CINXE.COM

The Connell Sequence

<HTML> <HEAD> <TITLE>The Connell Sequence</TITLE> </HEAD> <BODY BACKGROUND="../www_tile.gif"> <p> <center> <TABLE border="0" width="75%"> <tr><td> <IMG SRC="../neil.RED15.gif"></td> <td><font SIZE="+2"> <a href="../index.html">Journal of Integer Sequences,</a> Vol. 2 (1999), Article 99.1.7</font></td> </tr> </TABLE> </center> <p> <CENTER> <H2>On Generalizing the Connell Sequence</H2></CENTER> <CENTER> <H3> Douglas E. Iannucci<br> and<br> Donna Mills-Taylor<br> The University of the Virgin Islands<br> 2 John Brewers Bay<br> St. Thomas, VI 00802<BR> Email addresses: <A HREF="mailto:diannuc@uvi.edu">diannuc@uvi.edu</A> and <A HREF="mailto:mil1633@sttmail.uvi.edu">mil1633@sttmail.uvi.edu</A></H3></center> <p> <BLOCKQUOTE> <P ALIGN="JUSTIFY"> <STRONG>Abstract:</STRONG> We introduce a generalization of the Connell Sequence which relies on two parameters<STRONG>:&nbsp;</STRONG> the modulus <EM>m </EM>and the successive row length difference <EM>r</EM>. We show its relationship with polygonal numbers, examine its limiting behavior, and find an expression for the general term. </P> </BLOCKQUOTE> <H2>1. Introduction</H2> In 1959 Ian Connell <a href="#R1">[1]</a> introduced to the public a curious sequence which now bears his name <CENTER> <P>1, 2, 4, 5, 7, 9, 10, 12, 14, 16,&nbsp; 17,&nbsp;<STRONG>&nbsp; ...</STRONG></CENTER> <P>(<A HREF="http://oeis.org/A001614">A001614</A> in the <EM><A HREF="http://oeis.org">On-Line Encyclopedia of Integer Sequences</A></EM>), in which the first odd number is followed by the next two even numbers, which in turn are followed by the next three odd numbers, and so on. <BR>&nbsp;&nbsp; Lakhtakia and Pickover <a href="#R3">[3]</a> arranged this sequence as a concatenation of finite subsequences, <BR>&nbsp; <CENTER><TABLE BORDER WIDTH="70%" > <TR> <TD>&nbsp; Subsequence Number :</TD> <TD>&nbsp;&nbsp; Subsequence :</TD> </TR> <TR> <TD>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1</TD> <TD>&nbsp;&nbsp; 1</TD> </TR> <TR> <TD>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2</TD> <TD>&nbsp;&nbsp; 2, 4</TD> </TR> <TR> <TD>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3</TD> <TD>&nbsp;&nbsp; 5, 7, 9</TD> </TR> <TR> <TD>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4</TD> <TD>&nbsp;&nbsp; 10, 12, 14, 16</TD> </TR> <TR> <TD>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<STRONG>&nbsp;&nbsp; ...</STRONG></TD> <TD>&nbsp;&nbsp;&nbsp;<STRONG> ...</STRONG></TD> </TR> </TABLE></CENTER> <P>where the <EM>n</EM>th subsequence contains <EM>n</EM> elements, the last of which is <EM>n<SUP>2</SUP></EM>.