CINXE.COM

Richard Everson - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Richard Everson - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="T/LF7qonNhDdnWoE52p05aAN8XoBc4TEOELTANYrC/SoYAHBXOs/yzuryktH3P9KMaFCetnIKV5T2MAETVDq0Q==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="richard everson" /> <meta name="description" content="Richard Everson: 72 Followers, 6 Following, 277 Research papers. Research interests: Multiobjective Optimization, Reinforcement Learning, and Multi-Objective…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15275,"monthly_visitors":"113 million","monthly_visitor_count":113468711,"monthly_visitor_count_in_millions":113,"user_count":277148383,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732410762000); window.Aedu.timeDifference = new Date().getTime() - 1732410762000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/EversonR" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":13445,"name":"Multiobjective Optimization","url":"https://www.academia.edu/Documents/in/Multiobjective_Optimization"},{"id":1688,"name":"Reinforcement Learning","url":"https://www.academia.edu/Documents/in/Reinforcement_Learning"},{"id":89916,"name":"Multi-Objective Optimization","url":"https://www.academia.edu/Documents/in/Multi-Objective_Optimization"},{"id":160308,"name":"Behavioral Psychology","url":"https://www.academia.edu/Documents/in/Behavioral_Psychology"},{"id":1701,"name":"Evolutionary algorithms","url":"https://www.academia.edu/Documents/in/Evolutionary_algorithms"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/EversonR&quot;,&quot;location&quot;:&quot;/EversonR&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/EversonR&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-a301ef39-3687-4c68-9177-5369f3f46bd7"></div> <div id="ProfileCheckPaperUpdate-react-component-a301ef39-3687-4c68-9177-5369f3f46bd7"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Richard Everson</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Richard" data-follow-user-id="31636764" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="31636764"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">72</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">6</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">4</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="31636764" href="https://www.academia.edu/Documents/in/Multiobjective_Optimization"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/EversonR&quot;,&quot;location&quot;:&quot;/EversonR&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/EversonR&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Multiobjective Optimization&quot;]}" data-trace="false" data-dom-id="Pill-react-component-1bab83cb-0066-445a-a24a-88d62b208722"></div> <div id="Pill-react-component-1bab83cb-0066-445a-a24a-88d62b208722"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="31636764" href="https://www.academia.edu/Documents/in/Reinforcement_Learning"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Reinforcement Learning&quot;]}" data-trace="false" data-dom-id="Pill-react-component-37e42fb6-555e-4fa6-9764-8aa4a83415a4"></div> <div id="Pill-react-component-37e42fb6-555e-4fa6-9764-8aa4a83415a4"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="31636764" href="https://www.academia.edu/Documents/in/Multi-Objective_Optimization"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Multi-Objective Optimization&quot;]}" data-trace="false" data-dom-id="Pill-react-component-472538e4-d0f1-4563-8e7b-364bc3308c52"></div> <div id="Pill-react-component-472538e4-d0f1-4563-8e7b-364bc3308c52"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="31636764" href="https://www.academia.edu/Documents/in/Behavioral_Psychology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Behavioral Psychology&quot;]}" data-trace="false" data-dom-id="Pill-react-component-398aec84-593e-4b71-985d-9ee25823466e"></div> <div id="Pill-react-component-398aec84-593e-4b71-985d-9ee25823466e"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="31636764" href="https://www.academia.edu/Documents/in/Evolutionary_algorithms"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Evolutionary algorithms&quot;]}" data-trace="false" data-dom-id="Pill-react-component-f0a896f7-9f7f-494e-9403-4df5b02c4a86"></div> <div id="Pill-react-component-f0a896f7-9f7f-494e-9403-4df5b02c4a86"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Richard Everson</h3></div><div class="js-work-strip profile--work_container" data-work-id="124421599"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421599/What_do_you_Mean_The_Role_of_the_Mean_Function_in_Bayesian_Optimisation"><img alt="Research paper thumbnail of What do you Mean? The Role of the Mean Function in Bayesian Optimisation" class="work-thumbnail" src="https://attachments.academia-assets.com/118650141/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421599/What_do_you_Mean_The_Role_of_the_Mean_Function_in_Bayesian_Optimisation">What do you Mean? The Role of the Mean Function in Bayesian Optimisation</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Apr 17, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f1f45abf4cb44691a8a809f62a80a991" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650141,&quot;asset_id&quot;:124421599,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650141/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421599"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421599"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421599; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421599]").text(description); $(".js-view-count[data-work-id=124421599]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421599; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421599']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421599, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f1f45abf4cb44691a8a809f62a80a991" } } $('.js-work-strip[data-work-id=124421599]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421599,"title":"What do you Mean? The Role of the Mean Function in Bayesian Optimisation","translated_title":"","metadata":{"publisher":"Cornell University","publication_date":{"day":17,"month":4,"year":2020,"errors":{}},"publication_name":"arXiv (Cornell University)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421599/What_do_you_Mean_The_Role_of_the_Mean_Function_in_Bayesian_Optimisation","translated_internal_url":"","created_at":"2024-10-04T08:49:47.022-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650141,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650141/thumbnails/1.jpg","file_name":"downloadSupplement.pdf","download_url":"https://www.academia.edu/attachments/118650141/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"What_do_you_Mean_The_Role_of_the_Mean_Fu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650141/downloadSupplement-libre.pdf?1728057635=\u0026response-content-disposition=attachment%3B+filename%3DWhat_do_you_Mean_The_Role_of_the_Mean_Fu.pdf\u0026Expires=1732414361\u0026Signature=S~RX8vdjwDJdWK3JuHvrXCAwCJBc68lQDztwx8y~pL3iyJvUepGIYLlx~COqinJ76b4purx0t6H1~urm~Eg5jQb8ir2xFW0eM6aTmWvSOAcXwthiqWM5rSsCOJU1kE52xm-kZJ8kfMtbP635X4Ql-AamnM8~s1wk0J2tG6CJLFqwV1lxZDDgBS6QGJ47ErXms4isSv64wufDHjLZshpvhsH7LYfy1k~fLrECPgystrfnq9oluYYa0DMnVgMIa2OdJyPzLcuN0AlLV~K7RLc1JPZr8uq2Df~wkJFH7oPvjMOEjGwFb9mZlXiLfHHEq3vrEkVtaopZv1tp2zJHEN3o4g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"What_do_you_Mean_The_Role_of_the_Mean_Function_in_Bayesian_Optimisation","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650141,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650141/thumbnails/1.jpg","file_name":"downloadSupplement.pdf","download_url":"https://www.academia.edu/attachments/118650141/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"What_do_you_Mean_The_Role_of_the_Mean_Fu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650141/downloadSupplement-libre.pdf?1728057635=\u0026response-content-disposition=attachment%3B+filename%3DWhat_do_you_Mean_The_Role_of_the_Mean_Fu.pdf\u0026Expires=1732414361\u0026Signature=S~RX8vdjwDJdWK3JuHvrXCAwCJBc68lQDztwx8y~pL3iyJvUepGIYLlx~COqinJ76b4purx0t6H1~urm~Eg5jQb8ir2xFW0eM6aTmWvSOAcXwthiqWM5rSsCOJU1kE52xm-kZJ8kfMtbP635X4Ql-AamnM8~s1wk0J2tG6CJLFqwV1lxZDDgBS6QGJ47ErXms4isSv64wufDHjLZshpvhsH7LYfy1k~fLrECPgystrfnq9oluYYa0DMnVgMIa2OdJyPzLcuN0AlLV~K7RLc1JPZr8uq2Df~wkJFH7oPvjMOEjGwFb9mZlXiLfHHEq3vrEkVtaopZv1tp2zJHEN3o4g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118650140,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650140/thumbnails/1.jpg","file_name":"downloadSupplement.pdf","download_url":"https://www.academia.edu/attachments/118650140/download_file","bulk_download_file_name":"What_do_you_Mean_The_Role_of_the_Mean_Fu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650140/downloadSupplement-libre.pdf?1728057640=\u0026response-content-disposition=attachment%3B+filename%3DWhat_do_you_Mean_The_Role_of_the_Mean_Fu.pdf\u0026Expires=1732414361\u0026Signature=GkfK9UEFoFkcmMPkmx-bwLWa4IHs3mEBWGG2aiXh~Y-OyBblfkIBtwAyopGNK6XSvHsTUaVR4gVn-zmEKOfXujPSHC1gmAZnR5OuHu5VBnBJUwRwzKKICo2Zemooy8OxIl~Jz4m6rBnT6bXOgmPpppFsv1gub0q~dY3Wrn1EZcL7yCg9pgbfHMNUn1aZPo7kOF-cIj6BZxaVbleM2yObk7HHSrMKQx8nFiu~7BEwJRXIM7cXffcr6quytJ3A47lINOR7Oj3uJt2YQtO9YCEemWkzx6Mk0Pg99CrIEP5EpKYzhMwghl1j0eVYkVaG6kNyMwktHasiwNXkmANUEYtl7Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1032783,"name":"Bayesian Probability","url":"https://www.academia.edu/Documents/in/Bayesian_Probability"}],"urls":[{"id":44976331,"url":"https://dl.acm.org/action/downloadSupplement?doi=10.1145/3377929.3398118\u0026file=p1623_de_ath_suppl.pdf\u0026download=true"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421598"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421598/Precision_and_Recall_Optimisation_for_Information_Access_Tasks"><img alt="Research paper thumbnail of Precision and Recall Optimisation for Information Access Tasks" class="work-thumbnail" src="https://attachments.academia-assets.com/118650137/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421598/Precision_and_Recall_Optimisation_for_Information_Access_Tasks">Precision and Recall Optimisation for Information Access Tasks</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3c0df3761b9e346e6df1042d07aeb50b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650137,&quot;asset_id&quot;:124421598,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650137/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421598"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421598"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421598; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421598]").text(description); $(".js-view-count[data-work-id=124421598]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421598; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421598']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421598, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3c0df3761b9e346e6df1042d07aeb50b" } } $('.js-work-strip[data-work-id=124421598]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421598,"title":"Precision and Recall Optimisation for Information Access Tasks","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2004,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421598/Precision_and_Recall_Optimisation_for_Information_Access_Tasks","translated_internal_url":"","created_at":"2024-10-04T08:49:46.789-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650137,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650137/thumbnails/1.jpg","file_name":"precision_and_recall_2004.pdf","download_url":"https://www.academia.edu/attachments/118650137/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Precision_and_Recall_Optimisation_for_In.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650137/precision_and_recall_2004-libre.pdf?1728057650=\u0026response-content-disposition=attachment%3B+filename%3DPrecision_and_Recall_Optimisation_for_In.pdf\u0026Expires=1732414361\u0026Signature=VcXM78~9J0Duowq6ggyjED7uNd6ivvsj0cgwt33AOXmomNpIgr5hkzj85PK-8K0I2AYdfoioIARPtfA7VyrG8ppEzKtkz4ku~XmGVTx95TTioj9y3EtEl5IxSsLPiFOx8eVysO0rp7QGOJIqs1Tpi5eSAOvOgxySSyLRxvep77pBzR7kuufSbM6cFJHsMYgZGnqK9lnXbIg1rqVcGbSZhaVS6rzo7bXvkoNZdlrviBVsBueVX3SBKWNG1IoyT0kxUQ3g889iEB8xfBHzW33IjZ87u1dfhlML7FuX0UkXRP-b1Pbz6JO3B3cLctxo6Z3aAUg3UmcrvOmctiqcXmKvsA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Precision_and_Recall_Optimisation_for_Information_Access_Tasks","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650137,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650137/thumbnails/1.jpg","file_name":"precision_and_recall_2004.pdf","download_url":"https://www.academia.edu/attachments/118650137/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Precision_and_Recall_Optimisation_for_In.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650137/precision_and_recall_2004-libre.pdf?1728057650=\u0026response-content-disposition=attachment%3B+filename%3DPrecision_and_Recall_Optimisation_for_In.pdf\u0026Expires=1732414361\u0026Signature=VcXM78~9J0Duowq6ggyjED7uNd6ivvsj0cgwt33AOXmomNpIgr5hkzj85PK-8K0I2AYdfoioIARPtfA7VyrG8ppEzKtkz4ku~XmGVTx95TTioj9y3EtEl5IxSsLPiFOx8eVysO0rp7QGOJIqs1Tpi5eSAOvOgxySSyLRxvep77pBzR7kuufSbM6cFJHsMYgZGnqK9lnXbIg1rqVcGbSZhaVS6rzo7bXvkoNZdlrviBVsBueVX3SBKWNG1IoyT0kxUQ3g889iEB8xfBHzW33IjZ87u1dfhlML7FuX0UkXRP-b1Pbz6JO3B3cLctxo6Z3aAUg3UmcrvOmctiqcXmKvsA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118650136,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650136/thumbnails/1.jpg","file_name":"precision_and_recall_2004.pdf","download_url":"https://www.academia.edu/attachments/118650136/download_file","bulk_download_file_name":"Precision_and_Recall_Optimisation_for_In.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650136/precision_and_recall_2004-libre.pdf?1728057650=\u0026response-content-disposition=attachment%3B+filename%3DPrecision_and_Recall_Optimisation_for_In.pdf\u0026Expires=1732414361\u0026Signature=PpeAu6YAZRNJPpLLOz8h3dlry1zPUXoh~rjuAe~d1Ev7Xh3yQJBquHrh~XOuQ8PpbNvUarHI5EcfrTtFKzPPe3RLEGMr54VDzaUpKUAdeUmzUXX1baUPx7RzeJU4fsA3AGxk48Jioxg9alHU1nq5oCsnYlYCIvbBrw8qzklN2CyF0lU3QPDPVHDNiHzBmiDlLvQYeEOQqAKKf0JzNS3HWoelZWodHCPNcekfsnTbvipg0sDFufgcZz~FUY5alnKOEhIIx0Y4MfBcp26HsXwzisb4KLtZpyRvm3Gr8lhKo2iqMvpjqo5Pcbz2lqt9n7~a8BQPlRaYy5RIT7PACMHyeg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":53064,"name":"Information Access","url":"https://www.academia.edu/Documents/in/Information_Access"},{"id":440689,"name":"Recall","url":"https://www.academia.edu/Documents/in/Recall"}],"urls":[{"id":44976330,"url":"https://ore.exeter.ac.uk/repository/bitstream/10871/11687/2/precision_and_recall_2004.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421597"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421597/Multi_Objective_Bayesian_Optimisation_Using_an_Exploitative_Attainment_Front_Acquisition_Function"><img alt="Research paper thumbnail of Multi-Objective Bayesian Optimisation Using an Exploitative Attainment Front Acquisition Function" class="work-thumbnail" src="https://attachments.academia-assets.com/118650138/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421597/Multi_Objective_Bayesian_Optimisation_Using_an_Exploitative_Attainment_Front_Acquisition_Function">Multi-Objective Bayesian Optimisation Using an Exploitative Attainment Front Acquisition Function</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f59fc4ab8c57802e85df19ef4ecacefd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650138,&quot;asset_id&quot;:124421597,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650138/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421597"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421597"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421597; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421597]").text(description); $(".js-view-count[data-work-id=124421597]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421597; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421597']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421597, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f59fc4ab8c57802e85df19ef4ecacefd" } } $('.js-work-strip[data-work-id=124421597]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421597,"title":"Multi-Objective Bayesian Optimisation Using an Exploitative Attainment Front Acquisition Function","translated_title":"","metadata":{"publication_date":{"day":28,"month":6,"year":2021,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421597/Multi_Objective_Bayesian_Optimisation_Using_an_Exploitative_Attainment_Front_Acquisition_Function","translated_internal_url":"","created_at":"2024-10-04T08:49:46.503-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650138,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650138/thumbnails/1.jpg","file_name":"SAF_driven_EMO.pdf","download_url":"https://www.academia.edu/attachments/118650138/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multi_Objective_Bayesian_Optimisation_Us.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650138/SAF_driven_EMO-libre.pdf?1728058573=\u0026response-content-disposition=attachment%3B+filename%3DMulti_Objective_Bayesian_Optimisation_Us.pdf\u0026Expires=1732414361\u0026Signature=Vkjbouuq8I2R0tLdVXsI3t0uKHTQO5QWdJ9D7yr7o-u~1daZpFexJeyGeNzCq2DLoZec3YhnHB8fRKxmk7dY8uhBtSdL5zNNaG95g5hvLyf3xFXdsuM1~5n4BpIb9HC4NukQmG89w0K~FJiyakborfqcN3i2DMIXP2Vr5ADAWw4ifmw3c416VxTujZXIDpGQReAd0els-dzjowBF9z-t8-fRerdg35pE0pT42hgRjacA97FLQFTLYzDBsrCt~JXEZD7XJqPUixVJdCf~1eYilF4wBoJmodwlk4DWSfCmrQN~wDwAonDHgizx6~iKZFErq3Y0zLgpT1M1Rb0F4rIPvA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Multi_Objective_Bayesian_Optimisation_Using_an_Exploitative_Attainment_Front_Acquisition_Function","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650138,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650138/thumbnails/1.jpg","file_name":"SAF_driven_EMO.pdf","download_url":"https://www.academia.edu/attachments/118650138/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multi_Objective_Bayesian_Optimisation_Us.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650138/SAF_driven_EMO-libre.pdf?1728058573=\u0026response-content-disposition=attachment%3B+filename%3DMulti_Objective_Bayesian_Optimisation_Us.pdf\u0026Expires=1732414361\u0026Signature=Vkjbouuq8I2R0tLdVXsI3t0uKHTQO5QWdJ9D7yr7o-u~1daZpFexJeyGeNzCq2DLoZec3YhnHB8fRKxmk7dY8uhBtSdL5zNNaG95g5hvLyf3xFXdsuM1~5n4BpIb9HC4NukQmG89w0K~FJiyakborfqcN3i2DMIXP2Vr5ADAWw4ifmw3c416VxTujZXIDpGQReAd0els-dzjowBF9z-t8-fRerdg35pE0pT42hgRjacA97FLQFTLYzDBsrCt~JXEZD7XJqPUixVJdCf~1eYilF4wBoJmodwlk4DWSfCmrQN~wDwAonDHgizx6~iKZFErq3Y0zLgpT1M1Rb0F4rIPvA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":143163,"name":"Multi objective optimization","url":"https://www.academia.edu/Documents/in/Multi_objective_optimization"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":535039,"name":"Bayesian Optimization","url":"https://www.academia.edu/Documents/in/Bayesian_Optimization"},{"id":3651168,"name":"Bayesian optimisation","url":"https://www.academia.edu/Documents/in/Bayesian_optimisation"}],"urls":[{"id":44976329,"url":"https://ore.exeter.ac.uk/repository/bitstream/10871/125627/1/SAF_driven_EMO.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421596"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421596/A_Variable_Metric_Probabilistic_k_Nearest_Neighbours_Classifier"><img alt="Research paper thumbnail of A Variable Metric Probabilistic k-Nearest-Neighbours Classifier" class="work-thumbnail" src="https://attachments.academia-assets.com/118650133/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421596/A_Variable_Metric_Probabilistic_k_Nearest_Neighbours_Classifier">A Variable Metric Probabilistic k-Nearest-Neighbours Classifier</a></div><div class="wp-workCard_item"><span>Springer eBooks</span><span>, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="273432ac27273ec672cf199442df5f4c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650133,&quot;asset_id&quot;:124421596,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650133/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421596"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421596"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421596; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421596]").text(description); $(".js-view-count[data-work-id=124421596]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421596; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421596']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421596, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "273432ac27273ec672cf199442df5f4c" } } $('.js-work-strip[data-work-id=124421596]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421596,"title":"A Variable Metric Probabilistic k-Nearest-Neighbours Classifier","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Springer eBooks"},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421596/A_Variable_Metric_Probabilistic_k_Nearest_Neighbours_Classifier","translated_internal_url":"","created_at":"2024-10-04T08:49:46.262-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650133,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650133/thumbnails/1.jpg","file_name":"a_variable_metric_2004.pdf","download_url":"https://www.academia.edu/attachments/118650133/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Variable_Metric_Probabilistic_k_Neares.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650133/a_variable_metric_2004-libre.pdf?1728057641=\u0026response-content-disposition=attachment%3B+filename%3DA_Variable_Metric_Probabilistic_k_Neares.pdf\u0026Expires=1732414361\u0026Signature=QodBRuzr2MznILTc2NSJx~~jukwBx~uB0KNdCJSUqPZ5IEN-yGsIN6U2l7iHaGl2Sdk9x~InvRqBmzItKqJFuc3NJ8ClQh1RRKAQErGvRbqxwh7fhIx-UjKgsknzLM9Q9OamWiQu8RmhsRkHxlh~Z5y~Gb6BGtUJht0NWYYB2jKOCIhk7QFyyukPnTzGBT5rBa9bmi-rYZ0Ztc6R7sNeBTLbi1AdzfzU8Pd9F-s5nHzsTeagCaKXX1mRm8JQGsW5jA7PssCTIPpfAPRbDnFyi675F-hRLmQJPx7UlwsEgyFWYlqjKI4clYj2DSYkl-l8gRHVtThBKmOxWb7MBVnOKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Variable_Metric_Probabilistic_k_Nearest_Neighbours_Classifier","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650133,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650133/thumbnails/1.jpg","file_name":"a_variable_metric_2004.pdf","download_url":"https://www.academia.edu/attachments/118650133/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Variable_Metric_Probabilistic_k_Neares.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650133/a_variable_metric_2004-libre.pdf?1728057641=\u0026response-content-disposition=attachment%3B+filename%3DA_Variable_Metric_Probabilistic_k_Neares.pdf\u0026Expires=1732414361\u0026Signature=QodBRuzr2MznILTc2NSJx~~jukwBx~uB0KNdCJSUqPZ5IEN-yGsIN6U2l7iHaGl2Sdk9x~InvRqBmzItKqJFuc3NJ8ClQh1RRKAQErGvRbqxwh7fhIx-UjKgsknzLM9Q9OamWiQu8RmhsRkHxlh~Z5y~Gb6BGtUJht0NWYYB2jKOCIhk7QFyyukPnTzGBT5rBa9bmi-rYZ0Ztc6R7sNeBTLbi1AdzfzU8Pd9F-s5nHzsTeagCaKXX1mRm8JQGsW5jA7PssCTIPpfAPRbDnFyi675F-hRLmQJPx7UlwsEgyFWYlqjKI4clYj2DSYkl-l8gRHVtThBKmOxWb7MBVnOKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic"},{"id":85262,"name":"Markov Chain Monte Carlo","url":"https://www.academia.edu/Documents/in/Markov_Chain_Monte_Carlo"},{"id":248909,"name":"Ideal","url":"https://www.academia.edu/Documents/in/Ideal"},{"id":595993,"name":"Markov chain","url":"https://www.academia.edu/Documents/in/Markov_chain"},{"id":1167632,"name":"Synthetic Data Generation","url":"https://www.academia.edu/Documents/in/Synthetic_Data_Generation"},{"id":1555442,"name":"Feature Space","url":"https://www.academia.edu/Documents/in/Feature_Space"},{"id":1690923,"name":"K Nearest Neighbour","url":"https://www.academia.edu/Documents/in/K_Nearest_Neighbour"},{"id":1788300,"name":"Bayesian framework","url":"https://www.academia.edu/Documents/in/Bayesian_framework"},{"id":2981830,"name":" K-nearest neighbors algorithm","url":"https://www.academia.edu/Documents/in/K-nearest_neighbors_algorithm"},{"id":3325992,"name":"a priori and a posteriori","url":"https://www.academia.edu/Documents/in/a_priori_and_a_posteriori"},{"id":3647879,"name":"Springer Ebooks","url":"https://www.academia.edu/Documents/in/Springer_Ebooks"},{"id":4426780,"name":"Synthetic Data","url":"https://www.academia.edu/Documents/in/Synthetic_Data"}],"urls":[{"id":44976328,"url":"https://ore.exeter.ac.uk/repository/bitstream/10871/11565/2/a_variable_metric_2004.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421595"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421595/Formulation_and_comparison_of_multi_class_ROC_surfaces"><img alt="Research paper thumbnail of Formulation and comparison of multi-class ROC surfaces" class="work-thumbnail" src="https://attachments.academia-assets.com/118650139/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421595/Formulation_and_comparison_of_multi_class_ROC_surfaces">Formulation and comparison of multi-class ROC surfaces</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cd99c3522cbff54f8353392b565d9787" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650139,&quot;asset_id&quot;:124421595,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650139/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421595"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421595"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421595; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421595]").text(description); $(".js-view-count[data-work-id=124421595]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421595; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421595']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421595, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cd99c3522cbff54f8353392b565d9787" } } $('.js-work-strip[data-work-id=124421595]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421595,"title":"Formulation and comparison of multi-class ROC surfaces","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2005,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421595/Formulation_and_comparison_of_multi_class_ROC_surfaces","translated_internal_url":"","created_at":"2024-10-04T08:49:46.004-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650139,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650139/thumbnails/1.jpg","file_name":"formulation_and_comparison_2005.pdf","download_url":"https://www.academia.edu/attachments/118650139/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Formulation_and_comparison_of_multi_clas.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650139/formulation_and_comparison_2005-libre.pdf?1728057641=\u0026response-content-disposition=attachment%3B+filename%3DFormulation_and_comparison_of_multi_clas.pdf\u0026Expires=1732414361\u0026Signature=fOEvYYC9~hY6ezw4IogIWke77sOK5kNdAZHESHsCzvg2kDgqZHrEFaJFocRdSFt-RNgiybnkgbrAkAtGBOHTfEJxQUfJuzmTe9Ms1Sv27OJwek4zsGzocdgkzdY~nLJ07S46b0FYPByFRM7A6PpTcG4wc2FXe4tpXFtEr6vG~m06VFNMfa8RkRpf2jLadnJtzFYd8Ozwn0gFmgyRI5lFqfs87OfirShMsj6-3FK~xQK~DLawPfSKrJYSeYrZsIFN5rGiE1BZUcBPB07zvFbVlQKaECEODibZGcIxO7S3qVitOVhP2NBQlNwvaJ2gecD38QSCAaRhEFhTbOEQLT6dqA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Formulation_and_comparison_of_multi_class_ROC_surfaces","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650139,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650139/thumbnails/1.jpg","file_name":"formulation_and_comparison_2005.pdf","download_url":"https://www.academia.edu/attachments/118650139/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Formulation_and_comparison_of_multi_clas.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650139/formulation_and_comparison_2005-libre.pdf?1728057641=\u0026response-content-disposition=attachment%3B+filename%3DFormulation_and_comparison_of_multi_clas.pdf\u0026Expires=1732414361\u0026Signature=fOEvYYC9~hY6ezw4IogIWke77sOK5kNdAZHESHsCzvg2kDgqZHrEFaJFocRdSFt-RNgiybnkgbrAkAtGBOHTfEJxQUfJuzmTe9Ms1Sv27OJwek4zsGzocdgkzdY~nLJ07S46b0FYPByFRM7A6PpTcG4wc2FXe4tpXFtEr6vG~m06VFNMfa8RkRpf2jLadnJtzFYd8Ozwn0gFmgyRI5lFqfs87OfirShMsj6-3FK~xQK~DLawPfSKrJYSeYrZsIFN5rGiE1BZUcBPB07zvFbVlQKaECEODibZGcIxO7S3qVitOVhP2NBQlNwvaJ2gecD38QSCAaRhEFhTbOEQLT6dqA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118650135,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650135/thumbnails/1.jpg","file_name":"formulation_and_comparison_2005.pdf","download_url":"https://www.academia.edu/attachments/118650135/download_file","bulk_download_file_name":"Formulation_and_comparison_of_multi_clas.