CINXE.COM
Search results for: thermo-mechanical stress
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: thermo-mechanical stress</title> <meta name="description" content="Search results for: thermo-mechanical stress"> <meta name="keywords" content="thermo-mechanical stress"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="thermo-mechanical stress" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="thermo-mechanical stress"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3932</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: thermo-mechanical stress</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3932</span> Stress Analysis of Laminated Cylinders Subject to the Thermomechanical Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eafak%20Aksoy">Şafak Aksoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kur%C5%9Fun"> Ali Kurşun</a>, <a href="https://publications.waset.org/abstracts/search?q=Erhan%20%C3%87etin"> Erhan Çetin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Re%C5%9Fit%20Habo%C4%9Flu"> Mustafa Reşit Haboğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, thermo elastic stress analysis is performed on a cylinder made of laminated isotropic materials under thermomechanical loads. Laminated cylinders have many applications such as aerospace, automotive and nuclear plant in the industry. These cylinders generally performed under thermomechanical loads. Stress and displacement distribution of the laminated cylinders are determined using by analytical method both thermal and mechanical loads. Based on the results, materials combination plays an important role on the stresses distribution along the radius. Variation of the stresses and displacements along the radius are presented as graphs. Calculations program are prepared using MATLAB® by authors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isotropic%20materials" title="isotropic materials">isotropic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=laminated%20cylinders" title=" laminated cylinders"> laminated cylinders</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelastic%20stress" title=" thermoelastic stress"> thermoelastic stress</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechanical%20load" title=" thermomechanical load"> thermomechanical load</a> </p> <a href="https://publications.waset.org/abstracts/2671/stress-analysis-of-laminated-cylinders-subject-to-the-thermomechanical-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3931</span> Experimental Study on Thermomechanical Properties of New-Generation ODS Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Khalaj">O. Khalaj</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Ma%C5%A1ek"> B. Mašek</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Jirkov%C3%A1"> H. Jirková</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Svoboda"> J. Svoboda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By using a combination of new technologies together with an unconventional use of different types of materials, specific mechanical properties and structures of the material can be achieved. Some possibilities are enabled by a combination of powder metallurgy in the preparation of a metal matrix with dispersed stable particles achieved by mechanical alloying and hot consolidation. This paper explains the thermomechanical properties of new generation of Oxide Dispersion Strengthened alloys (ODS) within three ranges of temperature with specified deformation profiles. The results show that the mechanical properties of new ODS alloys are significantly affected by the thermomechanical treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20forming" title="hot forming">hot forming</a>, <a href="https://publications.waset.org/abstracts/search?q=ODS" title=" ODS"> ODS</a>, <a href="https://publications.waset.org/abstracts/search?q=alloys" title=" alloys"> alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechanical" title=" thermomechanical"> thermomechanical</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe-Al" title=" Fe-Al"> Fe-Al</a>, <a href="https://publications.waset.org/abstracts/search?q=Al2O3" title=" Al2O3"> Al2O3</a> </p> <a href="https://publications.waset.org/abstracts/74378/experimental-study-on-thermomechanical-properties-of-new-generation-ods-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3930</span> Elastic Stress Analysis of Annular Bi-Material Discs with Variable Thickness under Mechanical and Thermomechanical Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erhan%20%C3%87etin">Erhan Çetin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kur%C5%9Fun"> Ali Kurşun</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eafak%20Aksoy"> Şafak Aksoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Merve%20Tunay%20%C3%87etin"> Merve Tunay Çetin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The closed form study deal with elastic stress analysis of annular bi-material discs with variable thickness subjected to the mechanical and termomechanical loads. Those discs have many applications in the aerospace industry, such as gas turbines and gears. Those discs normally work under thermal and mechanical loads. Their life cycle can increase when stress components are minimized. Each material property is assumed to be isotropic. The results show that material combinations and thickness profiles play an important role in determining the responses of bi-material discs and an optimal design of those structures. Stress distribution is investigated and results are shown as graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bi-material%20discs" title="bi-material discs">bi-material discs</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20stress%20analysis" title=" elastic stress analysis"> elastic stress analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20loads" title=" mechanical loads"> mechanical loads</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20discs" title=" rotating discs"> rotating discs</a> </p> <a href="https://publications.waset.org/abstracts/2633/elastic-stress-analysis-of-annular-bi-material-discs-with-variable-thickness-under-mechanical-and-thermomechanical-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3929</span> Thermomechanical Processing of a CuZnAl Shape-Memory Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Henrique%20Alves%20Martins">Pedro Henrique Alves Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Guilherme%20%20Ferreira%20De%20Siqueira"> Paulo Guilherme Ferreira De Siqueira</a>, <a href="https://publications.waset.org/abstracts/search?q=Franco%20De%20Castro%20Bubani"> Franco De Castro Bubani</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Teresa%20Paulino%20Aguilar"> Maria Teresa Paulino Aguilar</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Roberto%20%20Cetlin"> Paulo Roberto Cetlin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cu-base shape-memory alloys (CuZnAl, CuAlNi, CuAlBe, etc.) are promising engineering materials for several unconventional devices, such as sensors, actuators, and mechanical vibration dampers. Brittleness is one of the factors that limit the commercial use of these alloys, as it makes thermomechanical processing difficult. In this work, a method for the hot extrusion of a 75.50% Cu, 16,74% Zn, 7,76% Al (weight %) alloy is presented. The effects of the thermomechanical processing in the microstructure and the pseudoelastic behavior of the alloy are assessed by optical metallography, compression and hardness tests. Results show that hot extrusion is a suitable method to obtain severe cross-section reductions in the CuZnAl shape-memory alloy studied. The alloy maintained its pseudoelastic effect after the extrusion and the modifications in the mechanical behavior caused by precipitation during hot extrusion can be minimized by a suitable precipitate dissolution heat treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20extrusion" title="hot extrusion">hot extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudoelastic" title=" pseudoelastic"> pseudoelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=shape-memory%20alloy" title=" shape-memory alloy"> shape-memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechanical%20processing" title=" thermomechanical processing"> thermomechanical processing</a> </p> <a href="https://publications.waset.org/abstracts/70427/thermomechanical-processing-of-a-cuznal-shape-memory-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3928</span> Thermomechanical Coupled Analysis of Fiber Reinforced Polymer Composite Square Tube: A Finite Element Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ali">M. