CINXE.COM

Search results for: Ion S5 sequencing platform

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Ion S5 sequencing platform</title> <meta name="description" content="Search results for: Ion S5 sequencing platform"> <meta name="keywords" content="Ion S5 sequencing platform"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Ion S5 sequencing platform" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Ion S5 sequencing platform"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2556</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Ion S5 sequencing platform</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2526</span> Digital Individual Benefit Statement: The Use of a Triangulation Methodology to Design a Digital Platform for Switzerland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Equey%20Balzli">Catherine Equey Balzli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Old age retirement pensions are an important concern among the Swiss but estimating one&rsquo;s income after retirement is difficult due to the Swiss insurance system&rsquo;s complexity. This project&rsquo;s aim is to prepare for developing a digital platform that will allow individuals to plan for retirement in a simplified manner. The main objective of the platform will be to give individuals the tools to check that their savings and retirement benefits will allow them to continue the lifestyle to which they are accustomed once they are retired. The research results from qualitative (focus group) and quantitative (survey) methodologies, recommend the scope and functionalities for a digital platform to be developed. A main outcome is the need to limit the platform&rsquo;s scope to old-age pension only (excluding survivors&rsquo; or disability pensions, for instance). Furthermore, an outcome regarding the functionalities is the proposition of scenarios such as early retirement, changes to income, or modifications to personal status. The development of the digital platform will be a subsequent project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benefit%20statement" title="benefit statement">benefit statement</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20platform" title=" digital platform"> digital platform</a>, <a href="https://publications.waset.org/abstracts/search?q=retirement%20financial%20planning" title=" retirement financial planning"> retirement financial planning</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20insurance" title=" social insurance"> social insurance</a> </p> <a href="https://publications.waset.org/abstracts/129284/digital-individual-benefit-statement-the-use-of-a-triangulation-methodology-to-design-a-digital-platform-for-switzerland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2525</span> Competitive DNA Calibrators as Quality Reference Standards (QRS™) for Germline and Somatic Copy Number Variations/Variant Allelic Frequencies Analyses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eirini%20Konstanta">Eirini Konstanta</a>, <a href="https://publications.waset.org/abstracts/search?q=Cedric%20Gouedard"> Cedric Gouedard</a>, <a href="https://publications.waset.org/abstracts/search?q=Aggeliki%20Delimitsou"> Aggeliki Delimitsou</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefania%20Patera"> Stefania Patera</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Murray"> Samuel Murray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Quality reference DNA standards (QRS) for molecular testing by next-generation sequencing (NGS) are essential for accurate quantitation of copy number variations (CNV) for germline and variant allelic frequencies (VAF) for somatic analyses. Objectives: Presently, several molecular analytics for oncology patients are reliant upon quantitative metrics. Test validation and standardisation are also reliant upon the availability of surrogate control materials allowing for understanding test LOD (limit of detection), sensitivity, specificity. We have developed a dual calibration platform allowing for QRS pairs to be included in analysed DNA samples, allowing for accurate quantitation of CNV and VAF metrics within and between patient samples. Methods: QRS™ blocks up to 500nt were designed for common NGS panel targets incorporating ≥ 2 identification tags (IDTDNA.com). These were analysed upon spiking into gDNA, somatic, and ctDNA using a proprietary CalSuite™ platform adaptable to common LIMS. Results: We demonstrate QRS™ calibration reproducibility spiked to 5–25% at ± 2.5% in gDNA and ctDNA. Furthermore, we demonstrate CNV and VAF within and between samples (gDNA and ctDNA) with the same reproducibility (± 2.5%) in a clinical sample of lung cancer and HBOC (EGFR and BRCA1, respectively). CNV analytics was performed with similar accuracy using a single pair of QRS calibrators when using multiple single targeted sequencing controls. Conclusion: Dual paired QRS™ calibrators allow for accurate and reproducible quantitative analyses of CNV, VAF, intrinsic sample allele measurement, inter and intra-sample measure not only simplifying NGS analytics but allowing for monitoring clinically relevant biomarker VAF across patient ctDNA samples with improved accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calibrator" title="calibrator">calibrator</a>, <a href="https://publications.waset.org/abstracts/search?q=CNV" title=" CNV"> CNV</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20copy%20number" title=" gene copy number"> gene copy number</a>, <a href="https://publications.waset.org/abstracts/search?q=VAF" title=" VAF"> VAF</a> </p> <a href="https://publications.waset.org/abstracts/134208/competitive-dna-calibrators-as-quality-reference-standards-qrs-for-germline-and-somatic-copy-number-variationsvariant-allelic-frequencies-analyses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2524</span> De Novo Assembly and Characterization of the Transcriptome during Seed Development, and Generation of Genic-SSR Markers in Pomegranate (Punica granatum L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozhan%20Simsek">Ozhan Simsek</a>, <a href="https://publications.waset.org/abstracts/search?q=Dicle%20Donmez"> Dicle Donmez</a>, <a href="https://publications.waset.org/abstracts/search?q=Burhanettin%20Imrak"> Burhanettin Imrak</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahsen%20Isik%20Ozguven"> Ahsen Isik Ozguven</a>, <a href="https://publications.waset.org/abstracts/search?q=Yildiz%20Aka%20Kacar"> Yildiz Aka Kacar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pomegranate (Punica granatum L.) is known to be one of the oldest edible fruit tree species, with a wide geographical global distribution. Fruits from the two defined varieties (Hicaznar and 33N26) were taken at intervals after pollination and fertilization at different sizes. Seed samples were used for transcriptome sequencing. Primary sequencing was produced by Illumina Hi-Seq™ 2000. Firstly, we had raw reads, and it was subjected to quality control (QC). Raw reads were filtered into clean reads and aligned to the reference sequences. De novo analysis was performed to detect genes expressed in seeds of pomegranate varieties. We performed downstream analysis to determine differentially expressed genes. We generated about 27.09 gb bases in total after Illumina Hi-Seq sequencing. All samples were assembled together, we got 59,264 Unigenes, the total length, average length, N50, and GC content of Unigenes are 84.547.276 bp, 1.426 bp, 2,137 bp, and 46.20 %, respectively. Unigenes were annotated with 7 functional databases, finally, 42.681(NR: 72.02%), 39.660 (NT: 66.92%), 30.790 (Swissprot: 51.95%), 20.212 (COG: 34.11%), 27.689 (KEGG: 46.72%), 12.328 (GO: 20.80%), and 33,833 (Interpro: 57.09%) Unigenes were annotated. With functional annotation results, we detected 42.376 CDS, and 4.999 SSR distribute on 16.143 Unigenes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=next%20generation%20sequencing" title="next generation sequencing">next generation sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=SSR" title=" SSR"> SSR</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA-Seq" title=" RNA-Seq"> RNA-Seq</a>, <a href="https://publications.waset.org/abstracts/search?q=Illumina" title=" Illumina"> Illumina</a> </p> <a href="https://publications.waset.org/abstracts/75369/de-novo-assembly-and-characterization-of-the-transcriptome-during-seed-development-and-generation-of-genic-ssr-markers-in-pomegranate-punica-granatum-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2523</span> Building an E-Platform for Virtual Research Teams in Educational Science</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanan%20A.%20Abdulhameed">Hanan A. Abdulhameed</a>, <a href="https://publications.waset.org/abstracts/search?q=Huda%20Y.