CINXE.COM
Search results for: Pseudotsuga bark
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Pseudotsuga bark</title> <meta name="description" content="Search results for: Pseudotsuga bark"> <meta name="keywords" content="Pseudotsuga bark"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Pseudotsuga bark" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Pseudotsuga bark"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 132</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Pseudotsuga bark</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Production of Polyurethane Foams from Bark Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADsa%20P.%20Cruz-Lopes">Luísa P. Cruz-Lopes</a>, <a href="https://publications.waset.org/abstracts/search?q=Liliana%20Rodrigues"> Liliana Rodrigues</a>, <a href="https://publications.waset.org/abstracts/search?q=Idalina%20Domingos"> Idalina Domingos</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Ferreira"> José Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADs%20Teixeira%20de%20Lemos"> Luís Teixeira de Lemos</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Esteves"> Bruno Esteves</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the polyurethanes industry is dependent on fossil resources to obtain their basic raw materials (polyols and isocyanate), as these are obtained from petroleum products. The aim of this work was to use biopolyols from liquefied Pseudotsuga (<em>Pseudotsuga menziesii</em>) and Turkey oak (<em>Quercus cerris</em>) barks for the production of polyurethane foams and optimize the process. Liquefaction was done with glycerol catalyzed by KOH. Foams were produced following different formulations and using biopolyols from both barks. Subsequently, the foams were characterized according to their mechanical properties and the reaction of the foam formation was monitored by FTIR-ATR. The results show that it is possible to produce polyurethane foams using bio-based polyols and the liquefaction conditions are very important because they influence the characteristics of biopolyols and, consequently the characteristics of the foams. However, the process has to be further optimized so that it can obtain better quality foams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bio-based%20polyol" title="Bio-based polyol">Bio-based polyol</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20tests" title=" mechanical tests"> mechanical tests</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane%20foam" title=" polyurethane foam"> polyurethane foam</a>, <a href="https://publications.waset.org/abstracts/search?q=Pseudotsuga%20bark" title=" Pseudotsuga bark"> Pseudotsuga bark</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20resources" title=" renewable resources"> renewable resources</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey%20oak%20bark" title=" Turkey oak bark"> Turkey oak bark</a> </p> <a href="https://publications.waset.org/abstracts/51260/production-of-polyurethane-foams-from-bark-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> Evaluation of Pheromone and Tree Trap Efficiency in Orthotomicus erosus (Col: Curculionidae: Scolytinae) Monitoring in Pine Forests of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudabe%20Amini">Sudabe Amini</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamasb%20Nozari"> Jamasb Nozari</a>, <a href="https://publications.waset.org/abstracts/search?q=Somaye%20Rahimi"> Somaye Rahimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bark beetles are one of the most destructive groups of pests in the forest and green space. Mediterranean pine Engraver Orthotomicus erosus (Wollston) is the dominant species in the pine forests of Iran. Pine forests are considered a crucial region in the world and need high protection. Although there is no effective control method, mass trapping is the most common method to suppress the bark beetle population. Due to this, from 2018-to 2020, a survey was conducted on bark beetles mass trapping by using two kinds of traps, including pheromone and tree trap. These traps were evaluated in 10 different sites of pine forests. The statistical results proved that significant differences between the pheromone trap and tree trap were observed. It confirmed that the pheromone trap attracted more beetles than the tree trap. The results of this study suggest that the most effective and applicable method in bark beetle’s management of pines forest is using a pheromone trap that suppresses and maintains bark beetle’s population at an economic level, although tree traps attract bark beetles too. In the future, using tree-pheromone traps, which would synergist attraction of more bark beetles, is recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bark%20beetle" title="bark beetle">bark beetle</a>, <a href="https://publications.waset.org/abstracts/search?q=pines%20forest" title=" pines forest"> pines forest</a>, <a href="https://publications.waset.org/abstracts/search?q=Orthotomicus%20erosus" title=" Orthotomicus erosus"> Orthotomicus erosus</a>, <a href="https://publications.waset.org/abstracts/search?q=pheromone%20trap" title=" pheromone trap"> pheromone trap</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20trap" title=" tree trap"> tree trap</a> </p> <a href="https://publications.waset.org/abstracts/149156/evaluation-of-pheromone-and-tree-trap-efficiency-in-orthotomicus-erosus-col-curculionidae-scolytinae-monitoring-in-pine-forests-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> Comparative Antibacterial Property of Matured Trunk and Stem Bark Extract of Tamarindus indica L., Preformulation, Development and Quality Control of Cream</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20T.%20Jacinto">A. M. T. Jacinto</a>, <a href="https://publications.waset.org/abstracts/search?q=M.O.%20Osi"> M.O. Osi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tamarind has various medicinal properties among which is its antibacterial property. Its bark contains saponins, alkaloids, sesquiterpenes and tannins. It is rich in phlobapenes which is responsible for antibacterial property. The objective of the study was to determine which bark will produce the highest antibacterial property, develop it into a topical cream and evaluate its quality and characteristics. Powdered barks of Tamarind were extracted by soxhlet method using 70% acetone. Stem bark produced a higher yield than trunk bark (5.85 g vs. 4.73 g). It was found that the trunk bark was more sensitive than stem bark to microorganisms namely Staphylococcus aureus, Corynebacterium minutissimum, and Streptococcus spp. Sensitivity of trunk bark can be attributed to a more developed phytoconstituents. Dermal sensitization test on both sexes of rabbits using the following concentrations: 100%, 40% and 20% of extract showed that Tamarind has no irritating property and therefore safe for formulation into an antibacterial cream. Excipients used for formulation such as methyl paraben, propyl paraben, stearyl alcohol and white petrolatum were compatible with the Tamarind acetone extract through Differential Scanning Calorimetry except sodium lauryl sulfate that exhibited crystallization when subjected at 200˚C. The method of manufacture used in cream is fusion, therefore strict compliance of processing temperature should be observed to prevent polymorphism. Quality control tests of formulated cream based on USP 30 and Philippine Pharmacopeia were satisfactory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title="antibacterial">antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20scanning%20calorimetry" title=" differential scanning calorimetry"> differential scanning calorimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=tannins" title=" tannins"> tannins</a>, <a href="https://publications.waset.org/abstracts/search?q=dermal%20sensitization" title=" dermal sensitization"> dermal sensitization</a> </p> <a href="https://publications.waset.org/abstracts/16974/comparative-antibacterial-property-of-matured-trunk-and-stem-bark-extract-of-tamarindus-indica-l-preformulation-development-and-quality-control-of-cream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> Batch Adsorption Studies for the Removal of Textile Dyes from Aqueous Solution on Three Different Pine Bark</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Cheknane">B. Cheknane</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Zermane"> F. Zermane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of the present study is the valorization of natural raw materials of plant origin for the treatment of textile industry wastewater. Selected bark was: maritime (MP), pinyon (PP) and Aleppo pine (AP) bark. The efficiency of these barks were tested for the removal of three dye; rhodamine B (RhB), Green Malachite (GM) and X Methyl Orange (MO). At the first time we focus to study the different parameters which can influence the adsorption processes such as: nature of the adsorbents, nature of the pollutants (dyes) and the effect of pH. Obtained results reveals that the speed adsorption is strongly influencing by the pH medium and the comparative study show that adsorption is favorable in the acidic medium with amount adsorbed of (Q=40mg/g) for rhodamine B and (Q=46mg/g) for orange methyl. Results of adsorption kinetics reveals that the molecules of GM are adsorbed better (Q=48mg/g) than the molecules of RhB (Q=46mg/g) and methyl orange (Q=18mg/g), with equilibrium time of 6 hours. The results of adsorption isotherms show clearly that the maritime pine bark is the most effective adsorbents with adsorbed amount of (QRhB=200mg/g) and (QMO=88mg/g) followed by pinyon pine (PP) with (QRhB=184mg/g) and (QMO=56mg/g) and finally Aleppo pine (AP) bark with (QRhB=131mg/g) and (QMO= 46mg/g). The different obtained isotherms were modeled using the Langmuir and Freundlich models and according to the adjustment coefficient values R2, the obtained isotherms are well represented by Freundlich model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maritime%20pine%20bark%20%28MP%29" title="maritime pine bark (MP)">maritime pine bark (MP)</a>, <a href="https://publications.waset.org/abstracts/search?q=pinyon%20pine%20bark%20%28PP%29" title=" pinyon pine bark (PP)"> pinyon pine bark (PP)</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleppo%20pine%20%28AP%29%20bark" title=" Aleppo pine (AP) bark"> Aleppo pine (AP) bark</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=dyes" title=" dyes"> dyes</a> </p> <a href="https://publications.waset.org/abstracts/38613/batch-adsorption-studies-for-the-removal-of-textile-dyes-from-aqueous-solution-on-three-different-pine-bark" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> Cycads Bark Harvest in Limpopo Province in South Africa: A Negative Practice Contributing to Biodiversity Loss</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20O.