&nbsp; So if we let <EM>c(n) </EM>denote the <EM>n</EM>th element of the Connell sequence then <BR>&nbsp; <CENTER><TABLE BORDER=0 WIDTH="33%" BGCOLOR="#CCFFFF" > <TR ALIGN=CENTER> <TD><EM>c</EM>( <EM>T<SUB>n</SUB></EM> )<EM> =&nbsp; n<SUP>2</SUP></EM> ,</TD><td> (1) </td> </TR> </TABLE></CENTER> <P>where <EM>T<SUB>n</SUB></EM> = &nbsp;&nbsp; <EM>n</EM> (<EM>n</EM> + 1)/ 2 denotes the <EM>n</EM>th triangular number. Lakhtakia and Pickover <a href="#R3">[3]</a> used (1) to show that <BR>&nbsp; <CENTER><TABLE BORDER=0 WIDTH="40%" BGCOLOR="#CCFFFF" > <TR ALIGN=CENTER> <TD>lim <EM><SUB>n&nbsp; </SUB>c(n) / n&nbsp; = </EM>2<EM> ,</EM></TD><td> (2) </td> </TR> </TABLE></CENTER> <P>thus explaining the limiting behavior of the Connell sequence. The same authors remarked that (2) could have been obtained directly from the formula for <EM>c(n)</EM> given by Connell <a href="#R1">[1]</a> <BR>&nbsp; <CENTER><TABLE BORDER=0 WIDTH="60%" BGCOLOR="#CCFFFF" > <TR ALIGN=CENTER> <TD><EM>c(n) = </EM>2<EM>n - </EM>Floor( ( 1<EM> + </EM>Sqrt(<EM> </EM>8<EM>n - </EM>7<EM> </EM>) )&nbsp;<EM> /&nbsp; </EM>2 ) .</TD><td> (3) </td> </TR> </TABLE></CENTER> <P>&nbsp;&nbsp;&nbsp; <A HREF="../stevens.html">Stevens</A> <a href="#R4">[4]</a> defined a generalized Connell <EM>k-</EM>sequence <EM>C<SUB>k&nbsp;&nbsp; </SUB></EM>for integers <EM>k</EM> &gt;=&nbsp; 2 (whereby the classical&nbsp;<EM><SUB> </SUB></EM>Connell sequence&nbsp; becomes the special case <EM>C</EM><SUB>2 </SUB>).&nbsp;&nbsp; In this paper we further&nbsp; generalize the Connell sequence by affixing another parameter onto Stevens's sequence <EM>C<SUB>k</SUB></EM>.&nbsp; <H2>2.Generalized Connell Sequence with Parameters</H2> For fixed integers <EM>m &gt;= </EM>2&nbsp; and&nbsp; <EM>r </EM> &gt;= 1&nbsp; we construct a sequence as follows<STRONG>:</STRONG> take the first integer which is congruent to 1 (mod&nbsp;<EM> m</EM>) (that being 1 itself), followed by the next&nbsp;&nbsp; 1 + <EM>r</EM>&nbsp; integers which are congruent to 2&nbsp; (mod&nbsp;<EM> m</EM>),<EM> </EM>followed by the next&nbsp; 1 + 2<EM>r</EM>&nbsp; integers which are congruent to 3 (mod&nbsp;<EM> m</EM>),<EM>&nbsp; </EM>and so on. If <EM>m </EM> = 2&nbsp; and&nbsp; <EM>r </EM> = 1&nbsp; (the smallest possible cases) we have the Connell sequence. Here is the formal definition. <BR>&nbsp; <CENTER><TABLE BORDER WIDTH="100%" BGCOLOR="#FFFF99" > <TR> <TD><STRONG>Definition 1: </STRONG>Let&nbsp;&nbsp; <EM>m </EM> &gt;= 2&nbsp; and <EM>r &gt;= </EM>1&nbsp; be integers. We denote by&nbsp; <EM>C<SUB>m,r</SUB>(n) </EM>the <EM>n</EM>th term of&nbsp; the generalized Connell sequence with parameters&nbsp; <EM>m </EM>and <EM>r <STRONG>,&nbsp; </STRONG></EM>or,&nbsp; simply,&nbsp; the <STRONG>Connell&nbsp;&nbsp; (</STRONG> <STRONG><EM>m , r )-sequence </EM>.