CINXE.COM
Search results for: methane conversion
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: methane conversion</title> <meta name="description" content="Search results for: methane conversion"> <meta name="keywords" content="methane conversion"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="methane conversion" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="methane conversion"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1500</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: methane conversion</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1500</span> Produced Gas Conversion of Microwave Carbon Receptor Reforming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young%20Nam%20Chun">Young Nam Chun</a>, <a href="https://publications.waset.org/abstracts/search?q=Mun%20Sup%20Lim"> Mun Sup Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon dioxide and methane, the major components of biomass pyrolysis/gasification gas and biogas, top the list of substances that cause climate change, but they are also among the most important renewable energy sources in modern society. The purpose of this study is to convert carbon dioxide and methane into high-quality energy using char and commercial activated carbon obtained from biomass pyrolysis as a microwave receptor. The methane reforming process produces hydrogen and carbon. This carbon is deposited in the pores of the microwave receptor and lowers catalytic activity, thereby reducing the methane conversion rate. The deposited carbon was removed by carbon gasification due to the supply of carbon dioxide, which solved the problem of microwave receptor inactivity. In particular, the conversion rate remained stable at over 90% when the ratio of carbon dioxide to methane was 1:1. When the reforming results of carbon dioxide and methane were compared after fabricating nickel and iron catalysts using commercial activated carbon as a carrier, the conversion rate was higher in the iron catalyst than in the nickel catalyst and when no catalyst was used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave" title="microwave">microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20reforming" title=" gas reforming"> gas reforming</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas" title=" greenhouse gas"> greenhouse gas</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20receptor" title=" microwave receptor"> microwave receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a> </p> <a href="https://publications.waset.org/abstracts/77831/produced-gas-conversion-of-microwave-carbon-receptor-reforming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1499</span> Hydrogen Production Through Thermocatalytic Decomposition of Methane Over Biochar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohamad%20Rasool%20Mirkarimi">Seyed Mohamad Rasool Mirkarimi</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Chiaramonti"> David Chiaramonti</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Bensaid"> Samir Bensaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Catalytic methane decomposition (CMD, reaction 4) is a one-step process for hydrogen production where carbon in the methane molecule is sequestered in the form of stable and higher-value carbon materials. Metallic catalysts and carbon-based catalysts are two major types of catalysts utilized for the CDM process. Although carbon-based catalysts have lower activity compared to metallic ones, they are less expensive and offer high thermal stability and strong resistance to chemical impurities such as sulfur. Also, it would require less costly separation methods as some of the carbon-based catalysts may not have an active metal component in them. Since the regeneration of metallic catalysts requires burning of the C on their surfaces, which emits CO/CO2, in some cases, using carbon-based catalysts would be recommended because regeneration can be completely avoided, and the catalyst can be directly used in other processes. This work focuses on the effect of biochar as a carbon-based catalyst for the conversion of methane into hydrogen and carbon. Biochar produced from the pyrolysis of poplar wood and activated biochar are used as catalysts for this process. In order to observe the impact of carbon-based catalysts on methane conversion, methane cracking in the absence and presence of catalysts for a gas stream with different levels of methane concentration should be performed. The results of these experiments prove conversion of methane in the absence of catalysts at 900 °C is negligible, whereas in the presence of biochar and activated biochar, significant growth has been observed. Comparing the results of the tests related to using char and activated char shows the enhancement obtained in BET surface area of the catalyst through activation leads to more than 10 vol.% methane conversion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title="hydrogen production">hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=catalytic%20methane%20decomposition" title=" catalytic methane decomposition"> catalytic methane decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=biochar" title=" biochar"> biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20biochar" title=" activated biochar"> activated biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon-based%20catalyts" title=" carbon-based catalyts"> carbon-based catalyts</a> </p> <a href="https://publications.waset.org/abstracts/171244/hydrogen-production-through-thermocatalytic-decomposition-of-methane-over-biochar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1498</span> Catalytic Combustion of Methane over Co/Mo and Co/Mn Catalysts at Low Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20I.%20Osman">Ahmed I. Osman</a>, <a href="https://publications.waset.org/abstracts/search?q=Jehad%20K.