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650135/formulation_and_comparison_2005-libre.pdf?1728057649=\u0026response-content-disposition=attachment%3B+filename%3DFormulation_and_comparison_of_multi_clas.pdf\u0026Expires=1732414361\u0026Signature=OlhWyem3Ji4Ey1PkLKq0M2YuUcsGMlpq6RBeqa891lcTkvtA168F2lm0VUqHH33ml-wGIuKrEO4JdnPO-XbAL4pbTJlp23CWCChgxsdczCkp3tfUQOUAV1z-oyDBZyEITojfD6KdoWUh3vn0T7ER18HHy~U9ZlDqIzV810ZyuSXnNFQPkwHO-ntLKMHcQ-2vTAe4dFyHc-cw5u~OSrXJVPzG5ysIHXvdgVyQQfqPf6UBrFt7cC59no8mvR7E7YiMeG3N2wjo0XuKxOhPY5MqmLpvAzDa6GaAUwl2tMFR-EQmVTc0J4eMKiLq66sxuKCoeMPskwf5V8kMjt8nzh77fA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":265625,"name":"Evolutionary Algorithm","url":"https://www.academia.edu/Documents/in/Evolutionary_Algorithm"},{"id":1032348,"name":"Pareto Optimality","url":"https://www.academia.edu/Documents/in/Pareto_Optimality"},{"id":1450944,"name":"Multi objective genetic algorithm optimisation","url":"https://www.academia.edu/Documents/in/Multi_objective_genetic_algorithm_optimisation"}],"urls":[{"id":44976327,"url":"https://ore.exeter.ac.uk/repository/bitstream/handle/10871/11622/formulation_and_comparison_2005.pdf;sequence=2"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421594"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421594/Orthogonal_but_not_Orthonormal_Procrustes_Problems"><img alt="Research paper thumbnail of Orthogonal, but not Orthonormal, Procrustes Problems" class="work-thumbnail" src="https://attachments.academia-assets.com/118650134/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421594/Orthogonal_but_not_Orthonormal_Procrustes_Problems">Orthogonal, but not Orthonormal, Procrustes Problems</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a657574852f7e04bffe05825097124e3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650134,&quot;asset_id&quot;:124421594,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650134/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421594"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421594"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421594; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421594]").text(description); $(".js-view-count[data-work-id=124421594]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421594; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421594']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421594, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a657574852f7e04bffe05825097124e3" } } $('.js-work-strip[data-work-id=124421594]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421594,"title":"Orthogonal, but not Orthonormal, Procrustes Problems","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1999,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421594/Orthogonal_but_not_Orthonormal_Procrustes_Problems","translated_internal_url":"","created_at":"2024-10-04T08:49:45.767-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650134,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650134/thumbnails/1.jpg","file_name":"procrustes.pdf","download_url":"https://www.academia.edu/attachments/118650134/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Orthogonal_but_not_Orthonormal_Procruste.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650134/procrustes-libre.pdf?1728057641=\u0026response-content-disposition=attachment%3B+filename%3DOrthogonal_but_not_Orthonormal_Procruste.pdf\u0026Expires=1732414361\u0026Signature=A~XoSX68X9a2u3aYIUzb8hoWE9Z-MG6d72mH5hkOzYu7QKbNIwtRwPceZ8HtDK1amkc1e4VW027WO13G7~wehZc-HfVPaQqlcSpGnWypkNkJ0hDS7XKf8gYUbK4BkQoF4kOz7p01pQx4PSyzU1gq2S6-4vzk6U32qs7u4QiOUFq5JuuU5DXmlvgL4kEeIaVjd0hWO~RyLo~WsAYAxUZ-DoEDiSR-Q0BKIq~zIDQq~LrFEBWp9cxh0YRJj0XdU9Gcx7RQjvAFLmFmxIinZWcz5oGv1VbJYALFi0-H3UXReeVkLYa3agwlEBtIrqokhI77p51ZsG-IbtTgOW7dfa2wQg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Orthogonal_but_not_Orthonormal_Procrustes_Problems","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650134,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650134/thumbnails/1.jpg","file_name":"procrustes.pdf","download_url":"https://www.academia.edu/attachments/118650134/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Orthogonal_but_not_Orthonormal_Procruste.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650134/procrustes-libre.pdf?1728057641=\u0026response-content-disposition=attachment%3B+filename%3DOrthogonal_but_not_Orthonormal_Procruste.pdf\u0026Expires=1732414361\u0026Signature=A~XoSX68X9a2u3aYIUzb8hoWE9Z-MG6d72mH5hkOzYu7QKbNIwtRwPceZ8HtDK1amkc1e4VW027WO13G7~wehZc-HfVPaQqlcSpGnWypkNkJ0hDS7XKf8gYUbK4BkQoF4kOz7p01pQx4PSyzU1gq2S6-4vzk6U32qs7u4QiOUFq5JuuU5DXmlvgL4kEeIaVjd0hWO~RyLo~WsAYAxUZ-DoEDiSR-Q0BKIq~zIDQq~LrFEBWp9cxh0YRJj0XdU9Gcx7RQjvAFLmFmxIinZWcz5oGv1VbJYALFi0-H3UXReeVkLYa3agwlEBtIrqokhI77p51ZsG-IbtTgOW7dfa2wQg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118650132,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650132/thumbnails/1.jpg","file_name":"procrustes.pdf","download_url":"https://www.academia.edu/attachments/118650132/download_file","bulk_download_file_name":"Orthogonal_but_not_Orthonormal_Procruste.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650132/procrustes-libre.pdf?1728057639=\u0026response-content-disposition=attachment%3B+filename%3DOrthogonal_but_not_Orthonormal_Procruste.pdf\u0026Expires=1732414361\u0026Signature=ZlXzTyaU~bhMsU1d3DWaVfhVVqw07WG7ib5-5WRrxFNDZ450i3ahT3nYCLvwiUqKahze5dYxB2s002A-V4CcuXunQXcKcImTCzZ76ZND4ShgregeIUnuTFaXGjLX~2TizpLt4x7plauTUzrODTtB-EQNtcKpar7oEHB21aPudkXNLN0yAw~CA7pLtlvAaLMVqVS9ii4Yh9UJPtzrF52d6QFhL0wreDD5DEB0SiXTtbP7JcpYYUTF3mej28F4wbIFK-pOFGYi~k1Sbv34GPUsvrAck4z~~JuAAUqVAoaYBzS09kb07zhGZ3QCBXIR8Y8nVFvf5oP3Mt4uBg6PUfl1Ww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":54282,"name":"Procrustes Analysis","url":"https://www.academia.edu/Documents/in/Procrustes_Analysis"},{"id":684007,"name":"ORTHOGONALITY","url":"https://www.academia.edu/Documents/in/ORTHOGONALITY"},{"id":2676850,"name":"Orthogonalization","url":"https://www.academia.edu/Documents/in/Orthogonalization"},{"id":2720299,"name":"Matrix norm","url":"https://www.academia.edu/Documents/in/Matrix_norm"}],"urls":[{"id":44976326,"url":"http://empslocal.ex.ac.uk/people/staff/reverson/uploads/Site/procrustes.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421593"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421593/Multi_objective_optimisation_in_the_presence_of_uncertainty"><img alt="Research paper thumbnail of Multi-objective optimisation in the presence of uncertainty" class="work-thumbnail" src="https://attachments.academia-assets.com/118650131/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421593/Multi_objective_optimisation_in_the_presence_of_uncertainty">Multi-objective optimisation in the presence of uncertainty</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5a942c37e38871e4eec31c0fbdcebc5a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650131,&quot;asset_id&quot;:124421593,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650131/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421593"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421593"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421593; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421593]").text(description); $(".js-view-count[data-work-id=124421593]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421593; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421593']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421593, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5a942c37e38871e4eec31c0fbdcebc5a" } } $('.js-work-strip[data-work-id=124421593]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421593,"title":"Multi-objective optimisation in the presence of uncertainty","translated_title":"","metadata":{"publication_date":{"day":13,"month":12,"year":2005,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421593/Multi_objective_optimisation_in_the_presence_of_uncertainty","translated_internal_url":"","created_at":"2024-10-04T08:49:45.506-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650131,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650131/thumbnails/1.jpg","file_name":"multi_objective_optimisation_2005.pdf","download_url":"https://www.academia.edu/attachments/118650131/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multi_objective_optimisation_in_the_pres.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650131/multi_objective_optimisation_2005-libre.pdf?1728057641=\u0026response-content-disposition=attachment%3B+filename%3DMulti_objective_optimisation_in_the_pres.pdf\u0026Expires=1732414361\u0026Signature=avTtutHIoHP3HelCua6YkGeM695TSUrYE59~pDp-1CkSeIahCFjhMvW7eoloz18etPhkyFHlOjuwpDIiAwkzvQv75NjeR9t5MKcpGVbG1XRpPCLFIFEctPq0J9mS7mSJ4C72yrWQM9YOWtk5uYpQNEeZSA7WXOXEZ6KrGURvJx0j1epW2fulphD0aNVxvZekExQu46he5cd4ugQ6AxPUPuskDqSF6pKM5plWXGLHlFFF1cCJ2jCvTR-lHjmkdeC4Xat3bJ2WwwKnJRX7z-6Bnt74eY2HHzw-hs8HMNoDxp3zHvBNMTh5B2Z-aESsHxNWeJ5B66NIPaIxWByXqoMFHg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Multi_objective_optimisation_in_the_presence_of_uncertainty","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650131,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650131/thumbnails/1.jpg","file_name":"multi_objective_optimisation_2005.pdf","download_url":"https://www.academia.edu/attachments/118650131/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multi_objective_optimisation_in_the_pres.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650131/multi_objective_optimisation_2005-libre.pdf?1728057641=\u0026response-content-disposition=attachment%3B+filename%3DMulti_objective_optimisation_in_the_pres.pdf\u0026Expires=1732414361\u0026Signature=avTtutHIoHP3HelCua6YkGeM695TSUrYE59~pDp-1CkSeIahCFjhMvW7eoloz18etPhkyFHlOjuwpDIiAwkzvQv75NjeR9t5MKcpGVbG1XRpPCLFIFEctPq0J9mS7mSJ4C72yrWQM9YOWtk5uYpQNEeZSA7WXOXEZ6KrGURvJx0j1epW2fulphD0aNVxvZekExQu46he5cd4ugQ6AxPUPuskDqSF6pKM5plWXGLHlFFF1cCJ2jCvTR-lHjmkdeC4Xat3bJ2WwwKnJRX7z-6Bnt74eY2HHzw-hs8HMNoDxp3zHvBNMTh5B2Z-aESsHxNWeJ5B66NIPaIxWByXqoMFHg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3523,"name":"Evolutionary Computation","url":"https://www.academia.edu/Documents/in/Evolutionary_Computation"},{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition"},{"id":8588,"name":"Computer Aided Manufacturing","url":"https://www.academia.edu/Documents/in/Computer_Aided_Manufacturing"},{"id":19881,"name":"Stochastic Systems","url":"https://www.academia.edu/Documents/in/Stochastic_Systems"},{"id":29414,"name":"Estimation Theory","url":"https://www.academia.edu/Documents/in/Estimation_Theory"},{"id":32991,"name":"Optimization Methods","url":"https://www.academia.edu/Documents/in/Optimization_Methods"},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic"},{"id":61603,"name":"Uncertainty","url":"https://www.academia.edu/Documents/in/Uncertainty"},{"id":68431,"name":"Noise","url":"https://www.academia.edu/Documents/in/Noise"},{"id":85359,"name":"Measurement Errors","url":"https://www.academia.edu/Documents/in/Measurement_Errors"},{"id":97292,"name":"Optimisation","url":"https://www.academia.edu/Documents/in/Optimisation"},{"id":143163,"name":"Multi objective optimization","url":"https://www.academia.edu/Documents/in/Multi_objective_optimization"},{"id":152918,"name":"Error Analysis","url":"https://www.academia.edu/Documents/in/Error_Analysis"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":345971,"name":"Design optimization","url":"https://www.academia.edu/Documents/in/Design_optimization"},{"id":1450944,"name":"Multi objective genetic algorithm optimisation","url":"https://www.academia.edu/Documents/in/Multi_objective_genetic_algorithm_optimisation"}],"urls":[{"id":44976325,"url":"https://ore.exeter.ac.uk/repository/bitstream/10871/11661/2/multi_objective_optimisation_2005.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421592"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421592/Dominance_measures_for_multi_objective_simulated_annealing"><img alt="Research paper thumbnail of Dominance measures for multi-objective simulated annealing" class="work-thumbnail" src="https://attachments.academia-assets.com/118650130/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421592/Dominance_measures_for_multi_objective_simulated_annealing">Dominance measures for multi-objective simulated annealing</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="81c67c6a5cbdae876fe6276b92a28c21" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650130,&quot;asset_id&quot;:124421592,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650130/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421592"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421592"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421592; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421592]").text(description); $(".js-view-count[data-work-id=124421592]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421592; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421592']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421592, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "81c67c6a5cbdae876fe6276b92a28c21" } } $('.js-work-strip[data-work-id=124421592]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421592,"title":"Dominance measures for multi-objective simulated annealing","translated_title":"","metadata":{"publication_date":{"day":28,"month":9,"year":2004,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421592/Dominance_measures_for_multi_objective_simulated_annealing","translated_internal_url":"","created_at":"2024-10-04T08:49:45.183-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650130,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650130/thumbnails/1.jpg","file_name":"dominance_measures_2004.pdf","download_url":"https://www.academia.edu/attachments/118650130/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dominance_measures_for_multi_objective_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650130/dominance_measures_2004-libre.pdf?1728057646=\u0026response-content-disposition=attachment%3B+filename%3DDominance_measures_for_multi_objective_s.pdf\u0026Expires=1732414361\u0026Signature=JCAsV~MlvrwjPuIE02WVktqkbUHZq0WrwhjvBI5583fsUmgIJvoUvC7FTPd3I8fRae1mGi09wcLMa1Cy7y1h4DeyEp~hyPewt2r1675qmUsrwI~gqXzJCQbDYmQTWuJdBWP8Ntm5ZGNBgz9R7pZjBTbbGXCnvZeiDbzns9twgOuOTW4a4lk4MuP~ehm6jT0d~4V3H~wryDFcqWFt97zB-YYD4lkI~RGNCbRwlYkW5JyA6HSZyJsLAAypg3Jt-YBHksszHLydyIl~mDic1Y3TLuUhsF1WDA3GpnYh3CESIRMAUtsB0rtjfrK6FZNi3tChHs4coUbnFWjU7cIgq8fZgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Dominance_measures_for_multi_objective_simulated_annealing","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650130,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650130/thumbnails/1.jpg","file_name":"dominance_measures_2004.pdf","download_url":"https://www.academia.edu/attachments/118650130/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dominance_measures_for_multi_objective_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650130/dominance_measures_2004-libre.pdf?1728057646=\u0026response-content-disposition=attachment%3B+filename%3DDominance_measures_for_multi_objective_s.pdf\u0026Expires=1732414361\u0026Signature=JCAsV~MlvrwjPuIE02WVktqkbUHZq0WrwhjvBI5583fsUmgIJvoUvC7FTPd3I8fRae1mGi09wcLMa1Cy7y1h4DeyEp~hyPewt2r1675qmUsrwI~gqXzJCQbDYmQTWuJdBWP8Ntm5ZGNBgz9R7pZjBTbbGXCnvZeiDbzns9twgOuOTW4a4lk4MuP~ehm6jT0d~4V3H~wryDFcqWFt97zB-YYD4lkI~RGNCbRwlYkW5JyA6HSZyJsLAAypg3Jt-YBHksszHLydyIl~mDic1Y3TLuUhsF1WDA3GpnYh3CESIRMAUtsB0rtjfrK6FZNi3tChHs4coUbnFWjU7cIgq8fZgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2950,"name":"Computational Modeling","url":"https://www.academia.edu/Documents/in/Computational_Modeling"},{"id":4955,"name":"Computational Modelling","url":"https://www.academia.edu/Documents/in/Computational_Modelling"},{"id":5026,"name":"Genetic Algorithms","url":"https://www.academia.edu/Documents/in/Genetic_Algorithms"},{"id":6421,"name":"Simulated Annealing","url":"https://www.academia.edu/Documents/in/Simulated_Annealing"},{"id":15124,"name":"Convergence","url":"https://www.academia.edu/Documents/in/Convergence"},{"id":32991,"name":"Optimization Methods","url":"https://www.academia.edu/Documents/in/Optimization_Methods"},{"id":43981,"name":"Optimization","url":"https://www.academia.edu/Documents/in/Optimization"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation"},{"id":143163,"name":"Multi objective optimization","url":"https://www.academia.edu/Documents/in/Multi_objective_optimization"},{"id":212832,"name":"Cooling","url":"https://www.academia.edu/Documents/in/Cooling"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":325323,"name":"Functions","url":"https://www.academia.edu/Documents/in/Functions"},{"id":570997,"name":"Pareto front","url":"https://www.academia.edu/Documents/in/Pareto_front"},{"id":1243658,"name":"Search Problems","url":"https://www.academia.edu/Documents/in/Search_Problems"},{"id":1379085,"name":"Perturbation Techniques","url":"https://www.academia.edu/Documents/in/Perturbation_Techniques"},{"id":1476527,"name":"Pareto principle","url":"https://www.academia.edu/Documents/in/Pareto_principle"},{"id":2132141,"name":"Energy Measurement","url":"https://www.academia.edu/Documents/in/Energy_Measurement"},{"id":2421822,"name":"Objective function","url":"https://www.academia.edu/Documents/in/Objective_function"}],"urls":[{"id":44976324,"url":"https://ore.exeter.ac.uk/repository/bitstream/10871/15261/2/dominance_measures_2004.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421591"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421591/Robust_Autoregression_Student_t_Innovations_Using_Variational_Bayes"><img alt="Research paper thumbnail of Robust Autoregression: Student-t Innovations Using Variational Bayes" class="work-thumbnail" src="https://attachments.academia-assets.com/118650129/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421591/Robust_Autoregression_Student_t_Innovations_Using_Variational_Bayes">Robust Autoregression: Student-t Innovations Using Variational Bayes</a></div><div class="wp-workCard_item"><span>IEEE Transactions on Signal Processing</span><span>, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2bd0eab1e2d7ed170680becc1a3e9c76" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650129,&quot;asset_id&quot;:124421591,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650129/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421591"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421591"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421591; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421591]").text(description); $(".js-view-count[data-work-id=124421591]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421591; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421591']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421591, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2bd0eab1e2d7ed170680becc1a3e9c76" } } $('.js-work-strip[data-work-id=124421591]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421591,"title":"Robust Autoregression: Student-t Innovations Using Variational Bayes","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"IEEE Transactions on Signal Processing"},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421591/Robust_Autoregression_Student_t_Innovations_Using_Variational_Bayes","translated_internal_url":"","created_at":"2024-10-04T08:49:44.662-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650129,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650129/thumbnails/1.jpg","file_name":"Robust_20autoregression_20Student-t_20innovations_20using_20variational_20Bayes.pdf","download_url":"https://www.academia.edu/attachments/118650129/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Robust_Autoregression_Student_t_Innovati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650129/Robust_20autoregression_20Student-t_20innovations_20using_20variational_20Bayes-libre.pdf?1728058535=\u0026response-content-disposition=attachment%3B+filename%3DRobust_Autoregression_Student_t_Innovati.pdf\u0026Expires=1732414361\u0026Signature=R0x4sYu-sPW9OjIIj~QaYMuY0H4JEGsDLQIXzd58s~oXmbQfHcTRbEQjrVJu4I6DP4tAZ00LQZL2u~LKqsiVCnLzq8d0h2rItfoFCpGIYosZH8iARInaVYCH8nWp~EUydxS2cbsdoVS2~pGAO5qUnFRWmYSvGHV--DsrkHqY68w-Mgkhar~YOVas7RRHeFKmzy3YHrAEOtKdK9yznE6GXe8SOrnYh~LKjunPErS2qBMSMt6wzz2gWpeBFQNlaHApOOYQkshxOZrIk~pcJH95qEEo4-X6v5u2VRLhGPdfJ0CeweiWhSv74b9ccr~VoFzTxYrS9xJoDklmKG6MObfmvg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Robust_Autoregression_Student_t_Innovations_Using_Variational_Bayes","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650129,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650129/thumbnails/1.jpg","file_name":"Robust_20autoregression_20Student-t_20innovations_20using_20variational_20Bayes.pdf","download_url":"https://www.academia.edu/attachments/118650129/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Robust_Autoregression_Student_t_Innovati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650129/Robust_20autoregression_20Student-t_20innovations_20using_20variational_20Bayes-libre.pdf?1728058535=\u0026response-content-disposition=attachment%3B+filename%3DRobust_Autoregression_Student_t_Innovati.pdf\u0026Expires=1732414361\u0026Signature=R0x4sYu-sPW9OjIIj~QaYMuY0H4JEGsDLQIXzd58s~oXmbQfHcTRbEQjrVJu4I6DP4tAZ00LQZL2u~LKqsiVCnLzq8d0h2rItfoFCpGIYosZH8iARInaVYCH8nWp~EUydxS2cbsdoVS2~pGAO5qUnFRWmYSvGHV--DsrkHqY68w-Mgkhar~YOVas7RRHeFKmzy3YHrAEOtKdK9yznE6GXe8SOrnYh~LKjunPErS2qBMSMt6wzz2gWpeBFQNlaHApOOYQkshxOZrIk~pcJH95qEEo4-X6v5u2VRLhGPdfJ0CeweiWhSv74b9ccr~VoFzTxYrS9xJoDklmKG6MObfmvg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":311,"name":"Approximation Theory","url":"https://www.academia.edu/Documents/in/Approximation_Theory"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":10904,"name":"Electroencephalography","url":"https://www.academia.edu/Documents/in/Electroencephalography"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":39920,"name":"Parameter estimation","url":"https://www.academia.edu/Documents/in/Parameter_estimation"},{"id":68431,"name":"Noise","url":"https://www.academia.edu/Documents/in/Noise"},{"id":109147,"name":"Bayesian methods","url":"https://www.academia.edu/Documents/in/Bayesian_methods"},{"id":123230,"name":"Regression Analysis","url":"https://www.academia.edu/Documents/in/Regression_Analysis"},{"id":149437,"name":"EEG signal","url":"https://www.academia.edu/Documents/in/EEG_signal"},{"id":191286,"name":"Kurtosis","url":"https://www.academia.edu/Documents/in/Kurtosis"},{"id":279495,"name":"Robustness","url":"https://www.academia.edu/Documents/in/Robustness"},{"id":342314,"name":"Gaussian","url":"https://www.academia.edu/Documents/in/Gaussian"},{"id":349137,"name":"Data Models","url":"https://www.academia.edu/Documents/in/Data_Models"},{"id":582384,"name":"Gaussian noise","url":"https://www.academia.edu/Documents/in/Gaussian_noise"},{"id":736773,"name":"Approximation methods","url":"https://www.academia.edu/Documents/in/Approximation_methods"},{"id":1311566,"name":"Bayes Methods","url":"https://www.academia.edu/Documents/in/Bayes_Methods"},{"id":1941885,"name":"Outlier","url":"https://www.academia.edu/Documents/in/Outlier"},{"id":1993758,"name":"Autoregressive model","url":"https://www.academia.edu/Documents/in/Autoregressive_model"},{"id":2485951,"name":"Posterior distribution","url":"https://www.academia.edu/Documents/in/Posterior_distribution"}],"urls":[{"id":44976323,"url":"https://ore.exeter.ac.uk/repository/bitstream/10036/4420/5/Robust%20autoregression%20Student-t%20innovations%20using%20variational%20Bayes.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421590"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421590/Optimising_Diversity_in_Classifier_Ensembles"><img alt="Research paper thumbnail of Optimising Diversity in Classifier Ensembles" class="work-thumbnail" src="https://attachments.academia-assets.com/118650127/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421590/Optimising_Diversity_in_Classifier_Ensembles">Optimising Diversity in Classifier Ensembles</a></div><div class="wp-workCard_item"><span>SN computer science</span><span>, Mar 16, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9bdcf89580cb1937d59bcab1d6e97857" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650127,&quot;asset_id&quot;:124421590,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650127/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421590"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421590"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421590; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421590]").text(description); $(".js-view-count[data-work-id=124421590]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421590; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421590']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421590, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9bdcf89580cb1937d59bcab1d6e97857" } } $('.js-work-strip[data-work-id=124421590]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421590,"title":"Optimising Diversity in Classifier Ensembles","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","publication_date":{"day":16,"month":3,"year":2022,"errors":{}},"publication_name":"SN computer science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421590/Optimising_Diversity_in_Classifier_Ensembles","translated_internal_url":"","created_at":"2024-10-04T08:49:44.384-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650127,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650127/thumbnails/1.jpg","file_name":"s42979-022-01063-7.pdf","download_url":"https://www.academia.edu/attachments/118650127/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Optimising_Diversity_in_Classifier_Ensem.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650127/s42979-022-01063-7-libre.pdf?1728057681=\u0026response-content-disposition=attachment%3B+filename%3DOptimising_Diversity_in_Classifier_Ensem.pdf\u0026Expires=1732414361\u0026Signature=ZBe~EI-EbZ8Bniv8my4i~ZG4RKweYT0SXY3BIySLPIZ6xy8AtOcO-DwyUy5HLRL7YAeTV6zVBBENPdIeO3ymHCnLU5CnGgnBfc8tOzFFoYl48ZJF7w7g0GR6VHQEkTN~A5G~oROMcXHuNU6XMmo5ASna1-qLeIB~fw6XPYP6yXTKIQs6FI~7KZ9YklipI6uVU24ec48ALvysAhCKzWl7Odpi9ciQ~hkhgABFHkjNBCYf4q7yYkmHrhxdgUpyAShsU43Xcs1bck9B8Uz4AGio8xo2MfSpHO5ODKRKZDfSZt-KCj3cVALhK1ioDUSuN4Bp2z8eF3~J5jQtdIHGn9v7Lg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Optimising_Diversity_in_Classifier_Ensembles","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650127,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650127/thumbnails/1.jpg","file_name":"s42979-022-01063-7.pdf","download_url":"https://www.academia.edu/attachments/118650127/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Optimising_Diversity_in_Classifier_Ensem.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650127/s42979-022-01063-7-libre.pdf?1728057681=\u0026response-content-disposition=attachment%3B+filename%3DOptimising_Diversity_in_Classifier_Ensem.pdf\u0026Expires=1732414361\u0026Signature=ZBe~EI-EbZ8Bniv8my4i~ZG4RKweYT0SXY3BIySLPIZ6xy8AtOcO-DwyUy5HLRL7YAeTV6zVBBENPdIeO3ymHCnLU5CnGgnBfc8tOzFFoYl48ZJF7w7g0GR6VHQEkTN~A5G~oROMcXHuNU6XMmo5ASna1-qLeIB~fw6XPYP6yXTKIQs6FI~7KZ9YklipI6uVU24ec48ALvysAhCKzWl7Odpi9ciQ~hkhgABFHkjNBCYf4q7yYkmHrhxdgUpyAShsU43Xcs1bck9B8Uz4AGio8xo2MfSpHO5ODKRKZDfSZt-KCj3cVALhK1ioDUSuN4Bp2z8eF3~J5jQtdIHGn9v7Lg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118650128,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650128/thumbnails/1.jpg","file_name":"s42979-022-01063-7.pdf","download_url":"https://www.academia.edu/attachments/118650128/download_file","bulk_download_file_name":"Optimising_Diversity_in_Classifier_Ensem.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650128/s42979-022-01063-7-libre.pdf?1728057893=\u0026response-content-disposition=attachment%3B+filename%3DOptimising_Diversity_in_Classifier_Ensem.pdf\u0026Expires=1732414361\u0026Signature=GzpfMYNruPhgB8fpg6e~wHnW1-jnDsrluyurePmOnv-L2vIFFjIZzp4tEy12KIYXb3AHUgVMVZzFHNvUxt7i~aOD9wZfbviBf~tKqw2f3X-Bye1tj-0bqPQbCGYee2K-prCZMhop10PXNv1XqaUt~T7pbcIzHmi6n3tEsJTOkqLDywsBwMtjAGE8HAiJAOq6uw-T0rWUU0uec4pb2wra6SfEt~ln0gP~~j8gyBuPtVZTQk7iuIfN4NEnPk1dS2fu2VcAVT4pjd5Z3LglWgBIzWgQgKKjq2wyxN-VQ59OOzM0JoYJEw8nT54f4fsQ~6rFM1jOyA4wAkPWxdBsJtIK1Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":102744,"name":"Ambiguity","url":"https://www.academia.edu/Documents/in/Ambiguity"}],"urls":[{"id":44976322,"url":"https://link.springer.com/content/pdf/10.1007/s42979-022-01063-7.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421589"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421589/Novel_Methods_for_Ranking_District_Metered_Areas_for_Water_Distribution_Network_Maintenance_Scheduling"><img alt="Research paper thumbnail of Novel Methods for Ranking District Metered Areas for Water Distribution Network Maintenance Scheduling" class="work-thumbnail" src="https://attachments.academia-assets.com/118650126/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421589/Novel_Methods_for_Ranking_District_Metered_Areas_for_Water_Distribution_Network_Maintenance_Scheduling">Novel Methods for Ranking District Metered Areas for Water Distribution Network Maintenance Scheduling</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cbb17de3ee6b3a5b902dd8b5ac4b26f0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650126,&quot;asset_id&quot;:124421589,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650126/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421589"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421589"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421589; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421589]").text(description); $(".js-view-count[data-work-id=124421589]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421589; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421589']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421589, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cbb17de3ee6b3a5b902dd8b5ac4b26f0" } } $('.js-work-strip[data-work-id=124421589]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421589,"title":"Novel Methods for Ranking District Metered Areas for Water Distribution Network Maintenance Scheduling","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2011,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421589/Novel_Methods_for_Ranking_District_Metered_Areas_for_Water_Distribution_Network_Maintenance_Scheduling","translated_internal_url":"","created_at":"2024-10-04T08:49:44.073-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650126,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650126/thumbnails/1.jpg","file_name":"novel_methods_for_2011.pdf","download_url":"https://www.academia.edu/attachments/118650126/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Novel_Methods_for_Ranking_District_Meter.