CINXE.COM

quantum decoherence in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> quantum decoherence in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> quantum decoherence </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/11767/#Item_7" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="quantum_systems">Quantum systems</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/quantum+logic">quantum logic</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/linear+logic">linear logic</a>, <a class="existingWikiWord" href="/nlab/show/dependent+linear+type+theory">dependent</a> <a class="existingWikiWord" href="/nlab/show/linear+type+theory">linear type theory</a></p> <p><a class="existingWikiWord" href="/nlab/show/string+diagrams">string diagrams</a> in <a class="existingWikiWord" href="/nlab/show/quantum+information+theory+via+dagger-compact+categories">†-compact categories</a></p> <p><a class="existingWikiWord" href="/nlab/show/tensor+networks">tensor networks</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Bohr+topos">Bohr topos</a></p> <p><a class="existingWikiWord" href="/nlab/show/order-theoretic+structure+in+quantum+mechanics">order-theoretic structure</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+probability">quantum probability</a></p> </li> </ul> <p><br /></p> <p><strong><a class="existingWikiWord" href="/nlab/show/quantum+physics">quantum physics</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+systems">quantum systems</a></p> <p>(<a class="existingWikiWord" href="/nlab/show/parameterized+quantum+systems">parameterized</a>, <a class="existingWikiWord" href="/nlab/show/open+quantum+system">open</a>)</p> <p><a class="existingWikiWord" href="/nlab/show/quantum+measurement">quantum measurement</a></p> <p><a class="existingWikiWord" href="/nlab/show/quantum+state+collapse">quantum state collapse</a></p> <p><a class="existingWikiWord" href="/nlab/show/quantum+decoherence">quantum decoherence</a></p> <p><a class="existingWikiWord" href="/nlab/show/quantum+adiabatic+theorem">quantum adiabatic theorem</a></p> <p><a class="existingWikiWord" href="/nlab/show/Berry+phases">Berry phases</a></p> <p><a class="existingWikiWord" href="/nlab/show/Dyson+formula">Dyson formula</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+many-body+physics">quantum many-body physics</a></p> </li> <li> <p><strong><a class="existingWikiWord" href="/nlab/show/quantum+field+theory">quantum field theory</a></strong></p> <p><a class="existingWikiWord" href="/nlab/show/functorial+quantum+field+theory">functorial quantum field theory</a></p> <p><a class="existingWikiWord" href="/nlab/show/algebraic+quantum+field+theory">algebraic quantum field theory</a></p> <p>(<a class="existingWikiWord" href="/nlab/show/non-perturbative+quantum+field+theory">non-</a>)<a class="existingWikiWord" href="/nlab/show/perturbative+quantum+field+theory">perturbative quantum field theory</a></p> </li> <li> <p><strong><a class="existingWikiWord" href="/nlab/show/solid+state+physics">solid state physics</a></strong></p> <p><a class="existingWikiWord" href="/nlab/show/quantum+material">quantum material</a></p> <p>(<a class="existingWikiWord" href="/nlab/show/topological+phases+of+matter">topological</a>) <a class="existingWikiWord" href="/nlab/show/phases+of+matter">phases of matter</a></p> </li> </ul> <p><br /></p> <div> <p><strong><a class="existingWikiWord" href="/nlab/show/quantum+probability+theory">quantum probability theory</a> – <a class="existingWikiWord" href="/nlab/show/observables">observables</a> and <a class="existingWikiWord" href="/nlab/show/states">states</a></strong></p> <ul> <li> <p><strong><a class="existingWikiWord" href="/nlab/show/states">states</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/classical+state">classical state</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+state">quantum state</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/space+of+states+%28in+geometric+quantization%29">space of states (in geometric quantization)</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/state+on+a+star-algebra">state on a star-algebra</a>, <a class="existingWikiWord" href="/nlab/show/quasi-state">quasi-state</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/qbit">qbit</a>, <a class="existingWikiWord" href="/nlab/show/Bell+state">Bell state</a></p> <p><a class="existingWikiWord" href="/nlab/show/dimer">dimer</a>, <a class="existingWikiWord" href="/nlab/show/tensor+network+state">tensor network state</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+state+preparation">quantum state preparation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/probability+amplitude">probability amplitude</a>, <a class="existingWikiWord" href="/nlab/show/quantum+fluctuation">quantum fluctuation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pure+state">pure state</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/wave+function">wave function</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bra-ket">bra-ket</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Bell+state">Bell state</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+superposition">quantum superposition</a>, <a class="existingWikiWord" href="/nlab/show/quantum+interference">quantum interference</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+entanglement">quantum entanglement</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+measurement">quantum measurement</a></p> <p><a class="existingWikiWord" href="/nlab/show/wave+function+collapse">wave function collapse</a></p> <p><a class="existingWikiWord" href="/nlab/show/Born+rule">Born rule</a></p> <p><a class="existingWikiWord" href="/nlab/show/deferred+measurement+principle">deferred measurement principle</a></p> <p><a class="existingWikiWord" href="/nlab/show/quantum+reader+monad">quantum reader monad</a></p> <p><a class="existingWikiWord" href="/nlab/show/measurement+problem">measurement problem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/superselection+sector">superselection sector</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mixed+state">mixed state</a>, <a class="existingWikiWord" href="/nlab/show/density+matrix">density matrix</a></p> <p><a class="existingWikiWord" href="/nlab/show/entanglement+entropy">entanglement entropy</a></p> <p><a class="existingWikiWord" href="/nlab/show/holographic+entanglement+entropy">holographic entanglement entropy</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/coherent+quantum+state">coherent quantum state</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ground+state">ground state</a>, <a class="existingWikiWord" href="/nlab/show/excited+state">excited state</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quasi-free+state">quasi-free state</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Fock+space">Fock space</a>, <a class="existingWikiWord" href="/nlab/show/second+quantization">second quantization</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/vacuum">vacuum</a>, <a class="existingWikiWord" href="/nlab/show/vacuum+state">vacuum state</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Hadamard+state">Hadamard state</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/vacuum+diagram">vacuum