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Alam"> K. Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Ohioma"> E. Ohioma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a numerical investigation on the behavior of fiber reinforced polymer composite tubes (FRP) under thermomechanical coupled loading using finite element software ABAQUS and a special add-on subroutine, CZone. Three cases were explored; pure mechanical loading, pure thermal loading, and coupled thermomechanical loading. The failure index (Tsai-Wu) under all three loading cases was assessed for all plies in the tube walls. The simulation results under pure mechanical loading showed that composite tube failed at a tensile load of 3.1 kN. However, with the superposition of thermal load on mechanical load on the composite tube, the failure index of the previously failed plies in tube walls reduced significantly causing the tube to fail at 6 kN. This showed 93% improvement in the load carrying capacity of the composite tube in present study. The increase in load carrying capacity was attributed to the stress effects of the coefficients of thermal expansion (CTE) on the laminate as well as the inter-lamina stresses induced due to the composite stack layup. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal" title="thermal">thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical" title=" mechanical"> mechanical</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20tubes" title=" square tubes"> square tubes</a> </p> <a href="https://publications.waset.org/abstracts/43322/thermomechanical-coupled-analysis-of-fiber-reinforced-polymer-composite-square-tube-a-finite-element-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3927</span> Thermomechanical Behaviour of Various Pressurized Installations Subjected to Thermal Load Due to the Combustion of Metal Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Ayfi">Khaled Ayfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Morgan%20Dal"> Morgan Dal</a>, <a href="https://publications.waset.org/abstracts/search?q=Frederic%20Coste"> Frederic Coste</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Gallienne"> Nicolas Gallienne</a>, <a href="https://publications.waset.org/abstracts/search?q=Martina%20Ridlova"> Martina Ridlova</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Lorong"> Philippe Lorong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the gas industry, contamination of equipment by metal particles is one of the feared phenomena. Indeed, particles inside equipment can be driven by the gas flow and accumulate in places where the velocity is low. As they constitute a potential ignition hazard, particular attention is paid to the presence of particles in the oxygen industry. Indeed, the heat release from ignited particles may damage the equipment and even result in a loss of integrity. The objective of this work is to support the development of new design criteria. Studying the thermomechanical behavior of this equipment, thanks to numerical simulations, allows us to test the influence of various operating parameters (oxygen pressure, wall thickness, initial operating temperature, nature of the metal, etc.). Therefore, in this study, we propose a numerical model that describes the thermomechanical behavior of various pressurized installations heated locally by the combustion of small particles. This model takes into account the geometric and material nonlinearity and has been validated by the comparison of simulation results with experimental measurements obtained by a new device developed in this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ignition" title="ignition">ignition</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen" title=" oxygen"> oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechanical%20behaviour" title=" thermomechanical behaviour"> thermomechanical behaviour</a> </p> <a href="https://publications.waset.org/abstracts/135549/thermomechanical-behaviour-of-various-pressurized-installations-subjected-to-thermal-load-due-to-the-combustion-of-metal-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3926</span> Determination of Material Constants and Zener-Hollomon Parameter of AA2017 Aluminium Alloy under Hot Compression Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Shashikanth">C. H. Shashikanth</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Davidson"> M. J. Davidson</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Suresh%20Babu"> V. Suresh Babu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The formability of metals depends on a number of variables such as strain, strain rate, and temperature. Though most of the metals are formable at room temperature, few are not. To evaluate the workability of such metals at elevated temperatures, thermomechanical experiments should be carried out to find out the forming temperatures and strain rates. Though a number of constitutive relations are available to correlate the material parameters and the corresponding formability at elevated temperatures, the constitutive rule proposed by Arrhenius has been used in this work. Thus, in the present work, the material constants such as A (constant), α (stress multiplier), β (constant), and n (stress exponent) of AA 2017 has been found by conducting a series of hot compression tests at different temperatures such as 400°C, 450°C, 500°C, and 550°C and at different strain rates such as 0.16, 0.18, and 0.2. True stress (σt), true strains (εt) deformation activation energy (Q), and the Zener-Hollomon parameter (Z value) were also calculated. The results indicate that the value of ln (Z) decreases as the temperature increases and it increases as the strain rate increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20compression%20test" title="hot compression test">hot compression test</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminium%20alloy" title=" aluminium alloy"> aluminium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20stress" title=" flow stress"> flow stress</a>, <a href="https://publications.waset.org/abstracts/search?q=activation%20energy" title=" activation energy"> activation energy</a> </p> <a href="https://publications.waset.org/abstracts/22101/determination-of-material-constants-and-zener-hollomon-parameter-of-aa2017-aluminium-alloy-under-hot-compression-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">621</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3925</span> Thermomechanical Effects and Nanoscale Ripples in Graphene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roderick%20Melnik">Roderick Melnik</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Prabhakar"> Sanjay Prabhakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relaxed state of graphene nanostructures due to externally applied tensile stress along both the armchair and zigzag directions are analyzed in detail. The results, obtained with the Finite Element Method (FEM), demonstrate that the amplitude of ripple waves in such nanostructures increases with temperature. Details of the multi-scale multi-physics computational procedure developed for this analysis are also provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title="nanostructures">nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20processes" title=" coupled processes"> coupled processes</a>, <a href="https://publications.waset.org/abstracts/search?q=computer-aided%20design" title=" computer-aided design"> computer-aided design</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnological%20applications" title=" nanotechnological applications"> nanotechnological applications</a> </p> <a