CINXE.COM

{"title":"A Saltwater Battery Inspired by the Membrane Potential Found in Biological Cells","authors":"Andrew Jester, Ross Lee, Pritpal Singh","volume":198,"journal":"International Journal of Bioengineering and Life Sciences","pagesStart":36,"pagesEnd":50,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10013119","abstract":"<p>As the world transitions to a more sustainable energy economy, the deployment of energy storage technologies is expected to increase to develop a more resilient grid system. However, current technologies are associated with various environmental and safety issues throughout their entire lifecycle; therefore, a new battery technology is desirable for grid applications to curtail these risks. Biological cells, such as human neurons and electrocytes in the electric eel, can serve as a more sustainable design template for a new bio-inspired (i.e., biomimetic) battery. Within biological cells, an electrochemical gradient across the cell membrane forms the membrane potential, which serves as the driving force for ion transport into\/out of the cell akin to the charging\/discharging of a battery cell. This work serves as the first step for developing such a biomimetic battery cell, starting with the fabrication and characterization of ion-selective membranes to facilitate ion transport through the cell. Performance characteristics (e.g., cell voltage, power density, specific energy, roundtrip efficiency) for the cell under investigation are compared to incumbent battery technologies and biological cells to assess the readiness level for this emerging technology. Using a Na+-Form Nafion-117 membrane, the cell in this work successfully demonstrated behavior like human neurons; these findings will inform how cell components can be re-engineered to enhance device performance.<\/p>","references":"[1]\tU.S. Department of Energy, \u201cGlobal Energy Storage Database.\u201d 18-Feb-2020.\r\n[2]\tM. Aneke and M. Wang, \u201cEnergy storage technologies and real life applications \u2013 A state of the art review,\u201d Applied Energy, vol. 179, pp. 350\u2013377, Oct. 2016, doi: 10.1016\/j.apenergy.2016.06.097.\r\n[3]\tL. Oliveira, M. Messagie, J. Mertens, H. Laget, T. Coosemans, and J. Van Mierlo, \u201cEnvironmental performance of electricity storage systems for grid applications, a life cycle approach,\u201d Energy Conversion and Management, vol. 101, pp. 326\u2013335, Sep. 2015, doi: 10.1016\/j.enconman.2015.05.063.\r\n[4]\tL. Oliveira, M. Messagie, S. Rangaraju, J. Sanfelix, M. Hernandez Rivas, and J. Van Mierlo, \u201cKey issues of lithium-ion batteries \u2013 from resource depletion to environmental performance indicators,\u201d Journal of Cleaner Production, vol. 108, pp. 354\u2013362, Dec. 2015, doi: 10.1016\/j.jclepro.2015.06.021.\r\n[5]\tQ. Dai, J. C. Kelly, L. Gaines, and M. Wang, \u201cLife Cycle Analysis of Lithium-Ion Batteries for Automotive Applications,\u201d Batteries, vol. 5, no. 2, p. 48, Jun. 2019, doi: 10.3390\/batteries5020048.\r\n[6]\tL. Gaines, \u201cThe future of automotive lithium-ion battery recycling: Charting a sustainable course,\u201d Sustainable Materials and Technologies, vol. 1\u20132, pp. 2\u20137, Dec. 2014, doi: 10.1016\/j.susmat.2014.10.001.\r\n[7]\tH. Hesse, M. Schimpe, D. Kucevic, and A. Jossen, \u201cLithium-Ion Battery Storage for the Grid\u2014A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids,\u201d Energies, vol. 10, no. 12, p. 2107, Dec. 2017, doi: 10.3390\/en10122107.\r\n[8]\tD. Linden and T. B. Reddy, Eds., Handbook of batteries, 3rd ed. New York: McGraw-Hill, 2002.\r\n[9]\tT. Nguyen and R. F. Savinell, \u201cFlow Batteries,\u201d The Electrochemical Society Interface, pp. 54\u201356, 2010.