeife\"] = 1,\n [\"CITEREFSejdicFalk2018\"] = 1,\n [\"CITEREFShah,_ShvetankHorne,_AndrewCapellá,_Jaime2012\"] = 1,\n [\"CITEREFSinghSchulthessHughesVannieuwenhuyse2018\"] = 1,\n [\"CITEREFSiwachEsmailpour2014\"] = 1,\n [\"CITEREFSmithHallman2013\"] = 1,\n [\"CITEREFSnijdersMatzatReips2012\"] = 1,\n [\"CITEREFSolnik\"] = 1,\n [\"CITEREFStephens-Davidowitz2017\"] = 1,\n [\"CITEREFSteve_Lohr2013\"] = 1,\n [\"CITEREFStrong2015\"] = 1,\n [\"CITEREFTay\"] = 1,\n [\"CITEREFTimothy_HunterTeodor_MoldovanMatei_ZahariaJustin_Ma2011\"] = 1,\n [\"CITEREFTobias_Knobloch_and_Julia_Manske2016\"] = 1,\n [\"CITEREFTobias_Preis2012\"] = 1,\n [\"CITEREFVayenaSalathéMadoffBrownstein2015\"] = 1,\n [\"CITEREFVicecontiHunterHose2015\"] = 1,\n [\"CITEREFViktor_Mayer-SchönbergerKenneth_Cukier2013\"] = 1,\n [\"CITEREFWangGoldstoneYuWang2014\"] = 1,\n [\"CITEREFWebster\"] = 1,\n [\"CITEREFWedelKannan,_PK2016\"] = 1,\n [\"CITEREFWingfield2013\"] = 1,\n [\"CITEREFYanaseTriantaphyllou2019\"] = 1,\n [\"CITEREFYanaseTriantaphyllou2019b\"] = 1,\n [\"CITEREFYoung2012\"] = 1,\n [\"CITEREFZ._Jenipher_Wang2017\"] = 1,\n [\"CITEREFZaleski2016\"] = 1,\n [\"CITEREFboydCrawford2011\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 3,\n [\"About\"] = 1,\n [\"Annotated link\"] = 14,\n [\"As of\"] = 9,\n [\"Authority control\"] = 1,\n [\"Better source needed\"] = 1,\n [\"Category see also\"] = 1,\n [\"Citation\"] = 1,\n [\"Citation needed\"] = 3,\n [\"Cite Q\"] = 1,\n [\"Cite book\"] = 16,\n [\"Cite conference\"] = 2,\n [\"Cite journal\"] = 55,\n [\"Cite magazine\"] = 15,\n [\"Cite news\"] = 31,\n [\"Cite web\"] = 93,\n [\"Columns-list\"] = 1,\n [\"Commons-inline\"] = 1,\n [\"Data\"] = 1,\n [\"Doi\"] = 5,\n [\"Further\"] = 1,\n [\"ISSN\"] = 3,\n [\"Library resources box\"] = 1,\n [\"Main\"] = 1,\n [\"More citations needed\"] = 1,\n [\"Page needed\"] = 8,\n [\"Promotional source\"] = 3,\n [\"R\"] = 6,\n [\"Reflist\"] = 1,\n [\"See also\"] = 1,\n [\"Sfn\"] = 8,\n [\"Short description\"] = 1,\n [\"Third-party inline\"] = 1,\n [\"Update inline\"] = 1,\n [\"Use dmy dates\"] = 1,\n [\"Webarchive\"] = 14,\n [\"Wiktionary-inline\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n1 1 Chris Kimble\n2 2 Giannis Milolidakis\n","limitreport-profile":[["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","260","14.8"],["?","260","14.8"],["dataWrapper \u003Cmw.lua:672\u003E","200","11.4"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::gsub","160","9.1"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getExpandedArgument","100","5.7"],["(for generator)","60","3.4"],["tostring","60","3.4"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::find","60","3.4"],["type","60","3.4"],["recursiveClone \u003CmwInit.lua:45\u003E","60","3.4"],["[others]","480","27.3"]]},"cachereport":{"origin":"mw-web.codfw.main-694cf4987f-59694","timestamp":"20241126064830","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Big data","url":"https:\/\/en.wikipedia.org\/wiki\/Big_data","sameAs":"http:\/\/www.wikidata.org\/entity\/Q858810","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q858810","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2010-04-21T21:35:53Z","dateModified":"2024-11-21T14:24:16Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/7\/7c\/Hilbert_InfoGrowth.png","headline":"information assets characterized by such a high volume, velocity, and variety to require specific technology and analytical methods for its transformation into value"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10