CINXE.COM
The Connell Sequence
<HTML> <HEAD> <TITLE>The Connell Sequence</TITLE> </HEAD> <BODY BACKGROUND="../www_tile.gif"> <p> <center> <TABLE border="0" width="75%"> <tr><td> <IMG SRC="../neil.RED15.gif"></td> <td><font SIZE="+2"> <a href="../index.html">Journal of Integer Sequences,</a> Vol. 2 (1999), Article 99.1.7</font></td> </tr> </TABLE> </center> <p> <CENTER> <H2>On Generalizing the Connell Sequence</H2></CENTER> <CENTER> <H3> Douglas E. Iannucci<br> and<br> Donna Mills-Taylor<br> The University of the Virgin Islands<br> 2 John Brewers Bay<br> St. Thomas, VI 00802<BR> Email addresses: <A HREF="mailto:diannuc@uvi.edu">diannuc@uvi.edu</A> and <A HREF="mailto:mil1633@sttmail.uvi.edu">mil1633@sttmail.uvi.edu</A></H3></center> <p> <BLOCKQUOTE> <P ALIGN="JUSTIFY"> <STRONG>Abstract:</STRONG> We introduce a generalization of the Connell Sequence which relies on two parameters<STRONG>: </STRONG> the modulus <EM>m </EM>and the successive row length difference <EM>r</EM>. We show its relationship with polygonal numbers, examine its limiting behavior, and find an expression for the general term. </P> </BLOCKQUOTE> <H2>1. Introduction</H2> In 1959 Ian Connell <a href="#R1">[1]</a> introduced to the public a curious sequence which now bears his name <CENTER> <P>1, 2, 4, 5, 7, 9, 10, 12, 14, 16, 17, <STRONG> ...</STRONG></CENTER> <P>(<A HREF="http://oeis.org/A001614">A001614</A> in the <EM><A HREF="http://oeis.org">On-Line Encyclopedia of Integer Sequences</A></EM>), in which the first odd number is followed by the next two even numbers, which in turn are followed by the next three odd numbers, and so on. <BR> Lakhtakia and Pickover <a href="#R3">[3]</a> arranged this sequence as a concatenation of finite subsequences, <BR> <CENTER><TABLE BORDER WIDTH="70%" > <TR> <TD> Subsequence Number :</TD> <TD> Subsequence :</TD> </TR> <TR> <TD> 1</TD> <TD> 1</TD> </TR> <TR> <TD> 2</TD> <TD> 2, 4</TD> </TR> <TR> <TD> 3</TD> <TD> 5, 7, 9</TD> </TR> <TR> <TD> 4</TD> <TD> 10, 12, 14, 16</TD> </TR> <TR> <TD> <STRONG> ...</STRONG></TD> <TD> <STRONG> ...</STRONG></TD> </TR> </TABLE></CENTER> <P>where the <EM>n</EM>th subsequence contains <EM>n</EM> elements, the last of which is <EM>n<SUP>2</SUP></EM>. So if we let <EM>c(n) </EM>denote the <EM>n</EM>th element of the Connell sequence then <BR> <CENTER><TABLE BORDER=0 WIDTH="33%" BGCOLOR="#CCFFFF" > <TR ALIGN=CENTER> <TD><EM>c</EM>( <EM>T<SUB>n</SUB></EM> )<EM> = n<SUP>2</SUP></EM> ,</TD><td> (1) </td> </TR> </TABLE></CENTER> <P>where <EM>T<SUB>n</SUB></EM> = <EM>n</EM> (<EM>n</EM> + 1)/ 2 denotes the <EM>n</EM>th triangular number. Lakhtakia and Pickover <a href="#R3">[3]</a> used (1) to show that <BR> <CENTER><TABLE BORDER=0 WIDTH="40%" BGCOLOR="#CCFFFF" > <TR ALIGN=CENTER> <TD>lim <EM><SUB>n </SUB>c(n) / n = </EM>2<EM> ,</EM></TD><td> (2) </td> </TR> </TABLE></CENTER> <P>thus explaining the limiting behavior of the Connell sequence. The same authors remarked that (2) could have been obtained directly from the formula for <EM>c(n)</EM> given by Connell <a href="#R1">[1]</a> <BR> <CENTER><TABLE BORDER=0 WIDTH="60%" BGCOLOR="#CCFFFF" > <TR ALIGN=CENTER> <TD><EM>c(n) = </EM>2<EM>n - </EM>Floor( ( 1<EM> + </EM>Sqrt(<EM> </EM>8<EM>n - </EM>7<EM> </EM>) ) <EM> / </EM>2 ) .