%20Bamigboye">S. O. Bamigboye</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20M.%20Tshisikhawe"> P. M. Tshisikhawe</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20J.%20Taylor"> P. J. Taylor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cycads are the most threatened plant species in the world. In South Africa over 70% of cycads are threatened with extinction with 60% of them as a result of bark harvest of these highly endangered species for medicinal purposes. 3 cycads species in South Africa have gone extinct due to bark harvest for medicinal purpose. This practice keeps increasing biodiversity loss within the nation and this has generated concern for conservationists on different way to discover how people go about this practices and how it can be discouraged. Studies have revealed this practice to be common practice in provinces like Kwazulu natal, Eastern cape, Gauteng, Mpumalanga, but studies in the past have not really focused on cycads bark harvest in Limpopo province. In this study we use the indigenous knowledge to discover a particular location within the Soutpansberg Montane (a major biodiversity hotspot in Limpopo Province in South Africa) in Vhembe district in Limpopo province not yet conserved where we have a highly disturbed population of cycads. Several individuals of cycads species have been highly damaged due to bark harvest in this location. We are about proposing that such areas needs attention for conservation to prevent the loss of these species endemic to this particular location. Our study hereby reveals that cycads bark harvest which is a major threat to African cycads is also a common practice in Limpopo Province in South Africa. Rigorous conservation action is required to discourage this practice in order to prevent further biodiversity loss in this region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bark%20harvest" title="bark harvest">bark harvest</a>, <a href="https://publications.waset.org/abstracts/search?q=Cycads" title=" Cycads"> Cycads</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=extinction" title=" extinction"> extinction</a>, <a href="https://publications.waset.org/abstracts/search?q=Limpopo" title=" Limpopo"> Limpopo</a> </p> <a href="https://publications.waset.org/abstracts/42255/cycads-bark-harvest-in-limpopo-province-in-south-africa-a-negative-practice-contributing-to-biodiversity-loss" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> Phytochemical Screening and Toxicological Studies of Aqueous Stem Bark Extract of Boswellia papyrifera (DEL) in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Abdulmumin">Y. Abdulmumin</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20I.%20Matazu"> K. I. Matazu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Wudil"> A. M. Wudil</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Alhassan"> A. J. Alhassan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Imam"> A. A. Imam </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phytochemical analysis of Boswellia papryfera confirms the presence of various phytochemicals such as alkaloids, flavonoids, tannins, saponins and cardiac glycosides in its aqueous stem bark extract at different concentration, with tannins being the highest (0.611 ± 0.002 g %). Acute toxicity test (LD50, oral, rat) of the extract showed no mortality at up to 5000 mg/kg and the animals were found active and healthy. The extract was declared as practically non-toxic, this suggest the safety of the extract in traditional medicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20toxicity" title="acute toxicity">acute toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=aqueous%20extract" title=" aqueous extract"> aqueous extract</a>, <a href="https://publications.waset.org/abstracts/search?q=boswellia%20papryfera" title=" boswellia papryfera"> boswellia papryfera</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemicals%20and%20stem%20bark" title=" phytochemicals and stem bark"> phytochemicals and stem bark</a> </p> <a href="https://publications.waset.org/abstracts/34095/phytochemical-screening-and-toxicological-studies-of-aqueous-stem-bark-extract-of-boswellia-papyrifera-del-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> Production of Premium Quality Cinnamon Bark Powder Using Cryogenic Grinding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monika%20R.%20Bhoi">Monika R. Bhoi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20F.%20Sutar"> R. F. Sutar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhaumik%20B.%20Patel"> Bhaumik B. Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research paper is to obtain the premium quality of cinnamon bark powder through cryogenic grinding technology. The effect of grinding temperature (0, -20, -40, -60, -80 and -100˚C), feed rate (8, 9 and 10 kg/h), and sieve size (0.8, 1.0 and 1.5 mm) were evaluated with respect to grinding time, volatile oil content, particle size, energy consumption, and liquid nitrogen consumption. Cryogenic grinding process parameters were optimized to obtain premium quality cinnamon bark powder was carried out using three factorial completely randomized design. The optimization revealed that grinding of cinnamon bark at -80⁰C temperature using 0.8 mm sieve size and 10 kg/h feed rate resulted in premium quality cinnamon bark powder containing volatile oil 3.01%. In addition, volatile oil retention in cryogenically ground powder was 88.23%, whereas control (ambient grinding) had 33.11%. Storage study of premium quality cryogenically ground powder was carried out under accelerated storage conditions (38˚C & 90% R.H). Accelerated storage of cryoground powder was found to be advantageous over the conventional ground for extended storage of the ground cinnamon powder with retention of its nutritional quality. Hence, grinding of spices at optimally low cryogenic temperature is a promising technology for the production of its premium quality powder economically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cinnamon%20bark" title="cinnamon bark">cinnamon bark</a>, <a href="https://publications.waset.org/abstracts/search?q=cryogenic%20grinding" title=" cryogenic grinding"> cryogenic grinding</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20rate" title=" feed rate"> feed rate</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20oil" title=" volatile oil"> volatile oil</a> </p> <a href="https://publications.waset.org/abstracts/136064/production-of-premium-quality-cinnamon-bark-powder-using-cryogenic-grinding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Phytochemical Screening and Toxicological Studies of Aqueous Stem Bark Extract of Boswellia papyrifera (DEL) in Albino Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Abdulmumin">Y. Abdulmumin</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20I.%20Matazu"> K. I. Matazu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Wudil"> A. M. Wudil</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Alhassan"> A. J. Alhassan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Imam"> A. A. Imam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phytochemical analysis of Boswellia papryfera confirms the presence of various phytochemicals such as alkaloids, flavonoids, tannins, saponins and cardiac glycosides in its aqueous stem bark extract at different concentration, with tannins being the highest (0.611 ± 0.002 g %). Acute toxicity test (LD50,oral, rat) of the extract showed no mortality at up to 5000 mg/kg and the animals were found active and healthy. The extract was declared as practically non-toxic, this suggest the safety of the extract in traditional medicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20toxicity" title="acute toxicity">acute toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=aqueous%20extract" title=" aqueous extract"> aqueous extract</a>, <a href="https://publications.waset.org/abstracts/search?q=boswellia%20papryfera" title=" boswellia papryfera"> boswellia papryfera</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemicals" title=" phytochemicals"> phytochemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20bark%20extract" title=" stem bark extract"> stem bark extract</a> </p> <a href="https://publications.waset.org/abstracts/34096/phytochemical-screening-and-toxicological-studies-of-aqueous-stem-bark-extract-of-boswellia-papyrifera-del-in-albino-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> In Vitro Antioxidant and Cytotoxic Activities Against Human Oral Cancer and Human Laryngeal Cancer of Limonia acidissima L. Bark Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kriyapa%20lairungruang">Kriyapa lairungruang</a>, <a href="https://publications.waset.org/abstracts/search?q=Arunporn%20Itharat"> Arunporn Itharat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Limonia acidissima L. (LA) (Common name: wood apple, Thai name: ma-khwit) is a medicinal plant which has long been used in Thai traditional medicine. Its bark is used for treatment of diarrhea, abscess, wound healing and inflammation and it is also used in oral cancer. Thus, this research aimed to investigate antioxidant and cytotoxic activities of the LA bark extracts produced by various extraction methods. Different extraction procedures were used to extract LA bark for biological activity testing: boiling in water, maceration with 95% ethanol, maceration with 50% ethanol and water boiling of each the 95% and the 50% ethanolic residues. All extracts were tested for antioxidant activity using DPPH radical scavenging assay, cytotoxic activity against human laryngeal epidermoid carcinoma (HEp-2) cells and human oral epidermoid carcinoma (KB) cells using sulforhodamine B (SRB) assay. The results found that the 95% ethanolic extract of LA bark showed the highest antioxidant activity with EC50 values of 29.76±1.88 µg/ml. For cytotoxic activity, the 50% ethanolic extract showed the best cytotoxic activity against HEp-2 and KB cells with IC50 values of 9.55±1.68 and 18.90±0.86 µg/ml, respectively. This study demonstrated that the 95% ethanolic extract of LA bark showed moderate antioxidant activity and the 50% ethanolic extract provided potent cytotoxic activity against HEp-2 and KB cells. These results confirm the traditional use of LA for the treatment of oral cancer and laryngeal cancer, and also support its ongoing use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxic%20activity" title=" cytotoxic activity"> cytotoxic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Laryngeal%20epidermoid%20carcinoma" title=" Laryngeal epidermoid carcinoma"> Laryngeal epidermoid carcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=Limonia%20acidissima%20L." title=" Limonia acidissima L."