href="https://publications.waset.org/abstracts/3549/thermomechanical-effects-and-nanoscale-ripples-in-graphene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3924</span> Dynamic Thermomechanical Behavior of Adhesively Bonded Composite Joints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Sassi">Sonia Sassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostapha%20Tarfaoui"> Mostapha Tarfaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Benyahia"> Hamza Benyahia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite materials are increasingly being used as a substitute for metallic materials in many technological applications like aeronautics, aerospace, marine and civil engineering applications. For composite materials, the thermomechanical response evolves with the strain rate. The energy balance equation for anisotropic, elastic materials includes heat source terms that govern the conversion of some of the kinetic work into heat. The remainder contributes to the stored energy creating the damage process in the composite material. In this paper, we investigate the bulk thermomechanical behavior of adhesively-bonded composite assemblies to quantitatively asses the temperature rise which accompanies adiabatic deformations. In particular, adhesively bonded joints in glass/vinylester composite material are subjected to in-plane dynamic loads under a range of strain rates. Dynamic thermomechanical behavior of this material is investigated using compression Split Hopkinson Pressure Bars (SHPB) coupled with a high speed infrared camera and a high speed camera to measure in real time the dynamic behavior, the damage kinetic and the temperature variation in the material. The interest of using high speed IR camera is in order to view in real time the evolution of heat dissipation in the material when damage occurs. But, this technique does not produce thermal values in correlation with the stress-strain curves of composite material because of its high time response in comparison with the dynamic test time. For this reason, the authors revisit the application of specific thermocouples placed on the surface of the material to ensure the real thermal measurements under dynamic loading using small thermocouples. Experiments with dynamically loaded material show that the thermocouples record temperatures values with a short typical rise time as a result of the conversion of kinetic work into heat during compression test. This results show that small thermocouples can be used to provide an important complement to other noncontact techniques such as the high speed infrared camera. Significant temperature rise was observed in in-plane compression tests especially under high strain rates. During the tests, it has been noticed that sudden temperature rise occur when macroscopic damage occur. This rise in temperature is linked to the rate of damage. The more serve the damage is, a higher localized temperature is detected. This shows the strong relationship between the occurrence of damage and induced heat dissipation. For the case of the in plane tests, the damage takes place more abruptly as the strain rate is increased. The difference observed in the obtained thermomechanical response in plane compression is explained only by the difference in the damage process being active during the compression tests. In this study, we highlighted the dependence of the thermomechanical response on the strain rate of bonded specimens. The effect of heat dissipation of this material cannot hence be ignored and should be taken into account when defining damage models during impact loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesively-bonded%20composite%20joints" title="adhesively-bonded composite joints">adhesively-bonded composite joints</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20compression%20tests" title=" dynamic compression tests"> dynamic compression tests</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20balance" title=" energy balance"> energy balance</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20dissipation" title=" heat dissipation"> heat dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=SHPB" title=" SHPB"> SHPB</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechanical%20behavior" title=" thermomechanical behavior"> thermomechanical behavior</a> </p> <a href="https://publications.waset.org/abstracts/76693/dynamic-thermomechanical-behavior-of-adhesively-bonded-composite-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3923</span> Thermomechanical Simulation of Equipment Subjected to an Oxygen Pressure and Heated Locally by the Ignition of Small Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Ayfi">Khaled Ayfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In industrial oxygen systems at high temperature and high pressure, contamination by solid particles is one of the principal causes of ignition hazards. Indeed, gas can sweep away particles, generated by corrosion inside the pipes or during maintenance operations (welding residues, careless disassembly, etc.) and produce accumulations at places where the gas velocity decrease. Moreover, in such an environment rich in oxygen (oxidant), particles are highly reactive and can ignite system walls more actively and at higher temperatures. Oxidation based thermal effects are responsible for mechanical properties lost, leading to the destruction of the pressure equipment wall. To deal with this problem, a numerical analysis is done regarding a sample representative of a wall subjected to pressure and temperature. The validation and analysis are done comparing the numerical simulations results to experimental measurements. More precisely, in this work, we propose a numerical model that describes the thermomechanical behavior of thin metal disks under pressure and subjected to laser heating. This model takes into account the geometric and material nonlinearity and has been validated by the comparison of simulation results with experimental measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ignition" title="ignition">ignition</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen" title=" oxygen"> oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechanical%20behavior" title=" thermomechanical behavior"> thermomechanical behavior</a> </p> <a href="https://publications.waset.org/abstracts/118635/thermomechanical-simulation-of-equipment-subjected-to-an-oxygen-pressure-and-heated-locally-by-the-ignition-of-small-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3922</span> Mechanical and Thermal Stresses in A Functionally Graded Cylinders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kur%C5%9Fun">Ali Kurşun</a>, <a href="https://publications.waset.org/abstracts/search?q=Emre%20Kara"> Emre Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=Erhan%20%C3%87etin"> Erhan Çetin</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eafak%20Aksoy"> Şafak Aksoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Kesimli"> Ahmet Kesimli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, thermal elastic stress distribution occurred on long hollow cylinders made of functionally graded material (FGM) was analytically defined under thermal, mechanical and thermo mechanical loads. In closed form solutions for elastic stresses and displacements are obtained analytically by using the infinitesimal deformation theory of elasticity. It was assumed that elasticity modulus, thermal expansion coefficient and density of cylinder materials could change in terms of an exponential function as for that Poisson’s ratio was constant. A gradient parameter n is chosen between - 1 and 1. When n equals to zero, the disc becomes isotropic. Circumferential, radial and longitudinal stresses in the FGMs cylinders are depicted in the figures. As a result, the gradient parameters have great effects on the stress systems of FGMs cylinders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20materials" title="functionally graded materials">functionally graded materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelasticity" title=" thermoelasticity"> thermoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechanical%20load" title=" thermomechanical