CINXE.COM

Multi-view Traffic Flow Prediction Model Based on Spatiotemporal Convolution | Journal of Computational and Cognitive Engineering

<!DOCTYPE html> <html lang="en" xml:lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title> Multi-view Traffic Flow Prediction Model Based on Spatiotemporal Convolution | Journal of Computational and Cognitive Engineering </title> <link rel="icon" href="https://ojs.bonviewpress.com/public/journals/4/favicon_en_US.png"> <meta name="generator" content="Open Journal Systems 3.4.0.7"> <meta name="gs_meta_revision" content="1.1"/> <meta name="citation_journal_title" content="Journal of Computational and Cognitive Engineering"/> <meta name="citation_journal_abbrev" content="JCCE"/> <meta name="citation_issn" content="2810-9503"/> <meta name="citation_author" content="Xiaoyan Zhu"/> <meta name="citation_author_institution" content="College of Computer Science and Technology, Qingdao University, China"/> <meta name="citation_title" content="Multi-view Traffic Flow Prediction Model Based on Spatiotemporal Convolution"/> <meta name="citation_language" content="en"/> <meta name="citation_date" content="2024/11/22"/> <meta name="citation_volume" content="3"/> <meta name="citation_issue" content="4"/> <meta name="citation_firstpage" content="395"/> <meta name="citation_lastpage" content="403"/> <meta name="citation_doi" content="10.47852/bonviewJCCE42022914"/> <meta name="citation_abstract_html_url" content="https://ojs.bonviewpress.com/index.php/JCCE/article/view/2914"/> <meta name="citation_abstract" xml:lang="en" content="Predicting traffic flow has always been a significant task in intelligent transportation systems. Due to the substantial temporal and spatial dependencies of traffic flow sequences, accurately predicting traffic flow poses a considerable challenge. Many existing works primarily rely on recurrent neural networks, graph neural networks, and Transformer models to establish traffic flow prediction models. To better extract features and enhance efficiency, a traffic flow prediction model based on multi-view spatiotemporal convolution (MVSC) is proposed. This model learns the representation of sequence data at the input encoding layer and incorporates location and time information. In the spatiotemporal feature representation learning layer, considering the diverse periodic patterns in sequences, several representation learning modules are designed, conducting local spatiotemporal feature exploration through one-dimensional convolution and then accomplishing global spatiotemporal feature mining based on causal convolution. To further enhance the model&#039;s utilization of spatiotemporal features, a channel attention mechanism is introduced at the prediction layer. The forecasting method employed in the study is direct multistep, and subsequent experiments conducted on two real datasets demonstrate that the MVSC model exhibits a certain degree of superiority in MAE, RMSE, and MAPE for both short-term and long-term predictions compared to existing models. And through the latest experiments and investigations, it has been found that MVSC has improved MAPE performance by about 1.2% compared to recent models such as RTGCN and STRGCN, achieving the intended outcomes.   Received: 24 March 2024 | Revised: 13 June 2024 | Accepted: 17 July 2024   Conflicts of Interest The author declares that she has no conflicts of interest to this work.   Data Availability Statement Data sharing is not applicable to this article as no new data were created or analyzed in this study.   Author Contribution Statement Xiaoyan Zhu: Conceptualization, Methodology, Software, Validation, Investigation, Data curation, Writing – original draft, Writing – review &amp;amp; editing, Visualization, Supervision, Project administration."/> <meta name="citation_keywords" xml:lang="en" content="traffic engineering"/> <meta name="citation_keywords" xml:lang="en" content="traffic flow prediction"/> <meta name="citation_keywords" xml:lang="en" content="spatiotemporal convolution"/> <meta name="citation_keywords" xml:lang="en" content=" attention mechanism"/> <meta name="citation_keywords" xml:lang="en" content="Transformer"/> <meta name="citation_pdf_url" content="https://ojs.bonviewpress.com/index.php/JCCE/article/download/2914/1073"/> <link rel="schema.DC" href="http://purl.org/dc/elements/1.1/" /> <meta name="DC.Creator.PersonalName" content="Xiaoyan Zhu"/> <meta name="DC.Date.created" scheme="ISO8601" content="2024-11-22"/> <meta name="DC.Date.dateSubmitted" scheme="ISO8601" content="2024-03-24"/> <meta name="DC.Date.issued" scheme="ISO8601" content="2024-11-22"/> <meta name="DC.Date.modified" scheme="ISO8601" content="2024-11-22"/> <meta name="DC.Description" xml:lang="en" content="Predicting traffic flow has always been a significant task in intelligent transportation systems. Due to the substantial temporal and spatial dependencies of traffic flow sequences, accurately predicting traffic flow poses a considerable challenge. Many existing works primarily rely on recurrent neural networks, graph neural networks, and Transformer models to establish traffic flow prediction models. To better extract features and enhance efficiency, a traffic flow prediction model based on multi-view spatiotemporal convolution (MVSC) is proposed. This model learns the representation of sequence data at the input encoding layer and incorporates location and time information. In the spatiotemporal feature representation learning layer, considering the diverse periodic patterns in sequences, several representation learning modules are designed, conducting local spatiotemporal feature exploration through one-dimensional convolution and then accomplishing global spatiotemporal feature mining based on causal convolution. To further enhance the model&#039;s utilization of spatiotemporal features, a channel attention mechanism is introduced at the prediction layer. The forecasting method employed in the study is direct multistep, and subsequent experiments conducted on two real datasets demonstrate that the MVSC model exhibits a certain degree of superiority in MAE, RMSE, and MAPE for both short-term and long-term predictions compared to existing models. And through the latest experiments and investigations, it has been found that MVSC has improved MAPE performance by about 1.2% compared to recent models such as RTGCN and STRGCN, achieving the intended outcomes.   