\r\n[10]\tM. Skyllas-Kazacos, M. H. Chakrabarti, S. A. Hajimolana, F. S. Mjalli, and M. Saleem, \u201cProgress in Flow Battery Research and Development,\u201d Journal of The Electrochemical Society, vol. 158, no. 8, p. R55, 2011, doi: 10.1149\/1.3599565.\r\n[11]\t\u00c1. Cunha, J. Martins, N. Rodrigues, and F. P. Brito, \u201cVanadium redox flow batteries: a technology review: Vanadium redox flow batteries: a technology review,\u201d Int. J. Energy Res., vol. 39, no. 7, pp. 889\u2013918, Jun. 2015, doi: 10.1002\/er.3260.\r\n[12]\tV. Viswanathan, M. Kintner-Meyer, P. Balducci, and C. Jin, \u201cNational Assessment of Energy Storage for Grid Balancing and Arbitrage Phase II,\u201d p. 78.\r\n[13]\tD. A. McCormick, \u201cMembrane Potential and Action Potential,\u201d From Molecules to Networks, p. 26.\r\n[14]\tKoester, John, and Steven A. Siegelbaum. \u201cChapter 7: Membrane Potential.\u201d Cell and Molecular Biology of the Neuron, Columbia University, pp. 125\u2013139.\r\n[15]\tL. Abdul Kadir, M. Stacey, and R. Barrett-Jolley, \u201cEmerging Roles of the Membrane Potential: Action Beyond the Action Potential,\u201d Front. Physiol., vol. 9, p. 1661, Nov. 2018, doi: 10.3389\/fphys.2018.01661.G. R. Faulhaber, \u201cDesign of service systems with priority reservation,\u201d in Conf. Rec. 1995 WASET Int. Conf. Communications, pp. 3\u20138.\r\n[16]\tA. Fletcher, \u201cAction potential: generation and propagation,\u201d Anaesthesia & Intensive Care Medicine, vol. 20, no. 4, pp. 243\u2013247, Apr. 2019, doi: 10.1016\/j.mpaic.2019.01.014.\r\n[17]\tMarkham, Michael R. \u201cElectrocyte Physiology: 50 Years Later.\u201d Journal of Experimental Biology, vol. 216, no. 13, July 2013, pp. 2451\u20132458. jeb.biologists.org, doi:10.1242\/jeb.082628.\r\n[18]\tGotter, A. L., et al. \u201cElectrophorus Electricus as a Model System for the Study of Membrane Excitability.\u201d Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, vol. 119, no. 1, Jan. 1998, pp. 225\u2013241.\r\n[19]\tC. D. de Santana et al., \u201cUnexpected species diversity in electric eels with a description of the strongest living bioelectricity generator,\u201d Nat Commun, vol. 10, no. 1, p. 4000, Dec. 2019, doi: 10.1038\/s41467-019-11690-z.\r\n[20]\tLaucirica, Gregorio, et al. \u201cShape Matters: Enhanced Osmotic Energy Harvesting in Bullet-Shaped Nanochannels.\u201d Nano Energy, vol. 71, May 2020, p. 104612. DOI.org (Crossref), doi:10.1016\/j.nanoen.2020.104612.\r\n[21]\tW. Guo et al., \u201cEnergy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source,\u201d Adv. Funct. Mater., vol. 20, no. 8, pp. 1339\u20131344, Apr. 2010, doi: 10.1002\/adfm.200902312.\r\n[22]\tW. Chen et al., \u201cImproved Ion Transport in Hydrogel-Based Nanofluidics for Osmotic Energy Conversion,\u201d ACS Cent. Sci., vol. 6, no. 11, pp. 2097\u20132104, Nov. 2020, doi: 10.1021\/acscentsci.0c01054.\r\n[23]\tLin, Chih-Yuan, et al. \u201cRectification of Concentration Polarization in Mesopores Leads To High Conductance Ionic Diodes and High Performance Osmotic Power.\u201d Journal of the American Chemical Society, vol. 141, no. 8, Feb. 2019, pp. 3691\u201398. DOI.org (Crossref), doi:10.1021\/jacs.8b13497.\r\n[24]\tM. Gao, P. Tsai, Y. Su, P. Peng, and L. Yeh, \u201cSingle Mesopores with High Surface Charges as Ultrahigh Performance Osmotic Power Generators,\u201d Small, vol. 16, no. 48, p. 2006013, Dec. 2020, doi: 10.1002\/smll.202006013.\r\n[25]\tW. Xin et al., \u201cBiomimetic Nacre-Like Silk-Crosslinked Membranes for Osmotic Energy Harvesting,\u201d ACS Nano, vol. 14, no. 8, pp. 9701\u20139710, Aug. 2020, doi: 10.1021\/acsnano.0c01309.\r\n[26]\tGao, Jun, et al. \u201cHigh-Performance Ionic Diode Membrane for Salinity Gradient Power Generation.\u201d Journal of the American Chemical Society, vol. 136, no. 35, Sept. 2014, pp. 12265\u201372. DOI.org (Crossref), doi:10.1021\/ja503692z.