CINXE.COM
Existence of reservoir with finite-dimensional output for universal reservoir computing | Scientific Reports
<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="applicable-device" content="pc,mobile"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="robots" content="max-image-preview:large"> <meta name="access" content="Yes"> <meta name="robots" content="noindex"> <meta name="360-site-verification" content="1268d79b5e96aecf3ff2a7dac04ad990" /> <title>Existence of reservoir with finite-dimensional output for universal reservoir computing | Scientific Reports</title> <meta name="journal_id" content="41598"/> <meta name="dc.title" content="Existence of reservoir with finite-dimensional output for universal reservoir computing"/> <meta name="dc.source" content="Scientific Reports 2024 14:1"/> <meta name="dc.format" content="text/html"/> <meta name="dc.publisher" content="Nature Publishing Group"/> <meta name="dc.date" content="2024-04-11"/> <meta name="dc.type" content="OriginalPaper"/> <meta name="dc.language" content="En"/> <meta name="dc.copyright" content="2024 The Author(s)"/> <meta name="dc.rights" content="2024 The Author(s)"/> <meta name="dc.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="dc.description" content="In this paper, we prove the existence of a reservoir that has a finite-dimensional output and makes the reservoir computing model universal. Reservoir computing is a method for dynamical system approximation that trains the static part of a model but fixes the dynamical part called the reservoir. Hence, reservoir computing has the advantage of training models with a low computational cost. Moreover, fixed reservoirs can be implemented as physical systems. Such reservoirs have attracted attention in terms of computation speed and energy consumption. The universality of a reservoir computing model is its ability to approximate an arbitrary system with arbitrary accuracy. Two sufficient reservoir conditions to make the model universal have been proposed. The first is the combination of fading memory and the separation property. The second is the neighborhood separation property, which we proposed recently. To date, it has been unknown whether a reservoir with a finite-dimensional output can satisfy these conditions. In this study, we prove that no reservoir with a finite-dimensional output satisfies the former condition. By contrast, we propose a single output reservoir that satisfies the latter condition. This implies that, for any dimension, a reservoir making the model universal exists with the output of that specified dimension. These results clarify the practical importance of our proposed conditions."/> <meta name="prism.issn" content="2045-2322"/> <meta name="prism.publicationName" content="Scientific Reports"/> <meta name="prism.publicationDate" content="2024-04-11"/> <meta name="prism.volume" content="14"/> <meta name="prism.number" content="1"/> <meta name="prism.section" content="OriginalPaper"/> <meta name="prism.startingPage" content="1"/> <meta name="prism.endingPage" content="10"/> <meta name="prism.copyright" content="2024 The Author(s)"/> <meta name="prism.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="prism.url" content="https://link.springer.com/articles/s41598-024-56742-7"/> <meta name="prism.doi" content="doi:10.1038/s41598-024-56742-7"/> <meta name="citation_pdf_url" content="https://www.nature.com/articles/s41598-024-56742-7.pdf"/> <meta name="citation_fulltext_html_url" content="https://link.springer.com/articles/s41598-024-56742-7"/> <meta name="citation_journal_title" content="Scientific Reports"/> <meta name="citation_journal_abbrev" content="Sci Rep"/> <meta name="citation_publisher" content="Nature Publishing Group"/> <meta name="citation_issn" content="2045-2322"/> <meta name="citation_title" content="Existence of reservoir with finite-dimensional output for universal reservoir computing"/> <meta name="citation_volume" content="14"/> <meta name="citation_issue" content="1"/> <meta name="citation_online_date" content="2024/04/11"/> <meta name="citation_firstpage" content="1"/> <meta name="citation_lastpage" content="10"/> <meta name="citation_article_type" content="Article"/> <meta name="citation_fulltext_world_readable" content=""/> <meta name="citation_language" content="en"/> <meta name="dc.identifier" content="doi:10.1038/s41598-024-56742-7"/> <meta name="DOI" content="10.1038/s41598-024-56742-7"/> <meta name="size" content="669321"/> <meta name="citation_doi" content="10.1038/s41598-024-56742-7"/> <meta name="citation_springer_api_url" content="http://api.springer.com/xmldata/jats?q=doi:10.1038/s41598-024-56742-7&api_key="/> <meta name="description" content="In this paper, we prove the existence of a reservoir that has a finite-dimensional output and makes the reservoir computing model universal. Reservoir computing is a method for dynamical system approximation that trains the static part of a model but fixes the dynamical part called the reservoir. Hence, reservoir computing has the advantage of training models with a low computational cost. Moreover, fixed reservoirs can be implemented as physical systems. Such reservoirs have attracted attention in terms of computation speed and energy consumption. The universality of a reservoir computing model is its ability to approximate an arbitrary system with arbitrary accuracy. Two sufficient reservoir conditions to make the model universal have been proposed. The first is the combination of fading memory and the separation property. The second is the neighborhood separation property, which we proposed recently. To date, it has been unknown whether a reservoir with a finite-dimensional output can satisfy these conditions. In this study, we prove that no reservoir with a finite-dimensional output satisfies the former condition. By contrast, we propose a single output reservoir that satisfies the latter condition. This implies that, for any dimension, a reservoir making the model universal exists with the output of that specified dimension. These results clarify the practical importance of our proposed conditions."/> <meta name="dc.creator" content="Sugiura, Shuhei"/> <meta name="dc.creator" content="Ariizumi, Ryo"/> <meta name="dc.creator" content="Asai, Toru"/> <meta name="dc.creator" content="Azuma, Shun-ichi"/> <meta name="dc.subject" content="Applied mathematics"/> <meta name="dc.subject" content="Computational science"/> <meta name="citation_reference" content="Jaeger, H. The “echo state” approach to analysing and training recurrent neural networks—with an erratum note. German National Research Center for Information Technology GMD Technical Report, 148.34 (2001)."/> <meta name="citation_reference" content="citation_journal_title=Neural Comput.; citation_title=Real-time computing without stable states: A new framework for neural computation based on perturbations; citation_author=W Maass, T Natschl; citation_volume=14; citation_issue=11; citation_publication_date=2002; citation_pages=2531-2560; citation_doi=10.1162/089976602760407955; citation_id=CR2"/> <meta name="citation_reference" content="Steil, J. J. Backpropagation-decorrelation: Online recurrent learning with O(N) complexity. In 2004 IEEE International Joint Conference on Neural Networks 843–848 (2004)."/> <meta name="citation_reference" content="citation_journal_title=Neural Netw.; citation_title=An experimental unification of reservoir computing methods; citation_author=D Verstraeten, B Schrauwen, M D’Haene, D Stroobandt; citation_volume=20; citation_issue=3; citation_publication_date=2007; citation_pages=391-403; citation_doi=10.1016/j.neunet.2007.04.003; citation_id=CR4"/> <meta name="citation_reference" content="citation_journal_title=Comput. Sci. Rev.; citation_title=Reservoir computing approaches to recurrent neural network training; citation_author=M Lukoševičius, H Jaeger; citation_volume=3; citation_issue=3; citation_publication_date=2009; citation_pages=127-149; citation_doi=10.1016/j.cosrev.2009.03.005; citation_id=CR5"/> <meta name="citation_reference" content="citation_journal_title=Neural Comput.; citation_title=A learning algorithm for continually running fully recurrent neural networks; citation_author=RJ Williams, D Zipser; citation_volume=1; citation_issue=2; citation_publication_date=1989; citation_pages=270-280; citation_doi=10.1162/neco.1989.1.2.270; citation_id=CR6"/> <meta name="citation_reference" content="citation_journal_title=Proc. IEEE; citation_title=Backpropagation through time: what it does and how to do it; citation_author=PJ Werbos; citation_volume=78; citation_issue=10; citation_publication_date=1990; citation_pages=1550-1560; citation_doi=10.1109/5.58337; citation_id=CR7"/> <meta name="citation_reference" content="citation_journal_title=Neural Netw.; citation_title=Recent advances in physical reservoir computing: A review; citation_author=G Tanaka; citation_volume=115; citation_publication_date=2019; citation_pages=100-123; citation_doi=10.1016/j.neunet.2019.03.005; citation_id=CR8"/> <meta name="citation_reference" content="Friedman, J. S. Unsupervised learning & reservoir computing leveraging analog spintronic phenomena. IEEE 16th Nanotechnology Materials and Devices Conference 1–2 (2021)."/> <meta name="citation_reference" content="citation_journal_title=Neural Netw.; citation_title=Performance boost of time-delay reservoir computing by non-resonant clock cycle; citation_author=F Stelzer, A Röhm, K Lüdge, S Yanchuk; citation_volume=124; citation_publication_date=2020; citation_pages=158-169; citation_doi=10.1016/j.neunet.2020.01.010; citation_id=CR10"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans. Neural Netw. Learn. Syst.; citation_title=Delay-based reservoir computing: Noise effects in a combined analog and digital implementation; citation_author=MC Soriano; citation_volume=26; citation_issue=2; citation_publication_date=2014; citation_pages=388-393; citation_doi=10.1109/TNNLS.2014.2311855; citation_id=CR11"/> <meta name="citation_reference" content="citation_journal_title=IEEE J. Sel. Top. Quantum Electron.; citation_title=Optical reservoir computing using multiple light scattering for chaotic systems prediction; citation_author=J Dong, M Rafayelyan, F Krzakala, S Gigan; citation_volume=26; citation_issue=1; citation_publication_date=2020; citation_pages=1-12; citation_doi=10.1109/JSTQE.2019.2936281; citation_id=CR12"/> <meta name="citation_reference" content="citation_title=Reservoir Computing; citation_publication_date=2021; citation_id=CR13; citation_author=K Nakajima; citation_author=I Fischer; citation_publisher=Springer"/> <meta name="citation_reference" content="citation_journal_title=Neural Netw.; citation_title=Echo state networks are universal; citation_author=L Grigoryeva, JP Ortega; citation_volume=108; citation_publication_date=2018; citation_pages=495-508; citation_doi=10.1016/j.neunet.2018.08.025; citation_id=CR14"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans. Neural Netw. Learn. Syst.; citation_title=Reservoir Computing Universality With Stochastic Inputs; citation_author=L Gonon, JP Ortega; citation_volume=31; citation_issue=1; citation_publication_date=2020; citation_pages=100-112; citation_doi=10.1109/TNNLS.2019.2899649; citation_id=CR15"/> <meta name="citation_reference" content="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. https://doi.org/10.1109/TNNLS.2023.3298013 (2023)."/> <meta name="citation_reference" content="Fernando, C. & Sojakka, S. Pattern recognition in a bucket. In European Conference on Artificial Life 588–597 (Springer, 2003)."/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans. Circuits Syst.; citation_title=Fading memory and the problem of approximating nonlinear operators with Volterra series; citation_author=S Boyd, LO Chua; citation_volume=32; citation_issue=11; citation_publication_date=1985; citation_pages=1150-1161; citation_doi=10.1109/TCS.1985.1085649; citation_id=CR18"/> <meta name="citation_reference" content="citation_title=Dimension Theory; citation_publication_date=1978; citation_id=CR19; citation_author=R Engelking; citation_publisher=North-Holland Publishing Company"/> <meta name="citation_reference" content="citation_title=Topology; citation_publication_date=1961; citation_id=CR20; citation_author=JG Hocking; citation_author=GS Young; citation_publisher=Addison-Wesley Publishing Company"/> <meta name="citation_reference" content="Jensen, J. H. & Tufte, G. Reservoir computing with a chaotic circuit. In Artificial Life Conference Proceedings 222–229 (MIT Press, 2017)."/> <meta name="citation_reference" content="citation_journal_title=Chaos Solitons Fractals; citation_title=Reservoir computing based on quenched chaos; citation_author=J Choi, P Kim; citation_volume=140; citation_publication_date=2020; citation_pages=110131; citation_doi=10.1016/j.chaos.2020.110131; citation_id=CR22"/> <meta name="citation_author" content="Sugiura, Shuhei"/> <meta name="citation_author_institution" content="Graduate School of Engineering, Nagoya University, Nagoya, Japan"/> <meta name="citation_author" content="Ariizumi, Ryo"/> <meta name="citation_author_institution" content="Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan"/> <meta name="citation_author" content="Asai, Toru"/> <meta name="citation_author_institution" content="Graduate School of Engineering, Nagoya University, Nagoya, Japan"/> <meta name="citation_author" content="Azuma, Shun-ichi"/> <meta name="citation_author_institution" content="Graduate School of Informatics, Kyoto University, Kyoto, Japan"/> <meta name="access_endpoint" content="https://link.springer.com/platform/readcube-access"/> <meta name="twitter:site" content="@SciReports"/> <meta name="twitter:card" content="summary"/> <meta name="twitter:title" content="Existence of reservoir with finite-dimensional output for universal reservoir computing"/> <meta name="twitter:description" content="Scientific Reports - Existence of reservoir with finite-dimensional output for universal reservoir computing"/> <meta property="og:url" content="https://link.springer.com/article/10.1038/s41598-024-56742-7"/> <meta property="og:type" content="article"/> <meta property="og:site_name" content="SpringerLink"/> <meta property="og:title" content="Existence of reservoir with finite-dimensional output for universal reservoir computing - Scientific Reports"/> <meta property="og:description" content="In this paper, we prove the existence of a reservoir that has a finite-dimensional output and makes the reservoir computing model universal. Reservoir computing is a method for dynamical system approximation that trains the static part of a model but fixes the dynamical part called the reservoir. Hence, reservoir computing has the advantage of training models with a low computational cost. Moreover, fixed reservoirs can be implemented as physical systems. Such reservoirs have attracted attention in terms of computation speed and energy consumption. The universality of a reservoir computing model is its ability to approximate an arbitrary system with arbitrary accuracy. Two sufficient reservoir conditions to make the model universal have been proposed. The first is the combination of fading memory and the separation property. The second is the neighborhood separation property, which we proposed recently. To date, it has been unknown whether a reservoir with a finite-dimensional output can satisfy these conditions. In this study, we prove that no reservoir with a finite-dimensional output satisfies the former condition. By contrast, we propose a single output reservoir that satisfies the latter condition. This implies that, for any dimension, a reservoir making the model universal exists with the output of that specified dimension. These results clarify the practical importance of our proposed conditions."/> <meta property="og:image" content="https://media.springernature.com/full/springer-static/cover-hires/journal/41598"/> <meta name="format-detection" content="telephone=no"> <link rel="apple-touch-icon" sizes="180x180" href=/oscar-static/img/favicons/darwin/apple-touch-icon-92e819bf8a.png> <link rel="icon" type="image/png" sizes="192x192" href=/oscar-static/img/favicons/darwin/android-chrome-192x192-6f081ca7e5.png> <link rel="icon" type="image/png" sizes="32x32" href=/oscar-static/img/favicons/darwin/favicon-32x32-1435da3e82.png> <link rel="icon" type="image/png" sizes="16x16" href=/oscar-static/img/favicons/darwin/favicon-16x16-ed57f42bd2.png> <link rel="shortcut icon" data-test="shortcut-icon" href=/oscar-static/img/favicons/darwin/favicon-c6d59aafac.ico> <meta name="theme-color" content="#e6e6e6"> <!-- Please see discussion: https://github.com/springernature/frontend-open-space/issues/316--> <!--TODO: Implement alternative to CTM in here if the discussion concludes we do not continue with CTM as a practice--> <link rel="stylesheet" media="print" href=/oscar-static/app-springerlink/css/print-b8af42253b.css> <style> html{text-size-adjust:100%;line-height:1.15}body{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;margin:0}details,main{display:block}h1{font-size:2em;margin:.67em 0}a{background-color:transparent;color:#025e8d}sub{bottom:-.25em;font-size:75%;line-height:0;position:relative;vertical-align:baseline}img{border:0;height:auto;max-width:100%;vertical-align:middle}button,input{font-family:inherit;font-size:100%;line-height:1.15;margin:0;overflow:visible}button{text-transform:none}[type=button],[type=submit],button{-webkit-appearance:button}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}summary{display:list-item}[hidden]{display:none}button{cursor:pointer}svg{height:1rem;width:1rem} </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { body{background:#fff;color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;min-height:100%}a{color:#025e8d;text-decoration:underline;text-decoration-skip-ink:auto}button{cursor:pointer}img{border:0;height:auto;max-width:100%;vertical-align:middle}html{box-sizing:border-box;font-size:100%;height:100%;overflow-y:scroll}h1{font-size:2.25rem}h2{font-size:1.75rem}h1,h2,h4{font-weight:700;line-height:1.2}h4{font-size:1.25rem}body{font-size:1.125rem}*{box-sizing:inherit}p{margin-bottom:2rem;margin-top:0}p:last-of-type{margin-bottom:0}.c-ad{text-align:center}@media only screen and (min-width:480px){.c-ad{padding:8px}}.c-ad--728x90{display:none}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 94px)}@media only screen and (min-width:876px){.js .c-ad--728x90{display:none}}.c-ad__label{color:#333;font-size:.875rem;font-weight:400;line-height:1.5;margin-bottom:4px}.c-ad__label,.c-status-message{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-status-message{align-items:center;box-sizing:border-box;display:flex;position:relative;width:100%}.c-status-message :last-child{margin-bottom:0}.c-status-message--boxed{background-color:#fff;border:1px solid #ccc;line-height:1.4;padding:16px}.c-status-message__heading{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700}.c-status-message__icon{fill:currentcolor;display:inline-block;flex:0 0 auto;height:1.5em;margin-right:8px;transform:translate(0);vertical-align:text-top;width:1.5em}.c-status-message__icon--top{align-self:flex-start}.c-status-message--info .c-status-message__icon{color:#003f8d}.c-status-message--boxed.c-status-message--info{border-bottom:4px solid #003f8d}.c-status-message--error .c-status-message__icon{color:#c40606}.c-status-message--boxed.c-status-message--error{border-bottom:4px solid #c40606}.c-status-message--success .c-status-message__icon{color:#00b8b0}.c-status-message--boxed.c-status-message--success{border-bottom:4px solid #00b8b0}.c-status-message--warning .c-status-message__icon{color:#edbc53}.c-status-message--boxed.c-status-message--warning{border-bottom:4px solid #edbc53}.eds-c-header{background-color:#fff;border-bottom:2px solid #01324b;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;line-height:1.5;padding:8px 0 0}.eds-c-header__container{align-items:center;display:flex;flex-wrap:nowrap;gap:8px 16px;justify-content:space-between;margin:0 auto 8px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav{border-top:2px solid #c5e0f4;padding-top:4px;position:relative}.eds-c-header__nav-container{align-items:center;display:flex;flex-wrap:wrap;margin:0 auto 4px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav-container>:not(:last-child){margin-right:32px}.eds-c-header__link-container{align-items:center;display:flex;flex:1 0 auto;gap:8px 16px;justify-content:space-between}.eds-c-header__list{list-style:none;margin:0;padding:0}.eds-c-header__list-item{font-weight:700;margin:0 auto;max-width:1280px;padding:8px}.eds-c-header__list-item:not(:last-child){border-bottom:2px solid #c5e0f4}.eds-c-header__item{color:inherit}@media only screen and (min-width:768px){.eds-c-header__item--menu{display:none;visibility:hidden}.eds-c-header__item--menu:first-child+*{margin-block-start:0}}.eds-c-header__item--inline-links{display:none;visibility:hidden}@media only screen and (min-width:768px){.eds-c-header__item--inline-links{display:flex;gap:16px 16px;visibility:visible}}.eds-c-header__item--divider:before{border-left:2px solid #c5e0f4;content:"";height:calc(100% - 16px);margin-left:-15px;position:absolute;top:8px}.eds-c-header__brand{padding:16px 8px}.eds-c-header__brand a{display:block;line-height:1;text-decoration:none}.eds-c-header__brand img{height:1.5rem;width:auto}.eds-c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.eds-c-header__icon{fill:currentcolor;display:inline-block;font-size:1.5rem;height:1em;transform:translate(0);vertical-align:bottom;width:1em}.eds-c-header__icon+*{margin-left:8px}.eds-c-header__expander{background-color:#f0f7fc}.eds-c-header__search{display:block;padding:24px 0}@media only screen and (min-width:768px){.eds-c-header__search{max-width:70%}}.eds-c-header__search-container{position:relative}.eds-c-header__search-label{color:inherit;display:inline-block;font-weight:700;margin-bottom:8px}.eds-c-header__search-input{background-color:#fff;border:1px solid #000;padding:8px 48px 8px 8px;width:100%}.eds-c-header__search-button{background-color:transparent;border:0;color:inherit;height:100%;padding:0 8px;position:absolute;right:0}.has-tethered.eds-c-header__expander{border-bottom:2px solid #01324b;left:0;margin-top:-2px;top:100%;width:100%;z-index:10}@media only screen and (min-width:768px){.has-tethered.eds-c-header__expander--menu{display:none;visibility:hidden}}.has-tethered .eds-c-header__heading{display:none;visibility:hidden}.has-tethered .eds-c-header__heading:first-child+*{margin-block-start:0}.has-tethered .eds-c-header__search{margin:auto}.eds-c-header__heading{margin:0 auto;max-width:1280px;padding:16px 16px 0}.eds-c-pagination{align-items:center;display:flex;flex-wrap:wrap;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;gap:16px 0;justify-content:center;line-height:1.4;list-style:none;margin:0;padding:32px 0}@media only screen and (min-width:480px){.eds-c-pagination{padding:32px 16px}}.eds-c-pagination__item{margin-right:8px}.eds-c-pagination__item--prev{margin-right:16px}.eds-c-pagination__item--next .eds-c-pagination__link,.eds-c-pagination__item--prev .eds-c-pagination__link{padding:16px 8px}.eds-c-pagination__item--next{margin-left:8px}.eds-c-pagination__item:last-child{margin-right:0}.eds-c-pagination__link{align-items:center;color:#222;cursor:pointer;display:inline-block;font-size:1rem;margin:0;padding:16px 24px;position:relative;text-align:center;transition:all .2s ease 0s}.eds-c-pagination__link:visited{color:#222}.eds-c-pagination__link--disabled{border-color:#555;color:#555;cursor:default}.eds-c-pagination__link--active{background-color:#01324b;background-image:none;border-radius:8px;color:#fff}.eds-c-pagination__link--active:focus,.eds-c-pagination__link--active:hover,.eds-c-pagination__link--active:visited{color:#fff}.eds-c-pagination__link-container{align-items:center;display:flex}.eds-c-pagination__icon{fill:#222;height:1.5rem;width:1.5rem}.eds-c-pagination__icon--disabled{fill:#555}.eds-c-pagination__visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.c-breadcrumbs{color:#333;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;list-style:none;margin:0;padding:0}.c-breadcrumbs>li{display:inline}svg.c-breadcrumbs__chevron{fill:#333;height:10px;margin:0 .25rem;width:10px}.c-breadcrumbs--contrast,.c-breadcrumbs--contrast .c-breadcrumbs__link{color:#fff}.c-breadcrumbs--contrast svg.c-breadcrumbs__chevron{fill:#fff}@media only screen and (max-width:479px){.c-breadcrumbs .c-breadcrumbs__item{display:none}.c-breadcrumbs .c-breadcrumbs__item:last-child,.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(2){display:inline}}.c-skip-link{background:#01324b;bottom:auto;color:#fff;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;padding:8px;position:absolute;text-align:center;transform:translateY(-100%);width:100%;z-index:9999}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out 0s}}@media print{.c-skip-link{display:none}}.c-skip-link:active,.c-skip-link:hover,.c-skip-link:link,.c-skip-link:visited{color:#fff}.c-skip-link:focus{transform:translateY(0)}.l-with-sidebar{display:flex;flex-wrap:wrap}.l-with-sidebar>*{margin:0}.l-with-sidebar__sidebar{flex-basis:var(--with-sidebar--basis,400px);flex-grow:1}.l-with-sidebar>:not(.l-with-sidebar__sidebar){flex-basis:0px;flex-grow:999;min-width:var(--with-sidebar--min,53%)}.l-with-sidebar>:first-child{padding-right:4rem}@supports (gap:1em){.l-with-sidebar>:first-child{padding-right:0}.l-with-sidebar{gap:var(--with-sidebar--gap,4rem)}}.c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.app-masthead__colour-4{--background-color:#ff9500;--gradient-light:rgba(0,0,0,.5);--gradient-dark:rgba(0,0,0,.8)}.app-masthead{background:var(--background-color,#0070a8);position:relative}.app-masthead:after{background:radial-gradient(circle at top right,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)));bottom:0;content:"";left:0;position:absolute;right:0;top:0}@media only screen and (max-width:479px){.app-masthead:after{background:linear-gradient(225deg,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)))}}.app-masthead__container{color:var(--masthead-color,#fff);margin:0 auto;max-width:1280px;padding:0 16px;position:relative;z-index:1}.u-button{align-items:center;background-color:#01324b;background-image:none;border:4px solid transparent;border-radius:32px;cursor:pointer;display:inline-flex;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700;justify-content:center;line-height:1.3;margin:0;padding:16px 32px;position:relative;transition:all .2s ease 0s;width:auto}.u-button svg,.u-button--contrast svg,.u-button--primary svg,.u-button--secondary svg,.u-button--tertiary svg{fill:currentcolor}.u-button,.u-button:visited{color:#fff}.u-button,.u-button:hover{box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button:hover{border:4px solid #fff}.u-button:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button:focus,.u-button:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--primary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover svg path,.u-button--primary:focus svg path,.u-button--primary:hover svg path,.u-button:focus svg path,.u-button:hover svg path{fill:#01324b}.u-button--primary{background-color:#01324b;background-image:none;border:4px solid transparent;box-shadow:0 0 0 1px #01324b;color:#fff;font-weight:700}.u-button--primary:visited{color:#fff}.u-button--primary:hover{border:4px solid #fff;box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button--primary:focus,.u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.u-button--secondary{background-color:#fff;border:4px solid #fff;color:#01324b;font-weight:700}.u-button--secondary:visited{color:#01324b}.u-button--secondary:hover{border:4px solid #01324b;box-shadow:none}.u-button--secondary:focus,.u-button--secondary:hover{background-color:#01324b;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--secondary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover svg path,.u-button--secondary:focus svg path,.u-button--secondary:hover svg path,.u-button--tertiary:focus svg path,.u-button--tertiary:hover svg path{fill:#fff}.u-button--tertiary{background-color:#ebf1f5;border:4px solid transparent;box-shadow:none;color:#666;font-weight:700}.u-button--tertiary:visited{color:#666}.u-button--tertiary:hover{border:4px solid #01324b;box-shadow:none}.u-button--tertiary:focus,.u-button--tertiary:hover{background-color:#01324b;color:#fff}.u-button--contrast{background-color:transparent;background-image:none;color:#fff;font-weight:400}.u-button--contrast:visited{color:#fff}.u-button--contrast,.u-button--contrast:focus,.u-button--contrast:hover{border:4px solid #fff}.u-button--contrast:focus,.u-button--contrast:hover{background-color:#fff;background-image:none;color:#000}.u-button--contrast:focus svg path,.u-button--contrast:hover svg path{fill:#000}.u-button--disabled,.u-button:disabled{background-color:transparent;background-image:none;border:4px solid #ccc;color:#000;cursor:default;font-weight:400;opacity:.7}.u-button--disabled svg,.u-button:disabled svg{fill:currentcolor}.u-button--disabled:visited,.u-button:disabled:visited{color:#000}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{border:4px solid #ccc;text-decoration:none}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{background-color:transparent;background-image:none;color:#000}.u-button--disabled:focus svg path,.u-button--disabled:hover svg path,.u-button:disabled:focus svg path,.u-button:disabled:hover svg path{fill:#000}.u-button--small,.u-button--xsmall{font-size:.875rem;padding:2px 8px}.u-button--small{padding:8px 16px}.u-button--large{font-size:1.125rem;padding:10px 35px}.u-button--full-width{display:flex;width:100%}.u-button--icon-left svg{margin-right:8px}.u-button--icon-right svg{margin-left:8px}.u-clear-both{clear:both}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-justify-content-space-between{justify-content:space-between}.u-display-none{display:none}.js .u-js-hide,.u-hide{display:none;visibility:hidden}.u-visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-list-reset{list-style:none;margin:0;padding:0}.u-ma-16{margin:16px}.u-mt-0{margin-top:0}.u-mt-24{margin-top:24px}.u-mt-32{margin-top:32px}.u-mb-8{margin-bottom:8px}.u-mb-32{margin-bottom:32px}.u-button-reset{background-color:transparent;border:0;padding:0}.u-sans-serif{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.u-serif{font-family:Merriweather,serif}h1,h2,h4{-webkit-font-smoothing:antialiased}p{overflow-wrap:break-word;word-break:break-word}.u-h4{font-size:1.25rem;font-weight:700;line-height:1.2}.u-mbs-0{margin-block-start:0!important}.c-article-header{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-identifiers{color:#6f6f6f;display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3;list-style:none;margin:0 0 8px;padding:0}.c-article-identifiers__item{border-right:1px solid #6f6f6f;list-style:none;margin-right:8px;padding-right:8px}.c-article-identifiers__item:last-child{border-right:0;margin-right:0;padding-right:0}@media only screen and (min-width:876px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{display:inline;font-size:1rem;list-style:none;margin:0 8px 0 0;padding:0;width:100%}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list__show-more{display:none;margin-right:4px}.c-article-author-list__button,.js .c-article-author-list__item--hide,.js .c-article-author-list__show-more{display:none}.js .c-article-author-list--long .c-article-author-list__show-more,.js .c-article-author-list--long+.c-article-author-list__button{display:inline}@media only screen and (max-width:767px){.js .c-article-author-list__item--hide-small-screen{display:none}.js .c-article-author-list--short .c-article-author-list__show-more,.js .c-article-author-list--short+.c-article-author-list__button{display:inline}}#uptodate-client,.js .c-article-author-list--expanded .c-article-author-list__show-more{display:none!important}.js .c-article-author-list--expanded .c-article-author-list__item--hide-small-screen{display:inline!important}.c-article-author-list__button,.c-button-author-list{background:#ebf1f5;border:4px solid #ebf1f5;border-radius:20px;color:#666;font-size:.875rem;line-height:1.4;padding:2px 11px 2px 8px;text-decoration:none}.c-article-author-list__button svg,.c-button-author-list svg{margin:1px 4px 0 0}.c-article-author-list__button:hover,.c-button-author-list:hover{background:#025e8d;border-color:transparent;color:#fff}.c-article-body .c-article-access-provider{padding:8px 16px}.c-article-body .c-article-access-provider,.c-notes{border:1px solid #d5d5d5;border-image:initial;border-left:none;border-right:none;margin:24px 0}.c-article-body .c-article-access-provider__text{color:#555}.c-article-body .c-article-access-provider__text,.c-notes__text{font-size:1rem;margin-bottom:0;padding-bottom:2px;padding-top:2px;text-align:center}.c-article-body .c-article-author-affiliation__address{color:inherit;font-weight:700;margin:0}.c-article-body .c-article-author-affiliation__authors-list{list-style:none;margin:0;padding:0}.c-article-body .c-article-author-affiliation__authors-item{display:inline;margin-left:0}.c-article-authors-search{margin-bottom:24px;margin-top:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-authors-search__title{color:#626262;font-size:1.05rem;font-weight:700;margin:0;padding:0}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-code-block{border:1px solid #fff;font-family:monospace;margin:0 0 24px;padding:20px}.c-code-block__heading{font-weight:400;margin-bottom:16px}.c-code-block__line{display:block;overflow-wrap:break-word;white-space:pre-wrap}.c-article-share-box{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;margin-bottom:24px}.c-article-share-box__description{font-size:1rem;margin-bottom:8px}.c-article-share-box__no-sharelink-info{font-size:.813rem;font-weight:700;margin-bottom:24px;padding-top:4px}.c-article-share-box__only-read-input{border:1px solid #d5d5d5;box-sizing:content-box;display:inline-block;font-size:.875rem;font-weight:700;height:24px;margin-bottom:8px;padding:8px 10px}.c-article-share-box__additional-info{color:#626262;font-size:.813rem}.c-article-share-box__button{background:#fff;box-sizing:content-box;text-align:center}.c-article-share-box__button--link-like{background-color:transparent;border:0;color:#025e8d;cursor:pointer;font-size:.875rem;margin-bottom:8px;margin-left:10px}.c-article-associated-content__container .c-article-associated-content__collection-label{font-size:.875rem;line-height:1.4}.c-article-associated-content__container .c-article-associated-content__collection-title{line-height:1.3}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion__figures-list,.c-reading-companion__references-list{list-style:none;min-height:389px;padding:0}.c-reading-companion__references-list--numeric{list-style:decimal inside}.c-reading-companion__figure-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:16px 8px 16px 0}.c-reading-companion__figure-item:first-child{border-top:none;padding-top:8px}.c-reading-companion__reference-item{font-size:1rem}.c-reading-companion__reference-item:first-child{border-top:none}.c-reading-companion__reference-item a{word-break:break-word}.c-reading-companion__reference-citation{display:inline}.c-reading-companion__reference-links{font-size:.813rem;font-weight:700;list-style:none;margin:8px 0 0;padding:0;text-align:right}.c-reading-companion__reference-links>a{display:inline-block;padding-left:8px}.c-reading-companion__reference-links>a:first-child{display:inline-block;padding-left:0}.c-reading-companion__figure-title{display:block;font-size:1.25rem;font-weight:700;line-height:1.2;margin:0 0 8px}.c-reading-companion__figure-links{display:flex;justify-content:space-between;margin:8px 0 0}.c-reading-companion__figure-links>a{align-items:center;display:flex}.c-article-section__figure-caption{display:block;margin-bottom:8px;word-break:break-word}.c-article-section__figure .video,p.app-article-masthead__access--above-download{margin:0 0 16px}.c-article-section__figure-description{font-size:1rem}.c-article-section__figure-description>*{margin-bottom:0}.c-cod{display:block;font-size:1rem;width:100%}.c-cod__form{background:#ebf0f3}.c-cod__prompt{font-size:1.125rem;line-height:1.3;margin:0 0 24px}.c-cod__label{display:block;margin:0 0 4px}.c-cod__row{display:flex;margin:0 0 16px}.c-cod__row:last-child{margin:0}.c-cod__input{border:1px solid #d5d5d5;border-radius:2px;flex-shrink:0;margin:0;padding:13px}.c-cod__input--submit{background-color:#025e8d;border:1px solid #025e8d;color:#fff;flex-shrink:1;margin-left:8px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-cod__input--submit-single{flex-basis:100%;flex-shrink:0;margin:0}.c-cod__input--submit:focus,.c-cod__input--submit:hover{background-color:#fff;color:#025e8d}.save-data .c-article-author-institutional-author__sub-division,.save-data .c-article-equation__number,.save-data .c-article-figure-description,.save-data .c-article-fullwidth-content,.save-data .c-article-main-column,.save-data .c-article-satellite-article-link,.save-data .c-article-satellite-subtitle,.save-data .c-article-table-container,.save-data .c-blockquote__body,.save-data .c-code-block__heading,.save-data .c-reading-companion__figure-title,.save-data .c-reading-companion__reference-citation,.save-data .c-site-messages--nature-briefing-email-variant .serif,.save-data .c-site-messages--nature-briefing-email-variant.serif,.save-data .serif,.save-data .u-serif,.save-data h1,.save-data h2,.save-data h3{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-pdf-download__link{display:flex;flex:1 1 0%;padding:13px 24px}.c-pdf-download__link:hover{text-decoration:none}@media only screen and (min-width:768px){.c-context-bar--sticky .c-pdf-download__link{align-items:center;flex:1 1 183px}}@media only screen and (max-width:320px){.c-context-bar--sticky .c-pdf-download__link{padding:16px}}.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{display:flex;flex-direction:row;gap:16px 16px;margin:0;max-width:100%;padding:16px 0 0}.c-article-body .c-article-recommendations-list__item,.c-book-body .c-article-recommendations-list__item{flex:1 1 0%}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{flex-direction:column}}.c-article-body .c-article-recommendations-card__authors{display:none;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;line-height:1.5;margin:0 0 8px}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-card__authors{display:block;margin:0}}.c-article-body .c-article-history{margin-top:24px}.app-article-metrics-bar p{margin:0}.app-article-masthead{display:flex;flex-direction:column;gap:16px 16px;padding:16px 0 24px}.app-article-masthead__info{display:flex;flex-direction:column;flex-grow:1}.app-article-masthead__brand{border-top:1px solid hsla(0,0%,100%,.8);display:flex;flex-direction:column;flex-shrink:0;gap:8px 8px;min-height:96px;padding:16px 0 0}.app-article-masthead__brand img{border:1px solid #fff;border-radius:8px;box-shadow:0 4px 15px 0 hsla(0,0%,50%,.25);height:auto;left:0;position:absolute;width:72px}.app-article-masthead__journal-link{display:block;font-size:1.125rem;font-weight:700;margin:0 0 8px;max-width:400px;padding:0 0 0 88px;position:relative}.app-article-masthead__journal-title{-webkit-box-orient:vertical;-webkit-line-clamp:3;display:-webkit-box;overflow:hidden}.app-article-masthead__submission-link{align-items:center;display:flex;font-size:1rem;gap:4px 4px;margin:0 0 0 88px}.app-article-masthead__access{align-items:center;display:flex;flex-wrap:wrap;font-size:.875rem;font-weight:300;gap:4px 4px;margin:0}.app-article-masthead__buttons{display:flex;flex-flow:column wrap;gap:16px 16px}.app-article-masthead__access svg,.app-masthead--pastel .c-pdf-download .u-button--primary svg,.app-masthead--pastel .c-pdf-download .u-button--secondary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary svg{fill:currentcolor}.app-article-masthead a{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary{background-color:#025e8d;background-image:none;border:2px solid transparent;box-shadow:none;color:#fff;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--primary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:visited{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background:0 0;border:2px solid #025e8d;box-shadow:none;color:#025e8d}.app-masthead--pastel .c-pdf-download .u-button--secondary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary{background:0 0;border:2px solid #025e8d;color:#025e8d;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--secondary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:visited{color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--secondary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover{background-color:#01324b;background-color:#025e8d;border:2px solid transparent;box-shadow:none;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus{background-color:#fff;background-image:none;border:4px solid #fc0;color:#01324b}@media only screen and (min-width:768px){.app-article-masthead{flex-direction:row;gap:64px 64px;padding:24px 0}.app-article-masthead__brand{border:0;padding:0}.app-article-masthead__brand img{height:auto;position:static;width:auto}.app-article-masthead__buttons{align-items:center;flex-direction:row;margin-top:auto}.app-article-masthead__journal-link{display:flex;flex-direction:column;gap:24px 24px;margin:0 0 8px;padding:0}.app-article-masthead__submission-link{margin:0}}@media only screen and (min-width:1024px){.app-article-masthead__brand{flex-basis:400px}}.app-article-masthead .c-article-identifiers{font-size:.875rem;font-weight:300;line-height:1;margin:0 0 8px;overflow:hidden;padding:0}.app-article-masthead .c-article-identifiers--cite-list{margin:0 0 16px}.app-article-masthead .c-article-identifiers *{color:#fff}.app-article-masthead .c-cod{display:none}.app-article-masthead .c-article-identifiers__item{border-left:1px solid #fff;border-right:0;margin:0 17px 8px -9px;padding:0 0 0 8px}.app-article-masthead .c-article-identifiers__item--cite{border-left:0}.app-article-metrics-bar{display:flex;flex-wrap:wrap;font-size:1rem;padding:16px 0 0;row-gap:24px}.app-article-metrics-bar__item{padding:0 16px 0 0}.app-article-metrics-bar__count{font-weight:700}.app-article-metrics-bar__label{font-weight:400;padding-left:4px}.app-article-metrics-bar__icon{height:auto;margin-right:4px;margin-top:-4px;width:auto}.app-article-metrics-bar__arrow-icon{margin:4px 0 0 4px}.app-article-metrics-bar a{color:#000}.app-article-metrics-bar .app-article-metrics-bar__item--metrics{padding-right:0}.app-overview-section .c-article-author-list,.app-overview-section__authors{line-height:2}.app-article-metrics-bar{margin-top:8px}.c-book-toc-pagination+.c-book-section__back-to-top{margin-top:0}.c-article-body .c-article-access-provider__text--chapter{color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;padding:20px 0}.c-article-body .c-article-access-provider__text--chapter svg.c-status-message__icon{fill:#003f8d;vertical-align:middle}.c-article-body-section__content--separator{padding-top:40px}.c-pdf-download__link{max-height:44px}.app-article-access .u-button--primary,.app-article-access .u-button--primary:visited{color:#fff}.c-article-sidebar{display:none}@media only screen and (min-width:1024px){.c-article-sidebar{display:block}}.c-cod__form{border-radius:12px}.c-cod__label{font-size:.875rem}.c-cod .c-status-message{align-items:center;justify-content:center;margin-bottom:16px;padding-bottom:16px}@media only screen and (min-width:1024px){.c-cod .c-status-message{align-items:inherit}}.c-cod .c-status-message__icon{margin-top:4px}.c-cod .c-cod__prompt{font-size:1rem;margin-bottom:16px}.c-article-body .app-article-access,.c-book-body .app-article-access{display:block}@media only screen and (min-width:1024px){.c-article-body .app-article-access,.c-book-body .app-article-access{display:none}}.c-article-body .app-card-service{margin-bottom:32px}@media only screen and (min-width:1024px){.c-article-body .app-card-service{display:none}}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary,.c-cod__row .u-button--primary{background-color:#025e8d;border:2px solid #025e8d;box-shadow:none;font-size:1rem;font-weight:700;gap:8px 8px;justify-content:center;line-height:1.5;padding:8px 24px}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary:hover,.c-cod__row .u-button--primary:hover{background-color:#fff;color:#025e8d}.app-article-access .buybox__buy .u-button--secondary:hover{background-color:#025e8d;color:#fff}.buybox__buy .c-notes__text{color:#666;font-size:.875rem;padding:0 16px 8px}.c-cod__input{flex-basis:auto;width:100%}.c-article-title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:2.25rem;font-weight:700;line-height:1.2;margin:12px 0}.c-reading-companion__figure-item figure{margin:0}@media only screen and (min-width:768px){.c-article-title{margin:16px 0}}.app-article-access{border:1px solid #c5e0f4;border-radius:12px}.app-article-access__heading{border-bottom:1px solid #c5e0f4;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1.125rem;font-weight:700;margin:0;padding:16px;text-align:center}.app-article-access .buybox__info svg{vertical-align:middle}.c-article-body .app-article-access p{margin-bottom:0}.app-article-access .buybox__info{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;margin:0}.app-article-access{margin:0 0 32px}@media only screen and (min-width:1024px){.app-article-access{margin:0 0 24px}}.c-status-message{font-size:1rem}.c-article-body{font-size:1.125rem}.c-article-body dl,.c-article-body ol,.c-article-body p,.c-article-body ul{margin-bottom:32px;margin-top:0}.c-article-access-provider__text:last-of-type,.c-article-body .c-notes__text:last-of-type{margin-bottom:0}.c-article-body ol p,.c-article-body ul p{margin-bottom:16px}.c-article-section__figure-caption{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-reading-companion__figure-item{border-top-color:#c5e0f4}.c-reading-companion__sticky{max-width:400px}.c-article-section .c-article-section__figure-description>*{font-size:1rem;margin-bottom:16px}.c-reading-companion__reference-item{border-top:1px solid #d5d5d5;padding:16px 0}.c-reading-companion__reference-item:first-child{padding-top:0}.c-article-share-box__button,.js .c-article-authors-search__item .c-article-button{background:0 0;border:2px solid #025e8d;border-radius:32px;box-shadow:none;color:#025e8d;font-size:1rem;font-weight:700;line-height:1.5;margin:0;padding:8px 24px;transition:all .2s ease 0s}.c-article-authors-search__item .c-article-button{width:100%}.c-pdf-download .u-button{background-color:#fff;border:2px solid #fff;color:#01324b;justify-content:center}.c-context-bar__container .c-pdf-download .u-button svg,.c-pdf-download .u-button svg{fill:currentcolor}.c-pdf-download .u-button:visited{color:#01324b}.c-pdf-download .u-button:hover{border:4px solid #01324b;box-shadow:none}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background-color:#01324b}.c-pdf-download .u-button:focus svg path,.c-pdf-download .u-button:hover svg path{fill:#fff}.c-context-bar__container .c-pdf-download .u-button{background-image:none;border:2px solid;color:#fff}.c-context-bar__container .c-pdf-download .u-button:visited{color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus{box-shadow:none;outline:0;text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus,.c-context-bar__container .c-pdf-download .u-button:hover{background-color:#fff;background-image:none;color:#01324b}.c-context-bar__container .c-pdf-download .u-button:focus svg path,.c-context-bar__container .c-pdf-download .u-button:hover svg path{fill:#01324b}.c-context-bar__container .c-pdf-download .u-button,.c-pdf-download .u-button{box-shadow:none;font-size:1rem;font-weight:700;line-height:1.5;padding:8px 24px}.c-context-bar__container .c-pdf-download .u-button{background-color:#025e8d}.c-pdf-download .u-button:hover{border:2px solid #fff}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background:0 0;box-shadow:none;color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{border:2px solid #025e8d;box-shadow:none;color:#025e8d}.c-context-bar__container .c-pdf-download .u-button:focus,.c-pdf-download .u-button:focus{border:2px solid #025e8d}.c-article-share-box__button:focus:focus,.c-article__pill-button:focus:focus,.c-context-bar__container .c-pdf-download .u-button:focus:focus,.c-pdf-download .u-button:focus:focus{outline:3px solid #08c;will-change:transform}.c-pdf-download__link .u-icon{padding-top:0}.c-bibliographic-information__column button{margin-bottom:16px}.c-article-body .c-article-author-affiliation__list p,.c-article-body .c-article-author-information__list p,figure{margin:0}.c-article-share-box__button{margin-right:16px}.c-status-message--boxed{border-radius:12px}.c-article-associated-content__collection-title{font-size:1rem}.app-card-service__description,.c-article-body .app-card-service__description{color:#222;margin-bottom:0;margin-top:8px}.app-article-access__subscriptions a,.app-article-access__subscriptions a:visited,.app-book-series-listing__item a,.app-book-series-listing__item a:hover,.app-book-series-listing__item a:visited,.c-article-author-list a,.c-article-author-list a:visited,.c-article-buy-box a,.c-article-buy-box a:visited,.c-article-peer-review a,.c-article-peer-review a:visited,.c-article-satellite-subtitle a,.c-article-satellite-subtitle a:visited,.c-breadcrumbs__link,.c-breadcrumbs__link:hover,.c-breadcrumbs__link:visited{color:#000}.c-article-author-list svg{height:24px;margin:0 0 0 6px;width:24px}.c-article-header{margin-bottom:32px}@media only screen and (min-width:876px){.js .c-ad--conditional{display:block}}.u-lazy-ad-wrapper{background-color:#fff;display:none;min-height:149px}@media only screen and (min-width:876px){.u-lazy-ad-wrapper{display:block}}p.c-ad__label{margin-bottom:4px}.c-ad--728x90{background-color:#fff;border-bottom:2px solid #cedbe0} } </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { .eds-c-header__brand img{height:24px;width:203px}.app-article-masthead__journal-link img{height:93px;width:72px}@media only screen and (min-width:769px){.app-article-masthead__journal-link img{height:161px;width:122px}} } </style> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href=/oscar-static/app-springerlink/css/core-darwin-3c86549cfc.css media="print" onload="this.media='all';this.onload=null"> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href="/oscar-static/app-springerlink/css/enhanced-darwin-article-72ba046d97.css" media="print" onload="this.media='only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)';this.onload=null"> <script type="text/javascript"> config = { env: 'live', site: 'srep.nature.com', siteWithPath: 'srep.nature.com' + window.location.pathname, twitterHashtag: '', cmsPrefix: 'https://studio-cms.springernature.com/studio/', publisherBrand: 'Nature Publishing Group', mustardcut: false }; </script> <script> window.dataLayer = [{"GA Key":"UA-26408784-1","DOI":"10.1038/s41598-024-56742-7","Page":"article","springerJournal":false,"Publishing Model":"Open Access","page":{"attributes":{"environment":"live"}},"Country":"HK","japan":false,"doi":"10.1038-s41598-024-56742-7","Journal Id":41598,"Journal Title":"Scientific Reports","imprint":"Nature Portfolio","Keywords":"Machine learning, Neural network, Nonlinear dynamical system, Reservoir computing","kwrd":["Machine_learning","Neural_network","Nonlinear_dynamical_system","Reservoir_computing"],"Labs":"Y","ksg":"Krux.segments","kuid":"Krux.uid","Has Body":"Y","Features":[],"Open Access":"Y","hasAccess":"Y","bypassPaywall":"N","user":{"license":{"businessPartnerID":[],"businessPartnerIDString":""}},"Access Type":"open","Bpids":"","Bpnames":"","BPID":["1"],"VG Wort Identifier":"vgzm.415900-10.1038-s41598-024-56742-7","Full HTML":"Y","Subject Codes":["SCA","SCA11007","SCA12000"],"pmc":["A","A11007","A12000"],"session":{"authentication":{"loginStatus":"N"},"attributes":{"edition":"academic"}},"content":{"serial":{"eissn":"2045-2322"},"type":"Article","category":{"pmc":{"primarySubject":"Science, Humanities and Social Sciences, multidisciplinary","primarySubjectCode":"A","secondarySubjects":{"1":"Science, Humanities and Social Sciences, multidisciplinary","2":"Science, multidisciplinary"},"secondarySubjectCodes":{"1":"A11007","2":"A12000"}},"sucode":"SC24","articleType":"Article"},"attributes":{"deliveryPlatform":"oscar"}},"Event Category":"Article"}]; </script> <script data-test="springer-link-article-datalayer"> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ ga4MeasurementId: 'G-B3E4QL2TPR', ga360TrackingId: 'UA-26408784-1', twitterId: 'o47a7', baiduId: 'aef3043f025ccf2305af8a194652d70b', ga4ServerUrl: 'https://collect.springer.com', imprint: 'springerlink', page: { attributes:{ featureFlags: [{ name: 'darwin-orion', active: true }, { name: 'chapter-books-recs', active: true } ], darwinAvailable: true } } }); </script> <script> (function(w, d) { w.config = w.config || {}; w.config.mustardcut = false; if (w.matchMedia && w.matchMedia('only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)').matches) { w.config.mustardcut = true; d.classList.add('js'); d.classList.remove('grade-c'); d.classList.remove('no-js'); } })(window, document.documentElement); </script> <script class="js-entry"> if (window.config.mustardcut) { (function(w, d) { window.Component = {}; window.suppressShareButton = false; window.onArticlePage = true; var currentScript = d.currentScript || d.head.querySelector('script.js-entry'); function catchNoModuleSupport() { var scriptEl = d.createElement('script'); return (!('noModule' in scriptEl) && 'onbeforeload' in scriptEl) } var headScripts = [ {'src': '/oscar-static/js/polyfill-es5-bundle-572d4fec60.js', 'async': false} ]; var bodyScripts = [ {'src': '/oscar-static/js/global-article-es5-bundle-dad1690b0d.js', 'async': false, 'module': false}, {'src': '/oscar-static/js/global-article-es6-bundle-e7d03c4cb3.js', 'async': false, 'module': true} ]; function createScript(script) { var scriptEl = d.createElement('script'); scriptEl.src = script.src; scriptEl.async = script.async; if (script.module === true) { scriptEl.type = "module"; if (catchNoModuleSupport()) { scriptEl.src = ''; } } else if (script.module === false) { scriptEl.setAttribute('nomodule', true) } if (script.charset) { scriptEl.setAttribute('charset', script.charset); } return scriptEl; } for (var i = 0; i < headScripts.length; ++i) { var scriptEl = createScript(headScripts[i]); currentScript.parentNode.insertBefore(scriptEl, currentScript.nextSibling); } d.addEventListener('DOMContentLoaded', function() { for (var i = 0; i < bodyScripts.length; ++i) { var scriptEl = createScript(bodyScripts[i]); d.body.appendChild(scriptEl); } }); // Webfont repeat view var config = w.config; if (config && config.publisherBrand && sessionStorage.fontsLoaded === 'true') { d.documentElement.className += ' webfonts-loaded'; } })(window, document); } </script> <script data-src="https://cdn.optimizely.com/js/27195530232.js" data-cc-script="C03"></script> <script data-test="gtm-head"> window.initGTM = function() { if (window.config.mustardcut) { (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({'gtm.start': new Date().getTime(), event: 'gtm.js'}); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-MRVXSHQ'); } } </script> <script> (function (w, d, t) { function cc() { var h = w.location.hostname; var e = d.createElement(t), s = d.getElementsByTagName(t)[0]; if (h.indexOf('springer.com') > -1 && h.indexOf('biomedcentral.com') === -1 && h.indexOf('springeropen.com') === -1) { if (h.indexOf('link-qa.springer.com') > -1 || h.indexOf('test-www.springer.com') > -1) { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('biomedcentral.com') > -1) { if (h.indexOf('biomedcentral.com.qa') > -1) { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springeropen.com') > -1) { if (h.indexOf('springeropen.com.qa') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-34.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-34.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springernature.com') > -1) { if (h.indexOf('beta-qa.springernature.com') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } } else { e.src = '/oscar-static/js/cookie-consent-es5-bundle-cb57c2c98a.js'; e.setAttribute('data-consent', h); } s.insertAdjacentElement('afterend', e); } cc(); })(window, document, 'script'); </script> <link rel="canonical" href="https://www.nature.com/articles/s41598-024-56742-7"/> <script type="application/ld+json">{"mainEntity":{"headline":"Existence of reservoir with finite-dimensional output for universal reservoir computing","description":"In this paper, we prove the existence of a reservoir that has a finite-dimensional output and makes the reservoir computing model universal. Reservoir computing is a method for dynamical system approximation that trains the static part of a model but fixes the dynamical part called the reservoir. Hence, reservoir computing has the advantage of training models with a low computational cost. Moreover, fixed reservoirs can be implemented as physical systems. Such reservoirs have attracted attention in terms of computation speed and energy consumption. The universality of a reservoir computing model is its ability to approximate an arbitrary system with arbitrary accuracy. Two sufficient reservoir conditions to make the model universal have been proposed. The first is the combination of fading memory and the separation property. The second is the neighborhood separation property, which we proposed recently. To date, it has been unknown whether a reservoir with a finite-dimensional output can satisfy these conditions. In this study, we prove that no reservoir with a finite-dimensional output satisfies the former condition. By contrast, we propose a single output reservoir that satisfies the latter condition. This implies that, for any dimension, a reservoir making the model universal exists with the output of that specified dimension. These results clarify the practical importance of our proposed conditions.","datePublished":"2024-04-11T00:00:00Z","dateModified":"2024-04-11T00:00:00Z","pageStart":"1","pageEnd":"10","license":"http://creativecommons.org/licenses/by/4.0/","sameAs":"https://doi.org/10.1038/s41598-024-56742-7","keywords":["Applied mathematics","Computational science","Machine learning","Neural network","Nonlinear dynamical system","Reservoir computing","Science","Humanities and Social Sciences","multidisciplinary"],"image":[],"isPartOf":{"name":"Scientific Reports","issn":["2045-2322"],"volumeNumber":"14","@type":["Periodical","PublicationVolume"]},"publisher":{"name":"Nature Publishing Group UK","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"Shuhei Sugiura","affiliation":[{"name":"Nagoya University","address":{"name":"Graduate School of Engineering, Nagoya University, Nagoya, Japan","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Ryo Ariizumi","affiliation":[{"name":"Tokyo University of Agriculture and Technology","address":{"name":"Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan","@type":"PostalAddress"},"@type":"Organization"}],"email":"ryoariizumi@go.tuat.ac.jp","@type":"Person"},{"name":"Toru Asai","affiliation":[{"name":"Nagoya University","address":{"name":"Graduate School of Engineering, Nagoya University, Nagoya, Japan","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Shun-ichi Azuma","affiliation":[{"name":"Kyoto University","address":{"name":"Graduate School of Informatics, Kyoto University, Kyoto, Japan","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"}],"isAccessibleForFree":true,"@type":"ScholarlyArticle"},"@context":"https://schema.org","@type":"WebPage"}</script> </head> <body class="" > <!-- Google Tag Manager (noscript) --> <noscript> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <!-- Google Tag Manager (noscript) --> <noscript data-test="gtm-body"> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <div class="u-visually-hidden" aria-hidden="true" data-test="darwin-icons"> <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><symbol id="icon-eds-i-accesses-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H15a1 1 0 0 1 0-2h4.455a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM8 13c2.052 0 4.66 1.61 6.36 3.4l.124.141c.333.41.516.925.516 1.459 0 .6-.232 1.178-.64 1.599C12.666 21.388 10.054 23 8 23c-2.052 0-4.66-1.61-6.353-3.393A2.31 2.31 0 0 1 1 18c0-.6.232-1.178.64-1.6C3.34 14.61 5.948 13 8 13Zm0 2c-1.369 0-3.552 1.348-4.917 2.785A.31.31 0 0 0 3 18c0 .083.031.161.09.222C4.447 19.652 6.631 21 8 21c1.37 0 3.556-1.35 4.917-2.785A.31.31 0 0 0 13 18a.32.32 0 0 0-.048-.17l-.042-.052C11.553 16.348 9.369 15 8 15Zm0 1a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-altmetric-medium" viewBox="0 0 24 24"><path d="M12 1c5.978 0 10.843 4.77 10.996 10.712l.004.306-.002.022-.002.248C22.843 18.23 17.978 23 12 23 5.925 23 1 18.075 1 12S5.925 1 12 1Zm-1.726 9.246L8.848 12.53a1 1 0 0 1-.718.461L8.003 13l-4.947.014a9.001 9.001 0 0 0 17.887-.001L16.553 13l-2.205 3.53a1 1 0 0 1-1.735-.068l-.05-.11-2.289-6.106ZM12 3a9.001 9.001 0 0 0-8.947 8.013l4.391-.012L9.652 7.47a1 1 0 0 1 1.784.179l2.288 6.104 1.428-2.283a1 1 0 0 1 .722-.462l.129-.008 4.943.012A9.001 9.001 0 0 0 12 3Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-medium" viewBox="0 0 24 24"><path d="m11.852 20.989.058.007L12 21l.075-.003.126-.017.111-.03.111-.044.098-.052.104-.074.082-.073 6-6a1 1 0 0 0-1.414-1.414L13 17.585v-12.2C13 4.075 11.964 3 10.667 3H4a1 1 0 1 0 0 2h6.667c.175 0 .333.164.333.385v12.2l-4.293-4.292a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l6 6c.035.036.073.068.112.097l.11.071.114.054.105.035.118.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-small" viewBox="0 0 16 16"><path d="M1 2a1 1 0 0 0 1 1h5v8.585L3.707 8.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l5 5 .063.059.093.069.081.048.105.048.104.035.105.022.096.01h.136l.122-.018.113-.03.103-.04.1-.053.102-.07.052-.043 5.04-5.037a1 1 0 1 0-1.415-1.414L9 11.583V3a2 2 0 0 0-2-2H2a1 1 0 0 0-1 1Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-medium" viewBox="0 0 24 24"><path d="m11.852 3.011.058-.007L12 3l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 6 6a1 1 0 1 1-1.414 1.414L13 6.415v12.2C13 19.925 11.964 21 10.667 21H4a1 1 0 0 1 0-2h6.667c.175 0 .333-.164.333-.385v-12.2l-4.293 4.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l6-6c.035-.036.073-.068.112-.097l.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-small" viewBox="0 0 16 16"><path d="M1 13.998a1 1 0 0 1 1-1h5V4.413L3.707 7.705a1 1 0 0 1-1.32.084l-.094-.084a1 1 0 0 1 0-1.414l5-5 .063-.059.093-.068.081-.05.105-.047.104-.035.105-.022L7.94 1l.136.001.122.017.113.03.103.04.1.053.102.07.052.043 5.04 5.037a1 1 0 1 1-1.415 1.414L9 4.415v8.583a2 2 0 0 1-2 2H2a1 1 0 0 1-1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-medium" viewBox="0 0 24 24"><path d="M14 3h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L21 4v6a1 1 0 0 1-2 0V6.414l-4.293 4.293a1 1 0 0 1-1.414-1.414L17.584 5H14a1 1 0 0 1-.993-.883L13 4a1 1 0 0 1 1-1ZM4 13a1 1 0 0 1 1 1v3.584l4.293-4.291a1 1 0 1 1 1.414 1.414L6.414 19H10a1 1 0 0 1 .993.883L11 20a1 1 0 0 1-1 1l-6.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.01 1.01 0 0 1-.097-.112l-.071-.11-.054-.114-.035-.105-.025-.118-.007-.058L3 20v-6a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-small" viewBox="0 0 16 16"><path d="m2 15-.082-.004-.119-.016-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.008 1.008 0 0 1-.097-.112l-.071-.11-.031-.062-.034-.081-.024-.076-.025-.118-.007-.058L1 14.02V9a1 1 0 1 1 2 0v2.584l2.793-2.791a1 1 0 1 1 1.414 1.414L4.414 13H7a1 1 0 0 1 .993.883L8 14a1 1 0 0 1-1 1H2ZM14 1l.081.003.12.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.031.062.034.081.024.076.03.148L15 2v5a1 1 0 0 1-2 0V4.414l-2.96 2.96A1 1 0 1 1 8.626 5.96L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1h5Z"/></symbol><symbol id="icon-eds-i-arrow-down-medium" viewBox="0 0 24 24"><path d="m20.707 12.728-7.99 7.98a.996.996 0 0 1-.561.281l-.157.011a.998.998 0 0 1-.788-.384l-7.918-7.908a1 1 0 0 1 1.414-1.416L11 17.576V4a1 1 0 0 1 2 0v13.598l6.293-6.285a1 1 0 0 1 1.32-.082l.095.083a1 1 0 0 1-.001 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-down-small" viewBox="0 0 16 16"><path d="m1.293 8.707 6 6 .063.059.093.069.081.048.105.049.104.034.056.013.118.017L8 15l.076-.003.122-.017.113-.03.085-.032.063-.03.098-.058.06-.043.05-.043 6.04-6.037a1 1 0 0 0-1.414-1.414L9 11.583V2a1 1 0 1 0-2 0v9.585L2.707 7.