CINXE.COM

Algebra - Combining Functions

<!DOCTYPE html> <html> <head><meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=yes" /><meta http-equiv="X-UA-Compatible" content="IE=edge" /> <!-- For best MathJax performance on IE --> <meta name="google-site-verification" content="uLoA31CJfOhIVMJWBjCmQL8xNMmmLybZU3LRKavy9WQ" /><title> Algebra - Combining Functions </title> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-9SCXJM7BEJ"></script> <script> window.dataLayer = window.dataLayer || []; function gtag() { dataLayer.push(arguments); } gtag('js', new Date()); gtag('config', 'G-9SCXJM7BEJ'); </script> <link type="text/css" href="/css/jquery.mmenu.all.css" rel="stylesheet" /><link type="text/css" href="/css/jquery.dropdown.css" rel="stylesheet" /><link href="/FA/css/all.min.css" rel="stylesheet" /><link type="text/css" href="/css/notes-all.css" rel="stylesheet" /><link type="text/css" href="/css/notes-google.css" rel="stylesheet" /><link type="text/css" href="/css/notes-mmenu.css" rel="stylesheet" /><link type="text/css" href="/css/notes-dropdown.css" rel="stylesheet" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ TeX: { equationNumbers: { autoNumber: "AMS" } } }); </script> <script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.2/MathJax.js?config=TeX-AMS_CHTML-full"></script> <script type="text/javascript" src="/js/jquery_on.js"></script> <script type="text/javascript" src="/js/jquery.mmenu.all.js"></script> <script type="text/javascript" src="/js/jquery.dropdown.js"></script> <script type="text/javascript" src="/js/notes-all.js"></script> <script> (function () { var cx = '001004262401526223570:11yv6vpcqvy'; var gcse = document.createElement('script'); gcse.type = 'text/javascript'; gcse.async = true; gcse.src = 'https://cse.google.com/cse.js?cx=' + cx; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(gcse, s); })(); </script> <meta http-equiv="keywords" name="keywords" content="add function, subtract function, multiply function, divide function, function composition, composition, compose functions" /><meta http-equiv="description" name="description" content="In this section we will discuss how to add, subtract, multiply and divide functions. In addition, we introduce the concept of function composition." /></head> <body onload="init({Notes: 'NoteMobile;8/21/2018;true'})"> <div id="page"> <div class="header"> <div class="header-row"> <!--<a href="#menu"><span></span></a>--> <div id="side-menu-icon" class="header-side-menu-icon"><a href="#menu"><span class="fas fa-bars fa-lg" aria-hidden="true" title="Main Menu - Change between topics, chapters and sections as well as a few extra pages."></span></a></div> <span class="header-title"><a href="/" class="header-title-link">Paul's Online Notes</a></span> <div class="header-spacer"></div> <div id="content-top-menu" class="top-menu"> <button id="content-type-menu" class="top-menu-button" data-jq-dropdown="#jq-dropdown-type" title="View (Notes, Practice Problems or Assignment Problems, Show/Hide Solutions and/or Steps) Menu"> <span id="tab_top_menu_notes" class="top-menu-item-title">Notes</span> <span class="far fa-eye fa-lg" aria-hidden="true"></span> </button> <button id="quicknav-menu" class="top-menu-button" data-jq-dropdown="#jq-dropdown-quicknav" title="Quick Navigation (Previous/Next Sections and Problems and Full Problem List) Menu"> <span class="top-menu-item-title">Quick Nav</span> <span class="fas fa-exchange fa-lg" aria-hidden="true"></span> </button> <button id="download-menu" class="top-menu-button" data-jq-dropdown="#jq-dropdown-download" title="Download pdf Menu"> <span class="top-menu-item-title">Download</span> <span class="far fa-download fa-lg" aria-hidden="true"></span> </button> <button id="print-menu" class="top-menu-button top-menu-button-icon-only" data-jq-dropdown="#jq-print-download" title="Print Menu"> <span class="far fa-print fa-lg" aria-hidden="true"></span> </button> </div> <div id="header-google-search" class="header-search"> <gcse:search></gcse:search> </div> <div id="header-search-icon" title="Site Search" class="header-menu-icon"><span id="search-icon" class="fas fa-search" aria-hidden="true"></span></div> </div> </div> <div id="jq-dropdown-type" class="jq-dropdown jq-dropdown-tip"> <ul class="jq-dropdown-menu"> <li id="li_type_menu_goto" class="top-menu-nav-title">Go To</li> <li id="li_type_menu_notes"> <span id="type_menu_notes_span" title="Viewing the Notes for the current topic." class="top-menu-current">Notes</span> </li> <li id="li_type_menu_practice"> <a href="/Problems/Alg/CombineFunctions.aspx" id="type_menu_practice_link" title="Go to Practice Problems for current topic.">Practice Problems</a> </li> <li id="li_type_menu_asgn"> <a href="/ProblemsNS/Alg/CombineFunctions.aspx" id="type_menu_asgn_link" title="Go to Assignment Problems for current topic.">Assignment Problems</a> </li> <li id="li_type_menu_sh" class="top-menu-nav-title">Show/Hide</li> <li id="li_type_menu_show" title="Show any hidden solutions and/or steps that may be present on the page."><a href="javascript:SHPrintPage(1,0)" id="view_menu_show">Show all Solutions/Steps/<em>etc.</em></a></li> <li id="li_type_menu_hide" title="Hide any visible solutions and/or steps that may be present on the page."><a href="javascript:SHPrintPage(0,0)" id="view_menu_hide">Hide all Solutions/Steps/<em>etc.</em></a></li> </ul> </div> <div id="jq-dropdown-quicknav" class="jq-dropdown jq-dropdown-tip"> <ul class="jq-dropdown-menu"> <li id="li_nav_menu_sections" class="top-menu-nav-title">Sections</li> <li id="li_nav_menu_prev_section"><a href="/Classes/Alg/GraphFunctions.aspx" id="a_nav_menu_prev_section" class="top-menu-nav-link" title="Previous Section : Graphing Functions"><span class="top-menu-prev fas fa-chevron-left"></span> Graphing Functions</a></li> <li id="li_nav_menu_next_section"><a href="/Classes/Alg/InverseFunctions.aspx" id="a_nav_menu_next_section" class="top-menu-nav-link" title="Next Section : Inverse Functions"><span class="top-menu-prev-hidden fas fa-chevron-left"></span> Inverse Functions <span class="top-menu-next fas fa-chevron-right"></span></a></li> <li id="li_nav_menu_chapters" class="top-menu-nav-title">Chapters</li> <li id="li_nav_menu_prev_chapter"><a href="/Classes/Alg/Solving.aspx" id="a_nav_menu_prev_chapter" class="top-menu-nav-link" title="Previous Chapter : Solving Equations and Inequalities"><span class="top-menu-prev fas fa-chevron-left"></span><span class="top-menu-prev fas fa-chevron-left"></span> Solving Equations and Inequalities</a></li> <li id="li_nav_menu_next_chapter"><a href="/Classes/Alg/CommonGraphs.aspx" id="a_nav_menu_next_chapter" class="top-menu-nav-link" title="Next Chapter : Common Graphs"><span class="top-menu-prev-hidden fas fa-chevron-left"></span><span class="top-menu-prev-hidden fas fa-chevron-left"></span> Common Graphs <span class="top-menu-next fas fa-chevron-right"></span><span class="top-menu-next fas fa-chevron-right"></span></a></li> <li id="li_nav_menu_classes" class="top-menu-nav-title">Classes</li> <li> <span id="nav_menu_alg_span" title="Currently Viewing Algebra Material" class="top-menu-current">Algebra</span> </li> <li> <a href="/Classes/CalcI/CalcI.aspx" id="nav_menu_calci_link" title="Go To Calculus I Notes">Calculus I</a> </li> <li> <a href="/Classes/CalcII/CalcII.aspx" id="nav_menu_calcii_link" title="Go To Calculus II Notes">Calculus II</a> </li> <li> <a href="/Classes/CalcIII/CalcIII.aspx" id="nav_menu_calciii_link" title="Go To Calculus III Notes">Calculus III</a> </li> <li> <a href="/Classes/DE/DE.aspx" id="nav_menu_de_link" title="Go To Differential Equations Notes">Differential Equations</a> </li> <li id="li_nav_menu_extras" class="top-menu-nav-title">Extras</li> <li> <a href="/Extras/AlgebraTrigReview/AlgebraTrig.aspx" id="nav_menu_algtrig_link" title="Go To Algebra &amp; Trig Review">Algebra &amp; Trig Review</a> </li> <li> <a href="/Extras/CommonErrors/CommonMathErrors.aspx" id="nav_menu_commonerrors_link" title="Go To Common Math Errors">Common Math Errors</a> </li> <li> <a href="/Extras/ComplexPrimer/ComplexNumbers.aspx" id="nav_menu_complexnumbers_link" title="Go To Complex Numbers Primer">Complex Number Primer</a> </li> <li> <a href="/Extras/StudyMath/HowToStudyMath.aspx" id="nav_menu_studymath_link" title="Go To How To Study Math">How To Study Math</a> </li> <li> <a href="/Extras/CheatSheets_Tables.aspx" id="nav_menu_cheattables_link" title="Go To List of Cheat Sheets and Tables">Cheat Sheets &amp; Tables</a> </li> <li id="li_nav_menu_misc" class="top-menu-nav-title">Misc</li> <li><a href="/contact.aspx" id="nav_menu_contact" title="Contact Me!">Contact Me</a></li> <li><a href="/mathjax.aspx" id="nav_menu_mathjax" title="Info on MathJax and MathJax Configuration Menu">MathJax Help and Configuration</a></li> </ul> </div> <div id="jq-dropdown-download" class="jq-dropdown jq-dropdown-anchor-right jq-dropdown-tip"> <ul class="jq-dropdown-menu"> <li id="li_download_menu_notes" class="top-menu-nav-title">Notes Downloads</li> <li id="li_download_menu_notes_book"><a href="/GetFile.aspx?file=B,9,N" id="download_menu_notes_book" data-PDF="Download - Menu$Notes - Book$Algebra$/Downloads/Alg/Notes/Complete.pdf">Complete Book</a></li> <li id="li_download_menu_practice" class="top-menu-nav-title">Practice Problems Downloads</li> <li id="li_download_menu_practice_book"><a href="/GetFile.aspx?file=B,9,P" id="download_menu_practice_book" data-PDF="Download - Menu$Practice Problems - Book$Algebra$/Downloads/Alg/Practice Problems/Complete.pdf">Complete Book - Problems Only</a></li> <li id="li_download_menu_solutions_book"><a