</TD><td> (3) </td> </TR> </TABLE></CENTER> <P> <A HREF="../stevens.html">Stevens</A> <a href="#R4">[4]</a> defined a generalized Connell <EM>k-</EM>sequence <EM>C<SUB>k </SUB></EM>for integers <EM>k</EM> >= 2 (whereby the classical <EM><SUB> </SUB></EM>Connell sequence becomes the special case <EM>C</EM><SUB>2 </SUB>). In this paper we further generalize the Connell sequence by affixing another parameter onto Stevens's sequence <EM>C<SUB>k</SUB></EM>. <H2>2.Generalized Connell Sequence with Parameters</H2> For fixed integers <EM>m >= </EM>2 and <EM>r </EM> >= 1 we construct a sequence as follows<STRONG>:</STRONG> take the first integer which is congruent to 1 (mod <EM> m</EM>) (that being 1 itself), followed by the next 1 + <EM>r</EM> integers which are congruent to 2 (mod <EM> m</EM>),<EM> </EM>followed by the next 1 + 2<EM>r</EM> integers which are congruent to 3 (mod <EM> m</EM>),<EM> </EM>and so on. If <EM>m </EM> = 2 and <EM>r </EM> = 1 (the smallest possible cases) we have the Connell sequence. Here is the formal definition. <BR> <CENTER><TABLE BORDER WIDTH="100%" BGCOLOR="#FFFF99" > <TR> <TD><STRONG>Definition 1: </STRONG>Let <EM>m </EM> >= 2 and <EM>r >= </EM>1 be integers. We denote by <EM>C<SUB>m,r</SUB>(n) </EM>the <EM>n</EM>th term of the generalized Connell sequence with parameters <EM>m </EM>and <EM>r <STRONG>, </STRONG></EM>or, simply, the <STRONG>Connell (</STRONG> <STRONG><EM>m , r )-sequence </EM>.</STRONG> The sequence is defined as follows: <P>1. The sequence is formed by concatenating subsequences <EM>S</EM><SUB>1</SUB>, <EM>S</EM><SUB>2</SUB>, ... , each of finite length. <P>2. The subsequence <EM>S</EM><SUB>1 </SUB>consists of the element 1. <P>3. If the <EM>n</EM>th subsequence <EM>S<SUB>n</SUB></EM> ends with the element <EM>e</EM> , then the (<EM>n</EM>+1)th subsequence <EM>S<SUB>n+1</SUB></EM> begins with the element <EM>e+</EM>1 . <P>4. If <EM>S<SUB>n </SUB></EM>consists of <EM>t</EM> elements, then <EM>S<SUB>n+1 </SUB></EM>consists of <EM>t + r </EM>elements. <P>5. Each subsequence is nondecreasing, and the difference between two consecutive elements in the same subsequence is <EM> m </EM>. <BR> </TD> </TR> </TABLE></CENTER> <P>The sequence <EM>C<SUB>k</SUB></EM> of Stevens <a href="#R4">[4]</a> is the sequence <EM>C</EM> <SUB><EM>k,</EM>1<EM> </EM></SUB>. When (<EM>m , r</EM>) = ( 3 , 2 ) we obtain <A HREF="http://oeis.org/A045928"><EM>C</EM><sub>3, 2</sub></A> <STRONG>:</STRONG> <BR> <CENTER><TABLE BORDER WIDTH="60%" > <TR> <TD> <EM>n</EM></TD> <TD> <EM>S<SUB>n</SUB></EM></TD> </TR> <TR> <TD> 1</TD> <TD> 1</TD> </TR> <TR> <TD> 2</TD> <TD> 2, 5, 8</TD> </TR> <TR> <TD> 3</TD> <TD> 9, 12, 15, 18, 21</TD> </TR> <TR> <TD> 4</TD> <TD> 22, 25, 28, 31, 34, 37, 40</TD> </TR> <TR> <TD> <STRONG>...</STRONG></TD> <TD> <STRONG>...</STRONG></TD> </TR> </TABLE></CENTER> <P>The final elements 1, 8, 21, 40, <STRONG>...