load"> thermomechanical load</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20cylinder." title=" hollow cylinder. "> hollow cylinder. </a> </p> <a href="https://publications.waset.org/abstracts/2644/mechanical-and-thermal-stresses-in-a-functionally-graded-cylinders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3921</span> Thermomechanical Deformation Response in Cold Sprayed SiCp/Al Composites: Strengthening, Microstructure Characterization, and Thermomechanical Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Gyansah">L. Gyansah</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanfang%20Shen"> Yanfang Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiqiang%20Wang"> Jiqiang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tianying%20Xiong"> Tianying Xiong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SiCₚ/ pure Al composites with different SiC fractions (20 wt %, 30 wt %, and 40 wt %) were precisely cold sprayed, followed by hot axial-compression tests at deformation temperatures of 473 K to 673 K, leading to failure of specimens through routine crack propagation in their multiphase. The plastic deformation behaviour with respect to the SiCₚ contents and the deformation temperatures were studied at strain rate 1s-1.As-sprayed and post-failure specimens were analyzed by X-ray computed tomography (XCT), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Quasi-static thermomechanical testing results revealed that compressive strength (UTS = 228 MPa and 30.4 %) was the highest in the composites that was thermomechanically compressed at 473 K compared to those of the as-sprayed, while the as-sprayed exhibited a compressive strength of 182.8 MPa related to the increment in SiC fraction. Strength—plasticity synergy was promoted by dynamic recrystallization (DRX) through strengthening and refinement of the grains. The DRX degree depends relevantly on retainment of the uniformly ultrafine SiCₚ particulates, the pinning effects of the interfaces promoted by the ultrafine grain structures (UFG), and the higher deformation temperature. Reconstructed X-ray computed tomography data revealed different crack propagation mechanisms. A single-plane shear crack with multi-laminates fracture morphology yields relatively through the as-sprayed and as-deformed at 473 K deposits, while a multiphase plane shear cracks preeminently existed in high temperature deformed deposits resulting in multiphase-interface delaminations. Three pertinent strengthening mechanisms, videlicet, SiCp dispersed strengthening, refined grain strengthening, and dislocation strengthening, existed in the gradient microstructure, and their detailed contributions to the thermomechanical properties were discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20spraying" title="cold spraying">cold spraying</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20deformation" title=" hot deformation"> hot deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation%20temperature" title=" deformation temperature"> deformation temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechancal%20properties" title=" thermomechancal properties"> thermomechancal properties</a>, <a href="https://publications.waset.org/abstracts/search?q=SiC%2FAl%20composite" title=" SiC/Al composite"> SiC/Al composite</a> </p> <a href="https://publications.waset.org/abstracts/159583/thermomechanical-deformation-response-in-cold-sprayed-sicpal-composites-strengthening-microstructure-characterization-and-thermomechanical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3920</span> The Interaction between Hydrogen and Surface Stress in Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osamu%20Takakuwa">Osamu Takakuwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuta%20Mano"> Yuta Mano</a>, <a href="https://publications.waset.org/abstracts/search?q=Hitoshi%20Soyama"> Hitoshi Soyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reveals the interaction between hydrogen and surface stress in austenitic stainless steel by X-ray diffraction stress measurement and thermal desorption analysis before and after being charged with hydrogen. The surface residual stress was varied by surface finishing using several disc polishing agents. The obtained results show that the residual stress near surface had a significant effect on hydrogen absorption behavior, that is, tensile residual stress promoted the hydrogen absorption and compressive one did opposite. Also, hydrogen induced equi-biaxial stress and this stress has a linear correlation with hydrogen content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20embrittlement" title="hydrogen embrittlement">hydrogen embrittlement</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20finishing" title=" surface finishing"> surface finishing</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a> </p> <a href="https://publications.waset.org/abstracts/16765/the-interaction-between-hydrogen-and-surface-stress-in-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3919</span> Habits for Teenagers to Remain Unruffled by Stress When They Enter the Workforce</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Nath">Sandeep Nath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are good stresses and bad stresses. To tell the difference, recognize early signs of stress, and label stress conditions correctly, we need to understand stress triggers and the mechanism of stress as it arises. By understanding this in our teenage years, we can be prepared to prevent harmful stress from escalating and ruining health, physical, mental, and emotional. We can also prepare others/peers to be stress-free. The understanding of this is available in a form closest to our natural being, in ancient oriental wisdom, and is brought together as actionable habits in the movement called RENEWALism. The constructs of RENEWALism Habits are detailed in this paper, and case studies are presented of teenagers who have been equipped with both capability and capacity to handle their situations and environments independently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=habits" title="habits">habits</a>, <a href="https://publications.waset.org/abstracts/search?q=renewalism" title=" renewalism"> renewalism</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=teenagers" title=" teenagers"> teenagers</a> </p> <a href="https://publications.waset.org/abstracts/145956/habits-for-teenagers-to-remain-unruffled-by-stress-when-they-enter-the-workforce" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3918</span> Mindful Habits to Remain Unruffled by Stress in the Workplace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Nath">Sandeep Nath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are good stresses and bad stresses. To tell the difference, recognize early signs of stress, and label stress conditions correctly, we need to understand stress triggers and the mechanism of stress as it arises. By understanding this through mindfulness of body, mind, and spirit, we can be prepared to prevent harmful stress from escalating and ruining health; physical, mental, and emotional. We can also prepare others/peers to be stress-free. The understanding of this is available in a form closest to our natural being, in ancient oriental wisdom, and is brought together as actionable habits in the movement called RENEWALism. The constructs of RENEWALism Habits are detailed in this paper, and case studies presented of how mindfulness has equipped individuals with both capability and capacity to handle their situations and environments despite the odds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=habits" title="habits">habits</a>, <a href="https://publications.waset.org/abstracts/search?q=mindfulness" title=" mindfulness"> mindfulness</a>, <a href="https://publications.waset.org/abstracts/search?q=renewalism" title=" renewalism"> renewalism</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a> </p> <a href="https://publications.waset.org/abstracts/146115/mindful-habits-to-remain-unruffled-by-stress-in-the-workplace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3917</span> Rheological and Thermomechanical Properties of Graphene/ABS/PP Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marianna%20I.