%20Alyami"> Huda Y. Alyami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study presents a new international direction to conduct collaborative educational research. It follows a qualitative and quantitative methodology in investigating the main requirements to build an e-platform for Virtual Research Teams (VRTs). The e-platform considers three main components: First, the human and cultural structure, second, the institutional/organizational structure, and third, the technological structure. The study mainly focuses on the third component, the technological structure (the e-platform), and studies how to incorporate the other components: The human/cultural structure and the institutional/organizational structure in order to build an effective e-platform. The importance of the study is that it presents a comprehensive study about VRTs in terms of definition, types, structure, and main challenges. In addition, it suggests a practical way that benefits from the information and communication technology to conduct collaborative educational research by building and managing virtual research teams through an effective e-platform. The study draws the main framework to build an e-platform for collaborative educational research teams in Arab World. Thus, it tackles mainly the theoretical aspects, the framework of an effective e-platform. Then, it presents the evaluation of 18 Arab educational experts' to the proposed e-platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collaborative%20research" title="collaborative research">collaborative research</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20science" title=" educational science"> educational science</a>, <a href="https://publications.waset.org/abstracts/search?q=E-platform" title=" E-platform"> E-platform</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20research%20networks%20sites%20%28SRNS%29" title=" social research networks sites (SRNS)"> social research networks sites (SRNS)</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20research%20teams%20%28VRTs%29" title=" virtual research teams (VRTs)"> virtual research teams (VRTs)</a> </p> <a href="https://publications.waset.org/abstracts/24183/building-an-e-platform-for-virtual-research-teams-in-educational-science" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2522</span> Design and Implementation of Agricultural Machinery Equipment Scheduling Platform Based On Case-Based Reasoning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen%20Li">Wen Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhengyu%20Bai"> Zhengyu Bai</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Zhang"> Qi Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand for smart scheduling platform in agriculture, particularly in the scheduling process of machinery equipment, is high. With the continuous development of agricultural machinery equipment technology, a large number of agricultural machinery equipment and agricultural machinery cooperative service organizations continue to appear in China. The large area of cultivated land and a large number of agricultural activities in the central and western regions of China have made the demand for smart and efficient agricultural machinery equipment scheduling platforms more intense. In this study, we design and implement a platform for agricultural machinery equipment scheduling to allocate agricultural machinery equipment resources reasonably. With agricultural machinery equipment scheduling platform taken as the research object, we discuss its research significance and value, use the service blueprint technology to analyze and characterize the agricultural machinery equipment schedule workflow, the network analytic method to obtain the demand platform function requirements, and divide the platform functions through the platform function division diagram. Simultaneously, based on the case-based reasoning (CBR) algorithm, the equipment scheduling module of the agricultural machinery equipment scheduling platform is realized; finally, a design scheme of the agricultural machinery equipment scheduling platform architecture is provided, and the visualization interface of the platform is established via VB programming language. It provides design ideas and theoretical support for the construction of a modern agricultural equipment information scheduling platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=case-based%20reasoning" title="case-based reasoning">case-based reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20blueprint" title=" service blueprint"> service blueprint</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20design" title=" system design"> system design</a>, <a href="https://publications.waset.org/abstracts/search?q=ANP" title=" ANP"> ANP</a>, <a href="https://publications.waset.org/abstracts/search?q=VB%20programming%20language" title=" VB programming language"> VB programming language</a> </p> <a href="https://publications.waset.org/abstracts/136702/design-and-implementation-of-agricultural-machinery-equipment-scheduling-platform-based-on-case-based-reasoning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2521</span> Video Sharing System Based On Wi-fi Camera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qidi%20Lin">Qidi Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinbin%20Huang"> Jinbin Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weile%20Liang"> Weile Liang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces a video sharing platform based on WiFi, which consists of camera, mobile phone and PC server. This platform can receive wireless signal from the camera and show the live video on the mobile phone captured by camera. In addition that, it is able to send commands to camera and control the camera’s holder to rotate. The platform can be applied to interactive teaching and dangerous area’s monitoring and so on. Testing results show that the platform can share the live video of mobile phone. Furthermore, if the system’s PC sever and the camera and many mobile phones are connected together, it can transfer photos concurrently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wifi%20Camera" title="Wifi Camera">Wifi Camera</a>, <a href="https://publications.waset.org/abstracts/search?q=socket%20mobile" title=" socket mobile"> socket mobile</a>, <a href="https://publications.waset.org/abstracts/search?q=platform%20video%20monitoring" title=" platform video monitoring"> platform video monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20control" title=" remote control"> remote control</a> </p> <a href="https://publications.waset.org/abstracts/31912/video-sharing-system-based-on-wi-fi-camera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2520</span> Design of Incident Information System in IoT Virtualization Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amon%20Olimov">Amon Olimov</a>, <a href="https://publications.waset.org/abstracts/search?q=Umarov%20Jamshid"> Umarov Jamshid</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Ho%20Kim"> Dae-Ho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chol-U%20Lee"> Chol-U Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryum-Duck%20Oh"> Ryum-Duck Oh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes IoT virtualization platform based incident information system. IoT information based environment is the platform that was developed for the purpose of collecting a variety of data by managing regionally scattered IoT devices easily and conveniently in addition to analyzing data collected from roads. Moreover, this paper configured the platform for the purpose of providing incident information based on sensed data. It also provides the same input/output interface as UNIX and Linux by means of matching IoT devices with the directory of file system and also the files. In addition, it has a variety of approaches as to the devices. Thus, it can be applied to not only incident information but also other platforms. This paper proposes the incident information system that identifies and provides various data in real time as to urgent matters on roads based on the existing USN/M2M and IoT visualization platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=incident%20information%20system" title="incident information system">incident information system</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=virtualization%20platform" title=" virtualization platform"> virtualization platform</a>, <a href="https://publications.waset.org/abstracts/search?q=USN" title=" USN"> USN</a>, <a href="https://publications.waset.org/abstracts/search?q=M2M" title=" M2M"> M2M</a> </p> <a href="https://publications.waset.org/abstracts/29328/design-of-incident-information-system-in-iot-virtualization-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2519</span> Full Length Transcriptome Sequencing and Differential Expression Gene Analysis of Hybrid Larch under PEG Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lei">Zhang Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Qingrong"> Zhao