CINXE.COM

axiom of pairing in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> axiom of pairing in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="noindex,nofollow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type='text/css'>.newWikiWord { background-color: white; font-style: italic; }</style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> axiom of pairing </h1> <div class='rightHandSide'> <div class='toc clickDown' tabindex='0'> <h3 id='context'>Context</h3> <h4 id='set_theory'>Set theory</h4> <div class='hide'> <p><strong><a class='existingWikiWord' href='/nlab/show/set+theory'>set theory</a></strong></p> <ul> <li>fundamentals of set theory <ul> <li><a class='existingWikiWord' href='/nlab/show/propositional+logic'>propositional logic</a></li> <li><a class='existingWikiWord' href='/nlab/show/predicate+logic'>first-order logic</a></li> <li><a class='existingWikiWord' href='/nlab/show/typed+predicate+logic'>typed predicate logic</a></li> <li><a class='existingWikiWord' href='/nlab/show/membership+relation'>membership relation</a></li> <li><a class='existingWikiWord' href='/nlab/show/propositional+equality'>propositional equality</a></li> <li><a class='existingWikiWord' href='/nlab/show/set'>set</a>, <a class='existingWikiWord' href='/nlab/show/element'>element</a>, <a class='existingWikiWord' href='/nlab/show/function'>function</a>, <a class='existingWikiWord' href='/nlab/show/relation'>relation</a></li> <li><a class='existingWikiWord' href='/nlab/show/universe'>universe</a>, <a class='existingWikiWord' href='/nlab/show/small+set'>small set</a>, <a class='existingWikiWord' href='/nlab/show/large+set'>large set</a></li> </ul> </li> <li><a class='existingWikiWord' href='/nlab/show/material+set+theory'>material set theory</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/membership+relation'>membership relation</a>, <a class='existingWikiWord' href='/nlab/show/propositional+equality'>propositional equality</a>, <a class='existingWikiWord' href='/nlab/show/axiom+of+extensionality'>axiom of extensionality</a></li> <li><a class='existingWikiWord' href='/nlab/show/pairing+structure'>pairing structure</a>, <a class='existingWikiWord' href='/nlab/show/axiom+of+pairing'>axiom of pairing</a></li> <li><a class='existingWikiWord' href='/nlab/show/union+structure'>union structure</a>, <a class='existingWikiWord' href='/nlab/show/axiom+of+union'>axiom of union</a></li> <li><a class='existingWikiWord' href='/nlab/show/powerset+structure'>powerset structure</a>, <a class='existingWikiWord' href='/nlab/show/power+set'>axiom of power sets</a></li> <li><a class='existingWikiWord' href='/nlab/show/natural+numbers+structure'>natural numbers structure</a>, <a class='existingWikiWord' href='/nlab/show/axiom+of+infinity'>axiom of infinity</a></li> </ul> </li> <li>presentations of set theory <ul> <li><a class='existingWikiWord' href='/nlab/show/first-order+set+theory'>first-order set theory</a></li> <li><a class='existingWikiWord' href='/nlab/show/unsorted+set+theory'>unsorted set theory</a></li> <li><a class='existingWikiWord' href='/nlab/show/simply+sorted+set+theory'>simply sorted set theory</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/unsorted+set+theory'>one-sorted set theory</a></li> <li><a class='existingWikiWord' href='/nlab/show/two-sorted+set+theory'>two-sorted set theory</a></li> <li><a class='existingWikiWord' href='/nlab/show/three-sorted+set+theory'>three-sorted set theory</a></li> </ul> </li> <li><a class='existingWikiWord' href='/nlab/show/dependently+sorted+set+theory'>dependently sorted set theory</a></li> <li><a class='existingWikiWord' href='/nlab/show/structurally+presented+set+theory'>structurally presented set theory</a></li> </ul> </li> <li>structuralism in set theory <ul> <li><a class='existingWikiWord' href='/nlab/show/material+set+theory'>material set theory</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/ZFC'>ZFC</a></li> <li><a class='existingWikiWord' href='/nlab/show/ZFA'>ZFA</a></li> <li><a class='existingWikiWord' href='/nlab/show/Mostowski+set+theory'>Mostowski set theory</a></li> <li><a class='existingWikiWord' href='/nlab/show/New+Foundations'>New Foundations</a></li> </ul> </li> <li><a class='existingWikiWord' href='/nlab/show/structural+set+theory'>structural set theory</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/categorical+set+theory'>categorical set theory</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/ETCS'>ETCS</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/fully+formal+ETCS'>fully formal ETCS</a></li> <li><a class='existingWikiWord' href='/nlab/show/ETCS+with+elements'>ETCS with elements</a></li> <li><a class='existingWikiWord' href='/nlab/show/Trimble+on+ETCS+I'>Trimble on ETCS I</a></li> <li><a class='existingWikiWord' href='/nlab/show/Trimble+on+ETCS+II'>Trimble on ETCS II</a></li> <li><a class='existingWikiWord' href='/nlab/show/Trimble+on+ETCS+III'>Trimble on ETCS III</a></li> </ul> </li> <li><a class='existingWikiWord' href='/nlab/show/structural+ZFC'>structural ZFC</a></li> </ul> </li> <li><a class='existingWikiWord' href='/nlab/show/allegorical+set+theory'>allegorical set theory</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/SEAR'>SEAR</a></li> </ul> </li> </ul> </li> </ul> </li> <li><a class='existingWikiWord' href='/nlab/show/class+theory'>class-set theory</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/class'>class</a>, <a class='existingWikiWord' href='/nlab/show/class'>proper class</a></li> <li><a class='existingWikiWord' href='/nlab/show/universal+class'>universal class</a>, <a class='existingWikiWord' href='/nlab/show/universe'>universe</a></li> <li><a class='existingWikiWord' href='/nlab/show/category+of+classes'>category