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-left-medium" viewBox="0 0 24 24"><path d="m11.272 3.293-7.98 7.99a.996.996 0 0 0-.281.561L3 12.001c0 .32.15.605.384.788l7.908 7.918a1 1 0 0 0 1.416-1.414L6.424 13H20a1 1 0 0 0 0-2H6.402l6.285-6.293a1 1 0 0 0 .082-1.32l-.083-.095a1 1 0 0 0-1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-left-small" viewBox="0 0 16 16"><path d="m7.293 1.293-6 6-.059.063-.069.093-.048.081-.049.105-.034.104-.013.056-.017.118L1 8l.003.076.017.122.03.113.032.085.03.063.058.098.043.06.043.05 6.037 6.04a1 1 0 0 0 1.414-1.414L4.417 9H14a1 1 0 0 0 0-2H4.415l4.292-4.293a1 1 0 0 0 .083-1.32l-.083-.094a1 1 0 0 0-1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-right-medium" viewBox="0 0 24 24"><path d="m12.728 3.293 7.98 7.99a.996.996 0 0 1 .281.561l.011.157c0 .32-.15.605-.384.788l-7.908 7.918a1 1 0 0 1-1.416-1.414L17.576 13H4a1 1 0 0 1 0-2h13.598l-6.285-6.293a1 1 0 0 1-.082-1.32l.083-.095a1 1 0 0 1 1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-right-small" viewBox="0 0 16 16"><path d="m8.707 1.293 6 6 .059.063.069.093.048.081.049.105.034.104.013.056.017.118L15 8l-.003.076-.017.122-.03.113-.032.085-.03.063-.058.098-.043.06-.043.05-6.037 6.04a1 1 0 0 1-1.414-1.414L11.583 9H2a1 1 0 1 1 0-2h9.585L7.293 2.707a1 1 0 0 1-.083-1.32l.083-.094a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-up-medium" viewBox="0 0 24 24"><path d="m3.293 11.272 7.99-7.98a.996.996 0 0 1 .561-.281L12.001 3c.32 0 .605.15.788.384l7.918 7.908a1 1 0 0 1-1.414 1.416L13 6.424V20a1 1 0 0 1-2 0V6.402l-6.293 6.285a1 1 0 0 1-1.32.082l-.095-.083a1 1 0 0 1 .001-1.414Z"/></symbol><symbol id="icon-eds-i-arrow-up-small" viewBox="0 0 16 16"><path d="m1.293 7.293 6-6 .063-.059.093-.069.081-.048.105-.049.104-.034.056-.013.118-.017L8 1l.076.003.122.017.113.03.085.032.063.03.098.058.06.043.05.043 6.04 6.037a1 1 0 0 1-1.414 1.414L9 4.417V14a1 1 0 0 1-2 0V4.415L2.707 8.707a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414Z"/></symbol><symbol id="icon-eds-i-article-medium" viewBox="0 0 24 24"><path d="M8 7a1 1 0 0 0 0 2h4a1 1 0 1 0 0-2H8ZM8 11a1 1 0 1 0 0 2h8a1 1 0 1 0 0-2H8ZM7 16a1 1 0 0 1 1-1h8a1 1 0 1 1 0 2H8a1 1 0 0 1-1-1Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V3.5A2.5 2.5 0 0 0 18.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3H18.5a.5.5 0 0 1 .5.5v16.962c0 .293-.24.538-.546.538H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-book-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v12c0 1.16-.79 2.135-1.86 2.418l-.14.031V21h1a1 1 0 0 1 .993.883L21 22a1 1 0 0 1-1 1H6.5A3.5 3.5 0 0 1 3 19.5v-15A3.5 3.5 0 0 1 6.5 1h12ZM17 18H6.5a1.5 1.5 0 0 0-1.493 1.356L5 19.5A1.5 1.5 0 0 0 6.5 21H17v-3Zm1.5-15h-12A1.5 1.5 0 0 0 5 4.5v11.837l.054-.025a3.481 3.481 0 0 1 1.254-.307L6.5 16h12a.5.5 0 0 0 .492-.41L19 15.5v-12a.5.5 0 0 0-.5-.5ZM15 6a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-book-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M1 3.786C1 2.759 1.857 2 2.82 2H6.18c.964 0 1.82.759 1.82 1.786V4h3.168c.668 0 1.298.364 1.616.938.158-.109.333-.195.523-.252l3.216-.965c.923-.277 1.962.204 2.257 1.187l4.146 13.82c.296.984-.307 1.957-1.23 2.234l-3.217.965c-.923.277-1.962-.203-2.257-1.187L13 10.005v10.21c0 1.04-.878 1.785-1.834 1.785H7.833c-.291 0-.575-.07-.83-.195A1.849 1.849 0 0 1 6.18 22H2.821C1.857 22 1 21.241 1 20.214V3.786ZM3 4v11h3V4H3Zm0 16v-3h3v3H3Zm15.075-.04-.814-2.712 2.874-.862.813 2.712-2.873.862Zm1.485-5.49-2.874.862-2.634-8.782 2.873-.862 2.635 8.782ZM8 20V6h3v14H8Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-calendar-acceptance-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-.534 7.747a1 1 0 0 1 .094 1.412l-4.846 5.538a1 1 0 0 1-1.352.141l-2.77-2.076a1 1 0 0 1 1.2-1.6l2.027 1.519 4.236-4.84a1 1 0 0 1 1.411-.094ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-date-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1ZM8 15a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm-4-4a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-decision-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-2.935 8.246 2.686 2.645c.34.335.34.883 0 1.218l-2.686 2.645a.858.858 0 0 1-1.213-.009.854.854 0 0 1 .009-1.21l1.05-1.035H7.984a.992.992 0 0 1-.984-1c0-.552.44-1 .984-1h5.928l-1.051-1.036a.854.854 0 0 1-.085-1.121l.076-.088a.858.858 0 0 1 1.213-.009ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-impact-factor-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-3.2 6.924a.48.48 0 0 1 .125.544l-1.52 3.283h2.304c.27 0 .491.215.491.483a.477.477 0 0 1-.13.327l-4.18 4.484a.498.498 0 0 1-.69.031.48.48 0 0 1-.125-.544l1.52-3.284H9.291a.487.487 0 0 1-.491-.482c0-.121.047-.238.13-.327l4.18-4.484a.498.498 0 0 1 .69-.031ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-call-papers-medium" viewBox="0 0 24 24"><g><path d="m20.707 2.883-1.414 1.414a1 1 0 0 0 1.414 1.414l1.414-1.414a1 1 0 0 0-1.414-1.414Z"/><path d="M6 16.054c0 2.026 1.052 2.943 3 2.943a1 1 0 1 1 0 2c-2.996 0-5-1.746-5-4.943v-1.227a4.068 4.068 0 0 1-1.83-1.189 4.553 4.553 0 0 1-.87-1.455 4.868 4.868 0 0 1-.3-1.686c0-1.17.417-2.298 1.17-3.14.38-.426.834-.767 1.338-1 .51-.237 1.06-.36 1.617-.36L6.632 6H7l7.932-2.895A2.363 2.363 0 0 1 18 5.36v9.28a2.36 2.36 0 0 1-3.069 2.25l.084.03L7 14.997H6v1.057Zm9.637-11.057a.415.415 0 0 0-.083.008L8 7.638v5.536l7.424 1.786.104.02c.035.01.072.02.109.02.2 0 .363-.16.363-.36V5.36c0-.2-.163-.363-.363-.363Zm-9.638 3h-.874a1.82 1.82 0 0 0-.625.111l-.15.063a2.128 2.128 0 0 0-.689.517c-.42.47-.661 1.123-.661 1.81 0 .34.06.678.176.992.114.308.28.585.485.816.4.447.925.691 1.464.691h.874v-5Z" clip-rule="evenodd"/><path d="M20 8.997h2a1 1 0 1 1 0 2h-2a1 1 0 1 1 0-2ZM20.707 14.293l1.414 1.414a1 1 0 0 1-1.414 1.414l-1.414-1.414a1 1 0 0 1 1.414-1.414Z"/></g></symbol><symbol id="icon-eds-i-card-medium" viewBox="0 0 24 24"><path d="M19.615 2c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23Zm0 2H4.385c-.213 0-.265.034-.317.14A.71.71 0 0 0 4 4.385v15.23c0 .213.034.265.14.317a.71.71 0 0 0 .245.068h15.23c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM17 16a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm0-3a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm-.5-7A1.5 1.5 0 0 1 18 7.5v3a1.5 1.5 0 0 1-1.5 1.5h-9A1.5 1.5 0 0 1 6 10.5v-3A1.5 1.5 0 0 1 7.5 6h9ZM16 8H8v2h8V8Z"/></symbol><symbol id="icon-eds-i-cart-medium" viewBox="0 0 24 24"><path d="M5.76 1a1 1 0 0 1 .994.902L7.155 6h13.34c.18 0 .358.02.532.057l.174.045a2.5 2.5 0 0 1 1.693 3.103l-2.069 7.03c-.36 1.099-1.398 1.823-2.49 1.763H8.65c-1.272.015-2.352-.927-2.546-2.244L4.852 3H2a1 1 0 0 1-.993-.883L1 2a1 1 0 0 1 1-1h3.76Zm2.328 14.51a.555.555 0 0 0 .55.488l9.751.001a.533.533 0 0 0 .527-.357l2.059-7a.5.5 0 0 0-.48-.642H7.351l.737 7.51ZM18 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4ZM8 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-check-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm5.125 4.72a1 1 0 0 1 .156 1.405l-6 7.5a1 1 0 0 1-1.421.143l-3-2.5a1 1 0 0 1 1.28-1.536l2.217 1.846 5.362-6.703a1 1 0 0 1 1.406-.156Z"/></symbol><symbol id="icon-eds-i-check-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm5.125 6.72a1 1 0 0 0-1.406.155l-5.362 6.703-2.217-1.846a1 1 0 1 0-1.28 1.536l3 2.5a1 1 0 0 0 1.42-.143l6-7.5a1 1 0 0 0-.155-1.406Z"/></symbol><symbol id="icon-eds-i-chevron-down-medium" viewBox="0 0 24 24"><path d="M3.305 8.28a1 1 0 0 0-.024 1.415l7.495 7.762c.314.345.757.543 1.224.543.467 0 .91-.198 1.204-.522l7.515-7.783a1 1 0 1 0-1.438-1.39L12 15.845l-7.28-7.54A1 1 0 0 0 3.4 8.2l-.096.082Z"/></symbol><symbol id="icon-eds-i-chevron-down-small" viewBox="0 0 16 16"><path d="M13.692 5.278a1 1 0 0 1 .03 1.414L9.103 11.51a1.491 1.491 0 0 1-2.188.019L2.278 6.692a1 1 0 0 1 1.444-1.384L8 9.771l4.278-4.463a1 1 0 0 1 1.318-.111l.096.081Z"/></symbol><symbol id="icon-eds-i-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.72 3.305a1 1 0 0 0-1.415-.024l-7.762 7.495A1.655 1.655 0 0 0 6 12c0 .467.198.91.522 1.204l7.783 7.515a1 1 0 1 0 1.39-1.438L8.155 12l7.54-7.28A1 1 0 0 0 15.8 3.4l-.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-left-small" viewBox="0 0 16 16"><path d="M10.722 2.308a1 1 0 0 0-1.414-.03L4.49 6.897a1.491 1.491 0 0 0-.019 2.188l4.838 4.637a1 1 0 1 0 1.384-1.444L6.229 8l4.463-4.278a1 1 0 0 0 .111-1.318l-.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28 3.305a1 1 0 0 1 1.415-.024l7.762 7.495c.345.314.543.757.543 1.224 0 .467-.198.91-.522 1.204l-7.783 7.515a1 1 0 1 1-1.39-1.438L15.845 12l-7.54-7.28A1 1 0 0 1 8.2 3.4l.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-small" viewBox="0 0 16 16"><path d="M5.278 2.308a1 1 0 0 1 1.414-.03l4.819 4.619a1.491 1.491 0 0 1 .019 2.188l-4.838 4.637a1 1 0 1 1-1.384-1.444L9.771 8 5.308 3.722a1 1 0 0 1-.111-1.318l.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-up-medium" viewBox="0 0 24 24"><path d="M20.695 15.72a1 1 0 0 0 .024-1.415l-7.495-7.762A1.655 1.655 0 0 0 12 6c-.467 0-.91.198-1.204.522l-7.515 7.783a1 1 0 1 0 1.438 1.39L12 8.155l7.28 7.54a1 1 0 0 0 1.319.106l.096-.082Z"/></symbol><symbol id="icon-eds-i-chevron-up-small" viewBox="0 0 16 16"><path d="M13.692 10.722a1 1 0 0 0 .03-1.414L9.103 4.49a1.491 1.491 0 0 0-2.188-.019L2.278 9.308a1 1 0 0 0 1.444 1.384L8 6.229l4.278 4.463a1 1 0 0 0 1.318.111l.096-.081Z"/></symbol><symbol id="icon-eds-i-citations-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742h-5.843a1 1 0 1 1 0-2h5.843a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM5.483 14.35c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Zm5 0c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Z"/></symbol><symbol id="icon-eds-i-clipboard-check-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-1.909 4.205a1 1 0 0 1 .19 1.401l-5.334 7a1 1 0 0 1-1.344.23l-2.667-1.75a1 1 0 1 1 1.098-1.672l1.887 1.238 4.769-6.258a1 1 0 0 1 1.401-.19ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-clipboard-report-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-2.658 10.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857Zm0-3.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-close-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM8.707 7.293 12 10.585l3.293-3.292a1 1 0 0 1 1.414 1.414L13.415 12l3.292 3.293a1 1 0 0 1-1.414 1.414L12 13.415l-3.293 3.292a1 1 0 1 1-1.414-1.414L10.585 12 7.293 8.707a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-cloud-upload-medium" viewBox="0 0 24 24"><path d="m12.852 10.011.028-.004L13 10l.075.003.126.017.086.022.136.052.098.052.104.074.082.073 3 3a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L14 13.416V20a1 1 0 0 1-2 0v-6.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l3-3 .112-.097.11-.071.114-.054.105-.035.118-.025Zm.587-7.962c3.065.362 5.497 2.662 5.992 5.562l.013.085.207.073c2.117.782 3.496 2.845 3.337 5.097l-.022.226c-.297 2.561-2.503 4.491-5.124 4.502a1 1 0 1 1-.009-2c1.619-.007 2.967-1.186 3.147-2.733.179-1.542-.86-2.979-2.487-3.353-.512-.149-.894-.579-.981-1.165-.21-2.237-2-4.035-4.308-4.308-2.31-.273-4.497 1.06-5.25 3.19l-.049.113c-.234.468-.718.756-1.176.743-1.418.057-2.689.857-3.32 2.084a3.668 3.668 0 0 0 .262 3.798c.796 1.136 2.169 1.764 3.583 1.635a1 1 0 1 1 .182 1.992c-2.125.194-4.193-.753-5.403-2.48a5.668 5.668 0 0 1-.403-5.86c.85-1.652 2.449-2.79 4.323-3.092l.287-.039.013-.028c1.207-2.741 4.125-4.404 7.186-4.042Z"/></symbol><symbol id="icon-eds-i-collection-medium" viewBox="0 0 24 24"><path d="M21 7a1 1 0 0 1 1 1v12.5a2.5 2.5 0 0 1-2.5 2.5H8a1 1 0 0 1 0-2h11.5a.5.5 0 0 0 .5-.5V8a1 1 0 0 1 1-1Zm-5.5-5A2.5 2.5 0 0 1 18 4.5v12a2.5 2.5 0 0 1-2.5 2.5h-11A2.5 2.5 0 0 1 2 16.5v-12A2.5 2.5 0 0 1 4.5 2h11Zm0 2h-11a.5.5 0 0 0-.5.5v12a.5.5 0 0 0 .5.5h11a.5.5 0 0 0 .5-.5v-12a.5.5 0 0 0-.5-.5ZM13 13a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6Zm0-3.5a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6ZM13 6a1 1 0 0 1 0 2H7a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-conference-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M4.5 2A2.5 2.5 0 0 0 2 4.5v11A2.5 2.5 0 0 0 4.5 18h2.37l-2.534 2.253a1 1 0 0 0 1.328 1.494L9.88 18H11v3a1 1 0 1 0 2 0v-3h1.12l4.216 3.747a1 1 0 0 0 1.328-1.494L17.13 18h2.37a2.5 2.5 0 0 0 2.5-2.5v-11A2.5 2.5 0 0 0 19.5 2h-15ZM20 6V4.5a.5.5 0 0 0-.5-.5h-15a.5.5 0 0 0-.5.5V6h16ZM4 8v7.5a.5.5 0 0 0 .5.5h15a.5.5 0 0 0 .5-.5V8H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-delivery-medium" viewBox="0 0 24 24"><path d="M8.51 20.598a3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 4.161 19L3.5 19A2.5 2.5 0 0 1 1 16.5v-11A2.5 2.5 0 0 1 3.5 3h10a2.5 2.5 0 0 1 2.45 2.004L16 5h2.527c.976 0 1.855.585 2.27 1.49l2.112 4.62a1 1 0 0 1 .091.416v4.856C23 17.814 21.889 19 20.484 19h-.523a1.01 1.01 0 0 1-.121-.007 2.96 2.96 0 0 1-1.33 1.605 3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 14.161 19H9.838a2.968 2.968 0 0 1-1.327 1.597Zm-2.024-3.462a.955.955 0 0 0-.481.73L5.999 18l.001.022a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0A.97.97 0 0 0 8 17.978a.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0Zm10 0a.955.955 0 0 0-.481.73l-.005.156a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0a.97.97 0 0 0 .486-.886.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0ZM21 12h-5v3.17a3.038 3.038 0 0 1 2.51.232 2.993 2.993 0 0 1 1.277 1.45l.058.155.058-.005.581-.002c.27 0 .516-.263.516-.618V12Zm-7.5-7h-10a.5.5 0 0 0-.5.5v11a.5.5 0 0 0 .5.5h.662a2.964 2.964 0 0 1 1.155-1.491l.172-.107a3.037 3.037 0 0 1 3.022 0A2.987 2.987 0 0 1 9.843 17H13.5a.5.5 0 0 0 .5-.5v-11a.5.5 0 0 0-.5-.5Zm5.027 2H16v3h4.203l-1.224-2.677a.532.532 0 0 0-.375-.316L18.527 7Z"/></symbol><symbol id="icon-eds-i-download-medium" viewBox="0 0 24 24"><path d="M22 18.5a3.5 3.5 0 0 1-3.5 3.5h-13A3.5 3.5 0 0 1 2 18.5V18a1 1 0 0 1 2 0v.5A1.5 1.5 0 0 0 5.5 20h13a1.5 1.5 0 0 0 1.5-1.5V18a1 1 0 0 1 2 0v.5Zm-3.293-7.793-6 6-.063.059-.093.069-.081.048-.105.049-.104.034-.056.013-.118.017L12 17l-.076-.003-.122-.017-.113-.03-.085-.032-.063-.03-.098-.058-.06-.043-.05-.043-6.04-6.037a1 1 0 0 1 1.414-1.414l4.294 4.29L11 3a1 1 0 0 1 2 0l.001 10.585 4.292-4.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414Z"/></symbol><symbol id="icon-eds-i-edit-medium" viewBox="0 0 24 24"><path d="M17.149 2a2.38 2.38 0 0 1 1.699.711l2.446 2.46a2.384 2.384 0 0 1 .005 3.38L10.01 19.906a1 1 0 0 1-.434.257l-6.3 1.8a1 1 0 0 1-1.237-1.237l1.8-6.3a1 1 0 0 1 .257-.434L15.443 2.718A2.385 2.385 0 0 1 17.15 2Zm-3.874 5.689-7.586 7.536-1.234 4.319 4.318-1.234 7.54-7.582-3.038-3.039ZM17.149 4a.395.395 0 0 0-.286.126L14.695 6.28l3.029 3.029 2.162-2.173a.384.384 0 0 0 .106-.197L20 6.864c0-.103-.04-.2-.119-.278l-2.457-2.47A.385.385 0 0 0 17.149 4Z"/></symbol><symbol id="icon-eds-i-education-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M12.41 2.088a1 1 0 0 0-.82 0l-10 4.5a1 1 0 0 0 0 1.824L3 9.047v7.124A3.001 3.001 0 0 0 4 22a3 3 0 0 0 1-5.83V9.948l1 .45V14.5a1 1 0 0 0 .087.408L7 14.5c-.913.408-.912.41-.912.41l.001.003.003.006.007.015a1.988 1.988 0 0 0 .083.16c.054.097.131.225.236.373.21.297.53.68.993 1.057C8.351 17.292 9.824 18 12 18c2.176 0 3.65-.707 4.589-1.476.463-.378.783-.76.993-1.057a4.162 4.162 0 0 0 .319-.533l.007-.015.003-.006v-.003h.002s0-.002-.913-.41l.913.408A1 1 0 0 0 18 14.5v-4.103l4.41-1.985a1 1 0 0 0 0-1.824l-10-4.5ZM16 11.297l-3.59 1.615a1 1 0 0 1-.82 0L8 11.297v2.94a3.388 3.388 0 0 0 .677.739C9.267 15.457 10.294 16 12 16s2.734-.543 3.323-1.024a3.388 3.388 0 0 0 .677-.739v-2.94ZM4.437 7.5 12 4.097 19.563 7.5 12 10.903 4.437 7.5ZM3 19a1 1 0 1 1 2 0 1 1 0 0 1-2 0Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-error-diamond-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008Zm0 2a.646.646 0 0 0-.38.123l-.093.08-8.34 8.34a.646.646 0 0 0-.18.355L3 12c0 .171.068.336.19.457l8.353 8.354a.646.646 0 0 0 .914 0l8.354-8.354a.646.646 0 0 0-.001-.914l-8.351-8.354A.646.646 0 0 0 12.002 3ZM12 14.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-error-filled-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008ZM12 14.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-eds-i-external-link-medium" viewBox="0 0 24 24"><path d="M9 2a1 1 0 1 1 0 2H4.6c-.371 0-.6.209-.6.5v15c0 .291.229.5.6.5h14.8c.371 0 .6-.209.6-.5V15a1 1 0 0 1 2 0v4.5c0 1.438-1.162 2.5-2.6 2.5H4.6C3.162 22 2 20.938 2 19.5v-15C2 3.062 3.162 2 4.6 2H9Zm6 0h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L22 3v6a1 1 0 0 1-2 0V5.414l-6.693 6.693a1 1 0 0 1-1.414-1.414L18.584 4H15a1 1 0 0 1-.993-.883L14 3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-external-link-small" viewBox="0 0 16 16"><path d="M5 1a1 1 0 1 1 0 2l-2-.001V13L13 13v-2a1 1 0 0 1 2 0v2c0 1.15-.93 2-2.067 2H3.067C1.93 15 1 14.15 1 13V3c0-1.15.93-2 2.067-2H5Zm4 0h5l.075.003.126.017.111.03.111.044.098.052.096.067.09.08.044.047.073.093.051.083.054.113.035.105.03.148L15 2v5a1 1 0 0 1-2 0V4.414L9.107 8.307a1 1 0 0 1-1.414-1.414L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-download-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM12 7a1 1 0 0 1 1 1v6.585l2.293-2.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-4 4a1.008 1.008 0 0 1-.112.097l-.11.071-.114.054-.105.035-.149.03L12 18l-.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08-4-4a1 1 0 0 1 1.414-1.414L11 14.585V8a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-report-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H5.545c-.674 0-1.32-.267-1.798-.742A2.535 2.535 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .142.057.278.158.379.102.102.242.159.387.159h12.91a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.915L14.085 3ZM16 17a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-3a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-4.793-6.207L13 9.585l1.793-1.792a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-2.5 2.5a1 1 0 0 1-1.414 0L10.5 9.915l-1.793 1.792a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l2.5-2.5a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-file-text-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM16 15a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-4a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-5-4a1 1 0 0 1 0 2H8a1 1 0 1 1 0-2h3Z"/></symbol><symbol id="icon-eds-i-file-upload-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3Zm-2.233 4.011.058-.007L12 7l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 4 4a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L13 10.415V17a1 1 0 0 1-2 0v-6.585l-2.293 2.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l4-4 .112-.097.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-filter-medium" viewBox="0 0 24 24"><path d="M21 2a1 1 0 0 1 .82 1.573L15 13.314V18a1 1 0 0 1-.31.724l-.09.076-4 3A1 1 0 0 1 9 21v-7.684L2.18 3.573a1 1 0 0 1 .707-1.567L3 2h18Zm-1.921 2H4.92l5.9 8.427a1 1 0 0 1 .172.45L11 13v6l2-1.5V13a1 1 0 0 1 .117-.469l.064-.104L19.079 4Z"/></symbol><symbol id="icon-eds-i-funding-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M23 8A7 7 0 1 0 9 8a7 7 0 0 0 14 0ZM9.006 12.225A4.07 4.07 0 0 0 6.12 11.02H2a.979.979 0 1 0 0 1.958h4.12c.558 0 1.094.222 1.489.617l2.207 2.288c.27.27.27.687.012.944a.656.656 0 0 1-.928 0L7.744 15.67a.98.98 0 0 0-1.386 1.384l1.157 1.158c.535.536 1.244.791 1.946.765l.041.002h6.922c.874 0 1.597.748 1.597 1.688 0 .203-.146.354-.309.354H7.755c-.487 0-.96-.178-1.339-.504L2.64 17.259a.979.979 0 0 0-1.28 1.482L5.137 22c.733.631 1.66.979 2.618.979h9.957c1.26 0 2.267-1.043 2.267-2.312 0-2.006-1.584-3.646-3.555-3.646h-4.529a2.617 2.617 0 0 0-.681-2.509l-2.208-2.287ZM16 3a5 5 0 1 0 0 10 5 5 0 0 0 0-10Zm.979 3.5a.979.979 0 1 0-1.958 0v3a.979.979 0 1 0 1.958 0v-3Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-hashtag-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM9.52 18.189a1 1 0 1 1-1.964-.378l.437-2.274H6a1 1 0 1 1 0-2h2.378l.592-3.076H6a1 1 0 0 1 0-2h3.354l.51-2.65a1 1 0 1 1 1.964.378l-.437 2.272h3.04l.51-2.65a1 1 0 1 1 1.964.378l-.438 2.272H18a1 1 0 0 1 0 2h-1.917l-.592 3.076H18a1 1 0 0 1 0 2h-2.893l-.51 2.652a1 1 0 1 1-1.964-.378l.437-2.274h-3.04l-.51 2.652Zm.895-4.652h3.04l.591-3.076h-3.04l-.591 3.076Z"/></symbol><symbol id="icon-eds-i-home-medium" viewBox="0 0 24 24"><path d="M5 22a1 1 0 0 1-1-1v-8.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l10-10a1 1 0 0 1 1.414 0l10 10a1 1 0 0 1-1.414 1.414L20 12.415V21a1 1 0 0 1-1 1H5Zm7-17.585-6 5.999V20h5v-4a1 1 0 0 1 2 0v4h5v-9.585l-6-6Z"/></symbol><symbol id="icon-eds-i-image-medium" viewBox="0 0 24 24"><path d="M19.615 2A2.385 2.385 0 0 1 22 4.385v15.23A2.385 2.385 0 0 1 19.615 22H4.385A2.385 2.385 0 0 1 2 19.615V4.385A2.385 2.385 0 0 1 4.385 2h15.23Zm0 2H4.385A.385.385 0 0 0 4 4.385v15.23c0 .213.172.385.385.385h1.244l10.228-8.76a1 1 0 0 1 1.254-.037L20 13.392V4.385A.385.385 0 0 0 19.615 4Zm-3.07 9.283L8.703 20h10.912a.385.385 0 0 0 .385-.385v-3.713l-3.455-2.619ZM9.5 6a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-impact-factor-medium" viewBox="0 0 24 24"><path d="M16.49 2.672c.74.694.986 1.765.632 2.712l-.04.1-1.549 3.54h1.477a2.496 2.496 0 0 1 2.485 2.34l.005.163c0 .618-.23 1.21-.642 1.675l-7.147 7.961a2.48 2.48 0 0 1-3.554.165 2.512 2.512 0 0 1-.633-2.712l.042-.103L9.108 15H7.46c-1.393 0-2.379-1.11-2.455-2.369L5 12.473c0-.593.142-1.145.628-1.692l7.307-7.944a2.48 2.48 0 0 1 3.555-.165ZM14.43 4.164l-7.33 7.97c-.083.093-.101.214-.101.34 0 .277.19.526.46.526h4.163l.097-.009c.015 0 .03.003.046.009.181.078.264.32.186.5l-2.554 5.817a.512.512 0 0 0 .127.552.48.48 0 0 0 .69-.033l7.155-7.97a.513.513 0 0 0 .13-.34.497.497 0 0 0-.49-.502h-3.988a.355.355 0 0 1-.328-.497l2.555-5.844a.512.512 0 0 0-.127-.552.48.48 0 0 0-.69.033Z"/></symbol><symbol id="icon-eds-i-info-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 7a1 1 0 0 1 1 1v5h1.5a1 1 0 0 1 0 2h-5a1 1 0 0 1 0-2H11v-4h-.5a1 1 0 0 1-.993-.883L9.5 11a1 1 0 0 1 1-1H12Zm0-4.5a1.5 1.5 0 0 1 .144 2.993L12 8.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-info-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 9h-1.5a1 1 0 0 0-1 1l.007.117A1 1 0 0 0 10.5 12h.5v4H9.5a1 1 0 0 0 0 2h5a1 1 0 0 0 0-2H13v-5a1 1 0 0 0-1-1Zm0-4.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 5.5Z"/></symbol><symbol id="icon-eds-i-journal-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v14a2.5 2.5 0 0 1-2.5 2.5h-13a.5.5 0 1 0 0 1H20a1 1 0 0 1 0 2H5.5A2.5 2.5 0 0 1 3 20.5v-17A2.5 2.5 0 0 1 5.5 1h13ZM7 3H5.5a.5.5 0 0 0-.5.5v14.549l.016-.002c.104-.02.211-.035.32-.042L5.5 18H7V3Zm11.5 0H9v15h9.5a.5.5 0 0 0 .5-.5v-14a.5.5 0 0 0-.5-.5ZM16 5a1 1 0 0 1 1 1v4a1 1 0 0 1-1 1h-5a1 1 0 0 1-1-1V6a1 1 0 0 1 1-1h5Zm-1 2h-3v2h3V7Z"/></symbol><symbol id="icon-eds-i-mail-medium" viewBox="0 0 24 24"><path d="M20.462 3C21.875 3 23 4.184 23 5.619v12.762C23 19.816 21.875 21 20.462 21H3.538C2.125 21 1 19.816 1 18.381V5.619C1 4.184 2.125 3 3.538 3h16.924ZM21 8.158l-7.378 6.258a2.549 2.549 0 0 1-3.253-.008L3 8.16v10.222c0 .353.253.619.538.619h16.924c.285 0 .538-.266.538-.619V8.158ZM20.462 5H3.538c-.264 0-.5.228-.534.542l8.65 7.334c.2.165.492.165.684.007l8.656-7.342-.001-.025c-.044-.3-.274-.516-.531-.516Z"/></symbol><symbol id="icon-eds-i-mail-send-medium" viewBox="0 0 24 24"><path d="M20.444 5a2.562 2.562 0 0 1 2.548 2.37l.007.078.001.123v7.858A2.564 2.564 0 0 1 20.444 18H9.556A2.564 2.564 0 0 1 7 15.429l.001-7.977.007-.082A2.561 2.561 0 0 1 9.556 5h10.888ZM21 9.331l-5.46 3.51a1 1 0 0 1-1.08 0L9 9.332v6.097c0 .317.251.571.556.571h10.888a.564.564 0 0 0 .556-.571V9.33ZM20.444 7H9.556a.543.543 0 0 0-.32.105l5.763 3.706 5.766-3.706a.543.543 0 0 0-.32-.105ZM4.308 5a1 1 0 1 1 0 2H2a1 1 0 1 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Z"/></symbol><symbol id="icon-eds-i-mentions-medium" viewBox="0 0 24 24"><path d="m9.452 1.293 5.92 5.92 2.92-2.92a1 1 0 0 1 1.415 1.414l-2.92 2.92 5.92 5.92a1 1 0 0 1 0 1.415 10.371 10.371 0 0 1-10.378 2.584l.652 3.258A1 1 0 0 1 12 23H2a1 1 0 0 1-.874-1.486l4.789-8.62C4.194 9.074 4.9 4.43 8.038 1.292a1 1 0 0 1 1.414 0Zm-2.355 13.59L3.699 21h7.081l-.689-3.442a10.392 10.392 0 0 1-2.775-2.396l-.22-.28Zm1.69-11.427-.07.09a8.374 8.374 0 0 0 11.737 11.737l.089-.071L8.787 3.456Z"/></symbol><symbol id="icon-eds-i-menu-medium" viewBox="0 0 24 24"><path d="M21 4a1 1 0 0 1 0 2H3a1 1 0 1 1 0-2h18Zm-4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h14Zm4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h18Z"/></symbol><symbol id="icon-eds-i-metrics-medium" viewBox="0 0 24 24"><path d="M3 22a1 1 0 0 1-1-1V3a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v7h4V8a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v13a1 1 0 0 1-.883.993L21 22H3Zm17-2V9h-4v11h4Zm-6-8h-4v8h4v-8ZM8 4H4v16h4V4Z"/></symbol><symbol id="icon-eds-i-news-medium" viewBox="0 0 24 24"><path d="M17.384 3c.975 0 1.77.787 1.77 1.762v13.333c0 .462.354.846.815.899l.107.006.109-.006a.915.915 0 0 0 .809-.794l.006-.105V8.19a1 1 0 0 1 2 0v9.905A2.914 2.914 0 0 1 20.077 21H3.538a2.547 2.547 0 0 1-1.644-.601l-.147-.135A2.516 2.516 0 0 1 1 18.476V4.762C1 3.787 1.794 3 2.77 3h14.614Zm-.231 2H3v13.476c0 .11.035.216.1.304l.054.063c.101.1.24.157.384.157l13.761-.001-.026-.078a2.88 2.88 0 0 1-.115-.655l-.004-.17L17.153 5ZM14 15.021a.979.979 0 1 1 0 1.958H6a.979.979 0 1 1 0-1.958h8Zm0-8c.54 0 .979.438.979.979v4c0 .54-.438.979-.979.979H6A.979.979 0 0 1 5.021 12V8c0-.54.438-.979.979-.979h8Zm-.98 1.958H6.979v2.041h6.041V8.979Z"/></symbol><symbol id="icon-eds-i-newsletter-medium" viewBox="0 0 24 24"><path d="M21 10a1 1 0 0 1 1 1v9.5a2.5 2.5 0 0 1-2.5 2.5h-15A2.5 2.5 0 0 1 2 20.5V11a1 1 0 0 1 2 0v.439l8 4.888 8-4.889V11a1 1 0 0 1 1-1Zm-1 3.783-7.479 4.57a1 1 0 0 1-1.042 0l-7.48-4.57V20.5a.5.5 0 0 0 .501.5h15a.5.5 0 0 0 .5-.5v-6.717ZM15 9a1 1 0 0 1 0 2H9a1 1 0 0 1 0-2h6Zm2.5-8A2.5 2.5 0 0 1 20 3.5V9a1 1 0 0 1-2 0V3.5a.5.5 0 0 0-.5-.5h-11a.5.5 0 0 0-.5.5V9a1 1 0 1 1-2 0V3.5A2.5 2.5 0 0 1 6.5 1h11ZM15 5a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-notifcation-medium" viewBox="0 0 24 24"><path d="M14 20a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM3 18l-.133-.007c-1.156-.124-1.156-1.862 0-1.986l.3-.012C4.32 15.923 5 15.107 5 14V9.5C5 5.368 8.014 2 12 2s7 3.368 7 7.5V14c0 1.107.68 1.923 1.832 1.995l.301.012c1.156.124 1.156 1.862 0 1.986L21 18H3Zm9-14C9.17 4 7 6.426 7 9.5V14c0 .671-.146 1.303-.416 1.858L6.51 16h10.979l-.073-.142a4.192 4.192 0 0 1-.412-1.658L17 14V9.5C17 6.426 14.83 4 12 4Z"/></symbol><symbol id="icon-eds-i-publish-medium" viewBox="0 0 24 24"><g><path d="M16.296 1.291A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V13a1 1 0 1 0 2 0V3.538l.007-.087A.543.543 0 0 1 5.545 3h9.633L20 7.8v12.662a.534.534 0 0 1-.158.379.548.548 0 0 1-.387.159H11a1 1 0 1 0 0 2h8.455c.674 0 1.32-.267 1.798-.742A2.534 2.534 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385Z"/><path d="M10.762 16.647a1 1 0 0 0-1.525-1.294l-4.472 5.271-2.153-1.665a1 1 0 1 0-1.224 1.582l2.91 2.25a1 1 0 0 0 1.374-.144l5.09-6ZM16 10a1 1 0 1 1 0 2H8a1 1 0 1 1 0-2h8ZM12 7a1 1 0 0 0-1-1H8a1 1 0 1 0 0 2h3a1 1 0 0 0 1-1Z"/></g></symbol><symbol id="icon-eds-i-refresh-medium" viewBox="0 0 24 24"><g><path d="M7.831 5.636H6.032A8.76 8.76 0 0 1 9 3.631 8.549 8.549 0 0 1 12.232 3c.603 0 1.192.063 1.76.182C17.979 4.017 21 7.632 21 12a1 1 0 1 0 2 0c0-5.296-3.674-9.746-8.591-10.776A10.61 10.61 0 0 0 5 3.851V2.805a1 1 0 0 0-.987-1H4a1 1 0 0 0-1 1v3.831a1 1 0 0 0 1 1h3.831a1 1 0 0 0 .013-2h-.013ZM17.968 18.364c-1.59 1.632-3.784 2.636-6.2 2.636C6.948 21 3 16.993 3 12a1 1 0 1 0-2 0c0 6.053 4.799 11 10.768 11 2.788 0 5.324-1.082 7.232-2.85v1.045a1 1 0 1 0 2 0v-3.831a1 1 0 0 0-1-1h-3.831a1 1 0 0 0 0 2h1.799Z"/></g></symbol><symbol id="icon-eds-i-search-medium" viewBox="0 0 24 24"><path d="M11 1c5.523 0 10 4.477 10 10 0 2.4-.846 4.604-2.256 6.328l3.963 3.965a1 1 0 0 1-1.414 1.414l-3.965-3.963A9.959 9.959 0 0 1 11 21C5.477 21 1 16.523 1 11S5.477 1 11 1Zm0 2a8 8 0 1 0 0 16 8 8 0 0 0 0-16Z"/></symbol><symbol id="icon-eds-i-settings-medium" viewBox="0 0 24 24"><path d="M11.382 1h1.24a2.508 2.508 0 0 1 2.334 1.63l.523 1.378 1.59.933 1.444-.224c.954-.132 1.89.3 2.422 1.101l.095.155.598 1.066a2.56 2.56 0 0 1-.195 2.848l-.894 1.161v1.896l.92 1.163c.6.768.707 1.812.295 2.674l-.09.17-.606 1.08a2.504 2.504 0 0 1-2.531 1.25l-1.428-.223-1.589.932-.523 1.378a2.512 2.512 0 0 1-2.155 1.625L12.65 23h-1.27a2.508 2.508 0 0 1-2.334-1.63l-.524-1.379-1.59-.933-1.443.225c-.954.132-1.89-.3-2.422-1.101l-.095-.155-.598-1.066a2.56 2.56 0 0 1 .195-2.847l.891-1.161v-1.898l-.919-1.162a2.562 2.562 0 0 1-.295-2.674l.09-.17.606-1.08a2.504 2.504 0 0 1 2.531-1.25l1.43.223 1.618-.938.524-1.375.07-.167A2.507 2.507 0 0 1 11.382 1Zm.003 2a.509.509 0 0 0-.47.338l-.65 1.71a1 1 0 0 1-.434.51L7.6 6.85a1 1 0 0 1-.655.123l-1.762-.275a.497.497 0 0 0-.498.252l-.61 1.088a.562.562 0 0 0 .04.619l1.13 1.43a1 1 0 0 1 .216.62v2.585a1 1 0 0 1-.207.61L4.15 15.339a.568.568 0 0 0-.036.634l.601 1.072a.494.494 0 0 0 .484.26l1.78-.278a1 1 0 0 1 .66.126l2.2 1.292a1 1 0 0 1 .43.507l.648 1.71a.508.508 0 0 0 .467.338h1.263a.51.51 0 0 0 .47-.34l.65-1.708a1 1 0 0 1 .428-.507l2.201-1.292a1 1 0 0 1 .66-.126l1.763.275a.497.497 0 0 0 .498-.252l.61-1.088a.562.562 0 0 0-.04-.619l-1.13-1.43a1 1 0 0 1-.216-.62v-2.585a1 1 0 0 1 .207-.61l1.105-1.437a.568.568 0 0 0 .037-.634l-.601-1.072a.494.494 0 0 0-.484-.26l-1.78.278a1 1 0 0 1-.66-.126l-2.2-1.292a1 1 0 0 1-.43-.507l-.649-1.71A.508.508 0 0 0 12.62 3h-1.234ZM12 8a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-shipping-medium" viewBox="0 0 24 24"><path d="M16.515 2c1.406 0 2.706.728 3.352 1.902l2.02 3.635.02.042.036.089.031.105.012.058.01.073.004.075v11.577c0 .64-.244 1.255-.683 1.713a2.356 2.356 0 0 1-1.701.731H4.386a2.356 2.356 0 0 1-1.702-.731 2.476 2.476 0 0 1-.683-1.713V7.948c.01-.217.083-.43.22-.6L4.2 3.905C4.833 2.755 6.089 2.032 7.486 2h9.029ZM20 9H4v10.556a.49.49 0 0 0 .075.26l.053.07a.356.356 0 0 0 .257.114h15.23c.094 0 .186-.04.258-.115a.477.477 0 0 0 .127-.33V9Zm-2 7.5a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM16.514 4H13v3h6.3l-1.183-2.13c-.288-.522-.908-.87-1.603-.87ZM11 3.999H7.51c-.679.017-1.277.36-1.566.887L4.728 7H11V3.999Z"/></symbol><symbol id="icon-eds-i-step-guide-medium" viewBox="0 0 24 24"><path d="M11.394 9.447a1 1 0 1 0-1.788-.894l-.88 1.759-.019-.02a1 1 0 1 0-1.414 1.415l1 1a1 1 0 0 0 1.601-.26l1.5-3ZM12 11a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM12 17a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM10.947 14.105a1 1 0 0 1 .447 1.342l-1.5 3a1 1 0 0 1-1.601.26l-1-1a1 1 0 1 1 1.414-1.414l.02.019.879-1.76a1 1 0 0 1 1.341-.447Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V7.5a1 1 0 0 0-.293-.707l-5.5-5.5A1 1 0 0 0 14.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3h8.54L19 7.914v12.547c0 .294-.24.539-.546.539H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-submission-medium" viewBox="0 0 24 24"><g><path d="M5 3.538C5 3.245 5.24 3 5.545 3h9.633L20 7.8v12.662a.535.535 0 0 1-.158.379.549.549 0 0 1-.387.159H6a1 1 0 0 1-1-1v-2.5a1 1 0 1 0-2 0V20a3 3 0 0 0 3 3h13.455c.673 0 1.32-.266 1.798-.742A2.535 2.535 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V7a1 1 0 0 0 2 0V3.538Z"/><path d="m13.707 13.707-4 4a1 1 0 0 1-1.414 0l-.083-.094a1 1 0 0 1 .083-1.32L10.585 14 2 14a1 1 0 1 1 0-2l8.583.001-2.29-2.294a1 1 0 0 1 1.414-1.414l4.037 4.04.043.05.043.06.059.098.03.063.031.085.03.113.017.122L14 13l-.004.087-.017.118-.013.056-.034.104-.049.105-.048.081-.07.093-.058.063Z"/></g></symbol><symbol id="icon-eds-i-table-1-medium" viewBox="0 0 24 24"><path d="M4.385 22a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385ZM4 19.615c0 .213.034.265.14.317a.71.71 0 0 0 .245.068H8v-4H4v3.615ZM20 16H10v4h9.615c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V16Zm0-2v-4H10v4h10ZM4 14h4v-4H4v4ZM19.615 4H10v4h10V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM8 4H4.385l-.082.002c-.146.01-.19.047-.235.138A.71.71 0 0 0 4 4.385V8h4V4Z"/></symbol><symbol id="icon-eds-i-table-2-medium" viewBox="0 0 24 24"><path d="M4.384 22A2.384 2.384 0 0 1 2 19.616V4.384A2.384 2.384 0 0 1 4.384 2h15.232A2.384 2.384 0 0 1 22 4.384v15.232A2.384 2.384 0 0 1 19.616 22H4.384ZM10 15H4v4.616c0 .212.172.384.384.384H10v-5Zm5 0h-3v5h3v-5Zm5 0h-3v5h2.616a.384.384 0 0 0 .384-.384V15ZM10 9H4v4h6V9Zm5 0h-3v4h3V9Zm5 0h-3v4h3V9Zm-.384-5H4.384A.384.384 0 0 0 4 4.384V7h16V4.384A.384.384 0 0 0 19.616 4Z"/></symbol><symbol id="icon-eds-i-tag-medium" viewBox="0 0 24 24"><path d="m12.621 1.998.127.004L20.496 2a1.5 1.5 0 0 1 1.497 1.355L22 3.5l-.005 7.669c.038.456-.133.905-.447 1.206l-9.02 9.018a2.075 2.075 0 0 1-2.932 0l-6.99-6.99a2.075 2.075 0 0 1 .001-2.933L11.61 2.47c.246-.258.573-.418.881-.46l.131-.011Zm.286 2-8.885 8.886a.075.075 0 0 0 0 .106l6.987 6.988c.03.03.077.03.106 0l8.883-8.883L19.999 4l-7.092-.002ZM16 6.5a1.5 1.5 0 0 1 .144 2.993L16 9.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-trash-medium" viewBox="0 0 24 24"><path d="M12 1c2.717 0 4.913 2.232 4.997 5H21a1 1 0 0 1 0 2h-1v12.5c0 1.389-1.152 2.5-2.556 2.5H6.556C5.152 23 4 21.889 4 20.5V8H3a1 1 0 1 1 0-2h4.003l.001-.051C7.114 3.205 9.3 1 12 1Zm6 7H6v12.5c0 .238.19.448.454.492l.102.008h10.888c.315 0 .556-.232.556-.5V8Zm-4 3a1 1 0 0 1 1 1v6.005a1 1 0 0 1-2 0V12a1 1 0 0 1 1-1Zm-4 0a1 1 0 0 1 1 1v6a1 1 0 0 1-2 0v-6a1 1 0 0 1 1-1Zm2-8c-1.595 0-2.914 1.32-2.996 3h5.991v-.02C14.903 4.31 13.589 3 12 3Z"/></symbol><symbol id="icon-eds-i-user-account-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 16c-1.806 0-3.52.994-4.664 2.698A8.947 8.947 0 0 0 12 21a8.958 8.958 0 0 0 4.664-1.301C15.52 17.994 13.806 17 12 17Zm0-14a9 9 0 0 0-6.25 15.476C7.253 16.304 9.54 15 12 15s4.747 1.304 6.25 3.475A9 9 0 0 0 12 3Zm0 3a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-user-add-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a1 1 0 0 1 1 1v3h3a1 1 0 0 1 0 2h-3v3a1 1 0 0 1-2 0v-3h-3a1 1 0 0 1 0-2h3v-3a1 1 0 0 1 1-1Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Z"/></symbol><symbol id="icon-eds-i-user-assign-medium" viewBox="0 0 24 24"><path d="M16.226 13.298a1 1 0 0 1 1.414-.01l.084.093a1 1 0 0 1-.073 1.32L15.39 17H22a1 1 0 0 1 0 2h-6.611l2.262 2.298a1 1 0 0 1-1.425 1.404l-3.939-4a1 1 0 0 1 0-1.404l3.94-4Zm-3.771-.449a1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 10.5 20a1 1 0 0 1 .993.883L11.