href="/GetFile.aspx?file=B,9,S" id="download_menu_solutions_book" data-PDF="Download - Menu$Practice Problems Solutions - Book$Algebra$/Downloads/Alg/Practice Problems Solutions/Complete.pdf">Complete Book - Solutions</a></li> <li id="li_download_menu_asgn" class="top-menu-nav-title">Assignment Problems Downloads</li> <li id="li_download_menu_asgn_book"><a href="/GetFile.aspx?file=B,9,A" id="download_menu_asgn_book" data-PDF="Download - Menu$Assignment Problems - Book$Algebra$/Downloads/Alg/Assignment Problems/Complete.pdf">Complete Book</a></li> <li id="li_download_menu_other" class="top-menu-nav-title">Other Items</li> <li id="li_download_menu_urls"> <a href="/DownloadURLs.aspx?bi=9" id="download_menu_urls">Get URL's for Download Items</a> </li> </ul> </div> <div id="jq-print-download" class="jq-dropdown jq-dropdown-anchor-right jq-dropdown-tip"> <ul class="jq-dropdown-menu"> <li id="li_print_menu_default"><a href="javascript:SHPrintPage()" id="print_menu_default">Print Page in Current Form (Default)</a></li> <li id="li_print_menu_show"><a href="javascript:SHPrintPage(1,1)" id="print_menu_show">Show all Solutions/Steps and Print Page</a></li> <li id="li_print_menu_hide"><a href="javascript:SHPrintPage(0,1)" id="print_menu_hide">Hide all Solutions/Steps and Print Page</a></li> </ul> </div> <nav id="menu" class="notes-nav"> <ul> <li><a href="/" class="mm-link">Home</a></li> <li><span>Classes</span></li> <li><a href="/Classes/Alg/Alg.aspx" class="mm-link">Algebra</a> <ul> <li><a href="/Classes/Alg/Preliminaries.aspx" class="mm-link">1. Preliminaries</a> <ul> <li><a href="/Classes/Alg/IntegerExponents.aspx" class="mm-link">1.1 Integer Exponents</a></li> <li><a href="/Classes/Alg/RationalExponents.aspx" class="mm-link">1.2 Rational Exponents</a></li> <li><a href="/Classes/Alg/Radicals.aspx" class="mm-link">1.3 Radicals</a></li> <li><a href="/Classes/Alg/Polynomials.aspx" class="mm-link">1.4 Polynomials</a></li> <li><a href="/Classes/Alg/Factoring.aspx" class="mm-link">1.5 Factoring Polynomials</a></li> <li><a href="/Classes/Alg/RationalExpressions.aspx" class="mm-link">1.6 Rational Expressions</a></li> <li><a href="/Classes/Alg/ComplexNumbers.aspx" class="mm-link">1.7 Complex Numbers</a></li> </ul> </li> <li><a href="/Classes/Alg/Solving.aspx" class="mm-link">2. Solving Equations and Inequalities</a> <ul> <li><a href="/Classes/Alg/SolutionSets.aspx" class="mm-link">2.1 Solutions and Solution Sets</a></li> <li><a href="/Classes/Alg/SolveLinearEqns.aspx" class="mm-link">2.2 Linear Equations</a></li> <li><a href="/Classes/Alg/LinearApps.aspx" class="mm-link">2.3 Applications of Linear Equations</a></li> <li><a href="/Classes/Alg/SolveMultiVariable.aspx" class="mm-link">2.4 Equations With More Than One Variable</a></li> <li><a href="/Classes/Alg/SolveQuadraticEqnsI.aspx" class="mm-link">2.5 Quadratic Equations - Part I</a></li> <li><a href="/Classes/Alg/SolveQuadraticEqnsII.aspx" class="mm-link">2.6 Quadratic Equations - Part II</a></li> <li><a href="/Classes/Alg/SolveQuadraticEqnSummary.aspx" class="mm-link">2.7 Quadratic Equations : A Summary</a></li> <li><a href="/Classes/Alg/QuadraticApps.aspx" class="mm-link">2.8 Applications of Quadratic Equations</a></li> <li><a href="/Classes/Alg/ReducibleToQuadratic.aspx" class="mm-link">2.9 Equations Reducible to Quadratic in Form</a></li> <li><a href="/Classes/Alg/SolveRadicalEqns.aspx" class="mm-link">2.10 Equations with Radicals</a></li> <li><a href="/Classes/Alg/SolveLinearInequalities.aspx" class="mm-link">2.11 Linear Inequalities</a></li> <li><a href="/Classes/Alg/SolvePolyInequalities.aspx" class="mm-link">2.12 Polynomial Inequalities</a></li> <li><a href="/Classes/Alg/SolveRationalInequalities.aspx" class="mm-link">2.13 Rational Inequalities</a></li> <li><a href="/Classes/Alg/SolveAbsValueEqns.aspx" class="mm-link">2.14 Absolute Value Equations</a></li> <li><a href="/Classes/Alg/SolveAbsValueIneq.aspx" class="mm-link">2.15 Absolute Value Inequalities</a></li> </ul> </li> <li><a href="/Classes/Alg/Graphing_Functions.aspx" class="mm-link">3. Graphing and Functions</a> <ul> <li><a href="/Classes/Alg/Graphing.aspx" class="mm-link">3.1 Graphing</a></li> <li><a href="/Classes/Alg/Lines.aspx" class="mm-link">3.2 Lines</a></li> <li><a href="/Classes/Alg/Circles.aspx" class="mm-link">3.3 Circles</a></li> <li><a href="/Classes/Alg/FunctionDefn.aspx" class="mm-link">3.4 The Definition of a Function</a></li> <li><a href="/Classes/Alg/GraphFunctions.aspx" class="mm-link">3.5 Graphing Functions</a></li> <li><a href="/Classes/Alg/CombineFunctions.aspx" class="mm-link">3.6 Combining Functions</a></li> <li><a href="/Classes/Alg/InverseFunctions.aspx" class="mm-link">3.7 Inverse Functions</a></li> </ul> </li> <li><a href="/Classes/Alg/CommonGraphs.aspx" class="mm-link">4. Common Graphs</a> <ul> <li><a href="/Classes/Alg/Lines_Circles_PWF.aspx" class="mm-link">4.1 Lines, Circles and Piecewise Functions</a></li> <li><a href="/Classes/Alg/Parabolas.aspx" class="mm-link">4.2 Parabolas</a></li> <li><a href="/Classes/Alg/Ellipses.aspx" class="mm-link">4.3 Ellipses</a></li> <li><a href="/Classes/Alg/Hyperbolas.aspx" class="mm-link">4.4 Hyperbolas</a></li> <li><a href="/Classes/Alg/MiscFunctions.aspx" class="mm-link">4.5 Miscellaneous Functions</a></li> <li><a href="/Classes/Alg/Transformations.aspx" class="mm-link">4.6 Transformations</a></li> <li><a href="/Classes/Alg/Symmetry.aspx" class="mm-link">4.7 Symmetry</a></li> <li><a href="/Classes/Alg/GraphRationalFcns.aspx" class="mm-link">4.8 Rational Functions</a></li> </ul> </li> <li><a href="/Classes/Alg/PolynomialFunctions.aspx" class="mm-link">5. Polynomial Functions</a> <ul> <li><a href="/Classes/Alg/DividingPolynomials.aspx" class="mm-link">5.1 Dividing Polynomials</a></li> <li><a href="/Classes/Alg/ZeroesOfPolynomials.aspx" class="mm-link">5.2 Zeroes/Roots of Polynomials</a></li> <li><a href="/Classes/Alg/GraphingPolynomials.aspx" class="mm-link">5.3 Graphing Polynomials</a></li> <li><a href="/Classes/Alg/FindingZeroesOfPolynomials.aspx" class="mm-link">5.4 Finding Zeroes of Polynomials</a></li> <li><a href="/Classes/Alg/PartialFractions.aspx" class="mm-link">5.5 Partial Fractions</a></li> </ul> </li> <li><a href="/Classes/Alg/ExpAndLog.aspx" class="mm-link">6. Exponential and Logarithm Functions</a> <ul> <li><a href="/Classes/Alg/ExpFunctions.aspx" class="mm-link">6.1 Exponential Functions</a></li> <li><a href="/Classes/Alg/LogFunctions.aspx" class="mm-link">6.2 Logarithm Functions</a></li> <li><a href="/Classes/Alg/SolveExpEqns.aspx" class="mm-link">6.3 Solving Exponential Equations</a></li> <li><a href="/Classes/Alg/SolveLogEqns.aspx" class="mm-link">6.4 Solving Logarithm Equations</a></li> <li><a href="/Classes/Alg/ExpLogApplications.aspx" class="mm-link">6.5 Applications</a></li> </ul> </li> <li><a href="/Classes/Alg/Systems.aspx" class="mm-link">7. Systems of Equations</a> <ul> <li><a href="/Classes/Alg/SystemsTwoVrble.aspx" class="mm-link">7.1 Linear Systems with Two Variables</a></li> <li><a href="/Classes/Alg/SystemsThreeVrble.aspx" class="mm-link">7.2 Linear Systems with Three Variables</a></li> <li><a href="/Classes/Alg/AugmentedMatrix.aspx" class="mm-link">7.3 Augmented Matrices</a></li> <li><a href="/Classes/Alg/AugmentedMatrixII.aspx" class="mm-link">7.4 More on the Augmented Matrix</a></li> <li><a href="/Classes/Alg/NonlinearSystems.aspx" class="mm-link">7.5 Nonlinear Systems</a></li> </ul> </li> </ul> </li> <li><a href="/Classes/CalcI/CalcI.aspx" class="mm-link">Calculus I</a> <ul> <li><a href="/Classes/CalcI/ReviewIntro.aspx" class="mm-link">1. Review</a> <ul> <li><a href="/Classes/CalcI/Functions.aspx" class="mm-link">1.1 Functions</a></li> <li><a href="/Classes/CalcI/InverseFunctions.aspx" class="mm-link">1.2 Inverse Functions</a></li> <li><a href="/Classes/CalcI/TrigFcns.aspx" class="mm-link">1.3 Trig Functions</a></li> <li><a href="/Classes/CalcI/TrigEquations.aspx" class="mm-link">1.4 Solving Trig Equations</a></li> <li><a href="/Classes/CalcI/TrigEquations_CalcI.aspx" class="mm-link">1.5 Trig Equations with Calculators, Part I</a></li> <li><a href="/Classes/CalcI/TrigEquations_CalcII.aspx" class="mm-link">1.6 Trig Equations with Calculators, Part II</a></li> <li><a href="/Classes/CalcI/ExpFunctions.aspx" class="mm-link">1.7 Exponential Functions</a></li> <li><a href="/Classes/CalcI/LogFcns.aspx" class="mm-link">1.8 Logarithm Functions</a></li> <li><a href="/Classes/CalcI/ExpLogEqns.aspx" class="mm-link">1.9 Exponential and Logarithm Equations</a></li> <li><a href="/Classes/CalcI/CommonGraphs.aspx" class="mm-link">1.10 Common Graphs</a></li> </ul> </li> <li><a href="/Classes/CalcI/limitsIntro.aspx" class="mm-link">2. Limits</a> <ul> <li><a href="/Classes/CalcI/Tangents_Rates.aspx" class="mm-link">2.1 Tangent Lines and Rates of Change</a></li> <li><a href="/Classes/CalcI/TheLimit.aspx" class="mm-link">2.2 The Limit</a></li> <li><a href="/Classes/CalcI/OneSidedLimits.aspx" class="mm-link">2.3 One-Sided Limits</a></li> <li><a href="/Classes/CalcI/LimitsProperties.aspx" class="mm-link">2.4 Limit Properties</a></li> <li><a href="/Classes/CalcI/ComputingLimits.aspx" class="mm-link">2.5 Computing Limits</a></li> <li><a href="/Classes/CalcI/InfiniteLimits.aspx" class="mm-link">2.6 Infinite Limits</a></li> <li><a href="/Classes/CalcI/LimitsAtInfinityI.aspx" class="mm-link">2.7 Limits At Infinity, Part I</a></li> <li><a href="/Classes/CalcI/LimitsAtInfinityII.aspx" class="mm-link">2.8 Limits At Infinity, Part II</a></li> <li><a href="/Classes/CalcI/Continuity.aspx" class="mm-link">2.9 Continuity</a></li> <li><a href="/Classes/CalcI/DefnOfLimit.aspx" class="mm-link">2.10 The Definition of the Limit</a></li> </ul> </li> <li><a