CINXE.COM

Search results for: small-angle X-ray scattering

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: small-angle X-ray scattering</title> <meta name="description" content="Search results for: small-angle X-ray scattering"> <meta name="keywords" content="small-angle X-ray scattering"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="small-angle X-ray scattering" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="small-angle X-ray scattering"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 403</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: small-angle X-ray scattering</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">403</span> Interaction of Low-Energy Positrons with Mg Atoms: Elastic Scattering, Bound States, and Annihilation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahasen%20M.%20Abdel%20Mageed">Mahasen M. Abdel Mageed</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Zaghloul"> H. S. Zaghloul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Annihilations, phase shifts, scattering lengths, and elastic cross sections of low energy positrons scattering from magnesium atoms were studied using the least-squares variational method (LSVM). The possibility of positron binding to the magnesium atoms is investigated. A trial wavefunction is suggested to represent e+-Mg elastic scattering and scattering parameters were derived to estimate the binding energy and annihilation rates. The trial function is taken to depend on several adjustable parameters and is improved iteratively by increasing the number of terms. The present results have the same behavior as reported semi-empirical, theoretical, and experimental results. Especially, the estimated positive scattering length supports the possibility of positron-magnesium bound state system that was confirmed in previous experimental and theoretical work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bound%20wavefunction" title="bound wavefunction">bound wavefunction</a>, <a href="https://publications.waset.org/abstracts/search?q=positron%20annihilation" title=" positron annihilation"> positron annihilation</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering%20phase%20shift" title=" scattering phase shift"> scattering phase shift</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering%20length" title=" scattering length"> scattering length</a> </p> <a href="https://publications.waset.org/abstracts/20154/interaction-of-low-energy-positrons-with-mg-atoms-elastic-scattering-bound-states-and-annihilation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">402</span> Analysis of Combined Heat Transfer through the Core Materials of VIPs with Various Scattering Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaehyug%20Lee">Jaehyug Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Ho%20Song"> Tae-Ho Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vacuum insulation panel (VIP) can achieve very low thermal conductivity by evacuating its inner space. Heat transfer in the core materials of highly-evacuated VIP occurs by conduction through the solid structure and radiation through the pore. The effect of various scattering modes in combined conduction-radiation in VIP is investigated through numerical analysis. The discrete ordinates interpolation method (DOIM) incorporated with the commercial code FLUENT® is employed. It is found that backward scattering is more effective in reducing the total heat transfer while isotropic scattering is almost identical with pure absorbing/emitting case of the same optical thickness. For a purely scattering medium, the results agree well with additive solution with diffusion approximation, while a modified term is added in the effect of optical thickness to backward scattering is employed. For other scattering phase functions, it is also confirmed that backwardly scattering phase function gives a lower effective thermal conductivity. Thus, the materials with backward scattering properties, with radiation shields are desirable to lower the thermal conductivity of VIPs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20conduction%20and%20radiation" title="combined conduction and radiation">combined conduction and radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20ordinates%20interpolation%20method" title=" discrete ordinates interpolation method"> discrete ordinates interpolation method</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering%20phase%20function" title=" scattering phase function"> scattering phase function</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20insulation%20panel" title=" vacuum insulation panel"> vacuum insulation panel</a> </p> <a href="https://publications.waset.org/abstracts/19426/analysis-of-combined-heat-transfer-through-the-core-materials-of-vips-with-various-scattering-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">401</span> Light-Scattering Characteristics of Ordered Arrays Nobel Metal Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yassine%20Ait-El-Aoud">Yassine Ait-El-Aoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Okomoto"> Michael Okomoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20M.%20Luce"> Andrew M. Luce</a>, <a href="https://publications.waset.org/abstracts/search?q=Alkim%20Akyurtlu"> Alkim Akyurtlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20M.%20Osgood%20III"> Richard M. Osgood III</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Light scattering of metal nanoparticles (NPs) has a unique, and technologically important effect on enhancing light absorption in substrates because most of the light scatters into the substrate near the localized plasmon resonance of the NPs. The optical response, such as the resonant frequency and forward- and backward-scattering, can be tuned to trap light over a certain spectral region by adjusting the nanoparticle material size, shape, aggregation state, Metallic vs. insulating state, as well as local environmental conditions. In this work, we examined the light scattering characteristics of ordered arrays of metal nanoparticles and the light trapping, in order to enhance absorption, by measuring the forward- and backward-scattering using a UV/VIS/NIR spectrophotometer. Samples were fabricated using the popular self-assembly process method: dip coating, combined with nanosphere lithography. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dip%20coating" title="dip coating">dip coating</a>, <a href="https://publications.waset.org/abstracts/search?q=light-scattering" title=" light-scattering"> light-scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20nanoparticles" title=" metal nanoparticles"> metal nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=nanosphere%20lithography" title=" nanosphere lithography"> nanosphere lithography</a> </p> <a href="https://publications.waset.org/abstracts/58313/light-scattering-characteristics-of-ordered-arrays-nobel-metal-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">400</span> Thermodynamic Trends in Co-Based Alloys via Inelastic Neutron Scattering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Stonaha">Paul Stonaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariia%20Romashchenko"> Mariia Romashchenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Xaio%20Xu"> Xaio Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic shape memory alloys (MSMAs) are promising technological materials for a range of fields, from biomaterials to energy harvesting. We have performed inelastic neutron scattering on two powder samples of cobalt-based high-entropy MSMAs across a range of temperatures in an effort to compare calculations of thermodynamic properties (entropy, specific heat, etc.) to the measured ones. The measurements were correct for multiphonon scattering and multiple scattering contributions. We present herein the neutron-weighted vibrational density of states. Future work will utilize DFT calculations of the disordered lattice to correct for the neutron weighting and retrieve the true thermodynamical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neutron%20scattering" title="neutron scattering">neutron scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrational%20dynamics" title=" vibrational dynamics"> vibrational dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20physics" title=" computational