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-block-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM15 18a3 3 0 0 0 4.294 2.707l-4.001-4c-.188.391-.293.83-.293 1.293Zm3-3c-.463 0-.902.105-1.294.293l4.001 4A3 3 0 0 0 18 15Z"/></symbol><symbol id="icon-eds-i-user-check-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm13.647 12.237a1 1 0 0 1 .116 1.41l-5.091 6a1 1 0 0 1-1.375.144l-2.909-2.25a1 1 0 1 1 1.224-1.582l2.153 1.665 4.472-5.271a1 1 0 0 1 1.41-.116Zm-8.139-.977c.22.214.428.44.622.678a1 1 0 1 1-1.548 1.266 6.025 6.025 0 0 0-1.795-1.49.86.86 0 0 1-.163-.048l-.079-.036a5.721 5.721 0 0 0-2.62-.63l-.194.006c-2.76.134-5.022 2.177-5.592 4.864l-.035.175-.035.213c-.03.201-.05.405-.06.61L3.003 20 10 20a1 1 0 0 1 .993.883L11 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876l.005-.223.02-.356.02-.222.03-.248.022-.15c.02-.133.044-.265.071-.397.44-2.178 1.725-4.105 3.595-5.301a7.75 7.75 0 0 1 3.755-1.215l.12-.004a7.908 7.908 0 0 1 5.87 2.252Z"/></symbol><symbol id="icon-eds-i-user-delete-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6ZM4.763 13.227a7.713 7.713 0 0 1 7.692-.378 1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20H11.5a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897Zm11.421 1.543 2.554 2.553 2.555-2.553a1 1 0 0 1 1.414 1.414l-2.554 2.554 2.554 2.555a1 1 0 0 1-1.414 1.414l-2.555-2.554-2.554 2.554a1 1 0 0 1-1.414-1.414l2.553-2.555-2.553-2.554a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-user-edit-medium" viewBox="0 0 24 24"><path d="m19.876 10.77 2.831 2.83a1 1 0 0 1 0 1.415l-7.246 7.246a1 1 0 0 1-.572.284l-3.277.446a1 1 0 0 1-1.125-1.13l.461-3.277a1 1 0 0 1 .283-.567l7.23-7.246a1 1 0 0 1 1.415-.001Zm-7.421 2.08a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 7.5 20a1 1 0 0 1 .993.883L8.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Zm6.715.042-6.29 6.3-.23 1.639 1.633-.222 6.302-6.302-1.415-1.415ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-linked-medium" viewBox="0 0 24 24"><path d="M15.65 6c.31 0 .706.066 1.122.274C17.522 6.65 18 7.366 18 8.35v12.3c0 .31-.066.706-.274 1.122-.375.75-1.092 1.228-2.076 1.228H3.35a2.52 2.52 0 0 1-1.122-.274C1.478 22.35 1 21.634 1 20.65V8.35c0-.31.066-.706.274-1.122C1.65 6.478 2.366 6 3.35 6h12.3Zm0 2-12.376.002c-.134.007-.17.04-.21.12A.672.672 0 0 0 3 8.35v12.3c0 .198.028.24.122.287.09.044.2.063.228.063h.887c.788-2.269 2.814-3.5 5.263-3.5 2.45 0 4.475 1.231 5.263 3.5h.887c.198 0 .24-.028.287-.122.044-.09.063-.2.063-.228V8.35c0-.198-.028-.24-.122-.287A.672.672 0 0 0 15.65 8ZM9.5 19.5c-1.36 0-2.447.51-3.06 1.5h6.12c-.613-.99-1.7-1.5-3.06-1.5ZM20.65 1A2.35 2.35 0 0 1 23 3.348V15.65A2.35 2.35 0 0 1 20.65 18H20a1 1 0 0 1 0-2h.65a.35.35 0 0 0 .35-.35V3.348A.35.35 0 0 0 20.65 3H8.35a.35.35 0 0 0-.35.348V4a1 1 0 1 1-2 0v-.652A2.35 2.35 0 0 1 8.35 1h12.3ZM9.5 10a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-user-multiple-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm6 0a5 5 0 0 1 0 10 1 1 0 0 1-.117-1.993L15 9a3 3 0 0 0 0-6 1 1 0 0 1 0-2ZM9 3a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm8.857 9.545a7.99 7.99 0 0 1 2.651 1.715A8.31 8.31 0 0 1 23 20.134V21a1 1 0 0 1-1 1h-3a1 1 0 0 1 0-2h1.995l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209a5.99 5.99 0 0 0-1.988-1.287 1 1 0 1 1 .732-1.861Zm-3.349 1.715A8.31 8.31 0 0 1 17 20.134V21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.877c.044-4.343 3.387-7.908 7.638-8.115a7.908 7.908 0 0 1 5.87 2.252ZM9.016 14l-.285.006c-3.104.15-5.58 2.718-5.725 5.9L3.004 20h11.991l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209A5.924 5.924 0 0 0 9.3 14.008L9.016 14Z"/></symbol><symbol id="icon-eds-i-user-notify-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm10 18v1a1 1 0 0 1-2 0v-1h-3a1 1 0 0 1 0-2v-2.818C14 13.885 15.777 12 18 12s4 1.885 4 4.182V19a1 1 0 0 1 0 2h-3Zm-6.545-8.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM18 14c-1.091 0-2 .964-2 2.182V19h4v-2.818c0-1.165-.832-2.098-1.859-2.177L18 14Z"/></symbol><symbol id="icon-eds-i-user-remove-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm3.455 9.85a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM22 17a1 1 0 0 1 0 2h-8a1 1 0 0 1 0-2h8Z"/></symbol><symbol id="icon-eds-i-user-single-medium" viewBox="0 0 24 24"><path d="M12 1a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm-.406 9.008a8.965 8.965 0 0 1 6.596 2.494A9.161 9.161 0 0 1 21 21.025V22a1 1 0 0 1-1 1H4a1 1 0 0 1-1-1v-.985c.05-4.825 3.815-8.777 8.594-9.007Zm.39 1.992-.299.006c-3.63.175-6.518 3.127-6.678 6.775L5 21h13.998l-.009-.268a7.157 7.157 0 0 0-1.97-4.573l-.214-.213A6.967 6.967 0 0 0 11.984 14Z"/></symbol><symbol id="icon-eds-i-warning-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 11.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-warning-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 13.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.7194 3.3054C15.3358 2.90809 14.7027 2.89699 14.3054 3.28061L6.54342 10.7757C6.19804 11.09 6 11.5335 6 12C6 12.4665 6.19804 12.91 6.5218 13.204L14.3054 20.7194C14.7027 21.103 15.3358 21.0919 15.7194 20.6946C16.103 20.2973 16.0919 19.6642 15.6946 19.2806L8.155 12L15.6946 4.71939C16.0614 4.36528 16.099 3.79863 15.8009 3.40105L15.7194 3.3054Z"/></symbol><symbol id="icon-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28061 3.3054C8.66423 2.90809 9.29729 2.89699 9.6946 3.28061L17.4566 10.7757C17.802 11.09 18 11.5335 18 12C18 12.4665 17.802 12.91 17.4782 13.204L9.6946 20.7194C9.29729 21.103 8.66423 21.0919 8.28061 20.6946C7.89699 20.2973 7.90809 19.6642 8.3054 19.2806L15.845 12L8.3054 4.71939C7.93865 4.36528 7.90098 3.79863 8.19908 3.40105L8.28061 3.3054Z"/></symbol><symbol id="icon-eds-alerts" viewBox="0 0 32 32"><path d="M28 12.667c.736 0 1.333.597 1.333 1.333v13.333A3.333 3.333 0 0 1 26 30.667H6a3.333 3.333 0 0 1-3.333-3.334V14a1.333 1.333 0 1 1 2.666 0v1.252L16 21.769l10.667-6.518V14c0-.736.597-1.333 1.333-1.333Zm-1.333 5.71-9.972 6.094c-.427.26-.963.26-1.39 0l-9.972-6.094v8.956c0 .368.299.667.667.667h20a.667.667 0 0 0 .667-.667v-8.956ZM19.333 12a1.333 1.333 0 1 1 0 2.667h-6.666a1.333 1.333 0 1 1 0-2.667h6.666Zm4-10.667a3.333 3.333 0 0 1 3.334 3.334v6.666a1.333 1.333 0 1 1-2.667 0V4.667A.667.667 0 0 0 23.333 4H8.667A.667.667 0 0 0 8 4.667v6.666a1.333 1.333 0 1 1-2.667 0V4.667a3.333 3.333 0 0 1 3.334-3.334h14.666Zm-4 5.334a1.333 1.333 0 0 1 0 2.666h-6.666a1.333 1.333 0 1 1 0-2.666h6.666Z"/></symbol><symbol id="icon-eds-arrow-up" viewBox="0 0 24 24"><path fill-rule="evenodd" d="m13.002 7.408 4.88 4.88a.99.99 0 0 0 1.32.08l.09-.08c.39-.39.39-1.03 0-1.42l-6.58-6.58a1.01 1.01 0 0 0-1.42 0l-6.58 6.58a1 1 0 0 0-.09 1.32l.08.1a1 1 0 0 0 1.42-.01l4.88-4.87v11.59a.99.99 0 0 0 .88.99l.12.01c.55 0 1-.45 1-1V7.408z" class="layer"/></symbol><symbol id="icon-eds-checklist" viewBox="0 0 32 32"><path d="M19.2 1.333a3.468 3.468 0 0 1 3.381 2.699L24.667 4C26.515 4 28 5.52 28 7.38v19.906c0 1.86-1.485 3.38-3.333 3.38H7.333c-1.848 0-3.333-1.52-3.333-3.38V7.38C4 5.52 5.485 4 7.333 4h2.093A3.468 3.468 0 0 1 12.8 1.333h6.4ZM9.426 6.667H7.333c-.36 0-.666.312-.666.713v19.906c0 .401.305.714.666.714h17.334c.36 0 .666-.313.666-.714V7.38c0-.4-.305-.713-.646-.714l-2.121.033A3.468 3.468 0 0 1 19.2 9.333h-6.4a3.468 3.468 0 0 1-3.374-2.666Zm12.715 5.606c.586.446.7 1.283.253 1.868l-7.111 9.334a1.333 1.333 0 0 1-1.792.306l-3.556-2.333a1.333 1.333 0 1 1 1.463-2.23l2.517 1.651 6.358-8.344a1.333 1.333 0 0 1 1.868-.252ZM19.2 4h-6.4a.8.8 0 0 0-.8.8v1.067a.8.8 0 0 0 .8.8h6.4a.8.8 0 0 0 .8-.8V4.8a.8.8 0 0 0-.8-.8Z"/></symbol><symbol id="icon-eds-citation" viewBox="0 0 36 36"><path d="M23.25 1.5a1.5 1.5 0 0 1 1.06.44l8.25 8.25a1.5 1.5 0 0 1 .44 1.06v19.5c0 2.105-1.645 3.75-3.75 3.75H18a1.5 1.5 0 0 1 0-3h11.25c.448 0 .75-.302.75-.75V11.873L22.628 4.5H8.31a.811.811 0 0 0-.8.68l-.011.13V16.5a1.5 1.5 0 0 1-3 0V5.31A3.81 3.81 0 0 1 8.31 1.5h14.94ZM8.223 20.358a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878C3.302 28.536 3 27.657 3 26.486c0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Zm7.5 0a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878-.604-.586-.906-1.465-.906-2.636 0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Z"/></symbol><symbol id="icon-eds-i-access-indicator" viewBox="0 0 16 16"><circle cx="4.5" cy="11.5" r="3.5" style="fill:currentColor"/><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702v7.846c0 .505-.197.993-.554 1.354a1.902 1.902 0 0 1-1.355.569H10a1 1 0 1 1 0-2h2V5.64L9.4 3H4Z" clip-rule="evenodd" style="fill:#222"/></symbol><symbol id="icon-eds-i-github-medium" viewBox="0 0 24 24"><path d="M 11.964844 0 C 5.347656 0 0 5.269531 0 11.792969 C 0 17.003906 3.425781 21.417969 8.179688 22.976562 C 8.773438 23.09375 8.992188 22.722656 8.992188 22.410156 C 8.992188 22.136719 8.972656 21.203125 8.972656 20.226562 C 5.644531 20.929688 4.953125 18.820312 4.953125 18.820312 C 4.417969 17.453125 3.625 17.101562 3.625 17.101562 C 2.535156 16.378906 3.703125 16.378906 3.703125 16.378906 C 4.914062 16.457031 5.546875 17.589844 5.546875 17.589844 C 6.617188 19.386719 8.339844 18.878906 9.03125 18.566406 C 9.132812 17.804688 9.449219 17.277344 9.785156 16.984375 C 7.132812 16.710938 4.339844 15.695312 4.339844 11.167969 C 4.339844 9.878906 4.8125 8.824219 5.566406 8.003906 C 5.445312 7.710938 5.03125 6.5 5.683594 4.878906 C 5.683594 4.878906 6.695312 4.566406 8.972656 6.089844 C 9.949219 5.832031 10.953125 5.703125 11.964844 5.699219 C 12.972656 5.699219 14.003906 5.835938 14.957031 6.089844 C 17.234375 4.566406 18.242188 4.878906 18.242188 4.878906 C 18.898438 6.5 18.480469 7.710938 18.363281 8.003906 C 19.136719 8.824219 19.589844 9.878906 19.589844 11.167969 C 19.589844 15.695312 16.796875 16.691406 14.125 16.984375 C 14.558594 17.355469 14.933594 18.058594 14.933594 19.171875 C 14.933594 20.753906 14.914062 22.019531 14.914062 22.410156 C 14.914062 22.722656 15.132812 23.09375 15.726562 22.976562 C 20.480469 21.414062 23.910156 17.003906 23.910156 11.792969 C 23.929688 5.269531 18.558594 0 11.964844 0 Z M 11.964844 0 "/></symbol><symbol id="icon-eds-i-limited-access" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702V6a1 1 0 1 1-2 0v-.36L9.4 3H4ZM3 8a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm10 0a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm-3.5 6a1 1 0 0 1-1 1h-1a1 1 0 1 1 0-2h1a1 1 0 0 1 1 1Zm2.441-1a1 1 0 0 1 2 0c0 .73-.246 1.306-.706 1.664a1.61 1.61 0 0 1-.876.334l-.032.002H11.5a1 1 0 1 1 0-2h.441ZM4 13a1 1 0 0 0-2 0c0 .73.247 1.306.706 1.664a1.609 1.609 0 0 0 .876.334l.032.002H4.5a1 1 0 1 0 0-2H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-subjects-medium" viewBox="0 0 24 24"><g id="icon-subjects-copy" stroke="none" stroke-width="1" fill-rule="evenodd"><path d="M13.3846154,2 C14.7015971,2 15.7692308,3.06762994 15.7692308,4.38461538 L15.7692308,7.15384615 C15.7692308,8.47082629 14.7015955,9.53846154 13.3846154,9.53846154 L13.1038388,9.53925278 C13.2061091,9.85347965 13.3815528,10.1423885 13.6195822,10.3804178 C13.9722182,10.7330539 14.436524,10.9483278 14.9293854,10.9918129 L15.1153846,11 C16.2068332,11 17.2535347,11.433562 18.0254647,12.2054189 C18.6411944,12.8212361 19.0416785,13.6120766 19.1784166,14.4609738 L19.6153846,14.4615385 C20.932386,14.4615385 22,15.5291672 22,16.8461538 L22,19.6153846 C22,20.9323924 20.9323924,22 19.6153846,22 L16.8461538,22 C15.5291672,22 14.4615385,20.932386 14.4615385,19.6153846 L14.4615385,16.8461538 C14.4615385,15.5291737 15.5291737,14.4615385 16.8461538,14.4615385 L17.126925,14.460779 C17.0246537,14.1465537 16.8492179,13.857633 16.6112344,13.6196157 C16.2144418,13.2228606 15.6764136,13 15.1153846,13 C14.0239122,13 12.9771569,12.5664197 12.2053686,11.7946314 C12.1335167,11.7227795 12.0645962,11.6485444 11.9986839,11.5721119 C11.9354038,11.6485444 11.8664833,11.7227795 11.7946314,11.7946314 C11.0228431,12.5664197 9.97608778,13 8.88461538,13 C8.323576,13 7.78552852,13.2228666 7.38881294,13.6195822 C7.15078359,13.8576115 6.97533988,14.1465203 6.8730696,14.4607472 L7.15384615,14.4615385 C8.47082629,14.4615385 9.53846154,15.5291737 9.53846154,16.8461538 L9.53846154,19.6153846 C9.53846154,20.932386 8.47083276,22 7.15384615,22 L4.38461538,22 C3.06762347,22 2,20.9323876 2,19.6153846 L2,16.8461538 C2,15.5291721 3.06762994,14.4615385 4.38461538,14.4615385 L4.8215823,14.4609378 C4.95831893,13.6120029 5.3588057,12.8211623 5.97459937,12.2053686 C6.69125996,11.488708 7.64500941,11.0636656 8.6514968,11.0066017 L8.88461538,11 C9.44565477,11 9.98370225,10.7771334 10.3804178,10.3804178 C10.6184472,10.1423885 10.7938909,9.85347965 10.8961612,9.53925278 L10.6153846,9.53846154 C9.29840448,9.53846154 8.23076923,8.47082629 8.23076923,7.15384615 L8.23076923,4.38461538 C8.23076923,3.06762994 9.29840286,2 10.6153846,2 L13.3846154,2 Z M7.15384615,16.4615385 L4.38461538,16.4615385 C4.17220099,16.4615385 4,16.63374 4,16.8461538 L4,19.6153846 C4,19.8278134 4.17218833,20 4.38461538,20 L7.15384615,20 C7.36626945,20 7.53846154,19.8278103 7.53846154,19.6153846 L7.53846154,16.8461538 C7.53846154,16.6337432 7.36625679,16.4615385 7.15384615,16.4615385 Z M19.6153846,16.4615385 L16.8461538,16.4615385 C16.6337432,16.4615385 16.4615385,16.6337432 16.4615385,16.8461538 L16.4615385,19.6153846 C16.4615385,19.8278103 16.6337306,20 16.8461538,20 L19.6153846,20 C19.8278229,20 20,19.8278229 20,19.6153846 L20,16.8461538 C20,16.6337306 19.8278103,16.4615385 19.6153846,16.4615385 Z M13.3846154,4 L10.6153846,4 C10.4029708,4 10.2307692,4.17220099 10.2307692,4.38461538 L10.2307692,7.15384615 C10.2307692,7.36625679 10.402974,7.53846154 10.6153846,7.53846154 L13.3846154,7.53846154 C13.597026,7.53846154 13.7692308,7.36625679 13.7692308,7.15384615 L13.7692308,4.38461538 C13.7692308,4.17220099 13.5970292,4 13.3846154,4 Z" id="Shape" fill-rule="nonzero"/></g></symbol><symbol id="icon-eds-small-arrow-left" viewBox="0 0 16 17"><path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M14 8.092H2m0 0L8 2M2 8.092l6 6.035"/></symbol><symbol id="icon-eds-small-arrow-right" viewBox="0 0 16 16"><g fill-rule="evenodd" stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2"><path d="M2 8.092h12M8 2l6 6.092M8 14.127l6-6.035"/></g></symbol><symbol id="icon-orcid-logo" viewBox="0 0 40 40"><path fill-rule="evenodd" d="M12.281 10.453c.875 0 1.578-.719 1.578-1.578 0-.86-.703-1.578-1.578-1.578-.875 0-1.578.703-1.578 1.578 0 .86.703 1.578 1.578 1.578Zm-1.203 18.641h2.406V12.359h-2.406v16.735Z"/><path fill-rule="evenodd" d="M17.016 12.36h6.5c6.187 0 8.906 4.421 8.906 8.374 0 4.297-3.36 8.375-8.875 8.375h-6.531V12.36Zm6.234 14.578h-3.828V14.53h3.703c4.688 0 6.828 2.844 6.828 6.203 0 2.063-1.25 6.203-6.703 6.203Z" clip-rule="evenodd"/></symbol></svg> </div> <a class="c-skip-link" href="#main">Skip to main content</a> <header class="eds-c-header" data-eds-c-header> <div class="eds-c-header__container" data-eds-c-header-expander-anchor> <div class="eds-c-header__brand"> <a href="https://link.springer.com" data-test=springerlink-logo data-track="click_imprint_logo" data-track-context="unified header" data-track-action="click logo link" data-track-category="unified header" data-track-label="link" > <img src="/oscar-static/images/darwin/header/img/logo-springer-nature-link-3149409f62.svg" alt="Springer Nature Link"> </a> </div> <a class="c-header__link eds-c-header__link" id="identity-account-widget" href='https://idp.springer.com/auth/personal/springernature?redirect_uri=https://link.springer.com/article/10.1038/s41598-024-56742-7?'><span class="eds-c-header__widget-fragment-title">Log in</span></a> </div> <nav class="eds-c-header__nav" aria-label="header navigation"> <div class="eds-c-header__nav-container"> <div class="eds-c-header__item eds-c-header__item--menu"> <a href="#eds-c-header-nav" class="eds-c-header__link" data-eds-c-header-expander> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-menu-medium"></use> </svg><span>Menu</span> </a> </div> <div class="eds-c-header__item eds-c-header__item--inline-links"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </div> <div class="eds-c-header__link-container"> <div class="eds-c-header__item eds-c-header__item--divider"> <a href="#eds-c-header-popup-search" class="eds-c-header__link" data-eds-c-header-expander data-eds-c-header-test-search-btn> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg><span>Search</span> </a> </div> <div id="ecommerce-header-cart-icon-link" class="eds-c-header__item ecommerce-cart" style="display:inline-block"> <a class="eds-c-header__link" href="https://order.springer.com/public/cart" style="appearance:none;border:none;background:none;color:inherit;position:relative"> <svg id="eds-i-cart" class="eds-c-header__icon" xmlns="http://www.w3.org/2000/svg" height="24" width="24" viewBox="0 0 24 24" aria-hidden="true" focusable="false"> <path fill="currentColor" fill-rule="nonzero" d="M2 1a1 1 0 0 0 0 2l1.659.001 2.257 12.808a2.599 2.599 0 0 0 2.435 2.185l.167.004 9.976-.001a2.613 2.613 0 0 0 2.61-1.748l.03-.106 1.755-7.82.032-.107a2.546 2.546 0 0 0-.311-1.986l-.108-.157a2.604 2.604 0 0 0-2.197-1.076L6.042 5l-.56-3.17a1 1 0 0 0-.864-.82l-.12-.007L2.001 1ZM20.35 6.996a.63.63 0 0 1 .54.26.55.55 0 0 1 .082.505l-.028.1L19.2 15.63l-.022.05c-.094.177-.282.299-.526.317l-10.145.002a.61.61 0 0 1-.618-.515L6.394 6.999l13.955-.003ZM18 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4ZM8 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"></path> </svg><span>Cart</span><span class="cart-info" style="display:none;position:absolute;top:10px;right:45px;background-color:#C65301;color:#fff;width:18px;height:18px;font-size:11px;border-radius:50%;line-height:17.5px;text-align:center"></span></a> <script>(function () { var exports = {}; if (window.fetch) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.headerWidgetClientInit = void 0; var headerWidgetClientInit = function (getCartInfo) { document.body.addEventListener("updatedCart", function () { updateCartIcon(); }, false); return updateCartIcon(); function updateCartIcon() { return getCartInfo() .then(function (res) { return res.json(); }) .then(refreshCartState) .catch(function (_) { }); } function refreshCartState(json) { var indicator = document.querySelector("#ecommerce-header-cart-icon-link .cart-info"); /* istanbul ignore else */ if (indicator && json.itemCount) { indicator.style.display = 'block'; indicator.textContent = json.itemCount > 9 ? '9+' : json.itemCount.toString(); var moreThanOneItem = json.itemCount > 1; indicator.setAttribute('title', "there ".concat(moreThanOneItem ? "are" : "is", " ").concat(json.itemCount, " item").concat(moreThanOneItem ? "s" : "", " in your cart")); } return json; } }; exports.headerWidgetClientInit = headerWidgetClientInit; headerWidgetClientInit( function () { return window.fetch("https://cart.springer.com/cart-info", { credentials: "include", headers: { Accept: "application/json" } }) } ) }})()</script> </div> </div> </div> </nav> </header> <article lang="en" id="main" class="app-masthead__colour-25"> <section class="app-masthead " aria-label="article masthead"> <div class="app-masthead__container"> <div class="app-article-masthead u-sans-serif js-context-bar-sticky-point-masthead" data-track-component="article" data-test="masthead-component"> <div class="app-article-masthead__info"> <nav aria-label="breadcrumbs" data-test="breadcrumbs"> <ol class="c-breadcrumbs c-breadcrumbs--contrast" itemscope itemtype="https://schema.org/BreadcrumbList"> <li class="c-breadcrumbs__item" id="breadcrumb0" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb1"><span itemprop="name">Home</span></a><meta itemprop="position" content="1"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb1" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="https://www.nature.com/srep/" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb2"><span itemprop="name">Scientific Reports</span></a><meta itemprop="position" content="2"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb2" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <span itemprop="name">Article</span><meta itemprop="position" content="3"> </li> </ol> </nav> <h1 class="c-article-title" data-test="article-title" data-article-title="">Existence of reservoir with finite-dimensional output for universal reservoir computing</h1> <ul class="c-article-identifiers"> <li class="c-article-identifiers__item" data-test="article-category">Article</li> <li class="c-article-identifiers__item"> <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link" class="u-color-open-access" data-test="open-access">Open access</a> </li> <li class="c-article-identifiers__item"> Published: <time datetime="2024-04-11">11 April 2024</time> </li> </ul> <ul class="c-article-identifiers c-article-identifiers--cite-list"> <li class="c-article-identifiers__item"> <span data-test="journal-volume">Volume 14</span>, article number <span data-test="article-number">8448</span>, (<span data-test="article-publication-year">2024</span>) </li> <li class="c-article-identifiers__item c-article-identifiers__item--cite"> <a href="#citeas" data-track="click" data-track-action="cite this article" data-track-category="article body" data-track-label="link">Cite this article</a> </li> </ul> <div class="app-article-masthead__buttons" data-test="download-article-link-wrapper" data-track-context="masthead"> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both u-mb-16"> <a href="/content/pdf/10.1038/s41598-024-56742-7.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="button" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-eds-i-download-medium"/></svg> </a> </div> </div> <p class="app-article-masthead__access"> <svg width="16" height="16" focusable="false" role="img" aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-check-filled-medium"></use></svg> You have full access to this <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link">open access</a> article</p> </div> </div> <div class="app-article-masthead__brand"> <a href="https://www.nature.com/srep/" class="app-article-masthead__journal-link" data-track="click_journal_home" data-track-action="journal homepage" data-track-context="article page" data-track-label="link"> <picture> <source type="image/webp" media="(min-width: 768px)" width="120" height="159" srcset="https://media.springernature.com/w120/springer-static/cover-hires/journal/41598?as=webp, https://media.springernature.com/w316/springer-static/cover-hires/journal/41598?as=webp 2x"> <img width="72" height="95" src="https://media.springernature.com/w72/springer-static/cover-hires/journal/41598?as=webp" srcset="https://media.springernature.com/w144/springer-static/cover-hires/journal/41598?as=webp 2x" alt=""> </picture> <span class="app-article-masthead__journal-title">Scientific Reports</span> </a> </div> </div> </div> </section> <div class="c-article-main u-container u-mt-24 u-mb-32 l-with-sidebar" id="main-content" data-component="article-container"> <main class="u-serif js-main-column" data-track-component="article body"> <div class="c-context-bar u-hide" data-test="context-bar" data-context-bar aria-hidden="true"> <div class="c-context-bar__container u-container"> <div class="c-context-bar__title"> Existence of reservoir with finite-dimensional output for universal reservoir computing </div> <div data-test="inCoD" data-track-context="sticky banner"> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both u-mb-16"> <a href="/content/pdf/10.1038/s41598-024-56742-7.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="button" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-eds-i-download-medium"/></svg> </a> </div> </div> </div> </div> </div> <div class="c-article-header"> <header> <ul class="c-article-author-list c-article-author-list--short" data-test="authors-list" data-component-authors-activator="authors-list"><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Shuhei-Sugiura-Aff1" data-author-popup="auth-Shuhei-Sugiura-Aff1" data-author-search="Sugiura, Shuhei">Shuhei Sugiura</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Ryo-Ariizumi-Aff2" data-author-popup="auth-Ryo-Ariizumi-Aff2" data-author-search="Ariizumi, Ryo" data-corresp-id="c1">Ryo Ariizumi<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><sup class="u-js-hide"><a href="#Aff2">2</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Toru-Asai-Aff1" data-author-popup="auth-Toru-Asai-Aff1" data-author-search="Asai, Toru">Toru Asai</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup> & </li><li class="c-article-author-list__show-more" aria-label="Show all 4 authors for this article" title="Show all 4 authors for this article">…</li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Shun_ichi-Azuma-Aff3" data-author-popup="auth-Shun_ichi-Azuma-Aff3" data-author-search="Azuma, Shun-ichi">Shun-ichi Azuma</a><sup class="u-js-hide"><a href="#Aff3">3</a></sup> </li></ul><button aria-expanded="false" class="c-article-author-list__button"><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-down-medium"></use></svg><span>Show authors</span></button> <div data-test="article-metrics"> <ul class="app-article-metrics-bar u-list-reset"> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-accesses-medium"></use> </svg>830 <span class="app-article-metrics-bar__label">Accesses</span></p> </li> <li class="app-article-metrics-bar__item app-article-metrics-bar__item--metrics"> <p class="app-article-metrics-bar__details"><a href="/article/10.1038/s41598-024-56742-7/metrics" data-track="click" data-track-action="view metrics" data-track-label="link" rel="nofollow">Explore all metrics <svg class="u-icon app-article-metrics-bar__arrow-icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg></a></p> </li> </ul> </div> <div class="u-mt-32"> </div> </header> </div> <div data-article-body="true" data-track-component="article body" class="c-article-body"> <section aria-labelledby="Abs1" data-title="Abstract" lang="en"><div class="c-article-section" id="Abs1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Abs1">Abstract</h2><div class="c-article-section__content" id="Abs1-content"><p>In this paper, we prove the existence of a reservoir that has a finite-dimensional output and makes the reservoir computing model universal. Reservoir computing is a method for dynamical system approximation that trains the static part of a model but fixes the dynamical part called the reservoir. Hence, reservoir computing has the advantage of training models with a low computational cost. Moreover, fixed reservoirs can be implemented as physical systems. Such reservoirs have attracted attention in terms of computation speed and energy consumption. The universality of a reservoir computing model is its ability to approximate an arbitrary system with arbitrary accuracy. Two sufficient reservoir conditions to make the model universal have been proposed. The first is the combination of fading memory and the separation property. The second is the neighborhood separation property, which we proposed recently. To date, it has been unknown whether a reservoir with a finite-dimensional output can satisfy these conditions. In this study, we prove that no reservoir with a finite-dimensional output satisfies the former condition. By contrast, we propose a single output reservoir that satisfies the latter condition. This implies that, for any dimension, a reservoir making the model universal exists with the output of that specified dimension. These results clarify the practical importance of our proposed conditions.</p></div></div></section> <div data-test="cobranding-download"> </div> <section aria-labelledby="inline-recommendations" data-title="Inline Recommendations" class="c-article-recommendations" data-track-component="inline-recommendations"> <h3 class="c-article-recommendations-title" id="inline-recommendations">Similar content being viewed by others</h3> <div class="c-article-recommendations-list"> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1007%2Fs11071-024-10178-w/MediaObjects/11071_2024_10178_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/s11071-024-10178-w?fromPaywallRec=false" data-track="select_recommendations_1" data-track-context="inline recommendations" data-track-action="click recommendations inline - 1" data-track-label="10.1007/s11071-024-10178-w">Polynomial function error stair of reservoir computing and its applications in characterizing the learning capability </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__date">23 August 2024</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1007%2Fs10884-022-10159-w/MediaObjects/10884_2022_10159_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/s10884-022-10159-w?fromPaywallRec=false" data-track="select_recommendations_2" data-track-context="inline recommendations" data-track-action="click recommendations inline - 2" data-track-label="10.1007/s10884-022-10159-w">Learning Dynamics by Reservoir Computing (In Memory of Prof. Pavol Brunovský) </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__access-type">Open access</span> <span class="c-article-meta-recommendations__date">26 April 2022</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1038%2Fs41598-022-20331-3/MediaObjects/41598_2022_20331_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1038/s41598-022-20331-3?fromPaywallRec=false" data-track="select_recommendations_3" data-track-context="inline recommendations" data-track-action="click recommendations inline - 3" data-track-label="10.1038/s41598-022-20331-3">Time series reconstructing using calibrated reservoir computing </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__access-type">Open access</span> <span class="c-article-meta-recommendations__date">29 September 2022</span> </div> </div> </article> </div> </div> </section> <script> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ recommendations: { recommender: 'semantic', model: 'specter', policy_id: 'NA', timestamp: 1732381438, embedded_user: 'null' } }); </script> <section aria-labelledby="content-related-subjects" data-test="subject-content"> <h3 id="content-related-subjects" class="c-article__sub-heading">Explore related subjects</h3> <span class="u-sans-serif u-text-s u-display-block u-mb-24">Discover the latest articles, news and stories from top researchers in related subjects.</span> <ul class="c-article-subject-list" role="list"> <li class="c-article-subject-list__subject"> <a href="/subject/quantum-computing" data-track="select_related_subject_1" data-track-context="related subjects from content page" data-track-label="Quantum Computing">Quantum Computing</a> </li> </ul> </section> <div class="main-content"> <section data-title="Introduction"><div class="c-article-section" id="Sec1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec1">Introduction</h2><div class="c-article-section__content" id="Sec1-content"><p>Reservoir computing (RC) is a machine learning method for dynamical system approximation. An RC model consists of a dynamical system called a reservoir and a static function called a readout. First, the input signal to the RC model is processed in the reservoir. Next, the signal from the reservoir is processed using the readout, and the model output is obtained. The concept of RC is that only the static part of the model is trained, that is, the readout, to make the model behave as desired<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Jaeger, H. The “echo state” approach to analysing and training recurrent neural networks—with an erratum note. German National Research Center for Information Technology GMD Technical Report, 148.34 (2001)." href="#ref-CR1" id="ref-link-section-d117352412e409">1</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Maass, W. & Natschl, T. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)." href="#ref-CR2" id="ref-link-section-d117352412e409_1">2</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Steil, J. J. Backpropagation-decorrelation: Online recurrent learning with O(N) complexity. In 2004 IEEE International Joint Conference on Neural Networks 843–848 (2004)." href="#ref-CR3" id="ref-link-section-d117352412e409_2">3</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Verstraeten, D., Schrauwen, B., D’Haene, M. & Stroobandt, D. An experimental unification of reservoir computing methods. Neural Netw. 20(3), 391–403 (2007)." href="#ref-CR4" id="ref-link-section-d117352412e409_3">4</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="Lukoševičius, M. & Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3), 127–149 (2009)." href="/article/10.1038/s41598-024-56742-7#ref-CR5" id="ref-link-section-d117352412e412">5</a></sup>. RC was proposed initially to simplify the training of recurrent neural networks (RNNs)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="Williams, R. J. & Zipser, D. A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1(2), 270–280 (1989)." href="/article/10.1038/s41598-024-56742-7#ref-CR6" id="ref-link-section-d117352412e416">6</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="Werbos, P. J. Backpropagation through time: what it does and how to do it. Proc. IEEE 78(10), 1550–1560 (1990)." href="/article/10.1038/s41598-024-56742-7#ref-CR7" id="ref-link-section-d117352412e419">7</a></sup> and is superior in terms of computational cost for training. Generally, a randomly generated RNN is used as the reservoir. However, because the reservoir is fixed, a physical system that is difficult to adjust can also be used as the reservoir. Recently, physical RC, which uses a physical system as the reservoir, has received considerable attention<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Tanaka, G. et al. Recent advances in physical reservoir computing: A review. Neural Netw. 115, 100–123 (2019)." href="#ref-CR8" id="ref-link-section-d117352412e423">8</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Friedman, J. S. Unsupervised learning & reservoir computing leveraging analog spintronic phenomena. IEEE 16th Nanotechnology Materials and Devices Conference 1–2 (2021)." href="#ref-CR9" id="ref-link-section-d117352412e423_1">9</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Stelzer, F., Röhm, A., Lüdge, K. & Yanchuk, S. Performance boost of time-delay reservoir computing by non-resonant clock cycle. Neural Netw. 124, 158–169 (2020)." href="#ref-CR10" id="ref-link-section-d117352412e423_2">10</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Soriano, M. C. et al. Delay-based reservoir computing: Noise effects in a combined analog and digital implementation. IEEE Trans. Neural Netw. Learn. Syst. 26(2), 388–393 (2014)." href="#ref-CR11" id="ref-link-section-d117352412e423_3">11</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="Dong, J., Rafayelyan, M., Krzakala, F. & Gigan, S. Optical reservoir computing using multiple light scattering for chaotic systems prediction. IEEE J. Sel. Top. Quantum Electron. 26(1), 1–12 (2020)." href="/article/10.1038/s41598-024-56742-7#ref-CR12" id="ref-link-section-d117352412e426">12</a></sup>. Physical reservoirs are expected to be superior to an RNN implemented on a general-purpose computer in terms of processing speed and energy consumption<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="Tanaka, G. et al. Recent advances in physical reservoir computing: A review. Neural Netw. 115, 100–123 (2019)." href="/article/10.1038/s41598-024-56742-7#ref-CR8" id="ref-link-section-d117352412e430">8</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 13" title="Nakajima, K. & Fischer, I. Reservoir Computing (Springer, 2021)." href="/article/10.1038/s41598-024-56742-7#ref-CR13" id="ref-link-section-d117352412e433">13</a></sup>.</p><p>We say that an RC model is universal if it can approximate an arbitrary system with arbitrary accuracy by training only the readout. Several studies have been performed on the approximation ability of RC models. Grigoryeva et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 14" title="Grigoryeva, L. & Ortega, J. P. Echo state networks are universal. Neural Netw. 108, 495–508 (2018)." href="/article/10.1038/s41598-024-56742-7#ref-CR14" id="ref-link-section-d117352412e440">14</a></sup> studied an echo state network (ESN)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="Jaeger, H. The “echo state” approach to analysing and training recurrent neural networks—with an erratum note. German National Research Center for Information Technology GMD Technical Report, 148.34 (2001)." href="/article/10.1038/s41598-024-56742-7#ref-CR1" id="ref-link-section-d117352412e444">1</a></sup>, which is a typical RC model composed of an RNN reservoir and linear readout. Gonon et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 15" title="Gonon, L. & Ortega, J. P. Reservoir Computing Universality With Stochastic Inputs. IEEE Trans. Neural Netw. Learn. Syst. 31(1), 100–112 (2020)." href="/article/10.1038/s41598-024-56742-7#ref-CR15" id="ref-link-section-d117352412e448">15</a></sup> studied the three classes of RC models for stochastic inputs: one composed of a linear reservoir and polynomial readout, one composed of a state-affine reservoir and linear readout, and an ESN. They showed that each model can approximate any system with any accuracy. However, their results differ from the universality that we deal with in this paper. This is because, for each target system to be approximated, they must train both the readout and the reservoir. Fixing the reservoir regardless of the targets is the concept of RC, and by violating it, advantages such as the hardware implementation of the reservoir and reduction of the computational cost of training are lost.</p><p>We say that a reservoir is universal if it makes the RC model universal. To the best of our knowledge, it is unknown whether a universal reservoir with a finite-dimensional output exists. This is an important problem because a reservoir’s output is finite in practice. The keys to solving this problem are the study of Maass et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Maass, W. & Natschl, T. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)." href="/article/10.1038/s41598-024-56742-7#ref-CR2" id="ref-link-section-d117352412e455">2</a></sup> and our recent study<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e459">16</a></sup>. In each of these studies on continuous-time RC, a sufficient condition for a reservoir to be universal was proposed. They use a polynomial readout, evaluate the approximation error using the uniform norm, and assume that the target has fading memory. Fading memory means that if two inputs were close to each other in the recent past, the present outputs are also close. In<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Maass, W. & Natschl, T. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)." href="/article/10.1038/s41598-024-56742-7#ref-CR2" id="ref-link-section-d117352412e463">2</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e466">16</a></sup>, an <i>m</i>-output reservoir is represented as a set of <i>m</i> operators, which are maps between input functions and scalar-valued output functions. Therefore, we call a reservoir with a finite-dimensional output a finite reservoir. In<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Maass, W. & Natschl, T. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)." href="/article/10.1038/s41598-024-56742-7#ref-CR2" id="ref-link-section-d117352412e477">2</a></sup>, input and output functions of the operators are defined on the bi-infinite-time (BIT) interval <span class="mathjax-tex">\({\mathbb {R}}\)</span>. Hence, we call these operators BIT operators. Maass et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Maass, W. & Natschl, T. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)." href="/article/10.1038/s41598-024-56742-7#ref-CR2" id="ref-link-section-d117352412e499">2</a></sup> showed that a reservoir is universal if it has the separation property and operators in it have fading memory. In<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e503">16</a></sup>, input and output functions of the operators are defined on the right-infinite-time (RIT) interval <span class="mathjax-tex">\({\mathbb {R}}_+=\left[ 0,\infty \right)\)</span>. Hence, we call these operators RIT operators. In<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e544">16</a></sup>, we showed that a reservoir is universal if it has the neighborhood separation property (NSP) and the operators in it are bounded. However, it remains an open question whether there exists any finite reservoir satisfying those conditions<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Maass, W. & Natschl, T. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)." href="/article/10.1038/s41598-024-56742-7#ref-CR2" id="ref-link-section-d117352412e549">2</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e552">16</a></sup>.</p><p>In this paper, we provide two results. First, we show that no finite reservoir satisfies the condition in<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Maass, W. & Natschl, T. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)." href="/article/10.1038/s41598-024-56742-7#ref-CR2" id="ref-link-section-d117352412e559">2</a></sup>. We derive a contradiction from the assumption that an <i>m</i>-output reservoir satisfies the condition in<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Maass, W. & Natschl, T. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)." href="/article/10.1038/s41598-024-56742-7#ref-CR2" id="ref-link-section-d117352412e566">2</a></sup>: the separation property and fading memory. BIT operators have a one-to-one correspondence between functionals, which are maps from input signals to <span class="mathjax-tex">\({\mathbb {R}}\)</span>. Using the functionals, we construct a map from the compact space of input signals to <span class="mathjax-tex">\({\mathbb {R}}^m\)</span>. The separation property and fading memory mean that the constructed map is injective and continuous, respectively. This leads to the contradiction that the space of input signals and a subset of <span class="mathjax-tex">\({\mathbb {R}}^m\)</span> are homeomorphic, although they have different dimensions. As the second result, we show that there is a reservoir that has a single output and the NSP, which is the condition in<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e641">16</a></sup>. RIT operators also have a one-to-one correspondence between functionals. We show that a single output reservoir with the NSP exists if a functional with a continuous left inverse exists. To obtain such a functional, we use the Hahn–Mazurkiewicz theorem, which provides continuous surjection from <span class="mathjax-tex">\(\left[ 0,1\right]\)</span> to the space of functional inputs. Assuming the axiom of choice, we can take the right inverse of the surjection, which is the functional that we seek.</p><p>Our contribution in this study is to show that there is no finite reservoir satisfying the condition in<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Maass, W. & Natschl, T. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)." href="/article/10.1038/s41598-024-56742-7#ref-CR2" id="ref-link-section-d117352412e673">2</a></sup> but there is one satisfying the condition in<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e677">16</a></sup>. Through the discussion, we provide an example of a universal reservoir with a single output. The mathematical meaning of our example is that an operator, which is a map between functions, can be approximated by training only the readout, which is a continuous map from <span class="mathjax-tex">\(\left[ 0,1\right]\)</span> to <span class="mathjax-tex">\({\mathbb {R}}\)</span>. This is a counter-intuitive and interesting result. The practical meaning of our example is that a reservoir has the possibility of being universal, regardless of the dimension of the output. This is particularly important for using physical reservoirs because they are difficult to adjust.</p><p>The structure of this paper is as follows: first, we show that there is no finite reservoir that satisfies the condition in<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Maass, W. & Natschl, T. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)." href="/article/10.1038/s41598-024-56742-7#ref-CR2" id="ref-link-section-d117352412e726">2</a></sup>. Second, we show that a universal reservoir with a single output exists that satisfies the condition in<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e730">16</a></sup>. Finally, we conclude the paper.</p></div></div></section><section data-title="Reservoir computing represented by bi-infinite-time operators"><div class="c-article-section" id="Sec2-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec2">Reservoir computing represented by bi-infinite-time operators</h2><div class="c-article-section__content" id="Sec2-content"><p>In the study by Maass et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Maass, W. & Natschl, T. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)." href="/article/10.1038/s41598-024-56742-7#ref-CR2" id="ref-link-section-d117352412e742">2</a></sup>, which is one of the earliest on RC, they proposed a condition for the reservoir to be universal. We first consider this condition to prove the existence of a universal finite reservoir. Eventually, we conclude that no finite reservoir can satisfy the condition in<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Maass, W. & Natschl, T. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)." href="/article/10.1038/s41598-024-56742-7#ref-CR2" id="ref-link-section-d117352412e746">2</a></sup>. In the first subsection, we briefly review<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Maass, W. & Natschl, T. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)." href="/article/10.1038/s41598-024-56742-7#ref-CR2" id="ref-link-section-d117352412e750">2</a></sup>, and in the second subsection, we describe one of the two main results of the present study.</p><h3 class="c-article__sub-heading" id="Sec3">Condition for universality</h3><p>RC is a method to approximate a dynamical system, a map between functions of time. Let <span class="mathjax-tex">\(A\subset {\mathbb {R}}^n\)</span> be a compact set of input values and <span class="mathjax-tex">\(K>0\)</span> be the limit of the speed of input change. We define a set <span class="mathjax-tex">\(U^B\)</span> of BIT inputs as follows:</p><div id="Equ1" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} U^B = \left\{ u:{\mathbb {R}} \rightarrow A\;\left| \;\forall t_1,t_2 \in {\mathbb {R}},\left\| u{\left( t_1 \right) } - u{\left( t_2 \right) } \right\| \le K \left| {t_1-t_2} \right| \right. \right\} . \end{aligned}$$</span></div><div class="c-article-equation__number"> (1) </div></div><p>Let <span class="mathjax-tex">\(Y^B\)</span> be a set of output functions from <span class="mathjax-tex">\({\mathbb {R}}\)</span> to <span class="mathjax-tex">\({\mathbb {R}}\)</span>. We call operators from <span class="mathjax-tex">\(U^B\)</span> to <span class="mathjax-tex">\(Y^B\)</span> “BIT operators” because they are maps between signals defined on the BIT interval <span class="mathjax-tex">\({\mathbb {R}}\)</span>. For operator <i>F</i> and input signal <i>u</i>, we write the output signal and its value at time <i>t</i> as <i>Fu</i> and <span class="mathjax-tex">\(Fu{\left( t\right) }\)</span>, respectively. Maass et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Maass, W. & Natschl, T. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)." href="/article/10.1038/s41598-024-56742-7#ref-CR2" id="ref-link-section-d117352412e1149">2</a></sup> defined the reservoir, that is, the dynamical part of a RC model, as a set <span class="mathjax-tex">\({\mathbb {F}}\)</span> of BIT operators. If the cardinal number <span class="mathjax-tex">\(m=\left| {\mathbb {F}}\right|\)</span> is finite, <span class="mathjax-tex">\({\mathbb {F}}\)</span> represents a dynamical system that returns <i>m</i> output signals <span class="mathjax-tex">\(F_1u,\ldots ,F_mu\in Y^B\)</span> for an input signal <span class="mathjax-tex">\(u\in U^B\)</span>. Hence, we call <i>m</i> the output dimension of <span class="mathjax-tex">\({\mathbb {F}}\)</span> and call <span class="mathjax-tex">\({\mathbb {F}}\)</span> an <i>m</i>-output reservoir. Mathematically, <span class="mathjax-tex">\({\mathbb {F}}\)</span> can even be an uncountable set: for example, the reservoir representing waves on a liquid surface<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="Fernando, C. & Sojakka, S. Pattern recognition in a bucket. In European Conference on Artificial Life 588–597 (Springer, 2003)." href="/article/10.1038/s41598-024-56742-7#ref-CR17" id="ref-link-section-d117352412e1363">17</a></sup> has the cardinality of continuum.</p><p>The RC model <span class="mathjax-tex">\({\hat{F}}:U^B\rightarrow Y^B\)</span> is defined as follows:</p><div id="Equ2" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\hat{F}}u{\left( t\right) }=p{\left( F_1u{\left( t\right) },\dots ,F_iu{\left( t\right) }\right) }\quad \left( u\in U^B,t\in {\mathbb {R}}\right) , \end{aligned}$$</span></div><div class="c-article-equation__number"> (2) </div></div><p>where <span class="mathjax-tex">\(i\in {\mathbb {N}}\)</span> and <span class="mathjax-tex">\(F_1,\dots ,F_i\in {\mathbb {F}}\)</span>. The function <span class="mathjax-tex">\(p:{\mathbb {R}}^i\rightarrow {\mathbb {R}}\)</span> is a polynomial called a readout. If <i>m</i> is finite, we can set <span class="mathjax-tex">\(i=m\)</span> and <span class="mathjax-tex">\(\left\{ F_1,\dots ,F_i\right\} ={\mathbb {F}}\)</span>. In this case, the RC model is trained only by turning the readout <i>p</i>. However, if <i>m</i> is infinite, we must also select a finite number of operators <span class="mathjax-tex">\(F_1,\dots ,F_i\in {\mathbb {F}}\)</span>. This operation effectively means the training of the reservoir as well as the readout. For instance, in<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 18" title="Boyd, S. & Chua, L. O. Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans. Circuits Syst. 32(11), 1150–1161 (1985)." href="/article/10.1038/s41598-024-56742-7#ref-CR18" id="ref-link-section-d117352412e1766">18</a></sup>, they considered a reservoir composed of all operators defined by a stable linear system. In practice, selecting the operators from such a reservoir means the turning of some parameters of a linear system. Therefore, a finite reservoir is required to achieve the low computational cost of training, which is the advantage of RC. In the remainder of this paper, we assume that <i>m</i> is finite unless otherwise specified.</p><p>The RC model and its reservoir are said to be universal if the model can approximate an arbitrary dynamical system with arbitrary accuracy. We formulate the universality of a reservoir represented by BIT operators as follows:</p> <h3 class="c-article__sub-heading" id="FPar1">Definition 1</h3> <p>Let reservoir <span class="mathjax-tex">\({\mathbb {F}}\)</span> be a set of BIT operators <span class="mathjax-tex">\(F_1,\dots ,F_m\)</span> and let <span class="mathjax-tex">\({\mathbb {F}}^*\)</span> be another set of BIT operators. Reservoir <span class="mathjax-tex">\({\mathbb {F}}\)</span> is said to be universal for uniform approximations in <span class="mathjax-tex">\({\mathbb {F}}^*\)</span> if, for any operator <span class="mathjax-tex">\(F^*\in {\mathbb {F}}^*\)</span> and <span class="mathjax-tex">\(\varepsilon >0\)</span>, a polynomial <span class="mathjax-tex">\(p:{{\mathbb {R}}}^m \rightarrow {\mathbb {R}}\)</span> exists that satisfies</p><div id="Equ3" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \forall u\in U^B,\forall t\in {\mathbb {R}},\left| F^*u{\left( t \right) }-p{\left( F_1u{\left( t \right) },\ldots ,F_mu{\left( t \right) } \right) } \right| <\varepsilon . \end{aligned}$$</span></div><div class="c-article-equation__number"> (3) </div></div> <p>Definition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar1">1</a> means that, if the reservoir <span class="mathjax-tex">\({\mathbb {F}}\)</span> is universal, a polynomial of operators <span class="mathjax-tex">\(F_1,\dots ,F_m\)</span> can approximate any target in <span class="mathjax-tex">\({\mathbb {F}}^*\)</span> with any accuracy.</p><p>To guarantee the universality of RC, Maass et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Maass, W. & Natschl, T. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)." href="/article/10.1038/s41598-024-56742-7#ref-CR2" id="ref-link-section-d117352412e2229">2</a></sup> considered BIT operators that have two properties called time invariance and fading memory. An operator <span class="mathjax-tex">\(F:U^B\rightarrow Y^B\)</span> is said to be time-invariant if the following holds:</p><div id="Equ4" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \forall t\in {\mathbb {R}}, \forall u_1,u_2\in U^B,\left[ \left( \forall \tau \in {\mathbb {R}}, u_2{\left( \tau \right) }=u_1{\left( \tau -t\right) }\right) \Rightarrow \left( \forall \tau \in {\mathbb {R}}, Fu_2{\left( \tau \right) }=Fu_1{\left( \tau -t\right) }\right) \right] . \end{aligned}$$</span></div><div class="c-article-equation__number"> (4) </div></div><p>The property time invariance means that a temporal shift of an input also shifts the output.</p><p>Fading memory is defined as follows:</p> <h3 class="c-article__sub-heading" id="FPar2">Definition 2</h3> <p>A BIT operator <span class="mathjax-tex">\(F:U^B\rightarrow Y^B\)</span> is said to have fading memory if the following holds:</p><div id="Equ5" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \forall u_1\in U^B,\forall \varepsilon>0,\exists \delta>0,\exists T>0,\forall u_2\in U^B,\left[ \max _{\tau \in \left[ -T,0\right] }\left\| u_1{\left( \tau \right) }-u_2{\left( \tau \right) }\right\|<\delta \Rightarrow \left| Fu_1{\left( 0\right) }-Fu_2{\left( 0\right) }\right| <\varepsilon \right] . \end{aligned}$$</span></div><div class="c-article-equation__number"> (5) </div></div> <p>Fading memory means that the output value strongly depends on the recent past input but weakly depends on the distant past. Fading memory also means independence from the future, which we define as causality later in the paper.</p><p>According to Maass et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Maass, W. & Natschl, T. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)." href="/article/10.1038/s41598-024-56742-7#ref-CR2" id="ref-link-section-d117352412e2714">2</a></sup>, the following condition is essential for a reservoir to be universal.</p> <h3 class="c-article__sub-heading" id="FPar3">Definition 3</h3> <p>Let reservoir <span class="mathjax-tex">\({\mathbb {F}}\)</span> be a set of BIT operators. Reservoir <span class="mathjax-tex">\({\mathbb {F}}\)</span> is said to have the separation property if <span class="mathjax-tex">\({\mathbb {F}}\)</span> satisfies the following:</p><div id="Equ6" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \forall u_1,u_2\in U^B,\exists F\in {\mathbb {F}},\left[ \left( \exists \tau \le 0,u_1{\left( \tau \right) }\ne u_2{\left( \tau \right) }\right) \Rightarrow Fu_1{\left( 0\right) }\ne Fu_2{\left( 0\right) }\right] . \end{aligned}$$</span></div><div class="c-article-equation__number"> (6) </div></div> <p>The separation property means that the reservoir provides different outputs to different inputs. Suppose that the reservoir does not have the separation property, that is, the reservoir returns the same output to two different inputs. Then, the RC model cannot approximate a target that returns different outputs to those inputs. Hence, the separation property is necessary to achieve universality. Note that Eqs. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ5">5</a>) and (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ6">6</a>) are the conditions for the output at time 0 because time invariance is assumed. Under time invariance, the same holds at times other than 0.</p><p>The result in<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Maass, W. & Natschl, T. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)." href="/article/10.1038/s41598-024-56742-7#ref-CR2" id="ref-link-section-d117352412e2945">2</a></sup> is described as follows:</p> <h3 class="c-article__sub-heading" id="FPar4">Theorem 1</h3> <p>(Maass and Natschl<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Maass, W. & Natschl, T. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)." href="/article/10.1038/s41598-024-56742-7#ref-CR2" id="ref-link-section-d117352412e2956">2</a></sup>) Let <span class="mathjax-tex">\({\mathbb {F}}^*\)</span> be the set of time-invariant BIT operators with fading memory. Suppose that reservoir <span class="mathjax-tex">\({\mathbb {F}}\subset {\mathbb {F}}^*\)</span> has the separation property. Then, reservoir <span class="mathjax-tex">\({\mathbb {F}}\)</span> is universal for uniform approximations in <span class="mathjax-tex">\({\mathbb {F}}^*\)</span>.</p> <p>To summarize the result in<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Maass, W. & Natschl, T. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)." href="/article/10.1038/s41598-024-56742-7#ref-CR2" id="ref-link-section-d117352412e3068">2</a></sup>, a reservoir with the separation property that contains only time-invariant operators with fading memory is universal. If <i>m</i> can be infinite, a reservoir that satisfies the condition of Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar4">1</a> exists. For example, the reservoir composed of linear systems<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 18" title="Boyd, S. & Chua, L. O. Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans. Circuits Syst. 32(11), 1150–1161 (1985)." href="/article/10.1038/s41598-024-56742-7#ref-CR18" id="ref-link-section-d117352412e3078">18</a></sup>, which we mentioned before, satisfies the condition.</p><h3 class="c-article__sub-heading" id="Sec4">No finite reservoir satisfies the condition of Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar4">1</a> </h3><p>We show that any finite reservoir does not satisfy the condition of Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar4">1</a>. To achieve this, we define a functional corresponding to a time-invariant and causal BIT operator, with which fading memory and the separation property are expressed more simply. The causality of a BIT operator is defined as follows:</p> <h3 class="c-article__sub-heading" id="FPar5">Definition 4</h3> <p>BIT operator <span class="mathjax-tex">\(F:U^B\rightarrow Y^B\)</span> is said to be causal if <i>F</i> satisfies</p><div id="Equ7" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \forall u_1,u_2\in U^B,\forall t\in {\mathbb {R}},\left[ \left( \forall \tau \le t, u_1{\left( \tau \right) }=u_2{\left( \tau \right) }\right) \Rightarrow Fu_1{\left( t\right) }=Fu_2{\left( t\right) }\right] . \end{aligned}$$</span></div><div class="c-article-equation__number"> (7) </div></div> <p>A BIT operator with fading memory is causal. With causality, the output value <span class="mathjax-tex">\(Fu{\left( t\right) }\)</span> depends only on the input values of <i>u</i> on <span class="mathjax-tex">\(\left( -\infty ,t\right]\)</span>. Moreover, with time invariance, this relation does not depend on <i>t</i>. Hence, a causal and time-invariant operator is considered as a relation between input signals on <span class="mathjax-tex">\({\mathbb {R}}_-=\left( -\infty ,0\right]\)</span> and <span class="mathjax-tex">\({\mathbb {R}}\)</span>. The corresponding functional is defined by such a relation. For the compact set <span class="mathjax-tex">\(A\subset {\mathbb {R}}^n\)</span> and <span class="mathjax-tex">\(K>0\)</span> in Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ1">1</a>), we define the domain <i>V</i> of functionals as follows:</p><div id="Equ8" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} V = \left\{ v:{\mathbb {R}}_- \rightarrow A\;\left| \;\forall t_1,t_2 \le 0,\left\| v{\left( t_1 \right) } - v{\left( t_2 \right) } \right\| \le K \left| {t_1-t_2} \right| \right. \right\} . \end{aligned}$$</span></div><div class="c-article-equation__number"> (8) </div></div><p>The correspondence between a BIT operator and a functional is defined as follows:</p> <h3 class="c-article__sub-heading" id="FPar6">Definition 5</h3> <p>A causal and time-invariant BIT operator <span class="mathjax-tex">\(F:U^B\rightarrow Y^B\)</span> and a functional <span class="mathjax-tex">\(f:V\rightarrow {\mathbb {R}}\)</span> are said to correspond to each other if the following holds:</p><div id="Equ9" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \forall u\in U^B,\forall v\in V, \left[ \left( \forall \tau \le 0,u{\left( \tau \right) }=v{\left( \tau \right) }\right) \Rightarrow Fu{\left( 0\right) }=f{\left( v\right) }\right] . \end{aligned}$$</span></div><div class="c-article-equation__number"> (9) </div></div> <p>This correspondence is one-to-one<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 18" title="Boyd, S. & Chua, L. O. Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans. Circuits Syst. 32(11), 1150–1161 (1985)." href="/article/10.1038/s41598-024-56742-7#ref-CR18" id="ref-link-section-d117352412e3825">18</a></sup> and we can express the conditions of operators using their corresponding functionals.</p><p>We define a norm on <i>V</i> and a metric derived from it. Let <span class="mathjax-tex">\(w:{\mathbb {R}}_+\rightarrow \left( 0,1 \right]\)</span> be a non-increasing function that satisfies <span class="mathjax-tex">\(\lim _{t\rightarrow \infty }w{\left( t\right) }=0\)</span>. We define a weighted norm <span class="mathjax-tex">\(\left\| v\right\| _w\)</span> of <span class="mathjax-tex">\(v\in V\)</span> as follows:</p><div id="Equ10" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \left\| v\right\| _w=\sup _{\tau \le 0}\left\| v{\left( \tau \right) }\right\| w{\left( -\tau \right) }. \end{aligned}$$</span></div><div class="c-article-equation__number"> (10) </div></div><p>Using this norm, we define a metric <span class="mathjax-tex">\(d:V\times V\rightarrow {\mathbb {R}}_+\)</span> on <i>V</i> as follows:</p><div id="Equ11" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} d{\left( v_1,v_2\right) }=\left\| v_1-v_2\right\| _w. \end{aligned}$$</span></div><div class="c-article-equation__number"> (11) </div></div><p>Hereafter, we use <i>d</i> as a metric on <i>V</i>. Fading memory and the separation property are expressed by a functional as follows:</p> <h3 class="c-article__sub-heading" id="FPar7">Proposition 1</h3> <p>A causal and time-invariant operator <span class="mathjax-tex">\(F:U^B\rightarrow Y^B\)</span> has fading memory if and only if the functional <span class="mathjax-tex">\(f:V\rightarrow {\mathbb {R}}\)</span> corresponding to <i>F</i> is continuous.</p> <h3 class="c-article__sub-heading" id="FPar8">Proposition 2</h3> <p>Let <span class="mathjax-tex">\(F_1,\ldots ,F_m:U^B\rightarrow Y^B\)</span> be causal and time-invariant operators and functionals <span class="mathjax-tex">\(f_1,\ldots ,f_m:V\rightarrow {\mathbb {R}}\)</span> correspond to <span class="mathjax-tex">\(F_1,\ldots ,F_m\)</span>, respectively. Then, reservoir <span class="mathjax-tex">\({\mathbb {F}}=\left\{ F_1,\ldots ,F_m\right\}\)</span> has the separation property if and only if the following map <span class="mathjax-tex">\(\left( f_1,\ldots ,f_m\right) :V\rightarrow {\mathbb {R}}^m\)</span> is injective:</p><div id="Equ12" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \left( f_1,\ldots ,f_m\right) {\left( v\right) }=\left( f_1{\left( v\right) },\ldots ,f_m{\left( v\right) }\right) \quad \left( v\in V\right) . \end{aligned}$$</span></div><div class="c-article-equation__number"> (12) </div></div> <p>We provide the proofs in the supplementary material. Using Propositions <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar7">1</a> and <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar8">2</a>, we obtain the following theorem, which provides the conclusion of this section.</p> <h3 class="c-article__sub-heading" id="FPar9">Theorem 2</h3> <p>Suppose that the input range <span class="mathjax-tex">\(A\subset {\mathbb {R}}^n\)</span> in Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ1">1</a>) includes distinct <span class="mathjax-tex">\(a_1\)</span> and <span class="mathjax-tex">\(a_2\)</span> that satisfy</p><div id="Equ13" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \forall \alpha \in \left[ 0,1\right] ,a_1+\alpha \left( a_2-a_1\right) \in A \end{aligned}.