href="/Classes/CalcI/DerivativeIntro.aspx" class="mm-link">3. Derivatives</a> <ul> <li><a href="/Classes/CalcI/DefnOfDerivative.aspx" class="mm-link">3.1 The Definition of the Derivative</a></li> <li><a href="/Classes/CalcI/DerivativeInterp.aspx" class="mm-link">3.2 Interpretation of the Derivative</a></li> <li><a href="/Classes/CalcI/DiffFormulas.aspx" class="mm-link">3.3 Differentiation Formulas</a></li> <li><a href="/Classes/CalcI/ProductQuotientRule.aspx" class="mm-link">3.4 Product and Quotient Rule</a></li> <li><a href="/Classes/CalcI/DiffTrigFcns.aspx" class="mm-link">3.5 Derivatives of Trig Functions</a></li> <li><a href="/Classes/CalcI/DiffExpLogFcns.aspx" class="mm-link">3.6 Derivatives of Exponential and Logarithm Functions</a></li> <li><a href="/Classes/CalcI/DiffInvTrigFcns.aspx" class="mm-link">3.7 Derivatives of Inverse Trig Functions</a></li> <li><a href="/Classes/CalcI/DiffHyperFcns.aspx" class="mm-link">3.8 Derivatives of Hyperbolic Functions</a></li> <li><a href="/Classes/CalcI/ChainRule.aspx" class="mm-link">3.9 Chain Rule</a></li> <li><a href="/Classes/CalcI/ImplicitDIff.aspx" class="mm-link">3.10 Implicit Differentiation</a></li> <li><a href="/Classes/CalcI/RelatedRates.aspx" class="mm-link">3.11 Related Rates</a></li> <li><a href="/Classes/CalcI/HigherOrderDerivatives.aspx" class="mm-link">3.12 Higher Order Derivatives</a></li> <li><a href="/Classes/CalcI/LogDiff.aspx" class="mm-link">3.13 Logarithmic Differentiation</a></li> </ul> </li> <li><a href="/Classes/CalcI/DerivAppsIntro.aspx" class="mm-link">4. Applications of Derivatives</a> <ul> <li><a href="/Classes/CalcI/RateOfChange.aspx" class="mm-link">4.1 Rates of Change</a></li> <li><a href="/Classes/CalcI/CriticalPoints.aspx" class="mm-link">4.2 Critical Points</a></li> <li><a href="/Classes/CalcI/MinMaxValues.aspx" class="mm-link">4.3 Minimum and Maximum Values</a></li> <li><a href="/Classes/CalcI/AbsExtrema.aspx" class="mm-link">4.4 Finding Absolute Extrema</a></li> <li><a href="/Classes/CalcI/ShapeofGraphPtI.aspx" class="mm-link">4.5 The Shape of a Graph, Part I</a></li> <li><a href="/Classes/CalcI/ShapeofGraphPtII.aspx" class="mm-link">4.6 The Shape of a Graph, Part II</a></li> <li><a href="/Classes/CalcI/MeanValueTheorem.aspx" class="mm-link">4.7 The Mean Value Theorem</a></li> <li><a href="/Classes/CalcI/Optimization.aspx" class="mm-link">4.8 Optimization</a></li> <li><a href="/Classes/CalcI/MoreOptimization.aspx" class="mm-link">4.9 More Optimization Problems</a></li> <li><a href="/Classes/CalcI/LHospitalsRule.aspx" class="mm-link">4.10 L'Hospital's Rule and Indeterminate Forms</a></li> <li><a href="/Classes/CalcI/LinearApproximations.aspx" class="mm-link">4.11 Linear Approximations</a></li> <li><a href="/Classes/CalcI/Differentials.aspx" class="mm-link">4.12 Differentials</a></li> <li><a href="/Classes/CalcI/NewtonsMethod.aspx" class="mm-link">4.13 Newton's Method</a></li> <li><a href="/Classes/CalcI/BusinessApps.aspx" class="mm-link">4.14 Business Applications</a></li> </ul> </li> <li><a href="/Classes/CalcI/IntegralsIntro.aspx" class="mm-link">5. Integrals</a> <ul> <li><a href="/Classes/CalcI/IndefiniteIntegrals.aspx" class="mm-link">5.1 Indefinite Integrals</a></li> <li><a href="/Classes/CalcI/ComputingIndefiniteIntegrals.aspx" class="mm-link">5.2 Computing Indefinite Integrals</a></li> <li><a href="/Classes/CalcI/SubstitutionRuleIndefinite.aspx" class="mm-link">5.3 Substitution Rule for Indefinite Integrals</a></li> <li><a href="/Classes/CalcI/SubstitutionRuleIndefinitePtII.aspx" class="mm-link">5.4 More Substitution Rule</a></li> <li><a href="/Classes/CalcI/AreaProblem.aspx" class="mm-link">5.5 Area Problem</a></li> <li><a href="/Classes/CalcI/DefnOfDefiniteIntegral.aspx" class="mm-link">5.6 Definition of the Definite Integral</a></li> <li><a href="/Classes/CalcI/ComputingDefiniteIntegrals.aspx" class="mm-link">5.7 Computing Definite Integrals</a></li> <li><a href="/Classes/CalcI/SubstitutionRuleDefinite.aspx" class="mm-link">5.8 Substitution Rule for Definite Integrals</a></li> </ul> </li> <li><a href="/Classes/CalcI/IntAppsIntro.aspx" class="mm-link">6. Applications of Integrals</a> <ul> <li><a href="/Classes/CalcI/AvgFcnValue.aspx" class="mm-link">6.1 Average Function Value</a></li> <li><a href="/Classes/CalcI/AreaBetweenCurves.aspx" class="mm-link">6.2 Area Between Curves</a></li> <li><a href="/Classes/CalcI/VolumeWithRings.aspx" class="mm-link">6.3 Volumes of Solids of Revolution / Method of Rings</a></li> <li><a href="/Classes/CalcI/VolumeWithCylinder.aspx" class="mm-link">6.4 Volumes of Solids of Revolution/Method of Cylinders</a></li> <li><a href="/Classes/CalcI/MoreVolume.aspx" class="mm-link">6.5 More Volume Problems</a></li> <li><a href="/Classes/CalcI/Work.aspx" class="mm-link">6.6 Work</a></li> </ul> </li> <li><a href="/Classes/CalcI/ExtrasIntro.aspx" class="mm-link">Appendix A. Extras</a> <ul> <li><a href="/Classes/CalcI/LimitProofs.aspx" class="mm-link">A.1 Proof of Various Limit Properties</a></li> <li><a href="/Classes/CalcI/DerivativeProofs.aspx" class="mm-link">A.2 Proof of Various Derivative Properties</a></li> <li><a href="/Classes/CalcI/ProofTrigDeriv.aspx" class="mm-link">A.3 Proof of Trig Limits</a></li> <li><a href="/Classes/CalcI/DerivativeAppsProofs.aspx" class="mm-link">A.4 Proofs of Derivative Applications Facts</a></li> <li><a href="/Classes/CalcI/ProofIntProp.aspx" class="mm-link">A.5 Proof of Various Integral Properties </a></li> <li><a href="/Classes/CalcI/Area_Volume_Formulas.aspx" class="mm-link">A.6 Area and Volume Formulas</a></li> <li><a href="/Classes/CalcI/TypesOfInfinity.aspx" class="mm-link">A.7 Types of Infinity</a></li> <li><a href="/Classes/CalcI/SummationNotation.aspx" class="mm-link">A.8 Summation Notation</a></li> <li><a href="/Classes/CalcI/ConstantofIntegration.aspx" class="mm-link">A.9 Constant of Integration</a></li> </ul> </li> </ul> </li> <li><a href="/Classes/CalcII/CalcII.aspx" class="mm-link">Calculus II</a> <ul> <li><a href="/Classes/CalcII/IntTechIntro.aspx" class="mm-link">7. Integration Techniques</a> <ul> <li><a href="/Classes/CalcII/IntegrationByParts.aspx" class="mm-link">7.1 Integration by Parts</a></li> <li><a href="/Classes/CalcII/IntegralsWithTrig.aspx" class="mm-link">7.2 Integrals Involving Trig Functions</a></li> <li><a href="/Classes/CalcII/TrigSubstitutions.aspx" class="mm-link">7.3 Trig Substitutions</a></li> <li><a href="/Classes/CalcII/PartialFractions.aspx" class="mm-link">7.4 Partial Fractions</a></li> <li><a href="/Classes/CalcII/IntegralsWithRoots.aspx" class="mm-link">7.5 Integrals Involving Roots</a></li> <li><a href="/Classes/CalcII/IntegralsWithQuadratics.aspx" class="mm-link">7.6 Integrals Involving Quadratics</a></li> <li><a href="/Classes/CalcII/IntegrationStrategy.aspx" class="mm-link">7.7 Integration Strategy</a></li> <li><a href="/Classes/CalcII/ImproperIntegrals.aspx" class="mm-link">7.8 Improper Integrals</a></li> <li><a href="/Classes/CalcII/ImproperIntegralsCompTest.aspx" class="mm-link">7.9 Comparison Test for Improper Integrals</a></li> <li><a href="/Classes/CalcII/ApproximatingDefIntegrals.aspx" class="mm-link">7.10 Approximating Definite Integrals</a></li> </ul> </li> <li><a href="/Classes/CalcII/IntAppsIntro.aspx" class="mm-link">8. Applications of Integrals</a> <ul> <li><a href="/Classes/CalcII/ArcLength.aspx" class="mm-link">8.1 Arc Length</a></li> <li><a href="/Classes/CalcII/SurfaceArea.aspx" class="mm-link">8.2 Surface Area</a></li> <li><a href="/Classes/CalcII/CenterOfMass.aspx" class="mm-link">8.3 Center of Mass</a></li> <li><a href="/Classes/CalcII/HydrostaticPressure.aspx" class="mm-link">8.4 Hydrostatic Pressure</a></li> <li><a href="/Classes/CalcII/Probability.aspx" class="mm-link">8.5 Probability</a></li> </ul> </li> <li><a href="/Classes/CalcII/ParametricIntro.aspx" class="mm-link">9. Parametric Equations and Polar Coordinates</a> <ul> <li><a href="/Classes/CalcII/ParametricEqn.aspx" class="mm-link">9.1 Parametric Equations and Curves</a></li> <li><a href="/Classes/CalcII/ParaTangent.aspx" class="mm-link">9.2 Tangents with Parametric Equations</a></li> <li><a href="/Classes/CalcII/ParaArea.aspx" class="mm-link">9.3 Area with Parametric Equations</a></li> <li><a href="/Classes/CalcII/ParaArcLength.aspx" class="mm-link">9.4 Arc Length with Parametric Equations</a></li> <li><a href="/Classes/CalcII/ParaSurfaceArea.aspx" class="mm-link">9.5 Surface Area with Parametric Equations</a></li> <li><a href="/Classes/CalcII/PolarCoordinates.aspx" class="mm-link">9.6 Polar Coordinates</a></li> <li><a href="/Classes/CalcII/PolarTangents.aspx" class="mm-link">9.7 Tangents with Polar Coordinates</a></li> <li><a href="/Classes/CalcII/PolarArea.aspx" class="mm-link">9.8 Area with Polar Coordinates</a></li> <li><a href="/Classes/CalcII/PolarArcLength.aspx" class="mm-link">9.9 Arc Length with Polar Coordinates</a></li> <li><a href="/Classes/CalcII/PolarSurfaceArea.aspx" class="mm-link">9.10 Surface Area with Polar Coordinates</a></li> <li><a href="/Classes/CalcII/ArcLength_SurfaceArea.aspx" class="mm-link">9.11 Arc Length and Surface Area Revisited</a></li> </ul> </li> <li><a href="/Classes/CalcII/SeriesIntro.aspx" class="mm-link">10. Series & Sequences</a> <ul> <li><a href="/Classes/CalcII/Sequences.aspx" class="mm-link">10.1 Sequences</a></li> <li><a href="/Classes/CalcII/MoreSequences.aspx" class="mm-link">10.2 More on Sequences</a></li> <li><a href="/Classes/CalcII/Series_Basics.aspx" class="mm-link">10.3 Series - The Basics</a></li> <li><a href="/Classes/CalcII/ConvergenceOfSeries.aspx" class="mm-link">10.4 Convergence/Divergence of Series</a></li> <li><a href="/Classes/CalcII/Series_Special.aspx" class="mm-link">10.5 