Qingrong</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Chen"> Wang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Sufang"> Zhang Sufang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Hanguo"> Zhang Hanguo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Larch is the main afforestation and timber tree species in Northeast China, and drought is one of the main factors limiting the growth of Larch and other organisms in Northeast China. In order to further explore the mechanism of Larch drought resistance, PEG was used to simulate drought stress. The full-length sequencing of Larch embryogenic callus under PEG simulated drought stress was carried out by combining Illumina-Hiseq and SMRT-seq. A total of 20.3Gb clean reads and 786492 CCS reads were obtained from the second and third generation sequencing. The de-redundant transcript sequences were predicted by lncRNA, 2083 lncRNAs were obtained, and the target genes were predicted, and a total of 2712 target genes were obtained. The de-redundant transcripts were further screened, and 1654 differentially expressed genes (DEGs )were obtained. Among them, different DEGs respond to drought stress in different ways, such as oxidation-reduction process, starch and sucrose metabolism, plant hormone pathway, carbon metabolism, lignin catabolic/biosynthetic process and so on. This study provides basic full-length sequencing data for the study of Larch drought resistance, and excavates a large number of DEGs in response to drought stress, which helps us to further understand the function of Larch drought resistance genes and provides a reference for in-depth analysis of the molecular mechanism of Larch drought resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=larch" title="larch">larch</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title=" drought stress"> drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=full-length%20transcriptome%20sequencing" title=" full-length transcriptome sequencing"> full-length transcriptome sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=differentially%20expressed%20genes" title=" differentially expressed genes"> differentially expressed genes</a> </p> <a href="https://publications.waset.org/abstracts/147042/full-length-transcriptome-sequencing-and-differential-expression-gene-analysis-of-hybrid-larch-under-peg-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2518</span> Model Driven Architecture Methodologies: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arslan%20Murtaza">Arslan Murtaza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Model Driven Architecture (MDA) is technique presented by OMG (Object Management Group) for software development in which different models are proposed and converted them into code. The main plan is to identify task by using PIM (Platform Independent Model) and transform it into PSM (Platform Specific Model) and then converted into code. In this review paper describes some challenges and issues that are faced in MDA, type and transformation of models (e.g. CIM, PIM and PSM), and evaluation of MDA-based methodologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OMG" title="OMG">OMG</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20driven%20rrchitecture%20%28MDA%29" title=" model driven rrchitecture (MDA)"> model driven rrchitecture (MDA)</a>, <a href="https://publications.waset.org/abstracts/search?q=computation%20independent%20model%20%28CIM%29" title=" computation independent model (CIM)"> computation independent model (CIM)</a>, <a href="https://publications.waset.org/abstracts/search?q=platform%20independent%20model%20%28PIM%29" title=" platform independent model (PIM)"> platform independent model (PIM)</a>, <a href="https://publications.waset.org/abstracts/search?q=platform%20specific%20model%28PSM%29" title=" platform specific model(PSM)"> platform specific model(PSM)</a>, <a href="https://publications.waset.org/abstracts/search?q=MDA-based%20methodologies" title=" MDA-based methodologies"> MDA-based methodologies</a> </p> <a href="https://publications.waset.org/abstracts/34919/model-driven-architecture-methodologies-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2517</span> Virtual Reality Design Platform to Easily Create Virtual Reality Experiences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Casteleiro-%20Pitrez">J. Casteleiro- Pitrez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interest in Virtual Reality (VR) keeps increasing among the community of designers. To develop this type of immersive experience, the understanding of new processes and methodologies is as fundamental as its complex implementation which usually implies hiring a specialized team. In this paper, we introduce a case study, a platform that allows designers to easily create complex VR experiences, present its features, and its development process. We conclude that this platform provides a complete solution for the design and development of VR experiences, no-code needed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=creatives" title="creatives">creatives</a>, <a href="https://publications.waset.org/abstracts/search?q=designers" title=" designers"> designers</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20reality" title=" virtual reality"> virtual reality</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20reality%20design%20platform" title=" virtual reality design platform"> virtual reality design platform</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20reality%20system" title=" virtual reality system"> virtual reality system</a>, <a href="https://publications.waset.org/abstracts/search?q=no-coding" title=" no-coding"> no-coding</a> </p> <a href="https://publications.waset.org/abstracts/132222/virtual-reality-design-platform-to-easily-create-virtual-reality-experiences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2516</span> Mixed Model Sequencing in Painting Production Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Unchalee%20Inkampa">Unchalee Inkampa</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuanjai%20Somboonwiwat"> Tuanjai Somboonwiwat </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Painting process of automobiles and automobile parts, which is a continuous process based on EDP (Electrode position paint, EDP). Through EDP, all work pieces will be continuously sent to the painting process. Work process can be divided into 2 groups based on the running time: Painting Room 1 and Painting Room 2. This leads to continuous operation. The problem that arises is waiting for workloads onto Painting Room. The grading process EDP to Painting Room is a major problem. Therefore, this paper aim to develop production sequencing method by applying EDP to painting process. It also applied fixed rate launching for painting room and earliest due date (EDD) for EDP process and swap pairwise interchange for waiting time to a minimum of machine. The result found that the developed method could improve painting reduced waiting time, on time delivery, meeting customers wants and improved productivity of painting unit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sequencing" title="sequencing">sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20model%20lines" title=" mixed model lines"> mixed model lines</a>, <a href="https://publications.waset.org/abstracts/search?q=painting%20process" title=" painting process"> painting process</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode%20position%20paint" title=" electrode position paint"> electrode position paint</a> </p> <a href="https://publications.waset.org/abstracts/34291/mixed-model-sequencing-in-painting-production-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2515</span> Multi-Objective Simulated Annealing Algorithms for Scheduling Just-In-Time Assembly Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghorbanali%20Mohammadi">Ghorbanali Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New approaches to sequencing mixed-model manufacturing systems are present. These approaches have attracted considerable attention due to their potential to deal with difficult optimization problems. This paper presents Multi-Objective Simulated Annealing Algorithms (MOSAA) approaches to the Just-In-Time (JIT) sequencing problem where workload-smoothing (WL) and the number of set-ups (St) are to be optimized simultaneously. Mixed-model assembly lines are types of production lines where varieties of product models similar in product characteristics are assembled. Moreover, this type of problem is NP-hard. Two annealing methods are proposed to solve the multi-objective problem and find an efficient frontier of all design configurations. The performances of the two methods are tested on several problems from the literature. Experimentation demonstrates the relative desirable performance of the presented methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scheduling" title="scheduling">scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=just-in-time" title=" just-in-time"> just-in-time</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed-model%20assembly%20line" title=" mixed-model assembly line"> mixed-model assembly line</a>, <a href="https://publications.waset.org/abstracts/search?q=sequencing" title=" sequencing"> sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20annealing" title=" simulated annealing"> simulated annealing</a> </p> <a href="https://publications.waset.org/abstracts/152223/multi-objective-simulated-annealing-algorithms-for-scheduling-just-in-time-assembly-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2514</span> Efficient Reuse of Exome Sequencing Data for Copy Number Variation Callings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen%20Wang">Chen Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jared%20Evans"> Jared Evans</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Asmann"> Yan Asmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the quick evolvement of next-generation sequencing techniques, whole-exome or exome-panel data have become a cost-effective way for detection of small exonic mutations, but there has been a growing desire to accurately detect copy number variations (CNVs) as well. In order to address this research and clinical needs, we developed a sequencing coverage pattern-based method not only for copy number detections, data integrity checks, CNV calling, and visualization reports. The developed methodologies include complete automation to increase usability, genome content-coverage bias correction, CNV segmentation, data quality reports, and publication quality images. Automatic identification and removal of poor quality outlier samples were made automatically. Multiple experimental batches were routinely detected and further reduced for a clean subset of samples before analysis. Algorithm improvements were also made to improve somatic CNV detection as well as germline CNV detection in trio family. Additionally, a set of utilities was included to facilitate users for producing CNV plots in focused genes of interest. We demonstrate the somatic CNV enhancements by accurately detecting CNVs in whole exome-wide data from the cancer genome atlas cancer samples and a lymphoma case study with paired tumor and normal samples. We also showed our efficient reuses of existing exome sequencing data, for improved germline CNV calling in a family of the trio from the phase-III study of 1000 Genome to detect CNVs with various modes of inheritance. The performance of the developed method is evaluated by comparing CNV calling results with results from other orthogonal copy number platforms. Through our case studies, reuses of exome sequencing data for calling CNVs have several noticeable functionalities, including a better quality control for exome sequencing data, improved joint analysis with single nucleotide variant calls, and novel genomic discovery of under-utilized existing whole exome and custom exome panel data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title="bioinformatics">bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20genetics" title=" computational genetics"> computational genetics</a>, <a href="https://publications.waset.org/abstracts/search?q=copy%20number%20variations" title=" copy number variations"> copy number variations</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20reuse" title=" data reuse"> data reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=exome%20sequencing" title=" exome sequencing"> exome sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=next%20generation%20sequencing" title=" next generation sequencing"> next generation sequencing</a> </p> <a href="https://publications.waset.org/abstracts/56260/efficient-reuse-of-exome-sequencing-data-for-copy-number-variation-callings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2513</span> System Engineering Design of Offshore Oil Drilling Production Platform from Marine Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Njoku%20Paul">C. Njoku Paul </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with systems engineering applications design for offshore oil drilling production platform in the Nigerian Marine Environment. Engineering Design model of the distribution and accumulation of petroleum hydrocarbons discharged into marine environment production platform and sources of impact of an offshore is treated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20of%20offshore%20oil%20drilling%20production%20platform" title="design of offshore oil drilling production platform">design of offshore oil drilling production platform</a>, <a href="https://publications.waset.org/abstracts/search?q=marine" title=" marine"> marine</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20hydrocarbons" title=" petroleum hydrocarbons"> petroleum hydrocarbons</a> </p> <a href="https://publications.waset.org/abstracts/26646/system-engineering-design-of-offshore-oil-drilling-production-platform-from-marine-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2512</span> Increase of Sensitivity in 3D Suspended Polymeric Microfluidic Platform through Lateral Misalignment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Yazdanpanah%20Moghadam">Ehsan Yazdanpanah Moghadam</a>, <a href="https://publications.waset.org/abstracts/search?q=Muthukumaran%20Packirisamy"> Muthukumaran Packirisamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, a design of the suspended polymeric microfluidic platform is introduced that is fabricated with three polymeric layers. Changing the microchannel plane to be perpendicular to microcantilever plane, drastically decreases moment of inertia in that direction. In addition, the platform is made of polymer (around five orders of magnitude less compared to silicon). It causes significant increase in the sensitivity of the cantilever deflection. Next, although the dimensions of this platform are constant, by misaligning the embedded microchannels laterally in the suspended microfluidic platform, the sensitivity can be highly increased. The investigation is studied on four fluids including water, seawater, milk, and blood for flow ranges from low rate of 5 to 70 &micro;l/min to obtain the best design with the highest sensitivity. The best design in this study shows the sensitivity increases around 50% for water, seawater, milk, and blood at the flow rate of 70 &micro;l/min by just misaligning the embedded microchannels in the suspended polymeric microfluidic platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidic" title="microfluidic">microfluidic</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS" title=" MEMS"> MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensor" title=" biosensor"> biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=microresonator" title=" microresonator"> microresonator</a> </p> <a href="https://publications.waset.org/abstracts/81819/increase-of-sensitivity-in-3d-suspended-polymeric-microfluidic-platform-through-lateral-misalignment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2511</span> Enzymatic Repair Prior To DNA Barcoding, Aspirations, and Restraints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maxime%20Merheb">Maxime Merheb</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachel%20Matar"> Rachel Matar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Retrieving ancient DNA sequences which in return permit the entire genome sequencing from fossils have extraordinarily improved in recent years, thanks to sequencing technology and other methodological advances. In any case, the quest to search for ancient DNA is still obstructed by the damage inflicted on DNA which accumulates after the death of a living organism. We can characterize this damage into three main categories: (i) Physical abnormalities such as strand breaks which lead to the presence of short DNA fragments. (ii) Modified bases (mainly cytosine deamination) which cause errors in the sequence due to an incorporation of a false nucleotide during DNA amplification. (iii) DNA modifications referred to as blocking lesions, will halt the PCR extension which in return will also affect the amplification and sequencing process. We can clearly see that the issues arising from breakage and coding errors were significantly decreased in recent years. Fast sequencing of short DNA fragments was empowered by platforms for high-throughput sequencing, most of the coding errors were uncovered to be the consequences of cytosine deamination which can be easily removed from the DNA using enzymatic treatment. The methodology to repair DNA sequences is still in development, it can be basically explained by the process of reintroducing cytosine rather than uracil. This technique is thus restricted to amplified DNA molecules. To eliminate any type of damage (particularly those that block PCR) is a process still pending the complete repair methodologies; DNA detection right after extraction is highly needed. Before using any resources into extensive, unreasonable and uncertain repair techniques, it is vital to distinguish between two possible hypotheses; (i) DNA is none existent to be amplified to begin with therefore completely un-repairable, (ii) the DNA is refractory to PCR and it is worth to be repaired and amplified. Hence, it is extremely important to develop a non-enzymatic technique to detect the most degraded DNA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ancient%20DNA" title="ancient DNA">ancient DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20barcodong" title=" DNA barcodong"> DNA barcodong</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20repair" title=" enzymatic repair"> enzymatic repair</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a> </p> <a href="https://publications.waset.org/abstracts/47621/enzymatic-repair-prior-to-dna-barcoding-aspirations-and-restraints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2510</span> Analysis of Digitized Stories Authored by a Struggling Grade 1 Reader</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daphne%20Dean%20C.