CINXE.COM
EAI Endorsed Transactions on Industrial Networks and Intelligent Systems - EUDL
<html><head><title>EAI Endorsed Transactions on Industrial Networks and Intelligent Systems - EUDL</title><link rel="icon" href="/images/favicon.ico"><link rel="stylesheet" type="text/css" href="/css/screen.css"><link rel="stylesheet" href="/css/zenburn.css"><meta http-equiv="Content-Type" content="charset=utf-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><meta name="Description" content="Visit the new journal website to submit and consult our contents: https://publications.eai.eu/index.php/inis/index"><script type="text/javascript" src="https://services.eai.eu//load-signup-form/EAI"></script><script type="text/javascript" src="https://services.eai.eu//ujs/forms/signup/sso-client.js"></script><script type="text/javascript">if (!window.EUDL){ window.EUDL={} };EUDL.cas_url="https://account.eai.eu/cas";EUDL.profile_url="https://account.eai.eu";if(window.SSO){SSO.set_mode('eai')};</script><script type="text/javascript" src="/js/jquery.js"></script><script type="text/javascript" src="/js/jquery.cookie.js"></script><script type="text/javascript" src="/js/sso.js"></script><script type="text/javascript" src="/js/jscal2.js"></script><script type="text/javascript" src="/js/lang/en.js"></script><script type="text/javascript" src="/js/jquery.colorbox-min.js"></script><script type="text/javascript" src="/js/eudl.js"></script><script type="text/javascript" src="/js/journal.js"></script><script type="text/javascript" src="/js/tabs.js"></script><link rel="stylesheet" type="text/css" href="/css/jscal/jscal2.css"><link rel="stylesheet" type="text/css" href="/css/jscal/eudl/eudl.css"><link rel="stylesheet" type="text/css" href="/css/colorbox.css"></head><body><div id="eudl-page-head"><div id="eudl-page-header"><section id="user-area"><div><nav id="right-nav"><a href="/about">About</a> | <a href="/contact">Contact Us</a> | <a class="register" href="https://account.eai.eu/register?service=http%3A%2F%2Feudl.eu%2Fissue%2Finis%2F7%2F25">Register</a> | <a class="login" href="https://account.eai.eu/cas/login?service=http%3A%2F%2Feudl.eu%2Fissue%2Finis%2F7%2F25">Login</a></nav></div></section></div></div><div id="eudl-page"><header><section id="topbar-ads"><div><a href="https://eudl.eu/"><img class="eudl-logo-top" src="https://eudl.eu/images/eudl-logo.png"></a><a href="https://eai.eu/eai-community/?mtm_campaign=community_membership&mtm_kwd=eudl_community&mtm_source=eudl&mtm_medium=eudl_banner"><img class="eudl-ads-top" src="https://eudl.eu/images/upbanner.png"></a></div></section><section id="menu"><nav><a href="/proceedings" class=""><span>Proceedings</span><span class="icon"></span></a><a href="/series" class=""><span>Series</span><span class="icon"></span></a><a href="/journals" class="current"><span>Journals</span><span class="icon"></span></a><a href="/content" class=""><span>Search</span><span class="icon"></span></a><a href="http://eai.eu/">EAI</a></nav></section></header><div id="eaientran"></div><section id="content"><section id="journal"><form class="search-form" id="article_search" method="get"><section class="cover-and-filters"><section class="cover"><a href="/journal/inis" title="EAI Endorsed Transactions on Industrial Networks and Intelligent Systems"><img src="/attachment/42192"></a></section><section class="issn"><strong>ISSN: </strong>2410-0218</section><section class="escripts link"><a href="https://escripts.eai.eu/paper/submit">Submit Article</a></section><section class="instructions link"><a href="/instructions">Submission Instructions</a></section><section class="ethics link"><a href="/ethics">Ethics and Malpractice Statement</a></section><section class="back-to-journal link"><a href="/journal/inis">Back to Journal Page</a></section><section class="browse-filters"><div class="browse-by"><a class="browse-link">2024<span class="pointer"></span></a><div class="filters"><a href="/issue/inis/12/2" class="filter ">Issue 2</a><a href="/issue/inis/12/1" class="filter ">Issue 1</a></div><a class="browse-link">2024<span class="pointer"></span></a><div class="filters"><a href="/issue/inis/11/4" class="filter ">Issue 4</a><a href="/issue/inis/11/3" class="filter ">Issue 3</a><a href="/issue/inis/11/2" class="filter ">Issue 2</a><a href="/issue/inis/11/1" class="filter ">Issue 1</a></div><a class="browse-link">2023<span class="pointer"></span></a><div class="filters"><a href="/issue/inis/10/4" class="filter ">Issue 4</a><a href="/issue/inis/10/3" class="filter ">Issue 3</a><a href="/issue/inis/10/1" class="filter ">Issue 1</a></div><a class="browse-link">2022<span class="pointer"></span></a><div class="filters"><a