%20Triantou">Marianna I. Triantou</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantina%20I.%20Stathi"> Konstantina I. Stathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Petroula%20A.%20Tarantili"> Petroula A. Tarantili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the incorporation of graphene into blends of acrylonitrile-butadiene-styrene terpolymer with polypropylene (ABS/PP) was investigated focusing on the improvement of their thermomechanical characteristics and the effect on their rheological behavior. The blends were prepared by melt mixing in a twin-screw extruder and were characterized by measuring the MFI as well as by performing DSC, TGA and mechanical tests. The addition of graphene to ABS/PP blends tends to increase their melt viscosity, due to the confinement of polymer chains motion. Also, graphene causes an increment of the crystallization temperature (Tc), especially in blends with higher PP content, because of the reduction of surface energy of PP nucleation, which is a consequence of the attachment of PP chains to the surface of graphene through the intermolecular CH-π interaction. Moreover, the above nanofiller improves the thermal stability of PP and increases the residue of thermal degradation at all the investigated compositions of blends, due to the thermal isolation effect and the mass transport barrier effect. Regarding the mechanical properties, the addition of graphene improves the elastic modulus, because of its intrinsic mechanical characteristics and its rigidity, and this effect is particularly strong in the case of pure PP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acrylonitrile-butadiene-styrene%20terpolymer" title="acrylonitrile-butadiene-styrene terpolymer">acrylonitrile-butadiene-styrene terpolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=blends" title=" blends"> blends</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a> </p> <a href="https://publications.waset.org/abstracts/9228/rheological-and-thermomechanical-properties-of-grapheneabspp-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3916</span> Failure and Stress Analysis of Super Heater Tubes of a 67 TPH Coke Dry Quenching Boiler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subodh%20N.%20Patel">Subodh N. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhijit%20Pusty"> Abhijit Pusty</a>, <a href="https://publications.waset.org/abstracts/search?q=Manashi%20Adhikary"> Manashi Adhikary</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandip%20Bhattacharyya"> Sandip Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The steam superheater (SH) is a coil type heat exchanger which is used to produce superheated steam or to convert the wet steam to dry steam (69.6 kg/cm² and 495°C), generated by a boiler. There were two superheaters in the system, SH I and SH II. SH II is a set of tubes that faces the initial interaction with flue gas at high temperature followed by SH I tubes. After a service life of 2100 hours, a tube in the SH II found to be punctured. Dye penetrant test revealed that out of 50 such tubes, 14 more tubes had severe cracks at a similar location. The failure was investigated in detail. The materials and scale were characterized by optical microscope and advance characterization technique. Scale, observed on fracture surface, was characterized under scanning electron microscope and Raman spectroscopy. Stresses acting on the tubes in working condition were analyzed by finite element method software, ANSYS. Cyclic stresses were observed in the simulation at the same prone location due to restriction in expansion of tubes. Based on scale characterization and stress analysis, it was concluded that the tube failed in thermo-mechanical fatigue. Finally, prevention and control measures were taken to avoid such failure in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title="finite element analysis">finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=oxide%20scale" title=" oxide scale"> oxide scale</a>, <a href="https://publications.waset.org/abstracts/search?q=superheater%20tube" title=" superheater tube"> superheater tube</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechanical%20fatigue" title=" thermomechanical fatigue"> thermomechanical fatigue</a> </p> <a href="https://publications.waset.org/abstracts/107171/failure-and-stress-analysis-of-super-heater-tubes-of-a-67-tph-coke-dry-quenching-boiler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3915</span> Measurements of Recovery Stress and Recovery Strain of Ni-Based Shape Memory Alloys </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20J.%20Kim">W. J. Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The behaviors of the recovery stress and strain of an ultrafine-grained Ni-50.2 at.% Ti alloy prepared by high-ratio differential speed rolling (HRDSR) were examined by a specially designed tensile-testing set up, and the factors that influence the recovery stress and strain were studied. After HRDSR, both the recovery stress and strain were enhanced compared to the initial condition. The constitutive equation showing that the maximum recovery stress is a sole function of the recovery strain was developed based on the experimental data. The recovery strain increased as the yield stress increased. The maximum recovery stress increased with an increase in yield stress. The residual recovery stress was affected by the yield stress as well as the austenite-to-martensite transformation temperature. As the yield stress increased and as the martensitic transformation temperature decreased, the residual recovery stress increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-ratio%20differential%20speed%20rolling" title="high-ratio differential speed rolling">high-ratio differential speed rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20testing" title=" tensile testing"> tensile testing</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20plastic%20deformation" title=" severe plastic deformation"> severe plastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloys" title=" shape memory alloys"> shape memory alloys</a> </p> <a href="https://publications.waset.org/abstracts/69337/measurements-of-recovery-stress-and-recovery-strain-of-ni-based-shape-memory-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3914</span> Plastic Strain Accumulation Due to Asymmetric Cyclic Loading of Zircaloy-2 at 400°C</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Rajpurohit">R. S. Rajpurohit</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20C.%20Santhi%20Srinivas"> N. C. Santhi Srinivas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vakil%20Singh"> Vakil Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Asymmetric stress cycling leads to accumulation of plastic strain which is called as ratcheting strain. The problem is generally associated with nuclear fuel cladding materials used in nuclear power plants and pressurized pipelines. In the present investigation, asymmetric stress controlled fatigue tests were conducted with three different parameters namely, mean stress, stress amplitude and stress rate (keeping two parameters constant and varying third parameter) to see the plastic strain accumulation and its effect on fatigue life and deformation behavior of Zircaloy-2 at 400°C. The tests were conducted with variable mean stress (45-70 MPa), stress amplitude (95-120 MPa) and stress rate (30-750 MPa/s) and tested specimens were characterized using transmission and scanning electron microscopy. The experimental results show that with the increase in mean stress and stress amplitude, the ratcheting strain accumulation increases with reduction in fatigue life. However, increase in stress rate leads to improvement in fatigue life of the material due to small ratcheting strain accumulation. Fractographs showed a decrease in area fraction of fatigue failed region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20cyclic%20loading" title="asymmetric cyclic loading">asymmetric cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=ratcheting%20fatigue" title=" ratcheting fatigue"> ratcheting fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20stress" title=" mean stress"> mean stress</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20amplitude" title=" stress amplitude"> stress amplitude</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20rate" title=" stress rate"> stress rate</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20strain" title=" plastic strain"> plastic strain</a> </p> <a href="https://publications.waset.org/abstracts/70722/plastic-strain-accumulation-due-to-asymmetric-cyclic-loading-of-zircaloy-2-at-400c" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3913</span> Effect of Different Thermomechanical Cycles on Microstructure of AISI 4140 Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.L.