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650126/novel_methods_for_2011-libre.pdf?1728057638=\u0026response-content-disposition=attachment%3B+filename%3DNovel_Methods_for_Ranking_District_Meter.pdf\u0026Expires=1732414361\u0026Signature=AfF8pXSNxSYSpQT27WP1S93ZpW65H3au0lg-OocyLZ3MsVqgwPhR47vRP5yG0J0rvTp062K8CAFptwlPqcdAkC-KzBjU4UjPtD8OyjssTMxopr3RPx9Ft6UJP9BvvZo1pDS0FQJeVz~dGCG4Ov-H3v5hrRIrU4WqdwbUW-IdMoA-d2EezTtK~xb2yJkoKkiXeSawne9~VubooylzKlx5wdYJyOSbF3Rb1hPWCmfcCdjFF~Ag7erwWmBOydA~nU2RHWVuc2IUyXO6m8JAD0P4PkNisiPJexhL~R~uuzSHFRocfkZNaR5cuqwvyotcpF7xNdyCji4MF-0eK4CrAXGBWg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Novel_Methods_for_Ranking_District_Metered_Areas_for_Water_Distribution_Network_Maintenance_Scheduling","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650126,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650126/thumbnails/1.jpg","file_name":"novel_methods_for_2011.pdf","download_url":"https://www.academia.edu/attachments/118650126/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Novel_Methods_for_Ranking_District_Meter.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650126/novel_methods_for_2011-libre.pdf?1728057638=\u0026response-content-disposition=attachment%3B+filename%3DNovel_Methods_for_Ranking_District_Meter.pdf\u0026Expires=1732414361\u0026Signature=AfF8pXSNxSYSpQT27WP1S93ZpW65H3au0lg-OocyLZ3MsVqgwPhR47vRP5yG0J0rvTp062K8CAFptwlPqcdAkC-KzBjU4UjPtD8OyjssTMxopr3RPx9Ft6UJP9BvvZo1pDS0FQJeVz~dGCG4Ov-H3v5hrRIrU4WqdwbUW-IdMoA-d2EezTtK~xb2yJkoKkiXeSawne9~VubooylzKlx5wdYJyOSbF3Rb1hPWCmfcCdjFF~Ag7erwWmBOydA~nU2RHWVuc2IUyXO6m8JAD0P4PkNisiPJexhL~R~uuzSHFRocfkZNaR5cuqwvyotcpF7xNdyCji4MF-0eK4CrAXGBWg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118650125,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650125/thumbnails/1.jpg","file_name":"novel_methods_for_2011.pdf","download_url":"https://www.academia.edu/attachments/118650125/download_file","bulk_download_file_name":"Novel_Methods_for_Ranking_District_Meter.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650125/novel_methods_for_2011-libre.pdf?1728057643=\u0026response-content-disposition=attachment%3B+filename%3DNovel_Methods_for_Ranking_District_Meter.pdf\u0026Expires=1732414361\u0026Signature=D2JTv4Brul~iC8x4v~-4kgeWoRcnd4Nc9taR2T7GqirXfqNM85s9fpdwyGh6dTzdLX8BvJ0d3uTY5t7qzqv3fTtELpBBgOf0-1pb2VLcvvtxhM5QkGgu4wQ28DMiKBg~iHfeQ0tM17RaUmxWJgc~c6iV1ktBMrWmYhSHTiPYPDS3ci~9iKQkEasPVRz43DCewCjbKiVvIJAS6ZyUcynacYtxXcC7VuCO--~jR-4Fj2q0NV-y5UG8HD-~25153WsCoEc6ma7aobwAW5dQ-DvMMiJEQpD2pH4OAIgEz9iegcSsSCKOeSbb7-I4Pf8OZY0yRvyopj6yHkdx3IzYCTqdZw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":4523,"name":"Water quality","url":"https://www.academia.edu/Documents/in/Water_quality"},{"id":55641,"name":"Performance Evaluation","url":"https://www.academia.edu/Documents/in/Performance_Evaluation"},{"id":214678,"name":"Asset Management","url":"https://www.academia.edu/Documents/in/Asset_Management"},{"id":622367,"name":"Water Quality","url":"https://www.academia.edu/Documents/in/Water_Quality-1"}],"urls":[{"id":44976321,"url":"https://ore.exeter.ac.uk/repository/bitstream/handle/10871/11793/novel_methods_for_2011.pdf;sequence=2"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421586"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421586/Minkowski_compactness_measure"><img alt="Research paper thumbnail of Minkowski compactness measure" class="work-thumbnail" src="https://attachments.academia-assets.com/118650123/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421586/Minkowski_compactness_measure">Minkowski compactness measure</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="07f5858a8d59688a93e8b169a1284c7c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650123,&quot;asset_id&quot;:124421586,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650123/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421586"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421586"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421586; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421586]").text(description); $(".js-view-count[data-work-id=124421586]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421586; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421586']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421586, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "07f5858a8d59688a93e8b169a1284c7c" } } $('.js-work-strip[data-work-id=124421586]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421586,"title":"Minkowski compactness measure","translated_title":"","metadata":{"publication_date":{"day":1,"month":9,"year":2013,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421586/Minkowski_compactness_measure","translated_internal_url":"","created_at":"2024-10-04T08:49:43.243-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650123,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650123/thumbnails/1.jpg","file_name":"Minkowski_20compactness_20measure.pdf","download_url":"https://www.academia.edu/attachments/118650123/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Minkowski_compactness_measure.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650123/Minkowski_20compactness_20measure-libre.pdf?1728057646=\u0026response-content-disposition=attachment%3B+filename%3DMinkowski_compactness_measure.pdf\u0026Expires=1732414361\u0026Signature=MGy~jzRNKKVvXh-b9a1Zr8h5oedzpc9oMgBMBkHrw-9U8qHIokHJ3YccSVhaE6RRuSKEC42l5HqwrOwwV~N3kUoYf-xKkoZ4legRYwrcpuD6A8N3XQJS8lyZeTjZ1KQTUup9nIH59h9eOm4tM9K8ngmWAqFYxaWrsPllTE1fqKVrRRZpyHl6W4PMhLitow-411oGq3NVQ-T-TB3mBlbI2AzbzARR4T58S7jpJzNtSUaWNq62tAkW-Gh89aOPi~4z-txdXcTOsfgFCtr7~22jvkKl-nAN5a95ICJqFBMPVh1YEFAkNSBMJ7rgaMMR1foKpsZf7If-Er9q32rV8nD1nw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Minkowski_compactness_measure","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650123,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650123/thumbnails/1.jpg","file_name":"Minkowski_20compactness_20measure.pdf","download_url":"https://www.academia.edu/attachments/118650123/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Minkowski_compactness_measure.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650123/Minkowski_20compactness_20measure-libre.pdf?1728057646=\u0026response-content-disposition=attachment%3B+filename%3DMinkowski_compactness_measure.pdf\u0026Expires=1732414361\u0026Signature=MGy~jzRNKKVvXh-b9a1Zr8h5oedzpc9oMgBMBkHrw-9U8qHIokHJ3YccSVhaE6RRuSKEC42l5HqwrOwwV~N3kUoYf-xKkoZ4legRYwrcpuD6A8N3XQJS8lyZeTjZ1KQTUup9nIH59h9eOm4tM9K8ngmWAqFYxaWrsPllTE1fqKVrRRZpyHl6W4PMhLitow-411oGq3NVQ-T-TB3mBlbI2AzbzARR4T58S7jpJzNtSUaWNq62tAkW-Gh89aOPi~4z-txdXcTOsfgFCtr7~22jvkKl-nAN5a95ICJqFBMPVh1YEFAkNSBMJ7rgaMMR1foKpsZf7If-Er9q32rV8nD1nw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118650124,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650124/thumbnails/1.jpg","file_name":"Minkowski_20compactness_20measure.pdf","download_url":"https://www.academia.edu/attachments/118650124/download_file","bulk_download_file_name":"Minkowski_compactness_measure.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650124/Minkowski_20compactness_20measure-libre.pdf?1728057649=\u0026response-content-disposition=attachment%3B+filename%3DMinkowski_compactness_measure.pdf\u0026Expires=1732414361\u0026Signature=Q9xhiEHii50d9yUFmPe-S-Euqt9VpcZnYmLiVoKWBe99Plk9t9XxGTFce5LYtQej-FZFHF9c3fyYrVvVdCLSOWj~kRp8152ihdt0xlqE9yogC6i~uvYJFvfN0QmlQc5kpfMHDFyQUvuKrUojPTEr7lwfL1L~fcnQelNcahabgnFnPqwfWIR2fBr3uYgxtxQINHNoSnH-CMxAyRv0HAcoI2M0jYNwlZh~V~O1ZVDAtpKB6jqCHtwK4h5Km7bma5p9bhEbpIsVL0KMURCaVao43LQM~kp7~VEcrbLz9-nxK8GSIVn8oVBmv3-59Ggf~Lpuoi7Ae3VTiTF-m38cDmsg~w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision"},{"id":1185,"name":"Image Processing","url":"https://www.academia.edu/Documents/in/Image_Processing"},{"id":1178418,"name":"Shape Description","url":"https://www.academia.edu/Documents/in/Shape_Description"}],"urls":[{"id":44976320,"url":"https://ore.exeter.ac.uk/repository/bitstream/10871/20874/1/Minkowski%20compactness%20measure.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421585"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421585/Edges_of_mutually_non_dominating_sets"><img alt="Research paper thumbnail of Edges of mutually non-dominating sets" class="work-thumbnail" src="https://attachments.academia-assets.com/118650122/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421585/Edges_of_mutually_non_dominating_sets">Edges of mutually non-dominating sets</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3e97e6b6d59545820f5ff6aa559f92b3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650122,&quot;asset_id&quot;:124421585,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650122/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421585"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421585"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421585; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421585]").text(description); $(".js-view-count[data-work-id=124421585]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421585; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421585']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421585, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3e97e6b6d59545820f5ff6aa559f92b3" } } $('.js-work-strip[data-work-id=124421585]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421585,"title":"Edges of mutually non-dominating sets","translated_title":"","metadata":{"publication_date":{"day":6,"month":7,"year":2013,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421585/Edges_of_mutually_non_dominating_sets","translated_internal_url":"","created_at":"2024-10-04T08:49:42.636-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650122,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650122/thumbnails/1.jpg","file_name":"emo-edges.pdf","download_url":"https://www.academia.edu/attachments/118650122/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Edges_of_mutually_non_dominating_sets.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650122/emo-edges-libre.pdf?1728058527=\u0026response-content-disposition=attachment%3B+filename%3DEdges_of_mutually_non_dominating_sets.pdf\u0026Expires=1732414361\u0026Signature=S1gHhL4wp6fKoOnjaZ76sSp~sf5pnF2m4LaIH6e2Kb~Nn6IIVCw0zDbGAYgWfaIjUUfcHObJ29X0XqeiSx9aoRBD6KIzBd8mhsbtH6TwXp6qRsJLiVfsoUuhN8WARbSzCo84xDK9vKNSAG7CzmISaviMVKwgAUSp6pEH7C39k--j-O6zX~~ZCO3jv2rrzTF3RKUKenFkDwj6mVPJk1jRUU8P2vPSjgCHJgZJ4o3VNCI-YM-DA5Kr75o9WlE2kV3udN6fD6mYl3lFqgCqU7H0QApKAQqsBAygyntyaiYKspEHnKofbhnSaQ5SrZeJ17z5~4tNFKbbRgNk9rqVgXdayA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Edges_of_mutually_non_dominating_sets","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650122,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650122/thumbnails/1.jpg","file_name":"emo-edges.pdf","download_url":"https://www.academia.edu/attachments/118650122/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Edges_of_mutually_non_dominating_sets.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650122/emo-edges-libre.pdf?1728058527=\u0026response-content-disposition=attachment%3B+filename%3DEdges_of_mutually_non_dominating_sets.pdf\u0026Expires=1732414361\u0026Signature=S1gHhL4wp6fKoOnjaZ76sSp~sf5pnF2m4LaIH6e2Kb~Nn6IIVCw0zDbGAYgWfaIjUUfcHObJ29X0XqeiSx9aoRBD6KIzBd8mhsbtH6TwXp6qRsJLiVfsoUuhN8WARbSzCo84xDK9vKNSAG7CzmISaviMVKwgAUSp6pEH7C39k--j-O6zX~~ZCO3jv2rrzTF3RKUKenFkDwj6mVPJk1jRUU8P2vPSjgCHJgZJ4o3VNCI-YM-DA5Kr75o9WlE2kV3udN6fD6mYl3lFqgCqU7H0QApKAQqsBAygyntyaiYKspEHnKofbhnSaQ5SrZeJ17z5~4tNFKbbRgNk9rqVgXdayA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118650121,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650121/thumbnails/1.jpg","file_name":"emo-edges.pdf","download_url":"https://www.academia.edu/attachments/118650121/download_file","bulk_download_file_name":"Edges_of_mutually_non_dominating_sets.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650121/emo-edges-libre.pdf?1728058567=\u0026response-content-disposition=attachment%3B+filename%3DEdges_of_mutually_non_dominating_sets.pdf\u0026Expires=1732414361\u0026Signature=WBFBwi0vjcKltKVoiinT015RMcU2tkc3p49jVMZSeOntQ2-zje6XGSAAGKLotg4SSuUFtFwOpPsbwcECjjOLs98WvlqsUq1p4PAHgJirtx7MjqSRBLkC6BzmgUhftLZ2FnEOviUr51rA8XXq0SVbbd4dqK3~VCMt~PJnAC0~MeSyHlY4cqrW~xEGqpHjb-2vafZZ2oszOFJa~46YezyDll46eqXbfwZOMH1ZHaC9hd39pkZZ7~Bss9WeaPxCY3xehFsWjOvh8XDJ6IJZ32AvHUgAsJt2hC5dcBjD323fNhu4O39yPlBqf~d9pKAIq7yB-6TLJZiL~UwmH7chWRsL4A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":151052,"name":"Edge","url":"https://www.academia.edu/Documents/in/Edge"},{"id":180347,"name":"Visualisation","url":"https://www.academia.edu/Documents/in/Visualisation"},{"id":2724433,"name":"Dominating set","url":"https://www.academia.edu/Documents/in/Dominating_set"}],"urls":[{"id":44976319,"url":"https://ore.exeter.ac.uk/repository/bitstream/10871/14760/6/emo-edges.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421584"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421584/Visualising_many_objective_populations"><img alt="Research paper thumbnail of Visualising many-objective populations" class="work-thumbnail" src="https://attachments.academia-assets.com/118650120/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421584/Visualising_many_objective_populations">Visualising many-objective populations</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bfce8578910eab8fe8d6c5b6c313f844" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650120,&quot;asset_id&quot;:124421584,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650120/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421584"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421584"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421584; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421584]").text(description); $(".js-view-count[data-work-id=124421584]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421584; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421584']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421584, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bfce8578910eab8fe8d6c5b6c313f844" } } $('.js-work-strip[data-work-id=124421584]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421584,"title":"Visualising many-objective populations","translated_title":"","metadata":{"publication_date":{"day":7,"month":7,"year":2012,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421584/Visualising_many_objective_populations","translated_internal_url":"","created_at":"2024-10-04T08:49:41.896-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650120,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650120/thumbnails/1.jpg","file_name":"visualising_many_obective_2012.pdf","download_url":"https://www.academia.edu/attachments/118650120/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Visualising_many_objective_populations.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650120/visualising_many_obective_2012-libre.pdf?1728058249=\u0026response-content-disposition=attachment%3B+filename%3DVisualising_many_objective_populations.pdf\u0026Expires=1732414361\u0026Signature=cCIfFyL9rgM00k23raglSi-ULqDR4AlxOuS0ILFShiEsHifo7xcqlaewRX1OfQF1QMNhPwPAjqWODXsk5iWrrC6o1TQ0rIF3UYVRi0PIVkIGaIumH4-E-mwaqsELdSwpI4sOaUfxGSpHc21oqwV6nZQdnqLnkfPwvC9c69bNhAc5qZFz8QqSMOtCAMpGlSb4ijjo9loiRB27i1Ecs7XAQ-igBm-6DbyicpD6JuII1bl-N1pPYTlhww4eYgdhEHNhlvqPNg5ygnk7XG-h4oetsYdZCUlRNWgu4wUU6DWW48so1g5EftFEgQ~ICI9Jt3Bbet70NggGvaph2z6u8zPfvA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Visualising_many_objective_populations","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650120,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650120/thumbnails/1.jpg","file_name":"visualising_many_obective_2012.pdf","download_url":"https://www.academia.edu/attachments/118650120/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Visualising_many_objective_populations.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650120/visualising_many_obective_2012-libre.pdf?1728058249=\u0026response-content-disposition=attachment%3B+filename%3DVisualising_many_objective_populations.pdf\u0026Expires=1732414361\u0026Signature=cCIfFyL9rgM00k23raglSi-ULqDR4AlxOuS0ILFShiEsHifo7xcqlaewRX1OfQF1QMNhPwPAjqWODXsk5iWrrC6o1TQ0rIF3UYVRi0PIVkIGaIumH4-E-mwaqsELdSwpI4sOaUfxGSpHc21oqwV6nZQdnqLnkfPwvC9c69bNhAc5qZFz8QqSMOtCAMpGlSb4ijjo9loiRB27i1Ecs7XAQ-igBm-6DbyicpD6JuII1bl-N1pPYTlhww4eYgdhEHNhlvqPNg5ygnk7XG-h4oetsYdZCUlRNWgu4wUU6DWW48so1g5EftFEgQ~ICI9Jt3Bbet70NggGvaph2z6u8zPfvA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118650119,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650119/thumbnails/1.jpg","file_name":"visualising_many_obective_2012.pdf","download_url":"https://www.academia.edu/attachments/118650119/download_file","bulk_download_file_name":"Visualising_many_objective_populations.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650119/visualising_many_obective_2012-libre.pdf?1728058256=\u0026response-content-disposition=attachment%3B+filename%3DVisualising_many_objective_populations.pdf\u0026Expires=1732414361\u0026Signature=GEquIOvslJFnr6S6dB813zXDlFo2B7FkuDgUhQ4doPN5biQRJ9e4rJVdhb9n3nEGnrifGZeIm-kTl8IbQXvETo4RO4VyqtCQCuMTljZGROdWNOlO68AmpkGPCdk7pLzXel0EQ85kj6TYR2bwKXNYdO-a5cJAZfym3YZPLcf1EfBud23OdpBDjdwdf0kX-oLXSxOxpo~G0pHEs2G-Cq07br8SjXTKPV7E9ARuM5Pv4Hh5MRq7ceVAVh8GE9ze7Wwb1e3nJfE6Ir900CzBJz6xYOENbvZTwUng04QTjEsfNeLmG9RDA96ZV3h1XfS2VbjvefTCPYlbYp4BBSJQPiUtqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":64336,"name":"Population","url":"https://www.academia.edu/Documents/in/Population"},{"id":161594,"name":"High Dimensional Data","url":"https://www.academia.edu/Documents/in/High_Dimensional_Data"},{"id":180347,"name":"Visualisation","url":"https://www.academia.edu/Documents/in/Visualisation"},{"id":223634,"name":"Sorting","url":"https://www.academia.edu/Documents/in/Sorting"},{"id":821516,"name":"Decision Maker","url":"https://www.academia.edu/Documents/in/Decision_Maker"},{"id":970277,"name":"Two Dimensions","url":"https://www.academia.edu/Documents/in/Two_Dimensions"},{"id":1450944,"name":"Multi objective genetic algorithm optimisation","url":"https://www.academia.edu/Documents/in/Multi_objective_genetic_algorithm_optimisation"}],"urls":[{"id":44976318,"url":"https://ore.exeter.ac.uk/repository/bitstream/10871/11703/2/visualising_many_obective_2012.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421583"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421583/How_clumpy_is_my_image_Evaluating_crowdsourced_annotation_tasks"><img alt="Research paper thumbnail of How clumpy is my image? Evaluating crowdsourced annotation tasks" class="work-thumbnail" src="https://attachments.academia-assets.com/118650118/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421583/How_clumpy_is_my_image_Evaluating_crowdsourced_annotation_tasks">How clumpy is my image? Evaluating crowdsourced annotation tasks</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a57543a4cd7e0f374757e26bc0f189a2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650118,&quot;asset_id&quot;:124421583,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650118/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421583"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421583"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421583; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421583]").text(description); $(".js-view-count[data-work-id=124421583]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421583; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421583']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421583, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a57543a4cd7e0f374757e26bc0f189a2" } } $('.js-work-strip[data-work-id=124421583]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421583,"title":"How clumpy is my image? Evaluating crowdsourced annotation tasks","translated_title":"","metadata":{"publication_date":{"day":1,"month":9,"year":2013,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421583/How_clumpy_is_my_image_Evaluating_crowdsourced_annotation_tasks","translated_internal_url":"","created_at":"2024-10-04T08:49:41.159-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650118,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650118/thumbnails/1.jpg","file_name":"How_20Clumpy_20IS_20my_20Image.pdf","download_url":"https://www.academia.edu/attachments/118650118/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"How_clumpy_is_my_image_Evaluating_crowds.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650118/How_20Clumpy_20IS_20my_20Image-libre.pdf?1728058550=\u0026response-content-disposition=attachment%3B+filename%3DHow_clumpy_is_my_image_Evaluating_crowds.pdf\u0026Expires=1732414361\u0026Signature=clF2g7dSsrRlPSYxXUJjRzYcsrOZ3ZvdbNchBF74kZc8wpjfWY3zY12-l6JMkl5aMSueMbJ228kNCF4GRnBNUWQdRf2v6tAl52ejIS5hJwso6EThfpUtf1zEwYb6H~LIMiGxhWP6q7wSn53li7MFTIDzQlafIdzmoU8JHwPi7AMcglt0PDWxtKpCNYQUcU97IJwCqk6i53OAma3uGJp~XD5c8RyZ38SAUFRetY4hCq~GxwP4Q3X8Vbh-HyXjzNKEFVa9NfUkw~PV22IpFjVGesJHM2NRO65FpgJ5l9jlimZEHsreUu-JYQapOi~h1zxG9LQXEGFA33nVFuoJrZZUwg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"How_clumpy_is_my_image_Evaluating_crowdsourced_annotation_tasks","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650118,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650118/thumbnails/1.jpg","file_name":"How_20Clumpy_20IS_20my_20Image.pdf","download_url":"https://www.academia.edu/attachments/118650118/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"How_clumpy_is_my_image_Evaluating_crowds.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650118/How_20Clumpy_20IS_20my_20Image-libre.pdf?1728058550=\u0026response-content-disposition=attachment%3B+filename%3DHow_clumpy_is_my_image_Evaluating_crowds.pdf\u0026Expires=1732414361\u0026Signature=clF2g7dSsrRlPSYxXUJjRzYcsrOZ3ZvdbNchBF74kZc8wpjfWY3zY12-l6JMkl5aMSueMbJ228kNCF4GRnBNUWQdRf2v6tAl52ejIS5hJwso6EThfpUtf1zEwYb6H~LIMiGxhWP6q7wSn53li7MFTIDzQlafIdzmoU8JHwPi7AMcglt0PDWxtKpCNYQUcU97IJwCqk6i53OAma3uGJp~XD5c8RyZ38SAUFRetY4hCq~GxwP4Q3X8Vbh-HyXjzNKEFVa9NfUkw~PV22IpFjVGesJHM2NRO65FpgJ5l9jlimZEHsreUu-JYQapOi~h1zxG9LQXEGFA33nVFuoJrZZUwg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2130,"name":"Groupware","url":"https://www.academia.edu/Documents/in/Groupware"},{"id":3523,"name":"Evolutionary Computation","url":"https://www.academia.edu/Documents/in/Evolutionary_Computation"},{"id":21556,"name":"Crowdsourcing","url":"https://www.academia.edu/Documents/in/Crowdsourcing"},{"id":38072,"name":"Annotation","url":"https://www.academia.edu/Documents/in/Annotation"},{"id":56368,"name":"Image Classification","url":"https://www.academia.edu/Documents/in/Image_Classification"},{"id":106145,"name":"Classification","url":"https://www.academia.edu/Documents/in/Classification"},{"id":195021,"name":"Pattern Clustering","url":"https://www.academia.edu/Documents/in/Pattern_Clustering"},{"id":369494,"name":"Ranking","url":"https://www.academia.edu/Documents/in/Ranking"},{"id":540471,"name":"Scoring","url":"https://www.academia.edu/Documents/in/Scoring"},{"id":1191356,"name":"Internet","url":"https://www.academia.edu/Documents/in/Internet"}],"urls":[{"id":44976317,"url":"https://ore.exeter.ac.uk/repository/bitstream/10871/20875/1/How%20Clumpy%20IS%20my%20Image.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421535"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421535/Multi_Objective_Optimisation_for_Receiver_Operating_Characteristic_Analysis"><img alt="Research paper thumbnail of Multi-Objective Optimisation for Receiver Operating Characteristic Analysis" class="work-thumbnail" src="https://attachments.academia-assets.com/118650090/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421535/Multi_Objective_Optimisation_for_Receiver_Operating_Characteristic_Analysis">Multi-Objective Optimisation for Receiver Operating Characteristic Analysis</a></div><div class="wp-workCard_item"><span>Springer eBooks</span><span>, May 19, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7dcb9a19fca47822deb05678a53cabd5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650090,&quot;asset_id&quot;:124421535,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650090/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421535"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421535"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421535; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421535]").text(description); $(".js-view-count[data-work-id=124421535]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421535; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421535']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421535, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7dcb9a19fca47822deb05678a53cabd5" } } $('.js-work-strip[data-work-id=124421535]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421535,"title":"Multi-Objective Optimisation for Receiver Operating Characteristic Analysis","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":19,"month":5,"year":2006,"errors":{}},"publication_name":"Springer eBooks"},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421535/Multi_Objective_Optimisation_for_Receiver_Operating_Characteristic_Analysis","translated_internal_url":"","created_at":"2024-10-04T08:48:38.782-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650090,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650090/thumbnails/1.jpg","file_name":"multi_objective_optimisation_2006.pdf","download_url":"https://www.academia.edu/attachments/118650090/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multi_Objective_Optimisation_for_Receive.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650090/multi_objective_optimisation_2006-libre.pdf?1728057674=\u0026response-content-disposition=attachment%3B+filename%3DMulti_Objective_Optimisation_for_Receive.pdf\u0026Expires=1732414361\u0026Signature=SmBX8fwUDIkO23ZfOll471I2SLPIIvyzkgHB0IHqaRdWZNDDEaqdjsOdIsx12UYLM-sUCPaspUFeujw0fUdICUbCMyRivDzhCuhQ2sQd4p0jcuh8McmLyenuPr94PqqDwG1bSeIOlI6qiw4Z8Q5olZtDDPE4k5J8sEnRSywwTxSXZD5qq4pTTRj4ceviiaKqpkMAusNf5dKCwEbMxEDIga3X1a9U36WtjTOcf0O7UNGvCXjTFmWOD~0Jl00qXAO4g84ARkZ05LJUhG7zR3BTUsI1aibVFImYrg6q73C-nKGg8vK82H1H3SYc1w9ryt~Gx9DzZx7r4J5K0i~SZsiAFg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Multi_Objective_Optimisation_for_Receiver_Operating_Characteristic_Analysis","translated_slug":"","page_count":25,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650090,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650090/thumbnails/1.jpg","file_name":"multi_objective_optimisation_2006.pdf","download_url":"https://www.academia.edu/attachments/118650090/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multi_Objective_Optimisation_for_Receive.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650090/multi_objective_optimisation_2006-libre.pdf?1728057674=\u0026response-content-disposition=attachment%3B+filename%3DMulti_Objective_Optimisation_for_Receive.pdf\u0026Expires=1732414361\u0026Signature=SmBX8fwUDIkO23ZfOll471I2SLPIIvyzkgHB0IHqaRdWZNDDEaqdjsOdIsx12UYLM-sUCPaspUFeujw0fUdICUbCMyRivDzhCuhQ2sQd4p0jcuh8McmLyenuPr94PqqDwG1bSeIOlI6qiw4Z8Q5olZtDDPE4k5J8sEnRSywwTxSXZD5qq4pTTRj4ceviiaKqpkMAusNf5dKCwEbMxEDIga3X1a9U36WtjTOcf0O7UNGvCXjTFmWOD~0Jl00qXAO4g84ARkZ05LJUhG7zR3BTUsI1aibVFImYrg6q73C-nKGg8vK82H1H3SYc1w9ryt~Gx9DzZx7r4J5K0i~SZsiAFg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118650091,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650091/thumbnails/1.jpg","file_name":"multi_objective_optimisation_2006.pdf","download_url":"https://www.academia.edu/attachments/118650091/download_file","bulk_download_file_name":"Multi_Objective_Optimisation_for_Receive.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650091/multi_objective_optimisation_2006-libre.pdf?1728057675=\u0026response-content-disposition=attachment%3B+filename%3DMulti_Objective_Optimisation_for_Receive.pdf\u0026Expires=1732414361\u0026Signature=X3DWSs37D3qxYlKCId~xoNHCTTRDDBZkC095-5o5ClH7lTWp9mTCekABGOa-ymtwh6GBK9HqJz3yOYJSljqYC4XcWthBSgKTbUzQFSLnCICU~2QoPp7bwaBRGVwIntYhAOi1GsOoe-LVE56-bzB4ZWUrj7zhkpaWLpFJwdKq2sal0-uU0mME7NKj2YExzlvCXhFocasApz50wBpdzAyRnJUd1pQ8sQyVXvaqW7snOGNJ3LoFnAqgRGUouCl5xqsh2DYeAvjRknUgqr8VXJE7vslxSx7C6ll3NGdMcyonvl4GcYuk82vI-AYWZqs6P5w4kJOGYjs1O-gnUraghzBZow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":154214,"name":"Binary Classification","url":"https://www.academia.edu/Documents/in/Binary_Classification"},{"id":503912,"name":"Operating Point","url":"https://www.academia.edu/Documents/in/Operating_Point"},{"id":1309705,"name":"Receiver Operating Characteristic","url":"https://www.academia.edu/Documents/in/Receiver_Operating_Characteristic"},{"id":1450944,"name":"Multi objective genetic algorithm optimisation","url":"https://www.academia.edu/Documents/in/Multi_objective_genetic_algorithm_optimisation"},{"id":2651394,"name":"roc analysis","url":"https://www.academia.edu/Documents/in/roc_analysis"},{"id":3647879,"name":"Springer Ebooks","url":"https://www.academia.edu/Documents/in/Springer_Ebooks"}],"urls":[{"id":44976292,"url":"https://ore.exeter.ac.uk/repository/bitstream/10871/11568/2/multi_objective_optimisation_2006.