</STRONG> in the subsequences appear to be the octagonal numbers, <EM>E<SUB>n</SUB></EM> = <EM> n </EM>(3<EM>n</EM>-2 ). The <EM>n</EM>th subsequence <EM>S<SUB>n</SUB></EM> contains exactly 2<EM>n</EM> - 1 elements, and from the identity 1 + 3 + <STRONG>...</STRONG> + (2<EM>n</EM>-1) = <EM>n</EM><SUP>2 </SUP> we obtain <CENTER> <P><EM>C</EM><SUB>3,2</SUB>( <EM>n</EM><SUP>2 </SUP>) = <EM>E<SUB>n </SUB></EM>.</CENTER> <P>Just as the Connell sequence relates triangular numbers to squares (see (1)), the sequence <EM>C</EM><SUB>3,2 </SUB>relates squares to octagonal numbers. Triangular numbers, squares, and octagonal numbers are all examples of <EM>polygonal numbers.</EM> <H2>3. Relationships with Polygonal Numbers</H2> <CENTER><TABLE BORDER WIDTH="100%" BGCOLOR="#FFFF99" > <TR> <TD><STRONG>Definition 2: </STRONG>For integers <EM>k </EM> >= 3, the <EM>n</EM>th <EM>k</EM>-gonal number is <CENTER><EM>P<SUB>k</SUB></EM>(<EM>n</EM>) = <EM>n </EM>( ( <EM>k</EM> -2 ) <EM>n</EM> - <EM>k</EM> + 4 ) / 2 .</CENTER> </TD> </TR> </TABLE></CENTER> <P>We shall demonstrate the relationship between generalized Connell sequences and polygonal numbers. Consider the sequence <EM>C<SUB>m,r </SUB></EM>. By induction (see conditions 2 and 4 in Definition 1), <EM>S<SUB>n</SUB></EM> contains exactly ( <EM>n</EM> - 1 ) <EM>r</EM> + 1 elements. Therefore to reach the end of <EM>n</EM>th subsequence <EM>S<SUB>n</SUB></EM> , we must count exactly <CENTER> <P>| <EM>S</EM><SUB>1</SUB>| + | <EM>S</EM><SUB>2</SUB>| + <STRONG>...</STRONG> + | <EM>S<SUB>n</SUB></EM> | = <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>n </EM>)</CENTER> <P>elements of the sequence <EM>C<SUB>m,r </SUB></EM>. Hence the last element of <EM>S<SUB>n</SUB></EM> is <EM>C<SUB>m,r </SUB></EM>( <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>n</EM> ) ) . Thus <EM>S<SUB>n</SUB></EM><SUB>+1</SUB> begins (see condition 3 of Definition 1) with the element <EM>C<SUB>m,r </SUB></EM>( <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>n</EM> ) ) + 1 , and, since | <EM>S<SUB>n</SUB></EM><SUB>+1</SUB> | = <EM>nr</EM> + 1, it ends (see condition 5 of Definition 1) with <BR>the element <EM>C<SUB>m,r </SUB></EM>( <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>n</EM> ) ) + 1 + <EM>m</EM> ( <EM>nr </EM>+ 1 ) . But this last element is also expressible as <EM>C<SUB>m,r </SUB></EM>( <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>n</EM> + 1 ) ) . Therefore, assuming the induction hypothesis <EM>C<SUB>m,r </SUB></EM>( <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>n</EM> ) ) = <EM>P<SUB>mr</SUB></EM><SUB>+2</SUB>( <EM>n</EM> ) , we obtain <CENTER> <P><EM>C<SUB>m,r </SUB></EM>( <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>n</EM> + 1 ) ) = <EM>P<SUB>mr</SUB></EM><SUB>+2</SUB>( <EM>n</EM> ) + 1 + <EM>m</EM> ( <EM>nr </EM>+ 1 ) = <EM>P<SUB>mr</SUB></EM><SUB>+2</SUB>( <EM>n</EM> + 1 ) ,</CENTER> <P>and hence by induction we have for all positive integers <EM>n</EM>, <BR> <CENTER><TABLE BORDER=0 COLS=1 WIDTH="50%" BGCOLOR="#CCFFFF" > <TR> <TD> <CENTER><EM>C<SUB>m,r </SUB></EM>( <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>n</EM> ) ) = <EM>P<SUB>mr</SUB></EM><SUB>+2</SUB>( <EM>n</EM> ) .