of classes</a></li> <li><a class='existingWikiWord' href='/nlab/show/category+with+class+structure'>category with class structure</a></li> </ul> </li> <li><a class='existingWikiWord' href='/nlab/show/constructive+set+theory'>constructive set theory</a></li> <li><a class='existingWikiWord' href='/nlab/show/algebraic+set+theory'>algebraic set theory</a></li> </ul> </div> </div> </div> <h1 id='the_axiom_of_pairing'>The axiom of pairing</h1> <div class='maruku_toc'><ul><li><a href='#idea'>Idea</a></li><li><a href='#statement'>Statement</a><ul><li><a href='#pairing'>Pairing</a></li><li><a href='#unordered_pairing'>Unordered pairing</a></li><li><a href='#ordered_pairing'>Ordered pairing</a></li><li><a href='#with_sets_and_elements_different'>With sets and elements different</a></li><li><a href='#in_dependent_type_theory'>In dependent type theory</a></li></ul></li><li><a href='#generalisation'>Generalisation</a></li><li><a href='#related_notions'>Related notions</a></li><li><a href='#references'>References</a></li></ul></div> <h2 id='idea'>Idea</h2> <p>In <a class='existingWikiWord' href='/nlab/show/material+set+theory'>material set theory</a> as a <a class='existingWikiWord' href='/nlab/show/foundation+of+mathematics'>foundation of mathematics</a>, the axiom of pairing is an important axiom needed to get the foundations off the ground (to mix metaphors). It states that <a class='existingWikiWord' href='/nlab/show/pair+set'>pair sets</a> exist.</p> <h2 id='statement'>Statement</h2> <h3 id='pairing'>Pairing</h3> <p>The <strong>axiom of pairing</strong> (or <strong>axiom of pairs</strong>) states the following:</p> <p><strong>Axiom of pairing</strong>: <em>If <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math> are (material) sets, then there exists a set <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math> such that <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi><mo>∈</mo><mi>P</mi></mrow><annotation encoding='application/x-tex'>x \in P</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>y</mi><mo>∈</mo><mi>P</mi></mrow><annotation encoding='application/x-tex'>y \in P</annotation></semantics></math>.</em></p> <p>Using the axiom of separation (<a class='existingWikiWord' href='/nlab/show/axiom+of+separation'>bounded separation</a> is enough), we can prove the existence of a particular set <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math> such that <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math> are the <em>only</em> members of <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math>. Using the <a class='existingWikiWord' href='/nlab/show/axiom+of+extensionality'>axiom of extensionality</a>, we can then prove that this set <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math> is unique; it is usually denoted <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy='false'>}</mo></mrow><annotation encoding='application/x-tex'>\{x,y\}</annotation></semantics></math> and called the <strong><a class='existingWikiWord' href='/nlab/show/pair+set'>pair set</a></strong> of <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_12' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_13' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math>. Note that <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_14' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>{</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy='false'>}</mo></mrow><annotation encoding='application/x-tex'>\{x,x\}</annotation></semantics></math> may also be denoted simply <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_15' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>{</mo><mi>x</mi><mo stretchy='false'>}</mo></mrow><annotation encoding='application/x-tex'>\{x\}</annotation></semantics></math>.</p> <p>One could also assume that the <a class='existingWikiWord' href='/nlab/show/material+set+theory'>material set theory</a> has a primitive binary operation <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_16' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math> which takes of a material set <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_17' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_18' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math> and returns a material set <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_19' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>P</mi><mo stretchy='false'>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>P(x, y)</annotation></semantics></math>. Then the axiom of pairing becomes</p> <p><strong>Axiom of pairing</strong>: <em>If <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_20' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_21' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math> are (material) sets, then <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_22' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi><mo>∈</mo><mi>P</mi><mo stretchy='false'>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>x \in P(x, y)</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_23' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>y</mi><mo>∈</mo><mi>P</mi><mo stretchy='false'>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>y \in P(x, y)</annotation></semantics></math>.