CINXE.COM
Search results for: peak flood
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: peak flood</title> <meta name="description" content="Search results for: peak flood"> <meta name="keywords" content="peak flood"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="peak flood" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="peak flood"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1836</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: peak flood</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1836</span> Hydrology and Hydraulics Analysis of Beko Abo Dam and Appurtenant Structre Design, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azazhu%20Wassie">Azazhu Wassie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study tried to evaluate the maximum design flood for appurtenance structure design using the given climatological and hydrological data analysis on the referenced study area. The maximum design flood is determined by using flood frequency analysis. Using this method, the peak discharge is 32,583.67 m3/s, but the data is transferred because the dam site is not on the gauged station. Then the peak discharge becomes 38,115 m3/s. The study was conducted in June 2023. This dam is built across a river to create a reservoir on its upstream side for impounding water. The water stored in the reservoir is used for various purposes, such as irrigation, hydropower, navigation, fishing, etc. The total average volume of annual runoff is estimated to be 115.1 billion m3. The total potential of the land for irrigation development can go beyond 3 million ha. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dam%20design" title="dam design">dam design</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20duration%20curve" title=" flow duration curve"> flow duration curve</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20flood" title=" peak flood"> peak flood</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20capacity" title=" reservoir capacity"> reservoir capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20and%20reliability" title=" risk and reliability"> risk and reliability</a> </p> <a href="https://publications.waset.org/abstracts/188645/hydrology-and-hydraulics-analysis-of-beko-abo-dam-and-appurtenant-structre-design-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1835</span> Applying of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Estimation of Flood Hydrographs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Ahmad%20Dehghani">Amir Ahmad Dehghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Nabizadeh"> Morteza Nabizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the application of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to flood hydrograph modeling of Shahid Rajaee reservoir dam located in Iran. This was carried out using 11 flood hydrographs recorded in Tajan river gauging station. From this dataset, 9 flood hydrographs were chosen to train the model and 2 flood hydrographs to test the model. The different architectures of neuro-fuzzy model according to the membership function and learning algorithm were designed and trained with different epochs. The results were evaluated in comparison with the observed hydrographs and the best structure of model was chosen according the least RMSE in each performance. To evaluate the efficiency of neuro-fuzzy model, various statistical indices such as Nash-Sutcliff and flood peak discharge error criteria were calculated. In this simulation, the coordinates of a flood hydrograph including peak discharge were estimated using the discharge values occurred in the earlier time steps as input values to the neuro-fuzzy model. These results indicate the satisfactory efficiency of neuro-fuzzy model for flood simulating. This performance of the model demonstrates the suitability of the implemented approach to flood management projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20neuro-fuzzy%20inference%20system" title="adaptive neuro-fuzzy inference system">adaptive neuro-fuzzy inference system</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20hydrograph" title=" flood hydrograph"> flood hydrograph</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20learning%20algorithm" title=" hybrid learning algorithm"> hybrid learning algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahid%20Rajaee%20reservoir%20dam" title=" Shahid Rajaee reservoir dam"> Shahid Rajaee reservoir dam</a> </p> <a href="https://publications.waset.org/abstracts/13913/applying-of-an-adaptive-neuro-fuzzy-inference-system-anfis-for-estimation-of-flood-hydrographs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1834</span> Hydrology and Hydraulics Analysis of Aremenie Earthen Dam, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azazhu%20Wassie">Azazhu Wassie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study tried to analyze the impact of the hydrologic and hydraulic parameters (catchment area, rainfall intensity, and runoff coefficient) on the referenced study area. The study was conducted in June 2023. The Aremenie River Dam has 30 years of record, which is reasonably sufficient data. It is a matter of common experience that, due to the failure of an instrument or the absence of a gauged river, the rainfall record at quite a number of stations is incomplete. From the analysis, the 50-year return period design flood is 62.685 m³/s at 1.2 hr peak time. This implies that for this watershed, the peak flood rate per km² area of the watershed is about this value, which ensures that high rainfall in the area can generate a higher rate of runoff per km² of the generating catchment. The Aremenie Rivers carry a large amount of sediment along with water. These sediments are deposited in the reservoir upstream of the dam because of the reduction in velocity. Sediment reduces the available capacity of the reservoir with continuous sedimentation; the useful life of the reservoir goes on decreasing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dam%20design" title="dam design">dam design</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20flood" title=" peak flood"> peak flood</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20capacity" title=" reservoir capacity"> reservoir capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a> </p> <a href="https://publications.waset.org/abstracts/188045/hydrology-and-hydraulics-analysis-of-aremenie-earthen-dam-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">33</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1833</span> Simulation of Flood Inundation in Kedukan River Using HEC-RAS and GIS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reini%20S.%20Ilmiaty">Reini S. Ilmiaty</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20B.%20Al%20Amin"> Muhammad B. Al Amin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarino"> Sarino</a>, <a href="https://publications.waset.org/abstracts/search?q=Muzamil%20Jariski"> Muzamil Jariski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kedukan River is an artificial river which serves as a Watershed Boang drainage channel in Palembang. The river has upstream and downstream connected to Musi River, that often overflowing and flooding caused by the huge runoff discharge and high tide water level of Musi River. This study aimed to analyze the flood water surface profile on Kedukan River continued with flood inundation simulation to determine flooding prone areas in research area. The analysis starts from the peak runoff discharge calculations using rational method followed by water surface profile analysis using HEC-RAS program controlled by manual calculations using standard stages. The analysis followed by running flood inundation simulation using ArcGIS program that has been integrated with HEC-GeoRAS. Flood inundation simulation on Kedukan River creates inundation characteristic maps with depth, area, and circumference of inundation as the parameters. The inundation maps are very useful in providing an overview of flood prone areas in Kedukan River. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20modelling" title="flood modelling">flood modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-GeoRAS" title=" HEC-GeoRAS"> HEC-GeoRAS</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-RAS" title=" HEC-RAS"> HEC-RAS</a>, <a href="https://publications.waset.org/abstracts/search?q=inundation%20map" title=" inundation map"> inundation map</a> </p> <a href="https://publications.waset.org/abstracts/36622/simulation-of-flood-inundation-in-kedukan-river-using-hec-ras-and-gis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1832</span> Application of Public Access Two-Dimensional Hydrodynamic and Distributed Hydrological Models for Flood Forecasting in Ungauged Basins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Shayeq%20Azizi">Ahmad Shayeq Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuji%20Toda"> Yuji Toda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Afghanistan, floods are the most frequent and recurrent events among other natural disasters. On the other hand, lack of monitoring data is a severe problem, which increases the difficulty of making the appropriate flood countermeasures of flood forecasting. This study is carried out to simulate the flood inundation in Harirud River Basin by application of distributed hydrological model, Integrated Flood Analysis System (IFAS) and 2D hydrodynamic model, International River Interface Cooperative (iRIC) based on satellite rainfall combined with historical peak discharge and global accessed data. The results of the simulation can predict the inundation area, depth and velocity, and the hardware countermeasures such as the impact of levee installation can be discussed by using the present method. The methodology proposed in this study is suitable for the area where hydrological and geographical data including river survey data are poorly observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20hydrological%20model" title="distributed hydrological model">distributed hydrological model</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20inundation" title=" flood inundation"> flood inundation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20model" title=" hydrodynamic model"> hydrodynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=ungauged%20basins" title=" ungauged basins"> ungauged basins</a> </p> <a href="https://publications.waset.org/abstracts/91132/application-of-public-access-two-dimensional-hydrodynamic-and-distributed-hydrological-models-for-flood-forecasting-in-ungauged-basins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1831</span> Flood Mapping and Inoudation on Weira River Watershed (in the Case of Hadiya Zone, Shashogo Woreda)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alilu%20Getahun%20Sulito">Alilu Getahun Sulito</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exceptional floods are now prevalent in many places in Ethiopia, resulting in a large number of human deaths and property destruction. Lake Boyo watershed, in particular, had also traditionally been vulnerable to flash floods throughout the Boyo watershed. The goal of this research is to create flood and inundation maps for the Boyo Catchment. The integration of Geographic information system(GIS) technology and the hydraulic model (HEC-RAS) were utilized as methods to attain the objective. The peak discharge was determined using Fuller empirical methodology for intervals of 5, 10, 15, and 25 years, and the results were 103.2 m3/s, 158 m3/s, 222 m3/s, and 252 m3/s, respectively. River geometry, boundary conditions, manning's n value of varying land cover, and peak discharge at various return periods were all entered into HEC-RAS, and then an unsteady flow study was performed. The results of the unsteady flow study demonstrate that the water surface elevation in the longitudinal profile rises as the different periods increase. The flood inundation charts clearly show that regions on the right and left sides of the river with the greatest flood coverage were 15.418 km2 and 5.29 km2, respectively, flooded by 10,20,30, and 50 years. High water depths typically occur along the main channel and progressively spread to the floodplains. The latest study also found that flood-prone areas were disproportionately affected on the river's right bank. As a result, combining GIS with hydraulic modelling to create a flood inundation map is a viable solution. The findings of this study can be used to care again for the right bank of a Boyo River catchment near the Boyo Lake kebeles, according to the conclusion. Furthermore, it is critical to promote an early warning system in the kebeles so that people can be evacuated before a flood calamity happens. Keywords: Flood, Weira River, Boyo, GIS, HEC- GEORAS, HEC- RAS, Inundation Mapping <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weira%20River" title="Weira River">Weira River</a>, <a href="https://publications.waset.org/abstracts/search?q=Boyo" title=" Boyo"> Boyo</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-%20GEORAS" title=" HEC- GEORAS"> HEC- GEORAS</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-%20RAS" title=" HEC- RAS"> HEC- RAS</a>, <a href="https://publications.waset.org/abstracts/search?q=Inundation%20Mapping" title=" Inundation Mapping"> Inundation Mapping</a> </p> <a href="https://publications.waset.org/abstracts/183130/flood-mapping-and-inoudation-on-weira-river-watershed-in-the-case-of-hadiya-zone-shashogo-woreda" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">47</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1830</span> Regional Flood Frequency Analysis in Narmada Basin: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankit%20Shah">Ankit Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Shrivastava"> R. K. Shrivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flood and drought are two main features of hydrology which affect the human life. Floods are natural disasters which cause millions of rupees’ worth of damage each year in India and the whole world. Flood causes destruction in form of life and property. An accurate estimate of the flood damage potential is a key element to an effective, nationwide flood damage abatement program. Also, the increase in demand of water due to increase in population, industrial and agricultural growth, has let us know that though being a renewable resource it cannot be taken for granted. We have to optimize the use of water according to circumstances and conditions and need to harness it which can be done by construction of hydraulic structures. For their safe and proper functioning of hydraulic structures, we need to predict the flood magnitude and its impact. Hydraulic structures play a key role in harnessing and optimization of flood water which in turn results in safe and maximum use of water available. Mainly hydraulic structures are constructed on ungauged sites. There are two methods by which we can estimate flood viz. generation of Unit Hydrographs and Flood Frequency Analysis. In this study, Regional Flood Frequency Analysis has been employed. There are many methods for estimating the ‘Regional Flood Frequency Analysis’ viz. Index Flood Method. National Environmental and Research Council (NERC Methods), Multiple Regression Method, etc. However, none of the methods can be considered universal for every situation and location. The Narmada basin is located in Central India. It is drained by most of the tributaries, most of which are ungauged. Therefore it is very difficult to estimate flood on these tributaries and in the main river. As mentioned above Artificial Neural Network (ANN)s and Multiple Regression Method is used for determination of Regional flood Frequency. The annual peak flood data of 20 sites gauging sites of Narmada Basin is used in the present study to determine the Regional Flood relationships. Homogeneity of the considered sites is determined by using the Index Flood Method. Flood relationships obtained by both the methods are compared with each other, and it is found that ANN is more reliable than Multiple Regression Method for the present study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=index%20flood%20method" title=" index flood method"> index flood method</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20layer%20perceptrons" title=" multi layer perceptrons"> multi layer perceptrons</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20regression" title=" multiple regression"> multiple regression</a>, <a href="https://publications.waset.org/abstracts/search?q=Narmada%20basin" title=" Narmada basin"> Narmada basin</a>, <a href="https://publications.waset.org/abstracts/search?q=regional%20flood%20frequency" title=" regional flood frequency"> regional flood frequency</a> </p> <a href="https://publications.waset.org/abstracts/77015/regional-flood-frequency-analysis-in-narmada-basin-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1829</span> Floodplain Modeling of River Jhelum Using HEC-RAS: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kashif%20Hassan">Kashif Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.A.