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121445664"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121445664/The_Deep_Dementia_Phenotyping_DEMON_Network_A_global_platform_for_innovation_using_data_science_and_artificial_intelligence"><img alt="Research paper thumbnail of The Deep Dementia Phenotyping (DEMON) Network: A global platform for innovation using data science and artificial intelligence" class="work-thumbnail" src="https://attachments.academia-assets.com/116318447/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121445664/The_Deep_Dementia_Phenotyping_DEMON_Network_A_global_platform_for_innovation_using_data_science_and_artificial_intelligence">The Deep Dementia Phenotyping (DEMON) Network: A global platform for innovation using data science and artificial intelligence</a></div><div class="wp-workCard_item"><span>Alzheimers &amp; Dementia</span><span>, Dec 1, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f0fcc1a360a0ad9f7ddc320c41571d29" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116318447,&quot;asset_id&quot;:121445664,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116318447/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121445664"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121445664"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121445664; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121445664]").text(description); $(".js-view-count[data-work-id=121445664]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121445664; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121445664']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121445664, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f0fcc1a360a0ad9f7ddc320c41571d29" } } $('.js-work-strip[data-work-id=121445664]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121445664,"title":"The Deep Dementia Phenotyping (DEMON) Network: A global platform for innovation using data science and artificial intelligence","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":1,"month":12,"year":2022,"errors":{}},"publication_name":"Alzheimers \u0026 Dementia"},"translated_abstract":null,"internal_url":"https://www.academia.edu/121445664/The_Deep_Dementia_Phenotyping_DEMON_Network_A_global_platform_for_innovation_using_data_science_and_artificial_intelligence","translated_internal_url":"","created_at":"2024-06-24T01:56:41.699-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116318447,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116318447/thumbnails/1.jpg","file_name":"Alzheimer_20s_20_20_20Dementia_20-_202022_20-_20Ranson_20-_20The_20Deep_20Dementia_20Phenotyping_20_20DEMON_20_20Network_20_20A_20global.pdf","download_url":"https://www.academia.edu/attachments/116318447/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Deep_Dementia_Phenotyping_DEMON_Netw.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116318447/Alzheimer_20s_20_20_20Dementia_20-_202022_20-_20Ranson_20-_20The_20Deep_20Dementia_20Phenotyping_20_20DEMON_20_20Network_20_20A_20global-libre.pdf?1719219630=\u0026response-content-disposition=attachment%3B+filename%3DThe_Deep_Dementia_Phenotyping_DEMON_Netw.pdf\u0026Expires=1732414361\u0026Signature=YZxp0mfHlL0DwGL~~iwedFgLTTtZls3RvPyuPKVVCIX7h~9SithREyiDl-OOHY~a73XLV8I6JYD8tNGR2ksEyCfRAvNKkhiGaKW41VO0PJApp2M9wCWBrNX2rYL4KP-xrLb5Ag25qWC~QGTcZjYI-cY0ahY7HXpI8sz7P1qS4AC0Oq8ODYaZx1aI06LCrpnLOT25S6z5UyoiWBoxW6XA9FBg~ugyJMzdT5PpYL46osBFPwlmjSLNbxFUVSYsY20cVdMJSkuAKqRa5OIknBd0pa~0E~PDhLl1kIzSNAe-EtYXJt3GMTl2rfLPhUH7nMkkR6v-AqxXZUA-hqe0~i-4mQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Deep_Dementia_Phenotyping_DEMON_Network_A_global_platform_for_innovation_using_data_science_and_artificial_intelligence","translated_slug":"","page_count":3,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":116318447,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116318447/thumbnails/1.jpg","file_name":"Alzheimer_20s_20_20_20Dementia_20-_202022_20-_20Ranson_20-_20The_20Deep_20Dementia_20Phenotyping_20_20DEMON_20_20Network_20_20A_20global.pdf","download_url":"https://www.academia.edu/attachments/116318447/download_file?st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Deep_Dementia_Phenotyping_DEMON_Netw.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116318447/Alzheimer_20s_20_20_20Dementia_20-_202022_20-_20Ranson_20-_20The_20Deep_20Dementia_20Phenotyping_20_20DEMON_20_20Network_20_20A_20global-libre.pdf?1719219630=\u0026response-content-disposition=attachment%3B+filename%3DThe_Deep_Dementia_Phenotyping_DEMON_Netw.pdf\u0026Expires=1732414361\u0026Signature=YZxp0mfHlL0DwGL~~iwedFgLTTtZls3RvPyuPKVVCIX7h~9SithREyiDl-OOHY~a73XLV8I6JYD8tNGR2ksEyCfRAvNKkhiGaKW41VO0PJApp2M9wCWBrNX2rYL4KP-xrLb5Ag25qWC~QGTcZjYI-cY0ahY7HXpI8sz7P1qS4AC0Oq8ODYaZx1aI06LCrpnLOT25S6z5UyoiWBoxW6XA9FBg~ugyJMzdT5PpYL46osBFPwlmjSLNbxFUVSYsY20cVdMJSkuAKqRa5OIknBd0pa~0E~PDhLl1kIzSNAe-EtYXJt3GMTl2rfLPhUH7nMkkR6v-AqxXZUA-hqe0~i-4mQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":116318448,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116318448/thumbnails/1.jpg","file_name":"Alzheimer_20s_20_20_20Dementia_20-_202022_20-_20Ranson_20-_20The_20Deep_20Dementia_20Phenotyping_20_20DEMON_20_20Network_20_20A_20global.pdf","download_url":"https://www.academia.edu/attachments/116318448/download_file","bulk_download_file_name":"The_Deep_Dementia_Phenotyping_DEMON_Netw.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116318448/Alzheimer_20s_20_20_20Dementia_20-_202022_20-_20Ranson_20-_20The_20Deep_20Dementia_20Phenotyping_20_20DEMON_20_20Network_20_20A_20global-libre.pdf?1719219634=\u0026response-content-disposition=attachment%3B+filename%3DThe_Deep_Dementia_Phenotyping_DEMON_Netw.pdf\u0026Expires=1732414361\u0026Signature=EU3p14LGN6Me1cgQyLSJjQL-WtzxUlEIsE1yXpjQUSHotgapqekfhDVXvmanghtDm8Kl74ERETa7EyoRCzf-Ef8KZzjfWCxMoWaPWns3Ggt1Io5R-kR08BlvXU9D5NoG7IaA-S1cK~oMaxNzDZWvh61N3~eO9kL-X3OqCXDmwXK1zAAHyLr3M~rdeoNGq8AkvV9eAfJEsJP0YPsZYPgX0L4HZDcq16rJkWD3TL5aolMC1necHunUf-jMehzyx0782XD~qn47KSuXd7nPQrN2lZNqZdHrPY03T2l2V-ruBdHGTMHa13DbcwnPRKNq5MOhJzs3B2hMDyWVzyB24mQTAA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":3662,"name":"Dementia","url":"https://www.academia.edu/Documents/in/Dementia"},{"id":79300,"name":"Demon","url":"https://www.academia.edu/Documents/in/Demon"}],"urls":[{"id":43196417,"url":"https://ore.exeter.ac.uk/repository/bitstream/10871/132285/1/Alzheimer%20s%20%20%20Dementia%20-%202022%20-%20Ranson%20-%20The%20Deep%20Dementia%20Phenotyping%20%20DEMON%20%20Network%20%20A%20global%20platform%20for%20innovation.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121445663"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121445663/Using_simulation_and_machine_learning_to_maximise_the_benefit_of_intravenous_thrombolysis_in_acute_stroke_in_England_and_Wales_the_SAMueL_modelling_and_qualitative_study"><img alt="Research paper thumbnail of Using simulation and machine learning to maximise the benefit of intravenous thrombolysis in acute stroke in England and Wales: the SAMueL modelling and qualitative study" class="work-thumbnail" src="https://attachments.academia-assets.com/116318449/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121445663/Using_simulation_and_machine_learning_to_maximise_the_benefit_of_intravenous_thrombolysis_in_acute_stroke_in_England_and_Wales_the_SAMueL_modelling_and_qualitative_study">Using simulation and machine learning to maximise the benefit of intravenous thrombolysis in acute stroke in England and Wales: the SAMueL modelling and qualitative study</a></div><div class="wp-workCard_item"><span>Health and Social Care Delivery Research</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">BackgroundStroke is a common cause of adult disability. Expert opinion is that about 20% of patie...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">BackgroundStroke is a common cause of adult disability. Expert opinion is that about 20% of patients should receive thrombolysis to break up a clot causing the stroke. Currently, 11–12% of patients in England and Wales receive this treatment, ranging between 2% and 24% between hospitals.ObjectivesWe sought to enhance the national stroke audit by providing further analysis of the key sources of inter-hospital variation to determine how a target of 20% of stroke patients receiving thrombolysis may be reached.DesignWe modelled three aspects of the thrombolysis pathway, using machine learning and clinical pathway simulation. In addition, the project had a qualitative research arm, with the objective of understanding clinicians’ attitudes to use of modelling and machine learning applied to the national stroke audit.Participants and data sourceAnonymised data were collected for 246,676 emergency stroke admissions to acute stroke teams in England and Wales between 2016 and 2018, obtained f...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a2491d0452ead27f575329242f845a9d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116318449,&quot;asset_id&quot;:121445663,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116318449/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121445663"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121445663"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121445663; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121445663]").text(description); $(".js-view-count[data-work-id=121445663]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121445663; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121445663']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121445663, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a2491d0452ead27f575329242f845a9d" } } $('.js-work-strip[data-work-id=121445663]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121445663,"title":"Using simulation and machine learning to maximise the benefit of intravenous thrombolysis in acute stroke in England and Wales: the SAMueL modelling and qualitative study","translated_title":"","metadata":{"abstract":"BackgroundStroke is a common cause of adult disability. Expert opinion is that about 20% of patients should receive thrombolysis to break up a clot causing the stroke. Currently, 11–12% of patients in England and Wales receive this treatment, ranging between 2% and 24% between hospitals.ObjectivesWe sought to enhance the national stroke audit by providing further analysis of the key sources of inter-hospital variation to determine how a target of 20% of stroke patients receiving thrombolysis may be reached.DesignWe modelled three aspects of the thrombolysis pathway, using machine learning and clinical pathway simulation. In addition, the project had a qualitative research arm, with the objective of understanding clinicians’ attitudes to use of modelling and machine learning applied to the national stroke audit.Participants and data sourceAnonymised data were collected for 246,676 emergency stroke admissions to acute stroke teams in England and Wales between 2016 and 2018, obtained f...","publisher":"National Institute for Health and Care Research","publication_name":"Health and Social Care Delivery Research"},"translated_abstract":"BackgroundStroke is a common cause of adult disability. Expert opinion is that about 20% of patients should receive thrombolysis to break up a clot causing the stroke. Currently, 11–12% of patients in England and Wales receive this treatment, ranging between 2% and 24% between hospitals.ObjectivesWe sought to enhance the national stroke audit by providing further analysis of the key sources of inter-hospital variation to determine how a target of 20% of stroke patients receiving thrombolysis may be reached.DesignWe modelled three aspects of the thrombolysis pathway, using machine learning and clinical pathway simulation. In addition, the project had a qualitative research arm, with the objective of understanding clinicians’ attitudes to use of modelling and machine learning applied to the national stroke audit.Participants and data sourceAnonymised data were collected for 246,676 emergency stroke admissions to acute stroke teams in England and Wales between 2016 and 2018, obtained f...","internal_url":"https://www.academia.edu/121445663/Using_simulation_and_machine_learning_to_maximise_the_benefit_of_intravenous_thrombolysis_in_acute_stroke_in_England_and_Wales_the_SAMueL_modelling_and_qualitative_study","translated_internal_url":"","created_at":"2024-06-24T01:56:41.507-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116318449,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116318449/thumbnails/1.jpg","file_name":"2040449.pdf","download_url":"https://www.academia.edu/attachments/116318449/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_simulation_and_machine_learning_to.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116318449/2040449-libre.pdf?1719220159=\u0026response-content-disposition=attachment%3B+filename%3DUsing_simulation_and_machine_learning_to.pdf\u0026Expires=1732414361\u0026Signature=IQ3W12Llek5cQ07sAGQaj6nd-DkG6oxRCmyz6zN7Cq1rmU-HZXFiq6QLcw301P9O1pGRkEtY5voZtGrGt5C6jVJv9cU1IJkaw8pfW0IC1QXu7sELRbNbujCa2gWMrXROeapYAXpVW-IBCR2bNHrlUHpkWJJRBJuHcKoeZPbExK9N0AxWsewfjXFR81guVbnrEGKmFLCzQ4Zw16nfKrdRPBwmGeEXMgzTG911-EbDIXZvGWy0QVTTEDxvDuNkx4qbBsbJZDQW8qCyrQSvQORw7WwTDzkmoZvvlHmy4F8exFF2CK-AiZkgG2sP0KYb6bBSkA7sqZ-COoLeN7vQXRqy6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Using_simulation_and_machine_learning_to_maximise_the_benefit_of_intravenous_thrombolysis_in_acute_stroke_in_England_and_Wales_the_SAMueL_modelling_and_qualitative_study","translated_slug":"","page_count":184,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":116318449,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116318449/thumbnails/1.jpg","file_name":"2040449.pdf","download_url":"https://www.academia.edu/attachments/116318449/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_simulation_and_machine_learning_to.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116318449/2040449-libre.pdf?1719220159=\u0026response-content-disposition=attachment%3B+filename%3DUsing_simulation_and_machine_learning_to.pdf\u0026Expires=1732414361\u0026Signature=IQ3W12Llek5cQ07sAGQaj6nd-DkG6oxRCmyz6zN7Cq1rmU-HZXFiq6QLcw301P9O1pGRkEtY5voZtGrGt5C6jVJv9cU1IJkaw8pfW0IC1QXu7sELRbNbujCa2gWMrXROeapYAXpVW-IBCR2bNHrlUHpkWJJRBJuHcKoeZPbExK9N0AxWsewfjXFR81guVbnrEGKmFLCzQ4Zw16nfKrdRPBwmGeEXMgzTG911-EbDIXZvGWy0QVTTEDxvDuNkx4qbBsbJZDQW8qCyrQSvQORw7WwTDzkmoZvvlHmy4F8exFF2CK-AiZkgG2sP0KYb6bBSkA7sqZ-COoLeN7vQXRqy6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":116318450,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116318450/thumbnails/1.jpg","file_name":"2040449.pdf","download_url":"https://www.academia.edu/attachments/116318450/download_file","bulk_download_file_name":"Using_simulation_and_machine_learning_to.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116318450/2040449-libre.pdf?1719220162=\u0026response-content-disposition=attachment%3B+filename%3DUsing_simulation_and_machine_learning_to.pdf\u0026Expires=1732414362\u0026Signature=QPir2uXz~JuEyY~R3Qe48rlLdiTW9lz6brdaHlEkQi2OY9Mm-kQAkwFf1Rnd3ydPScX9C1pFgPCAEPFOUu1WbRAc8ASDtG2k8621JJVBVzQMAMsQEnHJM43sUzeFXHim3gcsfgq7RN3zTf~mO6t6RJweeOrzh1FIDkZIYbc6zzA4sf~kC~LppH503otGzW2rr1NaoXzJOd-Jjd9f63Uou6bhun2kSXvp4gk6PmEtNN2vtOnOtpbOSZQ04NtyjZFFlIZ7jaWw3I10OD5NkmzqBoC3FZVet5jq5oK8zY-w6YjqymgZGNOUEvDQglfsq6GwfF5~b6Bq4Rzs6yYF6QeS5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":607,"name":"Emergency Medicine","url":"https://www.academia.edu/Documents/in/Emergency_Medicine"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":95850,"name":"Audit","url":"https://www.academia.edu/Documents/in/Audit"},{"id":194607,"name":"Two Stroke Engine","url":"https://www.academia.edu/Documents/in/Two_Stroke_Engine"},{"id":1225323,"name":"Acute Ischemic Stroke","url":"https://www.academia.edu/Documents/in/Acute_Ischemic_Stroke"},{"id":3180634,"name":"Thrombolysis","url":"https://www.academia.edu/Documents/in/Thrombolysis"}],"urls":[{"id":43196416,"url":"https://njl-admin.nihr.ac.uk/document/download/2040449"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121445662"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121445662/Can_clinical_audits_be_enhanced_by_pathway_simulation_and_machine_learning_An_example_from_the_acute_stroke_pathway"><img alt="Research paper thumbnail of Can clinical audits be enhanced by pathway simulation and machine learning? An example from the acute stroke pathway" class="work-thumbnail" src="https://attachments.academia-assets.com/116318477/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121445662/Can_clinical_audits_be_enhanced_by_pathway_simulation_and_machine_learning_An_example_from_the_acute_stroke_pathway">Can clinical audits be enhanced by pathway simulation and machine learning? An example from the acute stroke pathway</a></div><div class="wp-workCard_item"><span>BMJ Open</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ObjectiveTo evaluate the application of clinical pathway simulation in machine learning, using cl...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ObjectiveTo evaluate the application of clinical pathway simulation in machine learning, using clinical audit data, in order to identify key drivers for improving use and speed of thrombolysis at individual hospitals.DesignComputer simulation modelling and machine learning.SettingSeven acute stroke units.ParticipantsAnonymised clinical audit data for 7864 patients.ResultsThree factors were pivotal in governing thrombolysis use: (1) the proportion of patients with a known stroke onset time (range 44%–73%), (2) pathway speed (for patients arriving within 4 hours of onset: per-hospital median arrival-to-scan ranged from 11 to 56 min; median scan-to-thrombolysis ranged from 21 to 44 min) and (3) predisposition to use thrombolysis (thrombolysis use ranged from 31% to 52% for patients with stroke scanned with 30 min left to administer thrombolysis). A pathway simulation model could predict the potential benefit of improving individual stages of the clinical pathway speed, whereas a machin...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="18afd16e8797cf32cefbe82a4efe8190" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116318477,&quot;asset_id&quot;:121445662,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116318477/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121445662"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121445662"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121445662; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121445662]").text(description); $(".js-view-count[data-work-id=121445662]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121445662; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121445662']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121445662, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "18afd16e8797cf32cefbe82a4efe8190" } } $('.js-work-strip[data-work-id=121445662]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121445662,"title":"Can clinical audits be enhanced by pathway simulation and machine learning? An example from the acute stroke pathway","translated_title":"","metadata":{"abstract":"ObjectiveTo evaluate the application of clinical pathway simulation in machine learning, using clinical audit data, in order to identify key drivers for improving use and speed of thrombolysis at individual hospitals.DesignComputer simulation modelling and machine learning.SettingSeven acute stroke units.ParticipantsAnonymised clinical audit data for 7864 patients.ResultsThree factors were pivotal in governing thrombolysis use: (1) the proportion of patients with a known stroke onset time (range 44%–73%), (2) pathway speed (for patients arriving within 4 hours of onset: per-hospital median arrival-to-scan ranged from 11 to 56 min; median scan-to-thrombolysis ranged from 21 to 44 min) and (3) predisposition to use thrombolysis (thrombolysis use ranged from 31% to 52% for patients with stroke scanned with 30 min left to administer thrombolysis). A pathway simulation model could predict the potential benefit of improving individual stages of the clinical pathway speed, whereas a machin...","publisher":"BMJ","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"BMJ Open"},"translated_abstract":"ObjectiveTo evaluate the application of clinical pathway simulation in machine learning, using clinical audit data, in order to identify key drivers for improving use and speed of thrombolysis at individual hospitals.DesignComputer simulation modelling and machine learning.SettingSeven acute stroke units.ParticipantsAnonymised clinical audit data for 7864 patients.ResultsThree factors were pivotal in governing thrombolysis use: (1) the proportion of patients with a known stroke onset time (range 44%–73%), (2) pathway speed (for patients arriving within 4 hours of onset: per-hospital median arrival-to-scan ranged from 11 to 56 min; median scan-to-thrombolysis ranged from 21 to 44 min) and (3) predisposition to use thrombolysis (thrombolysis use ranged from 31% to 52% for patients with stroke scanned with 30 min left to administer thrombolysis). A pathway simulation model could predict the potential benefit of improving individual stages of the clinical pathway speed, whereas a machin...","internal_url":"https://www.academia.edu/121445662/Can_clinical_audits_be_enhanced_by_pathway_simulation_and_machine_learning_An_example_from_the_acute_stroke_pathway","translated_internal_url":"","created_at":"2024-06-24T01:56:40.195-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116318477,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116318477/thumbnails/1.jpg","file_name":"Allen_BMJ_20Open.pdf","download_url":"https://www.academia.edu/attachments/116318477/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Can_clinical_audits_be_enhanced_by_pathw.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116318477/Allen_BMJ_20Open-libre.pdf?1719219629=\u0026response-content-disposition=attachment%3B+filename%3DCan_clinical_audits_be_enhanced_by_pathw.pdf\u0026Expires=1732414362\u0026Signature=WNbOfNCP~8fmgquOfvI~m~qQl-0PNYh6SY7N1ho4kZUi~R4oMrDWtVuglF48gRzCYGQTU9J6nD9EvCSp8razAjFMxMu2zuK0naFvpUOMW-aRp-QaPorw4UdAxussgrhxtbXoh0Po7ijns1ksgjgOQ9My1LdYSQnMaHiZwok0FZSQXEQqJJzd03PdWcQdCGD2XRf~O-QJ4BZpL6x3saCOUGtxzpQMOQSvP96AV5e37ts~ZkMJW354NTPX5f~Tj0CtlRDzd-QiX2RAZLy3A-DcfqhlJkv3kh5ekL09b9~IAVRUobBiGZi5FNGy-27J25barl~LFUQfbD7hFkpwyr2vKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Can_clinical_audits_be_enhanced_by_pathway_simulation_and_machine_learning_An_example_from_the_acute_stroke_pathway","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":116318477,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116318477/thumbnails/1.jpg","file_name":"Allen_BMJ_20Open.pdf","download_url":"https://www.academia.edu/attachments/116318477/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Can_clinical_audits_be_enhanced_by_pathw.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116318477/Allen_BMJ_20Open-libre.pdf?1719219629=\u0026response-content-disposition=attachment%3B+filename%3DCan_clinical_audits_be_enhanced_by_pathw.pdf\u0026Expires=1732414362\u0026Signature=WNbOfNCP~8fmgquOfvI~m~qQl-0PNYh6SY7N1ho4kZUi~R4oMrDWtVuglF48gRzCYGQTU9J6nD9EvCSp8razAjFMxMu2zuK0naFvpUOMW-aRp-QaPorw4UdAxussgrhxtbXoh0Po7ijns1ksgjgOQ9My1LdYSQnMaHiZwok0FZSQXEQqJJzd03PdWcQdCGD2XRf~O-QJ4BZpL6x3saCOUGtxzpQMOQSvP96AV5e37ts~ZkMJW354NTPX5f~Tj0CtlRDzd-QiX2RAZLy3A-DcfqhlJkv3kh5ekL09b9~IAVRUobBiGZi5FNGy-27J25barl~LFUQfbD7hFkpwyr2vKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":95850,"name":"Audit","url":"https://www.academia.edu/Documents/in/Audit"},{"id":194607,"name":"Two Stroke Engine","url":"https://www.academia.edu/Documents/in/Two_Stroke_Engine"},{"id":3180634,"name":"Thrombolysis","url":"https://www.academia.edu/Documents/in/Thrombolysis"}],"urls":[{"id":43196415,"url":"https://syndication.highwire.org/content/doi/10.1136/bmjopen-2018-028296"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121445647"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121445647/A_probabilistic_model_for_aircraft_in_climb_using_monotonic_functional_Gaussian_process_emulators"><img alt="Research paper thumbnail of A probabilistic model for aircraft in climb using monotonic functional Gaussian process emulators" class="work-thumbnail" src="https://attachments.academia-assets.com/116318457/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121445647/A_probabilistic_model_for_aircraft_in_climb_using_monotonic_functional_Gaussian_process_emulators">A probabilistic model for aircraft in climb using monotonic functional Gaussian process emulators</a></div><div class="wp-workCard_item"><span>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Ensuring vertical separation is a key means of maintaining safe separation between aircraft in co...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Ensuring vertical separation is a key means of maintaining safe separation between aircraft in congested airspace. Aircraft trajectories are modelled in the presence of significant epistemic uncertainty, leading to discrepancies between observed trajectories and the predictions of deterministic models, hampering the task of planning to ensure safe separation. In this paper, a probabilistic model is presented, for the purpose of emulating the trajectories of aircraft in climb and bounding the uncertainty of the predicted trajectory. A monotonic, functional representation exploits the spatio-temporal correlations in the radar observations. Through the use of Gaussian process emulators, features that parameterize the climb are mapped directly to functional outputs, providing a fast approximation, while ensuring that the resulting trajectory is monotonic. The model was applied as a probabilistic digital twin for aircraft in climb and baselined against the base of aircraft data, a determ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2e082c3894f659ed8e55a3bc7239e970" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116318457,&quot;asset_id&quot;:121445647,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116318457/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121445647"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121445647"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121445647; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121445647]").text(description); $(".js-view-count[data-work-id=121445647]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121445647; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121445647']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121445647, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2e082c3894f659ed8e55a3bc7239e970" } } $('.js-work-strip[data-work-id=121445647]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121445647,"title":"A probabilistic model for aircraft in climb using monotonic functional Gaussian process emulators","translated_title":"","metadata":{"abstract":"Ensuring vertical separation is a key means of maintaining safe separation between aircraft in congested airspace. Aircraft trajectories are modelled in the presence of significant epistemic uncertainty, leading to discrepancies between observed trajectories and the predictions of deterministic models, hampering the task of planning to ensure safe separation. In this paper, a probabilistic model is presented, for the purpose of emulating the trajectories of aircraft in climb and bounding the uncertainty of the predicted trajectory. A monotonic, functional representation exploits the spatio-temporal correlations in the radar observations. Through the use of Gaussian process emulators, features that parameterize the climb are mapped directly to functional outputs, providing a fast approximation, while ensuring that the resulting trajectory is monotonic. The model was applied as a probabilistic digital twin for aircraft in climb and baselined against the base of aircraft data, a determ...","publisher":"The Royal Society","publication_name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences"},"translated_abstract":"Ensuring vertical separation is a key means of maintaining safe separation between aircraft in congested airspace. Aircraft trajectories are modelled in the presence of significant epistemic uncertainty, leading to discrepancies between observed trajectories and the predictions of deterministic models, hampering the task of planning to ensure safe separation. In this paper, a probabilistic model is presented, for the purpose of emulating the trajectories of aircraft in climb and bounding the uncertainty of the predicted trajectory. A monotonic, functional representation exploits the spatio-temporal correlations in the radar observations. Through the use of Gaussian process emulators, features that parameterize the climb are mapped directly to functional outputs, providing a fast approximation, while ensuring that the resulting trajectory is monotonic. The model was applied as a probabilistic digital twin for aircraft in climb and baselined against the base of aircraft data, a determ...","internal_url":"https://www.academia.edu/121445647/A_probabilistic_model_for_aircraft_in_climb_using_monotonic_functional_Gaussian_process_emulators","translated_internal_url":"","created_at":"2024-06-24T01:55:50.361-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116318457,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116318457/thumbnails/1.jpg","file_name":"2210.pdf","download_url":"https://www.academia.edu/attachments/116318457/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_probabilistic_model_for_aircraft_in_cl.