%20Costa">L.L. Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20G.%20Brito"> A. M. G. Brito</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Khan"> S. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Schaeffer"> L. Schaeffer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microstructure resulting from the forging process is studied as a function of variables such as temperature, deformation, austenite grain size and cooling rate. The purpose of this work is to study the thermomechanical behavior of DIN 42CrMo4 (AISI 4140) steel maintained at the temperatures of 900°, 1000°, 1100° and 1200°C for the austenization times of 22, 66 and 200 minutes each and subsequently forged. These samples were quenched in water in order to study the austenite grain and to investigate the microstructure instead of quenching the annealed samples after forging they were cooled down naturally in the air. The morphologies and properties of the materials such as hardness; prepared by these two different routes have been compared. In addition to the forging experiments, the numerical simulation using the finite element model (FEM), microhardness profiles and metallography images have been presented. Forging force vs position curves has been compared with metallographic results for each annealing condition. The microstructural phenomena resulting from the hot conformation proved that longer austenization time and higher temperature decrease the forging force in the curves. The complete recrystallization phenomenon (static, dynamic and meta dynamic) was observed at the highest temperature and longest time i.e., the samples austenized for 200 minutes at 1200ºC. However, higher hardness of the quenched samples was obtained when the temperature was 900ºC for 66 minutes. The phases observed in naturally cooled samples were exclusively ferrite and perlite, but the continuous cooling diagram indicates the presence of austenite and bainite. The morphology of the phases of naturally cooled samples has shown that the phase arrangement and the previous austenitic grain size are the reasons to high hardness in obtained samples when temperature were 900ºC and 1100ºC austenization times of 22 and 66 minutes, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=austenization%20time" title="austenization time">austenization time</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechanical%20effects" title=" thermomechanical effects"> thermomechanical effects</a>, <a href="https://publications.waset.org/abstracts/search?q=forging%20process" title=" forging process"> forging process</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20AISI%204140" title=" steel AISI 4140"> steel AISI 4140</a> </p> <a href="https://publications.waset.org/abstracts/89602/effect-of-different-thermomechanical-cycles-on-microstructure-of-aisi-4140-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3912</span> Relationship between Stress and Personality in Young Adults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sneha%20Sadana">Sneha Sadana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human beings are unique and so are their reactions towards varied stimuli. This study focuses on the impact personality has on how one deals with stressful situations. It can be intriguing to know how big of an impact our personality has on the way we react and how it is wired in us to respond to things in a particular manner all because of our personality and the traits which make us who we are. The study was done on 150 college going students, 75 males and 75 females mainly from Ahmedabad, India pursuing a variety of different streams and subjects. The questionnaire consists of two standardized questionnaires which measure stress and personality. The Student Stress Scale by Manju Agarwal evaluates stress of subjects and the big five personality locator by Norman. The findings showed that there exists a positive relationship between stress and neuroticism and an inverse relationship between stress and sociability, stress and openness, stress and agreeableness and stress and conscientiousness. And on doing a further comparative analysis on personality types of the same sample it was found out that females were more agreeable, followed by conscientiousness, sociability, openness, and neuroticism. In males, however, it was observed that males were more agreeable, followed by conscientiousness, neuroticism, sociability, and openness <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=college%20students" title="college students">college students</a>, <a href="https://publications.waset.org/abstracts/search?q=personality" title=" personality"> personality</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=theories%20of%20personality" title=" theories of personality"> theories of personality</a> </p> <a href="https://publications.waset.org/abstracts/85821/relationship-between-stress-and-personality-in-young-adults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3911</span> The Influence of Residual Stress on Hardness and Microstructure in Railway Rails</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammet%20Emre%20Turan">Muhammet Emre Turan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sait%20%C3%96z%C3%A7elik"> Sait Özçelik</a>, <a href="https://publications.waset.org/abstracts/search?q=Yavuz%20Sun"> Yavuz Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In railway rails, residual stress was measured and the values of residual stress were associated with hardness and micro structure in this study. At first, three rails as one meter long were taken and residual stresses were measured by cutting method according to the EN 13674-1 standardization. In this study, strain gauge that is an electrical apparatus was used. During the cutting, change in resistance in rail gave us residual stress value via computer program. After residual stress measurement, Brinell hardness distribution were performed for head parts of rails. Thus, the relationship between residual stress and hardness were established. In addition to that, micro structure analysis was carried out by optical microscope. The results show that, the micro structure and hardness value was changed with residual stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title="residual stress">residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20structure" title=" micro structure"> micro structure</a>, <a href="https://publications.waset.org/abstracts/search?q=rail" title=" rail"> rail</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20gauge" title=" strain gauge "> strain gauge </a> </p> <a href="https://publications.waset.org/abstracts/15651/the-influence-of-residual-stress-on-hardness-and-microstructure-in-railway-rails" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">602</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3910</span> Simulation of Stress in Graphite Anode of Lithium-Ion Battery: Intra and Inter-Particle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenxin%20Mei">Wenxin Mei</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinhua%20Sun"> Jinhua Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingsong%20Wang"> Qingsong Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The volume expansion of lithium-ion batteries is mainly induced by intercalation