%20Arenos">Daphne Dean C. Arenos</a>, <a href="https://publications.waset.org/abstracts/search?q=Glorificacion%20L.%20Quinopez"> Glorificacion L. Quinopez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study has been conducted to describe the digitized stories authored by a Grade 1 pupil struggling in reading. The main goal was to find out the effect of authoring digital stories on the reading skill of a grade 1 pupil in terms of vocabulary and sequencing skills. To be able to explicate the data collected, a case study approach has been chosen. This case study focused on a 6 years old Filipino child born and raised in Spain and has just transferred to a private school a year ago. The pupil’s struggles in reading, as well as her experiences with digitized stories, were further described. The findings revealed that authoring digital stories facilitate the reading progress of a struggling pupil. The presence of literary elements in the pupil’s stories built her vocabulary and sequencing skills. Hence, authoring digital stories serve as an appropriate and effective scaffold for struggling readers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=literary%20elements" title="literary elements">literary elements</a>, <a href="https://publications.waset.org/abstracts/search?q=reading%20skill" title=" reading skill"> reading skill</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffold" title=" scaffold"> scaffold</a>, <a href="https://publications.waset.org/abstracts/search?q=sequencing%20skill" title=" sequencing skill"> sequencing skill</a>, <a href="https://publications.waset.org/abstracts/search?q=vocabulary" title=" vocabulary"> vocabulary</a> </p> <a href="https://publications.waset.org/abstracts/124820/analysis-of-digitized-stories-authored-by-a-struggling-grade-1-reader" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2509</span> The LIP’s Electric Propulsion Development for Chinese Spacecraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Tianping">Zhang Tianping</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Yanhui"> Jia Yanhui</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Juan"> Li Juan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Le"> Yang Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Hao"> Yang Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Wei"> Yang Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Xiaojing"> Sun Xiaojing</a>, <a href="https://publications.waset.org/abstracts/search?q=Shi%20Kai"> Shi Kai</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Xingda"> Li Xingda</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Yunkui"> Sun Yunkui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lanzhou Institute of Physics (LIP) is the major supplier of electric propulsion subsystems for Chinese satellite platforms. The development statuses of these electric propulsion subsystems were summarized including the LIPS-200 ion electric propulsion subsystem (IEPS) for DFH-3B platform, the LIPS-300 IEPS for DFH-5 and DFH-4SP platform, the LIPS-200+ IEPS for DFH-4E platform and near-earth asteroid exploration spacecraft, the LIPS-100 IEPS for small satellite platform, the LHT-100 hall electric propulsion subsystem (HEPS) for flight test on XY-2 satellite, the LHT-140 HEPS for large LEO spacecraft, the LIPS-400 IEPS for deep space exploration mission and other EPS for other Chinese spacecraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ion%20electric%20propulsion" title="ion electric propulsion">ion electric propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=hall%20electric%20propulsion" title=" hall electric propulsion"> hall electric propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20platform" title=" satellite platform"> satellite platform</a>, <a href="https://publications.waset.org/abstracts/search?q=LIP" title=" LIP"> LIP</a> </p> <a href="https://publications.waset.org/abstracts/39136/the-lips-electric-propulsion-development-for-chinese-spacecraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">730</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2508</span> Foodborne Pathogens in Different Types of Milk: From the Microbiome to Risk Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pasquali%20Frederique">Pasquali Frederique</a>, <a href="https://publications.waset.org/abstracts/search?q=Manfreda%20Chiara"> Manfreda Chiara</a>, <a href="https://publications.waset.org/abstracts/search?q=Crippa%20Cecilia"> Crippa Cecilia</a>, <a href="https://publications.waset.org/abstracts/search?q=Indio%20Valentina"> Indio Valentina</a>, <a href="https://publications.waset.org/abstracts/search?q=Ianieri%20Adriana"> Ianieri Adriana</a>, <a href="https://publications.waset.org/abstracts/search?q=De%20Cesare%20Alessandra"> De Cesare Alessandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbiological hazards can be transmitted to humans through milk. In this study, we compared the microbiome composition and presence of foodborne pathogens in organic milk (n=6), organic hay milk (n=6), standard milk (n=6) and high-quality milk (n=6). The milk samples were collected during six samplings between December 2022 to January 2023 and between April and May 2024 to take into account seasonal variations. The 24 milk samples were submitted to DNA extraction and library preparation before shotgun sequencing on the Illumina HiScan™ SQ System platform. The total sequencing output was 600 GB. In all the milk samples, the phyla with the highest relative abundances were Pseudomonadota, Bacillota, Ascomycota, Actinomycetota and Apicomplexa, while the most represented genera were Pseudomonas, Streptococcus, Geotrichum, Acinetobacter and Babesia. The alpha and beta diversity indexes showed a clear separation between the microbiome of high-quality milk and those of the other milk types. Moreover, in the high-quality milk, the relative abundance of Staphylococcus (4.4%), Campylobacter (4.5%), Bacillus (2.5%), Enterococcus (2.4%), Klebsiella (1.3%) and Escherichia (0 .7%) was significantly higher in comparison to other types of milk. On the contrary, the relative abundance of Geotrichum (0.5%) was significantly lower. The microbiome results collected in this study showed significant differences in terms of the relative abundance of bacteria genera, including foodborne pathogen species. These results should be incorporated into risk assessment models tailored to different types of milk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=raw%20milk" title="raw milk">raw milk</a>, <a href="https://publications.waset.org/abstracts/search?q=foodborne%20pathogens" title=" foodborne pathogens"> foodborne pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiome" title=" microbiome"> microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a> </p> <a href="https://publications.waset.org/abstracts/188934/foodborne-pathogens-in-different-types-of-milk-from-the-microbiome-to-risk-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2507</span> The First Transcriptome Assembly of Marama Bean: An African Orphan Crop</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ethel%20E.%20Phiri">Ethel E. Phiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Lionel%20Hartzenberg"> Lionel Hartzenberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Percy%20Chimwamuromba"> Percy Chimwamuromba</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Nepolo"> Emmanuel Nepolo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jens%20Kossmann"> Jens Kossmann</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20R.