> Limonia acidissima L.</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20epidermoid%20carcinoma" title=" oral epidermoid carcinoma"> oral epidermoid carcinoma</a> </p> <a href="https://publications.waset.org/abstracts/25184/in-vitro-antioxidant-and-cytotoxic-activities-against-human-oral-cancer-and-human-laryngeal-cancer-of-limonia-acidissima-l-bark-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> Phytochemical and Antimicrobial Studies of Root Bark Extracts from Glossonema boveanum (Decne.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Jibrin%20Uttu">Ahmed Jibrin Uttu</a>, <a href="https://publications.waset.org/abstracts/search?q=Maimuna%20Waziri"> Maimuna Waziri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The root bark of Glossonema boveanum (Decne), a member of Apocynaceae family, is used by traditional medicine practitioner to treat urinary and respiratory tract infections, bacteremia, typhoid fever, bacillary dysentery, diarrhea and stomach pain. This present study aims to validate the medicinal claims ascribed to the root bark of the plant. Preliminary phytochemical study of the root bark extracts (n-hexane, ethyl acetate, chloroform and methanol extracts) showed the presence of alkaloids, carbohydrates, steroids, triterpenes, cardiac glycosides, saponins, tannins and flavonoids. Antimicrobial study of the extracts showed activities against Staphylococus aureus, Bacillus subtilis, Salmonella typhii, Shigella dysenteriae, Escherichia coli, Enterobacter cloacae, Streptococcus agalactiae and Candida albicans while Micrococcus luteus, Pseudomonas aeruginosa and Klebsiella Pneumoniae showed resistance to all the extracts. The inhibitory effect was compared with the standard drug ciprofloxacin and fluconazole. MIC and MBC for both extracts were also determined using the tube dilution method. This study concluded that the root bark of G. boveanum, used traditionally as a medicinal plant, has antimicrobial activities against some causative organisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Glossonema%20boveanum%20%28Decne.%29" title="Glossonema boveanum (Decne.)">Glossonema boveanum (Decne.)</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical" title=" phytochemical"> phytochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20inhibitory%20concentration" title=" minimum inhibitory concentration"> minimum inhibitory concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20bactericidal%20concentration" title=" minimum bactericidal concentration"> minimum bactericidal concentration</a> </p> <a href="https://publications.waset.org/abstracts/76647/phytochemical-and-antimicrobial-studies-of-root-bark-extracts-from-glossonema-boveanum-decne" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">122</span> Antibacterial Activity of Ethanolic and Aqueous Extracts of Punica Granatum L. Bark </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Kadi">H. Kadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Moussaoui"> A. Moussaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Medah"> A. Medah</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Benayahia"> N. Benayahia</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahal%20Bouderba"> Nahal Bouderba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For thousands of years, Punica granatum L. has been used in traditional medicine all over the world and predate the introduction of antibacterial drugs. The aim of the present study was to investigate the antibacterial activity of aqueous and ethanolic extracts of Punica granatum L. bark obtained by decoction and maceration. The different extracts of Punica granatum L. (Lythraceae) bark have been tested for antibacterial activity against Gram-positive bacteria (Staphylococcus aureus, Bacillus stearothermophilus) and Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) by disc diffusion method. The ethanolic macerate extract showed the strong in vitro antibacterial activity against Pseudomonas aeruginosa with zone inhibition of 24.4 mm. However, the results tests by disc diffusion method revealed the effectiveness of ethanolic decoctate against Gram-positive bacteria (Staphylococcus aureus and Bacillus stearothermophilus) with diameter zone of inhibition varying with 21.1mm and 23.75 mm respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Punica%20granatum%20L.%20bark" title="Punica granatum L. bark">Punica granatum L. bark</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=maceration" title=" maceration"> maceration</a>, <a href="https://publications.waset.org/abstracts/search?q=decoction" title=" decoction "> decoction </a> </p> <a href="https://publications.waset.org/abstracts/21102/antibacterial-activity-of-ethanolic-and-aqueous-extracts-of-punica-granatum-l-bark" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> Effect of Microwave Radiations on Natural Dyes’ Application on Cotton</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafia%20Asghar">Rafia Asghar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Hafeez"> Abdul Hafeez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current research was related with natural dyes’ extraction from the powder of Neem (Azadirachta indica) bark and studied characterization of this dye under microwave radiation’s influence. Both cotton fabric and dyeing powder were exposed to microwave rays for different time intervals (2minutes, 4 minutes, 6 minutes, 8 minutes and 10 minutes) using conventional oven. Aqueous, 60% Methanol and Ethyl Acetate solubilized extracts obtained from Neem (Azadirachta indica) bark were also exposed to different time intervals (2minutes, 4 minutes, 6 minutes, 8 minutes and 10 minutes) of microwave rays exposure. Pre, meta and post mordanting with Alum (2%, 4%, 6%, 8%, and 10%) was done to improve color strength of the extracted dye. Exposure of Neem (Azadirachta indica) bark extract and cotton to microwave rays enhanced the extraction process and dyeing process by reducing extraction time, dyeing time and dyeing temperature. Microwave rays treatment had a very strong influence on color fastness and color strength properties of cotton that was dyes using Neem (Azadirachta indica) bark for 30 minutes and dyeing cotton with that Neem bark extract for 75 minutes at 30°C. Among pre, meta and post mordanting, results indicated that 5% concentration of Alum in meta mordanting exhibited maximum color strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dyes" title="dyes">dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dyeing" title=" natural dyeing"> natural dyeing</a>, <a href="https://publications.waset.org/abstracts/search?q=ecofriendly%20dyes" title=" ecofriendly dyes"> ecofriendly dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20treatment" title=" microwave treatment"> microwave treatment</a> </p> <a href="https://publications.waset.org/abstracts/20346/effect-of-microwave-radiations-on-natural-dyes-application-on-cotton" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">690</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Phytochemicals from Enantia Chlorantha Stem Bark Inhibits the Activity ?-Amylase and ?-Glucosidase: Molecular Docking Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hammed%20Tanimowo%20Aiyelabegan">Hammed Tanimowo Aiyelabegan</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluchukwu%20Franklin%20Aladi"> Oluchukwu Franklin Aladi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mutiu%20Adewumi%20Alabi"> Mutiu Adewumi Alabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Raliat%20Abimbola%20Aladodo"> Raliat Abimbola Aladodo</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Oladipupo%20Ajani"> Emmanuel Oladipupo Ajani</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulganiyu%20Giwa"> Abdulganiyu Giwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Esther%20Owolabi"> Esther Owolabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study aimed to evaluate the inhibitory activities of ligands from Enantia chlorantha stem bark on α-amylase and α-glucosidase. In silico pharmacokinetic properties and docking scores were employed to analyse the inhibition using SwissADME and Autodock4.2, respectively. Results revealed that drug-likeness, pharmacokinetics and bioavailability radar of all the ligands except jatrorrhizine and acarbose falls within the radar according to the Lipinski rule of 5. The binding energies of the protein-ligand interactions also show that the ligand fits into the active site. The results obtained from this study show that the chemical constituents from Enantia chlorantha stem bark may bring about positive physiological changes in a patient suffering from diabetes mellitus. Further in vitro studies on diabetes cell lines and in vivo studies on the animal may validate these compounds for diabetes treatment. These phytoconstituents could help in the development of novel anti-diabetic molecules. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes%20mellitus" title="diabetes mellitus">diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=%3F-amylase" title=" ?-amylase"> ?-amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=%3F-glucosidase" title=" ?-glucosidase"> ?-glucosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20silico" title=" in silico"> in silico</a>, <a href="https://publications.waset.org/abstracts/search?q=Enantia%20chlorantha%20stem%20bark" title=" Enantia chlorantha stem bark"> Enantia chlorantha stem bark</a> </p> <a href="https://publications.waset.org/abstracts/145916/phytochemicals-from-enantia-chlorantha-stem-bark-inhibits-the-activity-amylase-and-glucosidase-molecular-docking-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> Diversity and Ecological Analysis of Vascular Epiphytes in Gera Wild Coffee Forest, Jimma Zone of Oromia Regional State, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bedilu%20Tafesse">Bedilu Tafesse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The diversity and ecological analysis of vascular epiphytes was studied in Gera Forest in southwestern Ethiopia at altitudes between 1600 and 2400 m.a.s.l. A total area of 4.5 ha was surveyed in coffee and non-coffee forest vegetation. Fifty sampling plots, each 30 m x 30 m (900 m2), were used for the purpose of data collection. A total of 59 species of vascular epiphytes were recorded, of which 34 (59%) were holo epiphytes, two (4%) were hemi epiphytes and 22 (37%) species were accidental vascular epiphytes. To study the altitudinal distribution of vascular epiphytes, altitudes were classified into higher >2000, middle 1800-2000 and lower 1600-1800 m.a.s.l. According to Shannon-Wiener Index (H/= 3.411) of alpha diversity the epiphyte community in the study area is medium. There was a statistically significant difference between host bark type and epiphyte richness as determined by one-way ANOVA p = 0.001 < 0.05. The post-hoc test shows that there is significant difference of vascular epiphytes richness between smooth bark with rough, flack and corky bark (P =0.001< 0.05), as well as rough and cork bark (p =0.43 <0.05). However, between rough and flack bark (p = 0.753 > 0.05) and between flack and corky bark (p = 0.854 > 0.05) no significant difference of epiphyte abundance was observed. Rough bark had 38%, corky 26%, flack 25%, and only 11% vascular epiphytes abundance occurred on smooth bark. The regression correlation test, (R2 = 0.773, p = 0.0001 < 0.05), showed that the number of species of vascular epiphytes and host DBH size are positively correlated. The regression correlation test (R2 = 0.28, p = 0.0001 < 0.05), showed that the number of species and host tree height positively correlated. The host tree preference of vascular epiphytes was recorded for only Vittaria volkensii species hosted on Syzygium guineense trees. The result of similarity analysis indicated that Gera Forest showed the highest vascular epiphytic similarity (0.35) with Yayu Forest and shared the least vascular epiphytic similarity (0.295) with Harenna Forest. It was concluded that horizontal stems and branches, large and rough, flack and corky bark type trees are more suitable for vascular epiphytes seedling attachments and growth. Conservation and protection of these phorophytes are important for the survival of vascular epiphytes and increase their ecological importance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accidental%20epiphytes" title="accidental epiphytes">accidental epiphytes</a>, <a href="https://publications.waset.org/abstracts/search?q=hemiepiphyte" title=" hemiepiphyte"> hemiepiphyte</a>, <a href="https://publications.waset.org/abstracts/search?q=holoepiphyte" title=" holoepiphyte"> holoepiphyte</a>, <a href="https://publications.waset.org/abstracts/search?q=phorophyte" title=" phorophyte"> phorophyte</a> </p> <a href="https://publications.waset.org/abstracts/6845/diversity-and-ecological-analysis-of-vascular-epiphytes-in-gera-wild-coffee-forest-jimma-zone-of-oromia-regional-state-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Bioactivities and Phytochemical Studies of Petroleum Ether Extract of Pleiogynium timorense Bark</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gehan%20F.%20Abdel%20Raoof">Gehan F. Abdel Raoof</a>, <a href="https://publications.waset.org/abstracts/search?q=Ataa%20A.%20Said"> Ataa A. Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Y.%20Mohamed"> Khaled Y. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Hala%20M.%20Mohammed"> Hala M. Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pleiogynium timorense(DC.) Leenh is one of the therapeutically active plants belonging to the family Anacardiaceae. The bark of Pleiogynium timorense needs further studies to investigate its phytochemical and biological activities. This work was carried out to investigate the chemical composition of petroleum ether extract of Pleiogynium timorense bark as well as to evaluate the analgesic and anti-inflammatory activities. The unsaponifiable matter and fatty acid methyl esters were analyzed by Gas chromatography–mass spectrometry (GC-MS). Moreover, analgesic and anti-inflammatory activities were evaluated using acetic acid-induced writhing test and carrageen hind paw oedema models in rats, respectively. The results showed that twenty one compounds in the unsaponifiable fraction were identified representing 92.54 % of the total beak area, the major compounds were 1-Heptene (35.32%), Butylated hydroxy toluene (19.42%) and phytol (12.53%), whereas fifteen compounds were identified in the fatty acid methyl esters fraction representing 94.15% of the total identified peak area. The major compounds were 9-Octadecenoic acid methyl ester (35.34%) and 9,12-Octadecadienoic acid methyl ester (29.32%). Moreover, petroleum ether extract showed a significant reduction in pain and inflammation in a dose dependent manner. This study aims to be the first step toward the use of petroleum ether extract of Pleiogynium timorense bark as analgesic and anti-inflammatory drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analgesic" title="analgesic">analgesic</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-inflammatory" title=" anti-inflammatory"> anti-inflammatory</a>, <a href="https://publications.waset.org/abstracts/search?q=bark" title=" bark"> bark</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20ether%20extract" title=" petroleum ether extract"> petroleum ether extract</a>, <a href="https://publications.waset.org/abstracts/search?q=Pleiogynium%20timorense" title=" Pleiogynium timorense "> Pleiogynium timorense </a> </p> <a href="https://publications.waset.org/abstracts/93698/bioactivities-and-phytochemical-studies-of-petroleum-ether-extract-of-pleiogynium-timorense-bark" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> Cytotoxic Terpenes from the Stems of Bark of Echinacea Angustifolia DC Collected from Girei, Adamawa State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdu%20Zakari">Abdu Zakari</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Jibrin"> Said Jibrin</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatope%20Majekodunmi%20Oladeji"> Fatope Majekodunmi Oladeji</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Hassan%20Shagga"> Mohammed Hassan Shagga</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Sule"> Andrew Sule</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From the Stems of Bark of Echinaceae angustifolia DC three known triterpenes 3a,5,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)icosahydro-1H-cyclopenta[a]chrysene-9-yl acetate (lupeol acetate), 4,4,6a,6b,8a,10,11,14b,octamethyl1,1,2,3,4,4a,5,6,6a,6b,7,8,8a, 9,10, 11,12,12a,14,14a,14b-icosahydropicen-3-yl acetate (derivative of β-amyrin and 9- hydroxy-1-isopropenyl-5a,5b,8,8,11a-pentamethyl-icosahydro-cyclopenta[a]chrysene- 3a-carboxylic acid (betulinic acid), labelled as Ea-7-38, Ea-9-10 and Ea-12-85) were isolated and characterized. All isolates were tested for their cytotoxicities against Artemia salina (brine shrimp larvae). Compound Ea-12-85 exhibited potent cytotoxic activity against the Artemia salina, Ea-7-38, Ea-9-10 were found to be non-toxic in the cytotoxicity test. The result of the study has justified the claim of the traditional medicine practitioners in Girei for the treatment of complicated malaria disease using the stem bark of E. angustifolia DC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytotoxic" title="cytotoxic">cytotoxic</a>, <a href="https://publications.waset.org/abstracts/search?q=terpenes" title=" terpenes"> terpenes</a>, <a href="https://publications.waset.org/abstracts/search?q=Echinaceae%20angustifolia" title=" Echinaceae angustifolia"> Echinaceae angustifolia</a>, <a href="https://publications.waset.org/abstracts/search?q=brine%20shrimp" title=" brine shrimp"> brine shrimp</a>, <a href="https://publications.waset.org/abstracts/search?q=artemia%20salina" title=" artemia salina"> artemia salina</a> </p> <a href="https://publications.waset.org/abstracts/179010/cytotoxic-terpenes-from-the-stems-of-bark-of-echinacea-angustifolia-dc-collected-from-girei-adamawa-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Mechanism of in Vitro Inhibition of Alpha-Amylase, Alpha-Glucosidase by Ethanolic Extracts of Polyalthia Longifolia, Its in Vitro Cytotoxicity on L6, Vero Cell-Lines and Influence of Glucose Uptake by Rat Hemi-Diaphragm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Gayathri">P. Gayathri</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20P.