href="/issue/inis/9/4" class="filter ">Issue 4</a><a href="/issue/inis/9/32" class="filter ">Issue 32</a><a href="/issue/inis/9/31" class="filter ">Issue 31</a><a href="/issue/inis/9/30" class="filter ">Issue 30</a></div><a class="browse-link">2021<span class="pointer"></span></a><div class="filters"><a href="/issue/inis/8/29" class="filter ">Issue 29</a><a href="/issue/inis/8/28" class="filter ">Issue 28</a><a href="/issue/inis/8/27" class="filter ">Issue 27</a><a href="/issue/inis/8/26" class="filter ">Issue 26</a></div><a class="browse-link">2020<span class="pointer"></span></a><div class="filters"><a href="/issue/inis/7/25" class="filter current">Issue 25</a><a href="/issue/inis/7/24" class="filter ">Issue 24</a><a href="/issue/inis/7/23" class="filter ">Issue 23</a><a href="/issue/inis/7/22" class="filter ">Issue 22</a></div><a class="browse-link">2019<span class="pointer"></span></a><div class="filters"><a href="/issue/inis/6/21" class="filter ">Issue 21</a><a href="/issue/inis/6/20" class="filter ">Issue 20</a><a href="/issue/inis/6/19" class="filter ">Issue 19</a><a href="/issue/inis/6/18" class="filter ">Issue 18</a></div><a class="browse-link">2018<span class="pointer"></span></a><div class="filters"><a href="/issue/inis/5/17" class="filter ">Issue 17</a><a href="/issue/inis/5/16" class="filter ">Issue 16</a><a href="/issue/inis/5/15" class="filter ">Issue 15</a><a href="/issue/inis/5/14" class="filter ">Issue 14</a></div><a class="browse-link">2017<span class="pointer"></span></a><div class="filters"><a href="/issue/inis/4/13" class="filter ">Issue 13</a><a href="/issue/inis/4/12" class="filter ">Issue 12</a><a href="/issue/inis/4/11" class="filter ">Issue 11</a><a href="/issue/inis/4/10" class="filter ">Issue 10</a></div><a class="browse-link">2016<span class="pointer"></span></a><div class="filters"><a href="/issue/inis/3/9" class="filter ">Issue 9</a><a href="/issue/inis/3/8" class="filter ">Issue 8</a><a href="/issue/inis/3/7" class="filter ">Issue 7</a><a href="/issue/inis/3/6" class="filter ">Issue 6</a></div><a class="browse-link">2015<span class="pointer"></span></a><div class="filters"><a href="/issue/inis/2/5" class="filter ">Issue 5</a><a href="/issue/inis/2/4" class="filter ">Issue 4</a><a href="/issue/inis/2/3" class="filter ">Issue 3</a><a href="/issue/inis/2/2" class="filter ">Issue 2</a></div><a class="browse-link">2014<span class="pointer"></span></a><div class="filters"><a href="/issue/inis/1/1" class="filter ">Issue 1</a></div></div></section></section><section class="info-and-search"><div class="manage-menu"></div><a href="/journal/inis"><h1>EAI Endorsed Transactions on Industrial Networks and Intelligent Systems</h1></a><section class="issue-number">Issue 25, 2020</section><section class="editors"><strong>Editor(s)-in-Chief: </strong><span class="editor">Trung Q. Duong</span> and <span class="editor">Le Nguyen Bao</span></section><section class="issue-tabs"><div class="tabs"><ul><li><a name="articles">Articles</a></li><li><a name="meta">Information</a></li></ul></div><div class="content"><div name="articles"><section id="publications-results" class="search-results"><ul class="results-list"><li class="result-item article-light first"><h3><a href="/doi/10.4108/eai.16-12-2020.167653">Optimizing the Modified Lam Annealing Schedule</a></h3><dl class="metadata"><dt class="title">Appears in: </dt><dd class="value">inis<span class="info-separator"> </span><strong>20</strong><span class="info-separator">(</span>25<span class="info-separator">)</span><span class="info-separator">: </span>e1</dd><br><dt class="title">Author: </dt><dd class="value">Vincent A. Cicirello</dd><br><dt class="title">Abstract: </dt><dd class="value abstract"><span class="shortened">Simulated annealing is a metaheuristic commonly used for combinatorial optimization in many industrial applications. Its runtime behavior is controlled by an algorithmic component known as the annealing schedule. The classic annealing schedules have control parameters that must be set …</span><span class="full">Simulated annealing is a metaheuristic commonly used for combinatorial optimization in many industrial applications. Its runtime behavior is controlled by an algorithmic component known as the annealing schedule. The classic annealing schedules have control parameters that must be set or tuned ahead of time. Adaptive annealing schedules, such as the Modified Lam, are parameter-free and self-adapt during runtime. However, they are also more complex than the classic alternatives, leading to more time per iteration. In this paper, we present an optimized variant of Modified Lam annealing, and experimentally demonstrate the potential significant impact on runtime performance of carefully optimizing the annealing schedule.