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116318457/2210-libre.pdf?1719219635=\u0026response-content-disposition=attachment%3B+filename%3DA_probabilistic_model_for_aircraft_in_cl.pdf\u0026Expires=1732414362\u0026Signature=cHDz2g4I~yjXlGMvv9gH4O50IYDqKY7FBOpAHQWDZMSillHUCc9fftOMXsmgqJI~3NGfIMJC4igqwR2qrB3uZG7zvEAkgMstSt-ytWEgd~Dn2zMa0AfjNSeclLfE6I9oupmbewAXtPa2XEOUuZLTWW~h~wXvF9KokL0Mu~TxLU~YplJOr7V6acuPLSY5UxW06WVi9BqlffhBPbUKjLsrnOO84sO666MQrIrg3L5oLS6uItyBXc1FHwpekT7CbEZvhV5ASLOsXQ~x6W8TEtJQq~5ixI6RDpXaXw~I0ra-GNL54Haq66pDTxfGGm3sL2qocIH44EU9-oa9DaF9M0sclw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_probabilistic_model_for_aircraft_in_climb_using_monotonic_functional_Gaussian_process_emulators","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":116318457,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116318457/thumbnails/1.jpg","file_name":"2210.pdf","download_url":"https://www.academia.edu/attachments/116318457/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_probabilistic_model_for_aircraft_in_cl.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116318457/2210-libre.pdf?1719219635=\u0026response-content-disposition=attachment%3B+filename%3DA_probabilistic_model_for_aircraft_in_cl.pdf\u0026Expires=1732414362\u0026Signature=cHDz2g4I~yjXlGMvv9gH4O50IYDqKY7FBOpAHQWDZMSillHUCc9fftOMXsmgqJI~3NGfIMJC4igqwR2qrB3uZG7zvEAkgMstSt-ytWEgd~Dn2zMa0AfjNSeclLfE6I9oupmbewAXtPa2XEOUuZLTWW~h~wXvF9KokL0Mu~TxLU~YplJOr7V6acuPLSY5UxW06WVi9BqlffhBPbUKjLsrnOO84sO666MQrIrg3L5oLS6uItyBXc1FHwpekT7CbEZvhV5ASLOsXQ~x6W8TEtJQq~5ixI6RDpXaXw~I0ra-GNL54Haq66pDTxfGGm3sL2qocIH44EU9-oa9DaF9M0sclw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic"},{"id":59770,"name":"Trajectory","url":"https://www.academia.edu/Documents/in/Trajectory"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":625387,"name":"Climb","url":"https://www.academia.edu/Documents/in/Climb"},{"id":688446,"name":"Gaussian Process","url":"https://www.academia.edu/Documents/in/Gaussian_Process"}],"urls":[{"id":43196410,"url":"https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2022.0607"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="2984040" id="papers"><div class="js-work-strip profile--work_container" data-work-id="124421599"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421599/What_do_you_Mean_The_Role_of_the_Mean_Function_in_Bayesian_Optimisation"><img alt="Research paper thumbnail of What do you Mean? The Role of the Mean Function in Bayesian Optimisation" class="work-thumbnail" src="https://attachments.academia-assets.com/118650141/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421599/What_do_you_Mean_The_Role_of_the_Mean_Function_in_Bayesian_Optimisation">What do you Mean? The Role of the Mean Function in Bayesian Optimisation</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Apr 17, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f1f45abf4cb44691a8a809f62a80a991" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650141,&quot;asset_id&quot;:124421599,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650141/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421599"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421599"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421599; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421599]").text(description); $(".js-view-count[data-work-id=124421599]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421599; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421599']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421599, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f1f45abf4cb44691a8a809f62a80a991" } } $('.js-work-strip[data-work-id=124421599]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421599,"title":"What do you Mean? The Role of the Mean Function in Bayesian Optimisation","translated_title":"","metadata":{"publisher":"Cornell University","publication_date":{"day":17,"month":4,"year":2020,"errors":{}},"publication_name":"arXiv (Cornell University)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421599/What_do_you_Mean_The_Role_of_the_Mean_Function_in_Bayesian_Optimisation","translated_internal_url":"","created_at":"2024-10-04T08:49:47.022-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650141,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650141/thumbnails/1.jpg","file_name":"downloadSupplement.pdf","download_url":"https://www.academia.edu/attachments/118650141/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"What_do_you_Mean_The_Role_of_the_Mean_Fu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650141/downloadSupplement-libre.pdf?1728057635=\u0026response-content-disposition=attachment%3B+filename%3DWhat_do_you_Mean_The_Role_of_the_Mean_Fu.pdf\u0026Expires=1732414361\u0026Signature=S~RX8vdjwDJdWK3JuHvrXCAwCJBc68lQDztwx8y~pL3iyJvUepGIYLlx~COqinJ76b4purx0t6H1~urm~Eg5jQb8ir2xFW0eM6aTmWvSOAcXwthiqWM5rSsCOJU1kE52xm-kZJ8kfMtbP635X4Ql-AamnM8~s1wk0J2tG6CJLFqwV1lxZDDgBS6QGJ47ErXms4isSv64wufDHjLZshpvhsH7LYfy1k~fLrECPgystrfnq9oluYYa0DMnVgMIa2OdJyPzLcuN0AlLV~K7RLc1JPZr8uq2Df~wkJFH7oPvjMOEjGwFb9mZlXiLfHHEq3vrEkVtaopZv1tp2zJHEN3o4g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"What_do_you_Mean_The_Role_of_the_Mean_Function_in_Bayesian_Optimisation","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650141,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650141/thumbnails/1.jpg","file_name":"downloadSupplement.pdf","download_url":"https://www.academia.edu/attachments/118650141/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"What_do_you_Mean_The_Role_of_the_Mean_Fu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650141/downloadSupplement-libre.pdf?1728057635=\u0026response-content-disposition=attachment%3B+filename%3DWhat_do_you_Mean_The_Role_of_the_Mean_Fu.pdf\u0026Expires=1732414361\u0026Signature=S~RX8vdjwDJdWK3JuHvrXCAwCJBc68lQDztwx8y~pL3iyJvUepGIYLlx~COqinJ76b4purx0t6H1~urm~Eg5jQb8ir2xFW0eM6aTmWvSOAcXwthiqWM5rSsCOJU1kE52xm-kZJ8kfMtbP635X4Ql-AamnM8~s1wk0J2tG6CJLFqwV1lxZDDgBS6QGJ47ErXms4isSv64wufDHjLZshpvhsH7LYfy1k~fLrECPgystrfnq9oluYYa0DMnVgMIa2OdJyPzLcuN0AlLV~K7RLc1JPZr8uq2Df~wkJFH7oPvjMOEjGwFb9mZlXiLfHHEq3vrEkVtaopZv1tp2zJHEN3o4g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118650140,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650140/thumbnails/1.jpg","file_name":"downloadSupplement.pdf","download_url":"https://www.academia.edu/attachments/118650140/download_file","bulk_download_file_name":"What_do_you_Mean_The_Role_of_the_Mean_Fu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650140/downloadSupplement-libre.pdf?1728057640=\u0026response-content-disposition=attachment%3B+filename%3DWhat_do_you_Mean_The_Role_of_the_Mean_Fu.pdf\u0026Expires=1732414361\u0026Signature=GkfK9UEFoFkcmMPkmx-bwLWa4IHs3mEBWGG2aiXh~Y-OyBblfkIBtwAyopGNK6XSvHsTUaVR4gVn-zmEKOfXujPSHC1gmAZnR5OuHu5VBnBJUwRwzKKICo2Zemooy8OxIl~Jz4m6rBnT6bXOgmPpppFsv1gub0q~dY3Wrn1EZcL7yCg9pgbfHMNUn1aZPo7kOF-cIj6BZxaVbleM2yObk7HHSrMKQx8nFiu~7BEwJRXIM7cXffcr6quytJ3A47lINOR7Oj3uJt2YQtO9YCEemWkzx6Mk0Pg99CrIEP5EpKYzhMwghl1j0eVYkVaG6kNyMwktHasiwNXkmANUEYtl7Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1032783,"name":"Bayesian Probability","url":"https://www.academia.edu/Documents/in/Bayesian_Probability"}],"urls":[{"id":44976331,"url":"https://dl.acm.org/action/downloadSupplement?doi=10.1145/3377929.3398118\u0026file=p1623_de_ath_suppl.pdf\u0026download=true"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421598"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421598/Precision_and_Recall_Optimisation_for_Information_Access_Tasks"><img alt="Research paper thumbnail of Precision and Recall Optimisation for Information Access Tasks" class="work-thumbnail" src="https://attachments.academia-assets.com/118650137/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421598/Precision_and_Recall_Optimisation_for_Information_Access_Tasks">Precision and Recall Optimisation for Information Access Tasks</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3c0df3761b9e346e6df1042d07aeb50b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650137,&quot;asset_id&quot;:124421598,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650137/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421598"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421598"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421598; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421598]").text(description); $(".js-view-count[data-work-id=124421598]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421598; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421598']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421598, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3c0df3761b9e346e6df1042d07aeb50b" } } $('.js-work-strip[data-work-id=124421598]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421598,"title":"Precision and Recall Optimisation for Information Access Tasks","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2004,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421598/Precision_and_Recall_Optimisation_for_Information_Access_Tasks","translated_internal_url":"","created_at":"2024-10-04T08:49:46.789-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650137,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650137/thumbnails/1.jpg","file_name":"precision_and_recall_2004.pdf","download_url":"https://www.academia.edu/attachments/118650137/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Precision_and_Recall_Optimisation_for_In.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650137/precision_and_recall_2004-libre.pdf?1728057650=\u0026response-content-disposition=attachment%3B+filename%3DPrecision_and_Recall_Optimisation_for_In.pdf\u0026Expires=1732414361\u0026Signature=VcXM78~9J0Duowq6ggyjED7uNd6ivvsj0cgwt33AOXmomNpIgr5hkzj85PK-8K0I2AYdfoioIARPtfA7VyrG8ppEzKtkz4ku~XmGVTx95TTioj9y3EtEl5IxSsLPiFOx8eVysO0rp7QGOJIqs1Tpi5eSAOvOgxySSyLRxvep77pBzR7kuufSbM6cFJHsMYgZGnqK9lnXbIg1rqVcGbSZhaVS6rzo7bXvkoNZdlrviBVsBueVX3SBKWNG1IoyT0kxUQ3g889iEB8xfBHzW33IjZ87u1dfhlML7FuX0UkXRP-b1Pbz6JO3B3cLctxo6Z3aAUg3UmcrvOmctiqcXmKvsA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Precision_and_Recall_Optimisation_for_Information_Access_Tasks","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650137,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650137/thumbnails/1.jpg","file_name":"precision_and_recall_2004.pdf","download_url":"https://www.academia.edu/attachments/118650137/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Precision_and_Recall_Optimisation_for_In.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650137/precision_and_recall_2004-libre.pdf?1728057650=\u0026response-content-disposition=attachment%3B+filename%3DPrecision_and_Recall_Optimisation_for_In.pdf\u0026Expires=1732414361\u0026Signature=VcXM78~9J0Duowq6ggyjED7uNd6ivvsj0cgwt33AOXmomNpIgr5hkzj85PK-8K0I2AYdfoioIARPtfA7VyrG8ppEzKtkz4ku~XmGVTx95TTioj9y3EtEl5IxSsLPiFOx8eVysO0rp7QGOJIqs1Tpi5eSAOvOgxySSyLRxvep77pBzR7kuufSbM6cFJHsMYgZGnqK9lnXbIg1rqVcGbSZhaVS6rzo7bXvkoNZdlrviBVsBueVX3SBKWNG1IoyT0kxUQ3g889iEB8xfBHzW33IjZ87u1dfhlML7FuX0UkXRP-b1Pbz6JO3B3cLctxo6Z3aAUg3UmcrvOmctiqcXmKvsA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118650136,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650136/thumbnails/1.jpg","file_name":"precision_and_recall_2004.pdf","download_url":"https://www.academia.edu/attachments/118650136/download_file","bulk_download_file_name":"Precision_and_Recall_Optimisation_for_In.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650136/precision_and_recall_2004-libre.pdf?1728057650=\u0026response-content-disposition=attachment%3B+filename%3DPrecision_and_Recall_Optimisation_for_In.pdf\u0026Expires=1732414361\u0026Signature=PpeAu6YAZRNJPpLLOz8h3dlry1zPUXoh~rjuAe~d1Ev7Xh3yQJBquHrh~XOuQ8PpbNvUarHI5EcfrTtFKzPPe3RLEGMr54VDzaUpKUAdeUmzUXX1baUPx7RzeJU4fsA3AGxk48Jioxg9alHU1nq5oCsnYlYCIvbBrw8qzklN2CyF0lU3QPDPVHDNiHzBmiDlLvQYeEOQqAKKf0JzNS3HWoelZWodHCPNcekfsnTbvipg0sDFufgcZz~FUY5alnKOEhIIx0Y4MfBcp26HsXwzisb4KLtZpyRvm3Gr8lhKo2iqMvpjqo5Pcbz2lqt9n7~a8BQPlRaYy5RIT7PACMHyeg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":53064,"name":"Information Access","url":"https://www.academia.edu/Documents/in/Information_Access"},{"id":440689,"name":"Recall","url":"https://www.academia.edu/Documents/in/Recall"}],"urls":[{"id":44976330,"url":"https://ore.exeter.ac.uk/repository/bitstream/10871/11687/2/precision_and_recall_2004.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421597"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421597/Multi_Objective_Bayesian_Optimisation_Using_an_Exploitative_Attainment_Front_Acquisition_Function"><img alt="Research paper thumbnail of Multi-Objective Bayesian Optimisation Using an Exploitative Attainment Front Acquisition Function" class="work-thumbnail" src="https://attachments.academia-assets.com/118650138/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421597/Multi_Objective_Bayesian_Optimisation_Using_an_Exploitative_Attainment_Front_Acquisition_Function">Multi-Objective Bayesian Optimisation Using an Exploitative Attainment Front Acquisition Function</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f59fc4ab8c57802e85df19ef4ecacefd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650138,&quot;asset_id&quot;:124421597,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650138/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421597"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421597"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421597; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421597]").text(description); $(".js-view-count[data-work-id=124421597]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421597; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421597']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421597, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f59fc4ab8c57802e85df19ef4ecacefd" } } $('.js-work-strip[data-work-id=124421597]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421597,"title":"Multi-Objective Bayesian Optimisation Using an Exploitative Attainment Front Acquisition Function","translated_title":"","metadata":{"publication_date":{"day":28,"month":6,"year":2021,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421597/Multi_Objective_Bayesian_Optimisation_Using_an_Exploitative_Attainment_Front_Acquisition_Function","translated_internal_url":"","created_at":"2024-10-04T08:49:46.503-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650138,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650138/thumbnails/1.jpg","file_name":"SAF_driven_EMO.pdf","download_url":"https://www.academia.edu/attachments/118650138/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multi_Objective_Bayesian_Optimisation_Us.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650138/SAF_driven_EMO-libre.pdf?1728058573=\u0026response-content-disposition=attachment%3B+filename%3DMulti_Objective_Bayesian_Optimisation_Us.pdf\u0026Expires=1732414361\u0026Signature=Vkjbouuq8I2R0tLdVXsI3t0uKHTQO5QWdJ9D7yr7o-u~1daZpFexJeyGeNzCq2DLoZec3YhnHB8fRKxmk7dY8uhBtSdL5zNNaG95g5hvLyf3xFXdsuM1~5n4BpIb9HC4NukQmG89w0K~FJiyakborfqcN3i2DMIXP2Vr5ADAWw4ifmw3c416VxTujZXIDpGQReAd0els-dzjowBF9z-t8-fRerdg35pE0pT42hgRjacA97FLQFTLYzDBsrCt~JXEZD7XJqPUixVJdCf~1eYilF4wBoJmodwlk4DWSfCmrQN~wDwAonDHgizx6~iKZFErq3Y0zLgpT1M1Rb0F4rIPvA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Multi_Objective_Bayesian_Optimisation_Using_an_Exploitative_Attainment_Front_Acquisition_Function","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650138,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650138/thumbnails/1.jpg","file_name":"SAF_driven_EMO.pdf","download_url":"https://www.academia.edu/attachments/118650138/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multi_Objective_Bayesian_Optimisation_Us.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650138/SAF_driven_EMO-libre.pdf?1728058573=\u0026response-content-disposition=attachment%3B+filename%3DMulti_Objective_Bayesian_Optimisation_Us.pdf\u0026Expires=1732414361\u0026Signature=Vkjbouuq8I2R0tLdVXsI3t0uKHTQO5QWdJ9D7yr7o-u~1daZpFexJeyGeNzCq2DLoZec3YhnHB8fRKxmk7dY8uhBtSdL5zNNaG95g5hvLyf3xFXdsuM1~5n4BpIb9HC4NukQmG89w0K~FJiyakborfqcN3i2DMIXP2Vr5ADAWw4ifmw3c416VxTujZXIDpGQReAd0els-dzjowBF9z-t8-fRerdg35pE0pT42hgRjacA97FLQFTLYzDBsrCt~JXEZD7XJqPUixVJdCf~1eYilF4wBoJmodwlk4DWSfCmrQN~wDwAonDHgizx6~iKZFErq3Y0zLgpT1M1Rb0F4rIPvA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":143163,"name":"Multi objective optimization","url":"https://www.academia.edu/Documents/in/Multi_objective_optimization"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":535039,"name":"Bayesian Optimization","url":"https://www.academia.edu/Documents/in/Bayesian_Optimization"},{"id":3651168,"name":"Bayesian optimisation","url":"https://www.academia.edu/Documents/in/Bayesian_optimisation"}],"urls":[{"id":44976329,"url":"https://ore.exeter.ac.uk/repository/bitstream/10871/125627/1/SAF_driven_EMO.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421596"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421596/A_Variable_Metric_Probabilistic_k_Nearest_Neighbours_Classifier"><img alt="Research paper thumbnail of A Variable Metric Probabilistic k-Nearest-Neighbours Classifier" class="work-thumbnail" src="https://attachments.academia-assets.com/118650133/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421596/A_Variable_Metric_Probabilistic_k_Nearest_Neighbours_Classifier">A Variable Metric Probabilistic k-Nearest-Neighbours Classifier</a></div><div class="wp-workCard_item"><span>Springer eBooks</span><span>, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="273432ac27273ec672cf199442df5f4c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650133,&quot;asset_id&quot;:124421596,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650133/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421596"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421596"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421596; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421596]").text(description); $(".js-view-count[data-work-id=124421596]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421596; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421596']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421596, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "273432ac27273ec672cf199442df5f4c" } } $('.js-work-strip[data-work-id=124421596]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421596,"title":"A Variable Metric Probabilistic k-Nearest-Neighbours Classifier","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Springer eBooks"},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421596/A_Variable_Metric_Probabilistic_k_Nearest_Neighbours_Classifier","translated_internal_url":"","created_at":"2024-10-04T08:49:46.262-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650133,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650133/thumbnails/1.jpg","file_name":"a_variable_metric_2004.pdf","download_url":"https://www.academia.edu/attachments/118650133/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Variable_Metric_Probabilistic_k_Neares.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650133/a_variable_metric_2004-libre.pdf?1728057641=\u0026response-content-disposition=attachment%3B+filename%3DA_Variable_Metric_Probabilistic_k_Neares.pdf\u0026Expires=1732414361\u0026Signature=QodBRuzr2MznILTc2NSJx~~jukwBx~uB0KNdCJSUqPZ5IEN-yGsIN6U2l7iHaGl2Sdk9x~InvRqBmzItKqJFuc3NJ8ClQh1RRKAQErGvRbqxwh7fhIx-UjKgsknzLM9Q9OamWiQu8RmhsRkHxlh~Z5y~Gb6BGtUJht0NWYYB2jKOCIhk7QFyyukPnTzGBT5rBa9bmi-rYZ0Ztc6R7sNeBTLbi1AdzfzU8Pd9F-s5nHzsTeagCaKXX1mRm8JQGsW5jA7PssCTIPpfAPRbDnFyi675F-hRLmQJPx7UlwsEgyFWYlqjKI4clYj2DSYkl-l8gRHVtThBKmOxWb7MBVnOKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Variable_Metric_Probabilistic_k_Nearest_Neighbours_Classifier","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650133,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650133/thumbnails/1.jpg","file_name":"a_variable_metric_2004.pdf","download_url":"https://www.academia.edu/attachments/118650133/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Variable_Metric_Probabilistic_k_Neares.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650133/a_variable_metric_2004-libre.pdf?1728057641=\u0026response-content-disposition=attachment%3B+filename%3DA_Variable_Metric_Probabilistic_k_Neares.pdf\u0026Expires=1732414361\u0026Signature=QodBRuzr2MznILTc2NSJx~~jukwBx~uB0KNdCJSUqPZ5IEN-yGsIN6U2l7iHaGl2Sdk9x~InvRqBmzItKqJFuc3NJ8ClQh1RRKAQErGvRbqxwh7fhIx-UjKgsknzLM9Q9OamWiQu8RmhsRkHxlh~Z5y~Gb6BGtUJht0NWYYB2jKOCIhk7QFyyukPnTzGBT5rBa9bmi-rYZ0Ztc6R7sNeBTLbi1AdzfzU8Pd9F-s5nHzsTeagCaKXX1mRm8JQGsW5jA7PssCTIPpfAPRbDnFyi675F-hRLmQJPx7UlwsEgyFWYlqjKI4clYj2DSYkl-l8gRHVtThBKmOxWb7MBVnOKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic"},{"id":85262,"name":"Markov Chain Monte Carlo","url":"https://www.academia.edu/Documents/in/Markov_Chain_Monte_Carlo"},{"id":248909,"name":"Ideal","url":"https://www.academia.edu/Documents/in/Ideal"},{"id":595993,"name":"Markov chain","url":"https://www.academia.edu/Documents/in/Markov_chain"},{"id":1167632,"name":"Synthetic Data Generation","url":"https://www.academia.edu/Documents/in/Synthetic_Data_Generation"},{"id":1555442,"name":"Feature Space","url":"https://www.academia.edu/Documents/in/Feature_Space"},{"id":1690923,"name":"K Nearest Neighbour","url":"https://www.academia.edu/Documents/in/K_Nearest_Neighbour"},{"id":1788300,"name":"Bayesian framework","url":"https://www.academia.edu/Documents/in/Bayesian_framework"},{"id":2981830,"name":" K-nearest neighbors algorithm","url":"https://www.academia.edu/Documents/in/K-nearest_neighbors_algorithm"},{"id":3325992,"name":"a priori and a posteriori","url":"https://www.academia.edu/Documents/in/a_priori_and_a_posteriori"},{"id":3647879,"name":"Springer Ebooks","url":"https://www.academia.edu/Documents/in/Springer_Ebooks"},{"id":4426780,"name":"Synthetic Data","url":"https://www.academia.edu/Documents/in/Synthetic_Data"}],"urls":[{"id":44976328,"url":"https://ore.exeter.ac.uk/repository/bitstream/10871/11565/2/a_variable_metric_2004.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421595"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421595/Formulation_and_comparison_of_multi_class_ROC_surfaces"><img alt="Research paper thumbnail of Formulation and comparison of multi-class ROC surfaces" class="work-thumbnail" src="https://attachments.academia-assets.com/118650139/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421595/Formulation_and_comparison_of_multi_class_ROC_surfaces">Formulation and comparison of multi-class ROC surfaces</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cd99c3522cbff54f8353392b565d9787" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650139,&quot;asset_id&quot;:124421595,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650139/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421595"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421595"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421595; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421595]").text(description); $(".js-view-count[data-work-id=124421595]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421595; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421595']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421595, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cd99c3522cbff54f8353392b565d9787" } } $('.js-work-strip[data-work-id=124421595]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421595,"title":"Formulation and comparison of multi-class ROC surfaces","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2005,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421595/Formulation_and_comparison_of_multi_class_ROC_surfaces","translated_internal_url":"","created_at":"2024-10-04T08:49:46.004-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650139,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650139/thumbnails/1.jpg","file_name":"formulation_and_comparison_2005.pdf","download_url":"https://www.academia.edu/attachments/118650139/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Formulation_and_comparison_of_multi_clas.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650139/formulation_and_comparison_2005-libre.pdf?1728057641=\u0026response-content-disposition=attachment%3B+filename%3DFormulation_and_comparison_of_multi_clas.pdf\u0026Expires=1732414361\u0026Signature=fOEvYYC9~hY6ezw4IogIWke77sOK5kNdAZHESHsCzvg2kDgqZHrEFaJFocRdSFt-RNgiybnkgbrAkAtGBOHTfEJxQUfJuzmTe9Ms1Sv27OJwek4zsGzocdgkzdY~nLJ07S46b0FYPByFRM7A6PpTcG4wc2FXe4tpXFtEr6vG~m06VFNMfa8RkRpf2jLadnJtzFYd8Ozwn0gFmgyRI5lFqfs87OfirShMsj6-3FK~xQK~DLawPfSKrJYSeYrZsIFN5rGiE1BZUcBPB07zvFbVlQKaECEODibZGcIxO7S3qVitOVhP2NBQlNwvaJ2gecD38QSCAaRhEFhTbOEQLT6dqA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Formulation_and_comparison_of_multi_class_ROC_surfaces","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650139,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650139/thumbnails/1.jpg","file_name":"formulation_and_comparison_2005.pdf","download_url":"https://www.academia.edu/attachments/118650139/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Formulation_and_comparison_of_multi_clas.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650139/formulation_and_comparison_2005-libre.pdf?1728057641=\u0026response-content-disposition=attachment%3B+filename%3DFormulation_and_comparison_of_multi_clas.pdf\u0026Expires=1732414361\u0026Signature=fOEvYYC9~hY6ezw4IogIWke77sOK5kNdAZHESHsCzvg2kDgqZHrEFaJFocRdSFt-RNgiybnkgbrAkAtGBOHTfEJxQUfJuzmTe9Ms1Sv27OJwek4zsGzocdgkzdY~nLJ07S46b0FYPByFRM7A6PpTcG4wc2FXe4tpXFtEr6vG~m06VFNMfa8RkRpf2jLadnJtzFYd8Ozwn0gFmgyRI5lFqfs87OfirShMsj6-3FK~xQK~DLawPfSKrJYSeYrZsIFN5rGiE1BZUcBPB07zvFbVlQKaECEODibZGcIxO7S3qVitOVhP2NBQlNwvaJ2gecD38QSCAaRhEFhTbOEQLT6dqA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118650135,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650135/thumbnails/1.jpg","file_name":"formulation_and_comparison_2005.pdf","download_url":"https://www.academia.edu/attachments/118650135/download_file","bulk_download_file_name":"Formulation_and_comparison_of_multi_clas.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650135/formulation_and_comparison_2005-libre.pdf?1728057649=\u0026response-content-disposition=attachment%3B+filename%3DFormulation_and_comparison_of_multi_clas.pdf\u0026Expires=1732414361\u0026Signature=OlhWyem3Ji4Ey1PkLKq0M2YuUcsGMlpq6RBeqa891lcTkvtA168F2lm0VUqHH33ml-wGIuKrEO4JdnPO-XbAL4pbTJlp23CWCChgxsdczCkp3tfUQOUAV1z-oyDBZyEITojfD6KdoWUh3vn0T7ER18HHy~U9ZlDqIzV810ZyuSXnNFQPkwHO-ntLKMHcQ-2vTAe4dFyHc-cw5u~OSrXJVPzG5ysIHXvdgVyQQfqPf6UBrFt7cC59no8mvR7E7YiMeG3N2wjo0XuKxOhPY5MqmLpvAzDa6GaAUwl2tMFR-EQmVTc0J4eMKiLq66sxuKCoeMPskwf5V8kMjt8nzh77fA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":265625,"name":"Evolutionary Algorithm","url":"https://www.academia.edu/Documents/in/Evolutionary_Algorithm"},{"id":1032348,"name":"Pareto Optimality","url":"https://www.academia.edu/Documents/in/Pareto_Optimality"},{"id":1450944,"name":"Multi objective genetic algorithm optimisation","url":"https://www.academia.edu/Documents/in/Multi_objective_genetic_algorithm_optimisation"}],"urls":[{"id":44976327,"url":"https://ore.exeter.ac.uk/repository/bitstream/handle/10871/11622/formulation_and_comparison_2005.pdf;sequence=2"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421594"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421594/Orthogonal_but_not_Orthonormal_Procrustes_Problems"><img alt="Research paper thumbnail of Orthogonal, but not Orthonormal, Procrustes Problems" class="work-thumbnail" src="https://attachments.academia-assets.com/118650134/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421594/Orthogonal_but_not_Orthonormal_Procrustes_Problems">Orthogonal, but not Orthonormal, Procrustes Problems</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a657574852f7e04bffe05825097124e3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650134,&quot;asset_id&quot;:124421594,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650134/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421594"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421594"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421594; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421594]").text(description); $(".js-view-count[data-work-id=124421594]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421594; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421594']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421594, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a657574852f7e04bffe05825097124e3" } } $('.js-work-strip[data-work-id=124421594]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421594,"title":"Orthogonal, but not Orthonormal, Procrustes Problems","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1999,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421594/Orthogonal_but_not_Orthonormal_Procrustes_Problems","translated_internal_url":"","created_at":"2024-10-04T08:49:45.767-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650134,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650134/thumbnails/1.jpg","file_name":"procrustes.pdf","download_url":"https://www.academia.edu/attachments/118650134/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Orthogonal_but_not_Orthonormal_Procruste.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650134/procrustes-libre.pdf?1728057641=\u0026response-content-disposition=attachment%3B+filename%3DOrthogonal_but_not_Orthonormal_Procruste.pdf\u0026Expires=1732414361\u0026Signature=A~XoSX68X9a2u3aYIUzb8hoWE9Z-MG6d72mH5hkOzYu7QKbNIwtRwPceZ8HtDK1amkc1e4VW027WO13G7~wehZc-HfVPaQqlcSpGnWypkNkJ0hDS7XKf8gYUbK4BkQoF4kOz7p01pQx4PSyzU1gq2S6-4vzk6U32qs7u4QiOUFq5JuuU5DXmlvgL4kEeIaVjd0hWO~RyLo~WsAYAxUZ-DoEDiSR-Q0BKIq~zIDQq~LrFEBWp9cxh0YRJj0XdU9Gcx7RQjvAFLmFmxIinZWcz5oGv1VbJYALFi0-H3UXReeVkLYa3agwlEBtIrqokhI77p51ZsG-IbtTgOW7dfa2wQg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Orthogonal_but_not_Orthonormal_Procrustes_Problems","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650134,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650134/thumbnails/1.jpg","file_name":"procrustes.pdf","download_url":"https://www.academia.edu/attachments/118650134/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Orthogonal_but_not_Orthonormal_Procruste.