</STRONG>&nbsp; The sequence is defined as follows: <P>1. The sequence is formed by concatenating subsequences&nbsp; <EM>S</EM><SUB>1</SUB>, <EM>S</EM><SUB>2</SUB>, ...&nbsp; , each of finite length. <P>2. The subsequence&nbsp; <EM>S</EM><SUB>1&nbsp; </SUB>consists of the element&nbsp; 1. <P>3.&nbsp; If the <EM>n</EM>th&nbsp; subsequence&nbsp; <EM>S<SUB>n</SUB></EM> ends with the element&nbsp; <EM>e</EM> , then the&nbsp; (<EM>n</EM>+1)th subsequence <EM>S<SUB>n+1</SUB></EM> begins with the element&nbsp; <EM>e+</EM>1 . <P>4.&nbsp; If&nbsp; <EM>S<SUB>n&nbsp; </SUB></EM>consists of&nbsp; <EM>t</EM>&nbsp; elements, then&nbsp; <EM>S<SUB>n+1&nbsp; </SUB></EM>consists of&nbsp; <EM>t + r&nbsp; </EM>elements. <P>5.&nbsp; Each subsequence is nondecreasing, and the difference between two consecutive elements in the same subsequence is&nbsp;<EM> m </EM>. <BR>&nbsp;</TD> </TR> </TABLE></CENTER> <P>The sequence&nbsp; <EM>C<SUB>k</SUB></EM>&nbsp; of Stevens <a href="#R4">[4]</a> is the sequence <EM>C</EM> <SUB><EM>k,</EM>1<EM>&nbsp;</EM></SUB>.&nbsp; When&nbsp; (<EM>m , r</EM>) =&nbsp; ( 3 , 2 ) we obtain <A HREF="http://oeis.org/A045928"><EM>C</EM><sub>3, 2</sub></A> <STRONG>:</STRONG> <BR>&nbsp; <CENTER><TABLE BORDER WIDTH="60%" > <TR> <TD>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <EM>n</EM></TD> <TD>&nbsp;&nbsp;&nbsp;&nbsp; <EM>S<SUB>n</SUB></EM></TD> </TR> <TR> <TD>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1</TD> <TD>&nbsp;&nbsp;&nbsp;&nbsp; 1</TD> </TR> <TR> <TD>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2</TD> <TD>&nbsp;&nbsp;&nbsp;&nbsp; 2, 5, 8</TD> </TR> <TR> <TD>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3</TD> <TD>&nbsp;&nbsp;&nbsp;&nbsp; 9, 12, 15, 18, 21</TD> </TR> <TR> <TD>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4</TD> <TD>&nbsp;&nbsp;&nbsp;&nbsp; 22, 25, 28, 31, 34, 37, 40</TD> </TR> <TR> <TD>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <STRONG>...</STRONG></TD> <TD>&nbsp;&nbsp;&nbsp;&nbsp; <STRONG>...</STRONG></TD> </TR> </TABLE></CENTER> <P>The final elements 1, 8, 21, 40, <STRONG>...</STRONG>&nbsp; in the subsequences appear to be the octagonal numbers, <EM>E<SUB>n</SUB></EM> =&nbsp;&nbsp;<EM> n </EM>(3<EM>n</EM>-2 ). The <EM>n</EM>th subsequence&nbsp; <EM>S<SUB>n</SUB></EM>&nbsp; contains exactly&nbsp; 2<EM>n</EM> - 1 elements, and from the identity 1 + 3 + <STRONG>...</STRONG> + (2<EM>n</EM>-1)&nbsp; =&nbsp; <EM>n</EM><SUP>2&nbsp;</SUP> we obtain <CENTER> <P><EM>C</EM><SUB>3,2</SUB>( <EM>n</EM><SUP>2 </SUP>) =&nbsp;&nbsp; <EM>E<SUB>n </SUB></EM>.