Special Series</a></li> <li><a href="/Classes/CalcII/IntegralTest.aspx" class="mm-link">10.6 Integral Test</a></li> <li><a href="/Classes/CalcII/SeriesCompTest.aspx" class="mm-link">10.7 Comparison Test/Limit Comparison Test</a></li> <li><a href="/Classes/CalcII/AlternatingSeries.aspx" class="mm-link">10.8 Alternating Series Test</a></li> <li><a href="/Classes/CalcII/AbsoluteConvergence.aspx" class="mm-link">10.9 Absolute Convergence</a></li> <li><a href="/Classes/CalcII/RatioTest.aspx" class="mm-link">10.10 Ratio Test</a></li> <li><a href="/Classes/CalcII/RootTest.aspx" class="mm-link">10.11 Root Test</a></li> <li><a href="/Classes/CalcII/SeriesStrategy.aspx" class="mm-link">10.12 Strategy for Series</a></li> <li><a href="/Classes/CalcII/EstimatingSeries.aspx" class="mm-link">10.13 Estimating the Value of a Series</a></li> <li><a href="/Classes/CalcII/PowerSeries.aspx" class="mm-link">10.14 Power Series</a></li> <li><a href="/Classes/CalcII/PowerSeriesandFunctions.aspx" class="mm-link">10.15 Power Series and Functions</a></li> <li><a href="/Classes/CalcII/TaylorSeries.aspx" class="mm-link">10.16 Taylor Series</a></li> <li><a href="/Classes/CalcII/TaylorSeriesApps.aspx" class="mm-link">10.17 Applications of Series</a></li> <li><a href="/Classes/CalcII/BinomialSeries.aspx" class="mm-link">10.18 Binomial Series</a></li> </ul> </li> <li><a href="/Classes/CalcII/VectorsIntro.aspx" class="mm-link">11. Vectors</a> <ul> <li><a href="/Classes/CalcII/Vectors_Basics.aspx" class="mm-link">11.1 Vectors - The Basics</a></li> <li><a href="/Classes/CalcII/VectorArithmetic.aspx" class="mm-link">11.2 Vector Arithmetic</a></li> <li><a href="/Classes/CalcII/DotProduct.aspx" class="mm-link">11.3 Dot Product</a></li> <li><a href="/Classes/CalcII/CrossProduct.aspx" class="mm-link">11.4 Cross Product</a></li> </ul> </li> <li><a href="/Classes/CalcII/3DSpace.aspx" class="mm-link">12. 3-Dimensional Space</a> <ul> <li><a href="/Classes/CalcII/3DCoords.aspx" class="mm-link">12.1 The 3-D Coordinate System</a></li> <li><a href="/Classes/CalcII/EqnsOfLines.aspx" class="mm-link">12.2 Equations of Lines</a></li> <li><a href="/Classes/CalcII/EqnsOfPlanes.aspx" class="mm-link">12.3 Equations of Planes</a></li> <li><a href="/Classes/CalcII/QuadricSurfaces.aspx" class="mm-link">12.4 Quadric Surfaces</a></li> <li><a href="/Classes/CalcII/MultiVrbleFcns.aspx" class="mm-link">12.5 Functions of Several Variables</a></li> <li><a href="/Classes/CalcII/VectorFunctions.aspx" class="mm-link">12.6 Vector Functions</a></li> <li><a href="/Classes/CalcII/VectorFcnsCalculus.aspx" class="mm-link">12.7 Calculus with Vector Functions</a></li> <li><a href="/Classes/CalcII/TangentNormalVectors.aspx" class="mm-link">12.8 Tangent, Normal and Binormal Vectors</a></li> <li><a href="/Classes/CalcII/VectorArcLength.aspx" class="mm-link">12.9 Arc Length with Vector Functions</a></li> <li><a href="/Classes/CalcII/Curvature.aspx" class="mm-link">12.10 Curvature</a></li> <li><a href="/Classes/CalcII/Velocity_Acceleration.aspx" class="mm-link">12.11 Velocity and Acceleration</a></li> <li><a href="/Classes/CalcII/CylindricalCoords.aspx" class="mm-link">12.12 Cylindrical Coordinates</a></li> <li><a href="/Classes/CalcII/SphericalCoords.aspx" class="mm-link">12.13 Spherical Coordinates</a></li> </ul> </li> </ul> </li> <li><a href="/Classes/CalcIII/CalcIII.aspx" class="mm-link">Calculus III</a> <ul> <li><a href="/Classes/CalcIII/3DSpace.aspx" class="mm-link">12. 3-Dimensional Space</a> <ul> <li><a href="/Classes/CalcIII/3DCoords.aspx" class="mm-link">12.1 The 3-D Coordinate System</a></li> <li><a href="/Classes/CalcIII/EqnsOfLines.aspx" class="mm-link">12.2 Equations of Lines</a></li> <li><a href="/Classes/CalcIII/EqnsOfPlanes.aspx" class="mm-link">12.3 Equations of Planes</a></li> <li><a href="/Classes/CalcIII/QuadricSurfaces.aspx" class="mm-link">12.4 Quadric Surfaces</a></li> <li><a href="/Classes/CalcIII/MultiVrbleFcns.aspx" class="mm-link">12.5 Functions of Several Variables</a></li> <li><a href="/Classes/CalcIII/VectorFunctions.aspx" class="mm-link">12.6 Vector Functions</a></li> <li><a href="/Classes/CalcIII/VectorFcnsCalculus.aspx" class="mm-link">12.7 Calculus with Vector Functions</a></li> <li><a href="/Classes/CalcIII/TangentNormalVectors.aspx" class="mm-link">12.8 Tangent, Normal and Binormal Vectors</a></li> <li><a href="/Classes/CalcIII/VectorArcLength.aspx" class="mm-link">12.9 Arc Length with Vector Functions</a></li> <li><a href="/Classes/CalcIII/Curvature.aspx" class="mm-link">12.10 Curvature</a></li> <li><a href="/Classes/CalcIII/Velocity_Acceleration.aspx" class="mm-link">12.11 Velocity and Acceleration</a></li> <li><a href="/Classes/CalcIII/CylindricalCoords.aspx" class="mm-link">12.12 Cylindrical Coordinates</a></li> <li><a href="/Classes/CalcIII/SphericalCoords.aspx" class="mm-link">12.13 Spherical Coordinates</a></li> </ul> </li> <li><a href="/Classes/CalcIII/PartialDerivsIntro.aspx" class="mm-link">13. Partial Derivatives</a> <ul> <li><a href="/Classes/CalcIII/Limits.aspx" class="mm-link">13.1 Limits</a></li> <li><a href="/Classes/CalcIII/PartialDerivatives.aspx" class="mm-link">13.2 Partial Derivatives</a></li> <li><a href="/Classes/CalcIII/PartialDerivInterp.aspx" class="mm-link">13.3 Interpretations of Partial Derivatives</a></li> <li><a href="/Classes/CalcIII/HighOrderPartialDerivs.aspx" class="mm-link">13.4 Higher Order Partial Derivatives</a></li> <li><a href="/Classes/CalcIII/Differentials.aspx" class="mm-link">13.5 Differentials</a></li> <li><a href="/Classes/CalcIII/ChainRule.aspx" class="mm-link">13.6 Chain Rule</a></li> <li><a href="/Classes/CalcIII/DirectionalDeriv.aspx" class="mm-link">13.7 Directional Derivatives</a></li> </ul> </li> <li><a href="/Classes/CalcIII/PartialDerivAppsIntro.aspx" class="mm-link">14. Applications of Partial Derivatives</a> <ul> <li><a href="/Classes/CalcIII/TangentPlanes.aspx" class="mm-link">14.1 Tangent Planes and Linear Approximations</a></li> <li><a href="/Classes/CalcIII/GradientVectorTangentPlane.aspx" class="mm-link">14.2 Gradient Vector, Tangent Planes and Normal Lines</a></li> <li><a href="/Classes/CalcIII/RelativeExtrema.aspx" class="mm-link">14.3 Relative Minimums and Maximums</a></li> <li><a href="/Classes/CalcIII/AbsoluteExtrema.aspx" class="mm-link">14.4 Absolute Minimums and Maximums</a></li> <li><a href="/Classes/CalcIII/LagrangeMultipliers.aspx" class="mm-link">14.5 Lagrange Multipliers</a></li> </ul> </li> <li><a href="/Classes/CalcIII/MultipleIntegralsIntro.aspx" class="mm-link">15. Multiple Integrals</a> <ul> <li><a href="/Classes/CalcIII/DoubleIntegrals.aspx" class="mm-link">15.1 Double Integrals</a></li> <li><a href="/Classes/CalcIII/IteratedIntegrals.aspx" class="mm-link">15.2 Iterated Integrals</a></li> <li><a href="/Classes/CalcIII/DIGeneralRegion.aspx" class="mm-link">15.3 Double Integrals over General Regions</a></li> <li><a href="/Classes/CalcIII/DIPolarCoords.aspx" class="mm-link">15.4 Double Integrals in Polar Coordinates</a></li> <li><a href="/Classes/CalcIII/TripleIntegrals.aspx" class="mm-link">15.5 Triple Integrals</a></li> <li><a href="/Classes/CalcIII/TICylindricalCoords.aspx" class="mm-link">15.6 Triple Integrals in Cylindrical Coordinates</a></li> <li><a href="/Classes/CalcIII/TISphericalCoords.aspx" class="mm-link">15.7 Triple Integrals in Spherical Coordinates</a></li> <li><a href="/Classes/CalcIII/ChangeOfVariables.aspx" class="mm-link">15.8 Change of Variables</a></li> <li><a href="/Classes/CalcIII/SurfaceArea.aspx" class="mm-link">15.9 Surface Area</a></li> <li><a href="/Classes/CalcIII/Area_Volume.aspx" class="mm-link">15.10 Area and Volume Revisited</a></li> </ul> </li> <li><a href="/Classes/CalcIII/LineIntegralsIntro.aspx" class="mm-link">16. Line Integrals</a> <ul> <li><a href="/Classes/CalcIII/VectorFields.aspx" class="mm-link">16.1 Vector Fields</a></li> <li><a href="/Classes/CalcIII/LineIntegralsPtI.aspx" class="mm-link">16.2 Line Integrals - Part I</a></li> <li><a href="/Classes/CalcIII/LineIntegralsPtII.aspx" class="mm-link">16.3 Line Integrals - Part II</a></li> <li><a href="/Classes/CalcIII/LineIntegralsVectorFields.aspx" class="mm-link">16.4 Line Integrals of Vector Fields</a></li> <li><a href="/Classes/CalcIII/FundThmLineIntegrals.aspx" class="mm-link">16.5 Fundamental Theorem for Line Integrals</a></li> <li><a href="/Classes/CalcIII/ConservativeVectorField.aspx" class="mm-link">16.6 Conservative Vector Fields</a></li> <li><a href="/Classes/CalcIII/GreensTheorem.aspx" class="mm-link">16.7 Green's Theorem</a></li> </ul> </li> <li><a href="/Classes/CalcIII/SurfaceIntegralsIntro.aspx" class="mm-link">17.Surface Integrals</a> <ul> <li><a href="/Classes/CalcIII/CurlDivergence.aspx" class="mm-link">17.1 Curl and Divergence</a></li> <li><a href="/Classes/CalcIII/ParametricSurfaces.aspx" class="mm-link">17.2 Parametric Surfaces</a></li> <li><a href="/Classes/CalcIII/SurfaceIntegrals.aspx" class="mm-link">17.3 Surface Integrals</a></li> <li><a href="/Classes/CalcIII/SurfIntVectorField.aspx" class="mm-link">17.4 Surface Integrals of Vector Fields</a></li> <li><a href="/Classes/CalcIII/StokesTheorem.aspx" class="mm-link">17.5 Stokes' Theorem</a></li> <li><a href="/Classes/CalcIII/DivergenceTheorem.aspx" class="mm-link">17.6 Divergence Theorem</a></li> </ul> </li> </ul> </li> <li><a href="/Classes/DE/DE.aspx" class="mm-link">Differential Equations</a> <ul> <li><a href="/Classes/DE/IntroBasic.aspx" class="mm-link">1. Basic Concepts</a> <ul> <li><a href="/Classes/DE/Definitions.aspx" class="mm-link">1.1 Definitions</a></li> <li><a href="/Classes/DE/DirectionFields.aspx" class="mm-link">1.2 Direction Fields</a></li> <li><a