Received: 24 March 2024 | Revised: 13 June 2024 | Accepted: 17 July 2024   Conflicts of Interest The author declares that she has no conflicts of interest to this work.   Data Availability Statement Data sharing is not applicable to this article as no new data were created or analyzed in this study.   Author Contribution Statement Xiaoyan Zhu: Conceptualization, Methodology, Software, Validation, Investigation, Data curation, Writing – original draft, Writing – review &amp;amp; editing, Visualization, Supervision, Project administration."/> <meta name="DC.Format" scheme="IMT" content="application/pdf"/> <meta name="DC.Identifier" content="2914"/> <meta name="DC.Identifier.pageNumber" content="395-403"/> <meta name="DC.Identifier.DOI" content="10.47852/bonviewJCCE42022914"/> <meta name="DC.Identifier.URI" content="https://ojs.bonviewpress.com/index.php/JCCE/article/view/2914"/> <meta name="DC.Language" scheme="ISO639-1" content="en"/> <meta name="DC.Rights" content="Copyright (c) 2024 Author"/> <meta name="DC.Rights" content="https://creativecommons.org/licenses/by/4.0/"/> <meta name="DC.Source" content="Journal of Computational and Cognitive Engineering"/> <meta name="DC.Source.ISSN" content="2810-9503"/> <meta name="DC.Source.Issue" content="4"/> <meta name="DC.Source.Volume" content="3"/> <meta name="DC.Source.URI" content="https://ojs.bonviewpress.com/index.php/JCCE"/> <meta name="DC.Subject" xml:lang="en" content="traffic engineering"/> <meta name="DC.Subject" xml:lang="en" content="traffic flow prediction"/> <meta name="DC.Subject" xml:lang="en" content="spatiotemporal convolution"/> <meta name="DC.Subject" xml:lang="en" content=" attention mechanism"/> <meta name="DC.Subject" xml:lang="en" content="Transformer"/> <meta name="DC.Title" content="Multi-view Traffic Flow Prediction Model Based on Spatiotemporal Convolution"/> <meta name="DC.Type" content="Text.Serial.Journal"/> <meta name="DC.Type.articleType" content="Research Articles"/> <link rel="stylesheet" href="https://ojs.bonviewpress.com/index.php/JCCE/$$$call$$$/page/page/css?name=stylesheet" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/index.php/JCCE/$$$call$$$/page/page/css?name=font" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/lib/pkp/styles/fontawesome/fontawesome.css?v=3.4.0.7" type="text/css" /><style type="text/css">.pkp_structure_head { background: center / cover no-repeat url("https://ojs.bonviewpress.com/public/journals/4/homepageImage_en_US.png");}</style><link rel="stylesheet" href="https://ojs.bonviewpress.com/plugins/generic/citations/css/citations.css?v=3.4.0.7" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/plugins/generic/orcidProfile/css/orcidProfile.css?v=3.4.0.7" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/plugins/generic/paperbuzz/paperbuzzviz/assets/css/paperbuzzviz.css?v=3.4.0.7" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/public/journals/4/styleSheet.css?d=2023-02-03+10%3A29%3A10" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/plugins/generic/citationStyleLanguage/css/citationStyleLanguagePlugin.css?v=3.4.0.7" type="text/css" /> </head> <body class="pkp_page_article pkp_op_view" dir="ltr"> <div class="pkp_structure_page"> <header class="pkp_structure_head" id="headerNavigationContainer" role="banner"> <nav class="cmp_skip_to_content" aria-label="Jump to content links"> <a href="#pkp_content_main">Skip to main content</a> <a href="#siteNav">Skip to main navigation menu</a> <a href="#pkp_content_footer">Skip to site footer</a> </nav> <div class="pkp_head_wrapper"> <div class="pkp_site_name_wrapper"> <button class="pkp_site_nav_toggle"> <span>Open Menu</span> </button> <div class="pkp_site_name"> <a href=" https://ojs.bonviewpress.com/index.php/JCCE/index " class="is_text">Journal of Computational and Cognitive Engineering</a> </div> </div> <nav class="pkp_site_nav_menu" aria-label="Site Navigation"> <a id="siteNav"></a> <div class="pkp_navigation_primary_row"> <div class="pkp_navigation_primary_wrapper"> <ul id="navigationPrimary" class="pkp_navigation_primary pkp_nav_list"> <li class=""> <a href="http://ojs.bonviewpress.com/index.php/JCCE/index"> HOME </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/about"> ABOUT </a> <ul> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/aims_and_scope"> Aims and Scope </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/JM"> Journal Metrics </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/indexing"> Indexing & Abstracting </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/about/privacy"> Privacy Statement </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/contact"> Contact Us </a> </li> </ul> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/browse"> BROWSE </a> <ul> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/issue/view/onlinefirst"> Online First </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/issue/current"> Current Issue </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/issue/archive"> All Issues </a> </li> </ul> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/contribute"> CONTRIBUTE </a> <ul> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/about/submissions"> Author Guidelines </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/OA"> Open Access </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/APC"> Article Processing Charge </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/peer_review_process"> Peer Review Process </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/pe"> Publishing Ethics </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/for_reviewers"> For Reviewers </a> </li> </ul> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/EBMembers"> EDITORIAL BOARD </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/special_issues"> SPECIAL ISSUES </a> <ul> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/submittingproposal"> Submitting a Proposal </a> </li> </ul> </li> </ul> <div class="pkp_navigation_search_wrapper"> <a href="https://ojs.bonviewpress.com/index.php/index/search" class="pkp_search pkp_search_desktop"> <span class="fa fa-search" aria-hidden="true"></span> Search </a> </div> </div> </div> <div class="pkp_navigation_user_wrapper" id="navigationUserWrapper"> <ul id="navigationUser" class="pkp_navigation_user pkp_nav_list"> <li class="profile"> <a href="https://ojs.bonviewpress.com/index.php/JCCE/user/register"> Register </a> </li> <li class="profile"> <a href="https://ojs.bonviewpress.com/index.php/JCCE/browse"> BROWSE </a> </li> <li class="profile"> <a href="https://ojs.bonviewpress.com/index.php/JCCE/login"> Login </a> </li> </ul> </div> </nav> </div><!-- .pkp_head_wrapper --> </header><!-- .pkp_structure_head --> <div class="pkp_structure_content has_sidebar"> <div class="pkp_structure_main" role="main"> <a id="pkp_content_main"></a> <div class="page page_article"> <nav class="cmp_breadcrumbs" role="navigation" aria-label="You are here:"> <ol> <li> <a href="https://ojs.bonviewpress.com/index.php/JCCE/index"> Home </a> <span class="separator">/</span> </li> <li> <a href="https://ojs.bonviewpress.com/index.php/JCCE/issue/archive"> Archives </a> <span class="separator">/</span> </li> <li> <a href="https://ojs.bonviewpress.com/index.php/JCCE/issue/view/101"> Vol. 3 No. 4 (2024) </a> <span class="separator">/</span> </li> <li class="current" aria-current="page"> <span aria-current="page"> Research Articles </span> </li> </ol> </nav> <article class="obj_article_details"> <h1 class="page_title"> Multi-view Traffic Flow Prediction Model Based on Spatiotemporal Convolution </h1> <div class="row"> <div class="main_entry"> <section class="item authors"> <h2 class="pkp_screen_reader">Authors</h2> <ul class="authors"> <li> <span class="name"> Xiaoyan Zhu </span> <span class="affiliation"> College of Computer Science and Technology, Qingdao University, China </span> <span class="orcid"> <svg class="orcid_icon" viewBox="0 0 256 256" aria-hidden="true"> <style type="text/css"> .st0{fill:#A6CE39;} .st1{fill:#FFFFFF;} </style> <path class="st0" d="M256,128c0,70.7-57.3,128-128,128C57.3,256,0,198.7,0,128C0,57.3,57.3,0,128,0C198.7,0,256,57.3,256,128z"/> <g> <path class="st1" d="M86.3,186.2H70.9V79.1h15.4v48.4V186.2z"/> <path class="st1" d="M108.9,79.1h41.6c39.6,0,57,28.3,57,53.6c0,27.5-21.5,53.6-56.8,53.6h-41.8V79.1z M124.3,172.4h24.5 c34.9,0,42.9-26.5,42.9-39.7c0-21.5-13.7-39.7-43.7-39.7h-23.7V172.4z"/> <path class="st1" d="M88.7,56.8c0,5.5-4.5,10.1-10.1,10.1c-5.6,0-10.1-4.6-10.1-10.1c0-5.6,4.5-10.1,10.1-10.1 C84.2,46.7,88.7,51.3,88.7,56.8z"/> </g> </svg> <a href="https://orcid.org/0009-0003-1794-6820" target="_blank"> https://orcid.org/0009-0003-1794-6820 </a> </span> </li> </ul> </section> <section class="item doi"> <h2 class="label"> DOI: </h2> <span class="value"> <a href="https://doi.org/10.47852/bonviewJCCE42022914"> https://doi.org/10.47852/bonviewJCCE42022914 </a> </span> </section> <section class="item keywords"> <h2 class="label"> Keywords: </h2> <span class="value"> traffic engineering, traffic flow prediction, spatiotemporal convolution, attention mechanism, Transformer </span> </section> <section class="item abstract"> <h2 class="label">Abstract</h2> <p>Predicting traffic flow has always been a significant task in intelligent transportation systems. Due to the substantial temporal and spatial dependencies of traffic flow sequences, accurately predicting traffic flow poses a considerable challenge. Many existing works primarily rely on recurrent neural networks, graph neural networks, and Transformer models to establish traffic flow prediction models. To better extract features and enhance efficiency, a traffic flow prediction model based on multi-view spatiotemporal convolution (MVSC) is proposed. This model learns the representation of sequence data at the input encoding layer and incorporates location and time information. In the spatiotemporal feature representation learning layer, considering the diverse periodic patterns in sequences, several representation learning modules are designed, conducting local spatiotemporal feature exploration through one-dimensional convolution and then accomplishing global spatiotemporal feature mining based on causal convolution. To further enhance the model's utilization of spatiotemporal features, a channel attention mechanism is introduced at the prediction layer. The forecasting method employed in the study is direct multistep, and subsequent experiments conducted on two real datasets demonstrate that the MVSC model exhibits a certain degree of superiority in MAE, RMSE, and MAPE for both short-term and long-term predictions compared to existing models. And through the latest experiments and investigations, it has been found that MVSC has improved MAPE performance by about 1.2% compared to recent models such as RTGCN and STRGCN, achieving the intended outcomes.