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650134/procrustes-libre.pdf?1728057641=\u0026response-content-disposition=attachment%3B+filename%3DOrthogonal_but_not_Orthonormal_Procruste.pdf\u0026Expires=1732414361\u0026Signature=A~XoSX68X9a2u3aYIUzb8hoWE9Z-MG6d72mH5hkOzYu7QKbNIwtRwPceZ8HtDK1amkc1e4VW027WO13G7~wehZc-HfVPaQqlcSpGnWypkNkJ0hDS7XKf8gYUbK4BkQoF4kOz7p01pQx4PSyzU1gq2S6-4vzk6U32qs7u4QiOUFq5JuuU5DXmlvgL4kEeIaVjd0hWO~RyLo~WsAYAxUZ-DoEDiSR-Q0BKIq~zIDQq~LrFEBWp9cxh0YRJj0XdU9Gcx7RQjvAFLmFmxIinZWcz5oGv1VbJYALFi0-H3UXReeVkLYa3agwlEBtIrqokhI77p51ZsG-IbtTgOW7dfa2wQg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118650132,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650132/thumbnails/1.jpg","file_name":"procrustes.pdf","download_url":"https://www.academia.edu/attachments/118650132/download_file","bulk_download_file_name":"Orthogonal_but_not_Orthonormal_Procruste.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650132/procrustes-libre.pdf?1728057639=\u0026response-content-disposition=attachment%3B+filename%3DOrthogonal_but_not_Orthonormal_Procruste.pdf\u0026Expires=1732414361\u0026Signature=ZlXzTyaU~bhMsU1d3DWaVfhVVqw07WG7ib5-5WRrxFNDZ450i3ahT3nYCLvwiUqKahze5dYxB2s002A-V4CcuXunQXcKcImTCzZ76ZND4ShgregeIUnuTFaXGjLX~2TizpLt4x7plauTUzrODTtB-EQNtcKpar7oEHB21aPudkXNLN0yAw~CA7pLtlvAaLMVqVS9ii4Yh9UJPtzrF52d6QFhL0wreDD5DEB0SiXTtbP7JcpYYUTF3mej28F4wbIFK-pOFGYi~k1Sbv34GPUsvrAck4z~~JuAAUqVAoaYBzS09kb07zhGZ3QCBXIR8Y8nVFvf5oP3Mt4uBg6PUfl1Ww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":54282,"name":"Procrustes Analysis","url":"https://www.academia.edu/Documents/in/Procrustes_Analysis"},{"id":684007,"name":"ORTHOGONALITY","url":"https://www.academia.edu/Documents/in/ORTHOGONALITY"},{"id":2676850,"name":"Orthogonalization","url":"https://www.academia.edu/Documents/in/Orthogonalization"},{"id":2720299,"name":"Matrix norm","url":"https://www.academia.edu/Documents/in/Matrix_norm"}],"urls":[{"id":44976326,"url":"http://empslocal.ex.ac.uk/people/staff/reverson/uploads/Site/procrustes.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421593"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421593/Multi_objective_optimisation_in_the_presence_of_uncertainty"><img alt="Research paper thumbnail of Multi-objective optimisation in the presence of uncertainty" class="work-thumbnail" src="https://attachments.academia-assets.com/118650131/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421593/Multi_objective_optimisation_in_the_presence_of_uncertainty">Multi-objective optimisation in the presence of uncertainty</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5a942c37e38871e4eec31c0fbdcebc5a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650131,&quot;asset_id&quot;:124421593,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650131/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421593"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421593"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421593; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421593]").text(description); $(".js-view-count[data-work-id=124421593]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421593; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421593']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421593, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5a942c37e38871e4eec31c0fbdcebc5a" } } $('.js-work-strip[data-work-id=124421593]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421593,"title":"Multi-objective optimisation in the presence of uncertainty","translated_title":"","metadata":{"publication_date":{"day":13,"month":12,"year":2005,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421593/Multi_objective_optimisation_in_the_presence_of_uncertainty","translated_internal_url":"","created_at":"2024-10-04T08:49:45.506-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650131,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650131/thumbnails/1.jpg","file_name":"multi_objective_optimisation_2005.pdf","download_url":"https://www.academia.edu/attachments/118650131/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multi_objective_optimisation_in_the_pres.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650131/multi_objective_optimisation_2005-libre.pdf?1728057641=\u0026response-content-disposition=attachment%3B+filename%3DMulti_objective_optimisation_in_the_pres.pdf\u0026Expires=1732414361\u0026Signature=avTtutHIoHP3HelCua6YkGeM695TSUrYE59~pDp-1CkSeIahCFjhMvW7eoloz18etPhkyFHlOjuwpDIiAwkzvQv75NjeR9t5MKcpGVbG1XRpPCLFIFEctPq0J9mS7mSJ4C72yrWQM9YOWtk5uYpQNEeZSA7WXOXEZ6KrGURvJx0j1epW2fulphD0aNVxvZekExQu46he5cd4ugQ6AxPUPuskDqSF6pKM5plWXGLHlFFF1cCJ2jCvTR-lHjmkdeC4Xat3bJ2WwwKnJRX7z-6Bnt74eY2HHzw-hs8HMNoDxp3zHvBNMTh5B2Z-aESsHxNWeJ5B66NIPaIxWByXqoMFHg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Multi_objective_optimisation_in_the_presence_of_uncertainty","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650131,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650131/thumbnails/1.jpg","file_name":"multi_objective_optimisation_2005.pdf","download_url":"https://www.academia.edu/attachments/118650131/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multi_objective_optimisation_in_the_pres.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650131/multi_objective_optimisation_2005-libre.pdf?1728057641=\u0026response-content-disposition=attachment%3B+filename%3DMulti_objective_optimisation_in_the_pres.pdf\u0026Expires=1732414361\u0026Signature=avTtutHIoHP3HelCua6YkGeM695TSUrYE59~pDp-1CkSeIahCFjhMvW7eoloz18etPhkyFHlOjuwpDIiAwkzvQv75NjeR9t5MKcpGVbG1XRpPCLFIFEctPq0J9mS7mSJ4C72yrWQM9YOWtk5uYpQNEeZSA7WXOXEZ6KrGURvJx0j1epW2fulphD0aNVxvZekExQu46he5cd4ugQ6AxPUPuskDqSF6pKM5plWXGLHlFFF1cCJ2jCvTR-lHjmkdeC4Xat3bJ2WwwKnJRX7z-6Bnt74eY2HHzw-hs8HMNoDxp3zHvBNMTh5B2Z-aESsHxNWeJ5B66NIPaIxWByXqoMFHg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3523,"name":"Evolutionary Computation","url":"https://www.academia.edu/Documents/in/Evolutionary_Computation"},{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition"},{"id":8588,"name":"Computer Aided Manufacturing","url":"https://www.academia.edu/Documents/in/Computer_Aided_Manufacturing"},{"id":19881,"name":"Stochastic Systems","url":"https://www.academia.edu/Documents/in/Stochastic_Systems"},{"id":29414,"name":"Estimation Theory","url":"https://www.academia.edu/Documents/in/Estimation_Theory"},{"id":32991,"name":"Optimization Methods","url":"https://www.academia.edu/Documents/in/Optimization_Methods"},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic"},{"id":61603,"name":"Uncertainty","url":"https://www.academia.edu/Documents/in/Uncertainty"},{"id":68431,"name":"Noise","url":"https://www.academia.edu/Documents/in/Noise"},{"id":85359,"name":"Measurement Errors","url":"https://www.academia.edu/Documents/in/Measurement_Errors"},{"id":97292,"name":"Optimisation","url":"https://www.academia.edu/Documents/in/Optimisation"},{"id":143163,"name":"Multi objective optimization","url":"https://www.academia.edu/Documents/in/Multi_objective_optimization"},{"id":152918,"name":"Error Analysis","url":"https://www.academia.edu/Documents/in/Error_Analysis"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":345971,"name":"Design optimization","url":"https://www.academia.edu/Documents/in/Design_optimization"},{"id":1450944,"name":"Multi objective genetic algorithm optimisation","url":"https://www.academia.edu/Documents/in/Multi_objective_genetic_algorithm_optimisation"}],"urls":[{"id":44976325,"url":"https://ore.exeter.ac.uk/repository/bitstream/10871/11661/2/multi_objective_optimisation_2005.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421592"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421592/Dominance_measures_for_multi_objective_simulated_annealing"><img alt="Research paper thumbnail of Dominance measures for multi-objective simulated annealing" class="work-thumbnail" src="https://attachments.academia-assets.com/118650130/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421592/Dominance_measures_for_multi_objective_simulated_annealing">Dominance measures for multi-objective simulated annealing</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="81c67c6a5cbdae876fe6276b92a28c21" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650130,&quot;asset_id&quot;:124421592,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650130/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421592"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421592"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421592; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421592]").text(description); $(".js-view-count[data-work-id=124421592]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421592; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421592']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421592, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "81c67c6a5cbdae876fe6276b92a28c21" } } $('.js-work-strip[data-work-id=124421592]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421592,"title":"Dominance measures for multi-objective simulated annealing","translated_title":"","metadata":{"publication_date":{"day":28,"month":9,"year":2004,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421592/Dominance_measures_for_multi_objective_simulated_annealing","translated_internal_url":"","created_at":"2024-10-04T08:49:45.183-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650130,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650130/thumbnails/1.jpg","file_name":"dominance_measures_2004.pdf","download_url":"https://www.academia.edu/attachments/118650130/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dominance_measures_for_multi_objective_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650130/dominance_measures_2004-libre.pdf?1728057646=\u0026response-content-disposition=attachment%3B+filename%3DDominance_measures_for_multi_objective_s.pdf\u0026Expires=1732414361\u0026Signature=JCAsV~MlvrwjPuIE02WVktqkbUHZq0WrwhjvBI5583fsUmgIJvoUvC7FTPd3I8fRae1mGi09wcLMa1Cy7y1h4DeyEp~hyPewt2r1675qmUsrwI~gqXzJCQbDYmQTWuJdBWP8Ntm5ZGNBgz9R7pZjBTbbGXCnvZeiDbzns9twgOuOTW4a4lk4MuP~ehm6jT0d~4V3H~wryDFcqWFt97zB-YYD4lkI~RGNCbRwlYkW5JyA6HSZyJsLAAypg3Jt-YBHksszHLydyIl~mDic1Y3TLuUhsF1WDA3GpnYh3CESIRMAUtsB0rtjfrK6FZNi3tChHs4coUbnFWjU7cIgq8fZgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Dominance_measures_for_multi_objective_simulated_annealing","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650130,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650130/thumbnails/1.jpg","file_name":"dominance_measures_2004.pdf","download_url":"https://www.academia.edu/attachments/118650130/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dominance_measures_for_multi_objective_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650130/dominance_measures_2004-libre.pdf?1728057646=\u0026response-content-disposition=attachment%3B+filename%3DDominance_measures_for_multi_objective_s.pdf\u0026Expires=1732414361\u0026Signature=JCAsV~MlvrwjPuIE02WVktqkbUHZq0WrwhjvBI5583fsUmgIJvoUvC7FTPd3I8fRae1mGi09wcLMa1Cy7y1h4DeyEp~hyPewt2r1675qmUsrwI~gqXzJCQbDYmQTWuJdBWP8Ntm5ZGNBgz9R7pZjBTbbGXCnvZeiDbzns9twgOuOTW4a4lk4MuP~ehm6jT0d~4V3H~wryDFcqWFt97zB-YYD4lkI~RGNCbRwlYkW5JyA6HSZyJsLAAypg3Jt-YBHksszHLydyIl~mDic1Y3TLuUhsF1WDA3GpnYh3CESIRMAUtsB0rtjfrK6FZNi3tChHs4coUbnFWjU7cIgq8fZgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2950,"name":"Computational Modeling","url":"https://www.academia.edu/Documents/in/Computational_Modeling"},{"id":4955,"name":"Computational Modelling","url":"https://www.academia.edu/Documents/in/Computational_Modelling"},{"id":5026,"name":"Genetic Algorithms","url":"https://www.academia.edu/Documents/in/Genetic_Algorithms"},{"id":6421,"name":"Simulated Annealing","url":"https://www.academia.edu/Documents/in/Simulated_Annealing"},{"id":15124,"name":"Convergence","url":"https://www.academia.edu/Documents/in/Convergence"},{"id":32991,"name":"Optimization Methods","url":"https://www.academia.edu/Documents/in/Optimization_Methods"},{"id":43981,"name":"Optimization","url":"https://www.academia.edu/Documents/in/Optimization"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation"},{"id":143163,"name":"Multi objective optimization","url":"https://www.academia.edu/Documents/in/Multi_objective_optimization"},{"id":212832,"name":"Cooling","url":"https://www.academia.edu/Documents/in/Cooling"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":325323,"name":"Functions","url":"https://www.academia.edu/Documents/in/Functions"},{"id":570997,"name":"Pareto front","url":"https://www.academia.edu/Documents/in/Pareto_front"},{"id":1243658,"name":"Search Problems","url":"https://www.academia.edu/Documents/in/Search_Problems"},{"id":1379085,"name":"Perturbation Techniques","url":"https://www.academia.edu/Documents/in/Perturbation_Techniques"},{"id":1476527,"name":"Pareto principle","url":"https://www.academia.edu/Documents/in/Pareto_principle"},{"id":2132141,"name":"Energy Measurement","url":"https://www.academia.edu/Documents/in/Energy_Measurement"},{"id":2421822,"name":"Objective function","url":"https://www.academia.edu/Documents/in/Objective_function"}],"urls":[{"id":44976324,"url":"https://ore.exeter.ac.uk/repository/bitstream/10871/15261/2/dominance_measures_2004.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421591"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421591/Robust_Autoregression_Student_t_Innovations_Using_Variational_Bayes"><img alt="Research paper thumbnail of Robust Autoregression: Student-t Innovations Using Variational Bayes" class="work-thumbnail" src="https://attachments.academia-assets.com/118650129/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421591/Robust_Autoregression_Student_t_Innovations_Using_Variational_Bayes">Robust Autoregression: Student-t Innovations Using Variational Bayes</a></div><div class="wp-workCard_item"><span>IEEE Transactions on Signal Processing</span><span>, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2bd0eab1e2d7ed170680becc1a3e9c76" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650129,&quot;asset_id&quot;:124421591,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650129/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421591"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421591"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421591; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421591]").text(description); $(".js-view-count[data-work-id=124421591]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421591; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421591']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421591, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2bd0eab1e2d7ed170680becc1a3e9c76" } } $('.js-work-strip[data-work-id=124421591]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421591,"title":"Robust Autoregression: Student-t Innovations Using Variational Bayes","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"IEEE Transactions on Signal Processing"},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421591/Robust_Autoregression_Student_t_Innovations_Using_Variational_Bayes","translated_internal_url":"","created_at":"2024-10-04T08:49:44.662-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650129,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650129/thumbnails/1.jpg","file_name":"Robust_20autoregression_20Student-t_20innovations_20using_20variational_20Bayes.pdf","download_url":"https://www.academia.edu/attachments/118650129/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Robust_Autoregression_Student_t_Innovati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650129/Robust_20autoregression_20Student-t_20innovations_20using_20variational_20Bayes-libre.pdf?1728058535=\u0026response-content-disposition=attachment%3B+filename%3DRobust_Autoregression_Student_t_Innovati.pdf\u0026Expires=1732414361\u0026Signature=R0x4sYu-sPW9OjIIj~QaYMuY0H4JEGsDLQIXzd58s~oXmbQfHcTRbEQjrVJu4I6DP4tAZ00LQZL2u~LKqsiVCnLzq8d0h2rItfoFCpGIYosZH8iARInaVYCH8nWp~EUydxS2cbsdoVS2~pGAO5qUnFRWmYSvGHV--DsrkHqY68w-Mgkhar~YOVas7RRHeFKmzy3YHrAEOtKdK9yznE6GXe8SOrnYh~LKjunPErS2qBMSMt6wzz2gWpeBFQNlaHApOOYQkshxOZrIk~pcJH95qEEo4-X6v5u2VRLhGPdfJ0CeweiWhSv74b9ccr~VoFzTxYrS9xJoDklmKG6MObfmvg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Robust_Autoregression_Student_t_Innovations_Using_Variational_Bayes","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650129,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650129/thumbnails/1.jpg","file_name":"Robust_20autoregression_20Student-t_20innovations_20using_20variational_20Bayes.pdf","download_url":"https://www.academia.edu/attachments/118650129/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Robust_Autoregression_Student_t_Innovati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650129/Robust_20autoregression_20Student-t_20innovations_20using_20variational_20Bayes-libre.pdf?1728058535=\u0026response-content-disposition=attachment%3B+filename%3DRobust_Autoregression_Student_t_Innovati.pdf\u0026Expires=1732414361\u0026Signature=R0x4sYu-sPW9OjIIj~QaYMuY0H4JEGsDLQIXzd58s~oXmbQfHcTRbEQjrVJu4I6DP4tAZ00LQZL2u~LKqsiVCnLzq8d0h2rItfoFCpGIYosZH8iARInaVYCH8nWp~EUydxS2cbsdoVS2~pGAO5qUnFRWmYSvGHV--DsrkHqY68w-Mgkhar~YOVas7RRHeFKmzy3YHrAEOtKdK9yznE6GXe8SOrnYh~LKjunPErS2qBMSMt6wzz2gWpeBFQNlaHApOOYQkshxOZrIk~pcJH95qEEo4-X6v5u2VRLhGPdfJ0CeweiWhSv74b9ccr~VoFzTxYrS9xJoDklmKG6MObfmvg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":311,"name":"Approximation Theory","url":"https://www.academia.edu/Documents/in/Approximation_Theory"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":10904,"name":"Electroencephalography","url":"https://www.academia.edu/Documents/in/Electroencephalography"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":39920,"name":"Parameter estimation","url":"https://www.academia.edu/Documents/in/Parameter_estimation"},{"id":68431,"name":"Noise","url":"https://www.academia.edu/Documents/in/Noise"},{"id":109147,"name":"Bayesian methods","url":"https://www.academia.edu/Documents/in/Bayesian_methods"},{"id":123230,"name":"Regression Analysis","url":"https://www.academia.edu/Documents/in/Regression_Analysis"},{"id":149437,"name":"EEG signal","url":"https://www.academia.edu/Documents/in/EEG_signal"},{"id":191286,"name":"Kurtosis","url":"https://www.academia.edu/Documents/in/Kurtosis"},{"id":279495,"name":"Robustness","url":"https://www.academia.edu/Documents/in/Robustness"},{"id":342314,"name":"Gaussian","url":"https://www.academia.edu/Documents/in/Gaussian"},{"id":349137,"name":"Data Models","url":"https://www.academia.edu/Documents/in/Data_Models"},{"id":582384,"name":"Gaussian noise","url":"https://www.academia.edu/Documents/in/Gaussian_noise"},{"id":736773,"name":"Approximation methods","url":"https://www.academia.edu/Documents/in/Approximation_methods"},{"id":1311566,"name":"Bayes Methods","url":"https://www.academia.edu/Documents/in/Bayes_Methods"},{"id":1941885,"name":"Outlier","url":"https://www.academia.edu/Documents/in/Outlier"},{"id":1993758,"name":"Autoregressive model","url":"https://www.academia.edu/Documents/in/Autoregressive_model"},{"id":2485951,"name":"Posterior distribution","url":"https://www.academia.edu/Documents/in/Posterior_distribution"}],"urls":[{"id":44976323,"url":"https://ore.exeter.ac.uk/repository/bitstream/10036/4420/5/Robust%20autoregression%20Student-t%20innovations%20using%20variational%20Bayes.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421590"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421590/Optimising_Diversity_in_Classifier_Ensembles"><img alt="Research paper thumbnail of Optimising Diversity in Classifier Ensembles" class="work-thumbnail" src="https://attachments.academia-assets.com/118650127/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421590/Optimising_Diversity_in_Classifier_Ensembles">Optimising Diversity in Classifier Ensembles</a></div><div class="wp-workCard_item"><span>SN computer science</span><span>, Mar 16, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9bdcf89580cb1937d59bcab1d6e97857" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650127,&quot;asset_id&quot;:124421590,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650127/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421590"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421590"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421590; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421590]").text(description); $(".js-view-count[data-work-id=124421590]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421590; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421590']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421590, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9bdcf89580cb1937d59bcab1d6e97857" } } $('.js-work-strip[data-work-id=124421590]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421590,"title":"Optimising Diversity in Classifier Ensembles","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","publication_date":{"day":16,"month":3,"year":2022,"errors":{}},"publication_name":"SN computer science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421590/Optimising_Diversity_in_Classifier_Ensembles","translated_internal_url":"","created_at":"2024-10-04T08:49:44.384-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650127,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650127/thumbnails/1.jpg","file_name":"s42979-022-01063-7.pdf","download_url":"https://www.academia.edu/attachments/118650127/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Optimising_Diversity_in_Classifier_Ensem.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650127/s42979-022-01063-7-libre.pdf?1728057681=\u0026response-content-disposition=attachment%3B+filename%3DOptimising_Diversity_in_Classifier_Ensem.pdf\u0026Expires=1732414361\u0026Signature=ZBe~EI-EbZ8Bniv8my4i~ZG4RKweYT0SXY3BIySLPIZ6xy8AtOcO-DwyUy5HLRL7YAeTV6zVBBENPdIeO3ymHCnLU5CnGgnBfc8tOzFFoYl48ZJF7w7g0GR6VHQEkTN~A5G~oROMcXHuNU6XMmo5ASna1-qLeIB~fw6XPYP6yXTKIQs6FI~7KZ9YklipI6uVU24ec48ALvysAhCKzWl7Odpi9ciQ~hkhgABFHkjNBCYf4q7yYkmHrhxdgUpyAShsU43Xcs1bck9B8Uz4AGio8xo2MfSpHO5ODKRKZDfSZt-KCj3cVALhK1ioDUSuN4Bp2z8eF3~J5jQtdIHGn9v7Lg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Optimising_Diversity_in_Classifier_Ensembles","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650127,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650127/thumbnails/1.jpg","file_name":"s42979-022-01063-7.pdf","download_url":"https://www.academia.edu/attachments/118650127/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Optimising_Diversity_in_Classifier_Ensem.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650127/s42979-022-01063-7-libre.pdf?1728057681=\u0026response-content-disposition=attachment%3B+filename%3DOptimising_Diversity_in_Classifier_Ensem.pdf\u0026Expires=1732414361\u0026Signature=ZBe~EI-EbZ8Bniv8my4i~ZG4RKweYT0SXY3BIySLPIZ6xy8AtOcO-DwyUy5HLRL7YAeTV6zVBBENPdIeO3ymHCnLU5CnGgnBfc8tOzFFoYl48ZJF7w7g0GR6VHQEkTN~A5G~oROMcXHuNU6XMmo5ASna1-qLeIB~fw6XPYP6yXTKIQs6FI~7KZ9YklipI6uVU24ec48ALvysAhCKzWl7Odpi9ciQ~hkhgABFHkjNBCYf4q7yYkmHrhxdgUpyAShsU43Xcs1bck9B8Uz4AGio8xo2MfSpHO5ODKRKZDfSZt-KCj3cVALhK1ioDUSuN4Bp2z8eF3~J5jQtdIHGn9v7Lg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118650128,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650128/thumbnails/1.jpg","file_name":"s42979-022-01063-7.pdf","download_url":"https://www.academia.edu/attachments/118650128/download_file","bulk_download_file_name":"Optimising_Diversity_in_Classifier_Ensem.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650128/s42979-022-01063-7-libre.pdf?1728057893=\u0026response-content-disposition=attachment%3B+filename%3DOptimising_Diversity_in_Classifier_Ensem.pdf\u0026Expires=1732414361\u0026Signature=GzpfMYNruPhgB8fpg6e~wHnW1-jnDsrluyurePmOnv-L2vIFFjIZzp4tEy12KIYXb3AHUgVMVZzFHNvUxt7i~aOD9wZfbviBf~tKqw2f3X-Bye1tj-0bqPQbCGYee2K-prCZMhop10PXNv1XqaUt~T7pbcIzHmi6n3tEsJTOkqLDywsBwMtjAGE8HAiJAOq6uw-T0rWUU0uec4pb2wra6SfEt~ln0gP~~j8gyBuPtVZTQk7iuIfN4NEnPk1dS2fu2VcAVT4pjd5Z3LglWgBIzWgQgKKjq2wyxN-VQ59OOzM0JoYJEw8nT54f4fsQ~6rFM1jOyA4wAkPWxdBsJtIK1Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":102744,"name":"Ambiguity","url":"https://www.academia.edu/Documents/in/Ambiguity"}],"urls":[{"id":44976322,"url":"https://link.springer.com/content/pdf/10.1007/s42979-022-01063-7.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421589"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421589/Novel_Methods_for_Ranking_District_Metered_Areas_for_Water_Distribution_Network_Maintenance_Scheduling"><img alt="Research paper thumbnail of Novel Methods for Ranking District Metered Areas for Water Distribution Network Maintenance Scheduling" class="work-thumbnail" src="https://attachments.academia-assets.com/118650126/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421589/Novel_Methods_for_Ranking_District_Metered_Areas_for_Water_Distribution_Network_Maintenance_Scheduling">Novel Methods for Ranking District Metered Areas for Water Distribution Network Maintenance Scheduling</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cbb17de3ee6b3a5b902dd8b5ac4b26f0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650126,&quot;asset_id&quot;:124421589,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650126/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421589"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421589"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421589; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421589]").text(description); $(".js-view-count[data-work-id=124421589]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421589; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421589']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421589, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cbb17de3ee6b3a5b902dd8b5ac4b26f0" } } $('.js-work-strip[data-work-id=124421589]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421589,"title":"Novel Methods for Ranking District Metered Areas for Water Distribution Network Maintenance Scheduling","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2011,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421589/Novel_Methods_for_Ranking_District_Metered_Areas_for_Water_Distribution_Network_Maintenance_Scheduling","translated_internal_url":"","created_at":"2024-10-04T08:49:44.073-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650126,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650126/thumbnails/1.jpg","file_name":"novel_methods_for_2011.pdf","download_url":"https://www.academia.edu/attachments/118650126/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Novel_Methods_for_Ranking_District_Meter.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650126/novel_methods_for_2011-libre.pdf?1728057638=\u0026response-content-disposition=attachment%3B+filename%3DNovel_Methods_for_Ranking_District_Meter.pdf\u0026Expires=1732414361\u0026Signature=AfF8pXSNxSYSpQT27WP1S93ZpW65H3au0lg-OocyLZ3MsVqgwPhR47vRP5yG0J0rvTp062K8CAFptwlPqcdAkC-KzBjU4UjPtD8OyjssTMxopr3RPx9Ft6UJP9BvvZo1pDS0FQJeVz~dGCG4Ov-H3v5hrRIrU4WqdwbUW-IdMoA-d2EezTtK~xb2yJkoKkiXeSawne9~VubooylzKlx5wdYJyOSbF3Rb1hPWCmfcCdjFF~Ag7erwWmBOydA~nU2RHWVuc2IUyXO6m8JAD0P4PkNisiPJexhL~R~uuzSHFRocfkZNaR5cuqwvyotcpF7xNdyCji4MF-0eK4CrAXGBWg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Novel_Methods_for_Ranking_District_Metered_Areas_for_Water_Distribution_Network_Maintenance_Scheduling","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650126,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650126/thumbnails/1.jpg","file_name":"novel_methods_for_2011.pdf","download_url":"https://www.academia.edu/attachments/118650126/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Novel_Methods_for_Ranking_District_Meter.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650126/novel_methods_for_2011-libre.pdf?1728057638=\u0026response-content-disposition=attachment%3B+filename%3DNovel_Methods_for_Ranking_District_Meter.pdf\u0026Expires=1732414361\u0026Signature=AfF8pXSNxSYSpQT27WP1S93ZpW65H3au0lg-OocyLZ3MsVqgwPhR47vRP5yG0J0rvTp062K8CAFptwlPqcdAkC-KzBjU4UjPtD8OyjssTMxopr3RPx9Ft6UJP9BvvZo1pDS0FQJeVz~dGCG4Ov-H3v5hrRIrU4WqdwbUW-IdMoA-d2EezTtK~xb2yJkoKkiXeSawne9~VubooylzKlx5wdYJyOSbF3Rb1hPWCmfcCdjFF~Ag7erwWmBOydA~nU2RHWVuc2IUyXO6m8JAD0P4PkNisiPJexhL~R~uuzSHFRocfkZNaR5cuqwvyotcpF7xNdyCji4MF-0eK4CrAXGBWg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118650125,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650125/thumbnails/1.jpg","file_name":"novel_methods_for_2011.pdf","download_url":"https://www.academia.edu/attachments/118650125/download_file","bulk_download_file_name":"Novel_Methods_for_Ranking_District_Meter.