</em></p> <h3 id='unordered_pairing'>Unordered pairing</h3> <p>The <strong>axiom of unordered pairing</strong> (or <strong>axiom of unordered pairs</strong>) states the following:</p> <p><strong>Axiom of unordered pairing</strong>: If <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_24' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_25' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math> are (material) sets, then there exists a set <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math> such that <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_27' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi><mo>∈</mo><mi>P</mi></mrow><annotation encoding='application/x-tex'>x \in P</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_28' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>y</mi><mo>∈</mo><mi>P</mi></mrow><annotation encoding='application/x-tex'>y \in P</annotation></semantics></math> and for all sets <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_29' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>z</mi></mrow><annotation encoding='application/x-tex'>z</annotation></semantics></math>, <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_30' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>z</mi><mo>∈</mo><mi>P</mi></mrow><annotation encoding='application/x-tex'>z \in P</annotation></semantics></math> implies that <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_31' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>z</mi><mo>=</mo><mi>x</mi></mrow><annotation encoding='application/x-tex'>z = x</annotation></semantics></math> or <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_32' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>z</mi><mo>=</mo><mi>y</mi></mrow><annotation encoding='application/x-tex'>z = y</annotation></semantics></math>.</p> <p>Using the <a class='existingWikiWord' href='/nlab/show/axiom+of+extensionality'>axiom of extensionality</a>, we can then prove that this set <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_33' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math> is unique; it is usually denoted <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_34' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy='false'>}</mo></mrow><annotation encoding='application/x-tex'>\{x,y\}</annotation></semantics></math> and called the <strong><a class='existingWikiWord' href='/nlab/show/pair+set'>pair set</a></strong> of <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_35' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_36' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math>. Note that <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_37' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>{</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy='false'>}</mo></mrow><annotation encoding='application/x-tex'>\{x,x\}</annotation></semantics></math> may also be denoted simply <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_38' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>{</mo><mi>x</mi><mo stretchy='false'>}</mo></mrow><annotation encoding='application/x-tex'>\{x\}</annotation></semantics></math>.</p> <p>One could also assume that the <a class='existingWikiWord' href='/nlab/show/material+set+theory'>material set theory</a> has a primitive binary operation <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_39' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>{</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo>,</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>}</mo></mrow><annotation encoding='application/x-tex'>\{-,-\}</annotation></semantics></math> which takes of a material set <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_40' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_41' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math> and returns a material set <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_42' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy='false'>}</mo></mrow><annotation encoding='application/x-tex'>\{x, y\}</annotation></semantics></math>. Then the axiom of pairing becomes</p> <p><strong>Axiom of unordered pairing</strong>: If <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_43' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_44' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math> are (material) sets, then <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_45' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi><mo>∈</mo><mo stretchy='false'>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy='false'>}</mo></mrow><annotation encoding='application/x-tex'>x \in \{x, y\}</annotation></semantics></math>, <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_46' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>y</mi><mo>∈</mo><mo stretchy='false'>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy='false'>}</mo></mrow><annotation encoding='application/x-tex'>y \in \{x, y\}</annotation></semantics></math>, and for all sets <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_47' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>z</mi></mrow><annotation encoding='application/x-tex'>z</annotation></semantics></math>, <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_48' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>z</mi><mo>∈</mo><mo stretchy='false'>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy='false'>}</mo></mrow><annotation encoding='application/x-tex'>z \in \{x, y\}</annotation></semantics></math> implies that <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_49' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>z</mi><mo>=</mo><mi>x</mi></mrow><annotation encoding='application/x-tex'>z = x</annotation></semantics></math> or <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_50' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>z</mi><mo>=</mo><mi>y</mi></mrow><annotation encoding='application/x-tex'>z = y</annotation></semantics></math>.