induced stress within the negative electrode, resulting in capacity degradation and even battery failure. Stress generation due to lithium intercalation into graphite particles is investigated based on an electrochemical-mechanical model in this work. The two-dimensional model presented is fully coupled, inclusive of the impacts of intercalation-induced stress, stress-induced intercalation, to evaluate the lithium concentration, stress generation, and displacement intra and inter-particle. The results show that the distribution of lithium concentration and stress exhibits an analogous pattern, which reflects the relation between lithium diffusion and stress. The results of inter-particle stress indicate that larger Von-Mises stress is displayed where the two particles are in contact with each other, and deformation at the edge of particles is also observed, predicting fracture. Additionally, the maximum inter-particle stress at the end of lithium intercalation is nearly ten times the intraparticle stress. And the maximum inter-particle displacement is increased by 24% compared to the single-particle. Finally, the effect of graphite particle arrangement on inter-particle stress is studied. It is found that inter-particle stress with tighter arrangement exhibits lower stress. This work can provide guidance for predicting the intra and inter-particle stress to take measures to avoid cracking of electrode material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical-mechanical%20model" title="electrochemical-mechanical model">electrochemical-mechanical model</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite%20particle" title=" graphite particle"> graphite particle</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20concentration" title=" lithium concentration"> lithium concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20ion%20battery" title=" lithium ion battery"> lithium ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a> </p> <a href="https://publications.waset.org/abstracts/128469/simulation-of-stress-in-graphite-anode-of-lithium-ion-battery-intra-and-inter-particle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3909</span> Variation in Adaptation Strategies of Commelina Communis L. Biotypes under Drought Stress Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Haroon">Muhammad Haroon</a>, <a href="https://publications.waset.org/abstracts/search?q=LI%20Xiangju"> LI Xiangju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> C. communis L. is an important weed of many crop, but very little information about the adaptation strategies of C. communis L. biotypes under drought stress. We investigated five biotypes of C. communis L under drought stress to identify the adaptation mechanism. The expression of drought stress related genes (DRS1, EREB and HRB1) was up-regulated in biotypes, while in some biotypes their expression was down regulated. All five biotypes can thus regulate water balance to consume less water to maintain their status under drought stress condition. This result concluded that C. communis L. biotypes can survive longer under drought stress condition. Weed scientist should seek more effective management strategies to deal with C. communis L. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20communis" title="C. communis">C. communis</a>, <a href="https://publications.waset.org/abstracts/search?q=biotypes" title=" biotypes"> biotypes</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title=" drought stress"> drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression "> gene expression </a> </p> <a href="https://publications.waset.org/abstracts/128956/variation-in-adaptation-strategies-of-commelina-communis-l-biotypes-under-drought-stress-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3908</span> The Impact of Resource-oriented Music Listening on Oversea Dispatch Employees Work Stress Relief</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yaming">Wei Yaming</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: In order to compare the stress of employees sent overseas with (GRAS) before and after, we used the resource-oriented music listening intervention in this study. We also collected pertinent experimental data. Methods: The experiment involved 47 employees who were sent abroad by the Chinese side. They completed the stress scale test and documented it before the intervention. They tested for stress after five interventions and performed one-on-one interviews. Quantitative data and SPSS software were used to analyze relationships between stress reduction and resource-oriented music listening, as well as Pearson's correlation, multiple regression levels, and ANOVA. For the qualitative analysis, content analysis of one-on-one interviews was performed. Results: A comparison of data from before and after demonstrates how resource-focused music listening activities can lessen and relieve stress in remote workers. In the qualitative study, stress is broken down into six categories: relationship stress, health stress, emotional stress, and frustration stress. External pressures include work pressure and cultural stress. And it has been determined that listening to music that is resource-oriented can better ease internal stress (health, emotion, and dissatisfaction). Conclusion: The Guide Resource-oriented Music Listening (GROML) Program appears to have had some effect on the participants' stress levels. The resources that the participants encountered while listening to music are bravery, calm, letting go, and relaxing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resource-oriented" title="resource-oriented">resource-oriented</a>, <a href="https://publications.waset.org/abstracts/search?q=music%20listening" title=" music listening"> music listening</a>, <a href="https://publications.waset.org/abstracts/search?q=oversea%20dispatch%20employees" title=" oversea dispatch employees"> oversea dispatch employees</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20stress" title=" work stress"> work stress</a> </p> <a href="https://publications.waset.org/abstracts/166122/the-impact-of-resource-oriented-music-listening-on-oversea-dispatch-employees-work-stress-relief" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3907</span> Effectiveness of Raga Desi Todi on Depression, Anxiety and Stress Among Adults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sushila%20Pareek">Sushila Pareek</a>, <a href="https://publications.waset.org/abstracts/search?q=Divya%20Shekhawat"> Divya Shekhawat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Music has been shown as a therapeutic agent in depression, anxiety, and stress. A pilot study was carried out to see the therapeutic effects of Indian classical instrumental Raga Todi on depression, anxiety, and stress. 50 individuals diagnosed with depression, anxiety, and stress with DSM-V were taken for the study. Subjects were randomly divided into two groups: the experimental group and the control group. The experimental group received the instrumental raga Todi whereas the other control group didn't receive any intervention. DASS-21 was used on the baseline and after the intervention to measure depression, anxiety, and stress. The result indicates that anxiety, stress, and depression level was reduced after listening to the raga desi Todi. It was concluded that raga desi Todi is an effective intervention for reducing depression, anxiety, and stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=raga" title="raga">raga</a>, <a href="https://publications.waset.org/abstracts/search?q=anxiety" title=" anxiety"> anxiety</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=depression" title=" depression"> depression</a>, <a href="https://publications.waset.org/abstracts/search?q=DASS-21" title=" DASS-21"> DASS-21</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20health" title=" mental health"> mental health</a> </p> <a href="https://publications.waset.org/abstracts/153927/effectiveness-of-raga-desi-todi-on-depression-anxiety-and-stress-among-adults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3906</span> The Comparison of of Stress Level between