%20Ahanger"> M.A. Ahanger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Floods have become more frequent and severe due to effects of global climate change and human alterations of the natural environment. Flood prediction/ forecasting and control is one of the greatest challenges facing the world today. The forecast of floods is achieved by the use of hydraulic models such as HEC-RAS, which are designed to simulate flow processes of the surface water. Extreme flood events in river Jhelum , lasting from a day to few are a major disaster in the State of Jammu and Kashmir, India. In the present study HEC-RAS model was applied to two different reaches of river Jhelum in order to estimate the flood levels corresponding to 25, 50 and 100 year return period flood events at important locations and to deduce flood vulnerability of important areas and structures. The flow rates for the two reaches were derived from flood-frequency analysis of 50 years of historic peak flow data. Manning's roughness coefficient n was selected using detailed analysis. Rating Curves were also generated to serve as base for determining the boundary conditions. Calibration and Validation procedures were applied in order to ensure the reliability of the model. Sensitivity analysis was also performed in order to ensure the accuracy of Manning's n in generating water surface profiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20plain" title="flood plain">flood plain</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-RAS" title=" HEC-RAS"> HEC-RAS</a>, <a href="https://publications.waset.org/abstracts/search?q=Jhelum" title=" Jhelum"> Jhelum</a>, <a href="https://publications.waset.org/abstracts/search?q=return%20period" title=" return period"> return period</a> </p> <a href="https://publications.waset.org/abstracts/17030/floodplain-modeling-of-river-jhelum-using-hec-ras-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1828</span> Hydrological, Hydraulics, Analysis and Design of the Aposto –Yirgalem Road Upgrading Project, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azazhu%20Wassie">Azazhu Wassie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study tried to analyze and identify the drainage pattern and catchment characteristics of the river basin and assess the impact of the hydrologic parameters (catchment area, rainfall intensity, runoff coefficient, land use, and soil type) on the referenced study area. Since there is no river gauging station near the road, even for large rivers, rainfall-runoff models are adopted for flood estimation, i.e., for catchment areas less than 50 ha, the rational method is used; for catchment areas, less than 65 km², the SCS unit hydrograph method is used; and for catchment areas greater than 65 km², HEC-HMS is adopted for flood estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arc%20GIS" title="Arc GIS">Arc GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=catchment%20area" title=" catchment area"> catchment area</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%2Fland%20cover" title=" land use/land cover"> land use/land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20flood" title=" peak flood"> peak flood</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20intensity" title=" rainfall intensity"> rainfall intensity</a> </p> <a href="https://publications.waset.org/abstracts/188232/hydrological-hydraulics-analysis-and-design-of-the-aposto-yirgalem-road-upgrading-project-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">34</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1827</span> Flood Hazard and Risk Mapping to Assess Ice-Jam Flood Mitigation Measures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karl-Erich%20Lindenschmidt">Karl-Erich Lindenschmidt</a>, <a href="https://publications.waset.org/abstracts/search?q=Apurba%20Das"> Apurba Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Joel%20Trudell"> Joel Trudell</a>, <a href="https://publications.waset.org/abstracts/search?q=Keanne%20Russell"> Keanne Russell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this presentation, we explore options for mitigating ice-jam flooding along the Athabasca River in western Canada. Not only flood hazard, expressed in this case as the probability of flood depths and extents being exceeded, but also flood risk, in which annual expected damages are calculated. Flood risk is calculated, which allows a cost-benefit analysis to be made so that decisions on the best mitigation options are not based solely on flood hazard but also on the costs related to flood damages and the benefits of mitigation. The river ice model is used to simulate extreme ice-jam flood events with which scenarios are run to determine flood exposure and damages in flood-prone areas along the river. We will concentrate on three mitigation options – the placement of a dike, artificial breakage of the ice cover along the river, the installation of an ice-control structure, and the construction of a reservoir. However, any mitigation option is not totally failsafe. For example, dikes can still be overtopped and breached, and ice jams may still occur in areas of the river where ice covers have been artificially broken up. Hence, for all options, it is recommended that zoning of building developments away from greater flood hazard areas be upheld. Flood mitigation can have a negative effect of giving inhabitants a false sense of security that flooding may not happen again, leading to zoning policies being relaxed. (Text adapted from Lindenschmidt [2022] "Ice Destabilization Study - Phase 2", submitted to the Regional Municipality of Wood Buffalo, Alberta, Canada) <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ice%20jam" title="ice jam">ice jam</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20hazard" title=" flood hazard"> flood hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20risk%20river%20ice%20modelling" title=" flood risk river ice modelling"> flood risk river ice modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20risk" title=" flood risk"> flood risk</a> </p> <a href="https://publications.waset.org/abstracts/147292/flood-hazard-and-risk-mapping-to-assess-ice-jam-flood-mitigation-measures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1826</span> Flood Planning Based on Risk Optimization: A Case Study in Phan-Calo River Basin in Vinh Phuc Province, Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Quang%20Kim">Nguyen Quang Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Thu%20Hien"> Nguyen Thu Hien</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Thien%20Dung"> Nguyen Thien Dung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flood disasters are increasing worldwide in both frequency and magnitude. Every year in Vietnam, flood causes great damage to people, property, and environmental degradation. The flood risk management policy in Vietnam is currently updated. The planning of flood mitigation strategies is reviewed to make a decision how to reach sustainable flood risk reduction. This paper discusses the basic approach where the measures of flood protection are chosen based on minimizing the present value of expected monetary expenses, total residual risk and costs of flood control measures. This approach will be proposed and demonstrated in a case study for flood risk management in Vinh Phuc province of Vietnam. Research also proposed the framework to find a solution of optimal protection level and optimal measures of the flood. It provides an explicit economic basis for flood risk management plans and interactive effects of options for flood damage reduction. The results of the case study are demonstrated and discussed which would provide the processing of actions helped decision makers to choose flood risk reduction investment options. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drainage%20plan" title="drainage plan">drainage plan</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20planning" title=" flood planning"> flood planning</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20risk" title=" flood risk"> flood risk</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20risk" title=" residual risk"> residual risk</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20optimization" title=" risk optimization"> risk optimization</a> </p> <a href="https://publications.waset.org/abstracts/87574/flood-planning-based-on-risk-optimization-a-case-study-in-phan-calo-river-basin-in-vinh-phuc-province-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1825</span> Changes in Religious Belief after Flood Disasters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sapora%20Sipon">Sapora Sipon</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Fo%E2%80%99ad%20Sakdan"> Mohd Fo’ad Sakdan</a>, <a href="https://publications.waset.org/abstracts/search?q=Che%20Su%20Mustaffa"> Che Su Mustaffa</a>, <a href="https://publications.waset.org/abstracts/search?q=Najib%20Ahmad%20Marzuki"> Najib Ahmad Marzuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Sukeri%20Khalid"> Mohamad Sukeri Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Taib%20Ariffin"> Mohd Taib Ariffin</a>, <a href="https://publications.waset.org/abstracts/search?q=Husni%20Mohd%20Radzi"> Husni Mohd Radzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Salhah%20Abdullah"> Salhah Abdullah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flood disasters occur throughout the world including Malaysia. The major flood disaster that hit Malaysia in the 2014-2015 episodes proved the psychosocial and mental health consequences such as vivid images of destruction, upheaval, death and loss of lives. Flood, flood survivors reported that flood has changed one looks at their religious belief. The main objective of this paper is to investigate the changes in religious belief after the 2014-2015 Malaysia flood disaster. The total population of 1300 respondents who experienced the 2014-2015 Malaysia flood were surveyed a month after the disaster. The questionnaires were used to measure religiosity and stress. The results provide compelling evidence that religion played an important role in the lives of Malaysia flood disasters’ survivor where more than half of the respondents (>75%) experiencing the strengthening of their religious belief. It was also reported the victims’ strengthening of their religious belief proved to be a powerful factor in reducing stress in the aftermath of the flood. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=religious%20belief" title="religious belief">religious belief</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20disaster" title=" flood disaster"> flood disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=humanity" title=" humanity"> humanity</a>, <a href="https://publications.waset.org/abstracts/search?q=society" title=" society"> society</a> </p> <a href="https://publications.waset.org/abstracts/30104/changes-in-religious-belief-after-flood-disasters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1824</span> The Study of Flood Resilient House in Ebo-Town</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alagie%20Salieu%20Nankey">Alagie Salieu Nankey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flood-resistant house is the key mechanism to withstand flood hazards in Ebo-Town. It emerged simple yet powerful way of mitigating flooding in the community of Ebo- Town. Even though there are different types of buildings, little is known yet how and why flood affects building severely. In this paper, we examine three different types of flood-resistant buildings that are suitable for Ebo Town. We gather content and contextual features from six (6) respondents and used this data set to identify factors that are significantly associated with the flood-resistant house. Moreover, we built a suitable design concept. We found that amongst all the theories studied in the literature study Slit or Elevated House is the most suitable building design in Ebo-Town and Pile foundation is the most appropriate foundation type in the study area. Amongst contextual features, local materials are the most economical materials for the proposed design. This research proposes a framework that explains the theoretical relationships between flood hazard zones and flood-resistant houses in Ebo Town. Moreover, this research informs the design of sense-making and analytics tools for the resistant house. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood-resistant" title="flood-resistant">flood-resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=slit" title=" slit"> slit</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20hazard%20zone" title=" flood hazard zone"> flood hazard zone</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20foundation" title=" pile foundation"> pile foundation</a> </p> <a href="https://publications.waset.org/abstracts/187058/the-study-of-flood-resilient-house-in-ebo-town" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1823</span> A Case Study on the Estimation of Design Discharge for Flood Management in Lower Damodar Region, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Susmita%20Ghosh">Susmita Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Catchment area of Damodar River, India experiences seasonal rains due to the south-west monsoon every year and depending upon the intensity of the storms, floods occur. During the monsoon season, the rainfall in the area is mainly due to active monsoon conditions. The upstream reach of Damodar river system has five dams store the water for utilization for various purposes viz, irrigation, hydro-power generation, municipal supplies and last but not the least flood moderation. But, in the downstream reach of Damodar River, known as Lower Damodar region, is severely and frequently suffering from flood due to heavy monsoon rainfall and also release from upstream reservoirs. Therefore, an effective flood management study is required to know in depth the nature and extent of flood, water logging, and erosion related problems, affected area, and damages in the Lower Damodar region, by conducting mathematical model study. The design flood or discharge is needed to decide to assign the respective model for getting several scenarios from the simulation runs. The ultimate aim is to achieve a sustainable flood management scheme from the several alternatives. there are various methods for estimating flood discharges to be carried through the rivers and their tributaries for quick drainage from inundated areas due to drainage congestion and excess rainfall. In the present study, the flood frequency analysis is performed to decide the design flood discharge of the study area. This, on the other hand, has limitations in respect of availability of long peak flood data record for determining long type of probability density function correctly. If sufficient past records are available, the maximum flood on a river with a given frequency can safely be determined. The floods of different frequency for the Damodar has been calculated by five candidate distributions i.e., generalized extreme value, extreme value-I, Pearson type III, Log Pearson and normal. Annual peak discharge series are available at Durgapur barrage for the period of 1979 to 2013 (35 years). The available series are subjected to frequency analysis. The primary objective of the flood frequency analysis is to relate the magnitude of extreme events to their frequencies of occurrence through the use of probability distributions. The design flood for return periods of 10, 15 and 25 years return period at Durgapur barrage are estimated by flood frequency method. It is necessary to develop flood hydrographs for the above floods to facilitate the mathematical model studies to find the depth and extent of inundation etc. Null hypothesis that the distributions fit the data at 95% confidence is checked with goodness of fit test, i.e., Chi Square Test. It is revealed from the goodness of fit test that the all five distributions do show a good fit on the sample population and is therefore accepted. However, it is seen that there is considerable variation in the estimation of frequency flood. It is therefore considered prudent to average out the results of these five distributions for required frequencies. The inundated area from past data is well matched using this flood. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20discharge" title="design discharge">design discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20frequency" title=" flood frequency"> flood frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=goodness%20of%20fit" title=" goodness of fit"> goodness of fit</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20flood%20management" title=" sustainable flood management"> sustainable flood management</a> </p> <a href="https://publications.waset.org/abstracts/80533/a-case-study-on-the-estimation-of-design-discharge-for-flood-management-in-lower-damodar-region-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1822</span> Dams Operation Management Criteria during Floods: Case Study of Dez Dam in Southwest Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Heidari">Ali Heidari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the principles for improving flood mitigation operation in multipurpose dams and maximizing reservoir performance during flood occurrence with a focus on the real-time operation of gated spillways. The criteria of operation include the safety of dams during flood management, minimizing the downstream flood risk by decreasing the flood hazard and fulfilling water supply and other purposes of the dam operation in mid and long terms horizons. The parameters deemed to be important include flood inflow, outlet capacity restrictions, downstream flood inundation damages, economic revenue of dam operation, and environmental and sedimentation restrictions. A simulation model was used to determine the real-time release of the Dez dam located in the Dez rivers in southwest Iran, considering the gate regulation curves for the gated spillway. The results of the simulation model show that there is a possibility to improve the current procedures used in the real-time operation of the dams, particularly using gate regulation curves and early flood forecasting system results. The Dez dam operation data shows that in one of the best flood control records, % 17 of the total active volume and flood control pool of the reservoir have not been used in decreasing the downstream flood hazard despite the availability of a flood forecasting system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dam%20operation" title="dam operation">dam operation</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20control%20criteria" title=" flood control criteria"> flood control criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=Dez%20dam" title=" Dez dam"> Dez dam</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/151404/dams-operation-management-criteria-during-floods-case-study-of-dez-dam-in-southwest-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1821</span> Study on Disaster Prevention Plan for an Electronic Industry in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Pullteap">S. Pullteap</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pathomsuriyaporn"> M. Pathomsuriyaporn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, a study of employee’s opinion to the factors that affect to the flood preventive and the corrective action plan in an electronic industry at the Sharp Manufacturing (Thailand) Co., Ltd. has been investigated. The surveys data of 175 workers and supervisors have, however, been selected for data analysis. The results is shown that the employees emphasize about the needs in a subsidy at the time of disaster at high levels of 77.8%, as the plan focusing on flood prevention of the rehabilitation equipment is valued at the intermediate level, which is 79.8%. Demonstration of the hypothesis has found that the different education levels has thus been affected to the needs factor at the flood disaster time. Moreover, most respondents give priority to flood disaster risk management factor. Consequently, we found that the flood prevention plan is valued at high level, especially on information monitoring, which is 93.4% for the supervisor item. The respondents largely assume that the flood will have impacts on the industry, up to 80%, thus to focus on flood management plans is enormous. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20prevention%20plan" title="flood prevention plan">flood prevention plan</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20event" title=" flood event"> flood event</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20industrial%20plant" title=" electronic industrial plant"> electronic industrial plant</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster" title=" disaster"> disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title=" risk management"> risk management</a> </p> <a href="https://publications.waset.org/abstracts/2039/study-on-disaster-prevention-plan-for-an-electronic-industry-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1820</span> Land Use Sensitivity Map for the Extreme Flood Events in the Kelantan River Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nader%20Saadatkhah">Nader Saadatkhah</a>, <a href="https://publications.waset.org/abstracts/search?q=Jafar%20Rahnamarad"> Jafar Rahnamarad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shattri%20Mansor"> Shattri Mansor</a>, <a href="https://publications.waset.org/abstracts/search?q=Zailani%20Khuzaimah"> Zailani Khuzaimah</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnis%20Asmat"> Arnis Asmat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Aizam%20Adnan"> Nor Aizam Adnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Noradzah%20Adam"> Siti Noradzah Adam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kelantan river basin as a flood prone area at the east coast of the peninsular Malaysia has suffered several flood and mudflow events in the recent years. The current research attempted to assess the land cover changes impact in the Kelantan river basin focused on the runoff contributions from different land cover classes and the potential impact of land cover changes on runoff generation. In this regards, the hydrological regional modeling of rainfall induced runoff event as the improved transient rainfall infiltration and grid based regional model (Improved-TRIGRS) was employed to compute rate of infiltration, and subsequently changes in the discharge volume in this study. The effects of land use changes on peak flow and runoff volume was investigated using storm rainfall events during the last three decades. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=improved-TRIGRS%20model" title="improved-TRIGRS model">improved-TRIGRS model</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover%20changes" title=" land cover changes"> land cover changes</a>, <a href="https://publications.waset.org/abstracts/search?q=Kelantan%20river%20basin" title=" Kelantan river basin"> Kelantan river basin</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20event" title=" flood event"> flood event</a> </p> <a href="https://publications.waset.org/abstracts/64368/land-use-sensitivity-map-for-the-extreme-flood-events-in-the-kelantan-river-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1819</span> Flood Disaster Prevention and Mitigation in Nigeria Using Geographic Information System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dinebari%20Akpee">Dinebari Akpee</a>, <a href="https://publications.waset.org/abstracts/search?q=Friday%20Aabe%20Gaage"> Friday Aabe Gaage</a>, <a href="https://publications.waset.org/abstracts/search?q=Florence%20Fred%20Nwaigwu"> Florence Fred Nwaigwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural disasters like flood affect many parts of the world including developing countries like Nigeria. As a result, many human lives are lost, properties damaged and so much money is lost in infrastructure damages. These hazards and losses can be mitigated and reduced by providing reliable spatial information to the generality of the people through about flood risks through flood inundation maps. Flood inundation maps are very crucial for emergency action plans, urban planning, ecological studies and insurance rates. Nigeria experience her worst flood in her entire history this year. Many cities were submerged and completely under water due to torrential rainfall. Poor city planning, lack of effective development control among others contributes to the problem too. Geographic information system (GIS) can be used to visualize the extent of flooding, analyze flood maps to produce flood damaged estimation maps and flood risk maps. In this research, the under listed steps were taken in preparation of flood risk maps for the study area: (1) Digitization of topographic data and preparation of digital elevation model using ArcGIS (2) Flood simulation using hydraulic model and integration and (3) Integration of the first two steps to produce flood risk maps. The results shows that GIS can play crucial role in Flood disaster control and mitigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20disaster" title="flood disaster">flood disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20maps" title=" risk maps"> risk maps</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20system" title=" geographic information system"> geographic information system</a>, <a href="https://publications.waset.org/abstracts/search?q=hazards" title=" hazards"> hazards</a> </p> <a href="https://publications.waset.org/abstracts/80830/flood-disaster-prevention-and-mitigation-in-nigeria-using-geographic-information-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1818</span> Impact of Global Warming on the Total Flood Duration and Flood Recession Time in the Meghna Basin Using Hydrodynamic Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karan%20Gupta">Karan Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The floods cause huge loos each year, and their impact gets manifold with the increase of total duration of flood as well as recession time. Moreover, floods have increased in recent years due to climate change in floodplains. In the context of global climate change, the agreement in Paris convention (2015) stated to keep the increase in global average temperature well below 2°C and keep it at the limit of 1.5°C. Thus, this study investigates the impact of increasing temperature on the stage, discharge as well as total flood duration and recession time in the Meghna River basin in Bangladesh. This study considers the 100-year return period flood flows in the Meghna river under the specific warming levels (SWLs) of 1.5°C, 2°C, and 4°C. The results showed that the rate of increase of duration of flood is nearly 50% lesser at ∆T = 1.5°C as compared to ∆T = 2°C, whereas the rate of increase of duration of recession is 75% lower at ∆T = 1.5°C as compared to ∆T = 2°C. Understanding the change of total duration of flood as well as recession time of the flood gives a better insight to effectively plan for flood mitigation measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood" title="flood">flood</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=Paris%20convention" title=" Paris convention"> Paris convention</a>, <a href="https://publications.waset.org/abstracts/search?q=Bangladesh" title=" Bangladesh"> Bangladesh</a>, <a href="https://publications.waset.org/abstracts/search?q=inundation%20duration" title=" inundation duration"> inundation duration</a>, <a href="https://publications.waset.org/abstracts/search?q=recession%20duration" title=" recession duration"> recession duration</a> </p> <a href="https://publications.waset.org/abstracts/135260/impact-of-global-warming-on-the-total-flood-duration-and-flood-recession-time-in-the-meghna-basin-using-hydrodynamic-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1817</span> Study on Runoff Allocation Responsibilities of Different Land Uses in a Single Catchment Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chuan-Ming%20Tung">Chuan-Ming Tung</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Cheng%20Fu"> Jin-Cheng Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-En%20Feng"> Chia-En Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the rapid development of urban land in Taiwan has led to the constant increase of the areas of impervious surface, which has increased the risk of waterlogging during heavy rainfall. Therefore, in recent years, promoting runoff allocation responsibilities has often been used as a means of reducing regional flooding. In this study, the single catchment area covering both urban and rural land as the study area is discussed. Based on Storm Water Management Model, urban and rural land in a single catchment area was explored to develop the runoff allocation responsibilities according to their respective control regulation on land use. The impacts of runoff increment and reduction in sub-catchment area were studied to