href="/Classes/DE/FinalThoughts.aspx" class="mm-link">1.3 Final Thoughts</a></li> </ul> </li> <li><a href="/Classes/DE/IntroFirstOrder.aspx" class="mm-link">2. First Order DE's</a> <ul> <li><a href="/Classes/DE/Linear.aspx" class="mm-link">2.1 Linear Equations</a></li> <li><a href="/Classes/DE/Separable.aspx" class="mm-link">2.2 Separable Equations</a></li> <li><a href="/Classes/DE/Exact.aspx" class="mm-link">2.3 Exact Equations</a></li> <li><a href="/Classes/DE/Bernoulli.aspx" class="mm-link">2.4 Bernoulli Differential Equations</a></li> <li><a href="/Classes/DE/Substitutions.aspx" class="mm-link">2.5 Substitutions</a></li> <li><a href="/Classes/DE/IoV.aspx" class="mm-link">2.6 Intervals of Validity</a></li> <li><a href="/Classes/DE/Modeling.aspx" class="mm-link">2.7 Modeling with First Order DE's</a></li> <li><a href="/Classes/DE/EquilibriumSolutions.aspx" class="mm-link">2.8 Equilibrium Solutions</a></li> <li><a href="/Classes/DE/EulersMethod.aspx" class="mm-link">2.9 Euler's Method</a></li> </ul> </li> <li><a href="/Classes/DE/IntroSecondOrder.aspx" class="mm-link">3. Second Order DE's</a> <ul> <li><a href="/Classes/DE/SecondOrderConcepts.aspx" class="mm-link">3.1 Basic Concepts</a></li> <li><a href="/Classes/DE/RealRoots.aspx" class="mm-link">3.2 Real &amp; Distinct Roots</a></li> <li><a href="/Classes/DE/ComplexRoots.aspx" class="mm-link">3.3 Complex Roots</a></li> <li><a href="/Classes/DE/RepeatedRoots.aspx" class="mm-link">3.4 Repeated Roots</a></li> <li><a href="/Classes/DE/ReductionofOrder.aspx" class="mm-link">3.5 Reduction of Order</a></li> <li><a href="/Classes/DE/FundamentalSetsofSolutions.aspx" class="mm-link">3.6 Fundamental Sets of Solutions</a></li> <li><a href="/Classes/DE/Wronskian.aspx" class="mm-link">3.7 More on the Wronskian</a></li> <li><a href="/Classes/DE/NonhomogeneousDE.aspx" class="mm-link">3.8 Nonhomogeneous Differential Equations</a></li> <li><a href="/Classes/DE/UndeterminedCoefficients.aspx" class="mm-link">3.9 Undetermined Coefficients</a></li> <li><a href="/Classes/DE/VariationofParameters.aspx" class="mm-link">3.10 Variation of Parameters</a></li> <li><a href="/Classes/DE/Vibrations.aspx" class="mm-link">3.11 Mechanical Vibrations</a></li> </ul> </li> <li><a href="/Classes/DE/LaplaceIntro.aspx" class="mm-link">4. Laplace Transforms</a> <ul> <li><a href="/Classes/DE/LaplaceDefinition.aspx" class="mm-link">4.1 The Definition</a></li> <li><a href="/Classes/DE/LaplaceTransforms.aspx" class="mm-link">4.2 Laplace Transforms</a></li> <li><a href="/Classes/DE/InverseTransforms.aspx" class="mm-link">4.3 Inverse Laplace Transforms</a></li> <li><a href="/Classes/DE/StepFunctions.aspx" class="mm-link">4.4 Step Functions</a></li> <li><a href="/Classes/DE/IVPWithLaplace.aspx" class="mm-link">4.5 Solving IVP's with Laplace Transforms</a></li> <li><a href="/Classes/DE/IVPWithNonConstantCoefficient.aspx" class="mm-link">4.6 Nonconstant Coefficient IVP's</a></li> <li><a href="/Classes/DE/IVPWithStepFunction.aspx" class="mm-link">4.7 IVP's With Step Functions</a></li> <li><a href="/Classes/DE/DiracDeltaFunction.aspx" class="mm-link">4.8 Dirac Delta Function</a></li> <li><a href="/Classes/DE/ConvolutionIntegrals.aspx" class="mm-link">4.9 Convolution Integrals</a></li> <li><a href="/Classes/DE/Laplace_Table.aspx" class="mm-link">4.10 Table Of Laplace Transforms</a></li> </ul> </li> <li><a href="/Classes/DE/SystemsIntro.aspx" class="mm-link">5. Systems of DE's</a> <ul> <li><a href="/Classes/DE/LA_Systems.aspx" class="mm-link">5.1 Review : Systems of Equations</a></li> <li><a href="/Classes/DE/LA_Matrix.aspx" class="mm-link">5.2 Review : Matrices &amp; Vectors</a></li> <li><a href="/Classes/DE/LA_Eigen.aspx" class="mm-link">5.3 Review : Eigenvalues &amp; Eigenvectors</a></li> <li><a href="/Classes/DE/SystemsDE.aspx" class="mm-link">5.4 Systems of Differential Equations</a></li> <li><a href="/Classes/DE/SolutionsToSystems.aspx" class="mm-link">5.5 Solutions to Systems</a></li> <li><a href="/Classes/DE/PhasePlane.aspx" class="mm-link">5.6 Phase Plane</a></li> <li><a href="/Classes/DE/RealEigenvalues.aspx" class="mm-link">5.7 Real Eigenvalues</a></li> <li><a href="/Classes/DE/ComplexEigenvalues.aspx" class="mm-link">5.8 Complex Eigenvalues</a></li> <li><a href="/Classes/DE/RepeatedEigenvalues.aspx" class="mm-link">5.9 Repeated Eigenvalues</a></li> <li><a href="/Classes/DE/NonhomogeneousSystems.aspx" class="mm-link">5.10 Nonhomogeneous Systems</a></li> <li><a href="/Classes/DE/SystemsLaplace.aspx" class="mm-link">5.11 Laplace Transforms</a></li> <li><a href="/Classes/DE/SystemsModeling.aspx" class="mm-link">5.12 Modeling</a></li> </ul> </li> <li><a href="/Classes/DE/SeriesIntro.aspx" class="mm-link">6. Series Solutions to DE's</a> <ul> <li><a href="/Classes/DE/PowerSeries.aspx" class="mm-link">6.1 Review : Power Series</a></li> <li><a href="/Classes/DE/TaylorSeries.aspx" class="mm-link">6.2 Review : Taylor Series</a></li> <li><a href="/Classes/DE/SeriesSolutions.aspx" class="mm-link">6.3 Series Solutions</a></li> <li><a href="/Classes/DE/EulerEquations.aspx" class="mm-link">6.4 Euler Equations</a></li> </ul> </li> <li><a href="/Classes/DE/IntroHigherOrder.aspx" class="mm-link">7. Higher Order Differential Equations</a> <ul> <li><a href="/Classes/DE/HOBasicConcepts.aspx" class="mm-link">7.1 Basic Concepts for <em>n</em><sup>th</sup> Order Linear Equations</a></li> <li><a href="/Classes/DE/HOHomogeneousDE.aspx" class="mm-link">7.2 Linear Homogeneous Differential Equations</a></li> <li><a href="/Classes/DE/HOUndeterminedCoeff.aspx" class="mm-link">7.3 Undetermined Coefficients</a></li> <li><a href="/Classes/DE/HOVariationOfParam.aspx" class="mm-link">7.4 Variation of Parameters</a></li> <li><a href="/Classes/DE/HOLaplaceTransforms.aspx" class="mm-link">7.5 Laplace Transforms</a></li> <li><a href="/Classes/DE/HOSystems.aspx" class="mm-link">7.6 Systems of Differential Equations</a></li> <li><a href="/Classes/DE/HOSeries.aspx" class="mm-link">7.7 Series Solutions</a></li> </ul> </li> <li><a href="/Classes/DE/IntroBVP.aspx" class="mm-link">8. Boundary Value Problems &amp; Fourier Series</a> <ul> <li><a href="/Classes/DE/BoundaryValueProblem.aspx" class="mm-link">8.1 Boundary Value Problems</a></li> <li><a href="/Classes/DE/BVPEvals.aspx" class="mm-link">8.2 Eigenvalues and Eigenfunctions</a></li> <li><a href="/Classes/DE/PeriodicOrthogonal.aspx" class="mm-link">8.3 Periodic Functions &amp; Orthogonal Functions</a></li> <li><a href="/Classes/DE/FourierSineSeries.aspx" class="mm-link">8.4 Fourier Sine Series</a></li> <li><a href="/Classes/DE/FourierCosineSeries.aspx" class="mm-link">8.5 Fourier Cosine Series</a></li> <li><a href="/Classes/DE/FourierSeries.aspx" class="mm-link">8.6 Fourier Series</a></li> <li><a href="/Classes/DE/ConvergenceFourierSeries.aspx" class="mm-link">8.7 Convergence of Fourier Series</a></li> </ul> </li> <li><a href="/Classes/DE/IntroPDE.aspx" class="mm-link">9. Partial Differential Equations </a> <ul> <li><a href="/Classes/DE/TheHeatEquation.aspx" class="mm-link">9.1 The Heat Equation</a></li> <li><a href="/Classes/DE/TheWaveEquation.aspx" class="mm-link">9.2 The Wave Equation</a></li> <li><a href="/Classes/DE/PDETerminology.aspx" class="mm-link">9.3 Terminology</a></li> <li><a href="/Classes/DE/SeparationofVariables.aspx" class="mm-link">9.4 Separation of Variables</a></li> <li><a href="/Classes/DE/SolvingHeatEquation.aspx" class="mm-link">9.5 Solving the Heat Equation</a></li> <li><a href="/Classes/DE/HeatEqnNonZero.aspx" class="mm-link">9.6 Heat Equation with Non-Zero Temperature Boundaries</a></li> <li><a href="/Classes/DE/LaplacesEqn.aspx" class="mm-link">9.7 Laplace's Equation</a></li> <li><a href="/Classes/DE/VibratingString.aspx" class="mm-link">9.8 Vibrating String</a></li> <li><a href="/Classes/DE/PDESummary.aspx" class="mm-link">9.9 Summary of Separation of Variables</a></li> </ul> </li> </ul> </li> <li><span>Extras</span></li> <li><a href="/Extras/AlgebraTrigReview/AlgebraTrig.aspx" class="mm-link">Algebra &amp; Trig Review</a> <ul> <li><a href="/Extras/AlgebraTrigReview/AlgebraIntro.aspx" class="mm-link">1. Algebra</a> <ul> <li><a href="/Extras/AlgebraTrigReview/Exponents.aspx" class="mm-link">1.1 Exponents </a></li> <li><a href="/Extras/AlgebraTrigReview/AbsoluteValue.aspx" class="mm-link">1.2 Absolute Value</a></li> <li><a href="/Extras/AlgebraTrigReview/Radicals.aspx" class="mm-link">1.3 Radicals</a></li> <li><a href="/Extras/AlgebraTrigReview/Rationalizing.aspx" class="mm-link">1.4 Rationalizing </a></li> <li><a href="/Extras/AlgebraTrigReview/Functions.aspx" class="mm-link">1.5 Functions </a></li> <li><a href="/Extras/AlgebraTrigReview/MultPoly.aspx" class="mm-link">1.6 Multiplying Polynomials</a></li> <li><a href="/Extras/AlgebraTrigReview/Factoring.aspx" class="mm-link">1.7 Factoring</a></li> <li><a href="/Extras/AlgebraTrigReview/SimpRatExp.aspx" class="mm-link">1.8 Simplifying Rational Expressions</a></li> <li><a href="/Extras/AlgebraTrigReview/Graphing.aspx" class="mm-link">1.9 Graphing and Common Graphs</a></li> <li><a href="/Extras/AlgebraTrigReview/SolveEqnPtI.aspx" class="mm-link">1.10 Solving Equations, Part I</a></li> <li><a href="/Extras/AlgebraTrigReview/SolveEqnPtII.aspx" class="mm-link">1.11 Solving Equations, Part II</a></li> <li><a href="/Extras/AlgebraTrigReview/SolveSystems.aspx" class="mm-link">1.12 Solving Systems of Equations</a></li> <li><a href="/Extras/AlgebraTrigReview/SolveIneq.aspx" class="mm-link">1.13 Solving Inequalities</a></li> <li><a href="/Extras/AlgebraTrigReview/SolveAbsValue.aspx" class="mm-link">1.14 Absolute Value Equations and Inequalities</a></li> </ul> </li> <li><a