CINXE.COM

Search results for: drops coalescence

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: drops coalescence</title> <meta name="description" content="Search results for: drops coalescence"> <meta name="keywords" content="drops coalescence"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="drops coalescence" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="drops coalescence"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 194</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: drops coalescence</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">194</span> Coalescence Cascade of Vertically-aligned Water Drops on a Super-hydrophobic Surface in Silicone Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Brik">M. Brik</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Harmand"> S. Harmand</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Zaaroura"> I. Zaaroura </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This report, an experimental investigation, concerns the sessile daughter drop remaining during the coalescence of water drops in a liquid-liquid (LL) system. The two drops are initially vertically aligned where the sessile drop is deposited on a chemically treated super-hydrophobic surface of a cube fill of silicone oil. In order to analyze the coalescence dynamics, a series of experiments have been performed using a generation droplets system (KRUSS) that measures contact angles as well coupled with a high-speed camera (Keyence VW-9000E) to record the process at a frame rate of 15000s-1. It’s depicted that in such configuration, the head drop volume has a primordial impact on the dynamics of the coalescence process, especially at the last stage. It’s found that for a sessile drop deposited on a super-hydrophobic surface, where the contact angle is about θ ≈ 145°, the coalescence process is remarked to be complete without any recoiling of the coalesced drop or a generation of a sessile daughter drop at the super-hydrophobic surface when the head drop volume is small enough (Vₐᵦ< Vₛ up to Vₐᵦ = 3Vₛ). On the other side, the coalescence process starts to be followed by jumping off the resulted drop as well as a remaining of a small sessile daughter drop on the bottom surface of the cube from a head drop volume Vₐᵦ of about 4 times than that of the sessile drop Vₛ. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drops%20coalescence" title="drops coalescence">drops coalescence</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersed%20multiphase%20flow" title=" dispersed multiphase flow"> dispersed multiphase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=drops%20dynamics" title=" drops dynamics"> drops dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-liquid%20system" title=" liquid-liquid system"> liquid-liquid system</a> </p> <a href="https://publications.waset.org/abstracts/137757/coalescence-cascade-of-vertically-aligned-water-drops-on-a-super-hydrophobic-surface-in-silicone-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">193</span> Towards an Understanding of Breaking and Coalescence Process in Bitumen Emulsions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Khan">Abdullah Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Per%20Redelius"> Per Redelius</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicole%20Kringos"> Nicole Kringos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The breaking and coalescence process in bitumen emulsion strongly influence the performance of the cold mix asphalt (CMA) and this phase separation process is affected by the physio-chemical changes happening at the bitumen/water interface. In this paper, coalescence experiments of two bitumen droplets in an emulsion environment have been carried out by a newly developed test procedure. In this study, different types of emulsifiers were selected to understand the coalescence process with respect to changes in the water phase surface tension due to addition of different surfactants and other additives such as salts. The research showed that the relaxation kinetics of bitumen droplets varied with the type of emulsifier, its concentration as well as with and without presence of salt in the water phase. Moreover, kinetics of the coalescence process was also investigated with the temperature variation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitumen%20emulsions" title="bitumen emulsions">bitumen emulsions</a>, <a href="https://publications.waset.org/abstracts/search?q=breaking%20and%20coalescence" title=" breaking and coalescence"> breaking and coalescence</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20mix%20asphalt" title=" cold mix asphalt"> cold mix asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsifiers" title=" emulsifiers"> emulsifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation" title=" relaxation"> relaxation</a>, <a href="https://publications.waset.org/abstracts/search?q=salts" title=" salts"> salts</a> </p> <a href="https://publications.waset.org/abstracts/62893/towards-an-understanding-of-breaking-and-coalescence-process-in-bitumen-emulsions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">192</span> A Semi-Implicit Phase Field Model for Droplet Evolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Kazemi">M. H. Kazemi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Salac"> D. Salac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A semi-implicit phase field method for droplet evolution is proposed. Using the phase field Cahn-Hilliard equation, we are able to track the interface in multiphase flow. The idea of a semi-implicit finite difference scheme is reviewed and employed to solve two nonlinear equations, including the Navier-Stokes and the Cahn-Hilliard equations. The use of a semi-implicit method allows us to have larger time steps compared to explicit schemes. The governing equations are coupled and then solved by a GMRES solver (generalized minimal residual method) using modified Gram-Schmidt orthogonalization. To show the validity of the method, we apply the method to the simulation of a rising droplet, a leaky dielectric drop and the coalescence of drops. The numerical solutions to the phase field model match well with existing solutions over a defined range of variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coalescence" title="coalescence">coalescence</a>, <a href="https://publications.waset.org/abstracts/search?q=leaky%20dielectric" title=" leaky dielectric"> leaky dielectric</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20method" title=" numerical method"> numerical method</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20field" title=" phase field"> phase field</a>, <a href="https://publications.waset.org/abstracts/search?q=rising%20droplet" title=" rising droplet"> rising droplet</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-implicit%20method" title=" semi-implicit method"> semi-implicit method</a> </p> <a href="https://publications.waset.org/abstracts/50305/a-semi-implicit-phase-field-model-for-droplet-evolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">191</span> Three-Dimensional Numerical Simulation of Drops Suspended in Poiseuille Flow: Effect of Reynolds Number</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Nourbakhsh">A. Nourbakhsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A finite difference/front tracking method is used to study the motion of three-dimensional deformable drops suspended in plane Poiseuille flow at non-zero Reynolds numbers. A parallel version of the code was used to study the behavior of suspension on a reasonable grid resolution (grids). The viscosity and density of drops are assumed to be equal to that of the suspending medium. The effect of the Reynolds number is studied in detail. It is found that drops with small deformation behave like rigid particles and migrate to an equilibrium position about half way between the wall and the center line (the Segre-Silberberg effect). However, for highly deformable drops there is a tendency for drops to migrate to the middle of the channel, and the maximum concentration occurs at the center line. The effective viscosity of suspension and the fluctuation energy of the flow across the channel increases with the Reynolds number of the flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=suspensions" title="suspensions">suspensions</a>, <a href="https://publications.waset.org/abstracts/search?q=Poiseuille%20flow" title=" Poiseuille flow"> Poiseuille flow</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20viscosity" title=" effective viscosity"> effective viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number "> Reynolds number </a> </p> <a href="https://publications.waset.org/abstracts/11946/three-dimensional-numerical-simulation-of-drops-suspended-in-poiseuille-flow-effect-of-reynolds-number" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">190</span> The Coalescence Process of Droplet Pairs in Different Junctions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiang%20Wang">Xiang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Pang"> Yan Pang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaomiao%20Liu"> Zhaomiao Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Droplet-based microfluidics have been studied extensively with the development of the Micro-Electro-Mechanical System (MEMS) which bears the advantages of high throughput, high efficiency, low cost and low polydispersity. Droplets, worked as versatile carriers, could provide isolated chambers as the internal dispersed phase is protected from the outside continuous phase. Droplets are used to add reagents to