</CENTER> <P>Just as the Connell sequence relates triangular numbers to squares (see (1)), the sequence&nbsp; <EM>C</EM><SUB>3,2&nbsp;&nbsp; </SUB>relates squares to octagonal numbers.&nbsp; Triangular numbers, squares, and octagonal numbers are all examples of <EM>polygonal numbers.</EM> <H2>3. Relationships with Polygonal Numbers</H2> <CENTER><TABLE BORDER WIDTH="100%" BGCOLOR="#FFFF99" > <TR> <TD><STRONG>Definition 2:&nbsp; </STRONG>For integers&nbsp; <EM>k </EM> &gt;= 3, the <EM>n</EM>th&nbsp; <EM>k</EM>-gonal number is <CENTER><EM>P<SUB>k</SUB></EM>(<EM>n</EM>) =&nbsp; <EM>n </EM>( ( <EM>k</EM> -2 ) <EM>n</EM> - <EM>k</EM> + 4 ) / 2&nbsp; .</CENTER> &nbsp;</TD> </TR> </TABLE></CENTER> <P>We shall demonstrate the relationship between&nbsp; generalized Connell sequences&nbsp; and polygonal numbers.&nbsp; Consider the sequence <EM>C<SUB>m,r </SUB></EM>. By induction (see conditions 2 and 4 in Definition 1), <EM>S<SUB>n</SUB></EM>&nbsp; contains exactly&nbsp; ( <EM>n</EM> - 1 ) <EM>r</EM> + 1&nbsp; elements. Therefore to reach the end of <EM>n</EM>th subsequence&nbsp; <EM>S<SUB>n</SUB></EM> ,&nbsp; we must count exactly <CENTER> <P>| <EM>S</EM><SUB>1</SUB>| +&nbsp; | <EM>S</EM><SUB>2</SUB>| +&nbsp; <STRONG>...</STRONG>&nbsp; +&nbsp; | <EM>S<SUB>n</SUB></EM> |&nbsp; =&nbsp;&nbsp; <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>n </EM>)</CENTER> <P>elements of the sequence&nbsp; <EM>C<SUB>m,r </SUB></EM>. Hence&nbsp; the last element of&nbsp;&nbsp; <EM>S<SUB>n</SUB></EM>&nbsp;&nbsp; is <EM>C<SUB>m,r </SUB></EM>( <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>n</EM> ) ) .&nbsp; Thus <EM>S<SUB>n</SUB></EM><SUB>+1</SUB>&nbsp; begins (see condition 3 of Definition 1) with the element&nbsp; <EM>C<SUB>m,r </SUB></EM>( <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>n</EM> ) ) + 1 , and, since&nbsp; | <EM>S<SUB>n</SUB></EM><SUB>+1</SUB> | = <EM>nr</EM> + 1, it ends (see condition 5 of Definition 1) with <BR>the element&nbsp; <EM>C<SUB>m,r </SUB></EM>( <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>n</EM> ) ) + 1 + <EM>m</EM> ( <EM>nr </EM>+ 1 ) . But this last element is also expressible as&nbsp; <EM>C<SUB>m,r </SUB></EM>( <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>n</EM>&nbsp; + 1 ) ) . Therefore, assuming the induction hypothesis <EM>C<SUB>m,r </SUB></EM>( <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>n</EM> ) ) = <EM>P<SUB>mr</SUB></EM><SUB>+2</SUB>( <EM>n</EM> ) ,&nbsp; we obtain <CENTER> <P><EM>C<SUB>m,r </SUB></EM>( <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>n</EM>&nbsp; + 1 ) ) =&nbsp; <EM>P<SUB>mr</SUB></EM><SUB>+2</SUB>( <EM>n</EM> ) + 1 + <EM>m</EM> ( <EM>nr </EM>+ 1 ) =&nbsp; <EM>P<SUB>mr</SUB></EM><SUB>+2</SUB>( <EM>n</EM> + 1 ) ,</CENTER> <P>and hence by induction we have for all&nbsp; positive integers <EM>n</EM>, <BR>&nbsp; <CENTER><TABLE BORDER=0 COLS=1 WIDTH="50%" BGCOLOR="#CCFFFF" > <TR> <TD> <CENTER><EM>C<SUB>m,r </SUB></EM>( <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>n</EM> ) ) =&nbsp; <EM>P<SUB>mr</SUB></EM><SUB>+2</SUB>( <EM>n</EM> ) .