%20Abu-Dahrieh"> Jehad K. Abu-Dahrieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jillian%20M.%20Thompson"> Jillian M. Thompson</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20W.%20Rooney"> David W. Rooney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural gas (the main constituent is Methane 95%) is considered as an alternative to petroleum for the production of synthetics fuels. Nowadays, methane combustion at low temperature has received much attention however; it is the most difficult hydrocarbon to be combusted. Co/Mo and (4:1 wt/wt) catalysts were prepared from a range of different precursors and used for the low temperature total methane oxidation (TMO). The catalysts were characterized by, XRD, BET and H2-TPR and tested under reaction temperatures of 250-400 °C with a GHSV= 36,000 mL g-1 h-1. It was found that the combustion temperature was dependent on the type of the precursor, and that those containing chloride led to catalysts with lower activity. The optimum catalyst was Co/Mo (4:1wt/wt) where greater than 20% methane conversion was observed at 250 °C. This catalyst showed a high degree of stability for TMO, showing no deactivation during 50 hours of time on stream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methane%20low%20temperature%20total%20oxidation" title="methane low temperature total oxidation">methane low temperature total oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20carrier" title=" oxygen carrier"> oxygen carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=Co%2FMo" title=" Co/Mo"> Co/Mo</a>, <a href="https://publications.waset.org/abstracts/search?q=Co%2FMn" title=" Co/Mn"> Co/Mn</a> </p> <a href="https://publications.waset.org/abstracts/23021/catalytic-combustion-of-methane-over-como-and-comn-catalysts-at-low-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1497</span> Using the Combination of Food Waste and Animal Waste as a Reliable Energy Source in Rural Guatemala</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jina%20Lee">Jina Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methane gas is a common byproduct in any process of rot and degradation of organic matter. This gas, when decomposition occurs, is emitted directly into the atmosphere. Methane is the simplest alkane hydrocarbon that exists. Its chemical formula is CH₄. This means that there are four atoms of hydrogen and one of carbon, which is linked by covalent bonds. Methane is found in nature in the form of gas at normal temperatures and pressures. In addition, it is colorless and odorless, despite being produced by the rot of plants. It is a non-toxic gas, and the only real danger is that of burns if it were to ignite. There are several ways to generate methane gas in homes, and the amount of methane gas generated by the decomposition of organic matter varies depending on the type of matter in question. An experiment was designed to measure the efficiency, such as a relationship between the amount of raw material and the amount of gas generated, of three different mixtures of organic matter: 1. food remains of home; 2. animal waste (excrement) 3. equal parts mixing of food debris and animal waste. The results allowed us to conclude which of the three mixtures is the one that grants the highest efficiency in methane gas generation and which would be the most suitable for methane gas generation systems for homes in order to occupy less space generating an equal amount of gas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20energy%20source" title="alternative energy source">alternative energy source</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20conversion" title=" energy conversion"> energy conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20gas%20conversion%20system" title=" methane gas conversion system"> methane gas conversion system</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/141462/using-the-combination-of-food-waste-and-animal-waste-as-a-reliable-energy-source-in-rural-guatemala" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1496</span> Mid-Temperature Methane-Based Chemical Looping Reforming for Hydrogen Production via Iron-Based Oxygen Carrier Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Li">Yang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingkai%20Liu"> Mingkai Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiong%20Rao"> Qiong Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongrui%20Gai"> Zhongrui Gai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Pan"> Ying Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongguang%20Jin"> Hongguang Jin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen is an ideal and potential energy carrier due to its high energy efficiency and low pollution. An alternative and promising approach to hydrogen generation is the chemical looping steam reforming of methane (CL-SRM) over iron-based oxygen carriers. However, the process faces challenges such as high reaction temperature (>850 ℃) and low methane conversion. We demonstrate that Ni-mixed Fe-based oxygen carrier particles have significantly improved the methane conversion and hydrogen production rate in the range of 450-600 ℃ under atmospheric pressure. The effect on the reaction reactivity of oxygen carrier particles mixed with different Ni-based particle mass ratios has been determined in the continuous unit. More than 85% of methane conversion has been achieved at 600 ℃, and hydrogen can be produced in both reduction and oxidation steps. Moreover, the iron-based oxygen carrier particles exhibited good cyclic performance during 150 consecutive redox cycles at 600 ℃. The mid-temperature iron-based oxygen carrier particles, integrated with a moving-bed chemical looping system, might provide a powerful approach toward more efficient and scalable hydrogen production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20looping" title="chemical