</p> <p> </p> <p><strong>Received</strong>: 24 March 2024 | <strong>Revised</strong>: 13 June 2024 | <strong>Accepted</strong>: 17 July 2024</p> <p> </p> <p><strong>Conflicts of Interest</strong></p> <p>The author declares that she has no conflicts of interest to this work.</p> <p> </p> <p><strong>Data Availability Statement</strong></p> <p>Data sharing is not applicable to this article as no new data were created or analyzed in this study.</p> <p> </p> <p><strong>Author Contribution Statement</strong></p> <p><strong>Xiaoyan Zhu: </strong>Conceptualization, Methodology, Software, Validation, Investigation, Data curation, Writing – original draft, Writing – review &amp; editing, Visualization, Supervision, Project administration.</p> </section> <br /><div class="separator"></div><div class="item abstract" id="trendmd-suggestions"></div><script defer src='//js.trendmd.com/trendmd.min.js' data-trendmdconfig='{"website_id":"89267", "element":"#trendmd-suggestions"}'></script><div class="item downloads_chart"> <h3 class="label"> Metrics </h3> <div id="paperbuzz"><div id="loading">Metrics Loading ...</div></div> <script type="text/javascript"> window.onload = function () { var options = { paperbuzzStatsJson: JSON.parse('{\"altmetrics_sources\":[{\"events\":null,\"events_count\":2,\"events_count_by_day\":[{\"count\":\"2\",\"date\":\"2024-11-22\"}],\"events_count_by_month\":[{\"count\":\"2\",\"date\":\"2024-11\"}],\"events_count_by_year\":[{\"count\":\"2\",\"date\":\"2024\"}],\"source\":{\"display_name\":\"File downloads\"},\"source_id\":\"fileDownloads\"}],\"crossref_event_data_url\":\"https:\\/\\/api.eventdata.crossref.org\\/v1\\/events?rows=1000&filter=from-collected-date:1990-01-01,until-collected-date:2099-01-01,obj-id:10.47852\\/bonviewjcce42022914\",\"doi\":\"10.47852\\/bonviewjcce42022914\",\"metadata\":{\"DOI\":\"10.47852\\/bonviewjcce42022914\",\"ISSN\":[\"2810-9503\"],\"URL\":\"http:\\/\\/dx.doi.org\\/10.47852\\/bonviewjcce42022914\",\"abstract\":\"<jats:p>Predicting traffic flow has always been a significant task in intelligent transportation systems. Due to the substantial temporal and spatial dependencies of traffic flow sequences, accurately predicting traffic flow poses a considerable challenge. Many existing works primarily rely on recurrent neural networks, graph neural networks, and Transformer models to establish traffic flow prediction models. To better extract features and enhance efficiency, a traffic flow prediction model based on multi-view spatiotemporal convolution (MVSC) is proposed. This model learns the representation of sequence data at the input encoding layer and incorporates location and time information. In the spatiotemporal feature representation learning layer, considering the diverse periodic patterns in sequences, several representation learning modules are designed, conducting local spatiotemporal feature exploration through one dimensional convolution and then accomplishing global spatiotemporal feature mining based on causal convolution. To further enhance the model\\u2019s utilization of spatiotemporal features, a channel attention mechanism is introduced at the prediction layer. The forecasting method employed in the study is direct multistep, and subsequent experiments conducted on two real datasets demonstrate that the MVSC model exhibits a certain degree of superiority in MAE, RMSE, and MAPE for both short-term and long-term predictions compared to existing models. And through the latest experiments and investigations, it has been found that MVSC has improved MAPE performance by about 1.2% compared to recent models such as RTGCN and STRGCN, achieving the intended outcomes.<\\/jats:p>\",\"author\":[{\"ORCID\":\"http:\\/\\/orcid.org\\/0009-0003-1794-6820\",\"affiliation\":[],\"authenticated-orcid\":false,\"family\":\"Zhu\",\"given\":\"Xiaoyan\",\"sequence\":\"first\"}],\"container-title\":\"Journal of Computational and Cognitive Engineering\",\"container-title-short\":\"JCCE\",\"content-domain\":{\"crossmark-restriction\":false,\"domain\":[]},\"created\":{\"date-parts\":[[2024,9,6]],\"date-time\":\"2024-09-06T02:18:01Z\",\"timestamp\":1725589081000},\"crossref_url\":\"https:\\/\\/api.crossref.org\\/works\\/10.47852\\/bonviewjcce42022914\\/transform\\/application\\/vnd.citationstyles.csl+json\",\"deposited\":{\"date-parts\":[[2024,9,6]],\"date-time\":\"2024-09-06T02:18:01Z\",\"timestamp\":1725589081000},\"indexed\":{\"date-parts\":[[2024,9,7]],\"date-time\":\"2024-09-07T00:33:52Z\",\"timestamp\":1725669232605},\"is-referenced-by-count\":0,\"issued\":{\"date-parts\":[[2024,7,31]]},\"member\":\"27601\",\"original-title\":[],\"prefix\":\"10.47852\",\"published\":{\"date-parts\":[[2024,7,31]]},\"published-online\":{\"date-parts\":[[2024,7,31]]},\"publisher\":\"BON VIEW PUBLISHING PTE\",\"reference-count\":0,\"references-count\":0,\"relation\":[],\"resource\":{\"primary\":{\"URL\":\"https:\\/\\/ojs.bonviewpress.com\\/index.php\\/JCCE\\/article\\/view\\/2914\"}},\"score\":1,\"short-title\":[],\"source\":\"Crossref\",\"subject\":[],\"subtitle\":[],\"title\":\"Multi-View Traffic Flow Prediction Model Based on Spatiotemporal Convolution\",\"type\":\"journal-article\"},\"open_access\":{\"best_oa_location\":null,\"data_standard\":1,\"doi\":\"10.47852\\/bonviewjcce42022914\",\"doi_url\":\"https:\\/\\/doi.org\\/10.47852\\/bonviewjcce42022914\",\"first_oa_location\":null,\"genre\":\"journal-article\",\"has_repository_copy\":false,\"is_oa\":false,\"is_paratext\":false,\"journal_is_in_doaj\":false,\"journal_is_oa\":false,\"journal_issn_l\":\"2810-9570\",\"journal_issns\":\"2810-9503\",\"journal_name\":\"Journal