</CENTER> </TD> <td> (4) </td> </TR> </TABLE></CENTER> <P>(1) is the special case of (4) when&nbsp; ( <EM>m , r </EM>) = ( 2 , 1 ).&nbsp; As we remarked in Section 2, <EM>C</EM><SUB>3,2</SUB>( <EM>P</EM><SUB>4</SUB>( <EM>n</EM> ) ) = <EM>P</EM><SUB>8</SUB>( <EM>n</EM>) . Another example is given by <EM>C</EM><SUB>3,1</SUB><EM>&nbsp; </EM>(<A HREF="http://oeis.org/A033292">A033292</A>) <STRONG>:</STRONG> <BR>&nbsp; <CENTER><TABLE BORDER COLS=2 WIDTH="50%" > <TR> <TD>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <EM>n</EM></TD> <TD>&nbsp;&nbsp; <EM>S<SUB>n</SUB></EM></TD> </TR> <TR> <TD>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1</TD> <TD>&nbsp;&nbsp;&nbsp; 1</TD> </TR> <TR> <TD>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2</TD> <TD>&nbsp;&nbsp;&nbsp; 2, 5</TD> </TR> <TR> <TD>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3</TD> <TD>&nbsp;&nbsp;&nbsp; 6, 9, 12</TD> </TR> <TR> <TD>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4</TD> <TD>&nbsp;&nbsp;&nbsp; 13, 16, 19, 22</TD> </TR> <TR> <TD>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <STRONG>...</STRONG></TD> <TD>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <STRONG>...</STRONG></TD> </TR> </TABLE></CENTER> <P>Here the pentagonal numbers <EM>P</EM><SUB>5</SUB>( <EM>n</EM> ) = <EM>n</EM> ( 3<EM>n</EM> - 1 ) / 2 at the end of each subsequence. <P> It is interesting to note that, since all elements of&nbsp; <EM>S<SUB>n</SUB></EM>&nbsp; are congruent to&nbsp; <EM>n </EM>( mod <EM>m </EM>), we obtain the following property of polygonal numbers<STRONG>: </STRONG><EM>P<SUB>mr</SUB></EM><SUB>+2</SUB>( <EM>n</EM>) is congruent to&nbsp;<EM> n </EM>( mod <EM>m</EM> ). <H2>4. Limiting Behavior</H2> We will determine the behavior of&nbsp;&nbsp; <EM>C<SUB>m,r </SUB></EM>( <EM>n</EM> ) / <EM>n </EM>as <EM>n </EM>goes&nbsp; to infinity, following Lakhtakia and Pickover <a href="#R3">[3]</a>, by computing&nbsp; lim<EM><SUB>n</SUB></EM> <EM>C<SUB>m,r </SUB></EM>( <EM>n </EM>) / <EM>n </EM>from (4). Let&nbsp; <EM>n&nbsp; </EM>be a positive integer. There is a positive&nbsp; <EM>j , </EM>and a fixed <EM>i </EM>such that&nbsp; 1 &lt;=&nbsp;&nbsp; <EM>i&nbsp; &lt;= </EM>1 + <EM>rj</EM> , for&nbsp; which&nbsp; <EM>n</EM> = <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>j</EM> ) + <EM>i .