</CENTER> </TD> <td> (4) </td> </TR> </TABLE></CENTER> <P>(1) is the special case of (4) when ( <EM>m , r </EM>) = ( 2 , 1 ). As we remarked in Section 2, <EM>C</EM><SUB>3,2</SUB>( <EM>P</EM><SUB>4</SUB>( <EM>n</EM> ) ) = <EM>P</EM><SUB>8</SUB>( <EM>n</EM>) . Another example is given by <EM>C</EM><SUB>3,1</SUB><EM> </EM>(<A HREF="http://oeis.org/A033292">A033292</A>) <STRONG>:</STRONG> <BR> <CENTER><TABLE BORDER COLS=2 WIDTH="50%" > <TR> <TD> <EM>n</EM></TD> <TD> <EM>S<SUB>n</SUB></EM></TD> </TR> <TR> <TD> 1</TD> <TD> 1</TD> </TR> <TR> <TD> 2</TD> <TD> 2, 5</TD> </TR> <TR> <TD> 3</TD> <TD> 6, 9, 12</TD> </TR> <TR> <TD> 4</TD> <TD> 13, 16, 19, 22</TD> </TR> <TR> <TD> <STRONG>...</STRONG></TD> <TD> <STRONG>...</STRONG></TD> </TR> </TABLE></CENTER> <P>Here the pentagonal numbers <EM>P</EM><SUB>5</SUB>( <EM>n</EM> ) = <EM>n</EM> ( 3<EM>n</EM> - 1 ) / 2 at the end of each subsequence. <P> It is interesting to note that, since all elements of <EM>S<SUB>n</SUB></EM> are congruent to <EM>n </EM>( mod <EM>m </EM>), we obtain the following property of polygonal numbers<STRONG>: </STRONG><EM>P<SUB>mr</SUB></EM><SUB>+2</SUB>( <EM>n</EM>) is congruent to <EM> n </EM>( mod <EM>m</EM> ). <H2>4. Limiting Behavior</H2> We will determine the behavior of <EM>C<SUB>m,r </SUB></EM>( <EM>n</EM> ) / <EM>n </EM>as <EM>n </EM>goes to infinity, following Lakhtakia and Pickover <a href="#R3">[3]</a>, by computing lim<EM><SUB>n</SUB></EM> <EM>C<SUB>m,r </SUB></EM>( <EM>n </EM>) / <EM>n </EM>from (4). Let <EM>n </EM>be a positive integer. There is a positive <EM>j , </EM>and a fixed <EM>i </EM>such that 1 <= <EM>i <= </EM>1 + <EM>rj</EM> , for which <EM>n</EM> = <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>j</EM> ) + <EM>i . </EM>Thus <EM>C<SUB>m,r </SUB></EM>( <EM>n </EM>) belongs to the subsequence <EM>S<SUB>j</SUB></EM><SUB>+1</SUB> . As <EM>C<SUB>m,r</SUB></EM>( <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>j</EM> ) ) is the last element of <EM>S<SUB>j</SUB></EM> , we have from Definition 1 and (4) <P> <EM>C<SUB>m,r </SUB></EM>( <EM>n </EM>) = <EM>C<SUB>m,r </SUB></EM>( <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>j</EM> ) + <EM>i </EM>) <BR> = <EM>C<SUB>m,r</SUB></EM>( <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>j</EM> ) ) + 1 + ( <EM>i</EM> - 1 ) <EM>m</EM> <BR> = <EM>P<SUB>mr</SUB></EM><SUB>+2</SUB>( <EM>j</EM> ) + 1 + ( <EM>i</EM> - 1 ) <EM>m.</EM> <P>Thus, since 1 <= <EM>i <= </EM>1 + <EM>rj</EM> and <EM>n</EM> = <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>j</EM> ) + <EM>i , </EM> we have <EM>A <= C<SUB>m,r </SUB></EM>( <EM>n</EM> ) / <EM>n <= B , </EM> where <BR><EM> A = </EM>( <EM>P<SUB>mr</SUB></EM><SUB>+2</SUB>( <EM>j</EM> ) + 1 ) / ( <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>j</EM> ) + 1 + <EM>rj</EM> ) , <BR> <BR><EM> B = </EM>( <EM>P<SUB>mr</SUB></EM><SUB>+2</SUB>( <EM>j</EM> ) + 1 + <EM>jmr </EM>) / ( <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>j</EM> ) + 1 ) . <P>Recalling Definition 2, it is a simple matter to verify that <EM>A</EM> and <EM>B</EM> both converge to the limit <EM>m</EM> as <EM>j</EM> tends toward infinity. Therefore <BR> <CENTER><TABLE BORDER=0 WIDTH="60%" BGCOLOR="#CCFFFF" > <TR> <TD> <CENTER>lim<EM><SUB>n</SUB></EM> <EM>C<SUB>m,r </SUB></EM>( <EM>n</EM> ) / <EM>n = m .