<br></span> <span class="expander more"><a class="trigger">more »</a></span></dd></dl></li><li class="result-item article-light"><h3><a href="/doi/10.4108/eai.16-12-2020.167654">Real-time Optimisation for Industrial Internet of Things (IIoT): Overview, Challenges and Opportunities</a></h3><dl class="metadata"><dt class="title">Appears in: </dt><dd class="value">inis<span class="info-separator"> </span><strong>20</strong><span class="info-separator">(</span>25<span class="info-separator">)</span><span class="info-separator">: </span>e2</dd><br><dt class="title">Authors: </dt><dd class="value">Long D. Nguyen, Ayse Kortun</dd><br><dt class="title">Abstract: </dt><dd class="value abstract"><span class="shortened">Industrial Internet-of-Things (IIoT) with massive data transfers and huge numbers of connected devices, incombination with the high demand for greater quality-of-services, signal processing is no longer producing small data sets but rather, very large ones (measured in gigabytes or tera…</span><span class="full">Industrial Internet-of-Things (IIoT) with massive data transfers and huge numbers of connected devices, incombination with the high demand for greater quality-of-services, signal processing is no longer producing small data sets but rather, very large ones (measured in gigabytes or terabytes), or even higher. This has posed critical challenges in the context of optimisation. Communication scenarios such as online applications come with the need for real-time optimisation. In such scenarios, often under a dynamic environment, a strict real-time deadline is the most important requirement to be met. To this end, embedded convex optimisation, which can be redesigned and updated within a fast time-scale given sufficient computing power, is a candidate to deal with the challenges in real-time optimisation applications. Real-time optimisation is now becoming a reality in signal processing and wireless networks of IIoT. Research into new technologies to meet future demands is receiving urgent attention on a global scale, especially when 5G networks are expected to be in place in 2020. This work addresses the fundamentals, technologies and practically relevant questions related to the many challenges arising from real-time optimisation communications for industrial IoT.<br></span> <span class="expander more"><a class="trigger">more »</a></span></dd></dl></li><li class="result-item article-light"><h3><a href="/doi/10.4108/eai.7-1-2021.167839">D2D Multi-hop Multi-path Communications in B5G Networks: A Survey on Models, Techniques, and Applications</a></h3><dl class="metadata"><dt class="title">Appears in: </dt><dd class="value">inis<span class="info-separator"> </span><strong>20</strong><span class="info-separator">(</span>25<span class="info-separator">)</span><span class="info-separator">: </span>e3</dd><br><dt class="title">Authors: </dt><dd class="value">Quang-Nhat Tran, Nguyen-Son Vo, Quynh-Anh Nguyen, Minh-Phung Bui, Thanh-Minh Phan, Van-Viet Lam, Antonino Masaracchia</dd><br><dt class="title">Abstract: </dt><dd class="value abstract"><span class="shortened">In 5G networks, device-to-device (D2D) communications have played an important role in enlarging the coverage, relaxing the workload of backhaul links of both macro base stations (MBSs) and small-cell basestations (SBSs), and serving the mobile users (MUs) local applications and servic…</span><span class="full">In 5G networks, device-to-device (D2D) communications have played an important role in enlarging the coverage, relaxing the workload of backhaul links of both macro base stations (MBSs) and small-cell basestations (SBSs), and serving the mobile users (MUs) local applications and services at high capacity. However, beyond 5G (B5G or 6G) networks will require disruptive solutions that can assist D2D communications to meet numerous advanced applications and services requested by dense MUs. One of the most efficient solutions for D2D communications is multi-hop multi-path (MHMP). In this paper, we present a detailed survey of the so called D2D MHMP communications in terms of models, techniques, and applications for B5Gnetworks. We discuss and propose the future research directions of D2D MHMP communications. All themodels, techniques, and applications as well as future research directions of D2D MHMP communications provide the useful insights into B5G networks design and optimisation.