&nbsp; </EM>Thus&nbsp; <EM>C<SUB>m,r </SUB></EM>( <EM>n </EM>)&nbsp; belongs to the subsequence&nbsp; <EM>S<SUB>j</SUB></EM><SUB>+1</SUB> . As <EM>C<SUB>m,r</SUB></EM>( <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>j</EM> ) ) is the last element of <EM>S<SUB>j</SUB></EM> , we have from Definition 1 and (4) <P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <EM>C<SUB>m,r </SUB></EM>( <EM>n </EM>) =&nbsp; <EM>C<SUB>m,r </SUB></EM>( <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>j</EM> ) + <EM>i </EM>) <BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; =&nbsp; <EM>C<SUB>m,r</SUB></EM>( <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>j</EM> ) ) + 1 + ( <EM>i</EM> - 1 ) <EM>m</EM> <BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; =&nbsp;&nbsp; <EM>P<SUB>mr</SUB></EM><SUB>+2</SUB>( <EM>j</EM> ) + 1 + ( <EM>i</EM> - 1 ) <EM>m.</EM> <P>Thus, since&nbsp;&nbsp; 1 &lt;=&nbsp;&nbsp; <EM>i&nbsp; &lt;=&nbsp; </EM>1 + <EM>rj</EM>&nbsp;&nbsp; and&nbsp;&nbsp; <EM>n</EM> = <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>j</EM> ) + <EM>i ,&nbsp;</EM> we have&nbsp; <EM>A &lt;=&nbsp; C<SUB>m,r </SUB></EM>( <EM>n</EM> ) / <EM>n&nbsp; &lt;=&nbsp; B&nbsp; ,&nbsp;</EM> where <BR><EM>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; A = </EM>(&nbsp; <EM>P<SUB>mr</SUB></EM><SUB>+2</SUB>( <EM>j</EM> ) + 1 ) / ( <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>j</EM> )&nbsp; + 1 + <EM>rj</EM> ) , <BR>&nbsp; <BR><EM>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; B =&nbsp; </EM>( <EM>P<SUB>mr</SUB></EM><SUB>+2</SUB>( <EM>j</EM> ) + 1&nbsp; + <EM>jmr </EM>) / ( <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>j</EM> )&nbsp; + 1 ) . <P>Recalling Definition 2, it is a simple matter to verify that&nbsp; <EM>A</EM>&nbsp; and&nbsp; <EM>B</EM>&nbsp; both converge to the limit&nbsp; <EM>m</EM>&nbsp; as&nbsp; <EM>j</EM>&nbsp; tends toward infinity. Therefore <BR>&nbsp; <CENTER><TABLE BORDER=0 WIDTH="60%" BGCOLOR="#CCFFFF" > <TR> <TD> <CENTER>lim<EM><SUB>n</SUB></EM>&nbsp; <EM>C<SUB>m,r </SUB></EM>( <EM>n</EM> ) / <EM>n&nbsp; =&nbsp; m .</EM></CENTER> </TD> <td> (5) </td> </TR> </TABLE></CENTER> <H2>5. A Direct Formula</H2> To find a formula for&nbsp; <EM>C<SUB>m,r </SUB></EM>( <EM>n</EM>)&nbsp; we modify Korsak's <a href="#R2">[2]</a> proof of (3). Define the sequence <EM>T </EM>by <CENTER> <P><EM>T</EM>( <EM>n </EM>)&nbsp; =&nbsp; <EM>mn&nbsp; -&nbsp; C<SUB>m,r </SUB></EM>( <EM>n</EM> ) .</CENTER> <P>We assume&nbsp; <EM>n</EM> &gt; 1&nbsp; and write&nbsp;&nbsp; <EM>n</EM> = <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>j</EM> ) + <EM>i&nbsp; </EM>exactly<EM> </EM>as in Section 4.