start or end bio-chemical reactions, to generate concentration gradients, to realize hydrate crystallization or protein analyses, while droplets coalescence acts as an important control technology. In this paper, deionized water is used as the dispersed phase, and several kinds of oil are used as the continuous phase to investigate the influence of the viscosity ratio of the two phases on the coalescence process. The microchannels are fabricated by coating a polydimethylsiloxane (PDMS) layer onto another PDMS flat plate after corona treatment. All newly made microchannels are rinsed with the continuous oil phase for hours before experiments to ensure the swelling fully developed. High-speed microscope system is used to document the serial videos with a maximum speed of 2000 frames per second. The critical capillary numbers (Ca*) of droplet pairs in various junctions are studied and compared. Ca* varies with different junctions or different liquids within the range of 0.002 to 0.01. However, droplets without extra control would have the problem of synchronism which reduces the coalescence efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coalescence" title="coalescence">coalescence</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20capillary%20number" title=" critical capillary number"> critical capillary number</a>, <a href="https://publications.waset.org/abstracts/search?q=droplet%20pair" title=" droplet pair"> droplet pair</a>, <a href="https://publications.waset.org/abstracts/search?q=split" title=" split"> split</a> </p> <a href="https://publications.waset.org/abstracts/65284/the-coalescence-process-of-droplet-pairs-in-different-junctions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">189</span> Node Insertion in Coalescence Hidden-Variable Fractal Interpolation Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srijanani%20Anurag%20Prasad">Srijanani Anurag Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Coalescence Hidden-variable Fractal Interpolation Surface (CHFIS) was built by combining interpolation data from the Iterated Function System (IFS). The interpolation data in a CHFIS comprises a row and/or column of uncertain values when a single point is entered. Alternatively, a row and/or column of additional points are placed in the given interpolation data to demonstrate the node added CHFIS. There are three techniques for inserting new points that correspond to the row and/or column of nodes inserted, and each method is further classified into four types based on the values of the inserted nodes. As a result, numerous forms of node insertion can be found in a CHFIS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractal" title="fractal">fractal</a>, <a href="https://publications.waset.org/abstracts/search?q=interpolation" title=" interpolation"> interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=iterated%20function%20system" title=" iterated function system"> iterated function system</a>, <a href="https://publications.waset.org/abstracts/search?q=coalescence" title=" coalescence"> coalescence</a>, <a href="https://publications.waset.org/abstracts/search?q=node%20insertion" title=" node insertion"> node insertion</a>, <a href="https://publications.waset.org/abstracts/search?q=knot%20insertion" title=" knot insertion"> knot insertion</a> </p> <a href="https://publications.waset.org/abstracts/148593/node-insertion-in-coalescence-hidden-variable-fractal-interpolation-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">188</span> Real Time Detection, Prediction and Reconstitution of Rain Drops</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Burahee">R. Burahee</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Chassinat"> B. Chassinat</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20de%20Laclos"> T. de Laclos</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20D%C3%A9p%C3%A9e"> A. Dépée</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sastim"> A. Sastim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to propose a solution to detect, predict and reconstitute rain drops in real time – during the night – using an embedded material with an infrared camera. To prevent the system from needing too high hardware resources, simple models are considered in a powerful image treatment algorithm reducing considerably calculation time in OpenCV software. Using a smart model – drops will be matched thanks to a process running through two consecutive pictures for implementing a sophisticated tracking system. With this system drops computed trajectory gives information for predicting their future location. Thanks to this technique, treatment part can be reduced. The hardware system composed by a Raspberry Pi is optimized to host efficiently this code for real time execution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reconstitution" title="reconstitution">reconstitution</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=rain%20drop" title=" rain drop"> rain drop</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time" title=" real time"> real time</a>, <a href="https://publications.waset.org/abstracts/search?q=raspberry" title=" raspberry"> raspberry</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared" title=" infrared"> infrared</a> </p> <a href="https://publications.waset.org/abstracts/12821/real-time-detection-prediction-and-reconstitution-of-rain-drops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">187</span> Flashover Voltage of Silicone Insulating Surface Covered by Water Drops under AC Voltage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatiha%20Aouabed">Fatiha Aouabed</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhafid%20Bayadi"> Abdelhafid Bayadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabah%20Boudissa"> Rabah Boudissa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, silicone rubber insulation materials are widely used in high voltage outdoor insulation systems as they can combat pollution flashover problems. The difference in pollution flashover performance of silicone rubber and other insulating materials is due to the way that water wets their surfaces. It resides as discrete drops on silicone rubber, and the mechanism of flashover is due to the breakdown of the air between the water drops and the distortion of these drops in the direction of the electric field which brings the insulation to degradation and failure. The main objective of this work is to quantify the effect of different types of water drops arrangements, their position and dry bands width on the flashover voltage of the silicone insulating surface with non-uniform electric field systems. The tests were carried out on a rectangular sample under AC voltage. A rod-rod electrode system is used. The findings of this work indicate that the performance of the samples decreases with the presence of water drops on their surfaces. Further, these experimental findings show that there is a limiting number of rows from which the flashover voltage of the insulation is minimal and constant. This minimum is a function of the distance between two successive rows. Finally, it is concluded that the system withstand voltage increases when the row of droplets on the electrode axis is removed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contamination" title="contamination">contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=flashover" title=" flashover"> flashover</a>, <a href="https://publications.waset.org/abstracts/search?q=testing" title=" testing"> testing</a>, <a href="https://publications.waset.org/abstracts/search?q=silicone%20rubber%20insulators" title=" silicone rubber insulators"> silicone rubber insulators</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20wettability" title=" surface wettability"> surface wettability</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20droplets" title=" water droplets"> water droplets</a> </p> <a href="https://publications.waset.org/abstracts/13301/flashover-voltage-of-silicone-insulating-surface-covered-by-water-drops-under-ac-voltage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">186</span> Electric Field-Induced Deformation of Particle-Laden Drops and Structuring of Surface Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Mikkelsen">Alexander Mikkelsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Khobaib%20Khobaib"> Khobaib Khobaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Rozynek"> Zbigniew Rozynek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drops covered by particles have found important uses in various fields, ranging from stabilization of emulsions to production of new advanced materials. Particles at drop interfaces can be interlocked to form solid capsules with properties tailored for a myriad of applications. Despite the huge potential of particle-laden drops and capsules, the knowledge of their deformation and stability are limited. In this regard, we contribute with experimental studies on the deformation and manipulation of silicone oil drops covered with micrometer-sized particles subjected to electric fields. A mixture of silicone oil and particles were immersed in castor oil using a mechanical pipette, forming millimeter sized drops. The particles moved and adsorbed at the drop interfaces by sedimentation, and were structured at the interface by electric field-induced electrohydrodynamic flows. When applying a direct current electric field, free charges accumulated at the drop interfaces, yielding electric stress that deformed the drops. In our experiments, we investigated how particle properties affected drop deformation, break-up, and particle structuring. We found that by