diagram</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/vacuum+expectation+value">vacuum expectation value</a>, <a class="existingWikiWord" href="/nlab/show/vacuum+amplitude">vacuum amplitude</a>, <a class="existingWikiWord" href="/nlab/show/vacuum+fluctuation">vacuum fluctuation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/vacuum+energy">vacuum energy</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/vacuum+polarization">vacuum polarization</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/interacting+vacuum">interacting vacuum</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/thermal+vacuum">thermal vacuum</a>, <a class="existingWikiWord" href="/nlab/show/KMS+state">KMS state</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/vacuum+stability">vacuum stability</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/false+vacuum">false vacuum</a>, <a class="existingWikiWord" href="/nlab/show/tachyon">tachyon</a>, <a class="existingWikiWord" href="/nlab/show/Coleman-De+Luccia+instanton">Coleman-De Luccia instanton</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/theta+vacuum">theta vacuum</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/perturbative+string+theory+vacuum">perturbative string theory vacuum</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/non-geometric+string+theory+vacuum">non-geometric string theory vacuum</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/landscape+of+string+theory+vacua">landscape of string theory vacua</a></p> </li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/entangled+state">entangled state</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/tensor+network+state">tensor network state</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/matrix+product+state">matrix product state</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/tree+tensor+network+state">tree tensor network state</a></p> </li> </ul> </li> </ul> </li> <li> <p><strong><a class="existingWikiWord" href="/nlab/show/observables">observables</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+observable">quantum observable</a>, <a class="existingWikiWord" href="/nlab/show/beable">beable</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+of+observables">algebra of observables</a>, <a class="existingWikiWord" href="/nlab/show/star-algebra">star-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Bohr+topos">Bohr topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+operator+%28in+geometric+quantization%29">quantum operator (in geometric quantization)</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+operation">quantum operation</a>, <a class="existingWikiWord" href="/nlab/show/quantum+effect">quantum effect</a>, <a class="existingWikiWord" href="/nlab/show/effect+algebra">effect algebra</a></p> </li> <li> <p>in <a class="existingWikiWord" href="/nlab/show/quantum+field+theory">quantum field theory</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/local+observable">local observable</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/polynomial+observable">polynomial observable</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/linear+observable">linear observable</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/field+observable">field observable</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/regular+observable">regular observable</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/microcausal+observable">microcausal observable</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/normal-ordered+product">normal-ordered product</a>, <a class="existingWikiWord" href="/nlab/show/time-ordered+products">time-ordered products</a>, <a class="existingWikiWord" href="/nlab/show/retarded+product">retarded product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Wick+algebra">Wick algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/scattering+amplitude">scattering amplitude</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/interacting+field+algebra+of+observables">interacting field algebra of observables</a>, <a class="existingWikiWord" href="/nlab/show/Bogoliubov%27s+formula">Bogoliubov's formula</a></p> </li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/GNS+construction">GNS construction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/theorems">theorems</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/order-theoretic+structure+in+quantum+mechanics">order-theoretic structure in quantum mechanics</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Gleason%27s+theorem">Gleason's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Alfsen-Shultz+theorem">Alfsen-Shultz theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Harding-D%C3%B6ring-Hamhalter+theorem">Harding-Döring-Hamhalter theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kochen-Specker+theorem">Kochen-Specker theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Nuiten%27s+lemma">Nuiten's lemma</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Wigner%27s+theorem">Wigner's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/no-cloning+theorem">no-cloning theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Bell%27s+theorem">Bell's theorem</a></p> </li> </ul> </li> </ul> </div> <p><br /></p> <p><strong><a class="existingWikiWord" href="/nlab/show/quantum+information">quantum information</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+information+via+dagger-compact+categories">quantum information via dagger-compact categories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+operation">quantum operation</a>, <a class="existingWikiWord" href="/nlab/show/quantum+channel">quantum channel</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+teleportation">quantum teleportation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+entanglement">quantum entanglement</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/entanglement+entropy">entanglement entropy</a></p> <p><a class="existingWikiWord" href="/nlab/show/holographic+entanglement+entropy">holographic entanglement entropy</a></p> <p><a class="existingWikiWord" href="/nlab/show/topological+entanglement+entropy">topological entanglement entropy</a></p> </li> </ul> <p><br /></p> <p><strong><a class="existingWikiWord" href="/nlab/show/quantum+computation">quantum computation</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/adiabatic+quantum+computation">adiabatic quantum computation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/measurement-based+quantum+computation">measurement-based quantum computation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+quantum+computation">topological quantum computation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+gate">quantum gate</a>, <a class="existingWikiWord" href="/nlab/show/quantum+circuit">quantum circuit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+programming+language">quantum programming language</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+error+correction">quantum error correction</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/HaPPY+code">HaPPY code</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Majorana+dimer+code">Majorana