physics"> computational physics</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20science" title=" material science"> material science</a> </p> <a href="https://publications.waset.org/abstracts/189169/thermodynamic-trends-in-co-based-alloys-via-inelastic-neutron-scattering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">32</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">399</span> Dipole and Quadrupole Scattering of Ultra Short Pulses on Metal Nanospheres</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Svita">Sergey Svita</a>, <a href="https://publications.waset.org/abstracts/search?q=Valeriy%20Astapenko"> Valeriy Astapenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presentation is devoted to the theoretical analysis of ultrashort electromagnetic pulses (USP) scattering on metallic nanospheres in a dielectric medium in the vicinity of surface plasmon resonance due to excitation of dipole and quadrupole surface plasmons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon" title="surface plasmon">surface plasmon</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering" title=" scattering"> scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20%20nanosphere" title=" metallic nanosphere"> metallic nanosphere</a> </p> <a href="https://publications.waset.org/abstracts/27368/dipole-and-quadrupole-scattering-of-ultra-short-pulses-on-metal-nanospheres" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">398</span> On the Study of the Electromagnetic Scattering by Large Obstacle Based on the Method of Auxiliary Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hidouri%20Sami">Hidouri Sami</a>, <a href="https://publications.waset.org/abstracts/search?q=Aguili%20Taoufik"> Aguili Taoufik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider fast and accurate solutions of scattering problems by large perfectly conducting objects (PEC) formulated by an optimization of the Method of Auxiliary Sources (MAS). We present various techniques used to reduce the total computational cost of the scattering problem. The first technique is based on replacing the object by an array of finite number of small (PEC) object with the same shape. The second solution reduces the problem on considering only the half of the object.These two solutions are compared to results from the reference bibliography. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=method%20of%20auxiliary%20sources" title="method of auxiliary sources">method of auxiliary sources</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering" title=" scattering"> scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20object" title=" large object"> large object</a>, <a href="https://publications.waset.org/abstracts/search?q=RCS" title=" RCS"> RCS</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20resources" title=" computational resources"> computational resources</a> </p> <a href="https://publications.waset.org/abstracts/38516/on-the-study-of-the-electromagnetic-scattering-by-large-obstacle-based-on-the-method-of-auxiliary-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">397</span> The Contribution of Density Fluctuations in Ultrasound Scattering in Cancellous Bone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Elsariti">A. Elsariti</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Evans"> T. Evans </a> </p> <p class="card-text"><strong>Abstract:</strong></p> An understanding of the interaction between acoustic waves and cancellous bone is needed in order to realize the full clinical potential of ultrasonic bone measurements. Scattering is likely to be of central importance but has received little attention to date. Few theoretical approaches have been described to explain scattering of ultrasound from bone. In this study, a scattering model based on velocity and density fluctuations in a binary mixture (marrow fat and cortical matrix) was used to estimate the ultrasonic attenuation in cancellous bone as a function of volume fraction. Predicted attenuation and backscatter coefficient were obtained for a range of porosities and scatterer size. At 600 kHZ and for different scatterer size the effect of velocity and density fluctuations in the predicted attenuation was approximately 60% higher than velocity fluctuations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20scattering" title="ultrasound scattering">ultrasound scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20speed" title=" sound speed"> sound speed</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20fluctuations" title=" density fluctuations"> density fluctuations</a>, <a href="https://publications.waset.org/abstracts/search?q=attenuation%20coefficient" title=" attenuation coefficient "> attenuation coefficient </a> </p> <a href="https://publications.waset.org/abstracts/4810/the-contribution-of-density-fluctuations-in-ultrasound-scattering-in-cancellous-bone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">396</span> Optimal Relaxation Parameters for Obtaining Efficient Iterative Methods for the Solution of Electromagnetic Scattering Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadaniela%20Egidi">Nadaniela Egidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierluigi%20Maponi"> Pierluigi Maponi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The approximate solution of a time-harmonic electromagnetic scattering problem for inhomogeneous media is required in several application contexts, and its two-dimensional formulation is a Fredholm integral equation of the second kind. This integral equation provides a formulation for the direct scattering problem, but it has to be solved several times also in the numerical solution of the corresponding inverse scattering problem. The discretization of this Fredholm equation produces large and dense linear systems that are usually solved by iterative methods. In order to improve the efficiency of these iterative methods, we use the Symmetric SOR preconditioning, and we propose an algorithm for the evaluation of the associated relaxation parameter. We show the efficiency of the proposed algorithm by several numerical experiments, where we use two Krylov subspace methods, i.e., Bi-CGSTAB and GMRES. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fredholm%20integral%20equation" title="Fredholm integral equation">Fredholm integral equation</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20method" title=" iterative method"> iterative method</a>, <a href="https://publications.waset.org/abstracts/search?q=preconditioning" title=" preconditioning"> preconditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering%20problem" title=" scattering problem"> scattering problem</a> </p> <a href="https://publications.waset.org/abstracts/142902/optimal-relaxation-parameters-for-obtaining-efficient-iterative-methods-for-the-solution-of-electromagnetic-scattering-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">395</span> Measurements of Scattering Cross Sections for 5.895 keV Photons in Various Polymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Duggal">H. Duggal</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Singh"> G. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Singh"> G. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bhalla"> A. Bhalla</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kumar"> S. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Shahi"> J. S. Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Mehta"> D. Mehta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The total differential cross section for scattering of the 5.895 keV photons by various polymers has been measured at scattering angle of 135o. The experimental measurements were carried out using the energy dispersive setup involving annular source of the 55Fe radioisotope and a low energy germanium (LEGe) detector. The cross section values are measured for 20 polymer targets namely, Paraffin Wax, Polytetrafluoro ethylene (PTFE), Cellulose, Silicone oil, Polyvinyl alcohol (PVA), Polyvinyl purrolidone (PVP), Polymethyl methacrylate (PMMA), Kapton, Mylar, Chitosan, Polyvinyl chloride (PVC), Bakelite, Carbopol, Chlorobutyl rubber (CBR), Polyetylene glycol (PEG), Polysorbate-20, Nylon-6, Cetyl alcohol, Carboxyl methyl sodium cellulose and Sodium starch glucolate. The measurements were performed in vacuum so as to avoid scattering contribution due to air and strong absorption of low energy photons in the air column. In the present investigations, the geometrical factor and efficiency of the detector were determined by measuring the K x-rays emitted from the 22Ti and 23V targets excited by the Mn K x-rays in the same experimental set up. The measured scattering cross sections have been compared with the sum of theoretically calculated elastic and inelastic scattering cross sections. The theoretical elastic (Rayleigh) scattering cross sections based on the various form factor approximations, namely, non-relativistic form factor (NF), relativistic form factor (RF), modified form factor (MF), and MF with anomalous scattering factor (ASF) as well as the second order S-matrix formalisms, and the inelastic scattering differential cross sections based on the Klein-Nishina formula after including the inelastic scattering function (KN+ISF) have been calculated. The experimental results show fairly good agreement with theoretical cross sections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photon" title="photon">photon</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20and%20inelastic" title=" elastic and inelastic"> elastic and inelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering%20cross%20sections" title=" scattering cross sections"> scattering cross sections</a> </p> <a href="https://publications.waset.org/abstracts/15642/measurements-of-scattering-cross-sections-for-5895-kev-photons-in-various-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">690</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">394</span> Further Investigation of α+12C and α+16O Elastic Scattering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Hamada">Sh. Hamada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current work aims to study the rainbow like-structure observed in the elastic scattering of alpha particles on both <sup>12</sup>C and <sup>16</sup>O nuclei. We reanalyzed the experimental elastic scattering angular distributions data for α+<sup>12</sup>C and α+<sup>16</sup>O nuclear systems at different energies using both optical model and double folding potential of different interaction models such as: CDM3Y1, DDM3Y1, CDM3Y6 and BDM3Y1. Potential created by BDM3Y1 interaction model has the shallowest depth which reflects the necessity to use higher renormalization factor (<strong><em>N<sub>r</sub></em></strong>). Both optical model and double folding potential of different interaction models fairly reproduce the experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20distribution" title="density distribution">density distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20folding" title=" double folding"> double folding</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20scattering" title=" elastic scattering"> elastic scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20rainbow" title=" nuclear rainbow"> nuclear rainbow</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20model" title=" optical model"> optical model</a> </p> <a href="https://publications.waset.org/abstracts/61332/further-investigation-of-a12c-and-a16o-elastic-scattering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">393</span> An Improved Multiple Scattering Reflectance Model Based on Specular V-Cavity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hongbin%20Yang">Hongbin Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingxue%20Liao"> Mingxue Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Changwen%20Zheng"> Changwen Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Mengyao%20Kong"> Mengyao Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaohui%20Liu"> Chaohui Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microfacet-based reflection models are widely used to model light reflections for rough surfaces. Microfacet models have become the standard surface material building block for describing specular components with varying roughness; and yet, while they possess many desirable properties as well as produce convincing results, their design ignores important sources of scattering, which can cause a significant loss of energy. Specifically, they only simulate the single scattering on the microfacets and ignore the subsequent interactions. As the roughness increases, the interaction will become more and more important. So a multiple-scattering microfacet model based on specular V-cavity is presented for this important open problem. However, it spends much unnecessary rendering time because of setting the same number of scatterings for different roughness surfaces. In this paper, we design a geometric attenuation term G to compute the BRDF (Bidirectional reflection distribution function) of multiple scattering of rough surfaces. Moreover, we consider determining the number of scattering by deterministic heuristics for different roughness surfaces. As a result, our model produces a similar appearance of the objects with the state of the art model with significantly improved rendering efficiency. Finally, we derive a multiple scattering BRDF based on the original microfacet framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bidirectional%20reflection%20distribution%20function" title="bidirectional reflection distribution function">bidirectional reflection distribution function</a>, <a href="https://publications.waset.org/abstracts/search?q=BRDF" title=" BRDF"> BRDF</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20attenuation%20term" title=" geometric attenuation term"> geometric attenuation term</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20scattering" title=" multiple scattering"> multiple scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=V-cavity%20model" title=" V-cavity model"> V-cavity model</a> </p> <a href="https://publications.waset.org/abstracts/127074/an-improved-multiple-scattering-reflectance-model-based-on-specular-v-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">392</span> Computer Software for Calculating Electron Mobility of Semiconductors Compounds; Case Study for N-Gan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emad%20A.%20Ahmed">Emad A. Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computer software to calculate electron mobility with respect to different scattering mechanism has been developed. This software is adopted completely Graphical User Interface (GUI) technique and its interface has been designed by Microsoft Visual Basic 6.0. As a case study the electron mobility of n-GaN was performed using this software. The behaviour of the mobility for n-GaN due to elastic scattering processes and its relation to temperature and doping concentration were discussed. The results agree with other available theoretical and experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20mobility" title="electron mobility">electron mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation%20time" title=" relaxation time"> relaxation time</a>, <a href="https://publications.waset.org/abstracts/search?q=GaN" title=" GaN"> GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering" title=" scattering"> scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20software" title=" computer software"> computer software</a>, <a href="https://publications.waset.org/abstracts/search?q=computation%20physics" title=" computation physics"> computation physics</a> </p> <a href="https://publications.waset.org/abstracts/6777/computer-software-for-calculating-electron-mobility-of-semiconductors-compounds-case-study-for-n-gan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">670</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">391</span> Measurement of Rayleigh Scattering Cross-Section of ₆₀Nd K X-Rays Elements with 26 ≤ Z≤ 90</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Govind%20Sharma">Govind Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Harpreet%20S.