understand the impact of highly developed urban land on the reduction of flood risk of rural land at the back end. The results showed that the rainfall with 1 hour short delay of 2 years, 5 years, 10 years, and 25 years return period. If the study area was fully developed, the peak discharge at the outlet would increase by 24.46% -22.97% without runoff allocation responsibilities. The front-end urban land would increase runoff from back-end of rural land by 76.19% -46.51%. However, if runoff allocation responsibilities were carried out in the study area, the peak discharge could be reduced by 58.38-63.08%, which could make the front-end to reduce 54.05% -23.81% of the peak flow to the back-end. In addition, the researchers found that if it was seen from the perspective of runoff allocation responsibilities of per unit area, the residential area of urban land would benefit from the relevant laws and regulations of the urban system, which would have a better effect of reducing flood than the residential land in rural land. For rural land, the development scale of residential land was generally small, which made the effect of flood reduction better than that of industrial land. Agricultural land requires a large area of land, resulting in the lowest share of the flow per unit area. From the point of the planners, this study suggests that for the rural land around the city, its responsibility should be assigned to share the runoff. And setting up rain water storage facilities in the same way as urban land, can also take stock of agricultural land resources to increase the ridge of field for flood storage, in order to improve regional disaster reduction capacity and resilience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=runoff%20allocation%20responsibilities" title="runoff allocation responsibilities">runoff allocation responsibilities</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use" title=" land use"> land use</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20mitigation" title=" flood mitigation"> flood mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=SWMM" title=" SWMM"> SWMM</a> </p> <a href="https://publications.waset.org/abstracts/158254/study-on-runoff-allocation-responsibilities-of-different-land-uses-in-a-single-catchment-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1816</span> The Use of Hec Ras One-Dimensional Model and Geophysics for the Determination of Flood Zones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayoub%20El%20Bourtali">Ayoub El Bourtali</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdessamed%20Najine"> Abdessamed Najine</a>, <a href="https://publications.waset.org/abstracts/search?q=Amrou%20Moussa%20Benmoussa"> Amrou Moussa Benmoussa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is becoming more and more necessary to manage flood risk, and it must include all stakeholders and all possible means available. The goal of this work is to map the vulnerability of the Oued Derna-region Tagzirt flood zone in the semi-arid region. This is about implementing predictive models and flood control. This allows for the development of flood risk prevention plans. In this study, A resistivity survey was conducted over the area to locate and evaluate soil characteristics in order to calculate discharges and prevent flooding for the study area. The development of a one-dimensional (1D) hydrodynamic model of the Derna River was carried out in HEC-RAS 5.0.4 using a combination of survey data and spatially extracted cross-sections and recorded river flows. The study area was hit by several extreme floods, causing a lot of property loss and loss of life. This research focuses on the most recent flood events, based on the collected data, the water level, river flow and river cross-section were analyzed. A set of flood levels were obtained as the outputs of the hydraulic model and the accuracy of the simulated flood levels and velocity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=derna%20river" title="derna river">derna river</a>, <a href="https://publications.waset.org/abstracts/search?q=1D%20hydrodynamic%20model" title=" 1D hydrodynamic model"> 1D hydrodynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20modelling" title=" flood modelling"> flood modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-RAS%205.0.4" title=" HEC-RAS 5.0.4"> HEC-RAS 5.0.4</a> </p> <a href="https://publications.waset.org/abstracts/139595/the-use-of-hec-ras-one-dimensional-model-and-geophysics-for-the-determination-of-flood-zones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1815</span> Design Flood Estimation in Satluj Basin-Challenges for Sunni Dam Hydro Electric Project, Himachal Pradesh-India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navneet%20Kalia">Navneet Kalia</a>, <a href="https://publications.waset.org/abstracts/search?q=Lalit%20Mohan%20Verma"> Lalit Mohan Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Guleria"> Vinay Guleria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Design Flood studies are essential for effective planning and functioning of water resource projects. Design flood estimation for Sunni Dam Hydro Electric Project located in State of Himachal Pradesh, India, on the river Satluj, was a big challenge in view of the river flowing in the Himalayan region from Tibet to India, having a large catchment area of varying topography, climate, and vegetation. No Discharge data was available for the part of the river in Tibet, whereas, for India, it was available only at Khab, Rampur, and Luhri. The estimation of Design Flood using standard methods was not possible. This challenge was met using two different approaches for upper (snow-fed) and lower (rainfed) catchment using Flood Frequency Approach and Hydro-metrological approach. i) For catchment up to Khab Gauging site (Sub-Catchment, C1), Flood Frequency approach was used. Around 90% of the catchment area (46300 sqkm) up to Khab is snow-fed which lies above 4200m. In view of the predominant area being snow-fed area, 1 in 10000 years return period flood estimated using Flood Frequency analysis at Khab was considered as Probable Maximum Flood (PMF). The flood peaks were taken from daily observed discharges at Khab, which were increased by 10% to make them instantaneous. Design Flood of 4184 cumec thus obtained was considered as PMF at Khab. ii) For catchment between Khab and Sunni Dam (Sub-Catchment, C2), Hydro-metrological approach was used. This method is based upon the catchment response to the rainfall pattern observed (Probable Maximum Precipitation - PMP) in a particular catchment area. The design flood computation mainly involves the estimation of a design storm hyetograph and derivation of the catchment response function. A unit hydrograph is assumed to represent the response of the entire catchment area to a unit rainfall. The main advantage of the hydro-metrological approach is that it gives a complete flood hydrograph which allows us to make a realistic determination of its moderation effect while passing through a reservoir or a river reach. These studies were carried out to derive PMF for the catchment area between Khab and Sunni Dam site using a 1-day and 2-day PMP values of 232 and 416 cm respectively. The PMF so obtained was 12920.60 cumec. Final Result: As the Catchment area up to Sunni Dam has been divided into 2 sub-catchments, the Flood Hydrograph for the Catchment C1 has been routed through the connecting channel reach (River Satluj) using Muskingum method and accordingly, the Design Flood was computed after adding the routed flood ordinates with flood ordinates of catchment C2. The total Design Flood (i.e. 2-Day PMF) with a peak of 15473 cumec was obtained. Conclusion: Even though, several factors are relevant while deciding the method to be used for design flood estimation, data availability and the purpose of study are the most important factors. Since, generally, we cannot wait for the hydrological data of adequate quality and quantity to be available, flood estimation has to be done using whatever data is available. Depending upon the type of data available for a particular catchment, the method to be used is to be selected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20flood" title="design flood">design flood</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20storm" title=" design storm"> design storm</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20frequency" title=" flood frequency"> flood frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=PMF" title=" PMF"> PMF</a>, <a href="https://publications.waset.org/abstracts/search?q=PMP" title=" PMP"> PMP</a>, <a href="https://publications.waset.org/abstracts/search?q=unit%20hydrograph" title=" unit hydrograph"> unit hydrograph</a> </p> <a href="https://publications.waset.org/abstracts/51791/design-flood-estimation-in-satluj-basin-challenges-for-sunni-dam-hydro-electric-project-himachal-pradesh-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1814</span> Evaluation of Flood Events in Respect of Disaster Management in Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naci%20B%C3%BCy%C3%BCkkarac%C4%B1%C4%9Fan">Naci Büyükkaracığan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Uzun"> Hasan Uzun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flood