dimer code</a></p> </li> </ul> </li> </ul> <p><a class="existingWikiWord" href="/nlab/show/qbit">qbit</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/spin+resonance+qbit">spin resonance qbit</a></li> </ul> <p>quantum algorithms:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Grover%27s+algorithm">Grover's algorithm</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Shor%27s+algorithm">Shor's algorithm</a></p> </li> </ul> <p><br /></p> <p><strong><a class="existingWikiWord" href="/nlab/show/quantum+sensing">quantum sensing</a></strong></p> <p><br /></p> <p><strong><a class="existingWikiWord" href="/nlab/show/quantum+communication">quantum communication</a></strong></p> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#QuantumChannelsAndDecoherence'>Environmental representation of quantum channels</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>In <a class="existingWikiWord" href="/nlab/show/quantum+physics">quantum physics</a> <em>decoherence</em> refers to the disappearance of quantum <a class="existingWikiWord" href="/nlab/show/entanglement">entanglement</a> and <a class="existingWikiWord" href="/nlab/show/superposition">superposition</a> in the limit where small <a class="existingWikiWord" href="/nlab/show/quantum+mechanical+systems">quantum mechanical systems</a> are coupled to large <span class="newWikiWord">thermal baths<a href="/nlab/new/thermal+baths">?</a></span>.</p> <p>This has been argued to resolve (and has been argued not to resolve) the problem with the <a class="existingWikiWord" href="/nlab/show/interpretation+of+quantum+mechanics">interpretation</a> of <a class="existingWikiWord" href="/nlab/show/quantum+measurement">quantum measurement</a>.</p> <h2 id="properties">Properties</h2> <div> <h3 id="QuantumChannelsAndDecoherence">Environmental representation of quantum channels</h3> <p>The crux of dynamical <a class="existingWikiWord" href="/nlab/show/quantum+decoherence">quantum decoherence</a> is that <em>fundamentally</em> the (time-)evolution of any <a class="existingWikiWord" href="/nlab/show/quantum+system">quantum system</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi class="mathscript">ℋ</mi></mrow><annotation encoding="application/x-tex">\mathscr{H}</annotation></semantics></math> may be assumed <a class="existingWikiWord" href="/nlab/show/unitary+quantum+channel">unitary</a> (say via a <a class="existingWikiWord" href="/nlab/show/Schr%C3%B6dinger+equation">Schrödinger equation</a>) <em>when taking the whole evolution of its environment</em> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi class="mathscript">ℬ</mi></mrow><annotation encoding="application/x-tex">\mathscr{B}</annotation></semantics></math> (the “bath”, ultimately the whole <a class="existingWikiWord" href="/nlab/show/observable+universe">observable universe</a>) into account, too, in that the evolution of the total system <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi class="mathscript">ℋ</mi><mo>⊗</mo><mi class="mathscript">ℬ</mi></mrow><annotation encoding="application/x-tex">\mathscr{H} \otimes \mathscr{B}</annotation></semantics></math> is given by a <a class="existingWikiWord" href="/nlab/show/unitary+operator">unitary operator</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mpadded width="0" lspace="-100%width"><mrow><mi>evolve</mi><mspace width="thickmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thickmathspace"></mspace></mrow></mpadded><mi class="mathscript">ℋ</mi><mo>⊗</mo><mi class="mathscript">ℬ</mi></mtd> <mtd><mo>⟶</mo></mtd> <mtd><mi class="mathscript">ℋ</mi><mo>⊗</mo><mi class="mathscript">ℬ</mi></mtd></mtr> <mtr><mtd><mrow><mo>|</mo><mi>ψ</mi><mo>,</mo><mi>β</mi><mo>⟩</mo></mrow></mtd> <mtd><mo>↦</mo></mtd> <mtd><msub><mi>U</mi> <mi>tot</mi></msub><mrow><mo>|</mo><mi>ψ</mi><mo>,</mo><mi>β</mi><mo>⟩</mo></mrow><mpadded width="0"><mrow><mspace width="thinmathspace"></mspace><mo>,</mo></mrow></mpadded></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ \mathllap{ evolve \;\colon\; } \mathscr{H} \otimes \mathscr{B} &amp;\longrightarrow&amp; \mathscr{H} \otimes \mathscr{B} \\ \left\vert \psi, \beta \right\rangle &amp;\mapsto&amp; U_{tot} \left\vert \psi, \beta \right\rangle \mathrlap{\,,} } </annotation></semantics></math></div> <p>after understanding the <a class="existingWikiWord" href="/nlab/show/mixed+states">mixed states</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ρ</mi><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mi class="mathscript">ℋ</mi><mo>⊗</mo><msup><mi class="mathscript">ℋ</mi> <mo>*</mo></msup></mrow><annotation encoding="application/x-tex">\rho \,\colon\, \mathscr{H} \otimes \mathscr{H}^\ast</annotation></semantics></math> (<a class="existingWikiWord" href="/nlab/show/density+matrices">density matrices</a>) of the given <a class="existingWikiWord" href="/nlab/show/quantum+system">quantum system</a> as coupled to any given mixed state <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>env</mi><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mi class="mathscript">ℬ</mi><mo>⊗</mo><msup><mi class="mathscript">ℬ</mi> <mo>*</mo></msup></mrow><annotation encoding="application/x-tex">env \,\colon\, \mathscr{B} \otimes \mathscr{B}^\ast</annotation></semantics></math> of the bath (via <a class="existingWikiWord" href="/nlab/show/tensor+product">tensor product</a>)</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mpadded width="0" lspace="-100%width"><mrow><mi>couple</mi><mspace width="thickmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thickmathspace"></mspace></mrow></mpadded><mi class="mathscript">ℋ</mi><mo>⊗</mo><msup><mi class="mathscript">ℋ</mi> <mo>*</mo></msup></mtd> <mtd><mo>⟶</mo></mtd> <mtd><mo stretchy="false">(</mo><mi class="mathscript">ℋ</mi><mo>⊗</mo><mi class="mathscript">ℬ</mi><mo stretchy="false">)</mo><mo>⊗</mo><mo stretchy="false">(</mo><mi class="mathscript">ℋ</mi><mo>⊗</mo><mi class="mathscript">ℬ</mi><msup><mo stretchy="false">)</mo> <mo>*</mo></msup></mtd></mtr> <mtr><mtd><mi>ρ</mi></mtd> <mtd><mo>↦</mo></mtd> <mtd><mi>ρ</mi><mo>⊗</mo><mi>env</mi><mpadded width="0"><mrow><mspace width="thinmathspace"></mspace><mo>;</mo></mrow></mpadded></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ \mathllap{ couple \;\colon\; } \mathscr{H} \otimes \mathscr{H}^\ast &amp; \longrightarrow &amp; (\mathscr{H} \otimes \mathscr{B}) \otimes (\mathscr{H} \otimes \mathscr{B})^\ast \\ \rho &amp;\mapsto&amp; \rho \otimes env \mathrlap{\,;} } </annotation></semantics></math></div> <p>…the only catch being that one cannot — and in any case does not (want or need to) — keep track of the precise <a class="existingWikiWord" href="/nlab/show/quantum+state">quantum state</a> of the environment/bath, instead only of its <em>average</em> effect on the given <a class="existingWikiWord" href="/nlab/show/quantum+system">quantum system</a>, which by the rule of <a class="existingWikiWord" href="/nlab/show/quantum+probability">quantum probability</a> is the <a class="existingWikiWord" href="/nlab/show/mixed+state">mixed state</a> that remains after the <a class="existingWikiWord" href="/nlab/show/partial+trace+quantum+channel">partial trace</a> over the environment:</p> <div class="maruku-equation" id="eq:PartialTraceOverBathTowardsQuantumChannels"><span