</p> <h3 id='ordered_pairing'>Ordered pairing</h3> <p>Let us assume that the <a class='existingWikiWord' href='/nlab/show/material+set+theory'>material set theory</a> has a primitive binary operation <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_51' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo>,</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(-,-)</annotation></semantics></math> which takes of a material set <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_52' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_53' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math> and returns a material set <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_54' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(x, y)</annotation></semantics></math>.</p> <p>The <strong>axiom of ordered pairing</strong> (or <strong>axiom of ordered pairs</strong>) states the following:</p> <p><strong>Axiom of ordered pairing</strong>: <em>If <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_55' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_56' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math> are (material) sets, then <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_57' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi><mo>∈</mo><mo stretchy='false'>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>x \in (x, y)</annotation></semantics></math>, <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_58' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>y</mi><mo>∈</mo><mo stretchy='false'>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>y \in (x, y)</annotation></semantics></math>, and for all sets <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_59' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_60' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math>, <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_61' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy='false'>)</mo><mo>=</mo><mo stretchy='false'>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(a, b) = (x, y)</annotation></semantics></math> if and only if <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_62' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>a</mi><mo>=</mo><mi>x</mi></mrow><annotation encoding='application/x-tex'>a = x</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_63' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>b</mi><mo>=</mo><mi>y</mi></mrow><annotation encoding='application/x-tex'>b = y</annotation></semantics></math>.</em></p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_64' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>∀</mo><mi>a</mi><mo>.</mo><mo>∀</mo><mi>b</mi><mo>.</mo><mo stretchy='false'>{</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy='false'>}</mo><mo>=</mo><mo stretchy='false'>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy='false'>}</mo><mo>⇔</mo><mo stretchy='false'>(</mo><mi>a</mi><mo>=</mo><mi>x</mi><mo>∧</mo><mi>b</mi><mo>=</mo><mi>y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\forall a.\forall b.\{a, b\} = \{x, y\} \iff (a = x \wedge b = y)</annotation></semantics></math></div> <h3 id='with_sets_and_elements_different'>With sets and elements different</h3> <p>In set theories where sets and elements are not the same thing, pairing becomes an operation on both the sets and the elements. One has to add a primitive ternary relation <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_65' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>p</mi><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>,</mo><mi>P</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>p(X, Y, P)</annotation></semantics></math> which says that <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_66' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math> is the <a class='existingWikiWord' href='/nlab/show/cartesian+product'>Cartesian product</a> of <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_67' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_68' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math>, as well as primitive quaternary relations <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_69' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>π</mi> <mn>1</mn></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>P</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>a</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\pi_1(X, P, c, a)</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_70' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>π</mi> <mn>2</mn></msub><mo stretchy='false'>(</mo><mi>Y</mi><mo>,</mo><mi>P</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>b</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\pi_2(Y, P, c, b)</annotation></semantics></math> which says that element <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_71' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>a</mi><mo>∈</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>a \in X</annotation></semantics></math> is the left element of the pair <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_72' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>c</mi><mo>∈</mo><mi>P</mi></mrow><annotation encoding='application/x-tex'>c \in P</annotation></semantics></math> and element <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_73' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>b</mi><mo>∈</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>b \in Y</annotation></semantics></math> is the right element of the pair <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_74' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>c</mi><mo>∈</mo><mi>P</mi></mrow><annotation encoding='application/x-tex'>c \in P</annotation></semantics></math>, and the following axiom:</p> <p><strong>Axiom of ordered pairing</strong>: <em>If <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_75' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_76' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math> are sets, then there exists a set <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_77' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math> such that <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_78' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>p</mi><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>,</mo><mi>P</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>p(X, Y, P)</annotation></semantics></math> and for every object <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_79' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_80' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math>, <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_81' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>a</mi><mo>∈</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>a \in X</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_82' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>b</mi><mo>∈</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>b \in Y</annotation></semantics></math> implies that there exists an object <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_83' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math> such that <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_84' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>c</mi><mo>∈</mo><mi>P</mi></mrow><annotation encoding='application/x-tex'>c \in P</annotation></semantics></math>, <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_85' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>π</mi> <mn>1</mn></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>P</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>a</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\pi_1(X, P, c, a)</annotation></semantics></math>, and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_86' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>π</mi> <mn>2</mn></msub><mo stretchy='false'>(</mo><mi>Y</mi><mo>,</mo><mi>P</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>b</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\pi_2(Y, P, c, b)</annotation></semantics></math></em></p> <p><math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_87' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math> is usually denoted <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_88' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>×</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>X \times Y</annotation></semantics></math> and called the <strong><a class='existingWikiWord' href='/nlab/show/cartesian+product'>Cartesian product</a></strong> of <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_89' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_90' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math>, while <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_91' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math> is usually denoted <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_92' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(a, b)</annotation></semantics></math> and called the <strong><a class='existingWikiWord' href='/nlab/show/ordered+pair'>ordered pair</a> of <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_93' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_94' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math>.</strong></p> <h3 id='in_dependent_type_theory'>In dependent type theory</h3> <p>In <a class='existingWikiWord' href='/nlab/show/dependent+type+theory'>dependent type theory</a>, it is possible to define a <a class='existingWikiWord' href='/nlab/show/Tarski+universe'>Tarski universe</a> <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_95' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>V</mi><mo>,</mo><mo>∈</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(V, \in)</annotation></semantics></math> of <a class='existingWikiWord' href='/nlab/show/pure+set'>pure sets</a> which behaves as a <a class='existingWikiWord' href='/nlab/show/material+set+theory'>material set theory</a>. The universal type family of the Tarski universe is given by the type family <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_96' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi><mo>:</mo><mi>V</mi><mo>⊢</mo><msub><mo lspace='thinmathspace' rspace='thinmathspace'>∑</mo> <mrow><mi>y</mi><mo>:</mo><mi>V</mi></mrow></msub><mi>y</mi><mo>∈</mo><mi>x</mi></mrow><annotation encoding='application/x-tex'>x:V \vdash \sum_{y:V} y \in x</annotation></semantics></math>. The <strong>axiom of pairing</strong> is given by the following <a class='existingWikiWord' href='/nlab/show/deductive+system'>inference rule</a>:</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_97' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mfrac><mrow><mi>Γ</mi><mspace width='thickmathspace'></mspace><mi mathvariant='normal'>ctx</mi></mrow><mrow><mi>Γ</mi><mo>⊢</mo><msub><mi mathvariant='normal'>pairing</mi> <mi>V</mi></msub><mo>:</mo><munder><mo lspace='thinmathspace' rspace='thinmathspace'>∏</mo> <mrow><mi>x</mi><mo>:</mo><mi>V</mi></mrow></munder><munder><mo lspace='thinmathspace' rspace='thinmathspace'>∏</mo> <mrow><mi>y</mi><mo>:</mo><mi>V</mi></mrow></munder><munder><mo lspace='thinmathspace' rspace='thinmathspace'>∑</mo> <mrow><mi>P</mi><mo>:</mo><mi>V</mi></mrow></munder><mo stretchy='false'>(</mo><mi>x</mi><mo>∈</mo><mi>P</mi><mo stretchy='false'>)</mo><mo>×</mo><mo stretchy='false'>(</mo><mi>y</mi><mo>∈</mo><mi>P</mi><mo stretchy='false'>)</mo></mrow></mfrac></mrow><annotation