$$</span></div><div class="c-article-equation__number"> (13) </div></div><p>Then, no natural number <i>m</i> and time-invariant operators <span class="mathjax-tex">\(F_1,\ldots ,F_m:U^B\rightarrow Y^B\)</span> with fading memory exist such that reservoir <span class="mathjax-tex">\({\mathbb {F}}=\left\{ F_1,\ldots ,F_m\right\}\)</span> has the separation property.</p> <h3 class="c-article__sub-heading" id="FPar10">Proof of Theorem 2</h3> <p>We prove the theorem by contradiction. Suppose that natural number <i>m</i> and time-invariant operators <span class="mathjax-tex">\(F_1,\ldots ,F_m:U^B\rightarrow Y^B\)</span> with fading memory exist such that reservoir <span class="mathjax-tex">\({\mathbb {F}}=\left\{ F_1,\ldots ,F_m\right\}\)</span> has the separation property. Let functionals <span class="mathjax-tex">\(f_1,\ldots ,f_m:V\rightarrow {\mathbb {R}}\)</span> correspond to <span class="mathjax-tex">\(F_1,\ldots ,F_m\)</span>, respectively. Then, from Propositions <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar7">1</a> and <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar8">2</a>, the map <span class="mathjax-tex">\(\left( f_1,\ldots ,f_m\right) :V\rightarrow {\mathbb {R}}^m\)</span> is a continuous injection. An injection can be considered as a bijection onto its image, and a continuous bijection from a compact domain to a Hausdorff space is a homeomorphism. Because the set <i>V</i> is compact<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e5196">16</a></sup>, map <span class="mathjax-tex">\(\left( f_1,\ldots ,f_m\right)\)</span> is a topological embedding, that is, a homeomorphism onto its image. We use the following lemma. <span class="mathjax-tex">\(\square\)</span></p> <h3 class="c-article__sub-heading" id="FPar11">Lemma 1</h3> <p>A topological embedding <span class="mathjax-tex">\(g:\left[ 0,1\right] ^{m+1}\rightarrow V\)</span> exists.</p> <p>We provide the proof after the Proof of Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar9">2</a>. From Lemma <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar11">1</a>, the composition <span class="mathjax-tex">\(\left( f_1,\ldots ,f_m\right) \circ g:\left[ 0,1\right] ^{m+1}\rightarrow {\mathbb {R}}^m\)</span> is also a topological embedding, that is, <span class="mathjax-tex">\(\left[ 0,1\right] ^{m+1}\)</span> and <span class="mathjax-tex">\(\left( f_1,\ldots ,f_m\right) \circ g\left( \left[ 0,1\right] ^{m+1}\right) \subset {\mathbb {R}}^m\)</span> are homeomorphic. We call the small inductive dimension simply a dimension. Dimensions have the following two properties (see pages 3–4 of reference<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 19" title="Engelking, R. Dimension Theory (North-Holland Publishing Company, 1978)." href="/article/10.1038/s41598-024-56742-7#ref-CR19" id="ref-link-section-d117352412e5525">19</a></sup>): first, two homeomorphic topological spaces have the same dimension. Second, a topological space has a dimension equal to its subspace or larger. Therefore, we have</p><div id="Equ14" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} m+1={\textrm{ind}}\;\left[ 0,1\right] ^{m+1}={\textrm{ind}}\;\left( f_1,\ldots ,f_m\right) \circ g\left( \left[ 0,1\right] ^{m+1}\right) \le {\textrm{ind}}\;{\mathbb {R}}^m=m, \end{aligned}$$</span></div><div class="c-article-equation__number"> (14) </div></div><p>where ind<span class="mathjax-tex">\(\left( \cdot \right)\)</span> is the dimension. Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ14">14</a>) is a contradiction, which proves Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar9">2</a>. <span class="mathjax-tex">\(\square\)</span></p><p>As shown in Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar9">2</a>, any finite reservoir does not satisfy the condition of Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar4">1</a>. Therefore, Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar4">1</a> cannot support the possibility that a universal finite reservoir exists. We prove Lemma <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar11">1</a> as follows:</p> <h3 class="c-article__sub-heading" id="FPar12">Proof of Lemma 1</h3> <p>From the assumption, distinct <span class="mathjax-tex">\(a_1\)</span>, <span class="mathjax-tex">\(a_2\in A\)</span> exist that satisfy <span class="mathjax-tex">\(a_1+\alpha \left( a_2-a_1\right) \in A\)</span> for any <span class="mathjax-tex">\(\alpha \in \left[ 0,1\right]\)</span>. Let <span class="mathjax-tex">\(T=\frac{1}{K}\left\| a_1-a_2\right\|\)</span>. For <span class="mathjax-tex">\(c\in \left[ 0,1\right] ^{m+1}\)</span>, we define a continuous piecewise linear function <span class="mathjax-tex">\(\alpha _c:{\mathbb {R}}_-\rightarrow \left[ 0,1\right]\)</span> as follows:</p><div id="Equ15" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \alpha _c{\left( t\right) }=c_i+\frac{1}{T}\left( -iT-t\right) \left( c_{i+1}-c_i\right) \quad \left( -\left( i+1\right) T<t\le -iT\right) \end{aligned}.$$</span></div><div class="c-article-equation__number"> (15) </div></div><p>where <span class="mathjax-tex">\(i\in \left\{ 0\right\} \cup {\mathbb {N}}\)</span>, <span class="mathjax-tex">\(\left( c_1,\ldots ,c_{m+1}\right) =c\)</span>, and <span class="mathjax-tex">\(c_0,c_{m+2},c_{m+3},\ldots\)</span> are zeros. The function <span class="mathjax-tex">\(\alpha _c\)</span> satisfies <span class="mathjax-tex">\(\alpha _c{\left( -iT\right) }=c_i\)</span>. Because the Lipschitz constant of <span class="mathjax-tex">\(\alpha _c\)</span> is <span class="mathjax-tex">\(\frac{K}{\left\| a_1-a_2\right\| }\)</span> or less, we can define a continuous function <span class="mathjax-tex">\(g:\left[ 0,1\right] ^{m+1}\rightarrow V\)</span> as follows:</p><div id="Equ16" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} g:c\mapsto v\quad \left( c\in \left[ 0,1\right] ^{m+1}\right) ,\quad v{\left( t\right) }=a_1+\alpha _c{\left( t\right) }\left( a_2-a_1\right) \quad \left( t\le 0\right) \end{aligned}.$$</span></div><div class="c-article-equation__number"> (16) </div></div><p>Because <span class="mathjax-tex">\(v=g{\left( c\right) }\)</span> satisfies <span class="mathjax-tex">\(v{\left( -iT\right) }=a_1+c_i\left( a_2-a_1\right)\)</span> for any <span class="mathjax-tex">\(c=\left( c_1,\ldots ,c_{m+1}\right) \in \left[ 0,1\right] ^{m+1}\)</span> and <span class="mathjax-tex">\(i\in \left\{ 1,\ldots ,m+1\right\}\)</span>, <i>g</i> is injective. Therefore, <i>g</i> is a continuous bijection from its compact domain <span class="mathjax-tex">\(\left[ 0,1\right] ^{m+1}\)</span> to its image, that is, <i>g</i> is a topological embedding, which proves Lemma <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar11">1</a>. <span class="mathjax-tex">\(\square\)</span></p> </div></div></section><section data-title="Reservoir computing represented by right-infinite-time operators"><div class="c-article-section" id="Sec5-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec5">Reservoir computing represented by right-infinite-time operators</h2><div class="c-article-section__content" id="Sec5-content"><p>To obtain the output value of a BIT operator, we have to consider an input signal that continues from the infinite past. In our recent study<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e6907">16</a></sup>, we avoided this impracticality by defining input and output signals for positive time and proposed another condition for the reservoir to be universal. Using this condition, we prove the existence of a universal finite reservoir. In the first subsection, we briefly explain our previous results<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e6911">16</a></sup>. In the second subsection, we prove the main result of the present study.</p><h3 class="c-article__sub-heading" id="Sec6">Condition for universality</h3><p>For compact set <span class="mathjax-tex">\(A\subset {\mathbb {R}}^n\)</span> and <span class="mathjax-tex">\(K>0\)</span> in Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ1">1</a>), we define a set <span class="mathjax-tex">\(U^R\)</span> of RIT inputs as follows:</p><div id="Equ17" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \begin{aligned} U^R = \left\{ u:{\mathbb {R}}_+ \rightarrow A\;\left| \;\forall t_1,t_2\ge 0,\left\| u{\left( t_1 \right) } - u{\left( t_2 \right) } \right\| \le K \left| {t_1-t_2} \right| \right. \right\} . \end{aligned} \end{aligned}$$</span></div><div class="c-article-equation__number"> (17) </div></div><p>Let <span class="mathjax-tex">\(Y^R\)</span> be the set of output functions from <span class="mathjax-tex">\({\mathbb {R}}_+\)</span> to <span class="mathjax-tex">\({\mathbb {R}}\)</span>. We call operators from <span class="mathjax-tex">\(U^R\)</span> to <span class="mathjax-tex">\(Y^R\)</span> “RIT operators” because they are maps between signals defined on the RIT interval <span class="mathjax-tex">\({\mathbb {R}}_+\)</span>. In<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e7300">16</a></sup>, the reservoir is defined as a set <span class="mathjax-tex">\({\mathbb {F}}\)</span> of RIT operators. The RC model <span class="mathjax-tex">\({\hat{F}}:U^R\rightarrow Y^R\)</span> is defined as follows:</p><div id="Equ18" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\hat{F}}u{\left( t\right) }=p{\left( F_1u{\left( t\right) },\dots ,{F_m}u{\left( t\right) }\right) }\quad \left( u\in U^R,t\ge 0\right) , \end{aligned}$$</span></div><div class="c-article-equation__number"> (18) </div></div><p>where <span class="mathjax-tex">\(\left\{ F_1,\dots ,F_m\right\} = {\mathbb {F}}\)</span>. The polynomial <span class="mathjax-tex">\(p:{{\mathbb {R}}^m}\rightarrow {\mathbb {R}}\)</span> is the readout.</p><p>In the RIT operator case, universality is defined as follows:</p> <h3 class="c-article__sub-heading" id="FPar13">Definition 6</h3> <p>Let reservoir <span class="mathjax-tex">\({\mathbb {F}}\)</span> be a set of RIT operators <span class="mathjax-tex">\(F_1,\ldots ,F_m\)</span> and let <span class="mathjax-tex">\({\mathbb {F}}^*\)</span> be another set of RIT operators. Reservoir <span class="mathjax-tex">\({\mathbb {F}}\)</span> is said to be universal for uniform approximations in <span class="mathjax-tex">\({\mathbb {F}}^*\)</span> if, for any operator <span class="mathjax-tex">\(F^*\in {\mathbb {F}}^*\)</span> and <span class="mathjax-tex">\(\varepsilon >0\)</span>, a polynomial <span class="mathjax-tex">\(p:{{\mathbb {R}}}^m \rightarrow {\mathbb {R}}\)</span> exists that satisfies</p><div id="Equ19" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \forall u\in U^R,\forall t\ge 0,\left| F^*u{\left( t \right) }-p{\left( F_1u{\left( t \right) },\ldots ,F_mu{\left( t \right) } \right) } \right| <\varepsilon . \end{aligned}$$</span></div><div class="c-article-equation__number"> (19) </div></div> <p>RIT operators also correspond to functionals, which are maps to real numbers. We require these corresponding functionals to describe the result in<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e7935">16</a></sup>. To correspond to a functional, an RIT operator must be causal as follows:</p> <h3 class="c-article__sub-heading" id="FPar14">Definition 7</h3> <p>An RIT operator <span class="mathjax-tex">\(F:U^R\rightarrow Y^R\)</span> is said to be causal if <i>F</i> satisfies</p><div id="Equ20" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \forall u_1,u_2\in U^R,\forall t\ge 0,\left[ \left( \forall \tau \in \left[ 0,t\right] , u_1{\left( \tau \right) }=u_2{\left( \tau \right) }\right) \Rightarrow Fu_1{\left( t\right) }=Fu_2{\left( t\right) }\right] . \end{aligned}$$</span></div><div class="c-article-equation__number"> (20) </div></div> <p>With causality, the output value <span class="mathjax-tex">\(Fu{\left( t\right) }\)</span> depends only on the input values of <i>u</i> on <span class="mathjax-tex">\(\left[ 0,t\right]\)</span>. Hence, a causal RIT operator is considered as a relation between input signals of various lengths and <span class="mathjax-tex">\({\mathbb {R}}\)</span>. The corresponding functional is defined by such a relation. For the set <i>V</i> in Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ8">8</a>), we define the domain <span class="mathjax-tex">\(V^{\textrm{res}}\)</span> of functionals as follows:</p><div id="Equ21" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} V^{\textrm{res}} =\left\{ v^{\left[ t \right] }\;\left| \; v \in V, t \ge 0 \right. \right\} , \end{aligned}$$</span></div><div class="c-article-equation__number"> (21) </div></div><p>where <span class="mathjax-tex">\(v^{\left[ t \right] }\)</span> is the restriction of <i>v</i> to <span class="mathjax-tex">\(\left[ -t,0\right]\)</span>. Let <span class="mathjax-tex">\(\lambda :V^{\textrm{res}}\rightarrow {\mathbb {R}}_+\)</span> be a map defined by <span class="mathjax-tex">\(v^{\left[ t \right] }\mapsto t\)</span>. For example, <span class="mathjax-tex">\(\lambda {\left( v\right) }=1\)</span> for <span class="mathjax-tex">\(v:{\left[ -1,0\right] }\rightarrow A\)</span>. The correspondence between an RIT operator and a functional is defined as follows:</p> <h3 class="c-article__sub-heading" id="FPar15">Definition 8</h3> <p>A causal RIT operator <span class="mathjax-tex">\(F:U^R\rightarrow Y^R\)</span> and a functional <span class="mathjax-tex">\(f:V^{\textrm{res}}\rightarrow {\mathbb {R}}\)</span> are said to correspond to each other if the following holds:</p><div id="Equ22" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \forall u\in U^R,\forall v\in V^{\textrm{res}},\left[ \left( \forall \tau \in \left[ -t,0\right] ,u{\left( t+\tau \right) }=v{\left( \tau \right) }\right) \Rightarrow Fu{\left( t\right) }=f{\left( v\right) }\right] , \end{aligned}$$</span></div><div class="c-article-equation__number"> (22) </div></div><p>where <span class="mathjax-tex">\(t=\lambda {\left( v\right) }\)</span>.</p> <p>Similar to the BIT operator case, this correspondence is one-to-one<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e8772">16</a></sup>.</p><p>We need a metric on <span class="mathjax-tex">\(V^{\textrm{res}}\)</span> to explain the condition of reservoirs for universality proposed in<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e8801">16</a></sup>. Using <span class="mathjax-tex">\(w:{\mathbb {R}}_+\rightarrow \left( 0,1 \right]\)</span> in Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ10">10</a>), we define the weighted norm <span class="mathjax-tex">\(\left\| v \right\| _w\)</span> of <span class="mathjax-tex">\(v:\left[ -t,0 \right] \rightarrow {\mathbb {R}}^n\)</span> as</p><div id="Equ23" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \left\| v \right\| _w = \sup _{\tau \in \left[ {-t,0} \right] } \left\| v{\left( \tau \right) }\right\| w{\left( -\tau \right) }. \end{aligned}$$</span></div><div class="c-article-equation__number"> (23) </div></div><p>Let <span class="mathjax-tex">\(\theta :{\mathbb {R}}_+\rightarrow {\mathbb {R}}_+\)</span> be a strictly increasing, bounded, and continuous function. For <i>w</i> and <span class="mathjax-tex">\(\theta\)</span>, we define the distance <span class="mathjax-tex">\(d{\left( {v_1},{v_2} \right) }\)</span> between <span class="mathjax-tex">\(v_1\)</span>, <span class="mathjax-tex">\(v_2\in V^{\textrm{res}}\)</span> as</p><div id="Equ24" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} d{\left( {v_1},{v_2} \right) }=\left\| v_1^{\left[ t_{\min }\right] }-v_2^{\left[ t_{\min }\right] } \right\| _w+\left| \theta {\left( t_1 \right) }-\theta {\left( t_2 \right) }\right| , \end{aligned}$$</span></div><div class="c-article-equation__number"> (24) </div></div><p>where <span class="mathjax-tex">\(t_1=\lambda {\left( v_1\right) }\)</span>, <span class="mathjax-tex">\(t_2=\lambda {\left( v_2\right) }\)</span>, and <span class="mathjax-tex">\(t_{\min }=\min \left\{ t_1,t_2 \right\}\)</span>. See Assumption 1 in<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e9437">16</a></sup> for detailed conditions for the map <span class="mathjax-tex">\(d:V^{\textrm{res}}\times V^{\textrm{res}}\rightarrow {\mathbb {R}}_+\)</span> to be a metric. We extend <i>d</i> onto <span class="mathjax-tex">\(V^{\textrm{res}}\cup V\)</span> by defining <span class="mathjax-tex">\(\lambda {\left( v\right) }=\infty\)</span>, <span class="mathjax-tex">\(v^{\left[ \infty \right] }=v\)</span>, and <span class="mathjax-tex">\(\theta {\left( \infty \right) }=\lim _{t\rightarrow \infty }\theta {\left( t\right) }\)</span> for any <span class="mathjax-tex">\(v\in V\)</span>. With this extension, the metrics in Eqs. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ11">11</a>) and (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ24">24</a>) are equivalent on <i>V</i>. Hereafter, we use <i>d</i> as a metric on <span class="mathjax-tex">\(V^{\textrm{res}}\cup V\)</span>. Any <span class="mathjax-tex">\(v\in V\)</span> is an accumulation point of <span class="mathjax-tex">\(V^{\textrm{res}}\)</span> because <span class="mathjax-tex">\(v^{\left[ t\right] }\in V^{\textrm{res}}\)</span> converges to <i>v</i> as <span class="mathjax-tex">\(t\rightarrow \infty\)</span>. As shown in Proposition 5 in<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e9814">16</a></sup>, <span class="mathjax-tex">\(V^{\textrm{res}}\cup V\)</span> is compact. Therefore, <span class="mathjax-tex">\(V^{\textrm{res}}\cup V=\overline{V^{\textrm{res}}}\)</span> holds, where <span class="mathjax-tex">\(\overline{\;\cdot \;}\)</span> means closure. In<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e9919">16</a></sup>, the following condition is proposed for a reservoir to be universal.</p> <h3 class="c-article__sub-heading" id="FPar16">Definition 9</h3> <p>Let <span class="mathjax-tex">\({\mathbb {F}}\)</span> be a set of causal RIT operators <span class="mathjax-tex">\(F_1,\ldots ,F_m\)</span> and let <span class="mathjax-tex">\(f_1,\ldots ,f_m:V^{\textrm{res}}\rightarrow {\mathbb {R}}\)</span> correspond to each operator in <span class="mathjax-tex">\({\mathbb {F}}\)</span>. The set <span class="mathjax-tex">\({\mathbb {F}}\)</span> is said to have the neighborhood separation property (NSP) if the following holds for any distinct <span class="mathjax-tex">\(v_1\)</span>, <span class="mathjax-tex">\(v_2\in \overline{V^{\textrm{res}}}\)</span>:</p><div id="Equ25" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \exists \delta >0,\overline{\left( f_1,\ldots ,f_m\right) {\left( N_\delta {\left( v_1 \right) }\cap V^{\textrm{res}} \right) }}\cap \overline{\left( f_1,\ldots ,f_m\right) {\left( N_\delta {\left( v_2 \right) }\cap V^{\textrm{res}}\right) }}=\emptyset , \end{aligned}$$</span></div><div class="c-article-equation__number"> (25) </div></div><p>where <span class="mathjax-tex">\(N_\delta {\left( v \right) }\)</span> is a <span class="mathjax-tex">\(\delta\)</span>-neighborhood of <span class="mathjax-tex">\(v\in \overline{V^{\textrm{res}}}\)</span> defined as follows:</p><div id="Equ26" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} N_\delta {\left( v \right) }=\left\{ v'\in \overline{V^{\textrm{res}}}\left| d{\left( v',v\right) }<\delta \right. \right\} . \end{aligned}$$</span></div><div class="c-article-equation__number"> (26) </div></div> <p>The NSP guarantees that the images of neighborhoods of distinct points are disjoint. Hence, we can say that the NSP is the “strong injectivity” of the map <span class="mathjax-tex">\(\left( f_1,\ldots ,f_m\right)\)</span>.</p><p>In<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e10532">16</a></sup>, target operator <span class="mathjax-tex">\(F^*:U^R\rightarrow Y^R\)</span> is assumed to correspond to a uniformly continuous functional. As shown in Proposition 8 in<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e10580">16</a></sup>, this assumption gives <span class="mathjax-tex">\(F^*\)</span> three properties. The first is the following:</p><div id="Equ27" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \forall \varepsilon>0,\forall u_1\in U^R,\forall t\ge 0,\exists \delta >0,\forall u_2\in U^R,\left[ \max _{\tau \in \left[ 0,t\right] }\left\| u_1{\left( \tau \right) }-u_2{\left( \tau \right) }\right\|<\delta \Rightarrow \left| F^*u_1{\left( t\right) }-F^*u_2{\left( t\right) }\right| <\varepsilon \right] . \end{aligned}$$</span></div><div class="c-article-equation__number"> (27) </div></div><p>Roughly speaking, this is a “continuity” of the output value with respect to past inputs. Hence, <span class="mathjax-tex">\(F^*\)</span> is also causal. The second property is the equicontinuity of output signals, that is,</p><div id="Equ28" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \forall \varepsilon>0,\forall t\ge 0,\exists \delta >0,\forall y\in F^*{\left( U\right) },\forall t'\ge 0,\left[ \left| t-t'\right|<\delta \Rightarrow \left| y{\left( t\right) }-y{\left( t'\right) }\right| <\varepsilon \right] . \end{aligned}$$</span></div><div class="c-article-equation__number"> (28) </div></div><p>The third property is fading memory of an RIT operator<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e11003">16</a></sup>, which means that older inputs have less influence on the present output. At first glance, the uniform continuity of the target’s corresponding functional is a stricter condition than that in<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Maass, W. & Natschl, T. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)." href="/article/10.1038/s41598-024-56742-7#ref-CR2" id="ref-link-section-d117352412e11007">2</a></sup>. However, in<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Maass, W. & Natschl, T. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)." href="/article/10.1038/s41598-024-56742-7#ref-CR2" id="ref-link-section-d117352412e11011">2</a></sup>, continuity implies uniform continuity because the functional domain <i>V</i> is compact. Hence, no difference exists between the two.</p><p>The result in<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e11021">16</a></sup> is described as follows:</p> <h3 class="c-article__sub-heading" id="FPar17">Theorem 3</h3> <p>(Sugiura et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e11032">16</a></sup>) Let <span class="mathjax-tex">\({\mathbb {F}}^*\)</span> be the set of RIT operators corresponding to a uniformly continuous functional and let reservoir <span class="mathjax-tex">\({\mathbb {F}}\)</span> be a set of bounded RIT operators. Suppose that <span class="mathjax-tex">\({\mathbb {F}}\)</span> has the NSP. Then, reservoir <span class="mathjax-tex">\({\mathbb {F}}\)</span> is universal for uniform approximations in <span class="mathjax-tex">\({\mathbb {F}}^*\)</span>.</p> <p>Operator <span class="mathjax-tex">\(F:U^R\rightarrow Y^R\)</span> is said to be bounded if <span class="mathjax-tex">\(F{\left( U^R\right) }\)</span> is uniformly bounded, that is,</p><div id="Equ29" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \exists c\ge 0,\forall y\in F{\left( U\right) },\forall t\ge 0,\left| y{\left( t\right) }\right| \le c. \end{aligned}$$</span></div><div class="c-article-equation__number"> (29) </div></div><p>To summarize the result in<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e11302">16</a></sup>, a reservoir with the NSP that contains only bounded operators is universal.</p><h3 class="c-article__sub-heading" id="Sec7">Existence of universal finite reservoir</h3><p>Using Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar17">3</a>, we show that a universal reservoir <span class="mathjax-tex">\({\mathbb {F}}\)</span> with a single output exists. If the reservoir <span class="mathjax-tex">\({\mathbb {F}}\)</span> is universal, we can easily construct a universal reservoir with a higher dimensional output by adding arbitrary operators to <span class="mathjax-tex">\({\mathbb {F}}\)</span>. Hence, the universality of <span class="mathjax-tex">\({\mathbb {F}}\)</span> means that, for any dimension, a universal reservoir exists with the output of that specified dimension. Let operator <span class="mathjax-tex">\(F:U^R\rightarrow Y^R\)</span> and functional <span class="mathjax-tex">\(f:V^{\textrm{res}}\rightarrow {\mathbb {R}}\)</span> correspond to each other. Then, the NSP of reservoir <span class="mathjax-tex">\({\mathbb {F}}=\left\{ F\right\}\)</span> is written as follows:</p><div id="Equ30" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \forall v_1,v_2\in \overline{V^{\textrm{res}}},\left[ v_1\ne v_2\Rightarrow \left( \exists \delta >0,\overline{f{\left( N_\delta {\left( v_1 \right) }\cap V^{\textrm{res}} \right) }}\cap \overline{f{\left( N_\delta {\left( v_2 \right) }\cap V^{\textrm{res}}\right) }}=\emptyset \right) \right] . \end{aligned}$$</span></div><div class="c-article-equation__number"> (30) </div></div><p>The following proposition provides a stronger but simpler condition than Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ30">30</a>):</p> <h3 class="c-article__sub-heading" id="FPar18">Proposition 3</h3> <p>Let <span class="mathjax-tex">\(f:V^{\textrm{res}}\rightarrow {\mathbb {R}}\)</span>. Suppose that there is a continuous left inverse <span class="mathjax-tex">\(g:\overline{f{\left( V^{\textrm{res}}\right) }}\rightarrow \overline{V^{\textrm{res}}}\)</span> of <i>f</i>, that is, a continuous map <i>g</i> that satisfies the following:</p><div id="Equ31" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} g\circ f=\textrm{id}_{V^{\textrm{res}}}. \end{aligned}$$</span></div><div class="c-article-equation__number"> (31) </div></div><p>Then, <i>f</i> satisfies Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ30">30</a>).</p> <h3 class="c-article__sub-heading" id="FPar19">Proof of Proposition 3</h3> <p>We prove the contraposition. Suppose that there are distinct <span class="mathjax-tex">\(v_1\)</span>, <span class="mathjax-tex">\(v_2\in \overline{V^{\textrm{res}}}\)</span> that satisfy the following:</p><div id="Equ32" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \forall \delta >0,\overline{f{\left( V_1 \right) }}\cap \overline{f{\left( V_2\right) }}\ne \emptyset , \end{aligned}$$</span></div><div class="c-article-equation__number"> (32) </div></div><p>where <span class="mathjax-tex">\(V_1\)</span>, <span class="mathjax-tex">\(V_2\subset V^{\textrm{res}}\)</span> are defined as follows:</p><div id="Equ33" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} V_1=N_\delta {\left( v_1 \right) }\cap V^{\textrm{res}},\quad V_2=N_\delta {\left( v_2 \right) }\cap V^{\textrm{res}}. \end{aligned}$$</span></div><div class="c-article-equation__number"> (33) </div></div><p>Because of <span class="mathjax-tex">\(v_1\ne v_2\)</span>, we obtain <span class="mathjax-tex">\(\overline{V_1}\cap \overline{V_2}=\emptyset\)</span> by setting <span class="mathjax-tex">\(\delta =d{\left( v_1,v_2\right) }/3\)</span>. Let <span class="mathjax-tex">\(\left( \alpha _{1,i}\right) _{i\in {\mathbb {N}}}\in f{\left( V_1\right) }\)</span> and <span class="mathjax-tex">\(\left( \alpha _{2,i}\right) _{i\in {\mathbb {N}}}\in f{\left( V_2\right) }\)</span> be sequences that converge to <span class="mathjax-tex">\(\alpha \in \overline{f{\left( V_1 \right) }}\cap \overline{f{\left( V_2\right) }}\)</span>. Suppose that <span class="mathjax-tex">\(g:\overline{f{\left( V^{\textrm{res}}\right) }}\rightarrow \overline{V^{\textrm{res}}}\)</span> is a left inverse of <i>f</i>. Then, <span class="mathjax-tex">\(g{\left( \alpha _{1,i}\right) }\)</span> and <span class="mathjax-tex">\(g{\left( \alpha _{2,i}\right) }\)</span> are contained in <span class="mathjax-tex">\(V_1\)</span> and <span class="mathjax-tex">\(V_2\)</span>, respectively. Because of <span class="mathjax-tex">\(\overline{V_1}\cap \overline{V_2}=\emptyset\)</span>, <span class="mathjax-tex">\(g{\left( \alpha _{1,i}\right) }\)</span> and <span class="mathjax-tex">\(g{\left( \alpha _{2,i}\right) }\)</span> do not converge to the same point as <span class="mathjax-tex">\(i\rightarrow \infty\)</span>, even though <span class="mathjax-tex">\(\alpha _{1,i}\)</span> and <span class="mathjax-tex">\(\alpha _{2,i}\)</span> converge to <span class="mathjax-tex">\(\alpha\)</span>. Hence, <i>g</i> is not continuous at <span class="mathjax-tex">\(\alpha \in \overline{f{\left( V^{\textrm{res}}\right) }}\)</span>. <span class="mathjax-tex">\(\square\)</span></p> <p>To prove that a functional <span class="mathjax-tex">\(f:V^{\textrm{res}}\rightarrow {\mathbb {R}}\)</span> with a continuous left inverse exists, we use the following theorem.</p> <h3 class="c-article__sub-heading" id="FPar20">Theorem 4</h3> <p>(Hahn–Mazurkiewicz theorem<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 20" title="Hocking, J. G. & Young, G. S. Topology (Addison-Wesley Publishing Company, 1961)." href="/article/10.1038/s41598-024-56742-7#ref-CR20" id="ref-link-section-d117352412e13013">20</a></sup>) Let <i>E</i> be a connected, locally connected, and compact metric space. Then, a continuous surjection from <span class="mathjax-tex">\(\left[ 0,1\right]\)</span> to <i>E</i> exists.</p> <p>Metric space <span class="mathjax-tex">\(\overline{V^{\textrm{res}}}=V^{\textrm{res}}\cup V\)</span> is compact<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e13094">16</a></sup>. As we show later in this paper, <span class="mathjax-tex">\(\overline{V^{\textrm{res}}}\)</span> is connected and locally connected. Hence, from Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar20">4</a>, a space-filling curve <span class="mathjax-tex">\(g:\left[ 0,1\right] \rightarrow \overline{V^{\textrm{res}}}\)</span> exists, which is continuous and surjective. Using the axiom of choice, we obtain a functional <span class="mathjax-tex">\(f:V^{\textrm{res}}\rightarrow {\mathbb {R}}\)</span> with a continuous left inverse as a right inverse of <i>g</i>. Therefore, a reservoir that contains only one operator can have the NSP. To prove that <span class="mathjax-tex">\(\overline{V^{\textrm{res}}}\)</span> is connected and locally connected, we assume that the set <span class="mathjax-tex">\(A\subset {\mathbb {R}}^n\)</span> in Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ8">8</a>) is convex.</p> <h3 class="c-article__sub-heading" id="FPar21">Proposition 4</h3> <p>The set <span class="mathjax-tex">\(\overline{V^{\textrm{res}}}\)</span> is connected.</p> <h3 class="c-article__sub-heading" id="FPar22">Proof of Proposition 4</h3> <p>We prove that <span class="mathjax-tex">\(\overline{V^{{\textrm{res}}}}\)</span> is arcwise connected, which is a stronger condition than being connected. Let <span class="mathjax-tex">\(v_1\)</span> and <span class="mathjax-tex">\(v_2\)</span> be arbitrary inputs in <span class="mathjax-tex">\(\overline{V^{{\textrm{res}}}}\)</span>. The set <span class="mathjax-tex">\(\overline{V^{\textrm{res}}}\)</span> is said to be arcwise connected if there is some continuous map <span class="mathjax-tex">\(P:\left[ 0,1\right] \rightarrow \overline{V^{{\textrm{res}}}}\)</span> that satisfies <span class="mathjax-tex">\(P{\left( 0\right) }=v_1\)</span> and <span class="mathjax-tex">\(P{\left( 1\right) }=v_2\)</span>. Such a map <i>P</i> is called a path from <span class="mathjax-tex">\(v_1\)</span> to <span class="mathjax-tex">\(v_2\)</span>. Let <span class="mathjax-tex">\(t_1=\lambda {\left( v_1\right) }\)</span> and <span class="mathjax-tex">\(t_2=\lambda {\left( v_2\right) }\)</span>. If a path exists from <span class="mathjax-tex">\(v_1\)</span> to <span class="mathjax-tex">\(v_2\)</span>, one exists from <span class="mathjax-tex">\(v_2\)</span> to <span class="mathjax-tex">\(v_1\)</span>. Hence, we can assume that <span class="mathjax-tex">\(t_1\le t_2\)</span> without loss of generality. Let <span class="mathjax-tex">\(v_3=v_2^{\left[ t_1\right] }\)</span>, that is, <span class="mathjax-tex">\(v_3\)</span> has the same domain as <span class="mathjax-tex">\(v_1\)</span> and the same value as <span class="mathjax-tex">\(v_2\)</span>. We form a path from <span class="mathjax-tex">\(v_1\)</span> to <span class="mathjax-tex">\(v_2\)</span> through <span class="mathjax-tex">\(v_3\)</span>.