class="maruku-eq-number">(1)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mpadded width="0" lspace="-100%width"><mrow><mi>average</mi><mspace width="thickmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thickmathspace"></mspace></mrow></mpadded><mo stretchy="false">(</mo><mi class="mathscript">ℋ</mi><mo>⊗</mo><mi class="mathscript">ℬ</mi><mo stretchy="false">)</mo><mo>⊗</mo><mo stretchy="false">(</mo><mi class="mathscript">ℋ</mi><mo>⊗</mo><mi class="mathscript">ℬ</mi><msup><mo stretchy="false">)</mo> <mo>*</mo></msup></mtd> <mtd><mo>⟶</mo></mtd> <mtd><mi class="mathscript">ℋ</mi><mo>⊗</mo><msup><mi class="mathscript">ℋ</mi> <mo>*</mo></msup></mtd></mtr> <mtr><mtd><mover><mi>ρ</mi><mo>^</mo></mover></mtd> <mtd><mo>↦</mo></mtd> <mtd><msub><mi>Tr</mi> <mi class="mathscript">ℬ</mi></msub><mo maxsize="1.2em" minsize="1.2em">(</mo><mover><mi>ρ</mi><mo>^</mo></mover><mo maxsize="1.2em" minsize="1.2em">)</mo><mpadded width="0"><mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow></mpadded></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ \mathllap{ average \;\colon\; } (\mathscr{H} \otimes \mathscr{B}) \otimes (\mathscr{H} \otimes \mathscr{B})^\ast &amp;\longrightarrow&amp; \mathscr{H} \otimes \mathscr{H}^\ast \\ \widehat{\rho} &amp;\mapsto&amp; Tr_{\mathscr{B}}\big(\widehat{\rho}\big) \mathrlap{\,.} } </annotation></semantics></math></div> <p>In summary this means <em>for practical purposes</em> that the probabilistic evolution of quantum systems <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi class="mathscript">ℋ</mi></mrow><annotation encoding="application/x-tex">\mathscr{H}</annotation></semantics></math> is always of the composite form</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi class="mathscript">ℋ</mi><mo>⊗</mo><msup><mi class="mathscript">ℋ</mi> <mo>*</mo></msup></mtd> <mtd><mover><mo>→</mo><mrow><mtable><mtr><mtd><mtext>couple to</mtext></mtd></mtr> <mtr><mtd><mtext>environment</mtext></mtd></mtr></mtable></mrow></mover></mtd> <mtd><mrow><mo>(</mo><mrow><mtable><mtr><mtd><mi class="mathscript">ℋ</mi></mtd></mtr> <mtr><mtd><mo>⊗</mo></mtd></mtr> <mtr><mtd><mi class="mathscript">ℬ</mi></mtd></mtr></mtable></mrow><mo>)</mo></mrow><mo>⊗</mo><msup><mrow><mo>(</mo><mrow><mtable><mtr><mtd><mi class="mathscript">ℋ</mi></mtd></mtr> <mtr><mtd><mo>⊗</mo></mtd></mtr> <mtr><mtd><mi class="mathscript">ℬ</mi></mtd></mtr></mtable></mrow><mo>)</mo></mrow> <mo>*</mo></msup></mtd> <mtd><mover><mo>→</mo><mrow><mtable><mtr><mtd><mtext>total unitary</mtext></mtd></mtr> <mtr><mtd><mtext>evolution</mtext></mtd></mtr></mtable></mrow></mover></mtd> <mtd><mrow><mo>(</mo><mrow><mtable><mtr><mtd><mi class="mathscript">ℋ</mi></mtd></mtr> <mtr><mtd><mo>⊗</mo></mtd></mtr> <mtr><mtd><mi class="mathscript">ℬ</mi></mtd></mtr></mtable></mrow><mo>)</mo></mrow><mo>⊗</mo><msup><mrow><mo>(</mo><mrow><mtable><mtr><mtd><mi class="mathscript">ℋ</mi></mtd></mtr> <mtr><mtd><mo>⊗</mo></mtd></mtr> <mtr><mtd><mi class="mathscript">ℬ</mi></mtd></mtr></mtable></mrow><mo>)</mo></mrow> <mo>*</mo></msup></mtd> <mtd><mover><mo>→</mo><mrow><mtable><mtr><mtd><mtext>average over</mtext></mtd></mtr> <mtr><mtd><mtext>environment</mtext></mtd></mtr></mtable></mrow></mover></mtd> <mtd><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mi class="mathscript">ℋ</mi><mo>⊗</mo><msup><mi class="mathscript">ℋ</mi> <mo>*</mo></msup></mtd></mtr> <mtr><mtd><mi>ρ</mi></mtd> <mtd><mo>↦</mo></mtd> <mtd><mi>ρ</mi><mo>⊗</mo><mi>env</mi></mtd> <mtd><mo>↦</mo></mtd> <mtd><mpadded width="0" lspace="-50%width"><mrow><msub><mi>U</mi> <mi>tot</mi></msub><mo>⋅</mo><mo stretchy="false">(</mo><mi>ρ</mi><mo>⊗</mo><mi>env</mi><mo stretchy="false">)</mo><mo>⋅</mo><msubsup><mi>U</mi> <mi>tot</mi> <mo>†</mo></msubsup></mrow></mpadded></mtd> <mtd><mo>↦</mo></mtd> <mtd><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mpadded width="0" lspace="-50%width"><mrow><msub><mi>Tr</mi> <mi class="mathscript">ℬ</mi></msub><mo maxsize="1.2em" minsize="1.2em">(</mo><msub><mi>U</mi> <mi>tot</mi></msub><mo>⋅</mo><mo stretchy="false">(</mo><mi>ρ</mi><mo>⊗</mo><mi>env</mi><mo stretchy="false">)</mo><mo>⋅</mo><msubsup><mi>U</mi> <mi>tot</mi> <mo>†</mo></msubsup><mo maxsize="1.2em" minsize="1.2em">)</mo></mrow></mpadded></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ \mathscr{H} \otimes \mathscr{H}^\ast &amp; \xrightarrow{ \array{ \text{couple to} \\ \text{environment} } } &amp; \left( \array{ \mathscr{H} \\ \otimes \\ \mathscr{B} } \right) \otimes \left( \array{ \mathscr{H} \\ \otimes \\ \mathscr{B} } \right)^\ast &amp; \xrightarrow{ \array{ \text{total unitary} \\ \text{evolution} } } &amp; \left( \array{ \mathscr{H} \\ \otimes \\ \mathscr{B} } \right) \otimes \left( \array{ \mathscr{H} \\ \otimes \\ \mathscr{B} } \right)^\ast &amp; \xrightarrow{ \array{ \text{average over} \\ \text{environment} } } &amp; \;\;\;\; \mathscr{H} \otimes \mathscr{H}^\ast \\ \rho &amp;\mapsto&amp; \rho \otimes env &amp;\mapsto&amp; \mathclap{ U_{tot} \cdot (\rho \otimes env) \cdot U_{tot}^\dagger } &amp;\mapsto&amp; \;\;\;\;\;\;\;\;\;\;\;\; \mathclap{ Tr_{\mathscr{B}} \big( U_{tot} \cdot (\rho \otimes env) \cdot U_{tot}^\dagger \big) } } </annotation></semantics></math></div> <p>This composite turns out to be a “<em><a class="existingWikiWord" href="/nlab/show/quantum+channel">quantum channel</a></em>”</p> <p>The realization of a quantum channel in the form <a class="maruku-eqref" href="#eq:QuantumChannelVieDecoherence">(2)</a> is also called an <em>environmental representation</em> (eg. <a href="quantum+channel#&#x17B;yczkowskiBengtsson04">Życzkowski &amp; Bengtsson 2004 (3.5)</a>).</p> <p>In fact all quantum channels on a fixed Hilbert space have such an evironmental representation:</p> <p> <div class="num_prop" id="QuantumChannelsAsPartialTracesOfUnitariesOnTensors"> <h6>Proposition</h6> <p><strong>(environmental representation of quantum channels)</strong></p> <p>Every <a class="existingWikiWord" href="/nlab/show/quantum+channel">quantum channel</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>chan</mi><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mi class="mathscript">ℋ</mi><mo>⊗</mo><msup><mi class="mathscript">ℋ</mi> <mo>*</mo></msup><mo>⟶</mo><mi class="mathscript">ℋ</mi><mo>⊗</mo><msup><mi class="mathscript">ℋ</mi> <mo>*</mo></msup></mrow><annotation encoding="application/x-tex"> chan \;\;\colon\;\; \mathscr{H} \otimes \mathscr{H}^\ast \longrightarrow \mathscr{H} \otimes \mathscr{H}^\ast </annotation></semantics></math></div> <p>may be written as</p> <ol> <li> <p>a <a class="existingWikiWord" href="/nlab/show/unitary+quantum+channel">unitary quantum channel</a>, induced by a <a class="existingWikiWord" href="/nlab/show/unitary+operator">unitary operator</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>U</mi> <mi>tot</mi></msub><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mi class="mathscript">ℋ</mi><mo>⊗</mo><mi class="mathscript">ℬ</mi><mo>→</mo><mi class="mathscript">ℋ</mi><mo>⊗</mo><mi class="mathscript">ℬ</mi></mrow><annotation encoding="application/x-tex">U_{tot} \,\colon\, \mathscr{H} \otimes \mathscr{B} \to \mathscr{H} \otimes \mathscr{B} </annotation></semantics></math></p> </li> <li> <p>on a <a