encoding='application/x-tex'>\frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash \mathrm{pairing}_V:\prod_{x:V} \prod_{y:V} \sum_{P:V} (x \in P) \times (y \in P)}</annotation></semantics></math></div> <h2 id='generalisation'>Generalisation</h2> <p>The axiom of pairing is the binary part of a <a class='existingWikiWord' href='/nlab/show/biased+definition'>binary/nullary pair</a> whose nullary part is the axiom stating the existence of the <a class='existingWikiWord' href='/nlab/show/empty+set'>empty set</a>. We can use these axioms and the <a class='existingWikiWord' href='/nlab/show/axiom+of+union'>axiom of union</a> to prove every instance of the following <strong>axiom</strong> (or rather theorem) <strong>schema of finite sets</strong>:</p> <p>\begin{theorem} If <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_98' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>x</mi> <mn>1</mn></msub><mo>,</mo><mi>…</mi><mo>,</mo><msub><mi>x</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>x_1, \ldots, x_n</annotation></semantics></math> are sets, then there exists a set <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_99' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math> such that <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_100' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>x</mi> <mn>1</mn></msub><mo>,</mo><mi>…</mi><mo>,</mo><msub><mi>x</mi> <mi>n</mi></msub><mo>∈</mo><mi>P</mi></mrow><annotation encoding='application/x-tex'>x_1, \ldots, x_n \in P</annotation></semantics></math>. \end{theorem}</p> <p>Again, we can prove the existence of specific <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_101' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math> such that <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_102' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>x</mi> <mn>1</mn></msub><mo>,</mo><mi>…</mi><mo>,</mo><msub><mi>x</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>x_1, \ldots, x_n</annotation></semantics></math> are the <em>only</em> members of <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_103' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math> and prove that this <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_104' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math> is unique; it is denoted <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_105' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>{</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>,</mo><mi>…</mi><mo>,</mo><msub><mi>x</mi> <mi>n</mi></msub><mo stretchy='false'>}</mo></mrow><annotation encoding='application/x-tex'>\{x_1, \ldots, x_n\}</annotation></semantics></math> and is called the <strong><a class='existingWikiWord' href='/nlab/show/finite+set'>finite set</a></strong> consisting of <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_106' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>x</mi> <mn>1</mn></msub><mo>,</mo><mi>…</mi><mo>,</mo><msub><mi>x</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>x_1, \ldots, x_n</annotation></semantics></math>.</p> <p>Note that this is a <em>schema</em>, with one instance for every (metalogical) <a class='existingWikiWord' href='/nlab/show/natural+number'>natural number</a>. Within axiomatic set theory, this is very different from the single statement that begins with a <a class='existingWikiWord' href='/nlab/show/universal+quantifier'>universal quantification</a> over the (internal) set of natural numbers. In particular, each instance of this schema can be stated and proved without the <a class='existingWikiWord' href='/nlab/show/axiom+of+infinity'>axiom of infinity</a>. Of course, there is one proof for each natural number.</p> <ul> <li>For <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_107' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n = 0</annotation></semantics></math>, this is simply the axiom of the empty set.</li> <li>For <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_108' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>n = 1</annotation></semantics></math>, we use the axiom of pairing with <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_109' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi><mo>≔</mo><msub><mi>x</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>x \coloneqq x_1</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_110' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>y</mi><mo>≔</mo><msub><mi>x</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>y \coloneqq x_1</annotation></semantics></math> to construct <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_111' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>{</mo><msub><mi>x</mi> <mn>1</mn></msub><mo stretchy='false'>}</mo></mrow><annotation encoding='application/x-tex'>\{x_1\}</annotation></semantics></math>.</li> <li>For <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_112' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>n = 2</annotation></semantics></math>, we use the axiom of pairing with <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_113' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi><mo>≔</mo><msub><mi>x</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>x \coloneqq x_1</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_114' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>y</mi><mo>≔</mo><msub><mi>x</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>y \coloneqq x_2</annotation></semantics></math> to construct <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_115' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>{</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>x</mi> <mn>2</mn></msub><mo stretchy='false'>}</mo></mrow><annotation encoding='application/x-tex'>\{x_1, x_2\}</annotation></semantics></math>.