looping">chemical looping</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title=" hydrogen production"> hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=mid-temperature" title=" mid-temperature"> mid-temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20carrier%20particles" title=" oxygen carrier particles"> oxygen carrier particles</a> </p> <a href="https://publications.waset.org/abstracts/162319/mid-temperature-methane-based-chemical-looping-reforming-for-hydrogen-production-via-iron-based-oxygen-carrier-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1495</span> Methane Oxidation to Methanol Catalyzed by Copper Oxide Clusters Supported in MIL-53(Al): A Density Functional Theory Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun-Wei%20Yeh">Chun-Wei Yeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Santhanamoorthi%20Nachimuthu"> Santhanamoorthi Nachimuthu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyh-Chiang%20Jiang"> Jyh-Chiang Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reducing greenhouse gases or converting them into fuels and chemicals with added value is vital for the environment. Given the enhanced techniques for hydrocarbon extraction in this context, the catalytic conversion of methane to methanol is particularly intriguing for future applications as vehicle fuels and/or bulk chemicals. Metal-organic frameworks (MOFs) have received much attention recently for the oxidation of methane to methanol. In addition, biomimetic material, particulate methane monooxygenase (pMMO), has been reported to convert methane using copper oxide clusters as active sites. Inspired by these, in this study, we considered the well-known MIL-53(Al) MOF as support for copper oxide clusters (Cu2Ox, Cu3Ox) to investigate their reactivity towards methane oxidation using Density Functional Theory (DFT) calculations. The copper oxide clusters (Cu2O2, Cu3O2) are modeled by oxidizing copper clusters (Cu2, Cu3) with two oxidizers, O2 and N2O. The initial C-H bond activation barriers on Cu2O2/MIL-53(Al) and Cu3O2/MIL-53(Al) catalysts are 0.70 eV and 0.64 eV, respectively, and are the rate-determining steps in the overall methane conversion to methanol reactions. The desorption energy of the methanol over the Cu2O/MIL-53(Al) and Cu3O/MIL-53(Al) is 0.71eV and 0.75 eV, respectively. Furthermore, to explore the prospect of catalyst reusability, we considered the different oxidants and proposed the different reaction pathways for completing the reaction cycle and regenerating the active copper oxide clusters. To know the reason for the difference between bi-copper and tri-cooper systems, we also did an electronic analysis. Finally, we calculate the Microkinetic Simulation. The result shows that the reaction can happen at room temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT%20study" title="DFT study">DFT study</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide%20cluster" title=" copper oxide cluster"> copper oxide cluster</a>, <a href="https://publications.waset.org/abstracts/search?q=MOFs" title=" MOFs"> MOFs</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20conversion" title=" methane conversion"> methane conversion</a> </p> <a href="https://publications.waset.org/abstracts/160069/methane-oxidation-to-methanol-catalyzed-by-copper-oxide-clusters-supported-in-mil-53al-a-density-functional-theory-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1494</span> Modeling of Hydrogen Production by Inductively Coupled Methane Plasma for Input Power Pin=700W</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelatif%20Gadoum">Abdelatif Gadoum</a>, <a href="https://publications.waset.org/abstracts/search?q=Djilali%20Benyoucef"> Djilali Benyoucef</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouloudj%20Hadj"> Mouloudj Hadj</a>, <a href="https://publications.waset.org/abstracts/search?q=Alla%20Eddine%20Toubal%20Maamar"> Alla Eddine Toubal Maamar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Habib%20Allah%20%20Lahoual"> Mohamed Habib Allah Lahoual</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen occurs naturally in the form of chemical compounds, most often in water and hydrocarbons. The main objective of this study is 2D modeling of hydrogen production in inductively coupled plasma in methane at low pressure. In the present model, we include the motions and the collisions of both neutral and charged particles by considering 19 species (i.e in total ; neutrals, radicals, ions, and electrons), and more than 120 reactions (electron impact with methane, neutral-neutral, neutral-ions and surface reactions). The results show that the rate conversion of methane reach 90% and the hydrogen production is about 30%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title="hydrogen production">hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=inductively%20coupled%20plasma" title=" inductively coupled plasma"> inductively coupled plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20model" title=" fluid model"> fluid model</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20plasma" title=" methane plasma"> methane plasma</a> </p> <a href="https://publications.waset.org/abstracts/123259/modeling-of-hydrogen-production-by-inductively-coupled-methane-plasma-for-input-power-pin700w" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1493</span> Abandoned Mine Methane Mitigation in the United States</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jerome%20Blackman">Jerome Blackman</a>, <a href="https://publications.waset.org/abstracts/search?q=Pamela%20Franklin"> Pamela Franklin</a>, <a href="https://publications.waset.org/abstracts/search?q=Volha%20Roshchanka"> Volha Roshchanka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The US coal mining sector accounts for 6% of total US Methane emissions (2021). 