class="existingWikiWord" href="/nlab/show/compound+system">compound system</a> with some <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi class="mathscript">ℬ</mi></mrow><annotation encoding="application/x-tex">\mathscr{B}</annotation></semantics></math> (the “bath”), yielding a <em>total system</em> <a class="existingWikiWord" href="/nlab/show/Hilbert+space">Hilbert space</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi class="mathscript">ℋ</mi><mo>⊗</mo><mi class="mathscript">ℬ</mi></mrow><annotation encoding="application/x-tex">\mathscr{H} \otimes \mathscr{B}</annotation></semantics></math> (<a class="existingWikiWord" href="/nlab/show/tensor+product+of+Hilbert+spaces">tensor product</a>),</p> </li> <li> <p>and acting on the given <a class="existingWikiWord" href="/nlab/show/mixed+state">mixed state</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ρ</mi></mrow><annotation encoding="application/x-tex">\rho</annotation></semantics></math> coupled (tensored) with any <a class="existingWikiWord" href="/nlab/show/pure+state">pure state</a> of the bath system,</p> </li> <li> <p>followed by <a class="existingWikiWord" href="/nlab/show/partial+trace+quantum+channel">partial trace</a> (averaging) over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi class="mathscript">ℬ</mi></mrow><annotation encoding="application/x-tex">\mathscr{B}</annotation></semantics></math> (leading to <a class="existingWikiWord" href="/nlab/show/decoherence">decoherence</a> in the remaining state)</p> </li> </ol> <p>in that</p> <div class="maruku-equation" id="eq:QuantumChannelVieDecoherence"><span class="maruku-eq-number">(2)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>chan</mi><mo stretchy="false">(</mo><mi>ρ</mi><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><msub><mi>Tr</mi> <mi class="mathscript">ℬ</mi></msub><mo maxsize="1.2em" minsize="1.2em">(</mo><msub><mi>U</mi> <mi>tot</mi></msub><mo>⋅</mo><mo stretchy="false">(</mo><mi>ρ</mi><mo>⊗</mo><mi>env</mi><mo stretchy="false">)</mo><mo>⋅</mo><msubsup><mi>U</mi> <mi>tot</mi> <mo>†</mo></msubsup><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> chan(\rho) \;\;=\;\; Tr_{\mathscr{B}} \big( U_{tot} \cdot (\rho \otimes env) \cdot U_{tot}^\dagger \big) \,. </annotation></semantics></math></div> <p>Conversely, every operation of the form <a class="maruku-eqref" href="#eq:QuantumChannelVieDecoherence">(2)</a> is a quantum channel.</p> </div> </p> <p>This is originally due to <a href="quantum+channel#Lindblad75">Lindblad 1975</a> (see top of p. 149 and inside the proof of Lem. 5). For exposition and review see: <a href="quantum+channel#NielsenChuang00">Nielsen &amp; Chuang 2000 §8.2.2-8.2.3</a>. An account of the infinite-dimensional case is in <a href="quantum+channel#AttalLectureNotes">Attal, Thm. 6.5 &amp; 6.7</a>. These authors focus on the case that the environment is in a <a class="existingWikiWord" href="/nlab/show/pure+state">pure state</a>, the (parital) generalization to <a class="existingWikiWord" href="/nlab/show/mixed+state">mixed</a> environment states is discussed in <a href="quantum+channel#Bengtsson&#x17B;yczkowski06">Bengtsson &amp; Życzkowski 2006 pp. 258</a>.</p> <p> <div class="proof" id="ProofOfEnvironmentalRepresentationOfQuantumChannels"> <h6>Proof</h6> <p>We spell out the proof assuming <a class="existingWikiWord" href="/nlab/show/finite-dimensional+Hilbert+spaces">finite-dimensional Hilbert spaces</a>. (The general case follows the same idea, supplemented by arguments that the following <a class="existingWikiWord" href="/nlab/show/sums">sums</a> <a class="existingWikiWord" href="/nlab/show/convergence">converge</a>.)</p> <p>Now given a <a class="existingWikiWord" href="/nlab/show/completely+positive+map">completely positive map</a>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>chan</mi><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mi class="mathscript">ℋ</mi><mo>⊗</mo><msup><mi class="mathscript">ℋ</mi> <mo>*</mo></msup><mo>⟶</mo><mi class="mathscript">ℋ</mi><mo>⊗</mo><msup><mi class="mathscript">ℋ</mi> <mo>*</mo></msup><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> chan \,\colon\, \mathscr{H} \otimes \mathscr{H}^\ast \longrightarrow \mathscr{H} \otimes \mathscr{H}^\ast \,, </annotation></semantics></math></div> <p>then by <a href="quantum+channel#OperatorSumDecompositionOfQuantumChannels">operator-sum decomposition</a> there exists a <a class="existingWikiWord" href="/nlab/show/set">set</a> (<a class="existingWikiWord" href="/nlab/show/finite+set">finite</a>, under our assumptions) <a class="existingWikiWord" href="/nlab/show/inhabited+set">inhabited</a> by at least one element</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>s</mi> <mi>ini</mi></msub><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mi>S</mi><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> s_{ini} \,\colon\, S \,, </annotation></semantics></math></div> <p>and an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/indexed+set">indexed set</a> of <a class="existingWikiWord" href="/nlab/show/linear+operators">linear operators</a></p> <div class="maruku-equation" id="eq:KrausDecompositionInConstructionOfEnvRep"><span class="maruku-eq-number">(3)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>s</mi><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mi>S</mi><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>⊢</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><msub><mi>E</mi> <mi>s</mi></msub><mspace width="thickmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thickmathspace"></mspace><mi class="mathscript">ℋ</mi><mo>⟶</mo><mi class="mathscript">ℋ</mi><mspace width="thinmathspace"></mspace><mo>,</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mtext>with</mtext><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><munder><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo><mi>s</mi></munder><msubsup><mi>E</mi> <mi>s</mi> <mo>†</mo></msubsup><mo>⋅</mo><msub><mi>E</mi> <mi>s</mi></msub><mspace width="thinmathspace"></mspace><mo>=</mo><mspace width="thinmathspace"></mspace><mi>Id</mi><mpadded width="0"><mrow><mspace width="thinmathspace"></mspace><mo>,</mo></mrow></mpadded></mrow><annotation encoding="application/x-tex"> s \,\colon\, S \;\;\; \vdash \;\;\; E_s \;\colon\; \mathscr{H} \longrightarrow \mathscr{H} \,,\;\;\;\; \text{with} \;\;\;\; \underset{s}{\sum} E_s^\dagger \cdot E_s \,=\, Id \mathrlap{\,,} </annotation></semantics></math></div> <p>such that</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>chan</mi><mo stretchy="false">(</mo><mi>ρ</mi><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><munder><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo><mi>s</mi></munder><mspace width="thinmathspace"></mspace><msub><mi>E</mi> <mi>s</mi></msub><mo>⋅</mo><mi>ρ</mi><mo>⋅</mo><msubsup><mi>E</mi> <mi>s</mi> <mo>†</mo></msubsup><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> chan(\rho) \;=\; \underset{s}{\sum} \, E_s \cdot \rho \cdot E_s^\dagger \,. </annotation></semantics></math></div> <p>Now take</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi class="mathscript">ℬ</mi><mspace width="thinmathspace"></mspace><mo>≡</mo><mspace width="thinmathspace"></mspace><munder><mo>⊕</mo><mi>S</mi></munder><mi>ℂ</mi></mrow><annotation