</p> <p>First, we form a path from <span class="mathjax-tex">\(v_1\)</span> to <span class="mathjax-tex">\(v_3\)</span>. Because <span class="mathjax-tex">\(v_1\)</span> and <span class="mathjax-tex">\(v_3\)</span> has the same domain <span class="mathjax-tex">\(\left[ -t_1,0\right]\)</span>, we can define a map <span class="mathjax-tex">\(P_1:\left[ 0,1\right] \rightarrow \overline{V^{\textrm{res}}}\)</span> as follows:</p><div id="Equ34" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} P_1{\left( \alpha \right) }=\left( 1-\alpha \right) v_1+\alpha v_3\quad \left( \alpha \in \left[ 0,1\right] \right) . \end{aligned}$$</span></div><div class="c-article-equation__number"> (34) </div></div><p>Map <span class="mathjax-tex">\(P_1\)</span> satisfies <span class="mathjax-tex">\(P_1{\left( 0\right) }=v_1\)</span> and <span class="mathjax-tex">\(P_1{\left( 1\right) }=v_3\)</span>. Because the input range <span class="mathjax-tex">\(A\subset {\mathbb {R}}^n\)</span> is convex, the image of <span class="mathjax-tex">\(P_1\)</span> is included in <span class="mathjax-tex">\(\overline{V^{\textrm{res}}}\)</span>. Map <span class="mathjax-tex">\(P_1\)</span> is continuous because, for any <span class="mathjax-tex">\(\alpha _1\)</span>, <span class="mathjax-tex">\(\alpha _2\in \left[ 0,1\right]\)</span>, the distance between <span class="mathjax-tex">\(P_1{\left( \alpha _1\right) }\)</span> and <span class="mathjax-tex">\(P_1{\left( \alpha _2\right) }\)</span> is formulated as follows:</p><div id="Equ35" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} d{\left( P_1{\left( \alpha _1\right) },P_1{\left( \alpha _2\right) }\right) }=\left| \alpha _1-\alpha _2\right| \left\| v_1-v_3\right\| _w. \end{aligned}$$</span></div><div class="c-article-equation__number"> (35) </div></div><p>Therefore, map <span class="mathjax-tex">\(P_1\)</span> is a path from <span class="mathjax-tex">\(v_1\)</span> to <span class="mathjax-tex">\(v_3\)</span>.</p> <p>Second, we form a path from <span class="mathjax-tex">\(v_3\)</span> to <span class="mathjax-tex">\(v_2\)</span>. The function <span class="mathjax-tex">\(\theta\)</span> has inverse <span class="mathjax-tex">\(\theta ^{-1}\)</span> because it is strictly increasing and continuous. Using <span class="mathjax-tex">\(\theta ^{-1}\)</span>, we define map <span class="mathjax-tex">\(\mu :\left[ 0,1\right] \rightarrow \left[ t_1,t_2\right]\)</span> as follows:</p><div id="Equ36" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \mu {\left( \alpha \right) }=\theta ^{-1}{\left( \left( 1-\alpha \right) \theta {\left( t_1\right) }+\alpha \theta {\left( t_2\right) }\right) }\quad \left( \alpha \in \left[ 0,1\right] \right) , \end{aligned}$$</span></div><div class="c-article-equation__number"> (36) </div></div><p>where <span class="mathjax-tex">\(\theta {\left( \infty \right) }=\lim _{t\rightarrow \infty }\theta {\left( t\right) }\)</span> and <span class="mathjax-tex">\(\theta ^{-1}{\left( \theta {\left( \infty \right) }\right) }=\infty\)</span>. We define a map <span class="mathjax-tex">\(P_2:\left[ 0,1\right] \rightarrow \overline{V^{\textrm{res}}}\)</span> as follows:</p><div id="Equ37" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} P_2{\left( \alpha \right) }=v_2^{\left[ \mu {\left( \alpha \right) }\right] }\quad \left( \alpha \in \left[ 0,1\right] \right) . \end{aligned}$$</span></div><div class="c-article-equation__number"> (37) </div></div><p>Map <span class="mathjax-tex">\(P_2\)</span> satisfies <span class="mathjax-tex">\(P_2{\left( 0\right) }=v_3\)</span> and <span class="mathjax-tex">\(P_2{\left( 1\right) }=v_2\)</span> because <span class="mathjax-tex">\(\mu {\left( 0\right) }=t_1\)</span> and <span class="mathjax-tex">\(\mu {\left( 1\right) }=t_2\)</span> hold. From the definition (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ21">21</a>) of <span class="mathjax-tex">\(V^{\textrm{res}}\)</span>, the image of <span class="mathjax-tex">\(P_2\)</span> is included in <span class="mathjax-tex">\(\overline{V^{\textrm{res}}}\)</span>. Map <span class="mathjax-tex">\(P_2\)</span> is continuous because, for any <span class="mathjax-tex">\(\alpha _1\)</span>, <span class="mathjax-tex">\(\alpha _2\in \left[ 0,1\right]\)</span>, the distance between <span class="mathjax-tex">\(P_2{\left( \alpha _1\right) }\)</span> and <span class="mathjax-tex">\(P_2{\left( \alpha _2\right) }\)</span> is formulated as follows:</p><div id="Equ38" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} d{\left( P_2{\left( \alpha _1\right) },P_2{\left( \alpha _2\right) }\right) }=\left| \theta {\left( \mu {\left( \alpha _1\right) }\right) }-\theta {\left( \mu {\left( \alpha _2\right) }\right) }\right| =\left| \alpha _1-\alpha _2\right| \left| \theta {\left( t_1\right) }-\theta {\left( t_2\right) }\right| . \end{aligned}$$</span></div><div class="c-article-equation__number"> (38) </div></div><p>Therefore, map <span class="mathjax-tex">\(P_2\)</span> is a path from <span class="mathjax-tex">\(v_3\)</span> to <span class="mathjax-tex">\(v_2\)</span>.</p> <p>Using <span class="mathjax-tex">\(P_1\)</span> and <span class="mathjax-tex">\(P_2\)</span>, we define path <span class="mathjax-tex">\(P:\left[ 0,1\right] \rightarrow \overline{V^{\textrm{res}}}\)</span> from <span class="mathjax-tex">\(v_1\)</span> to <span class="mathjax-tex">\(v_2\)</span> as follows:</p><div id="Equ39" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} P{\left( \alpha \right) }= {\left\{ \begin{array}{ll} P_1{\left( 2\alpha \right) }&{}\left( 0\le \alpha \le \frac{1}{2}\right) \\ P_2{\left( 2\alpha -1\right) }&{}\left( \frac{1}{2}<\alpha \le 1\right) \end{array}\right. }. \end{aligned}$$</span></div><div class="c-article-equation__number"> (39) </div></div><p>Therefore, the set <span class="mathjax-tex">\(\overline{V^{\textrm{res}}}\)</span> is arcwise connected. <span class="mathjax-tex">\(\square\)</span></p> <p>To prove that the set <span class="mathjax-tex">\(\overline{V^{\textrm{res}}}\)</span> is locally connected, we use the following proposition:</p> <h3 class="c-article__sub-heading" id="FPar23">Proposition 5</h3> <p>For any <span class="mathjax-tex">\(v_1\)</span>, <span class="mathjax-tex">\(v_2\in \overline{V^{\textrm{res}}}\)</span>, path <span class="mathjax-tex">\(P:\left[ 0,1\right] \rightarrow \overline{V^{\textrm{res}}}\)</span> from <span class="mathjax-tex">\(v_1\)</span> to <span class="mathjax-tex">\(v_2\)</span> exists that satisfies the following:</p><div id="Equ40" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \forall \alpha \in \left[ 0,1\right] ,d{\left( v_1,v_2\right) }=d{\left( v_1,P{\left( \alpha \right) }\right) }+d{\left( P{\left( \alpha \right) },v_2\right) }. \end{aligned}$$</span></div><div class="c-article-equation__number"> (40) </div></div> <p>Equation (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ40">40</a>) means that path <i>P</i> is “the shortest” between <span class="mathjax-tex">\(v_1\)</span> and <span class="mathjax-tex">\(v_2\)</span>, that is, equality holds in the triangle inequality between any point on the path and the two endpoints.</p> <h3 class="c-article__sub-heading" id="FPar24">Proof of Proposition 5</h3> <p>Let <span class="mathjax-tex">\(v_1\)</span> and <span class="mathjax-tex">\(v_2\)</span> be arbitrary inputs in <span class="mathjax-tex">\(\overline{V^{\textrm{res}}}\)</span>. If path <i>P</i> from <span class="mathjax-tex">\(v_1\)</span> to <span class="mathjax-tex">\(v_2\)</span> exists that satisfies Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ40">40</a>), a similar path from <span class="mathjax-tex">\(v_2\)</span> to <span class="mathjax-tex">\(v_1\)</span> exists. Hence, for <span class="mathjax-tex">\(t_1=\lambda {\left( v_1\right) }\)</span> and <span class="mathjax-tex">\(t_2=\lambda {\left( v_2\right) }\)</span>, we can assume that <span class="mathjax-tex">\(t_1\le t_2\)</span> without loss of generality. We show that path <span class="mathjax-tex">\(P:\left[ 0,1\right] \rightarrow \overline{V^{\textrm{res}}}\)</span> defined by (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ39">39</a>) satisfies Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ40">40</a>) using the following three lemmas: <span class="mathjax-tex">\(\square\)</span></p> <h3 class="c-article__sub-heading" id="FPar25">Lemma 2</h3> <p>Path <span class="mathjax-tex">\(P_1:\left[ 0,1\right] \rightarrow \overline{V^{\textrm{res}}}\)</span> defined by Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ34">34</a>) satisfies the following:</p><div id="Equ41" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \forall \alpha \in \left[ 0,1\right] ,d{\left( v_1,v_3\right) }=d{\left( v_1,P_1{\left( \alpha \right) }\right) }+d{\left( P_1{\left( \alpha \right) },v_3\right) }. \end{aligned}$$</span></div><div class="c-article-equation__number"> (41) </div></div> <h3 class="c-article__sub-heading" id="FPar26">Proof of Lemma 2</h3> <p>Using Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ35">35</a>), distance <span class="mathjax-tex">\(d{\left( v_1,v_3\right) }\)</span> is transformed as follows:</p><div id="Equ42" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \begin{aligned} d{\left( v_1,v_3\right) }=&\,\left\| v_1-v_3\right\| _w\\ =&\,\left| 0-\alpha \right| \left\| v_1-v_3\right\| _w+\left| \alpha -1\right| \left\| v_1-v_3\right\| _w\\ =&\,d{\left( P_1{\left( 0\right) },P_1{\left( \alpha \right) }\right) }+d{\left( P_1{\left( \alpha \right) },P_1{\left( 1\right) }\right) }\\ =&\,d{\left( v_1,P_1{\left( \alpha \right) }\right) }+d{\left( P_1{\left( \alpha \right) },v_3\right) }, \end{aligned} \end{aligned}$$</span></div><div class="c-article-equation__number"> (42) </div></div><p>which proves Lemma <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar25">2</a>. <span class="mathjax-tex">\(\square\)</span></p> <h3 class="c-article__sub-heading" id="FPar27">Lemma 3</h3> <p>Path <span class="mathjax-tex">\(P_2:\left[ 0,1\right] \rightarrow \overline{V^{\textrm{res}}}\)</span> defined by Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ37">37</a>) satisfies the following:</p><div id="Equ43" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \forall \alpha \in \left[ 0,1\right] ,d{\left( v_3,v_2\right) }=d{\left( v_3,P_2{\left( \alpha \right) }\right) }+d{\left( P_2{\left( \alpha \right) },v_2\right) }. \end{aligned}$$</span></div><div class="c-article-equation__number"> (43) </div></div> <h3 class="c-article__sub-heading" id="FPar28">Proof of Lemma 3</h3> <p>Using Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ38">38</a>), distance <span class="mathjax-tex">\(d{\left( v_3,v_2\right) }\)</span> is transformed as follows:</p><div id="Equ44" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \begin{aligned} d{\left( v_3,v_2\right) }=&\,\left| \theta {\left( t_1\right) }-\theta {\left( t_2\right) }\right| \\ =&\,\left| 0-\alpha \right| \left| \theta {\left( t_1\right) }-\theta {\left( t_2\right) }\right| +\left| \alpha -1\right| \left| \theta {\left( t_1\right) }-\theta {\left( t_2\right) }\right| \\ =&\,d{\left( P_2{\left( 0\right) },P_2{\left( \alpha \right) }\right) }+d{\left( P_2{\left( \alpha \right) },P_2{\left( 1\right) }\right) }\\ =&\,d{\left( v_3,P_2{\left( \alpha \right) }\right) }+d{\left( P_2{\left( \alpha \right) },v_2\right) }, \end{aligned} \end{aligned}$$</span></div><div class="c-article-equation__number"> (44) </div></div><p>which proves Lemma <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar27">3</a>. <span class="mathjax-tex">\(\square\)</span></p> <h3 class="c-article__sub-heading" id="FPar29">Lemma 4</h3> <p>The input <span class="mathjax-tex">\(v_3=v_2^{\left[ t_1\right] }\)</span> satisfies the following:</p><div id="Equ45" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} d{\left( v_1,v_2\right) }=d{\left( v_1,v_3\right) }+d{\left( v_3,v_2\right) }. \end{aligned}$$</span></div><div class="c-article-equation__number"> (45) </div></div> <h3 class="c-article__sub-heading" id="FPar30">Proof of Lemma 4</h3> <p>Distance <span class="mathjax-tex">\(d{\left( v_1,v_2\right) }\)</span> is transformed as follows:</p><div id="Equ46" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \begin{aligned} d{\left( v_1,v_2\right) }=&\,\left\| v_1-v_2^{\left[ t_1\right] }\right\| _w+\left| \theta {\left( t_1\right) }-\theta {\left( t_2\right) }\right| \\ =&\,\left\| v_1-v_3\right\| _w+\left| \theta {\left( \lambda {\left( v_3\right) }\right) }-\theta {\left( t_2\right) }\right| \\ =&\,d{\left( v_1,v_3\right) }+d{\left( v_3,v_2\right) }, \end{aligned} \end{aligned}$$</span></div><div class="c-article-equation__number"> (46) </div></div><p>which proves Lemma <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar29">4</a>. <span class="mathjax-tex">\(\square\)</span></p> <p>Let <span class="mathjax-tex">\(\alpha\)</span> be an arbitrary number in <span class="mathjax-tex">\(\left[ 0,1\right]\)</span>. We show that the following holds:</p><div id="Equ47" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} d{\left( v_1,P{\left( \alpha \right) }\right) }+d{\left( P{\left( \alpha \right) },v_2\right) }\le d{\left( v_1,v_2\right) }. \end{aligned}$$</span></div><div class="c-article-equation__number"> (47) </div></div><p>If <span class="mathjax-tex">\(0\le \alpha \le \frac{1}{2}\)</span>, we obtain Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ47">47</a>) as follows:</p><div id="Equ48" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} d{\left( v_1,P{\left( \alpha \right) }\right) }+d{\left( P{\left( \alpha \right) },v_2\right) }\le d{\left( v_1,P{\left( \alpha \right) }\right) }+d{\left( P{\left( \alpha \right) },v_3\right) }+d{\left( v_3,v_2\right) } = d{\left( v_1,v_3\right) }+d{\left( v_3,v_2\right) } =d{\left( v_1,v_2\right) }. \end{aligned}$$</span></div><div class="c-article-equation__number"> (48) </div></div><p>The inequality is a triangle inequality. The first equality is obtained from Lemma <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar25">2</a> because <span class="mathjax-tex">\(P{\left( \alpha \right) }=P_1{\left( 2\alpha \right) }\)</span> holds. The second equality is obtained from Lemma <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar29">4</a>. If <span class="mathjax-tex">\(\frac{1}{2}<\alpha \le 1\)</span>, we obtain Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ47">47</a>) as follows:</p><div id="Equ49" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} d{\left( v_1,P{\left( \alpha \right) }\right) }+d{\left( P{\left( \alpha \right) },v_2\right) }\le d{\left( v_1,v_3\right) }+d{\left( v_3,P{\left( \alpha \right) }\right) }+d{\left( P{\left( \alpha \right) },v_2\right) } =d{\left( v_1,v_3\right) }+d{\left( v_3,v_2\right) } =d{\left( v_1,v_2\right) }. \end{aligned}$$</span></div><div class="c-article-equation__number"> (49) </div></div><p>The inequality is a triangle inequality. The first equality is obtained from Lemma <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar27">3</a> because <span class="mathjax-tex">\(P{\left( \alpha \right) }=P_2{\left( 2\alpha -1\right) }\)</span> holds. The second equality is obtained from Lemma <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar29">4</a>. From Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ47">47</a>) and the triangle inequality <span class="mathjax-tex">\(d{\left( v_1,v_2\right) }\le d{\left( v_1,P{\left( \alpha \right) }\right) }+d{\left( P{\left( \alpha \right) },v_2\right) }\)</span>, we obtain Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ40">40</a>), which proves Proposition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar23">5</a>. <span class="mathjax-tex">\(\square\)</span></p><p>Using Proposition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar23">5</a>, we prove the following proposition:</p> <h3 class="c-article__sub-heading" id="FPar31">Proposition 6</h3> <p>The set <span class="mathjax-tex">\(\overline{V^{\textrm{res}}}\)</span> is locally connected.</p> <h3 class="c-article__sub-heading" id="FPar32">Proof of Proposition 6</h3> <p>We prove that <span class="mathjax-tex">\(\overline{V^{\textrm{res}}}\)</span> is locally arcwise connected, which is a stronger condition than being locally connected. Let <i>v</i> be an arbitrary input in <span class="mathjax-tex">\(\overline{V^{\textrm{res}}}\)</span>. The set <span class="mathjax-tex">\(\overline{V^{\textrm{res}}}\)</span> is said to be locally arcwise connected if, for any open set <span class="mathjax-tex">\(V_1\subset \overline{V^{\textrm{res}}}\)</span> including <i>v</i>, an arcwise connected open set <span class="mathjax-tex">\(V_2\subset V_1\)</span> exists that includes <i>v</i>. Therefore, it is sufficient for the Proof of Proposition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar31">6</a> to show that a <span class="mathjax-tex">\(\delta\)</span>-neighborhood <span class="mathjax-tex">\(N_\delta {\left( v\right) }\subset \overline{V^{\textrm{res}}}\)</span> of <i>v</i> is arcwise connected for any <span class="mathjax-tex">\(\delta >0\)</span>. Let <span class="mathjax-tex">\(\delta\)</span> be an arbitrary positive number and <span class="mathjax-tex">\(v_1\)</span>, <span class="mathjax-tex">\(v_2\)</span> be arbitrary inputs in <span class="mathjax-tex">\(N_\delta {\left( v\right) }\)</span>. From Proposition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar23">5</a> and <span class="mathjax-tex">\(d{\left( v,v_1\right) }<\delta\)</span>, path <span class="mathjax-tex">\(P_1:\left[ 0,1\right] \rightarrow \overline{V^{\textrm{res}}}\)</span> from <span class="mathjax-tex">\(v_1\)</span> to <i>v</i> exists that satisfies the following for any <span class="mathjax-tex">\(\alpha \in \left[ 0,1\right]\)</span>:</p><div id="Equ50" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} d{\left( v,P_1{\left( \alpha \right) }\right) }=d{\left( v,v_1\right) }-d{\left( P_1{\left( \alpha \right) },v_1\right) }<\delta -d{\left( P_1{\left( \alpha \right) },v_1\right) }\le \delta . \end{aligned}$$</span></div><div class="c-article-equation__number"> (50) </div></div><p>Hence, <span class="mathjax-tex">\(P_1{\left( \left[ 0,1\right] \right) }\subset N_\delta {\left( v\right) }\)</span> holds. Similarly, we obtain path <span class="mathjax-tex">\(P_2:\left[ 0,1\right] \rightarrow N_\delta {\left( v\right) }\)</span> from <i>v</i> to <span class="mathjax-tex">\(v_2\)</span>. Therefore, path <span class="mathjax-tex">\(P:\left[ 0,1\right] \rightarrow N_\delta {\left( v\right) }\)</span> from <span class="mathjax-tex">\(v_1\)</span> to <span class="mathjax-tex">\(v_2\)</span> exists, which proves Proposition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar31">6</a>. <span class="mathjax-tex">\(\square\)</span></p> <p>Using Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar17">3</a> and Propositions <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar18">3</a>, <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar21">4</a>, and <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar31">6</a>, we show that a universal reservoir exists that has only one output.</p> <h3 class="c-article__sub-heading" id="FPar33">Theorem 5</h3> <p>Let <span class="mathjax-tex">\({\mathbb {F}}^*\)</span> be the set of RIT operators corresponding to a uniformly continuous functional. Assume the axiom of choice and that the set <span class="mathjax-tex">\(A\subset {\mathbb {R}}^n\)</span> in Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ8">8</a>) is convex. Then, reservoir <span class="mathjax-tex">\({\mathbb {F}}\)</span> exists that is a set of only one RIT operator and <span class="mathjax-tex">\({\mathbb {F}}\)</span> is universal for uniform approximations in <span class="mathjax-tex">\({\mathbb {F}}^*\)</span>.</p> <h3 class="c-article__sub-heading" id="FPar34">Proof of Theorem 5</h3> <p>Metric space <span class="mathjax-tex">\(\overline{V^{\textrm{res}}}=V^{\textrm{res}}\cup V\)</span> is compact<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e20724">16</a></sup>. From Propositions <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar21">4</a> and <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar31">6</a>, <span class="mathjax-tex">\(\overline{V^{\textrm{res}}}\)</span> is connected and locally connected. Hence, from Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar20">4</a>, a continuous surjection <span class="mathjax-tex">\(g:\left[ 0,1\right] \rightarrow \overline{V^{\textrm{res}}}\)</span> exists. We define a set <span class="mathjax-tex">\(S\subset \left[ 0,1\right]\)</span> as follows:</p><div id="Equ51" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} S=\left\{ \alpha \in \left[ 0,1\right] \left| g{\left( \alpha \right) }\in V^{\textrm{res}}\right. \right\} . \end{aligned}$$</span></div><div class="c-article-equation__number"> (51) </div></div><p>Let <span class="mathjax-tex">\(g|_S:S\rightarrow V^{\textrm{res}}\)</span> be a restriction of <i>g</i> to <i>S</i>. Because <span class="mathjax-tex">\(g|_S\)</span> is a surjection to <span class="mathjax-tex">\(V^{\textrm{res}}\)</span>, the axiom of choice provides a right inverse <span class="mathjax-tex">\(f:V^{\textrm{res}}\rightarrow S\)</span> of <span class="mathjax-tex">\(g|_S\)</span>, that is, <i>f</i> satisfies <span class="mathjax-tex">\(g|_S\circ f=\textrm{id}_{V^{\textrm{res}}}\)</span>. Functional <i>f</i> and an another restriction <span class="mathjax-tex">\(g|_{\overline{S}}:\overline{S}\rightarrow \overline{V^{\textrm{res}}}\)</span> of <i>g</i> also satisfy <span class="mathjax-tex">\(g|_{\overline{S}}\circ f=\textrm{id}_{V^{\textrm{res}}}\)</span>. Because the restriction <span class="mathjax-tex">\(g|_{\overline{S}}\)</span> is continuous, from Proposition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar18">3</a>, <i>f</i> satisfies Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1038/s41598-024-56742-7#Equ30">30</a>). Hence, reservoir <span class="mathjax-tex">\({\mathbb {F}}=\left\{ F\right\}\)</span> has the NSP, where <span class="mathjax-tex">\(F:U^R\rightarrow Y^R\)</span> is the corresponding operator of <i>f</i>. Because of <span class="mathjax-tex">\(S\subset \left[ 0,1\right]\)</span>, functional <i>f</i> and operator <i>F</i> are bounded. Therefore, reservoir <span class="mathjax-tex">\({\mathbb {F}}\)</span> satisfies the condition of Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar17">3</a> and is universal for uniform approximations in <span class="mathjax-tex">\({\mathbb {F}}^*\)</span>. <span class="mathjax-tex">\(\square\)</span></p> <p>Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar33">5</a> shows that a universal finite reservoir exists, which achieves the low computational cost of training. Moreover, a universal reservoir exists independent of the dimension of its output. The reservoir obtained from a right inverse of a space-filling curve proposed in the Proof of Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar33">5</a> is probably chaotic. This result suggests that chaos is key to the reservoir’s universality. In practice, chaotic reservoirs have already been considered in research and are known to be useful<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 21" title="Jensen, J. H. & Tufte, G. Reservoir computing with a chaotic circuit. In Artificial Life Conference Proceedings 222–229 (MIT Press, 2017)." href="/article/10.1038/s41598-024-56742-7#ref-CR21" id="ref-link-section-d117352412e21478">21</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="Choi, J. & Kim, P. Reservoir computing based on quenched chaos. Chaos Solitons Fractals 140, 110131 (2020)." href="/article/10.1038/s41598-024-56742-7#ref-CR22" id="ref-link-section-d117352412e21481">22</a></sup>.</p><p>The difference between the results of Sections “<a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1038/s41598-024-56742-7#Sec2">Reservoir computing represented by bi-infinite-time operators</a>” and “<a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1038/s41598-024-56742-7#Sec5">Reservoir computing represented by right-infinite-time operators</a>” is not caused by the difference between the BIT and RIT operators but the difference between the conditions of functionals <span class="mathjax-tex">\(f_1,\ldots ,f_m\)</span> corresponding to operators in the reservoir. Fading memory and the separation property, which are the conditions of Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar4">1</a>, require the map <span class="mathjax-tex">\(\left( f_1,\ldots ,f_m\right)\)</span> to be continuous and injective; however, this is impossible. By contrast, the NSP, which is the condition of Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1038/s41598-024-56742-7#FPar17">3</a>, only requires the “strong injectivity” of <span class="mathjax-tex">\(\left( f_1,\ldots ,f_m\right)\)</span>, which is possible as described thus far. The NSP is also defined for a reservoir represented by BIT operators as follows:</p> <h3 class="c-article__sub-heading" id="FPar35">Definition 10</h3> <p>Let <span class="mathjax-tex">\({\mathbb {F}}\)</span> be a set of causal BIT operators <span class="mathjax-tex">\(F_1,\ldots ,F_m\)</span> and let <span class="mathjax-tex">\(f_1,\ldots ,f_m:V\rightarrow {\mathbb {R}}\)</span> correspond to each operator in <span class="mathjax-tex">\({\mathbb {F}}\)</span>. The set <span class="mathjax-tex">\({\mathbb {F}}\)</span> is said to have the NSP if the following holds for any distinct <span class="mathjax-tex">\(v_1\)</span>, <span class="mathjax-tex">\(v_2\in V\)</span>:</p><div id="Equ52" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \exists \delta >0,\overline{\left( f_1,\ldots ,f_m\right) {\left( N_\delta {\left( v_1 \right) }\right) }}\cap \overline{\left( f_1,\ldots ,f_m\right) {\left( N_\delta {\left( v_2 \right) }\right) }}=\emptyset , \end{aligned}$$</span></div><div class="c-article-equation__number"> (52) </div></div><p>where <span class="mathjax-tex">\(N_\delta {\left( v \right) }\subset V\)</span> is a <span class="mathjax-tex">\(\delta\)</span>-neighborhood of <span class="mathjax-tex">\(v\in V\)</span>.</p> <p>A finite reservoir with the NSP of Definition 10 can be obtained in the same manner as in the RIT operator case. Using Theorem 4 in<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e22049">16</a></sup>, that is, an extension of the Stone–Weierstrass theorem, we can derive the universality of Definition 1 from the NSP of Definition 10. Therefore, the NSP is the essence of proving the existence of a universal finite reservoir.</p></div></div></section><section data-title="Conclusion"><div class="c-article-section" id="Sec8-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec8">Conclusion</h2><div class="c-article-section__content" id="Sec8-content"><p>We discussed whether a universal finite reservoir exists under the assumption that the readout is a polynomial and the target operator has fading memory. In the discussion, we considered two sufficient conditions for the reservoir to be universal proposed by Maass et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Maass, W. & Natschl, T. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)." href="/article/10.1038/s41598-024-56742-7#ref-CR2" id="ref-link-section-d117352412e22062">2</a></sup> and in<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e22066">16</a></sup>. First, we showed that no finite reservoir satisfies the condition in<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Maass, W. & Natschl, T. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)." href="/article/10.1038/s41598-024-56742-7#ref-CR2" id="ref-link-section-d117352412e22070">2</a></sup>. Supposing that such a reservoir exists, we derived the contradiction that the input function space and a subset of finite-dimensional vector space are homeomorphic. Next, we proposed an example of a universal reservoir that has a single output and the NSP, which is the condition in<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. IEEE Trans. Neural Netw. 
 https://doi.org/10.1109/TNNLS.2023.3298013
 
 (2023)." href="/article/10.1038/s41598-024-56742-7#ref-CR16" id="ref-link-section-d117352412e22074">16</a></sup>. The functional corresponding to the operator representing the reservoir has a continuous left inverse. We showed that this is a stronger condition than the NSP. The functional is defined as a right inverse of the continuous surjection from <span class="mathjax-tex">\(\left[ 0,1\right]\)</span> to the input space of the functional. The surjection is given by the Hahn–Mazurkiewicz theorem. Our example means that, for any dimension, a universal reservoir exists that has the output of that specified dimension. This result is particularly important for the use of physical reservoirs, which are difficult to train.</p></div></div></section> </div> <section data-title="Data availability"><div class="c-article-section" id="data-availability-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="data-availability">Data availability</h2><div class="c-article-section__content" id="data-availability-content"> <p>All data generated or analyzed during this study are included in this published article and its supplementary information files.</p> </div></div></section><div id="MagazineFulltextArticleBodySuffix"><section aria-labelledby="Bib1" data-title="References"><div class="c-article-section" id="Bib1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Bib1">References</h2><div class="c-article-section__content" id="Bib1-content"><div data-container-section="references"><ol class="c-article-references" data-track-component="outbound reference" data-track-context="references section"><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="1."><p class="c-article-references__text" id="ref-CR1">Jaeger, H. The “echo state” approach to analysing and training recurrent neural networks—with an erratum note. German National Research Center for Information Technology GMD Technical Report, 148.34 (2001).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="2."><p class="c-article-references__text" id="ref-CR2">Maass, W. & Natschl, T. Real-time computing without stable states: A new framework for neural computation based on perturbations. <i>Neural Comput.</i> <b>14</b>(11), 2531–2560 (2002).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1162/089976602760407955" data-track-item_id="10.1162/089976602760407955" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1162%2F089976602760407955" aria-label="Article reference 2" data-doi="10.1162/089976602760407955">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12433288" aria-label="PubMed reference 2">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 2" href="http://scholar.google.com/scholar_lookup?&title=Real-time%20computing%20without%20stable%20states%3A%20A%20new%20framework%20for%20neural%20computation%20based%20on%20perturbations&journal=Neural%20Comput.&doi=10.1162%2F089976602760407955&volume=14&issue=11&pages=2531-2560&publication_year=2002&author=Maass%2CW&author=Natschl%2CT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="3."><p class="c-article-references__text" id="ref-CR3">Steil, J. J. Backpropagation-decorrelation: Online recurrent learning with O(N) complexity. In <i>2004 IEEE International Joint Conference on Neural Networks</i> 843–848 (2004).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="4."><p class="c-article-references__text" id="ref-CR4">Verstraeten, D., Schrauwen, B., D’Haene, M. & Stroobandt, D. An experimental unification of reservoir computing methods. <i>Neural Netw.</i> <b>20</b>(3), 391–403 (2007).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.neunet.2007.04.003" data-track-item_id="10.1016/j.neunet.2007.04.003" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.neunet.2007.04.003" aria-label="Article reference 4" data-doi="10.1016/j.neunet.2007.04.003">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:STN:280:DC%2BD2szkt1Wlsw%3D%3D" aria-label="CAS reference 4">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17517492" aria-label="PubMed reference 4">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 4" href="http://scholar.google.com/scholar_lookup?&title=An%20experimental%20unification%20of%20reservoir%20computing%20methods&journal=Neural%20Netw.&doi=10.1016%2Fj.neunet.2007.04.003&volume=20&issue=3&pages=391-403&publication_year=2007&author=Verstraeten%2CD&author=Schrauwen%2CB&author=D%E2%80%99Haene%2CM&author=Stroobandt%2CD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="5."><p class="c-article-references__text" id="ref-CR5">Lukoševičius, M. & Jaeger, H. Reservoir computing approaches to recurrent neural network training. <i>Comput. Sci. Rev.</i> <b>3</b>(3), 127–149 (2009).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cosrev.2009.03.005" data-track-item_id="10.1016/j.cosrev.2009.03.005" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cosrev.2009.03.005" aria-label="Article reference 5" data-doi="10.1016/j.cosrev.2009.03.005">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 5" href="http://scholar.google.com/scholar_lookup?&title=Reservoir%20computing%20approaches%20to%20recurrent%20neural%20network%20training&journal=Comput.