60% of US coal mining methane emissions come from active underground mine ventilation systems. Abandoned mines contribute about 13% of methane emissions from coal mining. While there are thousands of abandoned underground coal mines in the US, the Environmental Protection Agency (EPA) estimates that fewer than 100 have sufficient methane resources for viable methane recovery and use projects. Many abandoned mines are in remote areas far from potential energy customers and may be flooded, further complicating methane recovery. Because these mines are no longer active, recovery projects can be simpler to implement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abandoned%20mines" title="abandoned mines">abandoned mines</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20mine%20methane" title=" coal mine methane"> coal mine methane</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20mining" title=" coal mining"> coal mining</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20emissions" title=" methane emissions"> methane emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20mitigation" title=" methane mitigation"> methane mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20and%20use" title=" recovery and use"> recovery and use</a> </p> <a href="https://publications.waset.org/abstracts/176222/abandoned-mine-methane-mitigation-in-the-united-states" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1492</span> Effect of Sulphur Concentration on Microbial Population and Performance of a Methane Biofilter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonya%20Barzgar">Sonya Barzgar</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Patrick"> J. Patrick</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hettiaratchi"> A. Hettiaratchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methane (CH4) is reputed as the second largest contributor to greenhouse effect with a global warming potential (GWP) of 34 related to carbon dioxide (CO2) over the 100-year horizon, so there is a growing interest in reducing the emissions of this gas. Methane biofiltration (MBF) is a cost effective technology for reducing low volume point source emissions of methane. In this technique, microbial oxidation of methane is carried out by methane-oxidizing bacteria (methanotrophs) which use methane as carbon and energy source. MBF uses a granular medium, such as soil or compost, to support the growth of methanotrophic bacteria responsible for converting methane to carbon dioxide (CO₂) and water (H₂O). Even though the biofiltration technique has been shown to be an efficient, practical and viable technology, the design and operational parameters, as well as the relevant microbial processes have not been investigated in depth. In particular, limited research has been done on the effects of sulphur on methane bio-oxidation. Since bacteria require a variety of nutrients for growth, to improve the performance of methane biofiltration, it is important to establish the input quantities of nutrients to be provided to the biofilter to ensure that nutrients are available to sustain the process. The study described in this paper was conducted with the aim of determining the influence of sulphur on methane elimination in a biofilter. In this study, a set of experimental measurements has been carried out to explore how the conversion of elemental sulphur could affect methane oxidation in terms of methanotrophs growth and system pH. Batch experiments with different concentrations of sulphur were performed while keeping the other parameters i.e. moisture content, methane concentration, oxygen level and also compost at their optimum level. The study revealed the tolerable limit of sulphur without any interference to the methane oxidation as well as the particular sulphur concentration leading to the greatest methane elimination capacity. Due to the sulphur oxidation, pH varies in a transient way which affects the microbial growth behavior. All methanotrophs are incapable of growth at pH values below 5.0 and thus apparently are unable to oxidize methane. Herein, the certain pH for the optimal growth of methanotrophic bacteria is obtained. Finally, monitoring methane concentration over time in the presence of sulphur is also presented for laboratory scale biofilters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title="global warming">global warming</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20biofiltration%20%28MBF%29" title=" methane biofiltration (MBF)"> methane biofiltration (MBF)</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20oxidation" title=" methane oxidation"> methane oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=methanotrophs" title=" methanotrophs"> methanotrophs</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphur" title=" sulphur"> sulphur</a> </p> <a href="https://publications.waset.org/abstracts/46369/effect-of-sulphur-concentration-on-microbial-population-and-performance-of-a-methane-biofilter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1491</span> Calculation of Methane Emissions from Wetlands in Slovakia via IPCC Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jozef%20Mindas">Jozef Mindas</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Skvareninova"> Jana Skvareninova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wetlands are a main natural source of methane emissions, but they also represent the important biodiversity reservoirs in the landscape. There are about 26 thousands hectares of wetlands in Slovakia identified via the wetlands monitoring program. Created database of wetlands in Slovakia allows to analyze several ecological processes including also the methane emissions estimate. Based on the information from the database, the first estimate of the methane emissions from wetlands in Slovakia has been done. The IPCC methodology (Tier 1 approach) has been used with proposed emission factors for the ice-free period derived from the climatic data. The highest methane emissions of nearly 550 Gg are associated with the category of fens. Almost 11 Gg of methane is emitted from bogs, and emissions from flooded lands represent less than 8 Gg. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bogs" title="bogs">bogs</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20emissions" title=" methane emissions"> methane emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=Slovakia" title=" Slovakia"> Slovakia</a>, <a href="https://publications.waset.org/abstracts/search?q=wetlands" title=" wetlands"> wetlands</a> </p> <a href="https://publications.waset.org/abstracts/52427/calculation-of-methane-emissions-from-wetlands-in-slovakia-via-ipcc-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1490</span> Investigation of the NO2 Formation in the Exhaust Duct of a Dual Fuel Test Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Arabian">Ehsan Arabian</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Sattelmayer"> Thomas Sattelmayer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The formation of nitrogen dioxide NO2 in the exhaust duct of a MAN dual fuel test engine has been investigated numerically. The dual fuel engine concept with premixed lean methane combustion ignited through diesel pilot flames reveals high potential for the abatement of the NOx formation. The drawback of this combustion method, however, is the high NO2 formation due to the increasing concentration of unburned hydrocarbons. This promotes the conversion of NO to NO2, which is toxic and characterized through its yellow color. The results presented in this paper cover a wide range of engine operation points from full load to part load for different air to fuel ratios. The effects of temperature, pressure and concentrations of unburned methane and nitric oxide on NO2 formation in the exhaust duct has been investigated on the basis of a zero-dimensional well stirred reactor model implemented in Cantera, which calculates the steady state of a uniform composition for a certain residence time. It can be shown that the simulated conversion of NO to NO2 match the experimental results fairly well. The partial oxidation of methane followed by CO production can be predicted as well. It can also be concluded that the lower temperature limit for which no conversion takes place, depends mainly on the concentration of the unburned hydrocarbons in the exhaust. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cantera" title="cantera">cantera</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20fuel%20engines" title=" dual fuel engines"> dual fuel engines</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20tract" title=" exhaust tract"> exhaust tract</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling%20of%20NO2%20formation" title=" numerical modeling of NO2 formation"> numerical modeling of NO2 formation</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20stirred%20reactor" title=" well stirred reactor"> well stirred reactor</a> </p> <a href="https://publications.waset.org/abstracts/81509/investigation-of-the-no2-formation-in-the-exhaust-duct-of-a-dual-fuel-test-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1489</span> LaMn₁₋ₓNiₓO₃ Perovskites as Oxygen Carriers for Chemical Looping Partial Oxidation of Methane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xianglei%20Yin">Xianglei Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Shen%20Wang"> Shen Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Baoyi%20Wang"> Baoyi Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Laihong%20Shen"> Laihong Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical looping partial oxidation of methane (CLPOM) is a novel technology to produce high-quality syngas with an auto-thermic process and low equipment investment. The development of oxygen carriers is important for the improvement of the CLPOM performance. In this work, the effect of the nickel-substitution proportion on the performance of LaMn₁₋ᵧNiᵧO₃₊δ perovskites for CLPOM was studied in the aspect of reactivity, syngas selectivity, resistance towards carbon deposition and thermal stability in cyclic redox process. The LaMn₁₋ₓNiₓO₃ perovskite oxides with x = 0, 0.1, 0.2 were prepared by the sol-gel method. The performance of LaMn₁₋ᵧNiᵧO₃₊δ perovskites for CLPOM was investigated through the characterization of XRD, H₂-TPR, XPS, and fixed-bed experiments. The characterization and test results suggest that the doping of nickel enhances the generation rate of syngas, leading to high syngas yield, methane conversion, and syngas selectivity. This is attributed to the that the introduction of nickel provides active sites to promote the methane activation on the surface and causes the addition of oxygen vacancies to accelerate the migration of oxygen anion in the bulk of oxygen carrier particles. On the other hand, the introduction of nickel causes carbon deposition to occur earlier. The best substitution proportion of nickel is y=0.1 and LaMn₀.₉Ni₀.₁O₃₊δ could produce high-quality syngas with a yield of 3.54 mmol·g⁻¹, methane conversion of 80.7%, and CO selectivity of 84.8% at 850℃. In addition, the LaMn₀.₉Ni₀.₁O₃₊δ oxygen carrier exhibits superior and stable performance in the cyclic redox process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20looping%20partial%20oxidation%20of%20methane" title="chemical looping partial oxidation of methane">chemical looping partial oxidation of methane</a>, <a href="https://publications.waset.org/abstracts/search?q=LaMnO%E2%82%83%E2%82%8A%CE%B4" title=" LaMnO₃₊δ"> LaMnO₃₊δ</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni%20doping" title=" Ni doping"> Ni doping</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20deposition" title=" carbon deposition"> carbon deposition</a> </p> <a href="https://publications.waset.org/abstracts/139934/lamn1nio3-perovskites-as-oxygen-carriers-for-chemical-looping-partial-oxidation-of-methane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1488</span> Effect of Catalyst Preparation Method on Dry Reforming of Methane with Supported and Promoted Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20P.