encoding="application/x-tex"> \mathscr{B} \,\equiv\, \underset{S}{\oplus} \mathbb{C} </annotation></semantics></math></div> <p>with its canonical <a class="existingWikiWord" href="/nlab/show/Hermitian+form">Hermitian</a> <a class="existingWikiWord" href="/nlab/show/inner+product">inner product</a>-structure with <a class="existingWikiWord" href="/nlab/show/orthonormal+linear+basis">orthonormal linear basis</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo maxsize="1.2em" minsize="1.2em">(</mo><mrow><mo>|</mo><mi>s</mi><mo>⟩</mo></mrow><msub><mo maxsize="1.2em" minsize="1.2em">)</mo> <mrow><mi>s</mi><mo lspace="verythinmathspace">:</mo><mi>S</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\big(\left\vert s \right\rangle\big)_{s \colon S}</annotation></semantics></math> and consider the linear map</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mpadded width="0" lspace="-100%width"><mrow><mi>V</mi><mspace width="thickmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace></mrow></mpadded><mi class="mathscript">ℋ</mi></mtd> <mtd><mo>⟶</mo></mtd> <mtd><mi class="mathscript">ℋ</mi><mo>⊗</mo><mi class="mathscript">ℬ</mi></mtd></mtr> <mtr><mtd><mrow><mo>|</mo><mi>ψ</mi><mo>⟩</mo></mrow></mtd> <mtd><mo>↦</mo></mtd> <mtd><munder><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo><mi>s</mi></munder><mspace width="thinmathspace"></mspace><msub><mi>E</mi> <mi>s</mi></msub><mrow><mo>|</mo><mi>ψ</mi><mo>⟩</mo></mrow><mo>⊗</mo><mrow><mo>|</mo><mi>s</mi><mo>⟩</mo></mrow><mpadded width="0"><mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow></mpadded></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ \mathllap{ V \;\colon\;\; } \mathscr{H} &amp;\longrightarrow&amp; \mathscr{H} \otimes \mathscr{B} \\ \left\vert \psi \right\rangle &amp;\mapsto&amp; \underset{s}{\sum} \, E_s \left\vert \psi \right\rangle \otimes \left\vert s \right\rangle \mathrlap{\,.} } </annotation></semantics></math></div> <p>Observe that this is a <a class="existingWikiWord" href="/nlab/show/linear+isometry">linear isometry</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mtable displaystyle="false" rowspacing="0.5ex" columnalign="left left"><mtr><mtd><mrow><mo>⟨</mo><mi>ψ</mi><mo>|</mo></mrow><msup><mi>V</mi> <mo>†</mo></msup><mi>V</mi><mrow><mo>|</mo><mi>ψ</mi><mo>⟩</mo></mrow></mtd></mtr> <mtr><mtd><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><munder><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo><mrow><mi>s</mi><mo>,</mo><mi>s</mi><mo>′</mo></mrow></munder><mrow><mo>⟨</mo><mi>ψ</mi><mo>|</mo></mrow><msubsup><mi>E</mi> <mrow><mi>s</mi><mo>′</mo></mrow> <mo>†</mo></msubsup><msub><mi>E</mi> <mi>s</mi></msub><mrow><mo>|</mo><mi>ψ</mi><mo>⟩</mo></mrow><munder><munder><mrow><mo>⟨</mo><mi>s</mi><mo>′</mo><mo stretchy="false">|</mo><mi>s</mi><mo>⟩</mo></mrow><mo>⏟</mo></munder><mrow><msubsup><mi>δ</mi> <mi>s</mi> <mrow><mi>s</mi><mo>′</mo></mrow></msubsup></mrow></munder></mtd></mtr> <mtr><mtd><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><mrow><mo>⟨</mo><mi>ψ</mi><mo>|</mo></mrow><munder><munder><mrow><munder><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo><mi>s</mi></munder><msubsup><mi>E</mi> <mi>s</mi> <mo>†</mo></msubsup><msub><mi>E</mi> <mi>s</mi></msub></mrow><mo>⏟</mo></munder><mi>Id</mi></munder><mrow><mo>|</mo><mi>ψ</mi><mo>⟩</mo></mrow></mtd></mtr> <mtr><mtd><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><mrow><mo>⟨</mo><mi>ψ</mi><mo stretchy="false">|</mo><mi>ψ</mi><mo>⟩</mo></mrow><mpadded width="0"><mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow></mpadded></mtd></mtr></mtable></mrow><annotation encoding="application/x-tex"> \begin{array}{ll} \left\langle \psi \right\vert V^\dagger V \left\vert \psi \right\rangle \\ \;=\; \underset{s,s'}{\sum} \left\langle \psi \right\vert E_{s'}^\dagger E_s \left\vert \psi \right\rangle \underset{ \delta_s^{s'} }{ \underbrace{ \left\langle s' \vert s \right\rangle } } \\ \;=\; \left\langle \psi \right\vert \underset{ Id }{ \underbrace{ \underset{s}{\sum} E_{s}^\dagger E_s } } \left\vert \psi \right\rangle \\ \;=\; \left\langle \psi \vert \psi \right\rangle \mathrlap{\,.} \end{array} </annotation></semantics></math></div> <p>This <a href="linear+isometryLinearIsometriesAreInjective">implies</a> that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/injective+map">injective</a> so that we have a <a class="existingWikiWord" href="/nlab/show/direct+sum">direct sum</a>-decomposition of its <a class="existingWikiWord" href="/nlab/show/codomain">codomain</a> into its <a class="existingWikiWord" href="/nlab/show/image">image</a> and its <a class="existingWikiWord" href="/nlab/show/cokernel">cokernel</a> <a class="existingWikiWord" href="/nlab/show/orthogonal+complement">orthogonal complement</a>, which is unitarily isomorphic to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>dim</mi><mo stretchy="false">(</mo><mi class="mathscript">ℬ</mi><mo stretchy="false">)</mo><mo>−</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">dim(\mathscr{B})-1</annotation></semantics></math> summands of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi class="mathscript">ℋ</mi></mrow><annotation encoding="application/x-tex">\mathscr{H}</annotation></semantics></math> that we may identify as follows:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi class="mathscript">ℋ</mi><mo>⊗</mo><mi class="mathscript">ℬ</mi><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><mi>V</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><mi class="mathscript">ℋ</mi><mo maxsize="1.2em" minsize="1.2em">)</mo><mo>⊕</mo><mo maxsize="1.8em" minsize="1.8em">(</mo><mi class="mathscript">ℋ</mi><mo>⊗</mo><mo maxsize="1.2em" minsize="1.2em">(</mo><mi class="mathscript">ℬ</mi><mo>⊖</mo><mi>ℂ</mi><mrow><mo>|</mo><msub><mi>s</mi> <mn>0</mn></msub><mo>⟩</mo></mrow><mo maxsize="1.2em" minsize="1.2em">)</mo><mo maxsize="1.8em" minsize="1.8em">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \mathscr{H} \otimes \mathscr{B} \;\simeq\; V\big( \mathscr{H} \big) \oplus \Big( \mathscr{H} \otimes \big( \mathscr{B} \ominus \mathbb{C}\left\vert s_0 \right\rangle \big) \Big) \,. </annotation></semantics></math></div> <p>In total this yields a unitary operator</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>U</mi><mspace width="thickmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thickmathspace"></mspace><mi class="mathscript">ℋ</mi><mo>⊗</mo><mi class="mathscript">ℬ</mi><mspace width="thinmathspace"></mspace><mo>≃</mo><mspace width="thinmathspace"></mspace><mi class="mathscript">ℋ</mi><mo>⊕</mo><mo maxsize="1.8em" minsize="1.8em">(</mo><mi class="mathscript">ℋ</mi><mo>⊗</mo><mo maxsize="1.2em" minsize="1.2em">(</mo><mi class="mathscript">ℬ</mi><mo>⊖</mo><mi>ℂ</mi><mrow><mo>|</mo><msub><mi>s</mi> <mi>ini</mi></msub><mo>⟩</mo></mrow><mo maxsize="1.2em" minsize="1.2em">)</mo><mo maxsize="1.8em" minsize="1.8em">)</mo><munderover><mo>⟶</mo><mrow></mrow><mrow></mrow></munderover><mi>V</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><mi class="mathscript">ℋ</mi><mo maxsize="1.2em" minsize="1.2em">)</mo><mo>⊕</mo><mo maxsize="1.8em" minsize="1.8em">(</mo><mi class="mathscript">ℋ</mi><mo>⊗</mo><mo maxsize="1.2em" minsize="1.2em">(</mo><mi