increasing the size of weakly-conductive clay particles, the drop shape can go from compressed to stretched out in the direction of the electric field. Increasing the particle size and electrical properties were also found to weaken electrohydrodynamic flows, induce break-up of drops at weaker electric field strengths and structure particles in chains. These particle parameters determine the dipolar force between the interfacial particles, which can yield particle chaining. We conclude that the balance between particle chaining and electrohydrodynamic flows governs the observed drop mechanics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drop%20deformation" title="drop deformation">drop deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20induced%20stress" title=" electric field induced stress"> electric field induced stress</a>, <a href="https://publications.waset.org/abstracts/search?q=electrohydrodynamic%20flows" title=" electrohydrodynamic flows"> electrohydrodynamic flows</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20structuring%20at%20drop%20interfaces" title=" particle structuring at drop interfaces"> particle structuring at drop interfaces</a> </p> <a href="https://publications.waset.org/abstracts/93941/electric-field-induced-deformation-of-particle-laden-drops-and-structuring-of-surface-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">185</span> Micro-Oscillator: Passive Production and Manipulation of Microdrops</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khelfaoui%20Rachid">Khelfaoui Rachid</a>, <a href="https://publications.waset.org/abstracts/search?q=Chekifi%20Tawfiq"> Chekifi Tawfiq</a>, <a href="https://publications.waset.org/abstracts/search?q=Dennai%20Brahim"> Dennai Brahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Maazouzi%20A.%20Hak"> Maazouzi A. Hak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical and experimental studies of passive micro drops production have been presented. This paper focuses on the modeling of micro-oscillators systems which are composed by passive amplifier without moving part. The micro-system modeling is based on geometrical oscillators form. An asymmetric micro-oscillator design that is based on a bistable fluidic amplifier is proposed. The characteristic size of the channels is generally about 35 microns of depth. The numerical results indicate that the production and manipulation of microdrops are possible with passive device within a typical oscillators chamber of 2.25 mm diameter and 0.20 mm length when the Reynolds number is Re = 490. The novel micro drops method that is presented in this study provides a simple solution about the production of microdrops problems in micro system. We undertake an experimental step. The first part is based on the realisation of sample oscillator; the second part is consisted of visualization, production and manipulation of microdrops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modelling" title="modelling">modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=miscible" title=" miscible"> miscible</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20drops" title=" micro drops"> micro drops</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillator%20sample" title=" oscillator sample"> oscillator sample</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary" title=" capillary"> capillary</a> </p> <a href="https://publications.waset.org/abstracts/14075/micro-oscillator-passive-production-and-manipulation-of-microdrops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">184</span> An Evaluation of the Oxide Layers in Machining Swarfs to Improve Recycling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Uka">J. Uka</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20McKay"> B. McKay</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Minton"> T. Minton</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Adole"> O. Adole</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Lewis"> R. Lewis</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Glanvill"> S. J. Glanvill</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Anguilano"> L. Anguilano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effective heat treatment conditions to obtain maximum aluminium swarf recycling are investigated in this work. Aluminium swarf briquettes underwent treatments at different temperatures and cooling times to investigate the improvements obtained in the recovery of aluminium metal. The main issue for the recovery of the metal from swarfs is to overcome the constraints due to the oxide layers present in high concentration in the swarfs since they have a high surface area. Briquettes supplied by Renishaw were heat treated at 650, 700, 750, 800 and 850 ℃ for 1-hour and then cooled at 2.3, 3.5 and 5 ℃/min. The resulting material was analysed using SEM EDX to observe the oxygen diffusion and aluminium coalescence at the boundary between adjacent swarfs. Preliminary results show that, swarf needs to be heat treated at a temperature of 850 ℃ and cooled down slowly at 2.3 ℃/min to have thin and discontinuous alumina layers between the adjacent swarf and consequently allowing aluminium coalescence. This has the potential to save energy and provide maximum financial profit in preparation of swarf briquettes for recycling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reuse" title="reuse">reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=recycle" title=" recycle"> recycle</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminium" title=" aluminium"> aluminium</a>, <a href="https://publications.waset.org/abstracts/search?q=swarf" title=" swarf"> swarf</a>, <a href="https://publications.waset.org/abstracts/search?q=oxide%20layers" title=" oxide layers"> oxide layers</a> </p> <a href="https://publications.waset.org/abstracts/130238/an-evaluation-of-the-oxide-layers-in-machining-swarfs-to-improve-recycling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">183</span> Enhancement of the Performance of Al-Qatraneh 33-kV Transmission Line Using STATCOM: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Hamad">Ali Hamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Al-Drous"> Ibrahim Al-Drous</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Al-Jufout"> Saleh Al-Jufout</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a case study of using STATCOM to enhance the performance of Al-Qatraneh 33-kV transmission line. The location of the STATCOM was identified maintaining minimum voltage drops at the 110 load nodes. The transmission line and the 110 load nodes have been modeled by MATLAB/Simulink. The suggested STATCOM and its location will increase the transmission capability of this transmission line and overcome the overload expected in the year 2020. The annual percentage loading rise has been considered as 14%. A graphical representation of the line voltages and the voltage drops at different load nodes has been illustrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FACTS" title="FACTS">FACTS</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=STATCOM" title=" STATCOM"> STATCOM</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20line" title=" transmission line"> transmission line</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20drop" title=" voltage drop"> voltage drop</a> </p> <a href="https://publications.waset.org/abstracts/39469/enhancement-of-the-performance-of-al-qatraneh-33-kv-transmission-line-using-statcom-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">182</span> Predictability of Pupil Mydriasis as a Biomarker for Diabetes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naveen%20Kumar%20Challa">Naveen Kumar Challa</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavan%20Ver%C4%B1k%C4%B1cherla"> Pavan Verıkıcherla</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhubalan"> Madhubalan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ash%C4%B1sh%20Sharma"> Ashısh Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: Aim of the study was to find whether any difference exists in pupil mydriasis measured with Orbscan in non-diabetic and type 2 diabetic patients at various intervals after installation of Tropicamide 0.8% and Phenylephrine 5%. Methods: the Observational study conducted at a tertiary care eye hospital during September 2014 to March 2015. 