%20Gandhi">Sanjay P. Gandhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20S.%20Patel"> Sanjay S. Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dry (CO2) reforming of methane (DRM) is both scientific and industrial importance. In recent decades, CO2 utilization has become increasingly important in view of the escalating global warming phenomenon. This reaction produces syngas that can be used to produce a wide range of products, such as higher alkanes and oxygenates by means of Fischer–Tropsch synthesis. DRM is inevitably accompanied by deactivation due to carbon deposition. DRM is also a highly endothermic reaction and requires operating temperatures of 800–1000 °C to attain high equilibrium conversion of CH4 and CO2 to H2 and CO and to minimize the thermodynamic driving force for carbon deposition. The catalysts used are often composed of transition Methods like Nickel, supported on metallic and non-metallic oxides such as alumina and silica. However, many of these catalysts undergo severe deactivation due to carbon deposition. Noble metals have also been studied and are typically found to be much more resistant to carbon deposition than Ni catalysts, but are generally uneconomical. Noble metals can also be used to promote the Ni catalysts in order to increase their resistance to deactivation. In order to design catalysts that minimize deactivation, it is necessary to understand the elementary steps involved in the activation and conversion of CH4 and CO2. CO2 reforming methane over promoted catalyst was studied. The influence of ZrO2, CeO2 and the behavior of Ni-Al2O3 Catalyst, prepare by wet-impregnation and Co-precipitated method was studied. XRD, BET Analysis for different promoted and unprompted Catalyst was studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20reforming%20of%20methane" title="CO2 reforming of methane">CO2 reforming of methane</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni%20catalyst" title=" Ni catalyst"> Ni catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=promoted%20and%20unprompted%20catalyst" title=" promoted and unprompted catalyst"> promoted and unprompted catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=effect%20of%20catalyst%20preparation" title=" effect of catalyst preparation"> effect of catalyst preparation</a> </p> <a href="https://publications.waset.org/abstracts/26182/effect-of-catalyst-preparation-method-on-dry-reforming-of-methane-with-supported-and-promoted-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1487</span> A Deep Learning Model with Greedy Layer-Wise Pretraining Approach for Optimal Syngas Production by Dry Reforming of Methane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Zarabian">Maryam Zarabian</a>, <a href="https://publications.waset.org/abstracts/search?q=Hector%20Guzman"> Hector Guzman</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Pereira-Almao"> Pedro Pereira-Almao</a>, <a href="https://publications.waset.org/abstracts/search?q=Abraham%20Fapojuwo"> Abraham Fapojuwo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dry reforming of methane (DRM) has sparked significant industrial and scientific interest not only as a viable alternative for addressing the environmental concerns of two main contributors of the greenhouse effect, i.e., carbon dioxide (CO₂) and methane (CH₄), but also produces syngas, i.e., a mixture of hydrogen (H₂) and carbon monoxide (CO) utilized by a wide range of downstream processes as a feedstock for other chemical productions. In this study, we develop an AI-enable syngas production model to tackle the problem of achieving an equivalent H₂/CO ratio [1:1] with respect to the most efficient conversion. Firstly, the unsupervised density-based spatial clustering of applications with noise (DBSAN) algorithm removes outlier data points from the original experimental dataset. Then, random forest (RF) and deep neural network (DNN) models employ the error-free dataset to predict the DRM results. DNN models inherently would not be able to obtain accurate predictions without a huge dataset. To cope with this limitation, we employ reusing pre-trained layers’ approaches such as transfer learning and greedy layer-wise pretraining. Compared to the other deep models (i.e., pure deep model and transferred deep model), the greedy layer-wise pre-trained deep model provides the most accurate prediction as well as similar accuracy to the RF model with R² values 1.00, 0.999, 0.999, 0.999, 0.999, and 0.999 for the total outlet flow, H₂/CO ratio, H₂ yield, CO yield, CH₄ conversion, and CO₂ conversion outputs, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20reforming%20of%20methane" title=" dry reforming of methane"> dry reforming of methane</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20learning" title=" transfer learning"> transfer learning</a>, <a href="https://publications.waset.org/abstracts/search?q=greedy%20layer-wise%20pretraining" title=" greedy layer-wise pretraining"> greedy layer-wise pretraining</a> </p> <a href="https://publications.waset.org/abstracts/163075/a-deep-learning-model-with-greedy-layer-wise-pretraining-approach-for-optimal-syngas-production-by-dry-reforming-of-methane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1486</span> Energy-Efficient Storage of Methane Using Biosurfactant in the Form of Clathrate Hydrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdolreza%20Farhadian">Abdolreza Farhadian</a>, <a href="https://publications.waset.org/abstracts/search?q=Anh%20Phan"> Anh Phan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Taheri%20Rizi"> Zahra