%20Lloyd"> James R. Lloyd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Orphan crops are underresearched and underutilized food plant species that have not been categorized as major food crops, but have the potential to be economically and agronomically significant. They have been documented to have the ability to tolerate extreme environmental conditions. However, limited research has been conducted to uncover their potential as food crop species. The New Partnership for Africa’s Development (NEPAD) has classified Marama bean, Tylosema esculentum, as an orphan crop. The plant is one of the 101 African orphan crops that must have their genomes sequenced, assembled, and annotated in the foreseeable future. Marama bean is a perennial leguminous plant that primarily grows in poor, arid soils in southern Africa. The plants produce large tubers that can weigh as much as 200kg. While the foliage provides fodder, the tuber is carbohydrate rich and is a staple food source for rural communities in Namibia. Also, the edible seeds are protein- and oil-rich. Marama Bean plants respond rapidly to increased temperatures and severe water scarcity without extreme consequences. Advances in molecular biology and biotechnology have made it possible to effectively transfer technologies between model- and major crops to orphan crops. In this research, the aim was to assemble the first transcriptomic analysis of Marama Bean RNA-sequence data. Many model plant species have had their genomes sequenced and their transcriptomes assembled. Therefore the availability of transcriptome data for a non-model crop plant species will allow for gene identification and comparisons between various species. The data has been sequenced using the Ilumina Hiseq 2500 sequencing platform. Data analysis is underway. In essence, this research will eventually evaluate the potential use of Marama Bean as a crop species to improve its value in agronomy. data for a non-model crop plant species will allow for gene identification and comparisons between various species. The data has been sequenced using the Ilumina Hiseq 2500 sequencing platform. Data analysis is underway. In essence, this researc will eventually evaluate the potential use of Marama bean as a crop species to improve its value in agronomy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=101%20African%20orphan%20crops" title="101 African orphan crops">101 African orphan crops</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA-Seq" title=" RNA-Seq"> RNA-Seq</a>, <a href="https://publications.waset.org/abstracts/search?q=Tylosema%20esculentum" title=" Tylosema esculentum"> Tylosema esculentum</a>, <a href="https://publications.waset.org/abstracts/search?q=underutilised%20crop%20plants" title=" underutilised crop plants"> underutilised crop plants</a> </p> <a href="https://publications.waset.org/abstracts/59804/the-first-transcriptome-assembly-of-marama-bean-an-african-orphan-crop" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2506</span> A Deletion in Duchenne Muscular Dystrophy Gene Found Through Whole Exome Sequencing in Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Negin%20Parsamanesh">Negin Parsamanesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Saman%20Ameri-Mahabadi"> Saman Ameri-Mahabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Nikfar"> Ali Nikfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojdeh%20Mansouri"> Mojdeh Mansouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Chiti"> Hossein Chiti</a>, <a href="https://publications.waset.org/abstracts/search?q=Gita%20Fatemi%20Abhari"> Gita Fatemi Abhari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Duchenne muscular dystrophy (DMD) is a severe progressive X-linked neuromuscular illness that affects movement through mutations in dystrophin gene. The mutation leads to insufficient, lack of or dysfunction of dystrophin. The cause of DMD was determined in an Iranian family. Exome sequencing was carried out along with a complete physical examination of the family. In silico methods were applied to find the alteration in the protein structure. The homozygous variant in DMD gene (NM-004006.2) was defined as c.2732-2733delTT (p.Phe911CysfsX8) in exon 21. In addition, phylogenetic conservation study of the human dystrophin protein sequence revealed that phenylalanine 911 is one of the evolutionarily conserved amino acids. In conclusion, our study indicated a new deletion in the DMD gene in the affected family. This deletion with an X-linked inheritance pattern is new in Iran. These findings could facilitate genetic counseling for this family and other patients in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=duchenne%20muscular%20dystrophy" title="duchenne muscular dystrophy">duchenne muscular dystrophy</a>, <a href="https://publications.waset.org/abstracts/search?q=whole%20exome%20sequencing" title=" whole exome sequencing"> whole exome sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=iran" title=" iran"> iran</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20syndrome" title=" metabolic syndrome"> metabolic syndrome</a> </p> <a href="https://publications.waset.org/abstracts/166749/a-deletion-in-duchenne-muscular-dystrophy-gene-found-through-whole-exome-sequencing-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2505</span> C-eXpress: A Web-Based Analysis Platform for Comparative Functional Genomics and Proteomics in Human Cancer Cell Line, NCI-60 as an Example</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chi-Ching%20Lee">Chi-Ching Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Po-Jung%20Huang"> Po-Jung Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuo-Yang%20Huang"> Kuo-Yang Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Petrus%20Tang"> Petrus Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Recent advances in high-throughput research technologies such as new-generation sequencing and multi-dimensional liquid chromatography makes it possible to dissect the complete transcriptome and proteome in a single run for the first time. However, it is almost impossible for many laboratories to handle and analysis these “BIG” data without the support from a bioinformatics team. We aimed to provide a web-based analysis platform for users with only limited knowledge on bio-computing to study the functional genomics and proteomics. Method: We use NCI-60 as an example dataset to demonstrate the power of the web-based analysis platform and data delivering system: C-eXpress takes a simple text file that contain the standard NCBI gene or protein ID and expression levels (rpkm or fold) as input file to generate a distribution map of gene/protein expression levels in a heatmap diagram organized by color gradients. The diagram is hyper-linked to a dynamic html table that allows the users to filter the datasets based on various gene features. A dynamic summary chart is generated automatically after each filtering process. Results: We implemented an integrated database that contain pre-defined annotations such as gene/protein properties (ID, name, length, MW, pI); pathways based on KEGG and GO biological process; subcellular localization based on GO cellular component; functional classification based on GO molecular function, kinase, peptidase and transporter. Multiple ways of sorting of column and rows is also provided for comparative analysis and visualization of multiple samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer" title="cancer">cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization" title=" visualization"> visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=database" title=" database"> database</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20annotation" title=" functional annotation"> functional annotation</a> </p> <a href="https://publications.waset.org/abstracts/16079/c-express-a-web-based-analysis-platform-for-comparative-functional-genomics-and-proteomics-in-human-cancer-cell-line-nci-60-as-an-example" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">619</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2504</span> A Survey on Internet of Things and Fog Computing as a Platform for Internet of Things</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Kalantary">Samira Kalantary</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Taghipour"> Sara Taghipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansoure%20Ghias%20Abadi"> Mansoure Ghias Abadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Internet of Things (IOT) is a technological revolution that represents the future of computing and communications. IOT is the convergence of Internet with RFID, NFC, Sensor, and smart objects. Fog Computing is the natural platform for IOT. At present, the IOT as a new network communication technology has rapidly shifted from concept to application under fog computing virtual storage computing platform. In this paper, we describe everything about IOT and difference between cloud computing and fog computing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title="cloud computing">cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=fog%20computing" title=" fog