240 eyes from 120 patients (40 non-diabetic, 80 diabetic) were dilated with Tropicamide 0.8% and Phenylephrine 5%. One drop of a drug was installed twice. The second drop is installed at 20 minutes after installation of the first drop. In two groups’ pupil diameter was measured before installation of drops and also at 15, 30, 45 and 60 minutes after installation of the first drop using both Orbscan. Result: Mean age of the non-diabetic group is 48.67 ± 7.93 years; Diabetic group is 59.97 ± 8.77 years. Mean duration of Diabetes was 7.01 ± 5.05 years. Mean pupil diameter measured with Orbscan before installation of the drops and also at 15, 30, 45 and 60 minutes after installation of first drop in non-diabetic group was 4.18 ± 0.64mm, 6.15 ± 0.41mm, 7.76 ±0.34, 9.59 ± 0.30, and 9.97 ± 0.10 mm respectively and for the diabetic group it was 4.00 ± 0.56 mm, 5.53 ± 0.52 mm, 7.018 ± 0.58mm, 8.25±0.51mm and 9.18 ± 0.46mm respectively. The mean difference between the mean pupil diameters of the non-diabetic and diabetic group shows a significant difference (P< 0.01) at all intervals except before dilatation. There is a significant negative correlation (r = 0.78 – 0.92) between the duration of diabetes and pupil dilatation at all intervals after installation of the drops. There is also significant difference (P< 0.005) in the mean values of pupil diameter between non retinopathy diabetic subjects and diabetic retinopathy subjects at all intervals after installation of drops. Conclusion: People attending eye clinic, whose pupil mydriasis values falls below the normal may be referred for diabetic evaluation. If normative data is established for the pupil size in Indian population using Orbscan then the values fall under normative data could be a predictor for diabetes. This would in turn help ophthalmologist to detect the diabetes at an early stage and prevent the complications resulting from the diabetes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes%20mellitus" title="diabetes mellitus">diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=pupil%20diameter" title=" pupil diameter"> pupil diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=orbscan" title=" orbscan"> orbscan</a>, <a href="https://publications.waset.org/abstracts/search?q=tropicamide" title=" tropicamide"> tropicamide</a> </p> <a href="https://publications.waset.org/abstracts/34242/predictability-of-pupil-mydriasis-as-a-biomarker-for-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">181</span> Prescription of Lubricating Eye Drops in the Emergency Eye Department: A Quality Improvement Project</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noorulain%20Khalid">Noorulain Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Unsaar%20Hayat"> Unsaar Hayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Chaudhary"> Muhammad Chaudhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Christos%20Iosifidis"> Christos Iosifidis</a>, <a href="https://publications.waset.org/abstracts/search?q=Felipe%20Dhawahir-Scala"> Felipe Dhawahir-Scala</a>, <a href="https://publications.waset.org/abstracts/search?q=Fiona%20Carley"> Fiona Carley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dry eye disease (DED) is a common condition seen in the emergency eye department (EED) at Manchester Royal Eye Hospital (MREH). However, there is variability in the prescription of lubricating eye drops among different healthcare providers. The aim of this study was to develop an up-to-date, standardized algorithm for the prescription of lubricating eye drops in the EED at MREH based on international and national guidelines. The study also aimed to assess the impact of implementing the guideline on the rate of inappropriate lubricant prescriptions. Primarily, the impact was to be assessed in the form of the appropriateness of prescriptions for patients’ DED. The impact was secondary to be assessed through analysis of the cost to the hospital. Data from 845 patients who attended the EED over a 3-month period were analyzed, and 157 patients met the inclusion and exclusion criteria. After conducting a review of the literature and collaborating with the corneal team, an algorithm for the prescription of lubricants in the EED was developed. Three plan-do-study-act (PDSA) cycles were conducted, with interventions such as emails, posters, in-person reminders, and education for incoming trainees. The appropriateness of prescriptions was evaluated against the guidelines. Data were collected from patient records and analyzed using statistical methods. The appropriateness of prescriptions was assessed by comparing them to the guidelines and by clinical correlation with a specialized registrar. The study found a substantial improvement in the number of appropriate prescriptions, with an increase from 55% to 93% over the three PDSA cycles. There was additionally a 51% reduction in expenditure on lubricant prescriptions, resulting in cost savings for the hospital (approximate saving of £50/week). Theoretical importance: Appropriate prescription of lubricating eye drops improves disease management for patients and reduces costs for the hospital. The development and implementation of a standardized guideline facilitate the achievement of these goals. Conclusion: This study highlights the inconsistent management of DED in the EED and the potential lack of training in this area for healthcare providers. The implementation of a standardized, easy-to-follow guideline for lubricating eye drops can help to improve disease management while also resulting in cost savings for the hospital. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lubrication" title="lubrication">lubrication</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20eye%20disease" title=" dry eye disease"> dry eye disease</a>, <a href="https://publications.waset.org/abstracts/search?q=guideline" title=" guideline"> guideline</a>, <a href="https://publications.waset.org/abstracts/search?q=prescription" title=" prescription"> prescription</a> </p> <a href="https://publications.waset.org/abstracts/179348/prescription-of-lubricating-eye-drops-in-the-emergency-eye-department-a-quality-improvement-project" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">180</span> Ophthalmic Self-Medication Practices and Associated Factors among Adult Ophthalmic Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Saad%20Alamer">Sarah Saad Alamer</a>, <a href="https://publications.waset.org/abstracts/search?q=Shujon%20Mohammed%20Alazzam"> Shujon Mohammed Alazzam</a>, <a href="https://publications.waset.org/abstracts/search?q=Amjad%20Khater%20Alanazi"> Amjad Khater Alanazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ahmed%20Sankari"> Mohamed Ahmed Sankari</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Sameer%20Sendy"> Jana Sameer Sendy</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Al-Khaldi"> Saleh Al-Khaldi</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Allam"> Khaled Allam</a>, <a href="https://publications.waset.org/abstracts/search?q=Amani%20Badawi"> Amani Badawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Self-medication is defined as the selection of medicines by individuals to treat self-diagnosed. There are a lot of concerns about the safety of long-term use of nonprescription ophthalmic drugs, which may lead to a variety of serious ocular complications. Topical steroids can produce severe eye-threatening complications, including the elevation of intraocular pressure (IOP) with possible development of glaucoma and infrequent optic nerve damage. In recent times, many OTC ophthalmic preparations have been possible without a prescription. Objective: In our study, we aimed to determine the prevalence of self-medication ocular topical steroid practice and associated factors among adult ophthalmic patients attending King Saud medical city. Methods: This study was conducted as a cross-sectional study, targeting participants aged 18 years old or above who had used topical steroids eye drops to determine the prevalence of self-medication ocular topical steroid practice and associated factors among adult patients attending ophthalmology clinic in King Saud Medical City (KSMC) in the central region. Results: A total of 308 responses, 92(29.8%) were using ocular topical, 58(18.8%) with prescription, 5(1.6%) without prescription, 29(9.4%) with and without prescription while 216(70.1%) did not use it. The frequency of using ocular topical steroids without a prescription among participants was 11(12%) once and 33 (35%) many times. 26(28.3%) were having complication, mostly 11(12.4%) eye infection, 8(9%) Glaucoma, 6 (6.7%) Cataracts. Reasons for self-medication ocular topical steroid practice among participants were 14 (15.2%) repeated symptoms, 11(15.2%) had heard an advice from a friend, 11 (15.2%) thought they had enough knowledge. Conclusion: Our study reveals that, even though detecting a high level of knowledge and acceptable practices and attitudes among participants, the incidence of self-medication with steroid eye drops was observed. This practice is mainly due to participants having repeated symptoms and thinking they have enough knowledge. Increasing the education level of patients on self-medication steroid eye drops practice and it is associated complications would help reduce the incidence of self-medication steroid eye drops practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-medication" title="self-medication">self-medication</a>, <a href="https://publications.waset.org/abstracts/search?q=ophthalmic%20medicine" title=" ophthalmic medicine"> ophthalmic medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=steroid%20eye%20drop" title=" steroid eye drop"> steroid eye drop</a>, <a href="https://publications.waset.org/abstracts/search?q=over%20the%20counter" title=" over the counter"> over the counter</a> </p> <a href="https://publications.waset.org/abstracts/163122/ophthalmic-self-medication-practices-and-associated-factors-among-adult-ophthalmic-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">179</span> The Role of Long-Chain Ionic Surfactants on Extending Drug Delivery from Contact Lenses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cesar%20Torres">Cesar Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Briber"> Robert Briber</a>, <a href="https://publications.waset.org/abstracts/search?q=Nam%20Sun%20Wang"> Nam Sun Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eye drops are the most commonly used treatment for short-term and long-term ophthalmic diseases. However, eye drops could deliver only about 5% of the functional ingredients contained in a burst dosage. To address the limitations of eye drops, the use of therapeutic contact lenses has been introduced. Drug-loaded contact lenses provide drugs a longer residence time in the tear film and hence, decrease the potential risk of side effects. Nevertheless, a major limitation of contact lenses as drug delivery devices is that most of the drug absorbed is