<br></span> <span class="expander more"><a class="trigger">more »</a></span></dd></dl></li><li class="result-item article-light"><h3><a href="/doi/10.4108/eai.7-1-2021.167840">Structural Importance-based Link Prediction Techniques in Social Network</a></h3><dl class="metadata"><dt class="title">Appears in: </dt><dd class="value">inis<span class="info-separator"> </span><strong>20</strong><span class="info-separator">(</span>25<span class="info-separator">)</span><span class="info-separator">: </span>e4</dd><br><dt class="title">Authors: </dt><dd class="value">Abdul Samad, Muhammad Azam, Mamoona Qadir</dd><br><dt class="title">Abstract: </dt><dd class="value abstract"><span class="shortened">Link prediction in social network gaining high attention of researchers nowadays due to the rush of users towards social network. Link prediction is known as the prediction of missing or unobserved link, i.e., new interaction is going to be occurring in a near future. Stat…</span><span class="full">Link prediction in social network gaining high attention of researchers nowadays due to the rush of users towards social network. Link prediction is known as the prediction of missing or unobserved link, i.e., new interaction is going to be occurring in a near future. State-of-the-art link prediction techniques (e.g., Jaccard Index, Resource Allocation, SAM Similarity, Sorensen Index, Salton Cosine, Hub Depressed Index and Parameter-Dependent) considers only similarity of the pair of node in order to find the link. However, we argued that nodes having same status of centralization along with high similarity can connect to each other in a future. In this paper, we have proposed structural importance-based state-of-the-art link prediction techniques and compared. We have compared structural importance-based link prediction techniques with state-of-the-art techniques. The experiments are performed on four different datasets (i.e., Astro, CondMat, HepPh and HepTh). Our results show that structural importance-based link prediction techniques outperformed than state-of-the-art link prediction techniques by getting 95% at threshold 0.1 and 68% at threshold 0.7.<br></span> <span class="expander more"><a class="trigger">more »</a></span></dd></dl></li><li class="result-item article-light"><h3><a href="/doi/10.4108/eai.7-1-2021.167841">User mobility into NOMA assisted communication: Analysis and a Reinforcement Learning with Neural Network based approach</a></h3><dl class="metadata"><dt class="title">Appears in: </dt><dd class="value">inis<span class="info-separator"> </span><strong>20</strong><span class="info-separator">(</span>25<span class="info-separator">)</span><span class="info-separator">: </span>e5</dd><br><dt class="title">Authors: </dt><dd class="value">Antonino Masaracchia, Minh T. Nguyen, Ayse Kortun</dd><br><dt class="title">Abstract: </dt><dd class="value abstract"><span class="shortened">This article proposes a performance analysis of a non-orthogonal multiple access (NOMA) transmission system in the presence of user mobility. The main objective is to illustrate how the users’ mobility can affect the system performance in terms of downlink aggregated th…</span><span class="full">This article proposes a performance analysis of a non-orthogonal multiple access (NOMA) transmission system in the presence of user mobility. The main objective is to illustrate how the users’ mobility can affect the system performance in terms of downlink aggregated throughput, downlink network fairness, and percentage of quality-of-service requirement guaranteed. The idea behind is to highlight the importance to take into account user mobility in designing power allocation policies for NOMA systems. It is shown how the communication technologies are mainly dependent from channel state information (CSI) which in turns depends on users’ mobility. In addition a reinforcement learning (RL) to tackle with user mobility is proposed. Performance investigations regarding the proposed framework have shown how the network performances inpresence of users’ mobility can be improved, especially when a feed-forward neural network is used as CSI estimator.