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650125/novel_methods_for_2011-libre.pdf?1728057643=\u0026response-content-disposition=attachment%3B+filename%3DNovel_Methods_for_Ranking_District_Meter.pdf\u0026Expires=1732414361\u0026Signature=D2JTv4Brul~iC8x4v~-4kgeWoRcnd4Nc9taR2T7GqirXfqNM85s9fpdwyGh6dTzdLX8BvJ0d3uTY5t7qzqv3fTtELpBBgOf0-1pb2VLcvvtxhM5QkGgu4wQ28DMiKBg~iHfeQ0tM17RaUmxWJgc~c6iV1ktBMrWmYhSHTiPYPDS3ci~9iKQkEasPVRz43DCewCjbKiVvIJAS6ZyUcynacYtxXcC7VuCO--~jR-4Fj2q0NV-y5UG8HD-~25153WsCoEc6ma7aobwAW5dQ-DvMMiJEQpD2pH4OAIgEz9iegcSsSCKOeSbb7-I4Pf8OZY0yRvyopj6yHkdx3IzYCTqdZw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":4523,"name":"Water quality","url":"https://www.academia.edu/Documents/in/Water_quality"},{"id":55641,"name":"Performance Evaluation","url":"https://www.academia.edu/Documents/in/Performance_Evaluation"},{"id":214678,"name":"Asset Management","url":"https://www.academia.edu/Documents/in/Asset_Management"},{"id":622367,"name":"Water Quality","url":"https://www.academia.edu/Documents/in/Water_Quality-1"}],"urls":[{"id":44976321,"url":"https://ore.exeter.ac.uk/repository/bitstream/handle/10871/11793/novel_methods_for_2011.pdf;sequence=2"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421586"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421586/Minkowski_compactness_measure"><img alt="Research paper thumbnail of Minkowski compactness measure" class="work-thumbnail" src="https://attachments.academia-assets.com/118650123/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421586/Minkowski_compactness_measure">Minkowski compactness measure</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="07f5858a8d59688a93e8b169a1284c7c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650123,&quot;asset_id&quot;:124421586,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650123/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421586"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421586"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421586; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421586]").text(description); $(".js-view-count[data-work-id=124421586]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421586; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421586']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421586, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "07f5858a8d59688a93e8b169a1284c7c" } } $('.js-work-strip[data-work-id=124421586]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421586,"title":"Minkowski compactness measure","translated_title":"","metadata":{"publication_date":{"day":1,"month":9,"year":2013,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421586/Minkowski_compactness_measure","translated_internal_url":"","created_at":"2024-10-04T08:49:43.243-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650123,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650123/thumbnails/1.jpg","file_name":"Minkowski_20compactness_20measure.pdf","download_url":"https://www.academia.edu/attachments/118650123/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Minkowski_compactness_measure.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650123/Minkowski_20compactness_20measure-libre.pdf?1728057646=\u0026response-content-disposition=attachment%3B+filename%3DMinkowski_compactness_measure.pdf\u0026Expires=1732414361\u0026Signature=MGy~jzRNKKVvXh-b9a1Zr8h5oedzpc9oMgBMBkHrw-9U8qHIokHJ3YccSVhaE6RRuSKEC42l5HqwrOwwV~N3kUoYf-xKkoZ4legRYwrcpuD6A8N3XQJS8lyZeTjZ1KQTUup9nIH59h9eOm4tM9K8ngmWAqFYxaWrsPllTE1fqKVrRRZpyHl6W4PMhLitow-411oGq3NVQ-T-TB3mBlbI2AzbzARR4T58S7jpJzNtSUaWNq62tAkW-Gh89aOPi~4z-txdXcTOsfgFCtr7~22jvkKl-nAN5a95ICJqFBMPVh1YEFAkNSBMJ7rgaMMR1foKpsZf7If-Er9q32rV8nD1nw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Minkowski_compactness_measure","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650123,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650123/thumbnails/1.jpg","file_name":"Minkowski_20compactness_20measure.pdf","download_url":"https://www.academia.edu/attachments/118650123/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Minkowski_compactness_measure.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650123/Minkowski_20compactness_20measure-libre.pdf?1728057646=\u0026response-content-disposition=attachment%3B+filename%3DMinkowski_compactness_measure.pdf\u0026Expires=1732414361\u0026Signature=MGy~jzRNKKVvXh-b9a1Zr8h5oedzpc9oMgBMBkHrw-9U8qHIokHJ3YccSVhaE6RRuSKEC42l5HqwrOwwV~N3kUoYf-xKkoZ4legRYwrcpuD6A8N3XQJS8lyZeTjZ1KQTUup9nIH59h9eOm4tM9K8ngmWAqFYxaWrsPllTE1fqKVrRRZpyHl6W4PMhLitow-411oGq3NVQ-T-TB3mBlbI2AzbzARR4T58S7jpJzNtSUaWNq62tAkW-Gh89aOPi~4z-txdXcTOsfgFCtr7~22jvkKl-nAN5a95ICJqFBMPVh1YEFAkNSBMJ7rgaMMR1foKpsZf7If-Er9q32rV8nD1nw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118650124,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650124/thumbnails/1.jpg","file_name":"Minkowski_20compactness_20measure.pdf","download_url":"https://www.academia.edu/attachments/118650124/download_file","bulk_download_file_name":"Minkowski_compactness_measure.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650124/Minkowski_20compactness_20measure-libre.pdf?1728057649=\u0026response-content-disposition=attachment%3B+filename%3DMinkowski_compactness_measure.pdf\u0026Expires=1732414361\u0026Signature=Q9xhiEHii50d9yUFmPe-S-Euqt9VpcZnYmLiVoKWBe99Plk9t9XxGTFce5LYtQej-FZFHF9c3fyYrVvVdCLSOWj~kRp8152ihdt0xlqE9yogC6i~uvYJFvfN0QmlQc5kpfMHDFyQUvuKrUojPTEr7lwfL1L~fcnQelNcahabgnFnPqwfWIR2fBr3uYgxtxQINHNoSnH-CMxAyRv0HAcoI2M0jYNwlZh~V~O1ZVDAtpKB6jqCHtwK4h5Km7bma5p9bhEbpIsVL0KMURCaVao43LQM~kp7~VEcrbLz9-nxK8GSIVn8oVBmv3-59Ggf~Lpuoi7Ae3VTiTF-m38cDmsg~w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision"},{"id":1185,"name":"Image Processing","url":"https://www.academia.edu/Documents/in/Image_Processing"},{"id":1178418,"name":"Shape Description","url":"https://www.academia.edu/Documents/in/Shape_Description"}],"urls":[{"id":44976320,"url":"https://ore.exeter.ac.uk/repository/bitstream/10871/20874/1/Minkowski%20compactness%20measure.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421585"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421585/Edges_of_mutually_non_dominating_sets"><img alt="Research paper thumbnail of Edges of mutually non-dominating sets" class="work-thumbnail" src="https://attachments.academia-assets.com/118650122/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421585/Edges_of_mutually_non_dominating_sets">Edges of mutually non-dominating sets</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3e97e6b6d59545820f5ff6aa559f92b3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650122,&quot;asset_id&quot;:124421585,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650122/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421585"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421585"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421585; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421585]").text(description); $(".js-view-count[data-work-id=124421585]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421585; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421585']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421585, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3e97e6b6d59545820f5ff6aa559f92b3" } } $('.js-work-strip[data-work-id=124421585]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421585,"title":"Edges of mutually non-dominating sets","translated_title":"","metadata":{"publication_date":{"day":6,"month":7,"year":2013,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421585/Edges_of_mutually_non_dominating_sets","translated_internal_url":"","created_at":"2024-10-04T08:49:42.636-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650122,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650122/thumbnails/1.jpg","file_name":"emo-edges.pdf","download_url":"https://www.academia.edu/attachments/118650122/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Edges_of_mutually_non_dominating_sets.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650122/emo-edges-libre.pdf?1728058527=\u0026response-content-disposition=attachment%3B+filename%3DEdges_of_mutually_non_dominating_sets.pdf\u0026Expires=1732414361\u0026Signature=S1gHhL4wp6fKoOnjaZ76sSp~sf5pnF2m4LaIH6e2Kb~Nn6IIVCw0zDbGAYgWfaIjUUfcHObJ29X0XqeiSx9aoRBD6KIzBd8mhsbtH6TwXp6qRsJLiVfsoUuhN8WARbSzCo84xDK9vKNSAG7CzmISaviMVKwgAUSp6pEH7C39k--j-O6zX~~ZCO3jv2rrzTF3RKUKenFkDwj6mVPJk1jRUU8P2vPSjgCHJgZJ4o3VNCI-YM-DA5Kr75o9WlE2kV3udN6fD6mYl3lFqgCqU7H0QApKAQqsBAygyntyaiYKspEHnKofbhnSaQ5SrZeJ17z5~4tNFKbbRgNk9rqVgXdayA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Edges_of_mutually_non_dominating_sets","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650122,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650122/thumbnails/1.jpg","file_name":"emo-edges.pdf","download_url":"https://www.academia.edu/attachments/118650122/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Edges_of_mutually_non_dominating_sets.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650122/emo-edges-libre.pdf?1728058527=\u0026response-content-disposition=attachment%3B+filename%3DEdges_of_mutually_non_dominating_sets.pdf\u0026Expires=1732414361\u0026Signature=S1gHhL4wp6fKoOnjaZ76sSp~sf5pnF2m4LaIH6e2Kb~Nn6IIVCw0zDbGAYgWfaIjUUfcHObJ29X0XqeiSx9aoRBD6KIzBd8mhsbtH6TwXp6qRsJLiVfsoUuhN8WARbSzCo84xDK9vKNSAG7CzmISaviMVKwgAUSp6pEH7C39k--j-O6zX~~ZCO3jv2rrzTF3RKUKenFkDwj6mVPJk1jRUU8P2vPSjgCHJgZJ4o3VNCI-YM-DA5Kr75o9WlE2kV3udN6fD6mYl3lFqgCqU7H0QApKAQqsBAygyntyaiYKspEHnKofbhnSaQ5SrZeJ17z5~4tNFKbbRgNk9rqVgXdayA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118650121,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650121/thumbnails/1.jpg","file_name":"emo-edges.pdf","download_url":"https://www.academia.edu/attachments/118650121/download_file","bulk_download_file_name":"Edges_of_mutually_non_dominating_sets.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650121/emo-edges-libre.pdf?1728058567=\u0026response-content-disposition=attachment%3B+filename%3DEdges_of_mutually_non_dominating_sets.pdf\u0026Expires=1732414361\u0026Signature=WBFBwi0vjcKltKVoiinT015RMcU2tkc3p49jVMZSeOntQ2-zje6XGSAAGKLotg4SSuUFtFwOpPsbwcECjjOLs98WvlqsUq1p4PAHgJirtx7MjqSRBLkC6BzmgUhftLZ2FnEOviUr51rA8XXq0SVbbd4dqK3~VCMt~PJnAC0~MeSyHlY4cqrW~xEGqpHjb-2vafZZ2oszOFJa~46YezyDll46eqXbfwZOMH1ZHaC9hd39pkZZ7~Bss9WeaPxCY3xehFsWjOvh8XDJ6IJZ32AvHUgAsJt2hC5dcBjD323fNhu4O39yPlBqf~d9pKAIq7yB-6TLJZiL~UwmH7chWRsL4A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":151052,"name":"Edge","url":"https://www.academia.edu/Documents/in/Edge"},{"id":180347,"name":"Visualisation","url":"https://www.academia.edu/Documents/in/Visualisation"},{"id":2724433,"name":"Dominating set","url":"https://www.academia.edu/Documents/in/Dominating_set"}],"urls":[{"id":44976319,"url":"https://ore.exeter.ac.uk/repository/bitstream/10871/14760/6/emo-edges.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421584"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421584/Visualising_many_objective_populations"><img alt="Research paper thumbnail of Visualising many-objective populations" class="work-thumbnail" src="https://attachments.academia-assets.com/118650120/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421584/Visualising_many_objective_populations">Visualising many-objective populations</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bfce8578910eab8fe8d6c5b6c313f844" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650120,&quot;asset_id&quot;:124421584,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650120/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421584"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421584"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421584; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421584]").text(description); $(".js-view-count[data-work-id=124421584]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421584; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421584']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421584, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bfce8578910eab8fe8d6c5b6c313f844" } } $('.js-work-strip[data-work-id=124421584]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421584,"title":"Visualising many-objective populations","translated_title":"","metadata":{"publication_date":{"day":7,"month":7,"year":2012,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421584/Visualising_many_objective_populations","translated_internal_url":"","created_at":"2024-10-04T08:49:41.896-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650120,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650120/thumbnails/1.jpg","file_name":"visualising_many_obective_2012.pdf","download_url":"https://www.academia.edu/attachments/118650120/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Visualising_many_objective_populations.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650120/visualising_many_obective_2012-libre.pdf?1728058249=\u0026response-content-disposition=attachment%3B+filename%3DVisualising_many_objective_populations.pdf\u0026Expires=1732414361\u0026Signature=cCIfFyL9rgM00k23raglSi-ULqDR4AlxOuS0ILFShiEsHifo7xcqlaewRX1OfQF1QMNhPwPAjqWODXsk5iWrrC6o1TQ0rIF3UYVRi0PIVkIGaIumH4-E-mwaqsELdSwpI4sOaUfxGSpHc21oqwV6nZQdnqLnkfPwvC9c69bNhAc5qZFz8QqSMOtCAMpGlSb4ijjo9loiRB27i1Ecs7XAQ-igBm-6DbyicpD6JuII1bl-N1pPYTlhww4eYgdhEHNhlvqPNg5ygnk7XG-h4oetsYdZCUlRNWgu4wUU6DWW48so1g5EftFEgQ~ICI9Jt3Bbet70NggGvaph2z6u8zPfvA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Visualising_many_objective_populations","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650120,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650120/thumbnails/1.jpg","file_name":"visualising_many_obective_2012.pdf","download_url":"https://www.academia.edu/attachments/118650120/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Visualising_many_objective_populations.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650120/visualising_many_obective_2012-libre.pdf?1728058249=\u0026response-content-disposition=attachment%3B+filename%3DVisualising_many_objective_populations.pdf\u0026Expires=1732414361\u0026Signature=cCIfFyL9rgM00k23raglSi-ULqDR4AlxOuS0ILFShiEsHifo7xcqlaewRX1OfQF1QMNhPwPAjqWODXsk5iWrrC6o1TQ0rIF3UYVRi0PIVkIGaIumH4-E-mwaqsELdSwpI4sOaUfxGSpHc21oqwV6nZQdnqLnkfPwvC9c69bNhAc5qZFz8QqSMOtCAMpGlSb4ijjo9loiRB27i1Ecs7XAQ-igBm-6DbyicpD6JuII1bl-N1pPYTlhww4eYgdhEHNhlvqPNg5ygnk7XG-h4oetsYdZCUlRNWgu4wUU6DWW48so1g5EftFEgQ~ICI9Jt3Bbet70NggGvaph2z6u8zPfvA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118650119,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650119/thumbnails/1.jpg","file_name":"visualising_many_obective_2012.pdf","download_url":"https://www.academia.edu/attachments/118650119/download_file","bulk_download_file_name":"Visualising_many_objective_populations.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650119/visualising_many_obective_2012-libre.pdf?1728058256=\u0026response-content-disposition=attachment%3B+filename%3DVisualising_many_objective_populations.pdf\u0026Expires=1732414361\u0026Signature=GEquIOvslJFnr6S6dB813zXDlFo2B7FkuDgUhQ4doPN5biQRJ9e4rJVdhb9n3nEGnrifGZeIm-kTl8IbQXvETo4RO4VyqtCQCuMTljZGROdWNOlO68AmpkGPCdk7pLzXel0EQ85kj6TYR2bwKXNYdO-a5cJAZfym3YZPLcf1EfBud23OdpBDjdwdf0kX-oLXSxOxpo~G0pHEs2G-Cq07br8SjXTKPV7E9ARuM5Pv4Hh5MRq7ceVAVh8GE9ze7Wwb1e3nJfE6Ir900CzBJz6xYOENbvZTwUng04QTjEsfNeLmG9RDA96ZV3h1XfS2VbjvefTCPYlbYp4BBSJQPiUtqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":64336,"name":"Population","url":"https://www.academia.edu/Documents/in/Population"},{"id":161594,"name":"High Dimensional Data","url":"https://www.academia.edu/Documents/in/High_Dimensional_Data"},{"id":180347,"name":"Visualisation","url":"https://www.academia.edu/Documents/in/Visualisation"},{"id":223634,"name":"Sorting","url":"https://www.academia.edu/Documents/in/Sorting"},{"id":821516,"name":"Decision Maker","url":"https://www.academia.edu/Documents/in/Decision_Maker"},{"id":970277,"name":"Two Dimensions","url":"https://www.academia.edu/Documents/in/Two_Dimensions"},{"id":1450944,"name":"Multi objective genetic algorithm optimisation","url":"https://www.academia.edu/Documents/in/Multi_objective_genetic_algorithm_optimisation"}],"urls":[{"id":44976318,"url":"https://ore.exeter.ac.uk/repository/bitstream/10871/11703/2/visualising_many_obective_2012.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421583"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421583/How_clumpy_is_my_image_Evaluating_crowdsourced_annotation_tasks"><img alt="Research paper thumbnail of How clumpy is my image? Evaluating crowdsourced annotation tasks" class="work-thumbnail" src="https://attachments.academia-assets.com/118650118/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421583/How_clumpy_is_my_image_Evaluating_crowdsourced_annotation_tasks">How clumpy is my image? Evaluating crowdsourced annotation tasks</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a57543a4cd7e0f374757e26bc0f189a2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650118,&quot;asset_id&quot;:124421583,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650118/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421583"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421583"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421583; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421583]").text(description); $(".js-view-count[data-work-id=124421583]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421583; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421583']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421583, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a57543a4cd7e0f374757e26bc0f189a2" } } $('.js-work-strip[data-work-id=124421583]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421583,"title":"How clumpy is my image? Evaluating crowdsourced annotation tasks","translated_title":"","metadata":{"publication_date":{"day":1,"month":9,"year":2013,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421583/How_clumpy_is_my_image_Evaluating_crowdsourced_annotation_tasks","translated_internal_url":"","created_at":"2024-10-04T08:49:41.159-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650118,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650118/thumbnails/1.jpg","file_name":"How_20Clumpy_20IS_20my_20Image.pdf","download_url":"https://www.academia.edu/attachments/118650118/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"How_clumpy_is_my_image_Evaluating_crowds.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650118/How_20Clumpy_20IS_20my_20Image-libre.pdf?1728058550=\u0026response-content-disposition=attachment%3B+filename%3DHow_clumpy_is_my_image_Evaluating_crowds.pdf\u0026Expires=1732414361\u0026Signature=clF2g7dSsrRlPSYxXUJjRzYcsrOZ3ZvdbNchBF74kZc8wpjfWY3zY12-l6JMkl5aMSueMbJ228kNCF4GRnBNUWQdRf2v6tAl52ejIS5hJwso6EThfpUtf1zEwYb6H~LIMiGxhWP6q7wSn53li7MFTIDzQlafIdzmoU8JHwPi7AMcglt0PDWxtKpCNYQUcU97IJwCqk6i53OAma3uGJp~XD5c8RyZ38SAUFRetY4hCq~GxwP4Q3X8Vbh-HyXjzNKEFVa9NfUkw~PV22IpFjVGesJHM2NRO65FpgJ5l9jlimZEHsreUu-JYQapOi~h1zxG9LQXEGFA33nVFuoJrZZUwg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"How_clumpy_is_my_image_Evaluating_crowdsourced_annotation_tasks","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650118,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650118/thumbnails/1.jpg","file_name":"How_20Clumpy_20IS_20my_20Image.pdf","download_url":"https://www.academia.edu/attachments/118650118/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"How_clumpy_is_my_image_Evaluating_crowds.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650118/How_20Clumpy_20IS_20my_20Image-libre.pdf?1728058550=\u0026response-content-disposition=attachment%3B+filename%3DHow_clumpy_is_my_image_Evaluating_crowds.pdf\u0026Expires=1732414361\u0026Signature=clF2g7dSsrRlPSYxXUJjRzYcsrOZ3ZvdbNchBF74kZc8wpjfWY3zY12-l6JMkl5aMSueMbJ228kNCF4GRnBNUWQdRf2v6tAl52ejIS5hJwso6EThfpUtf1zEwYb6H~LIMiGxhWP6q7wSn53li7MFTIDzQlafIdzmoU8JHwPi7AMcglt0PDWxtKpCNYQUcU97IJwCqk6i53OAma3uGJp~XD5c8RyZ38SAUFRetY4hCq~GxwP4Q3X8Vbh-HyXjzNKEFVa9NfUkw~PV22IpFjVGesJHM2NRO65FpgJ5l9jlimZEHsreUu-JYQapOi~h1zxG9LQXEGFA33nVFuoJrZZUwg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2130,"name":"Groupware","url":"https://www.academia.edu/Documents/in/Groupware"},{"id":3523,"name":"Evolutionary Computation","url":"https://www.academia.edu/Documents/in/Evolutionary_Computation"},{"id":21556,"name":"Crowdsourcing","url":"https://www.academia.edu/Documents/in/Crowdsourcing"},{"id":38072,"name":"Annotation","url":"https://www.academia.edu/Documents/in/Annotation"},{"id":56368,"name":"Image Classification","url":"https://www.academia.edu/Documents/in/Image_Classification"},{"id":106145,"name":"Classification","url":"https://www.academia.edu/Documents/in/Classification"},{"id":195021,"name":"Pattern Clustering","url":"https://www.academia.edu/Documents/in/Pattern_Clustering"},{"id":369494,"name":"Ranking","url":"https://www.academia.edu/Documents/in/Ranking"},{"id":540471,"name":"Scoring","url":"https://www.academia.edu/Documents/in/Scoring"},{"id":1191356,"name":"Internet","url":"https://www.academia.edu/Documents/in/Internet"}],"urls":[{"id":44976317,"url":"https://ore.exeter.ac.uk/repository/bitstream/10871/20875/1/How%20Clumpy%20IS%20my%20Image.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124421535"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124421535/Multi_Objective_Optimisation_for_Receiver_Operating_Characteristic_Analysis"><img alt="Research paper thumbnail of Multi-Objective Optimisation for Receiver Operating Characteristic Analysis" class="work-thumbnail" src="https://attachments.academia-assets.com/118650090/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124421535/Multi_Objective_Optimisation_for_Receiver_Operating_Characteristic_Analysis">Multi-Objective Optimisation for Receiver Operating Characteristic Analysis</a></div><div class="wp-workCard_item"><span>Springer eBooks</span><span>, May 19, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7dcb9a19fca47822deb05678a53cabd5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118650090,&quot;asset_id&quot;:124421535,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118650090/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124421535"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124421535"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124421535; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124421535]").text(description); $(".js-view-count[data-work-id=124421535]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124421535; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124421535']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124421535, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7dcb9a19fca47822deb05678a53cabd5" } } $('.js-work-strip[data-work-id=124421535]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124421535,"title":"Multi-Objective Optimisation for Receiver Operating Characteristic Analysis","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":19,"month":5,"year":2006,"errors":{}},"publication_name":"Springer eBooks"},"translated_abstract":null,"internal_url":"https://www.academia.edu/124421535/Multi_Objective_Optimisation_for_Receiver_Operating_Characteristic_Analysis","translated_internal_url":"","created_at":"2024-10-04T08:48:38.782-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118650090,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650090/thumbnails/1.jpg","file_name":"multi_objective_optimisation_2006.pdf","download_url":"https://www.academia.edu/attachments/118650090/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multi_Objective_Optimisation_for_Receive.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650090/multi_objective_optimisation_2006-libre.pdf?1728057674=\u0026response-content-disposition=attachment%3B+filename%3DMulti_Objective_Optimisation_for_Receive.pdf\u0026Expires=1732414361\u0026Signature=SmBX8fwUDIkO23ZfOll471I2SLPIIvyzkgHB0IHqaRdWZNDDEaqdjsOdIsx12UYLM-sUCPaspUFeujw0fUdICUbCMyRivDzhCuhQ2sQd4p0jcuh8McmLyenuPr94PqqDwG1bSeIOlI6qiw4Z8Q5olZtDDPE4k5J8sEnRSywwTxSXZD5qq4pTTRj4ceviiaKqpkMAusNf5dKCwEbMxEDIga3X1a9U36WtjTOcf0O7UNGvCXjTFmWOD~0Jl00qXAO4g84ARkZ05LJUhG7zR3BTUsI1aibVFImYrg6q73C-nKGg8vK82H1H3SYc1w9ryt~Gx9DzZx7r4J5K0i~SZsiAFg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Multi_Objective_Optimisation_for_Receiver_Operating_Characteristic_Analysis","translated_slug":"","page_count":25,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":118650090,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650090/thumbnails/1.jpg","file_name":"multi_objective_optimisation_2006.pdf","download_url":"https://www.academia.edu/attachments/118650090/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multi_Objective_Optimisation_for_Receive.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650090/multi_objective_optimisation_2006-libre.pdf?1728057674=\u0026response-content-disposition=attachment%3B+filename%3DMulti_Objective_Optimisation_for_Receive.pdf\u0026Expires=1732414361\u0026Signature=SmBX8fwUDIkO23ZfOll471I2SLPIIvyzkgHB0IHqaRdWZNDDEaqdjsOdIsx12UYLM-sUCPaspUFeujw0fUdICUbCMyRivDzhCuhQ2sQd4p0jcuh8McmLyenuPr94PqqDwG1bSeIOlI6qiw4Z8Q5olZtDDPE4k5J8sEnRSywwTxSXZD5qq4pTTRj4ceviiaKqpkMAusNf5dKCwEbMxEDIga3X1a9U36WtjTOcf0O7UNGvCXjTFmWOD~0Jl00qXAO4g84ARkZ05LJUhG7zR3BTUsI1aibVFImYrg6q73C-nKGg8vK82H1H3SYc1w9ryt~Gx9DzZx7r4J5K0i~SZsiAFg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118650091,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118650091/thumbnails/1.jpg","file_name":"multi_objective_optimisation_2006.pdf","download_url":"https://www.academia.edu/attachments/118650091/download_file","bulk_download_file_name":"Multi_Objective_Optimisation_for_Receive.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118650091/multi_objective_optimisation_2006-libre.pdf?1728057675=\u0026response-content-disposition=attachment%3B+filename%3DMulti_Objective_Optimisation_for_Receive.pdf\u0026Expires=1732414361\u0026Signature=X3DWSs37D3qxYlKCId~xoNHCTTRDDBZkC095-5o5ClH7lTWp9mTCekABGOa-ymtwh6GBK9HqJz3yOYJSljqYC4XcWthBSgKTbUzQFSLnCICU~2QoPp7bwaBRGVwIntYhAOi1GsOoe-LVE56-bzB4ZWUrj7zhkpaWLpFJwdKq2sal0-uU0mME7NKj2YExzlvCXhFocasApz50wBpdzAyRnJUd1pQ8sQyVXvaqW7snOGNJ3LoFnAqgRGUouCl5xqsh2DYeAvjRknUgqr8VXJE7vslxSx7C6ll3NGdMcyonvl4GcYuk82vI-AYWZqs6P5w4kJOGYjs1O-gnUraghzBZow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":154214,"name":"Binary Classification","url":"https://www.academia.edu/Documents/in/Binary_Classification"},{"id":503912,"name":"Operating Point","url":"https://www.academia.edu/Documents/in/Operating_Point"},{"id":1309705,"name":"Receiver Operating Characteristic","url":"https://www.academia.edu/Documents/in/Receiver_Operating_Characteristic"},{"id":1450944,"name":"Multi objective genetic algorithm optimisation","url":"https://www.academia.edu/Documents/in/Multi_objective_genetic_algorithm_optimisation"},{"id":2651394,"name":"roc analysis","url":"https://www.academia.edu/Documents/in/roc_analysis"},{"id":3647879,"name":"Springer Ebooks","url":"https://www.academia.edu/Documents/in/Springer_Ebooks"}],"urls":[{"id":44976292,"url":"https://ore.exeter.ac.uk/repository/bitstream/10871/11568/2/multi_objective_optimisation_2006.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121445664"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121445664/The_Deep_Dementia_Phenotyping_DEMON_Network_A_global_platform_for_innovation_using_data_science_and_artificial_intelligence"><img alt="Research paper thumbnail of The Deep Dementia Phenotyping (DEMON) Network: A global platform for innovation using data science and artificial intelligence" class="work-thumbnail" src="https://attachments.academia-assets.com/116318447/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121445664/The_Deep_Dementia_Phenotyping_DEMON_Network_A_global_platform_for_innovation_using_data_science_and_artificial_intelligence">The Deep Dementia Phenotyping (DEMON) Network: A global platform for innovation using data science and artificial intelligence</a></div><div class="wp-workCard_item"><span>Alzheimers &amp; Dementia</span><span>, Dec 1, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f0fcc1a360a0ad9f7ddc320c41571d29" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116318447,&quot;asset_id&quot;:121445664,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116318447/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121445664"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121445664"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121445664; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121445664]").text(description); $(".js-view-count[data-work-id=121445664]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121445664; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121445664']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121445664, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f0fcc1a360a0ad9f7ddc320c41571d29" } } $('.js-work-strip[data-work-id=121445664]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121445664,"title":"The Deep Dementia Phenotyping (DEMON) Network: A global platform for innovation using data science and artificial intelligence","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":1,"month":12,"year":2022,"errors":{}},"publication_name":"Alzheimers \u0026 Dementia"},"translated_abstract":null,"internal_url":"https://www.academia.edu/121445664/The_Deep_Dementia_Phenotyping_DEMON_Network_A_global_platform_for_innovation_using_data_science_and_artificial_intelligence","translated_internal_url":"","created_at":"2024-06-24T01:56:41.699-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116318447,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116318447/thumbnails/1.jpg","file_name":"Alzheimer_20s_20_20_20Dementia_20-_202022_20-_20Ranson_20-_20The_20Deep_20Dementia_20Phenotyping_20_20DEMON_20_20Network_20_20A_20global.pdf","download_url":"https://www.academia.edu/attachments/116318447/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Deep_Dementia_Phenotyping_DEMON_Netw.