computing"> fog computing</a>, <a href="https://publications.waset.org/abstracts/search?q=Internet%20of%20Things%20%28IoT%29" title=" Internet of Things (IoT)"> Internet of Things (IoT)</a>, <a href="https://publications.waset.org/abstracts/search?q=IOT%20application" title=" IOT application"> IOT application</a> </p> <a href="https://publications.waset.org/abstracts/30670/a-survey-on-internet-of-things-and-fog-computing-as-a-platform-for-internet-of-things" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">585</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2503</span> Platform Urbanism: Planning towards Hyper-Personalisation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Provides%20Ng">Provides Ng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Platform economy is a peer-to-peer model of distributing resources facilitated by community-based digital platforms. In recent years, digital platforms are rapidly reconfiguring the public realm using hyper-personalisation techniques. This paper aims at investigating how urban planning can leapfrog into the digital age to help relieve the rising tension of the global issue of labour flow; it discusses the means to transfer techniques of hyper-personalisation into urban planning for plasticity using platform technologies. This research first denotes the limitations of the current system of urban residency, where the system maintains itself on the circulation of documents, which are data on paper. Then, this paper tabulates how some of the institutions around the world, both public and private, digitise data, and streamline communications between a network of systems and citizens using platform technologies. Subsequently, this paper proposes ways in which hyper-personalisation can be utilised to form a digital planning platform. Finally, this paper concludes by reviewing how the proposed strategy may help to open up new ways of thinking about how we affiliate ourselves with cities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=platform%20urbanism" title="platform urbanism">platform urbanism</a>, <a href="https://publications.waset.org/abstracts/search?q=hyper-personalisation" title=" hyper-personalisation"> hyper-personalisation</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20inventory" title=" digital inventory"> digital inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20accessibility" title=" urban accessibility "> urban accessibility </a> </p> <a href="https://publications.waset.org/abstracts/124790/platform-urbanism-planning-towards-hyper-personalisation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2502</span> Characterization of the Intestinal Microbiota: A Signature in Fecal Samples from Patients with Irritable Bowel Syndrome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mina%20Hojat%20Ansari">Mina Hojat Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Bagheri%20Lankarani"> Kamran Bagheri Lankarani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Fattahi"> Mohammad Reza Fattahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Reza%20Safarpour"> Ali Reza Safarpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Irritable bowel syndrome (IBS) is a common bowel disorder which is usually diagnosed through the abdominal pain, fecal irregularities and bloating. Alteration in the intestinal microbial composition is implicating to inflammatory and functional bowel disorders which is recently also noted as an IBS feature. Owing to the potential importance of microbiota implication in both efficiencies of the treatment and prevention of the diseases, we examined the association between the intestinal microbiota and different bowel patterns in a cohort of subjects with IBS and healthy controls. Fresh fecal samples were collected from a total of 50 subjects, 30 of whom met the Rome IV criteria for IBS and 20 Healthy control. Total DNA was extracted and library preparation was conducted following the standard protocol for small whole genome sequencing. The pooled libraries sequenced on an Illumina Nextseq platform with a 2 × 150 paired-end read length and obtained sequences were analyzed using several bioinformatics programs. The majority of sequences obtained in the current study assigned to bacteria. However, our finding highlighted the significant microbial taxa variation among the studied groups. The result, therefore, suggests a significant association of the microbiota with symptoms and bowel characteristics in patients with IBS. These alterations in fecal microbiota could be exploited as a biomarker for IBS or its subtypes and suggest the modification of the microbiota might be integrated into prevention and treatment strategies for IBS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irritable%20bowel%20syndrome" title="irritable bowel syndrome">irritable bowel syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=intestinal%20microbiota" title=" intestinal microbiota"> intestinal microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20whole%20genome%20sequencing" title=" small whole genome sequencing"> small whole genome sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=fecal%20samples" title=" fecal samples"> fecal samples</a>, <a href="https://publications.waset.org/abstracts/search?q=Illumina" title=" Illumina"> Illumina</a> </p> <a href="https://publications.waset.org/abstracts/98505/characterization-of-the-intestinal-microbiota-a-signature-in-fecal-samples-from-patients-with-irritable-bowel-syndrome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2501</span> Test and Evaluation of Patient Tracking Platform in an Earthquake Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nahid%20Tavakoli">Nahid Tavakoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20H.%20Yarmohammadian"> Mohammad H. Yarmohammadian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Samimi"> Ali Samimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In earthquake situation, medical response communities such as field and referral hospitals are challenged with injured victims’ identification and tracking. In our project, it was developed a patient tracking platform (PTP) where first responders triage the patients with an electronic tag which report the location and some information of each patient during his/her movement. This platform includes: 1) near field communication (NFC) tags (ISO 14443), 2) smart mobile phones (Android-base version 4.2.2), 3) Base station laptops (Windows), 4) server software, 5) Android software to use by first responders, 5) disaster command software, and 6) system architecture. Our model has been completed through literature review, Delphi technique, focus group, design the platform, and implement in an earthquake exercise. This paper presents consideration for content, function, and technologies that must apply for patient tracking in medical emergencies situations. It is demonstrated the robustness of the patient tracking platform (PTP) in tracking 6 patients in a simulated earthquake situation in the yard of the relief and rescue department of Isfahan’s Red Crescent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=test%20and%20evaluation" title="test and evaluation">test and evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20tracking%20platform" title=" patient tracking platform"> patient tracking platform</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/112288/test-and-evaluation-of-patient-tracking-platform-in-an-earthquake-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2500</span> Molecular-Genetics Studies of New Unknown APMV Isolated from Wild Bird in Ukraine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Borys%20Stegniy">Borys Stegniy</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%20Gerilovych"> Anton Gerilovych</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleksii%20Solodiankin"> Oleksii Solodiankin</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitaliy%20Bolotin"> Vitaliy Bolotin</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%20Stegniy"> Anton Stegniy</a>, <a href="https://publications.waset.org/abstracts/search?q=Denys%20Muzyka"> Denys Muzyka</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudio%20Afonso"> Claudio Afonso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New APMV was isolated from white fronted goose in Ukraine. This isolate was tested serologically using monoclonal antibodies in haemagglutination-inhibition tests against APMV1-9. As the results obtained isolate showed cross reactions with APMV7. Following investigations were provided for the full genome sequencing using random primers and cloning into pCRII-TOPO. Analysis of 100 transformed colonies of E.coli using traditional sequencing gave us possibilities to find only 3 regions, which could identify by BLAST. The first region with the length of 367 bp had 70 % nucleotide sequence identity to the APMV 12 isolate Wigeon/Italy/3920_1/2005 at genome position 2419-2784. Next region (344 bp) had 66 % identity to the same APMV 12 isolate at position 4760-5103. The last region (365 bp) showed 71 % identity to Newcastle disease virus strain M4 at position 12569-12928. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=APMV" title="APMV">APMV</a>, <a href="https://publications.waset.org/abstracts/search?q=Newcastle%20disease%20virus" title=" Newcastle disease virus"> Newcastle disease virus</a>, <a href="https://publications.waset.org/abstracts/search?q=Ukraine" title=" Ukraine"> Ukraine</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20genome%20sequencing" title=" full genome sequencing "> full genome sequencing </a> </p> <a href="https://publications.waset.org/abstracts/2013/molecular-genetics-studies-of-new-unknown-apmv-isolated-from-wild-bird-in-ukraine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2499</span> Using Artificial Intelligence Technology to Build the User-Oriented Platform for Integrated Archival Service</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lai%20Wenfang">Lai Wenfang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tthis study will describe how to use artificial intelligence (AI) technology to build the user-oriented platform for integrated archival service. The platform will be launched in 2020 by the National Archives Administration (NAA) in Taiwan. With the progression of information communication technology (ICT) the NAA has built many systems to provide archival service. In order to cope with new challenges, such as new ICT, artificial intelligence or blockchain etc. the NAA will try to use the natural language processing (NLP) and machine learning (ML) skill to build a training model and propose suggestions based on the data sent to the platform. NAA expects the platform not only can automatically inform the sending agencies’ staffs which records catalogues are against the transfer or destroy rules, but also can use the model to find the details hidden in the catalogues and suggest NAA’s staff whether the records should be or not to be, to shorten the auditing time. The platform keeps all the users’ browse trails; so that the platform can predict what kinds of archives user could be interested and recommend the search terms by visualization, moreover, inform them the new coming archives. In addition, according to the Archives Act, the NAA’s staff must spend a lot of time to mark or remove the personal data, classified data, etc. before archives provided. To upgrade the archives access service process, the platform will use some text recognition pattern to black out automatically, the staff only need to adjust the error and upload the correct one, when the platform has learned the accuracy will be getting higher. In short, the purpose of the platform is to deduct the government digital transformation and implement the vision of a service-oriented smart government. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization" title=" visualization"> visualization</a> </p> <a href="https://publications.waset.org/abstracts/103806/using-artificial-intelligence-technology-to-build-the-user-oriented-platform-for-integrated-archival-service" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2498</span> Metagenomics Analysis of Bacteria in Sorghum Using next Generation Sequencing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kedibone%20Masenya">Kedibone Masenya</a>, <a href="https://publications.waset.org/abstracts/search?q=Memory%20Tekere"> Memory Tekere</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasper%20Rees"> Jasper Rees</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sorghum is an important cereal crop in the world. In particular, it has attracted breeders due to capacity to serve as food, feed, fiber and bioenergy crop. Like any other plant, sorghum hosts a variety of microbes, which can either, have a neutral, negative and positive influence on the plant. In the current study, regions (V3/V4) of 16 S rRNA were targeted to extensively assess bacterial multitrophic interactions in the phyllosphere of sorghum. The results demonstrated that the presence of a pathogen has a significant effect on the endophytic bacterial community. Understanding these interactions is key to develop new strategies for plant protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=multitrophic" title=" multitrophic"> multitrophic</a>, <a href="https://publications.waset.org/abstracts/search?q=sorghum" title=" sorghum"> sorghum</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20sequencing" title=" target sequencing"> target sequencing</a> </p> <a href="https://publications.waset.org/abstracts/73720/metagenomics-analysis-of-bacteria-in-sorghum-using-next-generation-sequencing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2497</span> Development of Microsatellite Markers for Genetic Variation Analysis in House Cricket, Acheta domesticus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yash%20M.%20Gupta">Yash M. Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Kittisak%20Buddhachat"> Kittisak Buddhachat</a>, <a href="https://publications.waset.org/abstracts/search?q=Surin%20Peyachoknagul"> Surin Peyachoknagul</a>, <a href="https://publications.waset.org/abstracts/search?q=Somjit%20Homchan"> Somjit Homchan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The house cricket, Acheta domesticus is one of the commonly found species of field crickets. Although it is very commonly used as food and feed, the genomic information of house cricket is still missing for genetic investigation. DNA sequencing technology has evolved over the decades, and it has also revolutionized the molecular marker development for genetic analysis. In the present study, we have sequenced the whole genome of A. domesticus using illumina platform based HiSeq X Ten sequencing technology for searching simple sequence repeats (SSRs) in DNA to develop polymorphic microsatellite markers for population genetic analysis. A total of 112,157 SSRs with primer pairs were identified, 91 randomly selected SSRs used to check DNA amplification, of which nine primers were polymorphic. These microsatellite markers have shown cross-amplification with other three species of crickets which are Gryllus bimaculatus, Gryllus testaceus and Brachytrupes portentosus. These nine polymorphic microsatellite markers were used to check genetic variation for forty-five individuals of A. domesticus, Phitsanulok population, Thailand. For nine loci, the number of alleles was ranging from 5 to 15. The observed heterozygosity was ranged from 0.4091 to 0.7556. These microsatellite markers will facilitate population genetic analysis for future studies of A. domesticus populations. Moreover, the transferability of these SSR makers would also enable researchers to conduct genetic studies for other closely related species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-amplification" title="cross-amplification">cross-amplification</a>, <a href="https://publications.waset.org/abstracts/search?q=microsatellite%20markers" title=" microsatellite markers"> microsatellite markers</a>, <a href="https://publications.waset.org/abstracts/search?q=observed%20heterozygosity" title=" observed heterozygosity"> observed heterozygosity</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20genetic" title=" population genetic"> population genetic</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20sequence%20repeats" title=" simple sequence repeats"> simple sequence repeats</a> </p> <a href="https://publications.waset.org/abstracts/109733/development-of-microsatellite-markers-for-genetic-variation-analysis-in-house-cricket-acheta-domesticus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ion%20S5%20sequencing%20platform&amp;page=1" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ion%20S5%20sequencing%20platform&amp;page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ion%20S5%20sequencing%20platform&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ion%20S5%20sequencing%20platform&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ion%20S5%20sequencing%20platform&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ion%20S5%20sequencing%20platform&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ion%20S5%20sequencing%20platform&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ion%20S5%20sequencing%20platform&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ion%20S5%20sequencing%20platform&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ion%20S5%20sequencing%20platform&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ion%20S5%20sequencing%20platform&amp;page=85">85</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ion%20S5%20sequencing%20platform&amp;page=86">86</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ion%20S5%20sequencing%20platform&amp;page=3" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10