%20Sci.%20Rev.&doi=10.1016%2Fj.cosrev.2009.03.005&volume=3&issue=3&pages=127-149&publication_year=2009&author=Luko%C5%A1evi%C4%8Dius%2CM&author=Jaeger%2CH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="6."><p class="c-article-references__text" id="ref-CR6">Williams, R. J. & Zipser, D. A learning algorithm for continually running fully recurrent neural networks. <i>Neural Comput.</i> <b>1</b>(2), 270–280 (1989).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1162/neco.1989.1.2.270" data-track-item_id="10.1162/neco.1989.1.2.270" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1162%2Fneco.1989.1.2.270" aria-label="Article reference 6" data-doi="10.1162/neco.1989.1.2.270">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 6" href="http://scholar.google.com/scholar_lookup?&title=A%20learning%20algorithm%20for%20continually%20running%20fully%20recurrent%20neural%20networks&journal=Neural%20Comput.&doi=10.1162%2Fneco.1989.1.2.270&volume=1&issue=2&pages=270-280&publication_year=1989&author=Williams%2CRJ&author=Zipser%2CD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="7."><p class="c-article-references__text" id="ref-CR7">Werbos, P. J. Backpropagation through time: what it does and how to do it. <i>Proc. IEEE</i> <b>78</b>(10), 1550–1560 (1990).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/5.58337" data-track-item_id="10.1109/5.58337" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2F5.58337" aria-label="Article reference 7" data-doi="10.1109/5.58337">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 7" href="http://scholar.google.com/scholar_lookup?&title=Backpropagation%20through%20time%3A%20what%20it%20does%20and%20how%20to%20do%20it&journal=Proc.%20IEEE&doi=10.1109%2F5.58337&volume=78&issue=10&pages=1550-1560&publication_year=1990&author=Werbos%2CPJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="8."><p class="c-article-references__text" id="ref-CR8">Tanaka, G. <i>et al.</i> Recent advances in physical reservoir computing: A review. <i>Neural Netw.</i> <b>115</b>, 100–123 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.neunet.2019.03.005" data-track-item_id="10.1016/j.neunet.2019.03.005" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.neunet.2019.03.005" aria-label="Article reference 8" data-doi="10.1016/j.neunet.2019.03.005">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30981085" aria-label="PubMed reference 8">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 8" href="http://scholar.google.com/scholar_lookup?&title=Recent%20advances%20in%20physical%20reservoir%20computing%3A%20A%20review&journal=Neural%20Netw.&doi=10.1016%2Fj.neunet.2019.03.005&volume=115&pages=100-123&publication_year=2019&author=Tanaka%2CG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="9."><p class="c-article-references__text" id="ref-CR9">Friedman, J. S. Unsupervised learning & reservoir computing leveraging analog spintronic phenomena. <i>IEEE 16th Nanotechnology Materials and Devices Conference</i> 1–2 (2021).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="10."><p class="c-article-references__text" id="ref-CR10">Stelzer, F., Röhm, A., Lüdge, K. & Yanchuk, S. Performance boost of time-delay reservoir computing by non-resonant clock cycle. <i>Neural Netw.</i> <b>124</b>, 158–169 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.neunet.2020.01.010" data-track-item_id="10.1016/j.neunet.2020.01.010" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.neunet.2020.01.010" aria-label="Article reference 10" data-doi="10.1016/j.neunet.2020.01.010">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32006747" aria-label="PubMed reference 10">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 10" href="http://scholar.google.com/scholar_lookup?&title=Performance%20boost%20of%20time-delay%20reservoir%20computing%20by%20non-resonant%20clock%20cycle&journal=Neural%20Netw.&doi=10.1016%2Fj.neunet.2020.01.010&volume=124&pages=158-169&publication_year=2020&author=Stelzer%2CF&author=R%C3%B6hm%2CA&author=L%C3%BCdge%2CK&author=Yanchuk%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="11."><p class="c-article-references__text" id="ref-CR11">Soriano, M. C. <i>et al.</i> Delay-based reservoir computing: Noise effects in a combined analog and digital implementation. <i>IEEE Trans. Neural Netw. Learn. Syst.</i> <b>26</b>(2), 388–393 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TNNLS.2014.2311855" data-track-item_id="10.1109/TNNLS.2014.2311855" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTNNLS.2014.2311855" aria-label="Article reference 11" data-doi="10.1109/TNNLS.2014.2311855">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3453743" aria-label="MathSciNet reference 11">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 11" href="http://scholar.google.com/scholar_lookup?&title=Delay-based%20reservoir%20computing%3A%20Noise%20effects%20in%20a%20combined%20analog%20and%20digital%20implementation&journal=IEEE%20Trans.%20Neural%20Netw.%20Learn.%20Syst.&doi=10.1109%2FTNNLS.2014.2311855&volume=26&issue=2&pages=388-393&publication_year=2014&author=Soriano%2CMC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="12."><p class="c-article-references__text" id="ref-CR12">Dong, J., Rafayelyan, M., Krzakala, F. & Gigan, S. Optical reservoir computing using multiple light scattering for chaotic systems prediction. <i>IEEE J. Sel. Top. Quantum Electron.</i> <b>26</b>(1), 1–12 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/JSTQE.2019.2936281" data-track-item_id="10.1109/JSTQE.2019.2936281" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FJSTQE.2019.2936281" aria-label="Article reference 12" data-doi="10.1109/JSTQE.2019.2936281">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 12" href="http://scholar.google.com/scholar_lookup?&title=Optical%20reservoir%20computing%20using%20multiple%20light%20scattering%20for%20chaotic%20systems%20prediction&journal=IEEE%20J.%20Sel.%20Top.%20Quantum%20Electron.&doi=10.1109%2FJSTQE.2019.2936281&volume=26&issue=1&pages=1-12&publication_year=2020&author=Dong%2CJ&author=Rafayelyan%2CM&author=Krzakala%2CF&author=Gigan%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="13."><p class="c-article-references__text" id="ref-CR13">Nakajima, K. & Fischer, I. <i>Reservoir Computing</i> (Springer, 2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/978-981-13-1687-6" data-track-item_id="10.1007/978-981-13-1687-6" data-track-value="book reference" data-track-action="book reference" href="https://link.springer.com/doi/10.1007/978-981-13-1687-6" aria-label="Book reference 13" data-doi="10.1007/978-981-13-1687-6">Book</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 13" href="http://scholar.google.com/scholar_lookup?&title=Reservoir%20Computing&doi=10.1007%2F978-981-13-1687-6&publication_year=2021&author=Nakajima%2CK&author=Fischer%2CI"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="14."><p class="c-article-references__text" id="ref-CR14">Grigoryeva, L. & Ortega, J. P. Echo state networks are universal. <i>Neural Netw.</i> <b>108</b>, 495–508 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.neunet.2018.08.025" data-track-item_id="10.1016/j.neunet.2018.08.025" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.neunet.2018.08.025" aria-label="Article reference 14" data-doi="10.1016/j.neunet.2018.08.025">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30317134" aria-label="PubMed reference 14">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 14" href="http://scholar.google.com/scholar_lookup?&title=Echo%20state%20networks%20are%20universal&journal=Neural%20Netw.&doi=10.1016%2Fj.neunet.2018.08.025&volume=108&pages=495-508&publication_year=2018&author=Grigoryeva%2CL&author=Ortega%2CJP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="15."><p class="c-article-references__text" id="ref-CR15">Gonon, L. & Ortega, J. P. Reservoir Computing Universality With Stochastic Inputs. <i>IEEE Trans. Neural Netw. Learn. Syst.</i> <b>31</b>(1), 100–112 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TNNLS.2019.2899649" data-track-item_id="10.1109/TNNLS.2019.2899649" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTNNLS.2019.2899649" aria-label="Article reference 15" data-doi="10.1109/TNNLS.2019.2899649">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=4056386" aria-label="MathSciNet reference 15">MathSciNet</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30892244" aria-label="PubMed reference 15">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 15" href="http://scholar.google.com/scholar_lookup?&title=Reservoir%20Computing%20Universality%20With%20Stochastic%20Inputs&journal=IEEE%20Trans.%20Neural%20Netw.%20Learn.%20Syst.&doi=10.1109%2FTNNLS.2019.2899649&volume=31&issue=1&pages=100-112&publication_year=2020&author=Gonon%2CL&author=Ortega%2CJP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="16."><p class="c-article-references__text" id="ref-CR16">Sugiura, S., Ariizumi, R., Asai, T., & Azuma, S. Nonessentiality of reservoir’s fading memory for universality of reservoir computing. <i>IEEE Trans. Neural Netw.</i> <a href="https://doi.org/10.1109/TNNLS.2023.3298013" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1109/TNNLS.2023.3298013">https://doi.org/10.1109/TNNLS.2023.3298013</a> (2023).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="17."><p class="c-article-references__text" id="ref-CR17">Fernando, C. & Sojakka, S. Pattern recognition in a bucket. In <i>European Conference on Artificial Life</i> 588–597 (Springer, 2003).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="18."><p class="c-article-references__text" id="ref-CR18">Boyd, S. & Chua, L. O. Fading memory and the problem of approximating nonlinear operators with Volterra series. <i>IEEE Trans. Circuits Syst.</i> <b>32</b>(11), 1150–1161 (1985).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TCS.1985.1085649" data-track-item_id="10.1109/TCS.1985.1085649" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTCS.1985.1085649" aria-label="Article reference 18" data-doi="10.1109/TCS.1985.1085649">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=809696" aria-label="MathSciNet reference 18">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 18" href="http://scholar.google.com/scholar_lookup?&title=Fading%20memory%20and%20the%20problem%20of%20approximating%20nonlinear%20operators%20with%20Volterra%20series&journal=IEEE%20Trans.%20Circuits%20Syst.&doi=10.1109%2FTCS.1985.1085649&volume=32&issue=11&pages=1150-1161&publication_year=1985&author=Boyd%2CS&author=Chua%2CLO"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="19."><p class="c-article-references__text" id="ref-CR19">Engelking, R. <i>Dimension Theory</i> (North-Holland Publishing Company, 1978).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 19" href="http://scholar.google.com/scholar_lookup?&title=Dimension%20Theory&publication_year=1978&author=Engelking%2CR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="20."><p class="c-article-references__text" id="ref-CR20">Hocking, J. G. & Young, G. S. <i>Topology</i> (Addison-Wesley Publishing Company, 1961).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 20" href="http://scholar.google.com/scholar_lookup?&title=Topology&publication_year=1961&author=Hocking%2CJG&author=Young%2CGS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="21."><p class="c-article-references__text" id="ref-CR21">Jensen, J. H. & Tufte, G. Reservoir computing with a chaotic circuit. In <i>Artificial Life Conference Proceedings</i> 222–229 (MIT Press, 2017).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="22."><p class="c-article-references__text" id="ref-CR22">Choi, J. & Kim, P. Reservoir computing based on quenched chaos. <i>Chaos Solitons Fractals</i> <b>140</b>, 110131 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.chaos.2020.110131" data-track-item_id="10.1016/j.chaos.2020.110131" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.chaos.2020.110131" aria-label="Article reference 22" data-doi="10.1016/j.chaos.2020.110131">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=4126738" aria-label="MathSciNet reference 22">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 22" href="http://scholar.google.com/scholar_lookup?&title=Reservoir%20computing%20based%20on%20quenched%20chaos&journal=Chaos%20Solitons%20Fractals&doi=10.1016%2Fj.chaos.2020.110131&volume=140&publication_year=2020&author=Choi%2CJ&author=Kim%2CP"> Google Scholar</a> </p></li></ol><p class="c-article-references__download u-hide-print"><a data-track="click" data-track-action="download citation references" data-track-label="link" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1038/s41598-024-56742-7?format=refman&flavour=references">Download references<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p></div></div></div></section></div><section data-title="Acknowledgements"><div class="c-article-section" id="Ack1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Ack1">Acknowledgements</h2><div class="c-article-section__content" id="Ack1-content"><p>We thank Edanz (<a href="https://jp.edanz.com/ac">https://jp.edanz.com/ac</a>) for editing a draft of this manuscript.</p></div></div></section><section data-title="Funding"><div class="c-article-section" id="Fun-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Fun">Funding</h2><div class="c-article-section__content" id="Fun-content"><p>This research was supported by JST FOREST Program under Grant No. JPMJFR2123 and by JSP KAKENHI under Grant No. JP22K04027.</p></div></div></section><section aria-labelledby="author-information" data-title="Author information"><div class="c-article-section" id="author-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="author-information">Author information</h2><div class="c-article-section__content" id="author-information-content"><h3 class="c-article__sub-heading" id="affiliations">Authors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff1"><p class="c-article-author-affiliation__address">Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan</p><p class="c-article-author-affiliation__authors-list">Shuhei Sugiura & Toru Asai</p></li><li id="Aff2"><p class="c-article-author-affiliation__address">Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan</p><p class="c-article-author-affiliation__authors-list">Ryo Ariizumi</p></li><li id="Aff3"><p class="c-article-author-affiliation__address">Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan</p><p class="c-article-author-affiliation__authors-list">Shun-ichi Azuma</p></li></ol><div class="u-js-hide u-hide-print" data-test="author-info"><span class="c-article__sub-heading">Authors</span><ol class="c-article-authors-search u-list-reset"><li id="auth-Shuhei-Sugiura-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Shuhei Sugiura</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Shuhei%20Sugiura" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Shuhei%20Sugiura" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Shuhei%20Sugiura%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Ryo-Ariizumi-Aff2"><span class="c-article-authors-search__title u-h3 js-search-name">Ryo Ariizumi</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Ryo%20Ariizumi" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Ryo%20Ariizumi" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Ryo%20Ariizumi%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Toru-Asai-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Toru Asai</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Toru%20Asai" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Toru%20Asai" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Toru%20Asai%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Shun_ichi-Azuma-Aff3"><span class="c-article-authors-search__title u-h3 js-search-name">Shun-ichi Azuma</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Shun-ichi%20Azuma" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Shun-ichi%20Azuma" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Shun-ichi%20Azuma%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li></ol></div><h3 class="c-article__sub-heading" id="contributions">Contributions</h3><p>Conceptualization: S.S.; Methodology: S.S.; Writing—riginal draft preparation: S.S.; Writing—review and editing: All authors; Funding acquisition: R.A., S.A.; Supervision: R.A., T.A., S.A.</p><h3 class="c-article__sub-heading" id="corresponding-author">Corresponding author</h3><p id="corresponding-author-list">Correspondence to <a id="corresp-c1" href="mailto:ryoariizumi@go.tuat.ac.jp">Ryo Ariizumi</a>.</p></div></div></section><section data-title="Ethics declarations"><div class="c-article-section" id="ethics-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="ethics">Ethics declarations</h2><div class="c-article-section__content" id="ethics-content"> <h3 class="c-article__sub-heading" id="FPar36">Competing interests</h3> <p>The authors declare no competing interests.</p> </div></div></section><section data-title="Additional information"><div class="c-article-section" id="additional-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="additional-information">Additional information</h2><div class="c-article-section__content" id="additional-information-content"><h3 class="c-article__sub-heading">Publisher's note</h3><p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p></div></div></section><section data-title="Supplementary Information"><div class="c-article-section" id="Sec9-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec9">Supplementary Information</h2><div class="c-article-section__content" id="Sec9-content"><div data-test="supplementary-info"><div id="figshareContainer" class="c-article-figshare-container" data-test="figshare-container"></div><div class="c-article-supplementary__item" data-test="supp-item" id="MOESM1"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="supplementary information." href="https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-024-56742-7/MediaObjects/41598_2024_56742_MOESM1_ESM.pdf" data-supp-info-image="">Supplementary Information.</a></h3></div></div></div></div></section><section data-title="Rights and permissions"><div class="c-article-section" id="rightslink-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="rightslink">Rights and permissions</h2><div class="c-article-section__content" id="rightslink-content"> <p><b>Open Access</b> This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <a href="http://creativecommons.org/licenses/by/4.0/" rel="license">http://creativecommons.org/licenses/by/4.0/</a>.</p> <p class="c-article-rights"><a data-track="click" data-track-action="view rights and permissions" data-track-label="link" href="https://s100.copyright.com/AppDispatchServlet?title=Existence%20of%20reservoir%20with%20finite-dimensional%20output%20for%20universal%20reservoir%20computing&author=Shuhei%20Sugiura%20et%20al&contentID=10.1038%2Fs41598-024-56742-7&copyright=The%20Author%28s%29&publication=2045-2322&publicationDate=2024-04-11&publisherName=SpringerNature&orderBeanReset=true&oa=CC%20BY">Reprints and permissions</a></p></div></div></section><section aria-labelledby="article-info" data-title="About this article"><div class="c-article-section" id="article-info-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="article-info">About this article</h2><div class="c-article-section__content" id="article-info-content"><div class="c-bibliographic-information"><div class="u-hide-print c-bibliographic-information__column c-bibliographic-information__column--border"><a data-crossmark="10.1038/s41598-024-56742-7" target="_blank" rel="noopener" href="https://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-56742-7" data-track="click" data-track-action="Click Crossmark" data-track-label="link" data-test="crossmark"><img loading="lazy" width="57" height="81" alt="Check for updates. Verify currency and authenticity via CrossMark" src=""></a></div><div class="c-bibliographic-information__column"><h3 class="c-article__sub-heading" id="citeas">Cite this article</h3><p class="c-bibliographic-information__citation">Sugiura, S., Ariizumi, R., Asai, T. <i>et al.</i> Existence of reservoir with finite-dimensional output for universal reservoir computing. <i>Sci Rep</i> <b>14</b>, 8448 (2024). https://doi.org/10.1038/s41598-024-56742-7</p><p class="c-bibliographic-information__download-citation u-hide-print"><a data-test="citation-link" data-track="click" data-track-action="download article citation" data-track-label="link" data-track-external="" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1038/s41598-024-56742-7?format=refman&flavour=citation">Download citation<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p><ul class="c-bibliographic-information__list" data-test="publication-history"><li class="c-bibliographic-information__list-item"><p>Received<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2023-09-04">04 September 2023</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Accepted<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2024-03-11">11 March 2024</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Published<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2024-04-11">11 April 2024</time></span></p></li><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--full-width"><p><abbr title="Digital Object Identifier">DOI</abbr><span class="u-hide">: </span><span class="c-bibliographic-information__value">https://doi.org/10.1038/s41598-024-56742-7</span></p></li><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--full-width">Springer Nature Limited</li></ul><div data-component="share-box"><div class="c-article-share-box u-display-none" hidden=""><h3 class="c-article__sub-heading">Share this article</h3><p class="c-article-share-box__description">Anyone you share the following link with will be able to read this content:</p><button class="js-get-share-url c-article-share-box__button" type="button" id="get-share-url" data-track="click" data-track-label="button" data-track-external="" data-track-action="get shareable link">Get shareable link</button><div class="js-no-share-url-container u-display-none" hidden=""><p class="js-c-article-share-box__no-sharelink-info c-article-share-box__no-sharelink-info">Sorry, a shareable link is not currently available for this article.</p></div><div class="js-share-url-container u-display-none" hidden=""><p class="js-share-url c-article-share-box__only-read-input" id="share-url" data-track="click" data-track-label="button" data-track-action="select share url"></p><button class="js-copy-share-url c-article-share-box__button--link-like" type="button" id="copy-share-url" data-track="click" data-track-label="button" data-track-action="copy share url" data-track-external="">Copy to clipboard</button></div><p class="js-c-article-share-box__additional-info c-article-share-box__additional-info"> Provided by the Springer Nature SharedIt content-sharing initiative </p></div></div><h3 class="c-article__sub-heading">Keywords</h3><ul class="c-article-subject-list"><li class="c-article-subject-list__subject"><span><a href="/search?query=Machine%20learning&facet-discipline="Science%2C%20Humanities%20and%20Social%20Sciences%2C%20multidisciplinary"" data-track="click" data-track-action="view keyword" data-track-label="link">Machine learning</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Neural%20network&facet-discipline="Science%2C%20Humanities%20and%20Social%20Sciences%2C%20multidisciplinary"" data-track="click" data-track-action="view keyword" data-track-label="link">Neural network</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Nonlinear%20dynamical%20system&facet-discipline="Science%2C%20Humanities%20and%20Social%20Sciences%2C%20multidisciplinary"" data-track="click" data-track-action="view keyword" data-track-label="link">Nonlinear dynamical system</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Reservoir%20computing&facet-discipline="Science%2C%20Humanities%20and%20Social%20Sciences%2C%20multidisciplinary"" data-track="click" data-track-action="view keyword" data-track-label="link">Reservoir computing</a></span></li></ul><div data-component="article-info-list"></div></div></div></div></div></section> <div data-test="further-reading"> </div> </div> </main> <div class="c-article-sidebar u-text-sm u-hide-print l-with-sidebar__sidebar" id="sidebar" data-container-type="reading-companion" data-track-component="reading companion"> <aside> <div data-test="editorial-summary"> </div> <div class="c-reading-companion"> <div class="c-reading-companion__sticky" data-component="reading-companion-sticky" data-test="reading-companion-sticky"> <div class="c-reading-companion__panel c-reading-companion__sections c-reading-companion__panel--active" id="tabpanel-sections"> <div class="u-lazy-ad-wrapper u-mt-16 u-hide" data-component-mpu><div class="c-ad c-ad--300x250"> <div class="c-ad__inner"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-MPU1" class="div-gpt-ad grade-c-hide" data-pa11y-ignore data-gpt data-gpt-unitpath="/270604982/springerlink/41598/article" data-gpt-sizes="300x250" data-test="MPU1-ad" data-gpt-targeting="pos=MPU1;articleid=s41598-024-56742-7;"> </div> </div> </div> </div> </div> <div class="c-reading-companion__panel c-reading-companion__figures c-reading-companion__panel--full-width" id="tabpanel-figures"></div> <div class="c-reading-companion__panel c-reading-companion__references c-reading-companion__panel--full-width" id="tabpanel-references"></div> </div> </div> </aside> </div> </div> </article> <div class="app-elements"> <div class="eds-c-header__expander eds-c-header__expander--search" id="eds-c-header-popup-search"> <h2 class="eds-c-header__heading">Search</h2> <div class="u-container"> <search class="eds-c-header__search" role="search" aria-label="Search from the header"> <form method="GET" action="//link.springer.com/search" data-test="header-search" data-track="search" data-track-context="search from header" data-track-action="submit search form" data-track-category="unified header" data-track-label="form" > <label for="eds-c-header-search" class="eds-c-header__search-label">Search by keyword or author</label> <div class="eds-c-header__search-container"> <input id="eds-c-header-search" class="eds-c-header__search-input" autocomplete="off" name="query" type="search" value="" required> <button class="eds-c-header__search-button" type="submit"> <svg class="eds-c-header__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg> <span class="u-visually-hidden">Search</span> </button> </div> </form> </search> </div> </div> <div class="eds-c-header__expander eds-c-header__expander--menu" id="eds-c-header-nav"> <h2 class="eds-c-header__heading">Navigation</h2> <ul class="eds-c-header__list"> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </li> </ul> </div> <footer > <div class="eds-c-footer" > <div class="eds-c-footer__container"> <div class="eds-c-footer__grid eds-c-footer__group--separator"> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Discover content</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals/a/1" data-track="nav_journals_a_z" data-track-action="journals a-z" data-track-context="unified footer" data-track-label="link">Journals A-Z</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/books/a/1" data-track="nav_books_a_z" data-track-action="books a-z" data-track-context="unified footer" data-track-label="link">Books A-Z</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Publish with us</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals" data-track="nav_journal_finder" data-track-action="journal finder" data-track-context="unified footer" data-track-label="link">Journal finder</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/authors" data-track="nav_publish_your_research" data-track-action="publish your research" data-track-context="unified footer" data-track-label="link">Publish your research</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="nav_open_access_publishing" data-track-action="open access publishing" data-track-context="unified footer" data-track-label="link">Open access publishing</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Products and services</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/products" data-track="nav_our_products" data-track-action="our products" data-track-context="unified footer" data-track-label="link">Our products</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/librarians" data-track="nav_librarians" data-track-action="librarians" data-track-context="unified footer" data-track-label="link">Librarians</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/societies" data-track="nav_societies" data-track-action="societies" data-track-context="unified footer" data-track-label="link">Societies</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/partners" data-track="nav_partners_and_advertisers" data-track-action="partners and advertisers" data-track-context="unified footer" data-track-label="link">Partners and advertisers</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Our imprints</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springer.com/" data-track="nav_imprint_Springer" data-track-action="Springer" data-track-context="unified footer" data-track-label="link">Springer</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.nature.com/" data-track="nav_imprint_Nature_Portfolio" data-track-action="Nature Portfolio" data-track-context="unified footer" data-track-label="link">Nature Portfolio</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.biomedcentral.com/" data-track="nav_imprint_BMC" data-track-action="BMC" data-track-context="unified footer" data-track-label="link">BMC</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.palgrave.com/" data-track="nav_imprint_Palgrave_Macmillan" data-track-action="Palgrave Macmillan" data-track-context="unified footer" data-track-label="link">Palgrave Macmillan</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.apress.com/" data-track="nav_imprint_Apress" data-track-action="Apress" data-track-context="unified footer" data-track-label="link">Apress</a></li> </ul> </div> </div> </div> <div class="eds-c-footer__container"> <nav aria-label="footer navigation"> <ul class="eds-c-footer__links"> <li class="eds-c-footer__item"> <button class="eds-c-footer__link" data-cc-action="preferences" data-track="dialog_manage_cookies" data-track-action="Manage cookies" data-track-context="unified footer" data-track-label="link"><span class="eds-c-footer__button-text">Your privacy choices/Manage cookies</span></button> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/legal/ccpa" data-track="nav_california_privacy_statement" data-track-action="california privacy statement" data-track-context="unified footer" data-track-label="link">Your US state privacy rights</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/info/accessibility" data-track="nav_accessibility_statement" data-track-action="accessibility statement" data-track-context="unified footer" data-track-label="link">Accessibility statement</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/termsandconditions" data-track="nav_terms_and_conditions" data-track-action="terms and conditions" data-track-context="unified footer" data-track-label="link">Terms and conditions</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/privacystatement" data-track="nav_privacy_policy" data-track-action="privacy policy" data-track-context="unified footer" data-track-label="link">Privacy policy</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/home" data-track="nav_help_and_support" data-track-action="help and support" data-track-context="unified footer" data-track-label="link">Help and support</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/solutions/articles/6000255911-subscription-cancellations" data-track-action="cancel contracts here">Cancel contracts here</a> </li> </ul> </nav> <div class="eds-c-footer__user"> <p class="eds-c-footer__user-info"> <span data-test="footer-user-ip">8.222.208.146</span> </p> <p class="eds-c-footer__user-info" data-test="footer-business-partners">Not affiliated</p> </div> <a href="https://www.springernature.com/" class="eds-c-footer__link"> <img src="/oscar-static/images/logo-springernature-white-19dd4ba190.svg" alt="Springer Nature" loading="lazy" width="200" height="20"/> </a> <p class="eds-c-footer__legal" data-test="copyright">© 2024 Springer Nature</p> </div> </div> </footer> </div> </body> </html>