class="mathscript">ℬ</mi><mo>⊖</mo><mi>ℂ</mi><mrow><mo>|</mo><msub><mi>s</mi> <mi>ini</mi></msub><mo>⟩</mo></mrow><mo maxsize="1.2em" minsize="1.2em">)</mo><mo maxsize="1.8em" minsize="1.8em">)</mo><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><mi class="mathscript">ℋ</mi><mo>⊗</mo><mi class="mathscript">ℬ</mi></mrow><annotation encoding="application/x-tex"> U \;\colon\; \mathscr{H} \otimes \mathscr{B} \,\simeq\, \mathscr{H} \oplus \Big( \mathscr{H} \otimes \big( \mathscr{B} \ominus \mathbb{C}\left\vert s_{ini} \right\rangle \big) \Big) \underoverset{}{}{\longrightarrow} V\big( \mathscr{H} \big) \oplus \Big( \mathscr{H} \otimes \big( \mathscr{B} \ominus \mathbb{C}\left\vert s_{ini} \right\rangle \big) \Big) \;\simeq\; \mathscr{H} \otimes \mathscr{B} </annotation></semantics></math></div> <p>and we claim that this has the desired action on couplings of the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi class="mathscript">ℋ</mi></mrow><annotation encoding="application/x-tex">\mathscr{H}</annotation></semantics></math>-system to the pure bath state <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mrow><mo>|</mo><msub><mi>s</mi> <mi>ini</mi></msub><mo>⟩</mo></mrow></mrow><annotation encoding="application/x-tex">\left\vert s_{ini} \right\rangle</annotation></semantics></math>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mtable displaystyle="false" rowspacing="0.5ex" columnalign="left"><mtr><mtd><msup><mi>trace</mi> <mi class="mathscript">ℬ</mi></msup><mo maxsize="1.8em" minsize="1.8em">(</mo><mi>U</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><mrow><mo>|</mo><msub><mi>s</mi> <mi>ini</mi></msub><mo>⟩</mo></mrow><mi>ρ</mi><mrow><mo>⟨</mo><msub><mi>s</mi> <mi>ini</mi></msub><mo>|</mo></mrow><mo maxsize="1.2em" minsize="1.2em">)</mo><msup><mi>U</mi> <mo>†</mo></msup><mo maxsize="1.8em" minsize="1.8em">)</mo></mtd></mtr> <mtr><mtd><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><munder><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo><mrow><mi>s</mi><mo>,</mo><mi>s</mi><mo>′</mo></mrow></munder><msup><mi>trace</mi> <mi class="mathscript">ℬ</mi></msup><mo maxsize="1.2em" minsize="1.2em">(</mo><mrow><mo>|</mo><mi>s</mi><mo>⟩</mo></mrow><msub><mi>E</mi> <mi>s</mi></msub><mo>⋅</mo><mi>ρ</mi><mo>⋅</mo><msubsup><mi>E</mi> <mrow><mi>s</mi><mo>′</mo></mrow> <mo>†</mo></msubsup><mrow><mo>⟨</mo><mi>s</mi><mo>′</mo><mo>|</mo></mrow><mo maxsize="1.2em" minsize="1.2em">)</mo></mtd></mtr> <mtr><mtd><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><munder><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo><mrow><mi>s</mi><mo>,</mo><mi>s</mi><mo>′</mo></mrow></munder><munder><munder><mrow><mo>⟨</mo><mi>s</mi><mo>′</mo><mo stretchy="false">|</mo><mi>s</mi><mo>⟩</mo></mrow><mo>⏟</mo></munder><mrow><msubsup><mi>δ</mi> <mi>s</mi> <mrow><mi>s</mi><mo>′</mo></mrow></msubsup></mrow></munder><msub><mi>E</mi> <mi>s</mi></msub><mo>⋅</mo><mi>ρ</mi><mo>⋅</mo><msubsup><mi>E</mi> <mrow><mi>s</mi><mo>′</mo></mrow> <mo>†</mo></msubsup></mtd></mtr> <mtr><mtd><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><munder><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo><mi>s</mi></munder><msub><mi>E</mi> <mi>s</mi></msub><mo>⋅</mo><mi>ρ</mi><mo>⋅</mo><msubsup><mi>E</mi> <mi>s</mi> <mo>†</mo></msubsup></mtd></mtr> <mtr><mtd><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><mi>chan</mi><mo stretchy="false">(</mo><mi>ρ</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mtd></mtr></mtable></mrow><annotation encoding="application/x-tex"> \begin{array}{l} trace^{\mathscr{B}} \Big( U \big( \left\vert s_{ini} \right\rangle \rho \left\langle s_{ini} \right\vert \big) U^\dagger \Big) \\ \;=\; \underset{s,s'}{\sum} trace^{\mathscr{B}} \big( \left\vert s \right\rangle E_s \cdot \rho \cdot E_{s'}^\dagger \left\langle s' \right\vert \big) \\ \;=\; \underset{s,s'}{\sum} \underset{ \delta_{s}^{s'} }{ \underbrace{ \left\langle s' \vert s \right\rangle } } E_s \cdot \rho \cdot E_{s'}^\dagger \\ \;=\; \underset{s}{\sum} E_s \cdot \rho \cdot E_{s}^\dagger \\ \;=\; chan(\rho) \,. \end{array} </annotation></semantics></math></div> <p>This concludes the construction of an environmental representation where the environment is in a pure state.</p> </div> </p> <p> <div class="num_remark"> <h6>Remark</h6> <p>The above theorem is often phrased as “… and the environment can be assumed to be in a pure state”. But in fact the proof crucially uses the assumption that the environment is in a pure state. It is not clear that there is a proof that works more generally.</p> <p>In fact, if the environment is taken to be in the maximally mixed state, then the resulting quantum channels are called <em>noisy operations</em> or <em><a class="existingWikiWord" href="/nlab/show/unistochastic+quantum+channel">unistochastic quantum channels</a></em> and are not expected to exhaust all quantum channels.</p> </div> </p> </div> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+entanglement">quantum entanglement</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/classical+limit">classical limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/density+matrix">density matrix</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+measurement">quantum measurement</a>, <a class="existingWikiWord" href="/nlab/show/interpretation+of+quantum+mechanics">interpretation of quantum mechanics</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/measurement">measurement</a>, <a class="existingWikiWord" href="/nlab/show/experiment">experiment</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/observable+universe">observable universe</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/consistent+histories">consistent histories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/einselection">einselection</a></p> </li> </ul> <h2 id="references">References</h2> <p>Precursor discussion:</p> <ul> <li id="vonNeumann32"> <p><a class="existingWikiWord" href="/nlab/show/John+von+Neumann">John von Neumann</a>, §VI.3 of:</p> <p><em>Mathematische Grundlagen der Quantenmechanik</em> (German) (1932, 1971) &lbrack;<a href="https://link.springer.com/book/10.1007/978-3-642-96048-2">doi:10.1007/978-3-642-96048-2</a>&rbrack;</p> <p><em>Mathematical Foundations of Quantum Mechanics</em> Princeton University Press (1955) &lbrack;<a href="https://doi.org/10.1515/9781400889921">doi:10.1515/9781400889921</a>, <a href="https://en.wikipedia.org/wiki/Mathematical_Foundations_of_Quantum_Mechanics">Wikipedia entry</a>&rbrack;</p> </li> </ul> <p>Original discusssion identifying quantum decoherence as interaction with an averaged environment (“bath”):</p> <ul> <li id="Zeh70"> <p><a class="existingWikiWord" href="/nlab/show/H.+Dieter+Zeh">H. Dieter Zeh</a>, <em>On the interpretation of measurement in quantum theory</em>, Found Phys <strong>1</strong> (1970) 69–76 &lbrack;<a href="https://doi.org/10.1007/BF00708656">doi:10.1007/BF00708656</a>&rbrack;</p> </li> <li id="Zurek81"> <p><a class="existingWikiWord" href="/nlab/show/Wojciech+Zurek">Wojciech Zurek</a>, <em>Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?