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116318447/Alzheimer_20s_20_20_20Dementia_20-_202022_20-_20Ranson_20-_20The_20Deep_20Dementia_20Phenotyping_20_20DEMON_20_20Network_20_20A_20global-libre.pdf?1719219630=\u0026response-content-disposition=attachment%3B+filename%3DThe_Deep_Dementia_Phenotyping_DEMON_Netw.pdf\u0026Expires=1732414361\u0026Signature=YZxp0mfHlL0DwGL~~iwedFgLTTtZls3RvPyuPKVVCIX7h~9SithREyiDl-OOHY~a73XLV8I6JYD8tNGR2ksEyCfRAvNKkhiGaKW41VO0PJApp2M9wCWBrNX2rYL4KP-xrLb5Ag25qWC~QGTcZjYI-cY0ahY7HXpI8sz7P1qS4AC0Oq8ODYaZx1aI06LCrpnLOT25S6z5UyoiWBoxW6XA9FBg~ugyJMzdT5PpYL46osBFPwlmjSLNbxFUVSYsY20cVdMJSkuAKqRa5OIknBd0pa~0E~PDhLl1kIzSNAe-EtYXJt3GMTl2rfLPhUH7nMkkR6v-AqxXZUA-hqe0~i-4mQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Deep_Dementia_Phenotyping_DEMON_Network_A_global_platform_for_innovation_using_data_science_and_artificial_intelligence","translated_slug":"","page_count":3,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":116318447,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116318447/thumbnails/1.jpg","file_name":"Alzheimer_20s_20_20_20Dementia_20-_202022_20-_20Ranson_20-_20The_20Deep_20Dementia_20Phenotyping_20_20DEMON_20_20Network_20_20A_20global.pdf","download_url":"https://www.academia.edu/attachments/116318447/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Deep_Dementia_Phenotyping_DEMON_Netw.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116318447/Alzheimer_20s_20_20_20Dementia_20-_202022_20-_20Ranson_20-_20The_20Deep_20Dementia_20Phenotyping_20_20DEMON_20_20Network_20_20A_20global-libre.pdf?1719219630=\u0026response-content-disposition=attachment%3B+filename%3DThe_Deep_Dementia_Phenotyping_DEMON_Netw.pdf\u0026Expires=1732414361\u0026Signature=YZxp0mfHlL0DwGL~~iwedFgLTTtZls3RvPyuPKVVCIX7h~9SithREyiDl-OOHY~a73XLV8I6JYD8tNGR2ksEyCfRAvNKkhiGaKW41VO0PJApp2M9wCWBrNX2rYL4KP-xrLb5Ag25qWC~QGTcZjYI-cY0ahY7HXpI8sz7P1qS4AC0Oq8ODYaZx1aI06LCrpnLOT25S6z5UyoiWBoxW6XA9FBg~ugyJMzdT5PpYL46osBFPwlmjSLNbxFUVSYsY20cVdMJSkuAKqRa5OIknBd0pa~0E~PDhLl1kIzSNAe-EtYXJt3GMTl2rfLPhUH7nMkkR6v-AqxXZUA-hqe0~i-4mQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":116318448,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116318448/thumbnails/1.jpg","file_name":"Alzheimer_20s_20_20_20Dementia_20-_202022_20-_20Ranson_20-_20The_20Deep_20Dementia_20Phenotyping_20_20DEMON_20_20Network_20_20A_20global.pdf","download_url":"https://www.academia.edu/attachments/116318448/download_file","bulk_download_file_name":"The_Deep_Dementia_Phenotyping_DEMON_Netw.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116318448/Alzheimer_20s_20_20_20Dementia_20-_202022_20-_20Ranson_20-_20The_20Deep_20Dementia_20Phenotyping_20_20DEMON_20_20Network_20_20A_20global-libre.pdf?1719219634=\u0026response-content-disposition=attachment%3B+filename%3DThe_Deep_Dementia_Phenotyping_DEMON_Netw.pdf\u0026Expires=1732414361\u0026Signature=EU3p14LGN6Me1cgQyLSJjQL-WtzxUlEIsE1yXpjQUSHotgapqekfhDVXvmanghtDm8Kl74ERETa7EyoRCzf-Ef8KZzjfWCxMoWaPWns3Ggt1Io5R-kR08BlvXU9D5NoG7IaA-S1cK~oMaxNzDZWvh61N3~eO9kL-X3OqCXDmwXK1zAAHyLr3M~rdeoNGq8AkvV9eAfJEsJP0YPsZYPgX0L4HZDcq16rJkWD3TL5aolMC1necHunUf-jMehzyx0782XD~qn47KSuXd7nPQrN2lZNqZdHrPY03T2l2V-ruBdHGTMHa13DbcwnPRKNq5MOhJzs3B2hMDyWVzyB24mQTAA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":3662,"name":"Dementia","url":"https://www.academia.edu/Documents/in/Dementia"},{"id":79300,"name":"Demon","url":"https://www.academia.edu/Documents/in/Demon"}],"urls":[{"id":43196417,"url":"https://ore.exeter.ac.uk/repository/bitstream/10871/132285/1/Alzheimer%20s%20%20%20Dementia%20-%202022%20-%20Ranson%20-%20The%20Deep%20Dementia%20Phenotyping%20%20DEMON%20%20Network%20%20A%20global%20platform%20for%20innovation.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121445663"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121445663/Using_simulation_and_machine_learning_to_maximise_the_benefit_of_intravenous_thrombolysis_in_acute_stroke_in_England_and_Wales_the_SAMueL_modelling_and_qualitative_study"><img alt="Research paper thumbnail of Using simulation and machine learning to maximise the benefit of intravenous thrombolysis in acute stroke in England and Wales: the SAMueL modelling and qualitative study" class="work-thumbnail" src="https://attachments.academia-assets.com/116318449/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121445663/Using_simulation_and_machine_learning_to_maximise_the_benefit_of_intravenous_thrombolysis_in_acute_stroke_in_England_and_Wales_the_SAMueL_modelling_and_qualitative_study">Using simulation and machine learning to maximise the benefit of intravenous thrombolysis in acute stroke in England and Wales: the SAMueL modelling and qualitative study</a></div><div class="wp-workCard_item"><span>Health and Social Care Delivery Research</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">BackgroundStroke is a common cause of adult disability. Expert opinion is that about 20% of patie...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">BackgroundStroke is a common cause of adult disability. Expert opinion is that about 20% of patients should receive thrombolysis to break up a clot causing the stroke. Currently, 11–12% of patients in England and Wales receive this treatment, ranging between 2% and 24% between hospitals.ObjectivesWe sought to enhance the national stroke audit by providing further analysis of the key sources of inter-hospital variation to determine how a target of 20% of stroke patients receiving thrombolysis may be reached.DesignWe modelled three aspects of the thrombolysis pathway, using machine learning and clinical pathway simulation. In addition, the project had a qualitative research arm, with the objective of understanding clinicians’ attitudes to use of modelling and machine learning applied to the national stroke audit.Participants and data sourceAnonymised data were collected for 246,676 emergency stroke admissions to acute stroke teams in England and Wales between 2016 and 2018, obtained f...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a2491d0452ead27f575329242f845a9d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116318449,&quot;asset_id&quot;:121445663,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116318449/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121445663"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121445663"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121445663; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121445663]").text(description); $(".js-view-count[data-work-id=121445663]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121445663; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121445663']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121445663, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a2491d0452ead27f575329242f845a9d" } } $('.js-work-strip[data-work-id=121445663]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121445663,"title":"Using simulation and machine learning to maximise the benefit of intravenous thrombolysis in acute stroke in England and Wales: the SAMueL modelling and qualitative study","translated_title":"","metadata":{"abstract":"BackgroundStroke is a common cause of adult disability. Expert opinion is that about 20% of patients should receive thrombolysis to break up a clot causing the stroke. Currently, 11–12% of patients in England and Wales receive this treatment, ranging between 2% and 24% between hospitals.ObjectivesWe sought to enhance the national stroke audit by providing further analysis of the key sources of inter-hospital variation to determine how a target of 20% of stroke patients receiving thrombolysis may be reached.DesignWe modelled three aspects of the thrombolysis pathway, using machine learning and clinical pathway simulation. In addition, the project had a qualitative research arm, with the objective of understanding clinicians’ attitudes to use of modelling and machine learning applied to the national stroke audit.Participants and data sourceAnonymised data were collected for 246,676 emergency stroke admissions to acute stroke teams in England and Wales between 2016 and 2018, obtained f...","publisher":"National Institute for Health and Care Research","publication_name":"Health and Social Care Delivery Research"},"translated_abstract":"BackgroundStroke is a common cause of adult disability. Expert opinion is that about 20% of patients should receive thrombolysis to break up a clot causing the stroke. Currently, 11–12% of patients in England and Wales receive this treatment, ranging between 2% and 24% between hospitals.ObjectivesWe sought to enhance the national stroke audit by providing further analysis of the key sources of inter-hospital variation to determine how a target of 20% of stroke patients receiving thrombolysis may be reached.DesignWe modelled three aspects of the thrombolysis pathway, using machine learning and clinical pathway simulation. In addition, the project had a qualitative research arm, with the objective of understanding clinicians’ attitudes to use of modelling and machine learning applied to the national stroke audit.Participants and data sourceAnonymised data were collected for 246,676 emergency stroke admissions to acute stroke teams in England and Wales between 2016 and 2018, obtained f...","internal_url":"https://www.academia.edu/121445663/Using_simulation_and_machine_learning_to_maximise_the_benefit_of_intravenous_thrombolysis_in_acute_stroke_in_England_and_Wales_the_SAMueL_modelling_and_qualitative_study","translated_internal_url":"","created_at":"2024-06-24T01:56:41.507-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116318449,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116318449/thumbnails/1.jpg","file_name":"2040449.pdf","download_url":"https://www.academia.edu/attachments/116318449/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_simulation_and_machine_learning_to.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116318449/2040449-libre.pdf?1719220159=\u0026response-content-disposition=attachment%3B+filename%3DUsing_simulation_and_machine_learning_to.pdf\u0026Expires=1732414361\u0026Signature=IQ3W12Llek5cQ07sAGQaj6nd-DkG6oxRCmyz6zN7Cq1rmU-HZXFiq6QLcw301P9O1pGRkEtY5voZtGrGt5C6jVJv9cU1IJkaw8pfW0IC1QXu7sELRbNbujCa2gWMrXROeapYAXpVW-IBCR2bNHrlUHpkWJJRBJuHcKoeZPbExK9N0AxWsewfjXFR81guVbnrEGKmFLCzQ4Zw16nfKrdRPBwmGeEXMgzTG911-EbDIXZvGWy0QVTTEDxvDuNkx4qbBsbJZDQW8qCyrQSvQORw7WwTDzkmoZvvlHmy4F8exFF2CK-AiZkgG2sP0KYb6bBSkA7sqZ-COoLeN7vQXRqy6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Using_simulation_and_machine_learning_to_maximise_the_benefit_of_intravenous_thrombolysis_in_acute_stroke_in_England_and_Wales_the_SAMueL_modelling_and_qualitative_study","translated_slug":"","page_count":184,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":116318449,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116318449/thumbnails/1.jpg","file_name":"2040449.pdf","download_url":"https://www.academia.edu/attachments/116318449/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_simulation_and_machine_learning_to.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116318449/2040449-libre.pdf?1719220159=\u0026response-content-disposition=attachment%3B+filename%3DUsing_simulation_and_machine_learning_to.pdf\u0026Expires=1732414361\u0026Signature=IQ3W12Llek5cQ07sAGQaj6nd-DkG6oxRCmyz6zN7Cq1rmU-HZXFiq6QLcw301P9O1pGRkEtY5voZtGrGt5C6jVJv9cU1IJkaw8pfW0IC1QXu7sELRbNbujCa2gWMrXROeapYAXpVW-IBCR2bNHrlUHpkWJJRBJuHcKoeZPbExK9N0AxWsewfjXFR81guVbnrEGKmFLCzQ4Zw16nfKrdRPBwmGeEXMgzTG911-EbDIXZvGWy0QVTTEDxvDuNkx4qbBsbJZDQW8qCyrQSvQORw7WwTDzkmoZvvlHmy4F8exFF2CK-AiZkgG2sP0KYb6bBSkA7sqZ-COoLeN7vQXRqy6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":116318450,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116318450/thumbnails/1.jpg","file_name":"2040449.pdf","download_url":"https://www.academia.edu/attachments/116318450/download_file","bulk_download_file_name":"Using_simulation_and_machine_learning_to.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116318450/2040449-libre.pdf?1719220162=\u0026response-content-disposition=attachment%3B+filename%3DUsing_simulation_and_machine_learning_to.pdf\u0026Expires=1732414362\u0026Signature=QPir2uXz~JuEyY~R3Qe48rlLdiTW9lz6brdaHlEkQi2OY9Mm-kQAkwFf1Rnd3ydPScX9C1pFgPCAEPFOUu1WbRAc8ASDtG2k8621JJVBVzQMAMsQEnHJM43sUzeFXHim3gcsfgq7RN3zTf~mO6t6RJweeOrzh1FIDkZIYbc6zzA4sf~kC~LppH503otGzW2rr1NaoXzJOd-Jjd9f63Uou6bhun2kSXvp4gk6PmEtNN2vtOnOtpbOSZQ04NtyjZFFlIZ7jaWw3I10OD5NkmzqBoC3FZVet5jq5oK8zY-w6YjqymgZGNOUEvDQglfsq6GwfF5~b6Bq4Rzs6yYF6QeS5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":607,"name":"Emergency Medicine","url":"https://www.academia.edu/Documents/in/Emergency_Medicine"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":95850,"name":"Audit","url":"https://www.academia.edu/Documents/in/Audit"},{"id":194607,"name":"Two Stroke Engine","url":"https://www.academia.edu/Documents/in/Two_Stroke_Engine"},{"id":1225323,"name":"Acute Ischemic Stroke","url":"https://www.academia.edu/Documents/in/Acute_Ischemic_Stroke"},{"id":3180634,"name":"Thrombolysis","url":"https://www.academia.edu/Documents/in/Thrombolysis"}],"urls":[{"id":43196416,"url":"https://njl-admin.nihr.ac.uk/document/download/2040449"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121445662"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121445662/Can_clinical_audits_be_enhanced_by_pathway_simulation_and_machine_learning_An_example_from_the_acute_stroke_pathway"><img alt="Research paper thumbnail of Can clinical audits be enhanced by pathway simulation and machine learning? An example from the acute stroke pathway" class="work-thumbnail" src="https://attachments.academia-assets.com/116318477/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121445662/Can_clinical_audits_be_enhanced_by_pathway_simulation_and_machine_learning_An_example_from_the_acute_stroke_pathway">Can clinical audits be enhanced by pathway simulation and machine learning? An example from the acute stroke pathway</a></div><div class="wp-workCard_item"><span>BMJ Open</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ObjectiveTo evaluate the application of clinical pathway simulation in machine learning, using cl...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ObjectiveTo evaluate the application of clinical pathway simulation in machine learning, using clinical audit data, in order to identify key drivers for improving use and speed of thrombolysis at individual hospitals.DesignComputer simulation modelling and machine learning.SettingSeven acute stroke units.ParticipantsAnonymised clinical audit data for 7864 patients.ResultsThree factors were pivotal in governing thrombolysis use: (1) the proportion of patients with a known stroke onset time (range 44%–73%), (2) pathway speed (for patients arriving within 4 hours of onset: per-hospital median arrival-to-scan ranged from 11 to 56 min; median scan-to-thrombolysis ranged from 21 to 44 min) and (3) predisposition to use thrombolysis (thrombolysis use ranged from 31% to 52% for patients with stroke scanned with 30 min left to administer thrombolysis). A pathway simulation model could predict the potential benefit of improving individual stages of the clinical pathway speed, whereas a machin...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="18afd16e8797cf32cefbe82a4efe8190" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116318477,&quot;asset_id&quot;:121445662,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116318477/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121445662"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121445662"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121445662; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121445662]").text(description); $(".js-view-count[data-work-id=121445662]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121445662; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121445662']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121445662, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "18afd16e8797cf32cefbe82a4efe8190" } } $('.js-work-strip[data-work-id=121445662]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121445662,"title":"Can clinical audits be enhanced by pathway simulation and machine learning? An example from the acute stroke pathway","translated_title":"","metadata":{"abstract":"ObjectiveTo evaluate the application of clinical pathway simulation in machine learning, using clinical audit data, in order to identify key drivers for improving use and speed of thrombolysis at individual hospitals.DesignComputer simulation modelling and machine learning.SettingSeven acute stroke units.ParticipantsAnonymised clinical audit data for 7864 patients.ResultsThree factors were pivotal in governing thrombolysis use: (1) the proportion of patients with a known stroke onset time (range 44%–73%), (2) pathway speed (for patients arriving within 4 hours of onset: per-hospital median arrival-to-scan ranged from 11 to 56 min; median scan-to-thrombolysis ranged from 21 to 44 min) and (3) predisposition to use thrombolysis (thrombolysis use ranged from 31% to 52% for patients with stroke scanned with 30 min left to administer thrombolysis). A pathway simulation model could predict the potential benefit of improving individual stages of the clinical pathway speed, whereas a machin...","publisher":"BMJ","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"BMJ Open"},"translated_abstract":"ObjectiveTo evaluate the application of clinical pathway simulation in machine learning, using clinical audit data, in order to identify key drivers for improving use and speed of thrombolysis at individual hospitals.DesignComputer simulation modelling and machine learning.SettingSeven acute stroke units.ParticipantsAnonymised clinical audit data for 7864 patients.ResultsThree factors were pivotal in governing thrombolysis use: (1) the proportion of patients with a known stroke onset time (range 44%–73%), (2) pathway speed (for patients arriving within 4 hours of onset: per-hospital median arrival-to-scan ranged from 11 to 56 min; median scan-to-thrombolysis ranged from 21 to 44 min) and (3) predisposition to use thrombolysis (thrombolysis use ranged from 31% to 52% for patients with stroke scanned with 30 min left to administer thrombolysis). A pathway simulation model could predict the potential benefit of improving individual stages of the clinical pathway speed, whereas a machin...","internal_url":"https://www.academia.edu/121445662/Can_clinical_audits_be_enhanced_by_pathway_simulation_and_machine_learning_An_example_from_the_acute_stroke_pathway","translated_internal_url":"","created_at":"2024-06-24T01:56:40.195-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116318477,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116318477/thumbnails/1.jpg","file_name":"Allen_BMJ_20Open.pdf","download_url":"https://www.academia.edu/attachments/116318477/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Can_clinical_audits_be_enhanced_by_pathw.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116318477/Allen_BMJ_20Open-libre.pdf?1719219629=\u0026response-content-disposition=attachment%3B+filename%3DCan_clinical_audits_be_enhanced_by_pathw.pdf\u0026Expires=1732414362\u0026Signature=WNbOfNCP~8fmgquOfvI~m~qQl-0PNYh6SY7N1ho4kZUi~R4oMrDWtVuglF48gRzCYGQTU9J6nD9EvCSp8razAjFMxMu2zuK0naFvpUOMW-aRp-QaPorw4UdAxussgrhxtbXoh0Po7ijns1ksgjgOQ9My1LdYSQnMaHiZwok0FZSQXEQqJJzd03PdWcQdCGD2XRf~O-QJ4BZpL6x3saCOUGtxzpQMOQSvP96AV5e37ts~ZkMJW354NTPX5f~Tj0CtlRDzd-QiX2RAZLy3A-DcfqhlJkv3kh5ekL09b9~IAVRUobBiGZi5FNGy-27J25barl~LFUQfbD7hFkpwyr2vKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Can_clinical_audits_be_enhanced_by_pathway_simulation_and_machine_learning_An_example_from_the_acute_stroke_pathway","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":116318477,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116318477/thumbnails/1.jpg","file_name":"Allen_BMJ_20Open.pdf","download_url":"https://www.academia.edu/attachments/116318477/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Can_clinical_audits_be_enhanced_by_pathw.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116318477/Allen_BMJ_20Open-libre.pdf?1719219629=\u0026response-content-disposition=attachment%3B+filename%3DCan_clinical_audits_be_enhanced_by_pathw.pdf\u0026Expires=1732414362\u0026Signature=WNbOfNCP~8fmgquOfvI~m~qQl-0PNYh6SY7N1ho4kZUi~R4oMrDWtVuglF48gRzCYGQTU9J6nD9EvCSp8razAjFMxMu2zuK0naFvpUOMW-aRp-QaPorw4UdAxussgrhxtbXoh0Po7ijns1ksgjgOQ9My1LdYSQnMaHiZwok0FZSQXEQqJJzd03PdWcQdCGD2XRf~O-QJ4BZpL6x3saCOUGtxzpQMOQSvP96AV5e37ts~ZkMJW354NTPX5f~Tj0CtlRDzd-QiX2RAZLy3A-DcfqhlJkv3kh5ekL09b9~IAVRUobBiGZi5FNGy-27J25barl~LFUQfbD7hFkpwyr2vKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":95850,"name":"Audit","url":"https://www.academia.edu/Documents/in/Audit"},{"id":194607,"name":"Two Stroke Engine","url":"https://www.academia.edu/Documents/in/Two_Stroke_Engine"},{"id":3180634,"name":"Thrombolysis","url":"https://www.academia.edu/Documents/in/Thrombolysis"}],"urls":[{"id":43196415,"url":"https://syndication.highwire.org/content/doi/10.1136/bmjopen-2018-028296"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121445647"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121445647/A_probabilistic_model_for_aircraft_in_climb_using_monotonic_functional_Gaussian_process_emulators"><img alt="Research paper thumbnail of A probabilistic model for aircraft in climb using monotonic functional Gaussian process emulators" class="work-thumbnail" src="https://attachments.academia-assets.com/116318457/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121445647/A_probabilistic_model_for_aircraft_in_climb_using_monotonic_functional_Gaussian_process_emulators">A probabilistic model for aircraft in climb using monotonic functional Gaussian process emulators</a></div><div class="wp-workCard_item"><span>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Ensuring vertical separation is a key means of maintaining safe separation between aircraft in co...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Ensuring vertical separation is a key means of maintaining safe separation between aircraft in congested airspace. Aircraft trajectories are modelled in the presence of significant epistemic uncertainty, leading to discrepancies between observed trajectories and the predictions of deterministic models, hampering the task of planning to ensure safe separation. In this paper, a probabilistic model is presented, for the purpose of emulating the trajectories of aircraft in climb and bounding the uncertainty of the predicted trajectory. A monotonic, functional representation exploits the spatio-temporal correlations in the radar observations. Through the use of Gaussian process emulators, features that parameterize the climb are mapped directly to functional outputs, providing a fast approximation, while ensuring that the resulting trajectory is monotonic. The model was applied as a probabilistic digital twin for aircraft in climb and baselined against the base of aircraft data, a determ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2e082c3894f659ed8e55a3bc7239e970" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116318457,&quot;asset_id&quot;:121445647,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116318457/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121445647"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121445647"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121445647; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121445647]").text(description); $(".js-view-count[data-work-id=121445647]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121445647; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121445647']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121445647, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2e082c3894f659ed8e55a3bc7239e970" } } $('.js-work-strip[data-work-id=121445647]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121445647,"title":"A probabilistic model for aircraft in climb using monotonic functional Gaussian process emulators","translated_title":"","metadata":{"abstract":"Ensuring vertical separation is a key means of maintaining safe separation between aircraft in congested airspace. Aircraft trajectories are modelled in the presence of significant epistemic uncertainty, leading to discrepancies between observed trajectories and the predictions of deterministic models, hampering the task of planning to ensure safe separation. In this paper, a probabilistic model is presented, for the purpose of emulating the trajectories of aircraft in climb and bounding the uncertainty of the predicted trajectory. A monotonic, functional representation exploits the spatio-temporal correlations in the radar observations. Through the use of Gaussian process emulators, features that parameterize the climb are mapped directly to functional outputs, providing a fast approximation, while ensuring that the resulting trajectory is monotonic. The model was applied as a probabilistic digital twin for aircraft in climb and baselined against the base of aircraft data, a determ...","publisher":"The Royal Society","publication_name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences"},"translated_abstract":"Ensuring vertical separation is a key means of maintaining safe separation between aircraft in congested airspace. Aircraft trajectories are modelled in the presence of significant epistemic uncertainty, leading to discrepancies between observed trajectories and the predictions of deterministic models, hampering the task of planning to ensure safe separation. In this paper, a probabilistic model is presented, for the purpose of emulating the trajectories of aircraft in climb and bounding the uncertainty of the predicted trajectory. A monotonic, functional representation exploits the spatio-temporal correlations in the radar observations. Through the use of Gaussian process emulators, features that parameterize the climb are mapped directly to functional outputs, providing a fast approximation, while ensuring that the resulting trajectory is monotonic. The model was applied as a probabilistic digital twin for aircraft in climb and baselined against the base of aircraft data, a determ...","internal_url":"https://www.academia.edu/121445647/A_probabilistic_model_for_aircraft_in_climb_using_monotonic_functional_Gaussian_process_emulators","translated_internal_url":"","created_at":"2024-06-24T01:55:50.361-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31636764,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116318457,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116318457/thumbnails/1.jpg","file_name":"2210.pdf","download_url":"https://www.academia.edu/attachments/116318457/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_probabilistic_model_for_aircraft_in_cl.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116318457/2210-libre.pdf?1719219635=\u0026response-content-disposition=attachment%3B+filename%3DA_probabilistic_model_for_aircraft_in_cl.pdf\u0026Expires=1732414362\u0026Signature=cHDz2g4I~yjXlGMvv9gH4O50IYDqKY7FBOpAHQWDZMSillHUCc9fftOMXsmgqJI~3NGfIMJC4igqwR2qrB3uZG7zvEAkgMstSt-ytWEgd~Dn2zMa0AfjNSeclLfE6I9oupmbewAXtPa2XEOUuZLTWW~h~wXvF9KokL0Mu~TxLU~YplJOr7V6acuPLSY5UxW06WVi9BqlffhBPbUKjLsrnOO84sO666MQrIrg3L5oLS6uItyBXc1FHwpekT7CbEZvhV5ASLOsXQ~x6W8TEtJQq~5ixI6RDpXaXw~I0ra-GNL54Haq66pDTxfGGm3sL2qocIH44EU9-oa9DaF9M0sclw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_probabilistic_model_for_aircraft_in_climb_using_monotonic_functional_Gaussian_process_emulators","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":31636764,"first_name":"Richard","middle_initials":null,"last_name":"Everson","page_name":"EversonR","domain_name":"independent","created_at":"2015-05-28T07:54:59.990-07:00","display_name":"Richard Everson","url":"https://independent.academia.edu/EversonR"},"attachments":[{"id":116318457,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116318457/thumbnails/1.jpg","file_name":"2210.pdf","download_url":"https://www.academia.edu/attachments/116318457/download_file?st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxMDc2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_probabilistic_model_for_aircraft_in_cl.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116318457/2210-libre.pdf?1719219635=\u0026response-content-disposition=attachment%3B+filename%3DA_probabilistic_model_for_aircraft_in_cl.pdf\u0026Expires=1732414362\u0026Signature=cHDz2g4I~yjXlGMvv9gH4O50IYDqKY7FBOpAHQWDZMSillHUCc9fftOMXsmgqJI~3NGfIMJC4igqwR2qrB3uZG7zvEAkgMstSt-ytWEgd~Dn2zMa0AfjNSeclLfE6I9oupmbewAXtPa2XEOUuZLTWW~h~wXvF9KokL0Mu~TxLU~YplJOr7V6acuPLSY5UxW06WVi9BqlffhBPbUKjLsrnOO84sO666MQrIrg3L5oLS6uItyBXc1FHwpekT7CbEZvhV5ASLOsXQ~x6W8TEtJQq~5ixI6RDpXaXw~I0ra-GNL54Haq66pDTxfGGm3sL2qocIH44EU9-oa9DaF9M0sclw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic"},{"id":59770,"name":"Trajectory","url":"https://www.academia.edu/Documents/in/Trajectory"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":625387,"name":"Climb","url":"https://www.academia.edu/Documents/in/Climb"},{"id":688446,"name":"Gaussian Process","url":"https://www.academia.edu/Documents/in/Gaussian_Process"}],"urls":[{"id":43196410,"url":"https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2022.0607"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "69360db84bd69db6af72c5132e394a8a87163d5ccf86a71a993158fd98803287", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="Lr8ASmlHXne/pNSftEMwV1siMP79xwnhia3xSo0x4gLJLcRln4tXrFmSdNAU9bv4yo6D/iV8pHviN+JOFkoDJw==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/EversonR" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="x1nupoZMZ/JM5XtQ00HbVQ+CRSOqgBDpVD98pmGHS0UgyyqJcIBuKarT2x9z91D6ni72I3I7vXM/pW+i+vyqYA==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10