<br></span> <span class="expander more"><a class="trigger">more »</a></span></dd></dl></li></ul></section></div><div name="meta"><h2>Scope</h2><div class="abstract"><div class="shortened"><p>Along with the fast development of computer technologies, e.g., ubiquitous computing, cloud computing and cyber-physical system, all kinds of networks (e.g., control network, communication network, sensor network, body area network, social network, opportunistic network, cloud-based network, etc.) …</p></div><div class="full"><p>Along with the fast development of computer technologies, e.g., ubiquitous computing, cloud computing and cyber-physical system, all kinds of networks (e.g., control network, communication network, sensor network, body area network, social network, opportunistic network, cloud-based network, etc.) appeared and were applied in large-scale factories, including a lot of traditional and new industries, e.g., textile industry, coal industry, mining industry, steel industry, machinery industry, petrochemical industry, and biomedical industry, etc. Assisted by various industrial networks, automation in industry can reduce cost greatly because it takes advantage of control systems and information technologies to optimize productivity in the production of goods and delivery of services. However, the industrial environment is dynamic and harsh usually, including extreme temperature, humidity, electromagnetic interference and vibration, which proposed specific requirements to intelligent industrial systems under certain circumstances. All these highlight the criticality of the design, analysis and implementation of intelligent industrial systems.</p></div> <span class="expander more"><a class="trigger">more »</a></span></div><h2>Topics</h2><div class="abstract"><div class="shortened"><ul> <li>Applications of wireless sensor networks, body area networks in large-scale industrial applications, such as fault theories of wireless networks, including routing, network control and management, reliable transmission and architectures, etc.</li> <li>Applications of social networking, big data, ubiqui…</li> </ul></div><div class="full"><ul> <li>Applications of wireless sensor networks, body area networks in large-scale industrial applications, such as fault theories of wireless networks, including routing, network control and management, reliable transmission and architectures, etc.</li> <li>Applications of social networking, big data, ubiquitous computing, mobile computing, and cloud computing in various industries and services (e.g., intelligent systems enhanced by social networking, cloud-based industrial networks, cloud-assisted intelligent systems, etc.)</li> <li>Analysis of industrial control and communication networks, including network lifetime, security, network scalability, reliability, stability, etc.</li> <li>Design and choice of industrial, intelligent, application-specific network protocols and algorithms (e.g., EtherNet/IP, Ethernet Powerlink, EtherCAT, Modbus-TCP, Profinet, SERCOS III, etc.) at any communication layer</li> <li>Opportunistic networks in the industry, such as underwater sensor networks in sewage treatment systems, including establishing a temporary data transmission structure using available devices (e.g., underwater robot, surface data station, surface sink and under water sink), optimizing horizontal multi-hop data links (e.g., 3D data transmission), etc.</li> <li>Applications of intelligent systems in various industries, including collaborative systems, quality control, optimization, decision support, planning, high-level control concepts (e.g., multi-agent and holonic systems, service-oriented architectures), low-level control concepts (e.g., IEC 61131-3 and IEC 61499-based control), advanced system engineering concepts (e.g., model-driven development, component-based design), supply chains, value chains, virtual organizations, and virtual societies, emergency preparedness, crisis management, business channels, electronic marketplaces, enterprise resources planning, etc.</li> <li>Design and analysis of real-time embedded industrial systems, including real-time computing, real-time operating systems, real-time communications, networked embedded systems technology, etc.</li> <li>Novel control techniques, with respect to process control, equipment control, supervisory control, adaptive control, motion control, etc.</li> <li>Automated manufacturing systems, regarding formal modeling and analysis of manufacturing systems, scheduling of manufacturing systems, queuing systems and petri nets in manufacturing systems, etc.</li> <li>Computational intelligence in automation, including neural, fuzzy, evolutionary approaches in automation, ant colonies optimization and swarm intelligence in automation, machine learning, expert systems, etc.</li> <li>Hardware and software design and development for intelligent systems, such as intelligent and humanized production monitoring and control, etc.</li> <li>Big data analysis and processing in various industries and services, including constructing data analysis models, providing data analysis and processing tools and designing various optimization algorithms based on data analysis.