</em>, Phys. Rev. D <strong>24</strong> (1981) 1516-1525 &lbrack;<a href="https://doi.org/10.1103/PhysRevD.24.1516">doi:10.1103/PhysRevD.24.1516</a>&rbrack;</p> </li> <li id="Zurek82"> <p><a class="existingWikiWord" href="/nlab/show/Wojciech+Zurek">Wojciech Zurek</a>, <em>Environment-induced superselection rules</em>, Phys. Rev. D <strong>26</strong> (1982) 1862-1880 &lbrack;<a href="https://doi.org/10.1103/PhysRevD.26.1862">doi:10.1103/PhysRevD.26.1862</a>&rbrack;</p> </li> <li id="JoosZeh85"> <p><a class="existingWikiWord" href="/nlab/show/Erich+Joos">Erich Joos</a>, <a class="existingWikiWord" href="/nlab/show/H.+Dieter+Zeh">H. Dieter Zeh</a>, <em>The emergence of classical properties through interaction with the environment</em>, Z. Physik B – Condensed Matter <strong>59</strong> (1985) 223–243 &lbrack;<a href="https://doi.org/10.1007/BF01725541">doi:10.1007/BF01725541</a>&rbrack;</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Erich+Joos">Erich Joos</a>, <em><a href="http://www.decoherence.de/">www.decoherence.de</a></em></p> </li> <li id="Zurek03"> <p><a class="existingWikiWord" href="/nlab/show/Wojciech+Zurek">Wojciech Zurek</a>, <em>Decoherence, einselection, and the quantum origins of the classical</em>, Rev. Mod. Phys. <strong>75</strong> (2003) 715-775 &lbrack;<a href="http://arxiv.org/abs/quant-ph/0105127">quant-ph/0105127</a>, <a href="http://dx.doi.org/10.1103/RevModPhys.75.715">doi:10.1103/RevModPhys.75.715</a>&rbrack;</p> </li> </ul> <p>With regards to the <a class="existingWikiWord" href="/nlab/show/measurement+problem">measurement problem</a> and <a class="existingWikiWord" href="/nlab/show/interpretations+of+quantum+mechanics">interpretations of quantum mechanics</a>:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Roland+Omn%C3%A8s">Roland Omnès</a>, §7 of: <em><a class="existingWikiWord" href="/nlab/show/The+Interpretation+of+Quantum+Mechanics">The Interpretation of Quantum Mechanics</a></em>, Princeton University Press (1994) &lbrack;<a href="http://press.princeton.edu/titles/5525.html">ISBN:9780691036694</a>&rbrack;</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Maximilian+Schlosshauer">Maximilian Schlosshauer</a>, <em>Decoherence, the measurement problem, and interpretations of quantum mechanics</em>, Rev. Mod. Phys. <strong>76</strong> (2004) 1267-1305 &lbrack;<a href="https://arxiv.org/abs/quant-ph/0312059">arXiv;quant-ph/0312059</a>, <a href="https://doi.org/10.1103/RevModPhys.76.1267">doi:10.1103/RevModPhys.76.1267</a>&rbrack;</p> </li> <li> <p>Guido Bacciagaluppi, <em>The Role of Decoherence in Quantum Mechanics</em>, Stanf. Enc. of Phil. (2020) &lbrack;<a href="https://plato.stanford.edu/entries/qm-decoherence/">web</a>&rbrack;</p> </li> </ul> <p>Textbook accounts:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Heinz-Peter+Breuer">Heinz-Peter Breuer</a>, <a class="existingWikiWord" href="/nlab/show/Francesco+Petruccione">Francesco Petruccione</a>, <em>Decoherence</em>, Chapter 4 in: <em>The Theory of Open Quantum Systems</em>, Oxford University Press (2007) &lbrack;book:<a href="https://doi.org/10.1093/acprof:oso/9780199213900.001.0001">doi:10.1093/acprof:oso/9780199213900.001.0001</a>, chapter:<a href="https://doi.org/10.1093/acprof:oso/9780199213900.003.04">.003.04</a>&rbrack;</p> </li> <li id="Schlosshauer07"> <p><a class="existingWikiWord" href="/nlab/show/Maximilian+Schlosshauer">Maximilian Schlosshauer</a>, <em>Decoherence and the Quantum-To-Classical Transition</em>, The Frontiers Collection, Springer (2007) &lbrack;<a href="https://doi.org/10.1007/978-3-540-35775-9">doi:10.1007/978-3-540-35775-9</a>&rbrack;</p> </li> </ul> <p>Further review:</p> <ul> <li> <p>Claus Kiefer, <a class="existingWikiWord" href="/nlab/show/Erich+Joos">Erich Joos</a>, <em>Decoherence: Concepts and Examples</em>, in: <em>Quantum Future From Volta and Como to the Present and Beyond</em>, Lecture Notes in Physics <em>517*</em> (1999) &lbrack;<a href="https://arxiv.org/abs/quant-ph/9803052">arXiv:quant-ph/9803052</a>, <a href="https://doi.org/10.1007/BFb0105342">doi:10.1007/BFb0105342</a>&rbrack;</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Maximilian+Schlosshauer">Maximilian Schlosshauer</a>, <em>Quantum Decoherence</em>, Phys. Rep. <strong>831</strong> (2019) 1-57 &lbrack;<a href="https://arxiv.org/abs/1911.06282">arXiv:1911.06282</a>, <a href="https://doi.org/10.1016/j.physrep.2019.10.001">doi:10.1016/j.physrep.2019.10.001</a>&rbrack;</p> </li> </ul> <p>See also:</p> <ul> <li> <p>Chris Nagele, Oliver Janssen, Matthew Kleban, <em>Decoherence: A Numerical Study</em> &lbrack;<a href="https://arxiv.org/abs/2010.04803">arXiv:2010.04803</a>&rbrack;</p> </li> <li> <p>Wikipedia, <em><a href="http://en.wikipedia.org/wiki/Quantum_decoherence">Quantum decoherence</a></em></p> </li> </ul> <p>A proposal for mathematical quantification of coherence:</p> <ul> <li>Fedor Herbut, <em>A quantum measure of coherence and incompatibility</em>, Journal of Physics A: Mathematical and General 38, 2959 (2005) (<a href="https://arxiv.org/abs/quant-ph/0503077">arXiv:quant-ph/0503077</a>, <a href="https://iopscience.iop.org/article/10.1088/0305-4470/38/13/010">arXiv:10.1088/0305-4470/38/13/010</a>)</li> </ul> <p>which was rediscovered and then became famous with:</p> <ul> <li id="BaumgratzCramerPlenio14">T. Baumgratz, M. Cramer, M. B. Plenio, <em>Quantifying Coherence</em>, Phys. Rev. Lett. <strong>113</strong> 140401 (2014) &lbrack;<a href="https://arxiv.org/abs/1311.0275">arXiv:1311.0275</a>, <a href="https://doi.org/10.1103/PhysRevLett.113.140401">doi:10.1103/PhysRevLett.113.140401</a>&rbrack;</li> </ul> <p>See also:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Radhakrishnan+Chandrashekar">R. Chandrashekar</a>, P. Manikandan, J. Segar, <a class="existingWikiWord" href="/nlab/show/Tim+Byrnes">Tim Byrnes</a>, <em>Distribution of quantum coherence in multipartite systems</em>, Phys. Rev. Lett. <strong>116</strong> 150504 (2016) &lbrack;<a href="https://arxiv.org/abs/1602.00286">arXiv:1602.00286</a>, <a href="https://doi.org/10.1103/PhysRevLett.116.150504">doi:10.1103/PhysRevLett.116.150504</a>&rbrack;</p> </li> <li> <p>Md. Manirul Ali, Po-Wen Chen, <a class="existingWikiWord" href="/nlab/show/Radhakrishnan+Chandrashekar">R. Chandrashekar</a>, <em>Detecting quantum phase localization using Arnold tongue</em>, Physica A: Statistical Mechanics and its Applications <strong>633</strong> (2024) 129436 &lbrack;<a href="https://doi.org/10.1016/j.physa.2023.129436">doi:10.1016/j.physa.2023.129436</a>&rbrack;</p> </li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on February 12, 2024 at 11:23:39. See the <a href="/nlab/history/quantum+decoherence" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/quantum+decoherence" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/11767/#Item_7">Discuss</a><span class="backintime"><a href="/nlab/revision/quantum+decoherence/15" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/quantum+decoherence" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/quantum+decoherence" accesskey="S" class="navlink" id="history" rel="nofollow">History (15 revisions)</a> <a href="/nlab/show/quantum+decoherence/cite" style="color: black">Cite</a> <a href="/nlab/print/quantum+decoherence" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/quantum+decoherence" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10