of Computational and Cognitive Engineering\",\"oa_locations\":[],\"oa_locations_embargoed\":[],\"oa_status\":\"closed\",\"oadoi_url\":\"https:\\/\\/api.oadoi.org\\/v2\\/10.47852\\/bonviewjcce42022914\",\"published_date\":\"2024-07-31\",\"publisher\":\"BON VIEW PUBLISHING PTE\",\"title\":\"Multi-View Traffic Flow Prediction Model Based on Spatiotemporal Convolution\",\"updated\":\"2024-09-07T02:24:16.462113\",\"year\":2024,\"z_authors\":[{\"ORCID\":\"http:\\/\\/orcid.org\\/0009-0003-1794-6820\",\"authenticated-orcid\":false,\"family\":\"Zhu\",\"given\":\"Xiaoyan\",\"sequence\":\"first\"}]}}'), minItemsToShowGraph: { minEventsForYearly: 10, minEventsForMonthly: 10, minEventsForDaily: 6, minYearsForYearly: 3, minMonthsForMonthly: 2, minDaysForDaily: 1 //first 30 days only }, graphheight: 150, graphwidth: 300, showTitle: false, showMini: false, published_date: [2024, 11, 22], } var paperbuzzviz = undefined; paperbuzzviz = new PaperbuzzViz(options); paperbuzzviz.initViz(); } </script> </div> </div><!-- .main_entry --> <div class="entry_details"> <div class="item cover_image"> <div class="sub_item"> <a href="https://ojs.bonviewpress.com/index.php/JCCE/issue/view/101"> <img src="https://ojs.bonviewpress.com/public/journals/4/cover_issue_101_en.jpg" alt=""> </a> </div> </div> <div class="item galleys"> <h2 class="pkp_screen_reader"> Downloads </h2> <ul class="value galleys_links"> <li> <a class="obj_galley_link pdf" href="https://ojs.bonviewpress.com/index.php/JCCE/article/view/2914/1073"> PDF </a> </li> </ul> </div> <div class="item published"> <section class="sub_item"> <h2 class="label"> Published </h2> <div class="value"> <span>2024-11-22</span> </div> </section> </div> <div class="item issue"> <section class="sub_item"> <h2 class="label"> Issue </h2> <div class="value"> <a class="title" href="https://ojs.bonviewpress.com/index.php/JCCE/issue/view/101"> Vol. 3 No. 4 (2024) </a> </div> </section> <section class="sub_item"> <h2 class="label"> Section </h2> <div class="value"> Research Articles </div> </section> </div> <div class="item copyright"> <h2 class="label"> License </h2> <p>Copyright (c) 2024 Author</p> <a rel="license" href="https://creativecommons.org/licenses/by/4.0/"><img alt="Creative Commons License" src="//i.creativecommons.org/l/by/4.0/88x31.png" /></a><p>This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</p> </div> <div class="item citation"> <section class="sub_item citation_display"> <h2 class="label"> How to Cite </h2> <div class="value"> <div id="citationOutput" role="region" aria-live="polite"> <div class="csl-bib-body"> <div class="csl-entry">Zhu, X. (2024). Multi-view Traffic Flow Prediction Model Based on Spatiotemporal Convolution. <i>Journal of Computational and Cognitive Engineering</i>, <i>3</i>(4), 395-403. <a href="https://doi.org/10.47852/bonviewJCCE42022914">https://doi.org/10.47852/bonviewJCCE42022914</a></div> </div> </div> <div class="citation_formats"> <button class="citation_formats_button label" aria-controls="cslCitationFormats" aria-expanded="false" data-csl-dropdown="true"> More Citation Formats </button> <div id="cslCitationFormats" class="citation_formats_list" aria-hidden="true"> <ul class="citation_formats_styles"> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/acm-sig-proceedings?submissionId=2914&amp;publicationId=4089&amp;issueId=101" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/acm-sig-proceedings?submissionId=2914&amp;publicationId=4089&amp;issueId=101&amp;return=json" > ACM </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/acs-nano?submissionId=2914&amp;publicationId=4089&amp;issueId=101" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/acs-nano?submissionId=2914&amp;publicationId=4089&amp;issueId=101&amp;return=json" > ACS </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/apa?submissionId=2914&amp;publicationId=4089&amp;issueId=101" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/apa?submissionId=2914&amp;publicationId=4089&amp;issueId=101&amp;return=json" > APA </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/associacao-brasileira-de-normas-tecnicas?submissionId=2914&amp;publicationId=4089&amp;issueId=101" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/associacao-brasileira-de-normas-tecnicas?submissionId=2914&amp;publicationId=4089&amp;issueId=101&amp;return=json" > ABNT </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/chicago-author-date?submissionId=2914&amp;publicationId=4089&amp;issueId=101" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/chicago-author-date?submissionId=2914&amp;publicationId=4089&amp;issueId=101&amp;return=json" > Chicago </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/harvard-cite-them-right?submissionId=2914&amp;publicationId=4089&amp;issueId=101" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/harvard-cite-them-right?submissionId=2914&amp;publicationId=4089&amp;issueId=101&amp;return=json" > Harvard </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/ieee?submissionId=2914&amp;publicationId=4089&amp;issueId=101" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/ieee?submissionId=2914&amp;publicationId=4089&amp;issueId=101&amp;return=json" > IEEE </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/modern-language-association?submissionId=2914&amp;publicationId=4089&amp;issueId=101" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/modern-language-association?submissionId=2914&amp;publicationId=4089&amp;issueId=101&amp;return=json" > MLA </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/turabian-fullnote-bibliography?submissionId=2914&amp;publicationId=4089&amp;issueId=101" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/turabian-fullnote-bibliography?submissionId=2914&amp;publicationId=4089&amp;issueId=101&amp;return=json" > Turabian </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/vancouver?submissionId=2914&amp;publicationId=4089&amp;issueId=101" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/vancouver?submissionId=2914&amp;publicationId=4089&amp;issueId=101&amp;return=json" > Vancouver </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/ama?submissionId=2914&amp;publicationId=4089&amp;issueId=101" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/ama?submissionId=2914&amp;publicationId=4089&amp;issueId=101&amp;return=json" > AMA </a> </li> </ul> <div class="label"> Download Citation </div> <ul class="citation_formats_styles"> <li> <a href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/download/ris?submissionId=2914&amp;publicationId=4089&amp;issueId=101"> <span class="fa fa-download"></span> Endnote/Zotero/Mendeley (RIS) </a> </li> <li> <a href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/download/bibtex?submissionId=2914&amp;publicationId=4089&amp;issueId=101"> <span class="fa fa-download"></span> BibTeX </a> </li> </ul> </div> </div> </div> </section> </div> <div class="item addthis"> <div class="value"> <!-- AddThis Button BEGIN --> <div class="addthis_toolbox addthis_default_style addthis_32x32_style"> <a class="addthis_button_preferred_1"></a> <a class="addthis_button_preferred_2"></a> <a class="addthis_button_preferred_3"></a> <a class="addthis_button_preferred_4"></a> <a class="addthis_button_compact"></a> <a class="addthis_counter addthis_bubble_style"></a> </div> <script type="text/javascript" src="//s7.addthis.com/js/250/addthis_widget.js#pubid="></script> <!-- AddThis Button END --> </div> </div> <div id="citation-plugin" class="item citations-container" data-citations-url="https://ojs.bonviewpress.com/index.php/JCCE/citations/get?doi=10.47852%2FbonviewJCCE42022914" data-img-url="https://ojs.bonviewpress.com/plugins/generic/citations/images/"> <div id="citations-loader"></div> <div class="citations-count"> <div class="citations-count-crossref"> <img class="img-fluid" src="https://ojs.bonviewpress.com/plugins/generic/citations/images/crossref.png" alt="Crossref"/> <div class="badge_total"></div> </div> <div class="citations-count-scopus"> <img src="https://ojs.bonviewpress.com/plugins/generic/citations/images/scopus.png" alt="Scopus"/> <br/> <span class="badge_total"></span> </div> <div class="citations-count-google"> <a href="https://scholar.google.com/scholar?q=10.47852/bonviewJCCE42022914" target="_blank" rel="noreferrer"> <img src="https://ojs.bonviewpress.com/plugins/generic/citations/images/scholar.png" alt="Google Scholar"/> </a> </div> <div class="citations-count-europepmc"> <a href="https://europepmc.org/search?scope=fulltext&query=10.47852/bonviewJCCE42022914" target="_blank" rel="noreferrer"> <img src="https://ojs.bonviewpress.com/plugins/generic/citations/images/pmc.png" alt="Europe PMC"/> <br/> <span class="badge_total"></span> </a> </div> </div> <div class="citations-list"> <div class="cite-itm cite-prototype" style="display: none"> <img class="cite-img img-fluid" src="" alt=""> <div> <span class="cite-author"></span> <span class="cite-date"></span> </div> <div> <span class="cite-title"></span> <span class="cite-info"></span> </div> <div class="cite-doi"></div> </div> </div> <style> .citations-container { overflow-y: auto; overflow-x: hidden; max-height: 300px; } </style> </div> </div><!-- .entry_details --> </div><!-- .row --> </article> </div><!-- .page --> </div><!-- pkp_structure_main --> <div class="pkp_structure_sidebar left" role="complementary"> <div class="pkp_block block_custom" id="customblock-right_links"> <h2 class="title">Journal Information</h2> <div class="content"> <div class="journalcard__metrics border"> <div class="journalcard__metrics border"><span class="sc-hwwEjo cdchLr"><strong>Editor-in-Chief:</strong> <span class=" jgG6ef">Harish Garg</span></span></div> <div class="journalcard__metrics border"><span class="sc-hwwEjo cdchLr">Thapar Institute of Engineering and Technology, India</span></div> <div class="journalcard__metrics border"><span class="sc-hwwEjo cdchLr"><strong>Frequency: </strong>Quarterly</span></div> <div class="journalcard__metrics border"><span class="sc-hwwEjo cdchLr"><strong>Submission to First Decision: </strong>21 days<br><strong>Submission to Acceptance:</strong> <span class="sc-kPVwWT hZDpyF">95 days</span><br><strong>Accept to Publish:</strong> <span class="sc-kPVwWT hZDpyF">15 days</span></span></div> <div class="journalcard__metrics border"><span class="sc-kPVwWT hZDpyF"><span class="sc-hwwEjo cdchLr"><strong>Acceptance Rate: </strong>21%</span></span></div> <div class="journalcard__metrics border"><span class="sc-kPVwWT hZDpyF"><span class="sc-hwwEjo cdchLr"><strong>eISSN:</strong> 2810-9503</span></span></div> <div class="journalcard__metrics border"><span class="sc-kPVwWT hZDpyF"><span class="sc-hwwEjo cdchLr"><strong>pISSN:</strong> 2810-9570&nbsp;&nbsp;</span></span></div> </div> <div class="journalcard__metrics border"> <p class="journalcard__metrics border">© 2024&nbsp; Bon View Publishing Pte Ltd.