%20Kainth"> Harpreet S. Kainth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rayleigh scattering differential cross sections have been measured for the 36.84 keV (60Nd Kα2), 37.36 keV (60Nd Kα1) and 42.27 keV (60Nd Kβ1,3) X-rays. These measurements have been done in 44 elements with 22 ≤ Z ≤ 90 at an angle of 1390. The measurements are performed by using a radiation source consisting of an annular 60Nd foil excited by the 59.54 KeV γ-ray photons from 241Am radioactive source. The Nd Kα2, Kβ1,3 X-ray photons from the 60Nd annular foil (secondary photon source) are made to scatter from the target and the scattered photons are detected using Canberra made low energy Germanium (LEGe) detector. The measured Rayleigh scattering cross sections are compared with the theoretical MF, MFASF and the SM values. The noticeable deviations are observed from the MF, MFASF and SM values for 36.84 keV (60Nd Kα2), 37.36 keV (60Nd Kα1) and 42.27 keV (60Nd Kβ1,3) X-rays. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Photon-electron%20interaction" title="Photon-electron interaction">Photon-electron interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%20scattering" title=" Rayleigh scattering"> Rayleigh scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20fluorescence" title=" X-ray fluorescence"> X-ray fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray" title=" X-ray "> X-ray </a> </p> <a href="https://publications.waset.org/abstracts/79355/measurement-of-rayleigh-scattering-cross-section-of-60nd-k-x-rays-elements-with-26-z-90" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">390</span> Static Light Scattering Method for the Analysis of Raw Cow&#039;s Milk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Villa-Cruz">V. Villa-Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20P%C3%A9rez-Ladron%20de%20Guevara"> H. Pérez-Ladron de Guevara</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20E.%20Diaz-D%C3%ADaz"> J. E. Diaz-Díaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Static Light Scattering (SLS) was used as a method to analyse cow's milk raw, coming from the town of Lagos de Moreno, Jalisco, Mexico. This method is based on the analysis of the dispersion of light laser produced by a set of particles in solution. Based on the above, raw milk, which contains particles of fat globules, with a diameter of 2000 nm and particles of micelles of protein with 300 nm in diameter were analyzed. For this, dilutions of commercial milk were made (1.0%, 2.0% and 3.3%) to obtain a pattern of laser light scattering and also made measurements of raw cow's milk. Readings were taken in a sweep initial angle 10° to 170°, results were analyzed with the program OriginPro 7. The SLS method gives us an estimate of the percentage of fat content in milk samples. It can be concluded that the SLS method, is a quick method of analysis to detect adulteration in raw cow's milk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light%20scattering" title="light scattering">light scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20analysis" title=" milk analysis"> milk analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=adulteration%20in%20milk" title=" adulteration in milk"> adulteration in milk</a>, <a href="https://publications.waset.org/abstracts/search?q=micelles" title=" micelles"> micelles</a>, <a href="https://publications.waset.org/abstracts/search?q=OriginPro" title=" OriginPro "> OriginPro </a> </p> <a href="https://publications.waset.org/abstracts/28216/static-light-scattering-method-for-the-analysis-of-raw-cows-milk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">389</span> Visibility Measurements Using a Novel Open-Path Optical Extinction Analyzer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Saad">Nabil Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Morgan"> David Morgan</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Gupta"> Manish Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visibility has become a key component of air quality and is regulated in many areas by environmental laws such as the EPA Clean Air Act and Regional Haze Rule. Typically, visibility is calculated by estimating the optical absorption and scattering of both gases and aerosols. A major component of the aerosols’ climatic effect is due to their scattering and absorption of solar radiation, which are governed by their optical and physical properties. However, the accurate assessment of this effect on global warming, climate change, and air quality is made difficult due to uncertainties in the calculation of single scattering albedo (SSA). Experimental complications arise in the determination of the single scattering albedo of an aerosol particle since it requires the simultaneous measurement of both scattering and extinction. In fact, aerosol optical absorption, in particular, is a difficult measurement to perform, and it’s often associated with large uncertainties when using filter methods or difference methods. In this presentation, we demonstrate the use of a new open-path Optical Extinction Analyzer (OEA) in conjunction with a nephelometer and two particle sizers, emphasizing the benefits that co-employment of the OEA offers to derive the complex refractive index of aerosols and their single scattering albedo parameter. Various use cases, data reproducibility, and instrument calibration will also be presented to highlight the value proposition of this novel Open-Path OEA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosols" title="aerosols">aerosols</a>, <a href="https://publications.waset.org/abstracts/search?q=extinction" title=" extinction"> extinction</a>, <a href="https://publications.waset.org/abstracts/search?q=visibility" title=" visibility"> visibility</a>, <a href="https://publications.waset.org/abstracts/search?q=albedo" title=" albedo"> albedo</a> </p> <a href="https://publications.waset.org/abstracts/161634/visibility-measurements-using-a-novel-open-path-optical-extinction-analyzer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">388</span> Inverse Scattering of Two-Dimensional Objects Using an Enhancement Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.R.%20Eskandari">A.R. Eskandari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.R.%20Eskandari"> M.R. Eskandari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 2D complete identification algorithm for dielectric and multiple objects immersed in air is presented. The employed technique consists of initially retrieving the shape and position of the scattering object using a linear sampling method and then determining the electric permittivity and conductivity of the scatterer using adjoint sensitivity analysis. This inversion algorithm results in high computational speed and efficiency, and it can be generalized for any scatterer structure. Also, this method is robust with respect to noise. The numerical results clearly show that this hybrid approach provides accurate reconstructions of various objects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverse%20scattering" title="inverse scattering">inverse scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20imaging" title=" microwave imaging"> microwave imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=two-dimensional%20objects" title=" two-dimensional objects"> two-dimensional objects</a>, <a href="https://publications.waset.org/abstracts/search?q=Linear%20Sampling%20Method%20%28LSM%29" title=" Linear Sampling Method (LSM)"> Linear Sampling Method (LSM)</a> </p> <a href="https://publications.waset.org/abstracts/14437/inverse-scattering-of-two-dimensional-objects-using-an-enhancement-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">387</span> 2D Numerical Modeling of Ultrasonic Measurements in Concrete: Wave Propagation in a Multiple-Scattering Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Yu">T. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Audibert"> L. Audibert</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20F.