Students with Parents and Those without Parents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hendeh%20Majdi">Hendeh Majdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Arzjani"> Zahra Arzjani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aimed at the comparison of level of stress between students had parents and those without parents by descriptive-analytical study. To do research number of 128 questionnaires (64 students with parents and 64 students without parents) were distributed among high school in Ray city, Tehran province through classified sampling. The results showed that level of stress in stud tent without parents has been effective and the most important proposal is that necessity study should be considered in decreasing level of stress in students without parent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress" title="stress">stress</a>, <a href="https://publications.waset.org/abstracts/search?q=students%20with%20parents" title=" students with parents"> students with parents</a>, <a href="https://publications.waset.org/abstracts/search?q=without%20parents" title=" without parents"> without parents</a>, <a href="https://publications.waset.org/abstracts/search?q=Ray%20city" title=" Ray city"> Ray city</a> </p> <a href="https://publications.waset.org/abstracts/3833/the-comparison-of-of-stress-level-between-students-with-parents-and-those-without-parents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3905</span> Strategies to Improve Heat Stress Tolerance in Chickpea and Dissecting the Cross Talk Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Renu%20Yadav">Renu Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Kumar"> Sanjeev Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In northern India, chickpea (Cicer arietinum L.) come across with terminal high-temperature stress during reproductive stage which leads to reduced yield. Hence, stable production of chickpea will depend on the development of new methods like ‘priming’ which allow improved adaptation to the drought and heat stress. In the present experiment, 11-day chickpea seedling was primed with mild drought stress and put on recovery stage by irrigating and finally 30-day seedlings were exposed to heat stress 38°C (4 hours), 35°C (8 hours) and 32°C (12 hours). To study the effect of combinatorial stress, heat and drought stress was applied simultaneously. Analyses of various physiological parameters like membrane damage assay, photosynthetic pigments, antioxidative enzyme, total sugars were estimated at all stages. To study the effect of heat stress on the metabolites of the plants, GC-MS and HPLC were performed, while at transcriptional level Real-Time PCR of predicted heat stress-related genes was done. It was concluded that the heat stress significantly affected the chickpea plant at physiological and molecular level in all the five varieties. Results also show less damaging effect in primed plants by increasing the activity of antioxidative enzymes and increased expression of heat shock proteins and heat shock factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chickpea" title="chickpea">chickpea</a>, <a href="https://publications.waset.org/abstracts/search?q=combinatorial%20stress" title=" combinatorial stress"> combinatorial stress</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20stress" title=" heat stress"> heat stress</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=priming" title=" priming"> priming</a>, <a href="https://publications.waset.org/abstracts/search?q=RT-PCR" title=" RT-PCR"> RT-PCR</a> </p> <a href="https://publications.waset.org/abstracts/100789/strategies-to-improve-heat-stress-tolerance-in-chickpea-and-dissecting-the-cross-talk-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3904</span> Simplified Linearized Layering Method for Stress Intensity Factor Determination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeries%20J.%20Abou-Hanna">Jeries J. Abou-Hanna</a>, <a href="https://publications.waset.org/abstracts/search?q=Bradley%20Storm"> Bradley Storm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper looks to reduce the complexity of determining stress intensity factors while maintaining high levels of accuracy by the use of a linearized layering approach. Many techniques for stress intensity factor determination exist, but they can be limited by conservative results, requiring too many user parameters, or by being too computationally intensive. Multiple notch geometries with various crack lengths were investigated in this study to better understand the effectiveness of the proposed method. By linearizing the average stresses in radial layers around the crack tip, stress intensity factors were found to have error ranging from -10.03% to 8.94% when compared to analytically exact solutions. This approach proved to be a robust and efficient method of accurately determining stress intensity factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture%20mechanics" title="fracture mechanics">fracture mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title=" stress intensity factor"> stress intensity factor</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20linearization" title=" stress linearization"> stress linearization</a> </p> <a href="https://publications.waset.org/abstracts/146820/simplified-linearized-layering-method-for-stress-intensity-factor-determination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3903</span> Estimation of Stress Intensity Factors from near Crack Tip Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhuang%20He">Zhuang He</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrei%20Kotousov"> Andrei Kotousov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All current experimental methods for determination of stress intensity factors are based on the assumption that the state of stress near the crack tip is plane stress. Therefore, these methods rely on strain and displacement measurements made outside the near crack tip region affected by the three-dimensional effects or by process zone. In this paper, we develop and validate an experimental procedure for the evaluation of stress intensity factors from the measurements of the out-of-plane displacements in the surface area controlled by 3D effects. The evaluation of stress intensity factors is possible when the process zone is sufficiently small, and the displacement field generated by the 3D effects is fully encapsulated by K-dominance region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title="digital image correlation">digital image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factors" title=" stress intensity factors"> stress intensity factors</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20effects" title=" three-dimensional effects"> three-dimensional effects</a>, <a href="https://publications.waset.org/abstracts/search?q=transverse%20displacement" title=" transverse displacement"> transverse displacement</a> </p> <a href="https://publications.waset.org/abstracts/32294/estimation-of-stress-intensity-factors-from-near-crack-tip-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">615</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermo-mechanical%20stress&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermo-mechanical%20stress&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermo-mechanical%20stress&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermo-mechanical%20stress&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermo-mechanical%20stress&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermo-mechanical%20stress&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermo-mechanical%20stress&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermo-mechanical%20stress&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermo-mechanical%20stress&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermo-mechanical%20stress&page=131">131</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermo-mechanical%20stress&page=132">132</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermo-mechanical%20stress&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>