is the event which damage to the surrounding lands, residential places, infrastructure and vibrant, because of the streams overflow events from its bed for several reasons. Flood is a natural formation which develops due to its region's climatic conditions, technical and topographical characteristics. However, factors causing floods with global warming caused by human activity are events such as uncontrolled urbanization. Floods in Turkey are natural disasters which cause huge economic losses after the earthquake. At the same time, the flood disaster is one of the most observed hydrometeorological disasters, compared to 30%, in Turkey. Every year, there are around 200 flood-flood disasters and the disaster as a result of financial losses of $ 100 million per year are reported to occur in public institutions. The amount allocated for carrying out investment-project activities for reducing and controlling of flood damage control are around US $ 30 million per year. The existence of a linear increase in the number of flood disasters is noteworthy due to various reasons in the last 50 years of observation. In this study, first of all, big events of the flood in Turkey and their reasons were examined. And then, the information about the work to be done in order to prevent flooding by government was given with examples. Meteorological early warning systems, flood risk maps and regulation of urban development studies are described for this purpose. As a result, recommendations regarding in the event of the occurrence of floods disaster management were issues raised. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood" title="flood">flood</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster" title=" disaster"> disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20management" title=" disaster management"> disaster management</a>, <a href="https://publications.waset.org/abstracts/search?q=T%C3%BCrkiye" title=" Türkiye"> Türkiye</a> </p> <a href="https://publications.waset.org/abstracts/61123/evaluation-of-flood-events-in-respect-of-disaster-management-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1813</span> Knowledge Integration from Concept to Practice: An Exploratory Study of Designing a Flood Resilient Urban Park in Viet Nam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=To%20Quyen%20Le">To Quyen Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Oswald%20Devisch"> Oswald Devisch</a>, <a href="https://publications.waset.org/abstracts/search?q=Tu%20Anh%20Trinh"> Tu Anh Trinh</a>, <a href="https://publications.waset.org/abstracts/search?q=Els%20Hannes"> Els Hannes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban centres worldwide are affected differently by flooding. In Vietnam this impact is increasingly negative caused by a process of rapid urbanisation. Traditional spatial planning and flood mitigation planning are not able to deal with this growing threat. This article therefore proposes to focus on increasing the participation of local communities in flood control and management. It explores, on the basis of a design studio exercise, how lay knowledge on flooding can be integrated within planning processes. The article presents a theoretical basis for the structured criterion for site selection for a flood resilient urban park from the perspective of science, then discloses the tacit and explicit knowledge of the flood-prone area and finally integrates this knowledge into the design strategies for flood resilient urban park design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytic%20hierarchy%20process" title="analytic hierarchy process">analytic hierarchy process</a>, <a href="https://publications.waset.org/abstracts/search?q=AHP" title=" AHP"> AHP</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20resilience" title=" design resilience"> design resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20resilient%20urban%20park" title=" flood resilient urban park"> flood resilient urban park</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20integration" title=" knowledge integration"> knowledge integration</a> </p> <a href="https://publications.waset.org/abstracts/130957/knowledge-integration-from-concept-to-practice-an-exploratory-study-of-designing-a-flood-resilient-urban-park-in-viet-nam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1812</span> Regional Flood-Duration-Frequency Models for Norway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danielle%20M.%20Barna">Danielle M. Barna</a>, <a href="https://publications.waset.org/abstracts/search?q=Kolbj%C3%B8rn%20Engeland"> Kolbjørn Engeland</a>, <a href="https://publications.waset.org/abstracts/search?q=Thordis%20Thorarinsdottir"> Thordis Thorarinsdottir</a>, <a href="https://publications.waset.org/abstracts/search?q=Chong-Yu%20Xu"> Chong-Yu Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Design flood values give estimates of flood magnitude within a given return period and are essential to making adaptive decisions around land use planning, infrastructure design, and disaster mitigation. Often design flood values are needed at locations with insufficient data. Additionally, in hydrologic applications where flood retention is important (e.g., floodplain management and reservoir design), design flood values are required at different flood durations. A statistical approach to this problem is a development of a regression model for extremes where some of the parameters are dependent on flood duration in addition to being covariate-dependent. In hydrology, this is called a regional flood-duration-frequency (regional-QDF) model. Typically, the underlying statistical distribution is chosen to be the Generalized Extreme Value (GEV) distribution. However, as the support of the GEV distribution depends on both its parameters and the range of the data, special care must be taken with the development of the regional model. In particular, we find that the GEV is problematic when developing a GAMLSS-type analysis due to the difficulty of proposing a link function that is independent of the unknown parameters and the observed data. We discuss these challenges in the context of developing a regional QDF model for Norway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20flood%20values" title="design flood values">design flood values</a>, <a href="https://publications.waset.org/abstracts/search?q=bayesian%20statistics" title=" bayesian statistics"> bayesian statistics</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20modeling%20of%20extremes" title=" regression modeling of extremes"> regression modeling of extremes</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20value%20analysis" title=" extreme value analysis"> extreme value analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=GEV" title=" GEV"> GEV</a> </p> <a href="https://publications.waset.org/abstracts/163938/regional-flood-duration-frequency-models-for-norway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1811</span> Rapid Flood Damage Assessment of Population and Crops Using Remotely Sensed Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Urooj%20Saeed">Urooj Saeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajid%20Rashid%20Ahmad"> Sajid Rashid Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Iqra%20Khalid"> Iqra Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Mirza"> Sahar Mirza</a>, <a href="https://publications.waset.org/abstracts/search?q=Imtiaz%20Younas"> Imtiaz Younas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pakistan, a flood-prone country, has experienced worst floods in the recent past which have caused extensive damage to the urban and rural areas by loss of lives, damage to infrastructure and agricultural fields. Poor flood management system in the country has projected the risks of damages as the increasing frequency and magnitude of floods are felt as a consequence of climate change; affecting national economy directly or indirectly. To combat the needs of flood emergency, this paper focuses on remotely sensed data based approach for rapid mapping and monitoring of flood extent and its damages so that fast dissemination of information can be done, from local to national level. In this research study, spatial extent of the flooding caused by heavy rains of 2014 has been mapped by using space borne data to assess the crop damages and affected population in sixteen districts of Punjab. For this purpose, moderate resolution imaging spectroradiometer (MODIS) was used to daily mark the flood extent by using Normalised Difference Water Index (NDWI). The highest flood value data was integrated with the LandScan 2014, 1km x 1km grid based population, to calculate the affected population in flood hazard zone. It was estimated that the floods covered an area of 16,870 square kilometers, with 3.0 million population affected. Moreover, to assess the flood damages, Object Based Image Analysis (OBIA) aided with spectral signatures was applied on Landsat image to attain the thematic layers of healthy (0.54 million acre) and damaged crops (0.43 million acre). The study yields that the population of Jhang district (28% of 2.5 million population) was affected the most. Whereas, in terms of crops, Jhang and Muzzafargarh are the ‘highest damaged’ ranked district of floods 2014 in Punjab. This study was completed within 24 hours of the peak flood time, and proves to be an effective methodology for rapid assessment of damages due to flood hazard <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20hazard" title="flood hazard">flood hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20borne%20data" title=" space borne data"> space borne data</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20based%20image%20analysis" title=" object based image analysis"> object based image analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20damage%20assessment" title=" rapid damage assessment"> rapid damage assessment</a> </p> <a href="https://publications.waset.org/abstracts/77729/rapid-flood-damage-assessment-of-population-and-crops-using-remotely-sensed-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1810</span> Machine Learning Methods for Flood Hazard Mapping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Zappacosta">Stefano Zappacosta</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristiano%20Bove"> Cristiano Bove</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Carmela%20Marinelli"> Maria Carmela Marinelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Paola%20di%20Lauro"> Paola di Lauro</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarina%20Spasenovic"> Katarina Spasenovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorenzo%20Ostano"> Lorenzo Ostano</a>, <a href="https://publications.waset.org/abstracts/search?q=Giuseppe%20Aiello"> Giuseppe Aiello</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Pietrosanto"> Marco Pietrosanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a novel neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The proposed hybrid model can be used to classify four different increasing levels of hazard. The classification capability was compared with the flood hazard mapping River Basin Plans (PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale). The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20modeling" title="flood modeling">flood modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard%20map" title=" hazard map"> hazard map</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogeological%20risk" title=" hydrogeological risk"> hydrogeological risk</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20risk%20assessment" title=" flood risk assessment"> flood risk assessment</a> </p> <a href="https://publications.waset.org/abstracts/140468/machine-learning-methods-for-flood-hazard-mapping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1809</span> Allocating Channels and Flow Estimation at Flood Prone Area in Desert, Example from AlKharj City, Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farhan%20Aljuaidi">Farhan Aljuaidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid expansion of Alkarj city, Saudi Arabia, towards the outlet of Wadi AlAin is critical for the planners and decision makers. Nowadays, two major projects such as Salman bin Abdulaziz University compound and new industrial area are developed in this flood prone area where no channels are clear and identified. The main contribution of this study is to divert the flow away from these vital projects by reconstructing new channels. To do so, Lidar data were used to generate contour lines for the actual elevation of the highways and local roads. These data were analyzed and compared to the contour lines derived from the topographical maps 1:50.000. The magnitude of the expected flow was estimated using Snyder's Model based on the morphometric data acquired by DEM of the catchment area. The results indicate that maximum discharge peak reaches 2694,3 m3/sec, the mean is 303,7 m3/sec and the minimum is 74,3 m3/sec. The runoff was estimated at 252,2. 610 m3/s, the mean is 41,5. 610 m3/s and the minimum is 12,4. 610 m3/s. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Desert%20flood" title="Desert flood">Desert flood</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia"> Saudi Arabia</a>, <a href="https://publications.waset.org/abstracts/search?q=Snyder%27s%20Model" title=" Snyder's Model"> Snyder's Model</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20estimation" title=" flow estimation "> flow estimation </a> </p> <a href="https://publications.waset.org/abstracts/27794/allocating-channels-and-flow-estimation-at-flood-prone-area-in-desert-example-from-alkharj-city-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1808</span> Automatic Flood Prediction Using Rainfall Runoff Model in Moravian-Silesian Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Sir">B. Sir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Podhoranyi"> M. Podhoranyi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kuchar"> S. Kuchar</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kocyan"> T. Kocyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rainfall-runoff models play important role in hydrological predictions. However, the model is only one part of the process for creation of flood prediction. The aim of this paper is to show the process of successful prediction for flood event (May 15–May 18 2014). The prediction was performed by rainfall runoff model HEC–HMS, one of the models computed within Floreon+ system. The paper briefly evaluates the results of automatic hydrologic prediction on the river Olše catchment and its gages Český Těšín and Věřňovice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood" title="flood">flood</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-HMS" title=" HEC-HMS"> HEC-HMS</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff "> runoff </a> </p> <a href="https://publications.waset.org/abstracts/20151/automatic-flood-prediction-using-rainfall-runoff-model-in-moravian-silesian-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1807</span> Measuring Flood Risk concerning with the Flood Protection Embankment in Big Flooding Events of Dhaka Metropolitan Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marju%20Ben%20Sayed">Marju Ben Sayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeko%20Haruyama"> Shigeko Haruyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among all kinds of natural disaster, the flood is a common feature in rapidly urbanizing Dhaka city. In this research, assessment of flood risk of Dhaka metropolitan area has been investigated by using an integrated approach of GIS, remote sensing and socio-economic data. The purpose of the study is to measure the flooding risk concerning with the flood protection embankment in big flooding events (1988, 1998 and 2004) and urbanization of Dhaka metropolitan zone. In this research, we considered the Dhaka city into two parts; East Dhaka (outside the flood protection embankment) and West Dhaka (inside the flood protection embankment). Using statistical data, we explored the socio-economic status of the study area population by comparing the density of population, land price and income level. We have drawn the cross section profile of the flood protection embankment into three different points for realizing the flooding risk in the study area, especially in the big flooding year (1988, 1998 and 2004). According to the physical condition of the study area, the land use/land cover map has been classified into five classes. Comparing with each land cover unit, historical weather station data and the socio-economic data, the flooding risk has been evaluated. Moreover, we compared between DEM data and each land cover units to find out the relationship with flood. It is expected that, this study could contribute to effective flood forecasting, relief and emergency management for a future flood event in Dhaka city. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use" title="land use">land use</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover%20change" title=" land cover change"> land cover change</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-economic" title=" socio-economic"> socio-economic</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhaka%20city" title=" Dhaka city"> Dhaka city</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=flood" title=" flood"> flood</a> </p> <a href="https://publications.waset.org/abstracts/62846/measuring-flood-risk-concerning-with-the-flood-protection-embankment-in-big-flooding-events-of-dhaka-metropolitan-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peak%20flood&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peak%20flood&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peak%20flood&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peak%20flood&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peak%20flood&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peak%20flood&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peak%20flood&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peak%20flood&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peak%20flood&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peak%20flood&page=61">61</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peak%20flood&page=62">62</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peak%20flood&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>