%20Chaix"> J. F. Chaix</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Komatitsch"> D. Komatitsch</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Garnier"> V. Garnier</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Henault"> J. M. Henault</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Linear Ultrasonic Techniques play a major role in Non-Destructive Evaluation (NDE) for civil engineering structures in concrete since they can meet operational requirements. Interpretation of ultrasonic measurements could be improved by a better understanding of ultrasonic wave propagation in a multiple scattering medium. This work aims to develop a 2D numerical model of ultrasonic wave propagation in a heterogeneous medium, like concrete, integrating the multiple scattering phenomena in SPECFEM software. The coherent field of multiple scattering is obtained by averaging numerical wave fields, and it is used to determine the effective phase velocity and attenuation corresponding to an equivalent homogeneous medium. First, this model is applied to one scattering element (a cylinder) in a homogenous medium in a linear-elastic system, and its validation is completed thanks to the comparison with analytical solution. Then, some cases of multiple scattering by a set of randomly located cylinders or polygons are simulated to perform parametric studies on the influence of frequency and scatterer size, concentration, and shape. Also, the effective properties are compared with the predictions of Waterman-Truell model to verify its validity. Finally, the mortar viscoelastic behavior is introduced in the simulation in order to considerer the dispersion and the attenuation due to porosity included in the cement paste. In the future, different steps will be developed: The comparisons with experimental results, the interpretation of NDE measurements, and the optimization of NDE parameters before an auscultation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attenuation" title="attenuation">attenuation</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple-scattering%20medium" title=" multiple-scattering medium"> multiple-scattering medium</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20velocity" title=" phase velocity"> phase velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20measurements" title=" ultrasonic measurements"> ultrasonic measurements</a> </p> <a href="https://publications.waset.org/abstracts/61285/2d-numerical-modeling-of-ultrasonic-measurements-in-concrete-wave-propagation-in-a-multiple-scattering-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">386</span> Mercaptopropionic Acid (MPA) Modifying Chitosan-Gold Nano Composite for γ-Aminobutyric Acid Analysis Using Raman Scattering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bingjie%20Wang">Bingjie Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Su-Yeon%20Kwon"> Su-Yeon Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ik-Joong%20Kang"> Ik-Joong Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this experiment is to develop a sensor that can quickly check the concentration by using the nanoparticles made by chitosan and gold. Using chitosan nanoparticles crosslinking with sodium tripolyphosphate(TPP) is the first step to form the chitosan nanoparticles, which would be covered with the gold sequentially. The size of the fabricated product was around 100nm. Based on the method that the sulfur end of the MPA linked to gold can form the very strong S–Au bond, and the carboxyl group, the other end of the MPA, can easily absorb the GABA. As for the GABA, what is the primary inhibitory neurotransmitter in the mammalian central nervous system in the human body. It plays such significant role in reducing neuronal excitability pass through the nervous system. A Surface-enhanced Raman Scattering (SERS) as the principle for enhancing Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures is used to detect the concentration change of γ-Aminobutyric Acid (GABA). When the system is formed, it generated SERS, which made a clear difference in the intensity of Raman scattering within the range of GABA concentration. So it is obtained from the experiment that the calibration curve according to the GABA concentration relevant with the SERS scattering. In this study, DLS, SEM, FT-IR, UV, SERS were used to analyze the products to obtain the conclusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mercaptopropionic%20acid" title="mercaptopropionic acid">mercaptopropionic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan-gold%20nanoshell" title=" chitosan-gold nanoshell"> chitosan-gold nanoshell</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-aminobutyric%20acid" title=" γ-aminobutyric acid"> γ-aminobutyric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=surface-enhanced%20raman%20scattering" title=" surface-enhanced raman scattering"> surface-enhanced raman scattering</a> </p> <a href="https://publications.waset.org/abstracts/54392/mercaptopropionic-acid-mpa-modifying-chitosan-gold-nano-composite-for-gh-aminobutyric-acid-analysis-using-raman-scattering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">385</span> Modified Single-Folded Potentials for the Alpha-²⁴Mg and Alpha-²⁸Si Elastic Scattering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20A.%20Abdullah">M. N. A. Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Pritha%20Roy"> Pritha Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20R.%20Shil"> R. R. Shil</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20R.%20Sarker"> D. R. Sarker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alpha-nucleus interaction is obscured because it produces enhanced cross-sections at large scattering angles known as anomaly in large angle scattering (ALAS). ALAS is prominent in the elastic scattering of α-particles as well as in non-elastic processes involving α-particles for incident energies up to 50 MeV and for targets of mass A ≤ 50. The Woods-Saxon type of optical model potential fails to describe the processes in a consistent manner. Folded potential is a good candidate and often used to construct the potential which is derived from the microscopic as well as semi-microscopic folding calculations. The present work reports the analyses of the elastic scattering of α-particles from ²⁴Mg and ²⁸Si at Eα=22-100 MeV and 14.4-120 MeV incident energies respectively in terms of the modified single-folded (MSF) potential. To derive the MSF potential, we take the view that the nucleons in the target nuclei ²⁴Mg and ²⁸Si are primarily in α-like clusters and the rest of the time in unclustered nucleonic configuration. The MSF potential, found in this study, does not need any renormalization over the whole range of incident α energies, and the renormalization factor has been found to be exactly 1 for both the targets. The best-fit parameters yield 4Aα = 21 and AN = 3 for α-²⁴Mg potential, and 4Aα = 26 and AN = 2 for α-²⁸Si potential in time-average pictures. The root-mean-square radii of both ²⁴Mg and ²⁸Si are also deduced, and the results obtained from this work agree well with the outcomes of other studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20scattering" title="elastic scattering">elastic scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20model" title=" optical model"> optical model</a>, <a href="https://publications.waset.org/abstracts/search?q=folded%20potential" title=" folded potential"> folded potential</a>, <a href="https://publications.waset.org/abstracts/search?q=renormalization" title=" renormalization"> renormalization</a> </p> <a href="https://publications.waset.org/abstracts/76022/modified-single-folded-potentials-for-the-alpha-24mg-and-alpha-28si-elastic-scattering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">384</span> Fabrication of Modified Chitosan-Gold Nanoshell with Mercaptopropionic Acid(MPA) for γ-Aminobutyric Acid Detection as a Surface-Enhanced Raman Scattering Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bi%20Wa">Bi Wa</a>, <a href="https://publications.waset.org/abstracts/search?q=Su-Yeon%20Kwon"> Su-Yeon Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ik-Joong%20Kang"> Ik-Joong Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface-enhanced Raman Scattering (SERS) as the principle for enhancing Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures is used to detect the concentration change of γ-Aminobutyric Acid (GABA). GABA is the mainly inhibitory neurotransmitter in the mammalian central nervous system in the human body. It plays such significant role in reducing neuronal excitability throughout the nervous system. In this case, the Mercaptopropionic Acid (MPA) is used to modified chitosan –gold nanoshell, which enhances the absorption between GABA and Chitosan-gold nanoshell. The sulfur end of the MPA is linked to gold which is the surface of the chitosan nanoparticles via the very strong S–Au bond, while a functional group (carboxyl group) attached to GABA. The controlling of particles’ size and the surface morphology are also the important factors during the whole experiment. The