%20Jeyanthi"> G. P. Jeyanthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bark of Polyalthia longifolia is used in ayurvedic system of medicine for the manangement of various ailments including diabetes mellitus. The bark of P. longifolia extracts was extracted using various polar and non-polar solvents and tested for inhibition of alpha-amylase and alpha-glucosidase among which the ethanolic extracts were found to be more potent. The ethanolic extracts of the bark were tested for the in vitro inhibition of alpha-amylase using starch as substrate and alpha-glucosidase using p-nitro phenyl alpha-D-gluco pyranoside as substrate to establish its in vitro antidiabetic effect. The mechanism of inhibition was determined by Dixon plot and Cornish-Bowden plot. The cytotoxic effect of the extract was tested on L6 and Vero cell-lines. The extract was partially purified by TLC. The individual effect of the ethanolic extract, TLC fractions and its combinatorial effect with insulin and glibenclamide on glucose uptake by rat hemi-diaphragm were studied.Results revealed that the ethanolic extracts of Polyalthia longifolia bark exhibited competitive inhibition of alpha-amylase and alpha-glucosidase. The extracts were also found not to be cytotoxic at the highest dose of 1 mg/mL. Glucose uptake study revealed that the extract alone and when combined with insulin, decreased the glucose uptake when compared to insulin control, however the purified TLC fractions exhibited significantly higher (p<0.05) glucose uptake by the rat hemi-diaphragm when compared to insulin. The study shows various possible mechanism of in vitro antidiabetic effect of the P. longifolia bark. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alpha-amylase" title="alpha-amylase">alpha-amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=alpha-glucosidase" title=" alpha-glucosidase"> alpha-glucosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=dixon" title=" dixon"> dixon</a>, <a href="https://publications.waset.org/abstracts/search?q=cornish-bowden" title=" cornish-bowden"> cornish-bowden</a>, <a href="https://publications.waset.org/abstracts/search?q=L6" title=" L6 "> L6 </a>, <a href="https://publications.waset.org/abstracts/search?q=Vero%20cell-lines" title=" Vero cell-lines"> Vero cell-lines</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20uptake" title=" glucose uptake"> glucose uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=polyalthia%20longifolia%20bark" title=" polyalthia longifolia bark"> polyalthia longifolia bark</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanolic%20extract" title=" ethanolic extract"> ethanolic extract</a>, <a href="https://publications.waset.org/abstracts/search?q=TLC%20fractions" title=" TLC fractions"> TLC fractions</a> </p> <a href="https://publications.waset.org/abstracts/34899/mechanism-of-in-vitro-inhibition-of-alpha-amylase-alpha-glucosidase-by-ethanolic-extracts-of-polyalthia-longifolia-its-in-vitro-cytotoxicity-on-l6-vero-cell-lines-and-influence-of-glucose-uptake-by-rat-hemi-diaphragm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> Quantitative Analysis of (+)-Catechin and (-)-Epicatechin in Pentace burmanica Stem Bark by HPLC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thidarat%20Duangyod">Thidarat Duangyod</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanida%20Palanuvej"> Chanida Palanuvej</a>, <a href="https://publications.waset.org/abstracts/search?q=Nijsiri%20Ruangrungsi"> Nijsiri Ruangrungsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pentace burmanica Kurz., belonging to the Malvaceae family, is commonly used for anti-diarrhea in Thai traditional medicine. A method for quantification of (+)-catechin and (-)-epicatechin in P. burmanica stem bark from 12 different Thailand markets by reverse-phase high performance liquid chromatography (HPLC) was investigated and validated. The analysis was performed by a Shimadzu DGU-20A3 HPLC equipped with a Shimadzu SPD-M20A photo diode array detector. The separation was accomplished with an Inersil ODS-3 column (5 µm x 4.6 x 250 mm) using 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B) as mobile phase at the flow rate of 1 ml/min. The isocratic was set at 20% B for 15 min and the column temperature was maintained at 40 ºC. The detection was at the wavelength of 280 nm. Both (+)-catechin and (-)-epicatechin existed in the ethanolic extract of P. burmanica stem bark. The content of (-)-epicatechin was found as 59.74 ± 1.69 µg/mg of crude extract. In contrast, the quantitation of (+)-catechin content was omitted because of its small amount. The method was linear over a range of 5-200 µg/ml with good coefficients (r2 > 0.99) for (+)-catechin and (-)-epicatechin. Limit of detection values were found to be 4.80 µg/ml for (+)-catechin and 5.14 µg/ml for (-)-epicatechin. Limit of quantitation of (+)-catechin and (-)-epicatechin were of 14.54 µg/ml and 15.57 µg/ml respectively. Good repeatability and intermediate precision (%RSD < 3) were found in this study. The average recoveries of both (+)-catechin and (-)-epicatechin were obtained with good recovery in the range of 91.11 – 97.02% and 88.53 – 93.78%, respectively, with the %RSD less than 2. The peak purity indices of catechins were more than 0.99. The results suggested that HPLC method proved to be precise and accurate and the method can be conveniently used for (+)-catechin and (-)-epicatechin determination in ethanolic extract of P. burmanica stem bark. Moreover, the stem bark of P. burmanica was found to be a rich source of (-)-epicatechin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pentace%20burmanica" title="pentace burmanica">pentace burmanica</a>, <a href="https://publications.waset.org/abstracts/search?q=%28%2B%29-catechin" title=" (+)-catechin"> (+)-catechin</a>, <a href="https://publications.waset.org/abstracts/search?q=%28-%29-epicatechin" title=" (-)-epicatechin"> (-)-epicatechin</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20liquid%20chromatography" title=" high performance liquid chromatography "> high performance liquid chromatography </a> </p> <a href="https://publications.waset.org/abstracts/19773/quantitative-analysis-of-catechin-and-epicatechin-in-pentace-burmanica-stem-bark-by-hplc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> Profiling, Antibacterial and Antioxidant Activity of Acacia decurrens (Willd) an Invasive South Africa Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joe%20Modise">Joe Modise</a>, <a href="https://publications.waset.org/abstracts/search?q=Bamidel%20Joseph%20Okoli"> Bamidel Joseph Okoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nas%20Molefe"> Nas Molefe</a>, <a href="https://publications.waset.org/abstracts/search?q=Imelda%20Ledwaba"> Imelda Ledwaba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study describes the chemical profile and antioxidant potential of the stem bark of Acacia decurrens. The methanol fraction of A. decurrens stem bark gave the highest yield (20 %), while the hexane fraction had the lowest yield (0.2 %). The GC-MS spectra of the hexane, chloroform and ethyl acetate fractions confirm the presence of fifty two major compounds and the ICP-OES analysis of the stem bark was found to contain Co(0.41), Zn(1.75), Mn(3.69), Ca(8.67), Ni(10.54), Mg(12.98), Cr(24.38), K(47.88), Fe(154.62) ppm; which is an indication of hyper-accumulation capacity. The UV-Visible spectra of showed four absorption maxima for hexane fraction at 665 (0.028), 410 (0.116), 335 (0.278) and 250 (0.007) nm, three for chloroform fraction at 665 (0.028), 335 (0.278) and 250 (0.007) nm , three for ethyl acetate fraction at 665 (0.070), 390 (0.648) and 345 (0.663) nm and three for methanol fraction at 385 (0.508), 310 (0.886) and 295 (0.899) nm respectively. Quantitative phytochemical screening indicated that the alkaloid (0.6-3.3) % and saponins (5.1-8.6) % contents of the various fractions were significantly lower than the tannin (30.9-55.8) mg TAE/g, steroid(13.92-41.2) %, phenol (40.6-65.5) mgGAE/g and flavonoids (210.2 -284.9) mg RUE/g contents. The antioxidant activity of the fractions was analysed by different methods and revealed good to moderate antioxidant potential with different IC50 values viz. (42.2-49.6) mg/mL for ABTS and (37.8-75.0) μg/ml for DPPH respectively, compared to standard antioxidants. Based on obtained results, the A.decurrens stem bark fractions can be a source of safe, sustainable natural antioxidant drug and can be exploited as a source of controlled green-heavy metal cleaner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Acacia%20decurrens" title="Acacia decurrens">Acacia decurrens</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH" title=" DPPH"> DPPH</a>, <a href="https://publications.waset.org/abstracts/search?q=ABTS" title=" ABTS"> ABTS</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperaccumulation" title=" hyperaccumulation"> hyperaccumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Menstruum" title=" Menstruum"> Menstruum</a>, <a href="https://publications.waset.org/abstracts/search?q=ICP-OES" title=" ICP-OES"> ICP-OES</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%2Fvisible" title=" UV/visible"> UV/visible</a> </p> <a href="https://publications.waset.org/abstracts/69369/profiling-antibacterial-and-antioxidant-activity-of-acacia-decurrens-willd-an-invasive-south-africa-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> Antiangiogenic Potential of Phellodendron amurense Bark Extract Observed on Chorioallantoic Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C4%BDudmila%20Ballov%C3%A1">Ľudmila Ballová</a>, <a href="https://publications.waset.org/abstracts/search?q=Slavom%C3%ADr%20Kurhajec"> Slavomír Kurhajec</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20Petrovov%C3%A1"> Eva Petrovová</a>, <a href="https://publications.waset.org/abstracts/search?q=Jarmila%20Eftimov%C3%A1"> Jarmila Eftimová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Angiogenesis, a formation of new blood vessels from a pre-existing vasculature, plays an important role in pathologic processes such as the growth and metastasis of tumours. Tumours cannot grow beyond a few millimetres without blood supply from the newly formed blood vessels from the host tissue, a process called tumour-induced angiogenesis. The successful research of antiangiogenic treatment of cancer has focused on nutraceuticals with angiogenesis-modulating properties. Berberine, as a major active component of the bark of<em> Phellodendron amurense</em> Rupr., has shown antitumour activity by intervening into different steps of carcinogenesis. The influence of ethanolic extract of <em>Phellodendron amurese</em> bark on the angiogenesis was tested <em>in vivo</em> on chick chorioallantoic membrane (CAM). The irritancy of the CAM after the application of the crude bark extract dissolved in normal saline (10 mg/mL) was investigated on embryonic day 7. No significant signs of the irritancy, such as vasoconstriction, hyperaemia, haemorrhage or coagulation were observed which indicates the harmless character of the extract. A significant reduction in vessel sprouting and higher percentage of avascular zone was observed in the case of CAM treated with the extract in comparison with non-treated CAM (control), which is a proof of the antiangiogenic potential of the extract. These results could contribute to the development of novel drugs for the treatment of cancer or other diseases, in which angiogenesis plays a significant role. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angiogenesis" title="angiogenesis">angiogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=berberine" title=" berberine"> berberine</a>, <a href="https://publications.waset.org/abstracts/search?q=chorioallantoic%20membrane" title=" chorioallantoic membrane"> chorioallantoic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=irritancy" title=" irritancy"> irritancy</a>, <a href="https://publications.waset.org/abstracts/search?q=phellodendron%20amurense" title=" phellodendron amurense"> phellodendron amurense</a> </p> <a href="https://publications.waset.org/abstracts/29704/antiangiogenic-potential-of-phellodendron-amurense-bark-extract-observed-on-chorioallantoic-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> Anti-Ulcer Activity of Hydro Alcoholic Extract of Ficus bengalensis Linn Bark in Experimental Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jagdish%20Baheti">Jagdish Baheti</a>, <a href="https://publications.waset.org/abstracts/search?q=Sampat%20Navale"> Sampat Navale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was performed to evaluate the anti-ulcerogenic activity of hydro-alcoholic extract of Ficus bengalensis Linn. against ethanol-induced gastric mucosal injury in rats and pylorus ligation gastric secretion in rats. Five groups of adult wistar rats were orally pre-treated respectively with carboxy methyl cellulose (CMC) solution (ulcer control group), Omeprazole 20 mg/kg (reference group), and 100, 200 and 300 mg/kg F. bengalensis Linn. bark extract in CMC solution (experimental groups), one hour before oral administration of absolute ethanol to generate gastric mucosal injury. Rats were sacrificed and the ulcer index, gastric volume, gastric pH, free acidity, total acidity of the gastric content was determined. Grossly, the ulcer control group exhibited severe mucosal injury, whereas pre-treatment with F. bengalensis Linn. bark extract exhibited significant protection of gastric mucosal injury in both model. Histological studies revealed that ulcer control group exhibited severe damage of gastric mucosa, along with edema and leucocytes infiltration of submucosal layer compared to rats pre-treated with F. bengalensis Linn. bark extract which showed gastric mucosal protection, reduction or absence of edema and leucocytes infiltration of submucosal layer. Acute toxicity study did not manifest any toxicological signs in rats. The present finding suggests that F. bengalensis Linn. bark extract promotes ulcer protection as ascertained grossly and histologically compared to the ulcer control group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ficus%20bengalensis%20Linn." title="Ficus bengalensis Linn.">Ficus bengalensis Linn.</a>, <a href="https://publications.waset.org/abstracts/search?q=gastric%20ulcer" title=" gastric ulcer"> gastric ulcer</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroalcoholic" title=" hydroalcoholic"> hydroalcoholic</a>, <a href="https://publications.waset.org/abstracts/search?q=pylorus%20ligation" title=" pylorus ligation"> pylorus ligation</a> </p> <a href="https://publications.waset.org/abstracts/50422/anti-ulcer-activity-of-hydro-alcoholic-extract-of-ficus-bengalensis-linn-bark-in-experimental-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> The Cell Viability Study of Extracts of Bark, Flowers, Leaves and Seeds of Indian Dhak Tree, Flame of Forest</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhavi%20S.%20Apte">Madhavi S. Apte</a>, <a href="https://publications.waset.org/abstracts/search?q=Milind%20Bhitre"> Milind Bhitre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In pharmaceutical research and new drug development, medicinal plants have important roles. Similarly, Indian dhak tree belonging to family Fabaceae has been widely used in the traditional Indian medical system of ‘Ayurveda’ for the treatment of a variety of ailments. Hence the cell viability study was undertaken to evaluate and compare the activity of extracts of various parts like flower, bark, leaf, seed by conducting MTT assay method along with other pharmacognostical studies. The methanolic extracts of bark, flowers, leaves, and seeds were used for the study. The cell viability MTT assay was performed using the standard operating procedures. The extracts were dissolved in DMSO and serially diluted with complete medium to get the concentrations range of test concentration. DMSO concentration was kept < 0.1% in all the samples. HUVEC cells maintained in appropriate conditions were seeded in 96 well plates and treated with different concentrations of the test samples and incubated at 37°C, 5% CO₂ for 96 hours. MTT reagent was added to the wells and incubated for 4 hours; the dark blue formazan product formed by the cells was dissolved in DMSO under a safety cabinet and read at 550nm. Percentage inhibitions were calculated and plotted with the concentrations used to calculate the IC50 values. The bark, flower, leaves and seed extracts have shown the cytotoxicity activity and can be further studied for antiangiogenesis activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pharmacognosy" title="pharmacognosy">pharmacognosy</a>, <a href="https://publications.waset.org/abstracts/search?q=Cell%20viability" title=" Cell viability"> Cell viability</a>, <a href="https://publications.waset.org/abstracts/search?q=MTT%20assay" title=" MTT assay"> MTT assay</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-angiogenesis" title=" anti-angiogenesis "> anti-angiogenesis </a> </p> <a href="https://publications.waset.org/abstracts/85741/the-cell-viability-study-of-extracts-of-bark-flowers-leaves-and-seeds-of-indian-dhak-tree-flame-of-forest" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Two Antiplasmodial Compounds from Lauraceae: Actinodaphne macrophylla and Nectandra angustifolia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tiah%20Rachmatiah">Tiah Rachmatiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Subaryanti"> Subaryanti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plants of Lauraceae family are known to contain many chemical compounds which have potential bioactivity such as alkaloids, flavonoids, lactones, terpenes, etc. Actinodaphne macrophylla and Nectandra angustifolia are two species from Lauraceae. A previous study on the crude alkaloidal extract from the bark of Act. macrophylla and n-hexane extract from the bark of N. angustifolia showed antiplasmodial activity against Plasmodium falciparum. The study was continued to find antiplasmodial active compounds from the two extracts. The materials were obtained from Bogor Botanical Garden, West Java, Indonesia. Crude alkaloidal extract of Act. macrophylla was prepared by maceration in dichloromethane after moistened with NH4OH 25% and n-hexane extract of N. angustifolia was prepared by maceration in n-hexane. A major compound was isolated by column chromatography using silica gel and a mixture of CH2Cl2 and methanol as a gradient solvent system for the alkaloidal extract and mixture of n-hexane and ethyl acetate for n-hexane extract. Fine white needle crystals were obtained from the alkaloidal extract and rod crystals from n-hexane extract. Molecular structure of the compounds was determined by analysis of spectra of NMR, IR, MS and compared by references. In vitro bioactivity test of the compound was performed against Plasmodium falciparum. The results showed that the bark of Act. macrophylla contained an aporphine alkaloid, actinodaphnine, that had activity against P. falciparum with IC50 value of 0.095 µg/mL and the bark of N. angustifolia contained a lignan compound, sesamine, with IC50 of 0.122 µg/mL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actinodaphne%20macrophylla" title="actinodaphne macrophylla">actinodaphne macrophylla</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaloid" title=" alkaloid"> alkaloid</a>, <a href="https://publications.waset.org/abstracts/search?q=antiplasmodial" title=" antiplasmodial"> antiplasmodial</a>, <a href="https://publications.waset.org/abstracts/search?q=lauraceae" title=" lauraceae"> lauraceae</a>, <a href="https://publications.waset.org/abstracts/search?q=lignan" title=" lignan"> lignan</a>, <a href="https://publications.waset.org/abstracts/search?q=nectandra%20angustifolia" title=" nectandra angustifolia"> nectandra angustifolia</a> </p> <a href="https://publications.waset.org/abstracts/31364/two-antiplasmodial-compounds-from-lauraceae-actinodaphne-macrophylla-and-nectandra-angustifolia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> Evaluation of Toxicity of Root-bark Powder of Securidaca Longepedunculata Enhanced with Diatomaceous Earth Fossilshield Against Callosobruchus Maculatus (F.) (Coleoptera-Bruchidea)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mala%20Tankam%20Carine">Mala Tankam Carine</a>, <a href="https://publications.waset.org/abstracts/search?q=Kekeunou%20S%C3%A9vilor"> Kekeunou Sévilor</a>, <a href="https://publications.waset.org/abstracts/search?q=Nukenine%20Elias"> Nukenine Elias</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Storage and preservation of