</EM></CENTER> </TD> <td> (5) </td> </TR> </TABLE></CENTER> <H2>5. A Direct Formula</H2> To find a formula for <EM>C<SUB>m,r </SUB></EM>( <EM>n</EM>) we modify Korsak's <a href="#R2">[2]</a> proof of (3). Define the sequence <EM>T </EM>by <CENTER> <P><EM>T</EM>( <EM>n </EM>) = <EM>mn - C<SUB>m,r </SUB></EM>( <EM>n</EM> ) .</CENTER> <P>We assume <EM>n</EM> > 1 and write <EM>n</EM> = <EM>P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>j</EM> ) + <EM>i </EM>exactly<EM> </EM>as in Section 4. Then after some algebra we find that <EM>T</EM>( <EM>n</EM> ) = ( <EM>j</EM> +1 )( <EM>m</EM> - 1 ), so <EM>j</EM> + 1 = <EM>T</EM>( <EM>n </EM>) / ( <EM>m - 1 </EM>). Since<EM> </EM> <EM>n >= P<SUB>r</SUB></EM><SUB>+2</SUB>( <EM>j</EM>) + 1 , <CENTER><EM>rj</EM><SUP>2</SUP> - ( <EM>r</EM> - 2) <EM>j</EM> - ( 2<EM>n</EM> - 2 ) <= 0,</CENTER> a quadratic inequality in <EM>j</EM> which implies <CENTER> <P><EM>j</EM> + 1 <= ( 3<EM>r</EM> - 2 + Sqrt( 8<EM>r</EM> ( <EM>n</EM> -1 ) + ( <EM>r</EM> - 2 )<SUP>2</SUP> ) ) / 2<EM>k</EM> ,</CENTER> and hence <CENTER><EM>j</EM> + 1 = Floor( ( 3<EM>r</EM> - 2 + Sqrt( 8<EM>r</EM> ( <EM>n</EM> -1 ) + ( <EM>r</EM> - 2 )<SUP>2</SUP> ) ) / 2<EM>k </EM>) .</CENTER> <P>Thus <BR><EM> T</EM>( <EM>n </EM>) = ( <EM>m </EM>- 1 ) Floor( ( 3<EM>r</EM> - 2 + Sqrt( 8<EM>r</EM> ( <EM>n</EM> -1 ) + ( <EM>r</EM> - 2 )<SUP>2</SUP> ) ) / 2<EM>k </EM>) , <P>and so <BR> <CENTER><TABLE BORDER=0 BGCOLOR="#CCFFFF" > <TR> <TD> <CENTER> <EM>C<SUB>m,r </SUB></EM>( <EM>n</EM> ) = <EM>nm -</EM> ( <EM>m </EM>- 1 ) Floor( ( 3<EM>r</EM> - 2 + Sqrt( 8<EM>r</EM> ( <EM>n</EM> -1 ) + ( <EM>r</EM> - 2 )<SUP>2</SUP> ) ) / 2<EM>k </EM>) .</CENTER> </TD> <td> (6) </td> </TR> </TABLE></CENTER> <H2>References</H2> <P><a name="#R1"><STRONG>[1]</STRONG></a> <EM>Amer. Math. Monthly</EM>, <b>66</b>, no. 8 (October, 1959), 724. Elementary Problem E1382. <P><a name="#R2"><STRONG>[2]</STRONG></a> <EM>Amer. Math. Monthly</EM>, <b>67</b>, no. 4 (April, 1960), 380. Solution to Elementary Problem E1382. <P><a name="#R3"><STRONG>[3]</STRONG></a> Lakhtakia, A. & Pickover, C. The Connell sequence, <EM>J. Recreational Math.</EM>, v. 25, no. 2 (1993), 90-92. <P><a name="#R4"><STRONG>[4]</STRONG></a> Stevens,<STRONG> </STRONG>G. A Connell-like sequence, <EM>J. of Integer Sequences, </EM>v.1, Article 98.1.4. <BR> <p> <hr> <p> <small>(Concerned with sequences <A HREF="http://oeis.org/A001614">A001614</A> , <A HREF="http://oeis.org/A033292">A033292</A> , <A HREF="http://oeis.org/A045928">A045928</A> , <A HREF="http://oeis.org/A045929">A045929</A> , <A HREF="http://oeis.org/A045930">A045930</A> .)</small> <p> <hr> <p> Received February 9 1999; published in <i>Journal of Integer Sequences</i>, March 16 1999. <p> <hr> Return to <a href="../index.html"><STRONG>Journal of Integer Sequences home page</STRONG></a> <hr> </body> </html>