particle around 100nm is using to link to MPA, and the range of GABA from 1mM to 30mM was detected by the Raman Scattering to obtain the calibrate curve. In this study, DLS, SEM, FT-IR, UV, SERS were used to analyze the products to obtain the conclusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan-gold%20nanoshell" title="chitosan-gold nanoshell">chitosan-gold nanoshell</a>, <a href="https://publications.waset.org/abstracts/search?q=mercaptopropionic%20acid" title=" mercaptopropionic acid"> mercaptopropionic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-aminobutyric%20acid" title=" γ-aminobutyric acid"> γ-aminobutyric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=surface-enhanced%20raman%20scattering" title=" surface-enhanced raman scattering"> surface-enhanced raman scattering</a> </p> <a href="https://publications.waset.org/abstracts/54235/fabrication-of-modified-chitosan-gold-nanoshell-with-mercaptopropionic-acidmpa-for-gh-aminobutyric-acid-detection-as-a-surface-enhanced-raman-scattering-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">383</span> Stimulated Raman Scattering of Ultra Intense Hollow Gaussian Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prerana%20Sharma">Prerana Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of relativistic nonlinearity on stimulated Raman scattering of the propagating laser beam carrying null intensity in center (hollow Gaussian beam) by excited plasma wave are studied in a collisionless plasma. The construction of the equations is done employing the fluid theory which is developed with partial differential equation and Maxwell’s equations. The analysis is done using eikonal method. The phenonmenon of Stimulated Raman scattering is shown along with the excitation of seed plasma wave. The power of plasma wave and back reflectivity is observed for higher order of hollow Gaussian beam. Back reflectivity is studied numerically for various orders of HGLB with different value of plasma density, laser power and beam radius. Numerical analysis shows that these parameters play vital role on reflectivity characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hollow%20Gaussian%20beam" title="Hollow Gaussian beam">Hollow Gaussian beam</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20nonlinearity" title=" relativistic nonlinearity"> relativistic nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20physics" title=" plasma physics"> plasma physics</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20scattering" title=" Raman scattering"> Raman scattering</a> </p> <a href="https://publications.waset.org/abstracts/15768/stimulated-raman-scattering-of-ultra-intense-hollow-gaussian-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">638</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">382</span> Statistical Modeling of Mobile Fading Channels Based on Triply Stochastic Filtered Marked Poisson Point Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jihad%20S.%20Daba">Jihad S. Daba</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Dubois"> J. P. Dubois</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the statistics of non-isotropic scattering multipath channels that fade randomly with respect to time, frequency, and space in a mobile environment is very crucial for the accurate detection of received signals in wireless and cellular communication systems. In this paper, we derive stochastic models for the probability density function (PDF) of the shift in the carrier frequency caused by the Doppler Effect on the received illuminating signal in the presence of a dominant line of sight. Our derivation is based on a generalized Clarke&rsquo;s and a two-wave partially developed scattering models, where the statistical distribution of the frequency shift is shown to be consistent with the power spectral density of the Doppler shifted signal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doppler%20shift" title="Doppler shift">Doppler shift</a>, <a href="https://publications.waset.org/abstracts/search?q=filtered%20Poisson%20process" title=" filtered Poisson process"> filtered Poisson process</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20Clark%E2%80%99s%20model" title=" generalized Clark’s model"> generalized Clark’s model</a>, <a href="https://publications.waset.org/abstracts/search?q=non-isotropic%20scattering" title=" non-isotropic scattering"> non-isotropic scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=partially%20developed%20scattering" title=" partially developed scattering"> partially developed scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=Rician%20distribution" title=" Rician distribution"> Rician distribution</a> </p> <a href="https://publications.waset.org/abstracts/65000/statistical-modeling-of-mobile-fading-channels-based-on-triply-stochastic-filtered-marked-poisson-point-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">381</span> Enhancement of Raman Scattering using Photonic Nanojet and Whispering Gallery Mode of a Dielectric Microstructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Arya">A. Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Laha"> R. Laha</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Dantham"> V. R. Dantham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report the enhancement of Raman scattering signal by one order of magnitude using photonic nanojet (PNJ) of a lollipop shaped dielectric microstructure (LSDM) fabricated by a pulsed CO₂ laser. Here, the PNJ is generated by illuminating sphere portion of the LSDM with non-resonant laser. Unlike the surface enhanced Raman scattering (SERS) technique, this technique is simple, and the obtained results are highly reproducible. In addition, an efficient technique is proposed to enhance the SERS signal with the help of high quality factor optical resonance (whispering gallery mode) of a LSDM. From the theoretical simulations, it has been found that at least an order of magnitude enhancement in the SERS signal could be achieved easily using the proposed technique. We strongly believe that this report will enable the research community for improving the Raman scattering signals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=localized%20surface%20plasmons" title="localized surface plasmons">localized surface plasmons</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20nanojet" title=" photonic nanojet"> photonic nanojet</a>, <a href="https://publications.waset.org/abstracts/search?q=SERS" title=" SERS"> SERS</a>, <a href="https://publications.waset.org/abstracts/search?q=whispering%20gallery%20mode" title=" whispering gallery mode"> whispering gallery mode</a> </p> <a href="https://publications.waset.org/abstracts/88298/enhancement-of-raman-scattering-using-photonic-nanojet-and-whispering-gallery-mode-of-a-dielectric-microstructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">380</span> Interpretation of Ultrasonic Backscatter of Linear FM Chirp Pulses from Targets Having Frequency-Dependent Scattering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stuart%20Bradley">Stuart Bradley</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathew%20Legg"> Mathew Legg</a>, <a href="https://publications.waset.org/abstracts/search?q=Lilyan%20Panton"> Lilyan Panton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrasonic remote sensing is a useful tool for assessing the interior structure of complex targets. For these methods, significantly enhanced spatial resolution is obtained if the pulse is coded, for example using a linearly changing frequency during the pulse duration. Such pulses have a time-dependent spectral structure. Interpretation of the backscatter from targets is, therefore, complicated if the scattering is frequency-dependent. While analytic models are well established for steady sinusoidal excitations applied to simple shapes such as spheres, such models do not generally exist for temporally evolving excitations. Therefore, models are developed in the current paper for handling such signals so that the properties of the targets can be quantitatively evaluated while maintaining very high spatial resolution. Laboratory measurements on simple shapes are used to confirm the validity of the models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20FM%20chirp" title="linear FM chirp">linear FM chirp</a>, <a