href="/Extras/AlgebraTrigReview/TrigIntro.aspx" class="mm-link">2. Trigonometry</a> <ul> <li><a href="/Extras/AlgebraTrigReview/TrigFunctions.aspx" class="mm-link">2.1 Trig Function Evaluation</a></li> <li><a href="/Extras/AlgebraTrigReview/TrigGraphs.aspx" class="mm-link">2.2 Graphs of Trig Functions</a></li> <li><a href="/Extras/AlgebraTrigReview/TrigFormulas.aspx" class="mm-link">2.3 Trig Formulas</a></li> <li><a href="/Extras/AlgebraTrigReview/SolveTrigEqn.aspx" class="mm-link">2.4 Solving Trig Equations</a></li> <li><a href="/Extras/AlgebraTrigReview/InverseTrig.aspx" class="mm-link">2.5 Inverse Trig Functions</a></li> </ul> </li> <li><a href="/Extras/AlgebraTrigReview/ExpLogIntro.aspx" class="mm-link">3. Exponentials &amp; Logarithms</a> <ul> <li><a href="/Extras/AlgebraTrigReview/ExponentialFcns.aspx" class="mm-link">3.1 Basic Exponential Functions</a></li> <li><a href="/Extras/AlgebraTrigReview/LogarithmFcns.aspx" class="mm-link">3.2 Basic Logarithm Functions</a></li> <li><a href="/Extras/AlgebraTrigReview/LogProperties.aspx" class="mm-link">3.3 Logarithm Properties</a></li> <li><a href="/Extras/AlgebraTrigReview/SimpLogs.aspx" class="mm-link">3.4 Simplifying Logarithms</a></li> <li><a href="/Extras/AlgebraTrigReview/SolveExpEqn.aspx" class="mm-link">3.5 Solving Exponential Equations</a></li> <li><a href="/Extras/AlgebraTrigReview/SolveLogEqn.aspx" class="mm-link">3.6 Solving Logarithm Equations</a></li> </ul> </li> </ul> </li> <li><a href="/Extras/CommonErrors/CommonMathErrors.aspx" class="mm-link">Common Math Errors</a> <ul> <li><a href="/Extras/CommonErrors/GeneralErrors.aspx" class="mm-link">1. General Errors</a> </li> <li><a href="/Extras/CommonErrors/AlgebraErrors.aspx" class="mm-link">2. Algebra Errors</a> </li> <li><a href="/Extras/CommonErrors/TrigErrors.aspx" class="mm-link">3. Trig Errors</a> </li> <li><a href="/Extras/CommonErrors/CommonErrors.aspx" class="mm-link">4. Common Errors</a> </li> <li><a href="/Extras/CommonErrors/CalculusErrors.aspx" class="mm-link">5. Calculus Errors</a> </li> </ul> </li> <li><a href="/Extras/ComplexPrimer/ComplexNumbers.aspx" class="mm-link">Complex Number Primer</a> <ul> <li><a href="/Extras/ComplexPrimer/Definition.aspx" class="mm-link">1. The Definition</a> </li> <li><a href="/Extras/ComplexPrimer/Arithmetic.aspx" class="mm-link">2. Arithmetic</a> </li> <li><a href="/Extras/ComplexPrimer/ConjugateModulus.aspx" class="mm-link">3. Conjugate and Modulus</a> </li> <li><a href="/Extras/ComplexPrimer/Forms.aspx" class="mm-link">4. Polar and Exponential Forms</a> </li> <li><a href="/Extras/ComplexPrimer/Roots.aspx" class="mm-link">5. Powers and Roots</a> </li> </ul> </li> <li><a href="/Extras/StudyMath/HowToStudyMath.aspx" class="mm-link">How To Study Math</a> <ul> <li><a href="/Extras/StudyMath/GeneralTips.aspx" class="mm-link">1. General Tips</a> </li> <li><a href="/Extras/StudyMath/TakingNotes.aspx" class="mm-link">2. Taking Notes</a> </li> <li><a href="/Extras/StudyMath/GettingHelp.aspx" class="mm-link">3. Getting Help</a> </li> <li><a href="/Extras/StudyMath/Homework.aspx" class="mm-link">4. Doing Homework</a> </li> <li><a href="/Extras/StudyMath/ProblemSolving.aspx" class="mm-link">5. Problem Solving</a> </li> <li><a href="/Extras/StudyMath/StudyForExam.aspx" class="mm-link">6. Studying For an Exam</a> </li> <li><a href="/Extras/StudyMath/TakingExam.aspx" class="mm-link">7. Taking an Exam</a> </li> <li><a href="/Extras/StudyMath/Errors.aspx" class="mm-link">8. Learn From Your Errors</a> </li> </ul> </li> <li><span>Misc Links</span></li> <li><a href="/contact.aspx" class="mm-link">Contact Me</a></li> <li><a href="/links.aspx" class="mm-link">Links</a></li> <li><a href="/mathjax.aspx" class="mm-link">MathJax Help and Configuration</a></li> <li><a href="/privacy.aspx" class="mm-link">Privacy Statement</a></li> <li><a href="/help.aspx" class="mm-link">Site Help & FAQ</a></li> <li><a href="/terms.aspx" class="mm-link">Terms of Use</a></li> </ul> </nav> <div class="top-info-bar"> <span id="mobile-title" class="mobile-header-title header-title">Paul's Online Notes</span> <br /> <span class="top-menu-breadcrumb"> <a href="/" id="breadcrumb_home_link" title="Go to Main Page">Home</a> <span id="breadcrumb_h_b_sep_span">/ </span> <a href="/Classes/Alg/Alg.aspx" id="breadcrumb_book_link" title="Go to Book Introduction">Algebra</a> <span id="breadcrumb_b_c_sep_span">/ </span> <a href="/Classes/Alg/Graphing_Functions.aspx" id="breadcrumb_chapter_link" title="Go to Chapter Introduction">Graphing and Functions</a> <span id="breadcrumb_section_span"> / Combining Functions</span> </span> </div> <div id="nav_links" class="top-nav-bar"> <a href="/Classes/Alg/GraphFunctions.aspx" id="nav_links_prev_section" title="Goto Previous Section : Graphing Functions"><span class="top-menu-prev fas fa-chevron-left"></span><span class="nav_desktop_extra_pn"> Prev. Section</span></a> <div class="top-nav-bar-link-spacer"></div> <span id="nav_current_notes">Notes</span> <a href="/Problems/Alg/CombineFunctions.aspx" id="nav_links_practice" title="Go to Practice Problems for current topic.">Practice<span class="nav_desktop_extra"> Problems</span></a> <a href="/ProblemsNS/Alg/CombineFunctions.aspx" id="nav_links_asgn" title="Go to Assignment Problems for current topic.">Assignment<span class="nav_desktop_extra"> Problems</span></a> <div class="top-nav-bar-link-spacer"></div> <a href="/Classes/Alg/InverseFunctions.aspx" id="nav_links_next_section" title="Goto Next Section : Inverse Functions"><span class="nav_desktop_extra_pn"> Next Section </span><span class="top-menu-next fas fa-chevron-right"></span></a> </div> <div class="header-divider"></div> <div class="content"> <span id="SHLink_NoteMobile" class="SH-Link content-note-link-mobile">Show Mobile Notice</span> <span id="SHImg_NoteMobile" class="fas fa-caret-right SH-padding content-note-link-mobile" aria-hidden="true"></span> <span id="SHALink_S_Note" class="SH-Link SH-Hide SH-Bracket">Show All Notes</span>&nbsp;<span id="SHALink_H_Note" class="SH-Link SH-Hide SH-Bracket">Hide All Notes</span> <div id="SHObj_NoteMobile" class="content-note-container content-note-container-mobile"> <div class="content-note-header">Mobile Notice</div> <div class="content-note">You appear to be on a device with a "narrow" screen width (<em>i.e.</em> you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.</div> </div> <form method="post" action="./CombineFunctions.aspx" id="ctl00"> <div class="aspNetHidden"> <input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE" value="jM+bmKc2h8kZU0Fre+wK6Muj7issi1MAGv8vi8EeW4WbFH6n6QM7jR6IGyr5vRHuKwQtgsrtMz0i/PM5WfzT6kNx0//8RRka8tCB9/MJanlev5y2VdYmZ68NteN9mpml+A+4ihAak1Jt7ceKbeTO3+FVQ0yhBzkprtWpRNoYJL3V6G8VTpehyYyKG2RVE+KCrmYqoQ2Ix9VaHd9iET2iX1+64vJqFydHnEcAKctkZ6i/eoA8Sahn92ovaMRXp3sd1sWlVJGhPA65pIy013MD1mrAh7rmARZlLmAQV3AAxhYRu+vkOmanxCsBG3bys8Xkz4nYLBI7Qp58wobayB5bk9phy5GDNx/neox/1W6fgjLR2P5Aey+lKcruPlzb5FU0GVw1hNoLE8AVab/IN4PWPuHmmqryQ1x4wy2ddb240FpRvG3JTPHSiD32iR0UFEm3wV3xfXtJNi61Ou4qithQMvzUQM8QPNMeucOm7olbBhUY22owsPXsqQDKNnguqTSFOYPctB2fepJ0Ry/5JMQ7Bh4Hds6nDTOnI2jKJJFC19aCskiyz7LY/GI76WL8MOUWUseDktSnQHI+Qhh+5Q1zeTzB9sV8TNZJJxIiITLQGo835fmgAfCIAe7zRQobU0/YRfbMxmw1V1lxmPMar99mzLTDh/Dy7HyNBkzr633nnXYeZKcKHa4ZnMSEvVf+azK2tvNSyJIYlDBzjanQwF0kaaoa3P+jfFxnRaVeS9i2FZWS+3mDiwxqF9BIHdjcFNTQUJRo+1pHfGeeNF73yQBuT1ILMBNsqb1NGTnVxmrFHihebI5wrBHKNjanI7Yeu8J7RHsoqLKHtvZPhvdLYHLZbotUxUO/vH4rEfyhvXcknARy9yVgzar9VdITh/NsmgkG1bQxldq/vAXmrXO1g+TVVAWqZn2rs6VGMdIuI+3ZH1honn1OJdgF6pLfKoTYEREFqlZpAG5xtZ9RIvIcpBXvl+R5s1EOnBKrWqNuFW6ndHaGcNPV32XVpWzEkc79er/fr3LY8nCr1cg4axPGmMAWbpuj7XRtoWY84fVSgXU8ox9qI1zm6OlilGJ1wpYoc3z5ZvED9VEVDCBToYxHXeb3qHVxtAgpRQ1Gea7nlbYd467LaiDz/t1nRfZu43Mp1LFci9qhvzYLVCm27M9y4uZ/0+C+B3G3cvWhcwHKlW98Q4bzR6qMhU+C6ysCRMDn2KqQsVz2UKvgHMBOxBC8SQsir0dHnXZLWC4XgtINjCaYd6plzqmu8cZCehIlC08piI4cDvMsUp4PSpSNwQm0svqC6g7SmH64VHTYA7Gss97yUMSKZ4+O60vhjHMvVHTDFyoMzT6Qkkxu5pZEifLu+IoGfY5vYgZbN+E6RXV7NBpuQmQJ0OhKA4/0dblD4tdOEDFuFoYVB6X+x0lzmCCLUHfJUYcBGef1iIvb3Z0uIEQ8+7328apwJbKx9JAfYfs5jj5bnwSSfpm0PwK0Ort8kGg7voxdfxxtVhBMDKrqmppZ++/pWiyT3NyARgEfmqzN/PZh0/SDfsMzFgHO9zgkDpBiezaDV2k2a8gzZQQ9jNJoUZOtXKyXhflj5PhovJtmwAjPM/RfEvPv1swLC54PtTOIPEzslsQHG+/Pdw157fmEZXpn/8jGnVechiONY8v1im7ciqrhv/LZEZPwSrxtojnZzM6wd+S3sQ4u0hcn6XYlwQGU1MRfO3nmauchrjJdbBofyPfnBazAERujkv7UElcypNe1FBcogQMLZjsV8DJGklvNOBVWwISd+jfObVo0f0PnpMN+XzskWvP9oYM4/Z0LPNc2q8Clk7CY2v5nWIOKwoaDntUnYiEClUdHLWkgNQdeQmfg5djW3V8PxcE5l793DzDND6hk9OfuoTw/GSWK/cJXl0wy5fzxzyO1r4IxC00KdJ3DacxQITezv3/8pfs+mcKnqiJ3luyJAcIpNSBCo1n3NqD7osyv4INk1Z/+Fq4jD314xczKVC6DgSJHzoZPXi6fbgxr2ktDXYBIHoc/Dg6jFQ/tFKX63YSzy9QnIE+fDqJDxZjNFHAbrmP8DMt213cry+AsRLzFDGwgA4cTQp7xTFftKpwW/8dYwyxzsxTQpHcNfQTkUmLimb1yA0mys3hRh95RFM/sRcOrHJugUnfiiP/p48WSVvZiEvUBkAV/Y/EgwrzcUiixpplxoPh0zF7NHLmw7MhC0C+K4xCufa4Pe1DaD6rHNp0DfAYeY4/3hT14490DQK7nXx0VKmhDND7iReQzuV4g7WzcXhtYxALH2zIF4XnlomiJhQqnky/cDs7cxpZkX7CLdjGpjslMBl3N6CEjyvuMnsIZ71/l9Z2sf5U7rB0PzCsrX0uMQLFt/2vvDcCVVGjrhgLPRt+EcA2t/Qq6dUDADJrXRq7VZxnrYLVzilWy62EOJnZLU6fE1iU6YTV2h8XligkY5UgkT64AEW/PNr7R8+4W8NnQX0babaXrN1uH7O1PIIjr3dshJokl1mRpT8gVrsfkVQ8DsCMXCmnZPWARQnUqlj/ZLqN5diPQG3LoM9D8xJeLn7qMYezmkVPFi479o72XDOz0qT7QlJ1Xkpg8Ra0bfGoj50fTjWEMMxGmwrgGrDs+3ATqJSQLQsGPKpZ3r00wVT6OeBZxV5fpnMZklcJ6aog3ZSVNC5PuYTN+nri67d7UIl1uGdePaQ/z3tijZr9yCjUfgbTzUHKvZ5C/AG4W6BjFYMYst7dv6gUJ6HohHGW9VWGRp4+93TeP61x/cr01TbH+JI5UxFFS77KGL/7bxf3Z8ID0J/QfQrAHvKWIzDoQWdnCflcNseHYYYutZB0QNXgk32wDOWPvyAnun8K2hPfkzJoAVuwdBeuGnvaTv1RO4TSlGcmItFiixE1B2fZgzMoxoks5v7oZwjPRgZzLNfM9RNSVdGXt6ACkxzx/WhZxv0uZz0T0AI8Govf7YFmy1SETE1q5Pr6bSew2LyYvoctUJoUrQJncsFFtzwUl/5/lhghXEJ9HpY3j+8Zm6XhPyduCwFl81uj/sUV+ExDWGpCCDupe/UxlCadsGWqHXPo+G6/BSXY7sb1/jFm/livTNDEf2JZHmFswCajWO6IUrhevssTYx105oo3Gl35hqrfae1/UmUcYFcYEmJIMlWhAe8kOgIcWrbBvVE8SfvkfM8Deicq65LB6vV/Ty9Rao8HB34ZRRX7Dbw9qbU6ru4t63TwmGa8ESmuls+tj7dDRadKKb0Bssagjv/BLwuEYahJ1rEtftZtpVJvGJOv28/cyoJpKoToJZhLUKrfXYIWd2PpvtIdnK62T4f31lBp413U2nue6U+PERs5zPSvVPItvkIUSaOTlqC3pUaMjVj+D405cOtuaipcoCte7ML5h04Z+/OO8wF6Ui713zV2yLvC2c3OdGKLevkWFhBO2VfjQHDfryle5IKWnnCdbZhe4ZUwDn1Th+myY6NbYZxhJEoVWzW1qOoqCvuoyjCW/NzS/Rj4NBoEZ/K+RDABa/90tB2cV71liKLqriaZ4ANkkDRGR5KUQBA==" /> </div> <div class="aspNetHidden"> <input type="hidden" name="__VIEWSTATEGENERATOR" id="__VIEWSTATEGENERATOR" value="16964051" /> </div> </form> <h3>Section 3.6 : Combining Functions</h3> <p>The topic with functions that we need to deal with is combining functions. For the most part this means performing basic arithmetic (addition, subtraction, multiplication, and division) with functions. There is one new way of combining functions that we鈥檒l need to look at as well.