</p> </div> </div> </div> <div class="pkp_block block_make_submission"> <h2 class="pkp_screen_reader"> Make a Submission </h2> <div class="content"> <a class="block_make_submission_link" href="https://ojs.bonviewpress.com/index.php/JCCE/about/submissions"> Make a Submission </a> </div> </div> <style type="text/css"> .block_announcements_article:not(:last-child) { padding-bottom: 1.5em; border-bottom: 1px solid; } .block_announcements_article { text-align: left; } .block_announcements #show-all{ font-style: italic; } </style> <div class="pkp_block block_announcements"> <h2 class="title">Announcements</h2> <div class="content"> <article class="block_announcements_article"> <h3 class="block_announcements_article_headline"> <a href="https://ojs.bonviewpress.com/index.php/JCCE/announcement/view/81"> First CiteScore Released: 13.5 </a> </h3> <time class="block_announcements_article_date" datetime="2024-06-06"> <strong>June 6, 2024</strong> </time> <div class="block_announcements_article_content"> <p>We are delighted to announce that the CiteScore 2023 for the <em>Journal of Computational and Cognitive Engineering</em> is <strong>13.5</strong>, which ranks it 9 out of 204 journals in the Engineering (miscellaneous) category and 53 out of 817 journals in the Computer Science Applications category.<br><br>This achievement reflects the dedication and hard work of our editorial team, authors, and reviewers. We are immensely grateful for the valuable contributions and unwavering support from our community. This milestone not only highlights the quality of research we publish but also sets a higher standard for our future endeavors.<br><br>Thank you to everyone who has been a part of this journey. We look forward to continuing to provide cutting-edge research and making significant impacts in our field.</p> </div> </article> <article class="block_announcements_article"> <h3 class="block_announcements_article_headline"> <a href="https://ojs.bonviewpress.com/index.php/JCCE/announcement/view/79"> JCCE Published Volume 3, Issue 2 on May 21, 2024 </a> </h3> <time class="block_announcements_article_date" datetime="2024-05-21"> <strong>May 21, 2024</strong> </time> <div class="block_announcements_article_content"> <p>We are excited to announce that <em><strong>Journal of Computational and Cognitive Engineering (JCCE) </strong></em>published Volume 3 Issue 2 on May 21, 2024.</p> </div> </article> <article class="block_announcements_article"> <h3 class="block_announcements_article_headline"> <a href="https://ojs.bonviewpress.com/index.php/JCCE/announcement/view/71"> STM Membership Announcement </a> </h3> <time class="block_announcements_article_date" datetime="2024-04-24"> <strong>April 24, 2024</strong> </time> <div class="block_announcements_article_content"> <p>Bon View Publishing Pte. Ltd. proudly announces its membership in the esteemed <a href="https://www.stm-assoc.org/"><u>International Association of Scientific, Technical and Medical Publishers(STM)</u></a>, effective 2024. This collaboration marks a significant milestone in advancing global knowledge exchange and promoting cutting-edge research.</p> </div> </article> <a id="show-all" href="https://ojs.bonviewpress.com/index.php/JCCE/announcement">Show all announcements ...</a> </div> </div> <div class="pkp_block block_keyword_cloud"> <h2 class="title">Keywords</h2> <div class="content" id='wordcloud'></div> <script> function randomColor() { var cores = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']; return cores[Math.floor(Math.random()*cores.length)]; } document.addEventListener("DOMContentLoaded", function() { var keywords = [{"text":"sit-yolov9","size":1},{"text":"sitbehaviors dataset","size":1},{"text":"home environment","size":1},{"text":"learning behavior recognition","size":1},{"text":"image enhancement","size":1},{"text":"stealth protocols","size":1},{"text":"obfsproxy","size":1},{"text":"shadowsocks","size":1},{"text":"wireguard","size":1},{"text":" vpns","size":1},{"text":"internet service providers","size":1},{"text":"proxying strategies","size":1},{"text":"fire-vit","size":1},{"text":"tunnel fire dataset","size":1},{"text":" tunnel fire detection","size":1},{"text":"fire alarm","size":1},{"text":"visual transformer","size":1},{"text":"e-commerce","size":1},{"text":" recurrent neural network (rnn)","size":1},{"text":"authorship","size":1},{"text":"suspicion","size":1},{"text":"spam indicators","size":1},{"text":"artificial intelligence (ai)","size":1},{"text":"machine learning (ml)","size":1},{"text":"healthcare","size":1},{"text":"patient record","size":1},{"text":"clinical applications","size":1},{"text":"ethical considerations,","size":1},{"text":"explainable ai (xai)","size":1},{"text":"xgboost","size":1},{"text":"whale optimization algorithm (woa)","size":1},{"text":"anomalies detection","size":1},{"text":"manufacturing","size":1},{"text":"industry 4.0","size":1},{"text":"digital transformation","size":1},{"text":"corporate esg performance","size":1},{"text":" green technology innovation","size":1},{"text":"corporate social responsibility","size":1},{"text":" corporate internal control","size":1},{"text":"esg development","size":1},{"text":"soft computing","size":1},{"text":"human-centric solutions","size":1},{"text":"challenges","size":1},{"text":"artificial intelligence","size":1},{"text":"fuzzy logic","size":1},{"text":"image moments","size":1},{"text":"polar harmonic transform (pht)","size":1},{"text":"topological data analysis","size":1},{"text":" image reconstruction","size":1},{"text":"diversity and serendipity preference","size":1}]; var totalWeight = 0; var blockWidth = 300; var blockHeight = 200; var transitionDuration = 200; var length_keywords = keywords.length; var layout = d3.layout.cloud(); layout.size([blockWidth, blockHeight]) .words(keywords) .fontSize(function(d) { return fontSize(+d.size); }) .on('end', draw); var svg = d3.select("#wordcloud").append("svg") .attr("viewBox", "0 0 " + blockWidth + " " + blockHeight) .attr("width", '100%'); function update() { var words = layout.words(); fontSize = d3.scaleLinear().range([16, 34]); if (words.length) { fontSize.domain([+words[words.length - 1].size || 1, +words[0].size]); } } keywords.forEach(function(item,index){totalWeight += item.size;}); update(); function draw(words, bounds) { var width = layout.size()[0], height = layout.size()[1]; scaling = bounds ? Math.min( width / Math.abs(bounds[1].x - width / 2), width / Math.abs(bounds[0].x - width / 2), height / Math.abs(bounds[1].y - height / 2), height / Math.abs(bounds[0].y - height / 2), ) / 2 : 1; svg .append("g") .attr( "transform", "translate(" + [width >> 1, height >> 1] + ")scale(" + scaling + ")", ) .selectAll("text") .data(words) .enter().append("text") .style("font-size", function(d) { return d.size + "px"; }) .style("font-family", 'serif') .style("fill", randomColor) .style('cursor', 'pointer') .style('opacity', 0.7) .attr('class', 'keyword') .attr("text-anchor", "middle") .attr("transform", function(d) { return "translate(" + [d.x, d.y] + ")rotate(" + d.rotate + ")"; }) .text(function(d) { return d.text; }) .on("click", function(d, i){ window.location = "https://ojs.bonviewpress.com/index.php/index/search?query=QUERY_SLUG".replace(/QUERY_SLUG/, encodeURIComponent(''+d.text+'')); }) .on("mouseover", function(d, i) { d3.select(this).transition() .duration(transitionDuration) .style('font-size',function(d) { return (d.size + 3) + "px"; }) .style('opacity', 1); }) .on("mouseout", function(d, i) { d3.select(this).transition() .duration(transitionDuration) .style('font-size',function(d) { return d.size + "px"; }) .style('opacity', 0.7); }) .on('resize', function() { update() }); } layout.start(); }); </script> </div> <div class="pkp_block block_developed_by"> <div class="content"> <span class="title">Most Read</span> <ul class="most_read"> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/JCCE/article/view/174">Implementation of Artificial Intelligence in Agriculture</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 3121</div> </li> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/JCCE/article/view/838">Comparing BERT Against Traditional Machine Learning Models in Text Classification</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 1471</div> </li> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/JCCE/article/view/245">A Systematic Review on Intelligent Transport Systems</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 1158</div> </li> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/JCCE/article/view/192">Spam Detection Using Bidirectional Transformers and Machine Learning Classifier Algorithms</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 1102</div> </li> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/JCCE/article/view/270">Machine Learning-Based Intrusion Detection System: An Experimental Comparison</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 1034</div> </li> </ul> </div> </div> </div><!-- pkp_sidebar.left --> </div><!-- pkp_structure_content --> <div class="pkp_structure_footer_wrapper" role="contentinfo"> <a id="pkp_content_footer"></a> <div class="pkp_structure_footer"> <div class="pkp_footer_content"> <p> <a href="http://creativecommons.org/licenses/by/4.0/"><img src="https://ojs.bonviewpress.com/public/site/images/admin/88x31.png" alt="" width="88" height="31" /></a>All site content, except where otherwise noted, is licensed under a <a href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</p> <p>pISSN 2810-9570, eISSN 2810-9503 | Published by <a href="http://www.bonviewpress.com/">Bon View Publishing Pte Ltd.</a></p> <p><strong>Member of</strong></p> <p><img style="width: 900px; height: 70px;" src="https://bonview.oss-ap-southeast-1.aliyuncs.com/resource/ojs-logo-quanji.png" /> </p> </div> <div class="pkp_brand_footer"> <a href="https://ojs.bonviewpress.com/index.php/JCCE/about/aboutThisPublishingSystem"> <img alt="More information about the publishing system, Platform and Workflow by OJS/PKP." src="https://ojs.bonviewpress.com/templates/images/ojs_brand.png"> </a> </div> </div> </div><!-- pkp_structure_footer_wrapper --> </div><!-- pkp_structure_page --> <script src="https://ojs.bonviewpress.com/lib/pkp/lib/vendor/components/jquery/jquery.min.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/lib/pkp/lib/vendor/components/jqueryui/jquery-ui.min.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/themes/default/js/lib/popper/popper.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/themes/default/js/lib/bootstrap/util.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/themes/default/js/lib/bootstrap/dropdown.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/themes/default/js/main.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/generic/citationStyleLanguage/js/articleCitation.js?v=3.4.0.7" type="text/javascript"></script><script src="https://d3js.org/d3.v4.js?v=3.4.0.7" type="text/javascript"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/d3-tip/0.9.1/d3-tip.min.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/generic/paperbuzz/paperbuzzviz/paperbuzzviz.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/generic/citations/js/citations.js?v=3.4.0.7" type="text/javascript"></script><script src="https://cdn.jsdelivr.net/gh/holtzy/D3-graph-gallery@master/LIB/d3.layout.cloud.js?v=3.4.0.7" type="text/javascript"></script><script type="text/javascript"> (function (w, d, s, l, i) { w[l] = w[l] || []; var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtag/js?id=' + i + dl; f.parentNode.insertBefore(j, f); function gtag(){dataLayer.push(arguments)}; gtag('js', new Date()); gtag('config', i); }) (window, document, 'script', 'dataLayer', 'UA-284252596-1'); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10