released within the first few hours. This fact limits their use for extended release. The present study demonstrates the application of long-alkyl chain ionic surfactants on extending drug release kinetics from commercially available silicone hydrogel contact lenses. In vitro release experiments were carried by immersing drug-containing contact lenses in phosphate buffer saline at physiological pH. The drug concentration as a function of time was monitored using ultraviolet-visible spectroscopy. The results of the study demonstrate that release kinetics is dependent on the ionic surfactant weight percent in the contact lenses, and on the length of the hydrophobic alkyl chain of the ionic surfactants. The use of ionic surfactants in contact lenses can extend the delivery of drugs from a few hours to a few weeks, depending on the physicochemical properties of the drugs. Contact lenses embedded with ionic surfactants could be potential biomaterials to be used for extended drug delivery and in the treatment of ophthalmic diseases. However, ocular irritation and toxicity studies would be needed to evaluate the safety of the approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20lenses" title="contact lenses">contact lenses</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled%20release" title=" controlled release"> controlled release</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20surfactant" title=" ionic surfactant"> ionic surfactant</a> </p> <a href="https://publications.waset.org/abstracts/107530/the-role-of-long-chain-ionic-surfactants-on-extending-drug-delivery-from-contact-lenses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">178</span> Experimental and Numerical Studies on Earthquake Shear Rupture Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Louis%20N.%20Y.%20Wong">Louis N. Y. Wong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> En-echelon fractures are commonly found in rocks, which appear as a special set of regularly oriented and spaced fractures. By using both experimental and numerical approaches, this study investigates the interaction among them, and how this interaction finally contributes to the development of a shear rupture (fault), especially in brittle natural rocks. Firstly, uniaxial compression tests are conducted on marble specimens containing en-echelon flaws. The latter is cut by using the water abrasive jet into the rock specimens. The fracturing processes of these specimens leading to the formation of a fault are observed in detail by the use of a high speed camera. The influences of the flaw geometry on the production of tensile cracks and shear cracks, which in turn dictate the coalescence patterns of the entire set of en-echelon flaws are comprehensively studied. Secondly, a numerical study based on a recently developed contact model, flat-joint contact model using the discrete element method (DEM) is carried out to model the present laboratory experiments. The numerical results provide a quantitative assessment of the interaction of en-echelon flaws. Particularly, the evolution of the stress field, as well as the characteristics of new crack initiation, propagation and coalescence associated with the generation of an eventual shear rupture are studied in detail. The numerical results are found to agree well with the experimental results obtained in both microscopic and macroscopic observations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title="discrete element method">discrete element method</a>, <a href="https://publications.waset.org/abstracts/search?q=en-echelon%20flaws" title=" en-echelon flaws"> en-echelon flaws</a>, <a href="https://publications.waset.org/abstracts/search?q=fault" title=" fault"> fault</a>, <a href="https://publications.waset.org/abstracts/search?q=marble" title=" marble"> marble</a> </p> <a href="https://publications.waset.org/abstracts/52013/experimental-and-numerical-studies-on-earthquake-shear-rupture-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">177</span> Modeling and Simulating Drop Interactions in Spray Structure of High Torque Low Speed Diesel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rizwan%20Latif">Rizwan Latif</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Adnan%20Qasim"> Syed Adnan Qasim</a>, <a href="https://publications.waset.org/abstracts/search?q=Muzaffar%20Ali"> Muzaffar Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuel direct injection represents one of the key aspects in the development of the diesel engines, the idea of controlling the auto-ignition and the consequent combustion of a liquid spray injected in a reacting atmosphere during a time scale of few milliseconds has been a challenging task for the engine community and pushed forward to a massive research in this field. The quality of the air-fuel mixture defines the combustion efficiency, and therefore the engine efficiency. A droplet interaction in dense as well as thin portion of the spray receives equal importance as other parameters in spray structure. Usually, these are modeled along with breakup process and analyzed alike. In this paper, droplet interaction is modeled and simulated for high torque low speed scenario. Droplet interactions may further be subdivided into droplet collision and coalescence, spray wall impingement, droplets drag, etc. Droplet collisions may occur in almost all spray applications, but especially in diesel like conditions such as high pressure sprays as utilized in combustion engines. These collisions have a strong influence on the mean droplet size and its spatial distribution and can, therefore, affect sub-processes of spray combustion such as mass, momentum and energy transfer between gas and droplets. Similarly, for high-pressure injection systems spray wall impingement is an inherent sub-process of mixture formation. However, its influence on combustion is in-explicit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=droplet%20collision" title="droplet collision">droplet collision</a>, <a href="https://publications.waset.org/abstracts/search?q=coalescence" title=" coalescence"> coalescence</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20speed" title=" low speed"> low speed</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel%20fuel" title=" diesel fuel"> diesel fuel</a> </p> <a href="https://publications.waset.org/abstracts/75629/modeling-and-simulating-drop-interactions-in-spray-structure-of-high-torque-low-speed-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">176</span> Biochemical Characteristics and Microstructure of Ice Cream Prepared from Fresh Cream</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Baississe">S. Baississe</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Godbane"> S. Godbane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Lekbir"> A. Lekbir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of our work is to develop an ice cream from a fermented cream, skim milk and other ingredients and follow the evolution of its physicochemical properties, biochemical and microstructure of the products obtained. Our cream is aerated with the manufacturing steps start with a homogenizing follow different ingredients by heating to 40°C emulsion, the preparation is then subjected to a heat treatment at 65°C for 30 min, before being stored in the cold at 4°C for a few hours. This conservation promotes crystallization of the material during the globular stage of maturation of the cream. The emulsifying agent moves gradually absorbed on the surface of fat globules homogeneous, which results in reduced protein stability. During the expansion, the collusion of destabilizing fat globules in the aqueous phase favours their coalescence. During the expansion, the collusion of destabilized fat globules in the aqueous phase favours their coalescence. The stabilizing agent increases the viscosity of the aqueous phase and the drainage limit interaction with the proteins of the aqueous phase and the protein absorbed on fat globules. The cutting improved organoleptic property of our cream is made by the use of three dyes and aromas. The products obtained undergo physicochemical analyses (pH, conductivity and acidity), biochemical (moisture, % dry matter and fat in %), and finally in the microscopic observation of the microstructure and the results obtained by analysis of the image processing software. The results show a remarkable evolution of physicochemical properties (pH, conductivity and acidity), biochemical (moisture, fat and non-fat) and microstructure of the products developed in relation to the raw material (skim milk) and the intermediate product (fermented cream). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ice%20cream" title="ice cream">ice cream</a>, <a href="https://publications.waset.org/abstracts/search?q=sour%20cream" title=" sour cream"> sour cream</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical" title=" physicochemical"> physicochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=biochemical" title=" biochemical"> biochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/5890/biochemical-characteristics-and-microstructure-of-ice-cream-prepared-from-fresh-cream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">175</span> Possibilities of Using Chia Seeds in Fermented Beverages Made from Mare’s and Cow’s Milk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nancy%20Mahmoud">Nancy Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Teichert"> Joanna Teichert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, fermented milk containing probiotic microorganisms is fundamental to human health. The changes in the properties of fermented milk during storage influence the quality and consumer acceptability. This study aimed to evaluate the effect of 1.5 % of chia seeds on the chemical, physical and sensory properties of fermented cow’s and mare’s milk for two weeks at 4°C. The results showed that the pH of cow’s milk drops significantly at the 2nd hour, but mare's milk drops significantly at the 6th hour. The acidity of both types of milk increased as the storage time progressed. Adding chia seeds increased firmness significantly and improved color and consistency. A decrease in brightness (L*), an increase in redness (a*), and yellowness (b*) during storage were observed. Our study showed that the chia seeds have more effect on reducing the brightness of fermented mare milk than fermented cow milk. Analysis of taste and smell parameters showed that after adding chia seeds, the scores changed and became much higher. The sour taste of fermented milk had reduced this positively affected the acceptance of the product. Chia seeds induced beneficial effects on sensory outcomes and enhanced physiochemical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mare%20milk" title="mare milk">mare milk</a>, <a href="https://publications.waset.org/abstracts/search?q=cow%20milk" title=" cow milk"> cow milk</a>, <a href="https://publications.waset.org/abstracts/search?q=feremnted%20milk" title=" feremnted milk"> feremnted milk</a>, <a href="https://publications.waset.org/abstracts/search?q=kefir" title=" kefir"> kefir</a>, <a href="https://publications.waset.org/abstracts/search?q=koumiss" title=" koumiss"> koumiss</a> </p> <a href="https://publications.waset.org/abstracts/163677/possibilities-of-using-chia-seeds-in-fermented-beverages-made-from-mares-and-cows-milk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">174</span> The Survival of Bifidobacterium longum in Frozen Yoghurt Ice Cream and Its Properties Affected by Prebiotics (Galacto-Oligosaccharides and Fructo-Oligosaccharides) and Fat Content</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Thaiudom">S. Thaiudom</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Toommuangpak"> W. Toommuangpak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Yoghurt ice cream (YIC) containing prebiotics and probiotics seems to be much more recognized among consumers who concern for their health. Not only can it be a benefit on consumers’ health but also its taste and freshness provide people easily accept. However, the survival of such probiotic especially Bifidobacterium longum, found in human gastrointestinal tract and to be benefit to human gut, was still needed to study in the severe condition as whipping and freezing in ice cream process. Low and full-fat yoghurt ice cream containing 2 and 10% (w/w) fat content (LYIC and FYIC), respectively was produced by mixing 20% yoghurt containing B. longum into milk ice cream mix. Fructo-oligosaccharides (FOS) or galacto-oligosaccharides (GOS) at 0, 1, and 2% (w/w) were separately used as prebiotic in order to improve the survival of B. longum. Survival of this bacteria as a function of ice cream storage time and ice cream properties were investigated. The results showed that prebiotic; especially FOS could improve viable count of B. longum. The more concentration of prebiotic used, the more is the survival of B. Longum. These prebiotics could prolong the survival of B. longum up to 60 days, and the amount of survival number was still in the recommended level (106 cfu per gram). Fat content and prebiotic did not significantly affect the total acidity and the overrun of all samples, but an increase of fat content significantly increased the fat particle size which might be because of partial coalescence found in FYIC rather than in LYIC. However, addition of GOS or FOS could reduce the fat particle size, especially in FYIC. GOS seemed to reduce the hardness of YIC rather than FOS. High fat content (10% fat) significantly influenced on lowering the melting rate of YIC better than 2% fat content due to the 3-dimension networks of fat partial coalescence theoretically occurring more in FYIC than in LYIC. However, FOS seemed to retard the melting rate of ice cream better than GOS. In conclusion, GOS and FOS in YIC with different fat content can enhance the survival of B. longum and affect physical and chemical properties of such yoghurt ice cream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bifidobacterium%20longum" title="Bifidobacterium longum">Bifidobacterium longum</a>, <a href="https://publications.waset.org/abstracts/search?q=prebiotic" title=" prebiotic"> prebiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=survival" title=" survival"> survival</a>, <a href="https://publications.waset.org/abstracts/search?q=yoghurt%20ice%20cream" title=" yoghurt ice cream"> yoghurt ice cream</a> </p> <a href="https://publications.waset.org/abstracts/90605/the-survival-of-bifidobacterium-longum-in-frozen-yoghurt-ice-cream-and-its-properties-affected-by-prebiotics-galacto-oligosaccharides-and-fructo-oligosaccharides-and-fat-content" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">173</span> Droplet Impact on a High Frequency Vibrating Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Ebrahimiazar">Maryam Ebrahimiazar</a>, <a href="https://publications.waset.org/abstracts/search?q=Parsia%20Mohammadshahi"> Parsia Mohammadshahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirreza%20Amighi"> Amirreza Amighi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20Ashgriz"> Nasser Ashgriz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrasonic atomization is used to generate micron size aerosols. In this work, the aerosol formation by the atomization of a parent droplet dripping from a capillary needle onto the surface of a Teflon coated piezoelectric vibrating at 2.5 MHz is studied, and different steps of atomization are categorized. After the droplet impacts on the piezoelectric, surface acoustic streaming deforms the droplet into a fountain shape. This fountain soon collapses and forms a liquid layer. The breakup of the liquid layer results in the generation of both large ( 100 microns) and small drops (few microns). Next, the residual drops from the liquid layer start to be atomized to generate few micron size droplets. The high velocity and explosive aerosol formation in this step are better explained in terms of cavitation theory. However, the combination of both capillary waves and cavitation theory seem to be responsible for few-micron droplet generation. The current study focuses on both qualitative and quantitative aspects of fountain formation for both ethyl-alcohol and water. Even though the general steps of atomization are the same for both liquids, the quantitative results indicate that some noticeable differences lie between them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=droplet%20breakup" title="droplet breakup">droplet breakup</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20atomization" title=" ultrasonic atomization"> ultrasonic atomization</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20streaming" title=" acoustic streaming"> acoustic streaming</a>, <a href="https://publications.waset.org/abstracts/search?q=droplet%20oscillation" title=" droplet oscillation"> droplet oscillation</a> </p> <a href="https://publications.waset.org/abstracts/108446/droplet-impact-on-a-high-frequency-vibrating-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">172</span> Study of Cahn-Hilliard Equation to Simulate Phase Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nara%20Guimar%C3%A3es">Nara Guimarães</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcelo%20Aquino%20Martorano"> Marcelo Aquino Martorano</a>, <a href="https://publications.waset.org/abstracts/search?q=Douglas%20Gouv%C3%AAa"> Douglas Gouvêa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An investigation into Cahn-Hilliard equation was carried out through numerical simulation to identify a possible phase separation for one and two dimensional domains. It was observed that this equation can reproduce important mass fluxes necessary for phase separation within the miscibility gap and for coalescence of particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cahn-Hilliard%20equation" title="Cahn-Hilliard equation">Cahn-Hilliard equation</a>, <a href="https://publications.waset.org/abstracts/search?q=miscibility%20gap" title=" miscibility gap"> miscibility gap</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20separation" title=" phase separation"> phase separation</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensional%20domains" title=" dimensional domains"> dimensional domains</a> </p> <a href="https://publications.waset.org/abstracts/17579/study-of-cahn-hilliard-equation-to-simulate-phase-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">171</span> Micromechanical Modelling of Ductile Damage with a Cohesive-Volumetric Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noe%20Brice%20Nkoumbou%20Kaptchouang">Noe Brice Nkoumbou Kaptchouang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre-Guy%20Vincent"> Pierre-Guy Vincent</a>, <a href="https://publications.waset.org/abstracts/search?q=Yann%20Monerie"> Yann Monerie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work addresses the modelling and the simulation of crack initiation and propagation in ductile materials which failed by void nucleation, growth, and coalescence. One of the current research frameworks on crack propagation is the use of cohesive-volumetric approach where the crack growth is modelled as a decohesion of two surfaces in a continuum material. In this framework, the material behavior is characterized by two