</p> <p>Let鈥檚 start with basic arithmetic of functions. Given two functions \(f\left( x \right)\) and \(g\left( x \right)\) we have the following notation and operations.</p> \[\begin{align*}\left( {f + g} \right)\left( x \right) & = f\left( x \right) + g\left( x \right) & \hspace{0.25in}\hspace{0.25in}\left( {f - g} \right)\left( x \right) & = f\left( x \right) - g\left( x \right)\\ \left( {fg} \right)\left( x \right) & = f\left( x \right)g\left( x \right) & \hspace{0.25in}\hspace{0.25in}\left( {\frac{f}{g}} \right)\left( x \right) & = \frac{{f\left( x \right)}}{{g\left( x \right)}}\end{align*}\] <p>Sometimes we will drop the \(\left( x \right)\) part and just write the following,</p> \[\begin{align*}f + g & = f\left( x \right) + g\left( x \right) & \hspace{0.25in}\hspace{0.25in}f - g & = f\left( x \right) - g\left( x \right)\\ fg & = f\left( x \right)g\left( x \right) & \hspace{0.25in}\hspace{0.25in}\frac{f}{g} & = \frac{{f\left( x \right)}}{{g\left( x \right)}}\end{align*}\] <p>Note as well that we put \(x\)鈥檚 in the parenthesis, but we will often put in numbers as well. Let鈥檚 take a quick look at an example.</p> <a class="anchor" name="Fcns_Comb_Ex1"></a> <div class="example"> <span class="example-title">Example 1</span> Given \(f\left( x \right) = 2 + 3x - {x^2}\) and \(g\left( x \right) = 2x - 1\) evaluate each of the following. <ol class="example_parts_list"> <li>\(\left( {f + g} \right)\left( 4 \right)\)</li> <li>\(g - f\)</li> <li>\(\left( {fg} \right)\left( x \right)\)</li> <li>\(\displaystyle \left( {\frac{f}{g}} \right)\left( 0 \right)\)</li> </ol> <span id="SHALink_S_Soln1" class="SH-Link SH-All">Show All Solutions</span>&nbsp;<span id="SHALink_H_Soln1" class="SH-Link SH-All">Hide All Solutions</span> <div class="example-content"> <span id="SHLink_DSoln1" class="SH-Link soln-title">Show Discussion</span> <span id="SHImg_DSoln1" class="fas fa-caret-right" aria-hidden="true"></span> <div id="SHObj_DSoln1" class="soln-content"> <p>By evaluate we mean one of two things depending on what is in the parenthesis. If there is a number in the parenthesis then we want a number. If there is an \(x\) (or no parenthesis, since that implies an \(x\)) then we will perform the operation and simplify as much as possible.</p> </div> <br /> <span class="soln-list-item soln-list-subitem">a</span> \(\left( {f + g} \right)\left( 4 \right)\) <span id="SHLink_Soln1a" class="SH-Link soln-title">Show Solution</span> <span id="SHImg_Soln1a" class="fas fa-caret-right" aria-hidden="true"></span> <div id="SHObj_Soln1a" class="soln-content"> <p>In this case we鈥檝e got a number so we need to do some function evaluation.</p> \[\begin{align*}\left( {f + g} \right)\left( 4 \right) & = f\left( 4 \right) + g\left( 4 \right)\\ &amp; = \left( {2 + 3\left( 4 \right) - {4^2}} \right) + \left( {2\left( 4 \right) - 1} \right)\\ &amp; = - 2 + 7\\ &amp; = 5\end{align*}\] </div> <br /> <span class="soln-list-item soln-list-subitem">b</span> \(g - f\) <span id="SHLink_Soln1b" class="SH-Link soln-title">Show Solution</span> <span id="SHImg_Soln1b" class="fas fa-caret-right" aria-hidden="true"></span> <div id="SHObj_Soln1b" class="soln-content"> <p>Here we don鈥檛 have an \(x\) or a number so this implies the same thing as if there were an \(x\) in parenthesis. Therefore, we鈥檒l subtract the two functions and simplify. Note as well that this is written in the opposite order from the definitions above, but it works the same way.</p> \[\begin{align*}g - f & = g\left( x \right) - f\left( x \right)\\ &amp; = 2x - 1 - \left( {2 + 3x - {x^2}} \right)\\ &amp; = 2x - 1 - 2 - 3x + {x^2}\\ &amp; = {x^2} - x - 3\end{align*}\] </div> <br /> <span class="soln-list-item soln-list-subitem">c</span> \(\left( {fg} \right)\left( x \right)\) <span id="SHLink_Soln1c" class="SH-Link soln-title">Show Solution</span> <span id="SHImg_Soln1c" class="fas fa-caret-right" aria-hidden="true"></span> <div id="SHObj_Soln1c" class="soln-content"> <p>As with the last part this has an \(x\) in the parenthesis so we鈥檒l multiply and then simplify.</p> \[\begin{align*}\left( {fg} \right)\left( x \right) & = f\left( x \right)g\left( x \right)\\ &amp; = \left( {2 + 3x - {x^2}} \right)\left( {2x - 1} \right)\\ &amp; = 4x + 6{x^2} - 2{x^3} - 2 - 3x + {x^2}\\ &amp; = - 2{x^3} + 7{x^2} + x - 2\end{align*}\] </div> <br /> <span class="soln-list-item soln-list-subitem">d</span> \(\displaystyle \left( {\frac{f}{g}} \right)\left( 0 \right)\) <span id="SHLink_Soln1d" class="SH-Link soln-title">Show Solution</span> <span id="SHImg_Soln1d" class="fas fa-caret-right" aria-hidden="true"></span> <div id="SHObj_Soln1d" class="soln-content"> <p>In this final part we鈥檝e got a number so we鈥檒l once again be doing function evaluation.</p> \[\begin{align*}\left( {\frac{f}{g}} \right)\left( 0 \right) & = \frac{{f\left( 0 \right)}}{{g\left( 0 \right)}}\\ &amp; = \frac{{2 + 3\left( 0 \right) - {{\left( 0 \right)}^2}}}{{2\left( 0 \right) - 1}}\\ &amp; = \frac{2}{{ - 1}}\\ &amp; = - 2\end{align*}\] </div> </div> </div> <p>Now we need to discuss the new method of combining functions. The new method of combining functions is called <strong>function composition</strong>. Here is the definition.</p> <p>Given two functions \(f\left( x \right)\) and \(g\left( x \right)\) we have the following two definitions.</p> <div class="definition"> <ol class="general-list"> <li>The <strong>composition</strong> of \(f\left( x \right)\) and \(g\left( x \right)\) (note the order here) is,<br /> \(\left( {f \circ g} \right)\left( x \right) = f\left[ {g\left( x \right)} \right]\)<br /><br /></li> <li>The <strong>composition of \(g\left( x \right)\)</strong> and \(f\left( x \right)\) (again, note the order) is,<br /> \(\left( {g \circ f} \right)\left( x \right) = g\left[ {f\left( x \right)} \right]\)</li> </ol> </div> <p>We need to note a couple of things here about function composition. First this is <strong>NOT</strong> multiplication. Regardless of what the notation may suggest to you this is simply not multiplication.</p> <p>Second, the order we鈥檝e listed the two functions is very important since more often than not we will get different answers depending on the order we鈥檝e listed them.</p> <p>Finally, function composition is really nothing more than function evaluation. All we鈥檙e really doing is plugging the second function listed into the first function listed. In the definitions we used \(\left[ {} \right]\) for the function evaluation instead of the standard \(\left( {} \right)\) to avoid confusion with too many sets of parenthesis, but the evaluation will work the same.</p> <p>Let鈥檚 take a look at a couple of examples.</p> <a class="anchor" name="Fcns_Comb_Ex2"></a> <div class="example"> <span class="example-title">Example 2</span> Given \(f\left( x \right) = 2 + 3x - {x^2}\) and \(g\left( x \right) = 2x - 1\) evaluate each of the following. <ol class="example_parts_list"> <li>\(\left( {fg} \right)\left( x \right)\)</li> <li>\(\left( {f \circ g} \right)\left( x \right)\)</li> <li>\(\left( {g \circ f} \right)\left( x \right)\)</li> </ol> <span id="SHALink_S_Soln2" class="SH-Link SH-All">Show All Solutions</span>&nbsp;<span id="SHALink_H_Soln2" class="SH-Link SH-All">Hide All Solutions</span> <div class="example-content"> <span class="soln-list-item soln-list-subitem">a</span> \(\left( {fg} \right)\left( x \right)\) <span id="SHLink_Soln2a" class="SH-Link soln-title">Show Solution</span> <span id="SHImg_Soln2a" class="fas fa-caret-right" aria-hidden="true"></span> <div id="SHObj_Soln2a" class="soln-content"> <p>These are the same functions that we used in the first set of examples and we鈥檝e already done this part there so we won鈥檛 redo all the work here. It is here only here to prove the point that function composition is NOT function multiplication.</p> <p>Here is the multiplication of these two functions.</p> \[\left( {fg} \right)\left( x \right) = - 2{x^3} + 7{x^2} + x - 2\] </div> <br /> <span class="soln-list-item soln-list-subitem">b</span> \(\left( {f \circ g} \right)\left( x \right)\) <span id="SHLink_Soln2b" class="SH-Link soln-title">Show Solution</span> <span id="SHImg_Soln2b" class="fas fa-caret-right" aria-hidden="true"></span> <div id="SHObj_Soln2b" class="soln-content"> <p>Now, for function composition all you need to remember is that we are going to plug the second function listed into the first function listed. If you can remember that you should always be able to write down the basic formula for the composition.</p> <p>Here is this function composition.</p> \[\begin{align*}\left( {f \circ g} \right)\left( x \right) &= f\left[ {g\left( x \right)} \right]\\ &amp; = f\left[ {2x - 1} \right]\end{align*}\] <p>Now, notice that since we鈥檝e got a formula for \(g\left( x \right)\) we went ahead and plugged that in first. Also, we did this kind of function evaluation in the first <a href="FunctionDefn.aspx">section</a> we looked at for functions. At the time it probably didn鈥檛 seem all that useful to be looking at that kind of function evaluation, yet here it is.