href="https://publications.waset.org/abstracts/search?q=time-dependent%20acoustic%20scattering" title=" time-dependent acoustic scattering"> time-dependent acoustic scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20remote%20sensing" title=" ultrasonic remote sensing"> ultrasonic remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20scattering" title=" ultrasonic scattering"> ultrasonic scattering</a> </p> <a href="https://publications.waset.org/abstracts/62723/interpretation-of-ultrasonic-backscatter-of-linear-fm-chirp-pulses-from-targets-having-frequency-dependent-scattering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">379</span> Synchrotron Radiation and Inverse Compton Scattering in Astrophysical Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Sathiesh">S. S. Sathiesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this project is to study the radiation mechanism synchrotron and Inverse Compton scattering. Theoretically, we discussed spectral energy distribution for both. Programming is done for plotting the graph of Power-law spectrum for synchrotron Radiation using fortran90. The importance of power law spectrum was discussed and studied to infer its physical parameters from the model fitting. We also discussed how to infer the physical parameters from the theoretically drawn graph, we have seen how one can infer B (magnetic field of the source), γ min, γ max, spectral indices (p1, p2) while fitting the curve to the observed data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blazars%2Fquasars" title="blazars/quasars">blazars/quasars</a>, <a href="https://publications.waset.org/abstracts/search?q=beaming" title=" beaming"> beaming</a>, <a href="https://publications.waset.org/abstracts/search?q=synchrotron%20radiation" title=" synchrotron radiation"> synchrotron radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=Synchrotron%20Self%20Compton" title=" Synchrotron Self Compton"> Synchrotron Self Compton</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20Compton%20scattering" title=" inverse Compton scattering"> inverse Compton scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=mrk421" title=" mrk421 "> mrk421 </a> </p> <a href="https://publications.waset.org/abstracts/33368/synchrotron-radiation-and-inverse-compton-scattering-in-astrophysical-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">378</span> Surface Enhanced Raman Substrate Detection on the Structure of γ-Aminobutyric Acid(GABA) Connected with Modified Gold-Chitosan Nanoparticles by Mercaptopropionic Acid (MPA)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bingjie%20Wang">Bingjie Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Su-Yeon%20Kwon"> Su-Yeon Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ik-Joong%20Kang"> Ik-Joong Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Surface-enhanced Raman Scattering (SERS) as the principle for enhancing Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures is used to detect the concentration change of γ-Aminobutyric Acid (GABA). As for the gold-chitosan nanoshell, it is made by using chitosan nanoparticles crosslinking with sodium tripolyphosphate(TPP) for the first step to form the chitosan nanoparticles, which would be covered with the gold sequentially. The size of the fabricated product was around 100nm. Based on the method that the sulfur end of the MPA linked to gold can form the very strong S–Au bond, and the carboxyl group, the other end of the MPA, can easily absorb the GABA. GABA is the mainly inhibitory neurotransmitter in the mammalian central nervous system in the human body. It plays such significant role in reducing neuronal excitability throughout the nervous system. When the system formed, it generated SERS, which made a clear difference in the intensity of Raman scattering within the range of GABA concentration. So it is obtained from the experiment that the calibration curve according to the GABA concentration relevant with the SERS scattering. In this study, DLS, SEM, FT-IR, UV, SERS were used to analyze the products to obtain the conclusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan-gold%20nanoshell" title="chitosan-gold nanoshell">chitosan-gold nanoshell</a>, <a href="https://publications.waset.org/abstracts/search?q=mercaptopropionic%20acid" title=" mercaptopropionic acid"> mercaptopropionic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-aminobutyric%20acid" title=" γ-aminobutyric acid"> γ-aminobutyric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=surface-enhanced%20Raman%20scattering" title=" surface-enhanced Raman scattering"> surface-enhanced Raman scattering</a> </p> <a href="https://publications.waset.org/abstracts/54664/surface-enhanced-raman-substrate-detection-on-the-structure-of-gh-aminobutyric-acidgaba-connected-with-modified-gold-chitosan-nanoparticles-by-mercaptopropionic-acid-mpa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">377</span> Microstructure of Virgin and Aged Asphalts by Small-Angle X-Ray Scattering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong%20Tang">Dong Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongli%20Zhao"> Yongli Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the microstructure of asphalt is of great importance for the analysis of its macroscopic properties. However, the peculiarities of the chemical composition of the asphalt itself and the limitations of existing direct imaging techniques have caused researchers to face many obstacles in studying the microstructure of asphalt. The advantage of small-angle X-ray scattering (SAXS) is that it allows quantitative determination of the internal structure of opaque materials and is suitable for analyzing the microstructure of materials. Therefore, the SAXS technique was used to study the evolution of microstructures on the nanoscale during asphalt aging. And the reasons for the change in scattering contrast during asphalt aging were also explained with the help of Fourier transform infrared spectroscopy (FTIR). SAXS experimental results show that the SAXS curves of asphalt are similar to the scattering curves of scattering objects with two-level structures. The Porod curve for asphalt shows that there is no obvious interface between the micelles and the surrounding mediums, and there is only a fluctuation of the hot electron density between the two. The Beaucage model fit SAXS patterns shows that the scattering coefficient P of the asphaltene clusters as well as the size of the micelles, gradually increase with the aging of the asphalt. Furthermore, aggregation exists between the micelles of asphalt and becomes more pronounced with increasing aging. During asphalt aging, the electron density difference between the micelles and the surrounding mediums gradually increases, leading to an increase in the scattering contrast of the asphalt. Under long-term aging conditions due to the gradual transition from maltenes to asphaltenes, the electron density difference between the micelles and the surrounding mediums decreases, resulting in a decrease in the scattering contrast of asphalt SAXS. Finally, this paper correlates the macroscopic properties of asphalt with microstructural parameters, and the results show that the high-temperature rutting resistance of asphalt is enhanced and the low-temperature cracking resistance decreases due to the aggregation of micelles and the generation of new micelles. These results are useful for understanding the relationship between changes in microstructure and changes in properties during asphalt aging and provide theoretical guidance for the regeneration of aged asphalt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt" title="asphalt">asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=Beaucage%20model" title=" Beaucage model"> Beaucage model</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=SAXS" title=" SAXS"> SAXS</a> </p> <a href="https://publications.waset.org/abstracts/165750/microstructure-of-virgin-and-aged-asphalts-by-small-angle-x-ray-scattering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">376</span> Evaluation of Batch Splitting in the Context of Load Scattering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Wesebaum">S. Wesebaum</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Willeke"> S. Willeke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Production