</li> <li>Crowd-sourced behavior analysis in various industry and services, such as measuring and calculating the diffusion direction and speed of gas in the petrochemical industry based on crowd-sourced data from a large number of and various types of sensors, as well as product and service evaluation.</li> <li>Simulation and testbed of current industrial networks and intelligent systems, including network performance analysis, automated manufacturing, intelligent monitoring, disaster prevention, etc.</li> <li>Vision of future smart factories, service, marketing, and their integration, incorporating current existing technologies.</li> <li>Multimedia applications, content management, process management and knowledge management for various industries, services, and engineering education: including multimedia processing, multimedia retrieval, multimedia indexing, image sensing, image processing, image coding, image recognition, etc.</li> <li>Pattern recognition methods for various industries and services: including statistical theory, clustering, similarity measures, unsupervised learning, supervised learning, etc.</li> <li>Survey, review and essay of current industrial networks researches and intelligent systems development.</li> </ul></div> <span class="expander more"><a class="trigger">more »</a></span></div><h2>Indexing</h2><div class="abstract"><div class="shortened"><ul> <li><a href="https://www.scopus.com/sourceid/21101049547">Scopus</a></li> <li><a href="https://doaj.org/toc/2410-0218">DOAJ</a></li> <li><a href="https://dblp.uni-trier.de/db/journals/inis/">DBLP</a></li> <li><a href="https://search.crossref.org/?q=2410-0218">CrossRef</a></li> <li>[OCLC Discovery Services](https://www.worldcat.org/search?q=eai+endorsed+tran…</li> </ul></div><div class="full"><ul> <li><a href="https://www.scopus.com/sourceid/21101049547">Scopus</a></li> <li><a href="https://doaj.org/toc/2410-0218">DOAJ</a></li> <li><a href="https://dblp.uni-trier.de/db/journals/inis/">DBLP</a></li> <li><a href="https://search.crossref.org/?q=2410-0218">CrossRef</a></li> <li><a href="https://www.worldcat.org/search?q=eai+endorsed+transactions+on+industrial+networks&qt=owc_search">OCLC Discovery Services</a></li> <li><a href="https://europub.co.uk/journals/8120">EuroPub</a></li> <li><a href="https://publons.com/journal/29023/eai-endorsed-transactions-on-industrial-networks-a">Publons</a></li> <li><a href="https://app.dimensions.ai/discover/publication?or_facet_source_title=jour.1152852">Dimensions</a></li> <li><a href="https://www.proquest.com/products-services/Publicly-Available-Content-Database.html#overviewlinkSection">Publicly Available Content Database (ProQuest)</a></li> <li><a href="https://www.proquest.com/products-services/adv_tech_aero.html">Advanced Technologies & Aerospace Database (ProQuest)</a></li> <li><a href="https://www.proquest.com/products-services/adv_tech_aero.html">SciTech Premium Collection (ProQuest)</a></li> <li><a href="https://scholar.google.sk/scholar?as_ylo=2018&q=source:EAI+source:Endorsed+source:Transactions+source:on+source:Industrial+source:Networks+source:and+source:Intelligent+source:Systems&hl=es&as_sdt=0,5">Google Scholar</a></li> </ul></div> <span class="expander more"><a class="trigger">more »</a></span></div><h2>Editorial Board</h2><div class="abstract"><div class="shortened"><ul> <li>Ala Al-Fuqaha (Western Michigan University, USA)</li> <li>Al-Sakib Khan Pathan (Southeast University, Bangladesh)</li> <li>Ammar Rayes (Cisco Systems, USA)</li> <li>Antonino Masaracchia (IIT-CNR, Italy)</li> <li>Athanasios Maglaras (Dr, Prof . ofT.E.I. of Larissa)</li> <li>Berk Canberk (Northeastern University, USA)</li> <li>Ca V. Phan (…</li> </ul></div><div class="full"><ul> <li>Ala Al-Fuqaha (Western Michigan University, USA)</li> <li>Al-Sakib Khan Pathan (Southeast University, Bangladesh)</li> <li>Ammar Rayes (Cisco Systems, USA)</li> <li>Antonino Masaracchia (IIT-CNR, Italy)</li> <li>Athanasios Maglaras (Dr, Prof . ofT.E.I. of Larissa)</li> <li>Berk Canberk (Northeastern University, USA)</li> <li>Ca V. Phan (Ho Chi Minh City University of Technology and Education, Vietnam)</li> <li>Chau Yuen (Singapore University of Technology and Design, Singapore)</li> <li>Chengfei Liu (Swinburne University of Technology, Australia)</li> <li>Chinmoy Kundu (University of Texas at Dallas, USA)</li> <li>Christer Carlsson (Åbo Akademi University, Finland)</li> <li>Chunsheng Zhu (University of British Columbia)</li> <li>Constandinos Mavromoustakis (University of Nicosia, Cyprus)</li> <li>Der-Jiunn Deng (National Changhua University of Education, Taiwan)</li> <li>Dickson Chiu (The University of Hong Kong)</li> <li>Eleanna Kafeza (Athens University of Economics and