Taheri Rizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Elaheh%20Sadeh"> Elaheh Sadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The utilization of solidified gas technology based on hydrates exhibits considerable promise for carbon capture, storage, and natural gas transportation applications. The pivotal factor impeding the industrial implementation of hydrates lies in the need for efficient and non-foaming promoters. In this study, a biosurfactant with sulfonate, amide, and carboxyl groups (BS) was synthesized as a methane hydrate formation promoter, replicating the chemical characteristics of amino acids and sodium dodecyl sulfate (SDS). The synthesis of BS was achieved using an eco-friendly and three-step process. The first two steps were solvent-free, while a water-isopropanol mixture was utilized in the final step. High-pressure autoclave experiments demonstrated a significant enhancement in methane hydrate formation kinetics with low BS concentrations. 50 ppm of BS yielded a maximum water-to-hydrate conversion of 66.9%, equivalent to a storage capacity of 119.9 v/v in distilled water. With increasing BS concentration to 500 ppm, the conversion degree and storage capacity reached 97% and 162.6 v/v, respectively. Molecular dynamic simulation revealed that BS molecules acted as collectors for methane molecules, augmenting hydrate growth rate and increasing the number of hydrate cavities. Additionally, BS demonstrated a biodegradability exceeding 60% within 28 days. Toxicity assessments confirmed BS's biocompatibility, with cell viability above 70% for skin and lung cells at concentrations up to 160 and 80 µg/mL, respectively. BS showed significant potential as an environmentally friendly alternative to synthetic surfactants like SDS for methane storage. These findings suggest that the synthesis of effective, such as BS, holds promise for diverse applications, including seawater desalination, carbon capture, and gas storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solidified%20methane" title="solidified methane">solidified methane</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20storage" title=" gas storage"> gas storage</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20hydrates" title=" gas hydrates"> gas hydrates</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20surfactant" title=" green surfactant"> green surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20hydrate%20promoter" title=" gas hydrate promoter"> gas hydrate promoter</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20simulation" title=" computational simulation"> computational simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/195035/energy-efficient-storage-of-methane-using-biosurfactant-in-the-form-of-clathrate-hydrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/195035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">0</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1485</span> Clean Coal Using Coal Bed Methane: A Pollution Control Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arish%20Iqbal">Arish Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Santosh%20Kumar%20Singh"> Santosh Kumar Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy from coal is one of the major source of energy throughout the world but taking into consideration its effect on environment 'Clean Coal Technologies' (CCT) came into existence. In this paper we have we studied why CCT’s are essential and what are the different types of CCT’s. Also, the coal and CCT scenario in India is introduced. Coal Bed Methane one of major CCT area is studied in detail. Different types of coal bed methane and its methods of extraction are discussed. The different problem areas during the extraction of CBM are identified and discussed. How CBM can be used as a fuel for future is also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CBM%20%28coal%20bed%20methane%29" title="CBM (coal bed methane)">CBM (coal bed methane)</a>, <a href="https://publications.waset.org/abstracts/search?q=CCS%20%28carbon%20capture%20and%20storage%29" title=" CCS (carbon capture and storage)"> CCS (carbon capture and storage)</a>, <a href="https://publications.waset.org/abstracts/search?q=CCT%20%28clean%20coal%20technology%29" title=" CCT (clean coal technology)"> CCT (clean coal technology)</a>, <a href="https://publications.waset.org/abstracts/search?q=CMM%20%28coal%20mining%20methane%29" title=" CMM (coal mining methane)"> CMM (coal mining methane)</a> </p> <a href="https://publications.waset.org/abstracts/80218/clean-coal-using-coal-bed-methane-a-pollution-control-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1484</span> Effect of Ginger Diets on in vitro Fermentation Characteristics, Enteric Methane Production and Performance of West African Dwarf Sheep</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dupe%20Olufunke%20Ogunbosoye">Dupe Olufunke Ogunbosoye</a>, <a href="https://publications.waset.org/abstracts/search?q=Thaofik%20Badmos%20Mustapha"> Thaofik Badmos Mustapha</a>, <a href="https://publications.waset.org/abstracts/search?q=Lanre%20Shaffihy%20Adeaga"> Lanre Shaffihy Adeaga</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20O.