companies are faced with an increasingly turbulent business environment, which demands very high production volumes- and delivery date flexibility. If a decoupling by storage stages is not possible (e.g. at a contract manufacturing company) or undesirable from a logistical point of view, load scattering effects the production processes. ‘Load’ characterizes timing and quantity incidence of production orders (e.g. in work content hours) to workstations in the production, which results in specific capacity requirements. Insufficient coordination between load (demand capacity) and capacity supply results in heavy load scattering, which can be described by deviations and uncertainties in the input behavior of a capacity unit. In order to respond to fluctuating loads, companies try to implement consistent and realizable input behavior using the capacity supply available. For example, a uniform and high level of equipment capacity utilization keeps production costs down. In contrast, strong load scattering at workstations leads to performance loss or disproportionately fluctuating WIP, whereby the logistics objectives are affected negatively. Options for reducing load scattering are e.g. shifting the start and end dates of orders, batch splitting and outsourcing of operations or shifting to other workstations. This leads to an adjustment of load to capacity supply, and thus to a reduction of load scattering. If the adaptation of load to capacity cannot be satisfied completely, possibly flexible capacity must be used to ensure that the performance of a workstation does not decrease for a given load. Where the use of flexible capacities normally raises costs, an adjustment of load to capacity supply reduces load scattering and, in consequence, costs. In the literature you mostly find qualitative statements for describing load scattering. Quantitative evaluation methods that describe load mathematically are rare. In this article the authors discuss existing approaches for calculating load scattering and their various disadvantages such as lack of opportunity for normalization. These approaches are the basis for the development of our mathematical quantification approach for describing load scattering that compensates the disadvantages of the current quantification approaches. After presenting our mathematical quantification approach, the method of batch splitting will be described. Batch splitting allows the adaptation of load to capacity to reduce load scattering. After describing the method, it will be explicitly analyzed in the context of the logistic curve theory by Nyhuis using the stretch factor α1 in order to evaluate the impact of the method of batch splitting on load scattering and on logistic curves. The conclusion of this article will be to show how the methods and approaches presented can help companies in a turbulent environment to quantify the occurring work load scattering accurately and apply an efficient method for adjusting work load to capacity supply. In this way, the achievements of the logistical objectives are increased without causing additional costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=batch%20splitting" title="batch splitting">batch splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20logistics" title=" production logistics"> production logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20planning%20and%20control" title=" production planning and control"> production planning and control</a>, <a href="https://publications.waset.org/abstracts/search?q=quantification" title=" quantification"> quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20scattering" title=" load scattering"> load scattering</a> </p> <a href="https://publications.waset.org/abstracts/36923/evaluation-of-batch-splitting-in-the-context-of-load-scattering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">375</span> MONDO Neutron Tracker Characterisation by Means of Proton Therapeutical Beams and MonteCarlo Simulation Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Traini">G. Traini</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Giacometti"> V. Giacometti</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Mirabelli"> R. Mirabelli</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Patera"> V. Patera</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Pinci"> D. Pinci</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sarti"> A. Sarti</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sciubba"> A. Sciubba</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Marafini"> M. Marafini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The MONDO (MOnitor for Neutron Dose in hadrOntherapy) project aims a precise characterisation of the secondary fast and ultrafast neutrons produced in particle therapy treatments. The detector is composed of a matrix of scintillating fibres (250 um) readout by CMOS Digital-SPAD based sensors. Recoil protons from n-p elastic scattering are detected and used to track neutrons. A prototype was tested with proton beams (Trento Proton Therapy Centre): efficiency, light yield, and track-reconstruction capability were studied. The results of a MonteCarlo FLUKA simulation used to evaluated double scattering efficiency and expected backgrounds will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=secondary%20neutrons" title="secondary neutrons">secondary neutrons</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20therapy" title=" particle therapy"> particle therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking" title=" tracking"> tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20scattering" title=" elastic scattering"> elastic scattering</a> </p> <a href="https://publications.waset.org/abstracts/73773/mondo-neutron-tracker-characterisation-by-means-of-proton-therapeutical-beams-and-montecarlo-simulation-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">374</span> Model of Cosserat Continuum Dispersion in a Half-Space with a Scatterer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Velez">Francisco Velez</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20David%20Gomez"> Juan David Gomez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dispersion effects on the Scattering for a semicircular canyon in a micropolar continuum are analyzed, by using a computational finite element scheme. The presence of microrotational waves and the dispersive SV waves affects the propagation of elastic waves. Here, a contrast with the classic model is presented, and the dependence with the micropolar parameters is studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scattering" title="scattering">scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=semicircular%20canyon" title=" semicircular canyon"> semicircular canyon</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20dispersion" title=" wave dispersion"> wave dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=micropolar%20medium" title=" micropolar medium"> micropolar medium</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM%20modeling" title=" FEM modeling"> FEM modeling</a> </p> <a href="https://publications.waset.org/abstracts/11667/model-of-cosserat-continuum-dispersion-in-a-half-space-with-a-scatterer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small-angle%20X-ray%20scattering&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small-angle%20X-ray%20scattering&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small-angle%20X-ray%20scattering&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small-angle%20X-ray%20scattering&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small-angle%20X-ray%20scattering&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small-angle%20X-ray%20scattering&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small-angle%20X-ray%20scattering&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small-angle%20X-ray%20scattering&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small-angle%20X-ray%20scattering&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small-angle%20X-ray%20scattering&amp;page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small-angle%20X-ray%20scattering&amp;page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=small-angle%20X-ray%20scattering&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10