Business, Greece)</li> <li>Fu-ren Lin (National Tsing Hua University, Taiwan)</li> <li>Gerhard Hancke (University of London, UK)</li> <li>Guangjie Han (Hohai University, China)</li> <li>Guojun Wang (Central South University, China)</li> <li>Hacene Fouchal (University of Reims Champagne-Ardenne, France)</li> <li>Haklae Kim (Chung-Ang University, South Korea)</li> <li>Halil Yetgin (Bitlis Eren University, Turkey)</li> <li>Hideyasu Sasaki (Ritsumeikan University, Kyoto, Japan)</li> <li>Ho-fung Leung (Chinese University of Hong Kong, Hong Kong)</li> <li>Honggang Wang (University of Massachusetts Dartmouth, USA)</li> <li>Hua Hu (Hangzhou Dianzi University, China)</li> <li>Ibrahim Kushchu (Mobile Government Consortium International, UK)</li> <li>Irene Kafeza (Irene Law Office, Greece)</li> <li>Isabelle Comyn-Wattiau (ESSEC Business School Paris, France)</li> <li>Jaime Lloret- Mauri (Universitat Politècnica de València, Spain)</li> <li>Javier M. Aguiar (Universidad de Valladolid, Valladolid, Spain)</li> <li>Jesus Alonso-Zarate (Telecommunications Technology Center of Catalonia, Spain)</li> <li>Jian Yang (Macquarie University, Australia)</li> <li>Jiankun Hu (University of New South Wales, Australia)</li> <li>Jianmin Jiang (Shenzhen University)</li> <li>Jianwei Niu (Beihang University, China)</li> <li>Jinlei Jiang (Tsinghua University, China)</li> <li>Jinsong Wu (Bell Laboratory, China)</li> <li>Joel Rodrigues (Inst. Telecomunicações, Univ. of Beira Interior, Portugal)</li> <li>Juan Trujillo (University of Alicante, Spain)</li> <li>Jucheng Yang (Tianjing University of Technology, China)</li> <li>Junqing Zhang (Queen's University Belfast)</li> <li>KUN WANG (Nanjing University of Posts and Telecommunications)</li> <li>Kuo-Ming Chao (Leader – Distributed Systems and Modelling Research Group, UK)</li> <li>Leandros A. Maglaras (De Montfort University, UK)</li> <li>Lei Wang (Dalian University of Technology, China)</li> <li>Liang Zhou (Nanjing University of Posts and Telecommunications, China)</li> <li>Long D. Nguyen (Dong Nai University, Vietnam)</li> <li>Maggie M. Wang (The University of Hong Kong, Hong Kong)</li> <li>Nghia Duong-Trung (German Research Center for Artificial Intelligence, Germany)</li> <li>Ngo Hoang Tu (Seoul National University of Science and Technology, South Korea)</li> <li>Nguyen Van Nam (Viettel, Vietnam)</li> <li>Nicholas C Romano (Oklahoma State University, USA)</li> <li>Noel Crespi (Institut Mines-Telecom, Telecom SudParis, France)</li> <li>Panlong Yang (PLA University of Science and Technology, China)</li> <li>Pasi Tyrväinen (University of Jyväskylä, Finland)</li> <li>Patrick C.K. Hung (University of Ontario Institute of Technology, Canada)</li> <li>Periklis Chatzimisios (Alexander TEI of Thessaloniki, Greece)</li> <li>Pierluigi Siano (Università degli Studi di Salerno, Italy)</li> <li>Pirkko Walden (Abo Akademi University, Finland)</li> <li>Phuong Bui (Duy Tan University, Vietnam)</li> <li>Raymond Y.K Lau (City University of Hong Kong, Hong Kong)</li> <li>Richard Yu (Carleton University, Canada)</li> <li>Rong Yu (Guangdong University of Technology, China)</li> <li>Rose Hu (Utah State University, USA)</li> <li>Sammy Chan (City University of HongKong, HK)</li> <li>Shing-Chi Cheung (Hong Kong University of Science and Technology, Hong Kong)</li> <li>Stephen J. H. Yang (National Central University, Taiwan)</li> <li>Syed Hassan Ahmed (University of Central Florida, USA)</li> <li>Thanh-Phuong Nguyen (University of Toulon, France)</li> <li>Tran Trung Duy (PTIT, VietNam)</li> <li>Trang Hoang (Ho Chi Minh City University of Technology - Vietnam National University Ho Chi Minh City, Vietnam)</li> <li>Tuan-Minh Pham (Phenikaa University, Vietnam)</li> <li>Umar Zakir Abdul Hamid (Sensible 4 Oy, Helsinki)</li> <li>Victor Leung (The University of British Columbia)</li> <li>Vo Nguyen Son Dr. (Duy Tan University, Vietnam)</li> <li>Wai-Wa Fung (Information Security and Forensics Society, Hong Kong)</li> <li>Walid Gaaloul (Institut National des Télécommunications, France)</li> <li>Weiwei Jiang, (Beijing University of Posts and Telecommunications (BUPT), China)</li> <li>Wendy W. Y. Hui (University of Nottingham at Ningbo, China)</li> <li>William Cheung (Hong Kong Baptist University, Hong Kong)</li> <li>Xianfu Chen (VTT Technical Research Centre of Finland, Finland)</li> <li>Xiang Gui (Massey University, New Zealand)</li> <li>Xiaoling Wu (Chinese Academy of Sciences, China)</li> <li>Xu Wang (Heriot Watt University, UK)</li> <li>Yan Bai (University of Washington Tacoma, USA)</li> <li>Yan Zhang (Simula Research Laboratory and University of Oslo, Norway)</li> <li>Yi Zhuang (Zhejian Gongshang University, China)</li> <li>Yong