constitutive relations, the volumetric constitutive law relating stress and strain, and a traction-separation law across a two-dimensional surface embedded in the three-dimensional continuum. Several cohesive models have been proposed for the simulation of crack growth in brittle materials. On the other hand, the application of cohesive models in modelling crack growth in ductile material is still a relatively open field. One idea developed in the literature is to identify the traction separation for ductile material based on the behavior of a continuously-deforming unit cell failing by void growth and coalescence. Following this method, the present study proposed a semi-analytical cohesive model for ductile material based on a micromechanical approach. The strain localization band prior to ductile failure is modelled as a cohesive band, and the Gurson-Tvergaard-Needleman plasticity model (GTN) is used to model the behavior of the cohesive band and derived a corresponding traction separation law. The numerical implementation of the model is realized using the non-smooth contact method (NSCD) where cohesive models are introduced as mixed boundary conditions between each volumetric finite element. The present approach is applied to the simulation of crack growth in nuclear ferritic steel. The model provides an alternative way to simulate crack propagation using the numerical efficiency of cohesive model with a traction separation law directly derived from porous continuous model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ductile%20failure" title="ductile failure">ductile failure</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesive%20model" title=" cohesive model"> cohesive model</a>, <a href="https://publications.waset.org/abstracts/search?q=GTN%20model" title=" GTN model"> GTN model</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/102323/micromechanical-modelling-of-ductile-damage-with-a-cohesive-volumetric-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">170</span> Study of Formation and Evolution of Disturbance Waves in Annular Flow Using Brightness-Based Laser-Induced Fluorescence (BBLIF) Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrey%20Cherdantsev">Andrey Cherdantsev</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20Cherdantsev"> Mikhail Cherdantsev</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Isaenkov"> Sergey Isaenkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitriy%20Markovich"> Dmitriy Markovich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In annular gas-liquid flow, liquid flows as a film along pipe walls sheared by high-velocity gas stream. Film surface is covered by large-scale disturbance waves which affect pressure drop and heat transfer in the system and are necessary for entrainment of liquid droplets from film surface into the core of gas stream. Disturbance waves are a highly complex and their properties are affected by numerous parameters. One of such aspects is flow development, i.e., change of flow properties with the distance from the inlet. In the present work, this question is studied using brightness-based laser-induced fluorescence (BBLIF) technique. This method enables one to perform simultaneous measurements of local film thickness in large number of points with high sampling frequency. In the present experiments first 50 cm of upward and downward annular flow in a vertical pipe of 11.7 mm i.d. is studied with temporal resolution of 10 kHz and spatial resolution of 0.5 mm. Thus, spatiotemporal evolution of film surface can be investigated, including scenarios of formation, acceleration and coalescence of disturbance waves. The behaviour of disturbance waves' velocity depending on phases flow rates and downstream distance was investigated. Besides measuring the waves properties, the goal of the work was to investigate the interrelation between disturbance waves properties and integral characteristics of the flow such as interfacial shear stress and flow rate of dispersed phase. In particular, it was shown that the initial acceleration of disturbance waves, defined by the value of shear stress, linearly decays with downstream distance. This lack of acceleration which may even lead to deceleration is related to liquid entrainment. Flow rate of disperse phase linearly grows with downstream distance. During entrainment events, liquid is extracted directly from disturbance waves, reducing their mass, area of interaction to the gas shear and, hence, velocity. Passing frequency of disturbance waves at each downstream position was measured automatically with a new algorithm of identification of characteristic lines of individual disturbance waves. Scenarios of coalescence of individual disturbance waves were identified. Transition from initial high-frequency Kelvin-Helmholtz waves appearing at the inlet to highly nonlinear disturbance waves with lower frequency was studied near the inlet using 3D realisation of BBLIF method in the same cylindrical channel and in a rectangular duct with cross-section of 5 mm by 50 mm. It was shown that the initial waves are generally two-dimensional but are promptly broken into localised three-dimensional wavelets. Coalescence of these wavelets leads to formation of quasi two-dimensional disturbance waves. Using cross-correlation analysis, loss and restoration of two-dimensionality of film surface with downstream distance were studied quantitatively. It was shown that all the processes occur closer to the inlet at higher gas velocities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annular%20flow" title="annular flow">annular flow</a>, <a href="https://publications.waset.org/abstracts/search?q=disturbance%20waves" title=" disturbance waves"> disturbance waves</a>, <a href="https://publications.waset.org/abstracts/search?q=entrainment" title=" entrainment"> entrainment</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20development" title=" flow development"> flow development</a> </p> <a href="https://publications.waset.org/abstracts/61190/study-of-formation-and-evolution-of-disturbance-waves-in-annular-flow-using-brightness-based-laser-induced-fluorescence-bblif-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">169</span> Topical Nonsteroidal Anti-Inflammatory Eye Drops and Oral Acetazolamide for Macular Edema after Uncomplicated Phacoemulsification: Outcome and Predictors of Non-Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wissam%20Aljundi">Wissam Aljundi</a>, <a href="https://publications.waset.org/abstracts/search?q=Loay%20Daas"> Loay Daas</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaser%20Abu%20Dail"> Yaser Abu Dail</a>, <a href="https://publications.waset.org/abstracts/search?q=Barbara%20K%C3%A4smann-Kellner"> Barbara Käsmann-Kellner</a>, <a href="https://publications.waset.org/abstracts/search?q=Berthold%20Seitz"> Berthold Seitz</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Din%20Abdin"> Alaa Din Abdin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: To investigate the effectiveness of nonsteroidal anti-inflammatory eye drops (NSAIDs) combined with oral acetazolamide for postoperative macular edema (PME) after uncomplicated phacoemulsification (PE) and to identify predictors of non-response. Methods: We analyzed data of uncomplicated PE and identified eyes with PME. First-line therapy included topical NSAIDs combined with oral acetazolamide. In case of non-response, triamcinolone was administered subtenonally. Outcome measures included best-corrected visual acuity (BCVA) and central macular thickness (CMT). Results: 94 eyes out of 9750 uncomplicated PE developed PME, of which 60 eyes were included. Follow-ups occurred 6.4±1.8, 12.5±3.7, and 18.6±6.0 weeks after diagnosis. BCVA and CMT improved significantly in all follow-ups. 40 eyes showed response to first-line therapy at first follow-up (G1). The remaining 20 eyes showed no response and required subtenon triamcinolone (G2), of which 11 eyes showed complete regression at the second follow-up and 4 eyes at the third follow-up. 5 eyes showed no response and required intravitreal injection. Multivariate linear regression model showed that diabetes mellitus (DM) and increased cumulative dissipated energy (CDE) are predictors of non-response. Conclusion: Topical NSAIDs with acetazolamide resulted in complete regression of PME in 67% of all cases. DM and increased CDE might be considered as predictors of nonresponse to this treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=postoperative%20macular%20edema" title="postoperative macular edema">postoperative macular edema</a>, <a href="https://publications.waset.org/abstracts/search?q=intravitreal%20injection" title=" intravitreal injection"> intravitreal injection</a>, <a href="https://publications.waset.org/abstracts/search?q=cumulative%20energy" title=" cumulative energy"> cumulative energy</a>, <a href="https://publications.waset.org/abstracts/search?q=irvine%20gass%20syndrome" title=" irvine gass syndrome"> irvine gass syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudophakie" title=" pseudophakie"> pseudophakie</a> </p> <a href="https://publications.waset.org/abstracts/156170/topical-nonsteroidal-anti-inflammatory-eye-drops-and-oral-acetazolamide-for-macular-edema-after-uncomplicated-phacoemulsification-outcome-and-predictors-of-non-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">168</span> Size Distribution Effect of InAs/InP Self–Organized Quantum Dots on Optical Properties </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Nouri">Abdelkader Nouri</a>, <a href="https://publications.waset.org/abstracts/search?q=M%E2%80%99hamed%20Bouslama"> M’hamed Bouslama</a>, <a