\r\n[27]\tR. Li, J. Jiang, Q. Liu, Z. Xie, and J. Zhai, \u201cHybrid nanochannel membrane based on polymer\/MOF for high-performance salinity gradient power generation,\u201d Nano Energy, vol. 53, pp. 643\u2013649, Nov. 2018, doi: 10.1016\/j.nanoen.2018.09.015.\r\n[28]\tZ. Zhang, L. He, C. Zhu, Y. Qian, L. Wen, and L. Jiang, \u201cImproved osmotic energy conversion in hybrid membrane boosted by three-dimensional hydrogel interface,\u201d Nat Commun, vol. 11, no. 1, p. 875, Dec. 2020, doi: 10.1038\/s41467-020-14674-6.\r\n[29]\tZ. Wu et al., \u201cOppositely charged aligned bacterial cellulose biofilm with nanofluidic channels for osmotic energy harvesting,\u201d Nano Energy, vol. 80, p. 105554, Feb. 2021, doi: 10.1016\/j.nanoen.2020.105554.\r\n[30]\tY. Zhao et al., \u201cRobust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion,\u201d National Science Review, vol. 7, no. 8, pp. 1349\u20131359, Aug. 2020, doi: 10.1093\/nsr\/nwaa057.\r\n[31]\tP. R. Turner, Guide to Scientific Computing, Second. CRC Press, 2001.\r\n[32]\tA. Tang, J. Bao, and M. Skyllas-Kazacos, \u201cDynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery,\u201d Journal of Power Sources, vol. 196, no. 24, pp. 10737\u201310747, Dec. 2011, doi: 10.1016\/j.jpowsour.2011.09.003.\r\n[33]\tR. P. O\u2019Hayre, S.-W. Cha, W. G. Colella, and F. B. Prinz, Fuel cell fundamentals, Third edition. Hoboken, New Jersey: John Wiley & Sons Inc, 2016.\r\n[34]\tA. Sutton, Ed., Nafion: properties, structure, and applications. New York: Nova Publishers, 2016.\r\n[35]\tN. P. Berezina, S. V. Timofeev, and N. A. Kononenko, \u201cEffect of conditioning techniques of perfluorinated sulphocationic membranes on their hydrophylic and electrotransport properties,\u201d Journal of Membrane Science, vol. 209, no. 2, pp. 509\u2013518, Nov. 2002, doi: 10.1016\/S0376-7388(02)00368-X.\r\n[36]\tP. W. Majsztrik, \u201cMechanical and Transport Properties of Nafion\u00ae for PEM Fuel Cells; Temperature and Hydration Effects,\u201d p. 260.\r\n[37]\tK. Schmidt-Rohr and Q. Chen, \u201cParallel cylindrical water nanochannels in Nafion fuel-cell membranes,\u201d Nature Mater, vol. 7, no. 1, pp. 75\u201383, Jan. 2008, doi: 10.1038\/nmat2074.\r\n[38]\tR. Hiesgen, S. Helmly, I. Galm, T. Morawietz, M. Handl, and K. Friedrich, \u201cMicroscopic Analysis of Current and Mechanical Properties of Nafion\u00ae Studied by Atomic Force Microscopy,\u201d Membranes, vol. 2, no. 4, pp. 783\u2013803, Nov. 2012, doi: 10.3390\/membranes2040783.\r\n[39]\tK. Miyatake, \u201cMembrane Electrolytes, from Perfluorosulfonic Acid (PFSA) to Hydrocarbon Ionomers,\u201d in Encyclopedia of Sustainability Science and Technology, R. A. Meyers, Ed. New York, NY: Springer New York, 2015, pp. 1\u201332. doi: 10.1007\/978-1-4939-2493-6_146-3.\r\n[40]\tS. Nouri, L. Dammak, G. Bulvestre, and B. Auclair, \u201cComparison of three methods for the determination of the electrical conductivity of ion-exchange polymers,\u201d European Polymer Journal, vol. 38, no. 9, pp. 1907\u20131913, Sep. 2002, doi: 10.1016\/S0014-3057(02)00057-5.\r\n[41]\tI. A. Stenina, Ph. Sistat, A. I. Rebrov, G. Pourcelly, and A. B. Yaroslavtsev, \u201cIon mobility in Nafion-117 membranes,\u201d Desalination, vol. 170, no. 1, pp. 49\u201357, Oct. 2004, doi: 10.1016\/j.desal.2004.02.092.\r\n[42]\tA. Lehmani, P. Turq, M. Pri, J. Pri, and J.-P. Simonin, \u201cIon transport in Nafion \u00ae 117 membrane,\u201d Journal of Electroanalytical Chemistry, p. 9, 1997.\r\n[43]\tM. A. Izquierdo-Gil, V. M. Barrag\u00e1n, J. P. G. Villaluenga, and M. P. Godino, \u201cWater uptake and salt transport through Nafion cation-exchange membranes with different thicknesses,\u201d Chemical Engineering Science, vol. 72, pp. 1\u20139, Apr. 2012, doi: 10.1016\/j.ces.2011.12.040.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 198, 2023"}