agricultural products remain the only conditions ensuring the almost permanent availability of foodstuffs. However, infestations due to insects and microorganisms often occur. Callosobruchus maculatus is a pest that causes a lot of damage to cowpea stocks in the tropics. Several methods are adopted to limit their damage, but the use of synthetic chemical insecticides is the most widespread. Biopesticides in sustainable agriculture respond to several environmental, economic and social concerns while offering innovative opportunities that are ecologically and economically viable for producers, workers, consumers and ecosystems. Our main objective is to evaluate the insecticidal efficacy of binary combinations of Fossilshield with root-bark powder of Securidaca longepedunculata against Callosobruchus maculatus in stored cowpea Vigna unguiculata. Laboratory bioassays were conducted in stored grains to evaluate the toxicity of root-bark powder of Securidaca longepedunculata alone or combined with diatomaceous earth Fossil-Shield ® against C. maculatus. Twenty-hour-old adults of C. maculatus were exposed to 50g of cowpea seeds treated with four doses (10, 20, 30, and 40g/kg) of root-bark powder of S. longepedunculata, on the one hand, and (0.5, 1, 1.5, and 2 g/kg) on DE and binary combinations on the other hand. 0g/kg corresponded to untreated control. Adult mortality was recorded up to 7 days (d) post-treatment, whereas the number of F1 progeny was assessed after 30 d. Weight loss and germinative ability were conducted after 120 d. All treatments were arranged according to a completely randomized block with four replicates. The combined mixture of S. longepedunculata and DE controlled the beetle faster compared to the root-bark powder of S. longepedunculata alone. According to the Co-toxicity coefficient, additive effect of binary combinations was recorded at 3-day post-exposure time with the mixture 25% FossilShield + 75% S. longepedunculata. A synergistic action was observed after 3-d post-exposure at mixture 50% FossilShield + 50% S. longepedunculata and at 1-d and 3-d post-exposure periods at mixture 75% FossilShield + 25% S. longepedunculata. The mixture 25% FossilShield + 75% S. longepedunculata induced a decreased progeny of 6 times fewer individuals for 4.5 times less weight loss and 2, 9 times more sprouted grains than with root-bark powder of S. longepedunculata. The combination of FossilShield + S. longepedunculata was more potent than root-bark powder of S. longepedunculata alone, although the root-bark powder of S. longepedunculata caused significant reduction of F1 adults compared to the control. Combined action of botanical insecticides with FossilShield as a grain protectant in an integrated pest management approach is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diatomaceous%20earth" title="diatomaceous earth">diatomaceous earth</a>, <a href="https://publications.waset.org/abstracts/search?q=cowpea" title=" cowpea"> cowpea</a>, <a href="https://publications.waset.org/abstracts/search?q=callosobruchus%20maculatus" title=" callosobruchus maculatus"> callosobruchus maculatus</a>, <a href="https://publications.waset.org/abstracts/search?q=securidaca%20longepedunculata" title=" securidaca longepedunculata"> securidaca longepedunculata</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20action" title=" combined action"> combined action</a>, <a href="https://publications.waset.org/abstracts/search?q=co-toxicity%20coefficient" title=" co-toxicity coefficient"> co-toxicity coefficient</a> </p> <a href="https://publications.waset.org/abstracts/169505/evaluation-of-toxicity-of-root-bark-powder-of-securidaca-longepedunculata-enhanced-with-diatomaceous-earth-fossilshield-against-callosobruchus-maculatus-f-coleoptera-bruchidea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> Antimicrobial and Phytochemical Screening of Stem Bark Extracts of Lovoa trichiliodes (Harm) and Trichilia heudelotii Planc (Harm)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20O.%20Opawale">Benjamin O. Opawale</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20K.%20Onifade"> Anthony K. Onifade</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayodele%20O.%20Ogundare"> Ayodele O. Ogundare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phytochemical and antimicrobial activities of stem bark extracts (cold water, ethanol and acetone) of Lovoa trichiliodes and Trichilia heudelotii were investigated using standard methods. The percentage yield of the extracts ranged from 3.90 to 6.53% and 9.63 to 10.20% respectively for the plant materials. Phytochemical screening of the plant materials revealed the presence of alkaloids, saponins, tannins, phlobatanins, phenols, anthraquinones and glycosides. Terpenes, cardenolides and flavonoids were absent in the two plants. All the extracts remarkably inhibited the growth of Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Salmonella typhii, Aspergillus flavus, Candida albicans and Candida glabrata. The mean diameter of the zone of inhibition exhibited by the extracts was between 8.00 and 22.33mm while the minimum inhibitory concentration (MIC) was between 2.5 and 200mg/ml. However, the cold water extracts of L. trichiliodes stem bark exhibited no inhibitory activity against the organisms. The results of this investigation confirmed the folkloric uses of these plants for the treatment of various infectious diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=infectious%20diseases" title=" infectious diseases"> infectious diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical" title=" phytochemical"> phytochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20heudelotii" title=" T. heudelotii"> T. heudelotii</a> </p> <a href="https://publications.waset.org/abstracts/61948/antimicrobial-and-phytochemical-screening-of-stem-bark-extracts-of-lovoa-trichiliodes-harm-and-trichilia-heudelotii-planc-harm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Acute Oral Toxicity Study of Mystroxylon aethiopicum Root Bark Aqueous Extract in Albino Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mhuji%20Kilonzo">Mhuji Kilonzo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acute oral toxicity of Mystroxylon aethiopicum root bark aqueous was evaluated in albino mice of either sex. In this study, five groups of mice were orally treated with doses of 1000, 2000, 3000, 4000 and 5000 mg/kg body weight of the crude extract. The mortality, signs of toxicity and body weights were observed individually for two weeks. At the end of the two weeks study, all animals were sacrificed, and the hematological and biochemical parameters, as well as organ weights relative to body weight of each animal, were determined. No mortality, signs of toxicity and abnormalities in vital organs were observed in the entire period of study for both treated and control groups of mice. Additionally, there were no significant changes (p > 0.05) in the blood hematology and biochemical analysis. However, the body weights of all mice increased significantly. The Mystroxylon aethiopicum root bark aqueous extract were found to have a high safe margin when administered orally. Hence, the extract can be utilized for pharmaceutical formulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20oral%20toxicity" title="acute oral toxicity">acute oral toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=albino%20mice" title=" albino mice"> albino mice</a>, <a href="https://publications.waset.org/abstracts/search?q=Mystroxylon%20aethiopicum" title=" Mystroxylon aethiopicum"> Mystroxylon aethiopicum</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a> </p> <a href="https://publications.waset.org/abstracts/63956/acute-oral-toxicity-study-of-mystroxylon-aethiopicum-root-bark-aqueous-extract-in-albino-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> Genetic Improvement Potential for Wood Production in Melaleuca cajuputi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong%20Nguyen%20Thi%20Hai">Hong Nguyen Thi Hai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryota%20Konda"> Ryota Konda</a>, <a href="https://publications.waset.org/abstracts/search?q=Dat%20Kieu%20Tuan"> Dat Kieu Tuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Cao%20Tran%20Thanh"> Cao Tran Thanh</a>, <a href="https://publications.waset.org/abstracts/search?q=Khang%20Phung%20Van"> Khang Phung Van</a>, <a href="https://publications.waset.org/abstracts/search?q=Hau%20Tran%20Tin"> Hau Tran Tin</a>, <a href="https://publications.waset.org/abstracts/search?q=Harry%20Wu"> Harry Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Melaleuca cajuputi is a moderately fast-growing species and considered as a multi-purpose tree as it provides fuelwood, piles and frame poles in construction, leaf essential oil and honey. It occurs in Australia, Papua New Guinea, and South-East Asia. M. cajuputi plantation can be harvested on 6-7 year rotations for wood products. Its timber can also be used for pulp and paper, fiber and particle board, producing quality charcoal and potentially sawn timber. However, most reported M. cajuputi breeding programs have been focused on oil production rather than wood production. In this study, breeding program of M. cajuputi aimed to improve wood production was examined by estimating genetic parameters for growth (tree height, diameter at breast height (DBH), and volume), stem form, stiffness (modulus of elasticity (MOE)), bark thickness and bark ratio in a half-sib family progeny trial including 80 families in the Mekong Delta of Vietnam. MOE is one of the key wood properties of interest to the wood industry. Non-destructive wood stiffness was measured indirectly by acoustic velocity using FAKOPP Microsecond Timer and especially unaffected by bark mass. Narrow-sense heritability for the seven traits ranged from 0.13 to 0.27 at age 7 years. MOE and stem form had positive genetic correlations with growth while the negative correlation between bark ratio and growth was also favorable. Breeding for simultaneous improvement of multiple traits, faster growth with higher MOE and reduction of bark ratio should