href="https://publications.waset.org/abstracts/search?q=Faouzi%20Saidi"> Faouzi Saidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Maaref"> Hassan Maaref</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Gendry"> Michel Gendry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Self-organized InAs quantum dots (QDs) have been grown on 3,1% InP (110) lattice mismatched substrate by Solid Source Molecular Beam Epitaxy (SSMBE). Stranski-Krastanov mode growth has been used to create self-assembled 3D islands on InAs wetting layer (WL). The optical quality depending on the temperature and power is evaluated. In addition, Atomic Force Microscopy (AFM) images shows inhomogeneous island dots size distribution due to temperature coalescence. The quantum size effect was clearly observed through the spectra photoluminescence (PL) shape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AFM" title="AFM">AFM</a>, <a href="https://publications.waset.org/abstracts/search?q=InAs%20QDs" title=" InAs QDs"> InAs QDs</a>, <a href="https://publications.waset.org/abstracts/search?q=PL" title=" PL"> PL</a>, <a href="https://publications.waset.org/abstracts/search?q=SSMBE" title=" SSMBE"> SSMBE</a> </p> <a href="https://publications.waset.org/abstracts/20670/size-distribution-effect-of-inasinp-self-organized-quantum-dots-on-optical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">686</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">167</span> Nullity of t-Tupple Graphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khidir%20R.%20Sharaf">Khidir R. Sharaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Didar%20A.%20Ali"> Didar A. Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nullity η (G) of a graph is the occurrence of zero as an eigenvalue in its spectra. A zero-sum weighting of a graph G is real valued function, say f from vertices of G to the set of real numbers, provided that for each vertex of G the summation of the weights f (w) over all neighborhood w of v is zero for each v in G.A high zero-sum weighting of G is one that uses maximum number of non-zero independent variables. If G is graph with an end vertex, and if H is an induced sub-graph of G obtained by deleting this vertex together with the vertex adjacent to it, then, η(G)= η(H). In this paper, a high zero-sum weighting technique and the end vertex procedure are applied to evaluate the nullity of t-tupple and generalized t-tupple graphs are derived and determined for some special types of graphs. Also, we introduce and prove some important results about the t-tupple coalescence, Cartesian and Kronecker products of nut graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graph%20theory" title="graph theory">graph theory</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20spectra" title=" graph spectra"> graph spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=nullity%20of%20graphs" title=" nullity of graphs"> nullity of graphs</a>, <a href="https://publications.waset.org/abstracts/search?q=statistic" title=" statistic"> statistic</a> </p> <a href="https://publications.waset.org/abstracts/4759/nullity-of-t-tupple-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">166</span> Impact Force Difference on Natural Grass Versus Synthetic Turf Football Fields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nathaniel%20C.%20Villanueva">Nathaniel C. Villanueva</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20K.%20H.%20Chun"> Ian K. H. Chun</a>, <a href="https://publications.waset.org/abstracts/search?q=Alyssa%20S.%20Fujiwara"> Alyssa S. Fujiwara</a>, <a href="https://publications.waset.org/abstracts/search?q=Emily%20R.%20Leibovitch"> Emily R. Leibovitch</a>, <a href="https://publications.waset.org/abstracts/search?q=Brennan%20E.%20Yamamoto"> Brennan E. Yamamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Loren%20G.%20Yamamoto"> Loren G. Yamamoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: In previous studies of high school sports, over 15% of concussions were attributed to contact with the playing surface. While artificial turf fields are increasing in popularity due to lower maintenance costs, artificial turf has been associated with more ankle and knee injuries, with inconclusive data on concussions. In this study, natural grass and artificial football fields were compared in terms of deceleration on fall impact. Methods: Accelerometers were placed on the forehead, apex of the head, and right ear of a Century Body Opponent Bag (BOB) manikin. A Riddell HITS football helmet was secured onto the head of the manikin over the accelerometers. This manikin was dropped onto natural grass (n = 10) and artificial turf (n = 9) high school football fields. The manikin was dropped from a stationary position at a height of 60 cm onto its front, back, and left side. Each of these drops was conducted 10 times at the 40-yard line, 20-yard line, and endzone. The net deceleration on impact was calculated as a net vector from each of the three accelerometers’ x, y, and z vectors from the three different locations on the manikin’s head (9 vector measurements per drop). Results: Mean values for the multiple drops were calculated for each accelerometer and drop type for each field. All accelerometers in forward and backward falls and one accelerometer in side falls showed significantly greater impact force on synthetic turf compared to the natural grass surfaces. Conclusion: Impact force was higher on synthetic fields for all drop types for at least one of the accelerometer locations. These findings suggest that concussion risk might be higher for athletes playing on artificial turf fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concussion" title="concussion">concussion</a>, <a href="https://publications.waset.org/abstracts/search?q=football" title=" football"> football</a>, <a href="https://publications.waset.org/abstracts/search?q=biomechanics" title=" biomechanics"> biomechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=sports" title=" sports"> sports</a> </p> <a href="https://publications.waset.org/abstracts/147563/impact-force-difference-on-natural-grass-versus-synthetic-turf-football-fields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">165</span> Mechanical Properties of Lithium-Ion Battery at Different Packing Angles Under Impact Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Zhao">Wei Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuxuan%20Yao"> Yuxuan Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Chen"> Hao Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to find out the mechanical properties and failure behavior of lithium-ion batteries, drop hammer impact experiments and finite element simulations are carried out on batteries with different packed angles. Firstly, a drop hammer impact experiment system, which is based on the DHR-1808 drop hammer and oscilloscope, is established, and then a drop test of individual batteries and packed angles of 180 ° and 120 ° are carried out. The image of battery deformation, force-time curve and voltage-time curve are recorded. Secondly, finite element models of individual batteries and two packed angles are established, and the results of the test and simulation are compared. Finally, the mechanical characteristics and failure behavior of lithium-ion battery modules with the packed arrangement of 6 * 6 and packing angles of 180 °, 120 °, 90 ° and 60 ° are analyzed under the same velocity with different battery packing angles, and the same impact energy with different impact velocity and different packing angles. The result shows that the individual battery is destroyed completely in the drop hammer impact test with an initial impact velocity of 3m/s and drop height of 459mm, and the voltage drops to close to 0V when the test ends. The voltage drops to 12V when packed angle of 180°, and 3.6V when packed angle of 120°. It is found that the trend of the force-time curve between simulation and experiment is generally consistent. The difference in maximum peak value is 3.9kN for a packing angle of 180° and 1.3kN for a packing angle of 120°. Under the same impact velocity and impact energy, the strain rate of the battery module with a packing angle of 180° is the lowest, and the maximum stress can reach 26.7MPa with no battery short-circuited. The research under our experiment and simulation shows that the lithium-ion battery module with a packing angle of 180 ° is the least likely to be damaged, which can sustain the maximum stress under the same impact load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20module" title="battery module">battery module</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20simulation" title=" finite element simulation"> finite element simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20battery" title=" power battery"> power battery</a>, <a href="https://publications.waset.org/abstracts/search?q=packing%20angle" title=" packing angle"> packing angle</a> </p> <a href="https://publications.waset.org/abstracts/182236/mechanical-properties-of-lithium-ion-battery-at-different-packing-angles-under-impact-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drops%20coalescence&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drops%20coalescence&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drops%20coalescence&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drops%20coalescence&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drops%20coalescence&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drops%20coalescence&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drops%20coalescence&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10