</p> <p>Let鈥檚 finish this problem out.</p> \[\begin{align*}\left( {f \circ g} \right)\left( x \right) &= f\left[ {g\left( x \right)} \right]\\ &amp; = f\left[ {2x - 1} \right]\\ &amp; = 2 + 3\left( {2x - 1} \right) - {\left( {2x - 1} \right)^2}\\ &amp; = 2 + 6x - 3 - \left( {4{x^2} - 4x + 1} \right)\\ &amp; = - 1 + 6x - 4{x^2} + 4x - 1\\ &amp; = - 4{x^2} + 10x - 2\end{align*}\] <p>Notice that this is very different from the multiplication! Remember that function composition is NOT function multiplication.</p> </div> <br /> <span class="soln-list-item soln-list-subitem">c</span> \(\left( {g \circ f} \right)\left( x \right)\) <span id="SHLink_Soln2c" class="SH-Link soln-title">Show Solution</span> <span id="SHImg_Soln2c" class="fas fa-caret-right" aria-hidden="true"></span> <div id="SHObj_Soln2c" class="soln-content"> <p>We鈥檒l not put in the detail in this part as it works essentially the same as the previous part.</p> \[\begin{align*}\left( {g \circ f} \right)\left( x \right) &= g\left[ {f\left( x \right)} \right]\\ &amp; = g\left[ {2 + 3x - {x^2}} \right]\\ &amp; = 2\left( {2 + 3x - {x^2}} \right) - 1\\ &amp; = 4 + 6x - 2{x^2} - 1\\ &amp; = - 2{x^2} + 6x + 3\end{align*}\] <p>Notice that this is NOT the same answer as that from the second part. In most cases the order in which we do the function composition will give different answers.</p> </div> </div> </div> <p>The ideas from the previous example are important enough to make again. First, function composition is NOT function multiplication. Second, the order in which we do function composition is important. In most case we will get different answers with a different order. Note however, that there are times when we will get the same answer regardless of the order.</p> <p>Let鈥檚 work a couple more examples.</p> <a class="anchor" name="Fcns_Comb_Ex3"></a> <div class="example"> <span class="example-title">Example 3</span> Given \(f\left( x \right) = {x^2} - 3\) and \(h\left( x \right) = \sqrt {x + 1} \) evaluate each of the following. <ol class="example_parts_list"> <li>\(\left( {f \circ h} \right)\left( x \right)\)</li> <li>\(\left( {h \circ f} \right)\left( x \right)\)</li> <li>\(\left( {f \circ f} \right)\left( x \right)\)</li> <li>\(\left( {h \circ h} \right)\left( 8 \right)\)</li> <li>\(\left( {f \circ h} \right)\left( 4 \right)\)</li> </ol> <span id="SHALink_S_Soln3" class="SH-Link SH-All">Show All Solutions</span>&nbsp;<span id="SHALink_H_Soln3" class="SH-Link SH-All">Hide All Solutions</span> <div class="example-content"> <span class="soln-list-item soln-list-subitem">a</span> \(\left( {f \circ h} \right)\left( x \right)\) <span id="SHLink_Soln3a" class="SH-Link soln-title">Show Solution</span> <span id="SHImg_Soln3a" class="fas fa-caret-right" aria-hidden="true"></span> <div id="SHObj_Soln3a" class="soln-content"> <p>Not much to do here other than run through the formula.</p> \[\begin{align*}\left( {f \circ h} \right)\left( x \right)& = f\left[ {h\left( x \right)} \right]\\ &amp; = f\left[ {\sqrt {x + 1} } \right]\\ &amp; = {\left( {\sqrt {x + 1} } \right)^2} - 3\\ &amp; = x + 1 - 3\\ &amp; = x - 2\end{align*}\] </div> <br /> <span class="soln-list-item soln-list-subitem">b</span> \(\left( {h \circ f} \right)\left( x \right)\) <span id="SHLink_Soln3b" class="SH-Link soln-title">Show Solution</span> <span id="SHImg_Soln3b" class="fas fa-caret-right" aria-hidden="true"></span> <div id="SHObj_Soln3b" class="soln-content"> <p>Again, not much to do here.</p> \[\begin{align*}\left( {h \circ f} \right)\left( x \right) & = h\left[ {f\left( x \right)} \right]\\ &amp; = h\left[ {{x^2} - 3} \right]\\ &amp; = \sqrt {{x^2} - 3 + 1} \\ &amp; = \sqrt {{x^2} - 2} \end{align*}\] </div> <br /> <span class="soln-list-item soln-list-subitem">c</span> \(\left( {f \circ f} \right)\left( x \right)\) <span id="SHLink_Soln3c" class="SH-Link soln-title">Show Solution</span> <span id="SHImg_Soln3c" class="fas fa-caret-right" aria-hidden="true"></span> <div id="SHObj_Soln3c" class="soln-content"> <p>Now in this case do not get excited about the fact that the two functions here are the same. Composition works the same way.</p> \[\begin{align*}\left( {f \circ f} \right)\left( x \right) & = f\left[ {f\left( x \right)} \right]\\ &amp; = f\left[ {{x^2} - 3} \right]\\ &amp; = {\left( {{x^2} - 3} \right)^2} - 3\\ &amp; = {x^4} - 6{x^2} + 9 - 3\\ &amp; = {x^4} - 6{x^2} + 6\end{align*}\] </div> <br /> <span class="soln-list-item soln-list-subitem">d</span> \(\left( {h \circ h} \right)\left( 8 \right)\) <span id="SHLink_Soln3d" class="SH-Link soln-title">Show Solution</span> <span id="SHImg_Soln3d" class="fas fa-caret-right" aria-hidden="true"></span> <div id="SHObj_Soln3d" class="soln-content"> <p>In this case, unlike all the previous examples, we鈥檝e got a number in the parenthesis instead of an \(x\), but it works in exactly the same manner.</p> \[\begin{align*}\left( {h \circ h} \right)\left( 8 \right) & = h\left[ {h\left( 8 \right)} \right]\\ &amp; = h\left[ {\sqrt {8 + 1} } \right]\\ &amp; = h\left[ {\sqrt 9 } \right]\\ &amp; = h\left[ 3 \right]\\ &amp; = \sqrt {3 + 1} \\ &amp; = 2\end{align*}\] </div> <br /> <span class="soln-list-item soln-list-subitem">e</span> \(\left( {f \circ h} \right)\left( 4 \right)\) <span id="SHLink_Soln3e" class="SH-Link soln-title">Show Solution</span> <span id="SHImg_Soln3e" class="fas fa-caret-right" aria-hidden="true"></span> <div id="SHObj_Soln3e" class="soln-content"> <p>Again, we鈥檝e got a number here. This time there are actually two ways to do this evaluation. The first is to simply use the results from the first part since that is a formula for the general function composition.</p> <p>If we do the problem that way we get,</p> \[\left( {f \circ h} \right)\left( 4 \right) = 4 - 2 = 2\] <p>We could also do the evaluation directly as we did in the previous part. The answers should be the same regardless of how we get them. So, to get another example down of this kind of evaluation let鈥檚 also do the evaluation directly.</p> \[\begin{align*}\left( {f \circ h} \right)\left( 4 \right) & = f\left[ {h\left( 4 \right)} \right]\\ &amp; = f\left[ {\sqrt {4 + 1} } \right]\\ &amp; = f\left[ {\sqrt 5 } \right]\\ &amp; = {\left( {\sqrt 5 } \right)^2} - 3\\ &amp; = 5 - 3\\ &amp; = 2\end{align*}\] <p>So, sure enough we got the same answer, although it did take more work to get it.</p> </div> </div> </div> <a class="anchor" name="Fcns_Comb_Ex4"></a> <div class="example"> <span class="example-title">Example 4</span> Given \(f\left( x \right) = 3x - 2\) and \(\displaystyle g\left( x \right) = \frac{x}{3} + \frac{2}{3}\) evaluate each of the following. <ol class="example_parts_list"> <li>\(\left( {f \circ g} \right)\left( x \right)\)</li> <li>\(\left( {g \circ f} \right)\left( x \right)\)</li> </ol> <span id="SHALink_S_Soln4" class="SH-Link SH-All">Show All Solutions</span>&nbsp;<span id="SHALink_H_Soln4" class="SH-Link SH-All">Hide All Solutions</span> <div class="example-content"> <span class="soln-list-item soln-list-subitem">a</span> \(\left( {f \circ g} \right)\left( x \right)\) <span id="SHLink_Soln4a" class="SH-Link soln-title">Show Solution</span> <span id="SHImg_Soln4a" class="fas fa-caret-right" aria-hidden="true"></span> <div id="SHObj_Soln4a" class="soln-content"> <p>Hopefully, by this point these aren鈥檛 too bad.</p> \[\begin{align*}\left( {f \circ g} \right)\left( x \right) &= f\left[ {g\left( x \right)} \right]\\ &amp; = f\left[ {\frac{x}{3} + \frac{2}{3}} \right]\\ &amp; = 3\left( {\frac{x}{3} + \frac{2}{3}} \right) - 2\\ &amp; = x + 2 - 2\\ &amp; = x\end{align*}\] <p>Looks like things simplified down considerable here.</p> </div> <br /> <span class="soln-list-item soln-list-subitem">b</span> \(\left( {g \circ f} \right)\left( x \right)\) <span id="SHLink_Soln4b" class="SH-Link soln-title">Show Solution</span> <span id="SHImg_Soln4b" class="fas fa-caret-right" aria-hidden="true"></span> <div id="SHObj_Soln4b" class="soln-content"> <p>All we need to do here is use the formula so let鈥檚 do that.</p> \[\begin{align*}\left( {g \circ f} \right)\left( x \right)& = g\left[ {f\left( x \right)} \right]\\ &amp; = g\left[ {3x - 2} \right]\\ &amp; = \frac{1}{3}\left( {3x - 2} \right) + \frac{2}{3}\\ &amp; = x - \frac{2}{3} + \frac{2}{3}\\ &amp; = x\end{align*}\] <p>So, in this case we get the same answer regardless of the order we did the composition in.</p> </div> </div> </div> <p>So, as we鈥檝e seen from this last example it is possible to get the same answer from both compositions on occasion. In fact when the answer from both composition is \(x\), as it is in this case, we know that these two functions are very special functions. In fact, they are so special that we鈥檙e going to devote the whole next section to these kinds of functions. So, let鈥檚 move onto the next section.</p> </div> <!-- End of content div --> <div class="footer"> <div class="footer-links"> [<a href="/Contact.aspx">Contact Me</a>]&nbsp;[<a href="/Privacy.aspx">Privacy Statement</a>]&nbsp;[<a href="/Help.aspx">Site Help &amp; FAQ</a>]&nbsp;[<a href="/Terms.aspx">Terms of Use</a>] </div> <div class="footer-dates"> <div class="footer-copyright"><span id="lblCopyRight">&copy; 2003 - 2024 Paul Dawkins</span></div> <div class="footer-spacer"></div> <div class="footer-modified-date">Page Last Modified : <span id="lblModified">11/16/2022</span></div> </div> </div> </div> <!-- End of page div... --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10