Li (Tsinghua University, China)</li> <li>Yong Tang (South China Normal University, China)</li> <li>Yuanfang Chen (Institute Mines-Telecom, University Pierre and Marie Curie )</li> <li>Yuexing Peng (Beijing University of Posts and Telecommunications, China)</li> <li>Yuqing Sun (Shangdong University, China)</li> <li>Zakaria Maamar (Zayed University, UAE)</li> <li>Zhangbing Zhou (China University of Geosciences, China)</li> <li>Zhichao Sheng (Shanghai University, China)</li> <li>ZhiMing Cai (Macau University of Science and Technology, Macau)</li> <li>Mithun Mukherjee (Nanjing University of Information Science and Technology, China)</li> <li> </li> </ul></div> <span class="expander more"><a class="trigger">more »</a></span></div><h2>Journal Blurb</h2><div class="abstract"><div class="shortened"><p>Visit the new journal website to submit and consult our contents: https://publications.eai.eu/index.php/inis/index</p></div><div class="full"><p>Visit the new journal website to submit and consult our contents: https://publications.eai.eu/index.php/inis/index</p></div> <span class="expander more"><a class="trigger">more »</a></span></div></div></div></section><section class="publication-info"><dl class="metadata"><dt class="title">Publisher</dt> <dd class="value">EAI</dd> <dt class="title">ISSN</dt> <dd class="value">2410-0218</dd> <dt class="title">Volume</dt> <dd class="value">7</dd></dl><dl class="metadata"><dt class="title">Published</dt> <dd class="value">2020-12-07</dd></dl></section></section></form></section></section><div class="clear"></div><footer><div class="links"><a href="https://www.ebsco.com/" target="_blank"><img class="logo ebsco-logo" src="/images/ebsco.png" alt="EBSCO"></a><a href="https://www.proquest.com/" target="_blank"><img class="logo proquest-logo" src="/images/proquest.png" alt="ProQuest"></a><a href="https://dblp.uni-trier.de/db/journals/publ/icst.html" target="_blank"><img class="logo dblp-logo" src="/images/dblp.png" alt="DBLP"></a><a href="https://doaj.org/search?source=%7B%22query%22%3A%7B%22filtered%22%3A%7B%22filter%22%3A%7B%22bool%22%3A%7B%22must%22%3A%5B%7B%22term%22%3A%7B%22index.publisher.exact%22%3A%22European%20Alliance%20for%20Innovation%20(EAI)%22%7D%7D%5D%7D%7D%2C%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22european%20alliance%20for%20innovation%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22index.publisher%22%7D%7D%7D%7D%7Dj" target="_blank"><img class="logo doaj-logo" src="/images/doaj.jpg" alt="DOAJ"></a><a href="https://www.portico.org/publishers/eai/" target="_blank"><img class="logo portico-logo" src="/images/portico.png" alt="Portico"></a><a href="http://eai.eu/" target="_blank"><img class="logo eai-logo" src="/images/eai.png"></a></div></footer></div><div class="footer-container"><div class="footer-width"><div class="footer-column logo-column"><a href="https://eai.eu/"><img src="https://eudl.eu/images/logo_new-1-1.png" alt="EAI Logo"></a></div><div class="footer-column"><h4>About EAI</h4><ul><li><a href="https://eai.eu/who-we-are/">Who We Are</a></li><li><a href="https://eai.eu/leadership/">Leadership</a></li><li><a href="https://eai.eu/research-areas/">Research Areas</a></li><li><a href="https://eai.eu/partners/">Partners</a></li><li><a href="https://eai.eu/media-center/">Media Center</a></li></ul></div><div class="footer-column"><h4>Community</h4><ul><li><a href="https://eai.eu/eai-community/">Membership</a></li><li><a href="https://eai.eu/conferences/">Conference</a></li><li><a href="https://eai.eu/recognition/">Recognition</a></li><li><a href="https://eai.eu/corporate-sponsorship">Sponsor Us</a></li></ul></div><div class="footer-column"><h4>Publish with EAI</h4><ul><li><a href="https://eai.eu/publishing">Publishing</a></li><li><a href="https://eai.eu/journals/">Journals</a></li><li><a href="https://eai.eu/proceedings/">Proceedings</a></li><li><a href="https://eai.eu/books/">Books</a></li><li><a href="https://eudl.eu/">EUDL</a></li></ul></div></div></div><script type="text/javascript" src="https://eudl.eu/js/gacode.js"></script><script src="/js/highlight.pack.js"></script><script>hljs.initHighlightingOnLoad();</script><script type="application/ld+json">{"@context":"http://schema.org","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"http://eudl.eu","name":"Home","image":null}},{"@type":"ListItem","position":2,"item":{"@id":"http://eudl.eu/journals","name":"Journals","image":null}},{"@type":"ListItem","position":3,"item":{"@id":"http://eudl.eu/journal/inis","name":"inis","image":null}},{"@type":"ListItem","position":4,"item":{"@id":"/issue/inis/7/25","name":"Issue 25","image":null}}]}</script></body></html>