&nbsp; Then after some algebra we find that <EM>T</EM>( <EM>n</EM> )&nbsp; =&nbsp; ( <EM>j</EM> +1 )( <EM>m</EM> - 1 ), so <EM>j</EM> + 1 =&nbsp; <EM>T</EM>( <EM>n </EM>) / ( <EM>m - 1 </EM>). Since<EM>&nbsp;</EM> <EM>n &gt;=&nbsp; P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>j</EM>) + 1 , <CENTER><EM>rj</EM><SUP>2</SUP> - ( <EM>r</EM> - 2) <EM>j</EM> - ( 2<EM>n</EM> - 2 ) &lt;= 0,</CENTER> a quadratic inequality in&nbsp; <EM>j</EM>&nbsp; which implies <CENTER> <P><EM>j</EM> + 1 &lt;= ( 3<EM>r</EM> - 2 + Sqrt( 8<EM>r</EM> ( <EM>n</EM> -1 ) + ( <EM>r</EM> - 2 )<SUP>2</SUP> ) ) / 2<EM>k</EM> ,</CENTER> and hence <CENTER><EM>j</EM> + 1 =&nbsp; Floor( ( 3<EM>r</EM> - 2 + Sqrt( 8<EM>r</EM> ( <EM>n</EM> -1 ) + ( <EM>r</EM> - 2 )<SUP>2</SUP> ) ) / 2<EM>k </EM>) .</CENTER> <P>Thus <BR><EM>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; T</EM>( <EM>n </EM>)&nbsp; =&nbsp; ( <EM>m </EM>- 1 ) Floor( ( 3<EM>r</EM> - 2 + Sqrt( 8<EM>r</EM> ( <EM>n</EM> -1 ) + ( <EM>r</EM> - 2 )<SUP>2</SUP> ) ) / 2<EM>k </EM>) , <P>and so <BR>&nbsp; <CENTER><TABLE BORDER=0 BGCOLOR="#CCFFFF" > <TR> <TD> <CENTER>&nbsp;<EM>C<SUB>m,r </SUB></EM>( <EM>n</EM> ) = <EM>nm -</EM> ( <EM>m </EM>- 1 ) Floor( ( 3<EM>r</EM> - 2 + Sqrt( 8<EM>r</EM> ( <EM>n</EM> -1 ) + ( <EM>r</EM> - 2 )<SUP>2</SUP> ) ) / 2<EM>k </EM>) .</CENTER> </TD> <td> (6) </td> </TR> </TABLE></CENTER> <H2>References</H2> <P><a name="#R1"><STRONG>[1]</STRONG></a>&nbsp;&nbsp; <EM>Amer. Math. Monthly</EM>, <b>66</b>, no. 8 (October, 1959), 724.&nbsp; Elementary Problem E1382. <P><a name="#R2"><STRONG>[2]</STRONG></a>&nbsp;&nbsp; <EM>Amer. Math. Monthly</EM>, <b>67</b>, no. 4 (April, 1960), 380. Solution to Elementary Problem E1382. <P><a name="#R3"><STRONG>[3]</STRONG></a>&nbsp;&nbsp; Lakhtakia, A. &amp;&nbsp; Pickover, C.&nbsp; The Connell sequence,&nbsp; <EM>J. Recreational Math.</EM>, v. 25, no. 2 (1993), 90-92. <P><a name="#R4"><STRONG>[4]</STRONG></a>&nbsp;&nbsp;&nbsp; Stevens,<STRONG>&nbsp; </STRONG>G.&nbsp; A Connell-like sequence,&nbsp; <EM>J. of Integer Sequences, </EM>v.1,&nbsp; Article 98.1.4. <BR>&nbsp; <p> <hr> <p> <small>(Concerned with sequences <A HREF="http://oeis.org/A001614">A001614</A> , <A HREF="http://oeis.org/A033292">A033292</A> , <A HREF="http://oeis.org/A045928">A045928</A> , <A HREF="http://oeis.org/A045929">A045929</A> , <A HREF="http://oeis.org/A045930">A045930</A> .)</small> <p> <hr> <p> Received February 9 1999; published in <i>Journal of Integer Sequences</i>, March 16 1999. <p> <hr> Return to <a href="../index.html"><STRONG>Journal of Integer Sequences home page</STRONG></a> <hr> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10