</li> <li>For <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_116' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>=</mo><mn>3</mn></mrow><annotation encoding='application/x-tex'>n = 3</annotation></semantics></math>, we first use the axiom of pairing twice to construct <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_117' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>{</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>x</mi> <mn>2</mn></msub><mo stretchy='false'>}</mo></mrow><annotation encoding='application/x-tex'>\{x_1, x_2\}</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_118' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>{</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy='false'>}</mo></mrow><annotation encoding='application/x-tex'>\{x_3\}</annotation></semantics></math>, then use pairing again to construct <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_119' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo maxsize='1.2em' minsize='1.2em'>{</mo><mo stretchy='false'>{</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>x</mi> <mn>2</mn></msub><mo stretchy='false'>}</mo><mo>,</mo><mo stretchy='false'>{</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy='false'>}</mo><mo maxsize='1.2em' minsize='1.2em'>}</mo></mrow><annotation encoding='application/x-tex'>\big\{\{x_1, x_2\}, \{x_3\}\big\}</annotation></semantics></math>, then use the axiom of union to construct <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_120' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>{</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>x</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy='false'>}</mo></mrow><annotation encoding='application/x-tex'>\{x_1, x_2, x_3\}</annotation></semantics></math>.</li> <li>In general, once we have <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_121' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>{</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>,</mo><mi>…</mi><mo>,</mo><msub><mi>x</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo stretchy='false'>}</mo></mrow><annotation encoding='application/x-tex'>\{x_1, \ldots, x_{n-1}\}</annotation></semantics></math>, we use pairing to construct <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_122' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>{</mo><msub><mi>x</mi> <mi>n</mi></msub><mo stretchy='false'>}</mo></mrow><annotation encoding='application/x-tex'>\{x_n\}</annotation></semantics></math>, use pairing again to construct <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_123' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo maxsize='1.2em' minsize='1.2em'>{</mo><mo stretchy='false'>{</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>,</mo><mi>…</mi><mo>,</mo><msub><mi>x</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo stretchy='false'>}</mo><mo>,</mo><mo stretchy='false'>{</mo><msub><mi>x</mi> <mi>n</mi></msub><mo stretchy='false'>}</mo><mo maxsize='1.2em' minsize='1.2em'>}</mo></mrow><annotation encoding='application/x-tex'>\big\{\{x_1, \ldots, x_{n-1}\}, \{x_n\}\big\}</annotation></semantics></math>, then use the axiom of union to construct <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_124' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>{</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>,</mo><mi>…</mi><mo>,</mo><msub><mi>x</mi> <mi>n</mi></msub><mo stretchy='false'>}</mo></mrow><annotation encoding='application/x-tex'>\{x_1, \ldots, x_n\}</annotation></semantics></math>. (A direct proof of a single statement for <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_125' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>&gt;</mo><mn>3</mn></mrow><annotation encoding='application/x-tex'>n \gt 3</annotation></semantics></math> can actually go faster than this; the length of the shortest proof is <a class='existingWikiWord' href='/nlab/show/logarithm'>logarithmic</a> in <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_126' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math> rather than linear in <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_127' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math>.)</li> </ul> <p>Note that these ‘finite sets’ are precisely the <a class='existingWikiWord' href='/nlab/show/finite+set'>Kuratowski-finite sets</a> in a <a class='existingWikiWord' href='/nlab/show/constructive+mathematics'>constructive</a> treatment.</p> <h2 id='related_notions'>Related notions</h2> <ul> <li><a class='existingWikiWord' href='/nlab/show/pairing+structure'>pairing structure</a></li> </ul> <p>In the <math class='maruku-mathml' display='inline' id='mathml_43c5cb12b1adf8adce892d322c86f366c4358225_128' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math>Lab, the term ‘<a class='existingWikiWord' href='/nlab/show/pairing'>pairing</a>’ usually refers to <em><a class='existingWikiWord' href='/nlab/show/ordered+pair'>ordered</a></em> pairs.</p> <h2 id='references'>References</h2> <p>For the axiom of ordered pairing see:</p> <ul> <li><a class='existingWikiWord' href='/nlab/show/H%C3%A5kon+Robbestad+Gylterud'>Håkon Robbestad Gylterud</a>, <a class='existingWikiWord' href='/nlab/show/Elisabeth+Stenholm'>Elisabeth Bonnevier</a>, <em>Non-wellfounded sets in HoTT</em> (<a href='https://arxiv.org/abs/2001.06696'>arXiv:2001.06696</a>)</li> </ul> <p> </p> <p> </p> <p> </p> <p> </p> <p><div class='property'> category: <a class='category_link' href='/nlab/list/foundational+axiom'>foundational axiom</a></div></p> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10