be possible in M. cajuputi. Index selection based on volume and MOE showed genetic gains of 31 % in volume, 6 % in MOE and 13 % in stem form. In addition, heritability and age-age genetic correlations for growth traits increased with time and optimal early selection age for growth of M. cajuputi based on DBH alone was 4 years. Selected thinning resulted in an increase of heritability due to considerable reduction of phenotypic variation but little effect on genetic variation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20velocity" title="acoustic velocity">acoustic velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=age-age%20correlation" title=" age-age correlation"> age-age correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=bark%20thickness" title=" bark thickness"> bark thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=heritability" title=" heritability"> heritability</a>, <a href="https://publications.waset.org/abstracts/search?q=Melaleuca%20cajuputi" title=" Melaleuca cajuputi"> Melaleuca cajuputi</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=thinning%20effect" title=" thinning effect"> thinning effect</a> </p> <a href="https://publications.waset.org/abstracts/101583/genetic-improvement-potential-for-wood-production-in-melaleuca-cajuputi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Role of Inflammatory Markers in Arthritic Rats Treated with Ethanolic Bark Extract of Albizia procera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sangeetha">M. Sangeetha</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Chamundeeswari"> D. Chamundeeswari</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Saravanababu"> C. Saravanababu</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Rose"> C. Rose</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Gopal"> V. Gopal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p class="Abstract" style="text-indent:10.2pt"><span lang="EN-US">Rheumatoid arthritis (RA) is a chronic, progressive, systemic inflammatory disorder affecting the synovial joints and typically producing symmetrical arthritis that leads to joint destruction, which is responsible for the deformity and disability. Despite improvements in the treatment of RA over the past decade, there still is a need for new therapeutic agents that are efficacious, less expensive, and free of severe adverse reactions. The present study aimed to investigate role of inflammatory markers in arthritic rats treated with ethanolic bark extract of <i>Albizia procera</i>. The protective effect of ethanolic bark extract of <i>Albizia procera </i>against complete Freund’s adjuvant (CFA) induced arthritis in rats. Arthritis was induced by an intradermal injection of 0.1 ml FCA in the foot pad of left hind limb of rats. ETBE (100 and 200 mg/kg b.wt./p.o) and the reference drug diclofenac (25 mg/kg b.wt./p.o) were administered to arthritic rats. Paw volume was measured for all the animals before inducing arthritis and thereafter once in seven days by using plethysmometer for 42 days. Gene expression of inflammatory markers such as IL-1β and IL-10 were investigated in paw tissues. Up regulation of IL-1β and Down regulation IL-10 were observed in CFA injected rats when compared to normal rats. ETBE attenuated these alterations dose dependently when compared to the vehicle treated rats. These results provide insights into the mechanism of anti-arthritic activity, and unravel potential therapeutic use of <i>Albizia procera </i>in arthritis.<o:p> </o:p></span> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFA-Complete%20Freund%E2%80%99s%20adjuvant" title="CFA-Complete Freund’s adjuvant">CFA-Complete Freund’s adjuvant</a>, <a href="https://publications.waset.org/abstracts/search?q=ETBE%20%E2%80%93%20ethanolic%20bark%20extract" title=" ETBE – ethanolic bark extract"> ETBE – ethanolic bark extract</a>, <a href="https://publications.waset.org/abstracts/search?q=IL-%20interleukins" title=" IL- interleukins"> IL- interleukins</a>, <a href="https://publications.waset.org/abstracts/search?q=RA-rheumatoid%20arthritis" title=" RA-rheumatoid arthritis"> RA-rheumatoid arthritis</a> </p> <a href="https://publications.waset.org/abstracts/52352/role-of-inflammatory-markers-in-arthritic-rats-treated-with-ethanolic-bark-extract-of-albizia-procera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> Media Manipulations and the Culture of Beneficial Endophytic Fungi in the Leaves and Stem Bark of Grewia lasiocarpa E. Mey. Ex Harv</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akwu%20A.%20Nneka">Akwu A. Nneka</a>, <a href="https://publications.waset.org/abstracts/search?q=Naidoo"> Naidoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yougasphree"> Yougasphree</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A significantly high number of microbes exist in higher plants; these microbes include bacteria, fungi, and actinomycetes. There are reports on the benefits of endophytic fungi and their products of metabolism to the host plant and man, consequently, it is expedient to explore the changes that could arise as a result of manipulating their growth media. Grewia lasiocarpa E. Mey. ex Harv. (Malvaceae) is an indigenous Southern African plant, that belongs to a genus with known medicinal properties. Three media were used to culture the endophytic fungi viz., Potato Dextrose Agar (PDA), Malt Extract Agar (MEA), and Bacteriological Agar (BA) were used singly, and supplemented with three dilutions of the leaves and stem bark extracts. The manipulated growth media composition had a significant effect on the diversity of the isolated fungal populations. Several endophytic fungi were isolated; their distribution and diversity revealed a significant relatedness with the manipulated media. The media supplemented with the plant extracts was observed to give a significant increase in the growth rate and yield of the endophytes. To the best of our knowledge, this is the first study describing the endophytic fungi present in the leaves and stem bark of G. lasiocarpa E. Mey. ex Harv. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grewia%20lasiocarpa" title="Grewia lasiocarpa">Grewia lasiocarpa</a>, <a href="https://publications.waset.org/abstracts/search?q=plant-based%20extracts" title=" plant-based extracts"> plant-based extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=endophytic%20fungi" title=" endophytic fungi"> endophytic fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=Malvaceae" title=" Malvaceae"> Malvaceae</a> </p> <a href="https://publications.waset.org/abstracts/123827/media-manipulations-and-the-culture-of-beneficial-endophytic-fungi-in-the-leaves-and-stem-bark-of-grewia-lasiocarpa-e-mey-ex-harv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> Optimization of Quercus cerris Bark Liquefaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADsa%20P.%20Cruz-Lopes">Luísa P. Cruz-Lopes</a>, <a href="https://publications.waset.org/abstracts/search?q=Hugo%20Costa%20e%20Silva"> Hugo Costa e Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Idalina%20Domingos"> Idalina Domingos</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Ferreira"> José Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADs%20Teixeira%20de%20Lemos"> Luís Teixeira de Lemos</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Esteves"> Bruno Esteves</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The liquefaction process of cork based tree barks has led to an increase of interest due to its potential innovation in the lumber and wood industries. In this particular study the bark of <em>Quercus cerris</em> (Turkish oak) is used due to its appreciable amount of cork tissue, although of inferior quality when compared to the cork provided by other Quercus trees. This study aims to optimize alkaline catalysis liquefaction conditions, regarding several parameters. To better comprehend the possible chemical characteristics of the bark of <em>Quercus cerris</em>, a complete chemical analysis was performed. The liquefaction process was performed in a double-jacket reactor heated with oil, using glycerol and a mixture of glycerol/ethylene glycol as solvents, potassium hydroxide as a catalyst, and varying the temperature, liquefaction time and granulometry. Due to low liquefaction efficiency resulting from the first experimental procedures a study was made regarding different washing techniques after the filtration process using methanol and methanol/water. The chemical analysis stated that the bark of <em>Quercus cerris</em> is mostly composed by suberin (<em>ca.</em> 30%) and lignin (<em>ca.</em> 24%) as well as insolvent hemicelluloses in hot water (<em>ca.</em> 23%). On the liquefaction stage, the results that led to higher yields were: using a mixture of methanol/ethylene glycol as reagents and a time and temperature of 120 minutes and 200 ºC, respectively. It is concluded that using a granulometry of <80 mesh leads to better results, even if this parameter barely influences the liquefaction efficiency. Regarding the filtration stage, washing the residue with methanol and then distilled water leads to a considerable increase on final liquefaction percentages, which proves that this procedure is effective at liquefying suberin content and lignocellulose fraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title="liquefaction">liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=Quercus%20cerris" title=" Quercus cerris"> Quercus cerris</a>, <a href="https://publications.waset.org/abstracts/search?q=polyalcohol%20liquefaction" title=" polyalcohol liquefaction"> polyalcohol liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/52423/optimization-of-quercus-cerris-bark-liquefaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Pseudotsuga%20bark&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Pseudotsuga%20bark&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Pseudotsuga%20bark&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Pseudotsuga%20bark&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Pseudotsuga%20bark&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>