%20Imam"> R. O. Imam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Efforts have been made to reduce ruminants' methane emissions while improving animal productivity. Hence, an experiment was conducted to investigate the in vitro fermentation pattern, methane production, and performance of West African dwarf (WAD) rams-fed diets at graded levels of ginger. Sixteen (16) rams were randomly allocated into four dietary treatments with four animals per treatment in a completely randomized design for 84 days. Ginger powder was added at 0.00%, 0.25%, 0.50% and 0.75% as T1, T2, T3 and T4 respectively. The results indicated that at the 24-hour diet incubation, gas production, methane, metabolizable energy (ME), organic matter digestibility (OMD), and short-chain fatty acids (SCFA) concentrations decreased with the increasing level of ginger. Conversely, the sheep-fed T4 recorded the highest daily weight gain (47.61g/day), while the least daily weight gain (17.86g/day) was recorded in ram-fed T1. The daily weight gain of the rams fed T3 and T4 was similar but significantly different from the daily weight gain in T1 (17.86g/day) and T2 (29.76g/day). Daily feed intake was not significantly different across the treatments. T4 recorded the best response regarding feed conversion ratio (18.59) compared with other treatments. Based on the results obtained, rams fed T4 perform best in terms of growth and methane production. It is therefore concluded that the addition of ginger powder into the diet of sheep up to 0.75% enhances the growth rate of WAD sheep and reduces enteric methane production to create a smart nutrition system in ruminant animal production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enteric%20methane" title="enteric methane">enteric methane</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro" title=" in vitro"> in vitro</a>, <a href="https://publications.waset.org/abstracts/search?q=sheep" title=" sheep"> sheep</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition%20system" title=" nutrition system"> nutrition system</a> </p> <a href="https://publications.waset.org/abstracts/171151/effect-of-ginger-diets-on-in-vitro-fermentation-characteristics-enteric-methane-production-and-performance-of-west-african-dwarf-sheep" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1483</span> Enhanced Methane Production from Waste Paper through Anaerobic Co-Digestion with Macroalgae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cristina%20Rodriguez">Cristina Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Abed%20Alaswad"> Abed Alaswad</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaki%20El-Hassan"> Zaki El-Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20G.%20Olabi"> Abdul G. Olabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the effect on methane production from the waste paper when co-digested with macroalgal biomass as a source of nitrogen. Both feedstocks were previously mechanically pretreated in order to reduce their particle size. Methane potential assays were carried out at laboratory scale in batch mode for 28 days. The study was planned according to two factors: the feedstock to inoculum (F/I) ratio and the waste paper to macroalgae (WP/MA) ratio. The F/I ratios checked were 0.2, 0.3 and 0.4 and the WP/MA ratios were 0:100, 25:75, 50:50, 75:25 and 100:0. The highest methane yield (608 ml/g of volatile solids (VS)) was achieved at an F/I ratio of 0.2 and a WP/MA ratio of 50:50. The methane yield at a ratio WP/MA of 50:50 is higher than for single compound, while for ratios WP/MA of 25:75 and 75:25 the methane yield decreases compared to biomass mono-digestion. This behavior is observed for the three levels of F/I ratio being more noticeable at F/I ratio of 0.3. A synergistic effect was found for the WP/MA ratio of 50:50 and all F/I ratios and for WP/MA=50:50 and F/I=0.2. A maximum increase of methane yield of 49.58% was found for a co-digestion ratio of 50:50 and an F/I ratio of 0.4. It was concluded that methane production from waste paper improves significantly when co-digested with macroalgae biomass. The methane yields from co-digestion were also found higher that from macroalgae mono-digestion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20co-digestion" title="anaerobic co-digestion">anaerobic co-digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=macroalgae" title=" macroalgae"> macroalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20paper" title=" waste paper"> waste paper</a> </p> <a href="https://publications.waset.org/abstracts/64720/enhanced-methane-production-from-waste-paper-through-anaerobic-co-digestion-with-macroalgae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1482</span> Production of Natural Gas Hydrate by Using Air and Carbon Dioxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yun-Ho%20Ahn">Yun-Ho Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyery%20Kang"> Hyery Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Yeun%20Koh"> Dong-Yeun Koh</a>, <a href="https://publications.waset.org/abstracts/search?q=Huen%20Lee"> Huen Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we demonstrate the production of natural gas hydrates from permeable marine sediments with simultaneous mechanisms for methane recovery and methane-air or methane-air/carbon dioxide replacement. The simultaneous melting happens until the chemical potentials become equal in both phases as natural gas hydrate depletion continues and self-regulated methane-air replacement occurs over an arbitrary point. We observed certain point between dissociation and replacement mechanisms in the natural gas hydrate reservoir, and we call this boundary as critical methane concentration. By the way, when carbon dioxide was added, the process of chemical exchange of methane by air/carbon dioxide was observed in the natural gas hydrate. The suggested process will operate well for most global natural gas hydrate reservoirs, regardless of the operating conditions or geometrical constraints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20injection" title="air injection">air injection</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20sequestration" title=" carbon dioxide sequestration"> carbon dioxide sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrate%20production" title=" hydrate production"> hydrate production</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas%20hydrate" title=" natural gas hydrate"> natural gas hydrate</a> </p> <a href="https://publications.waset.org/abstracts/24818/production-of-natural-gas-hydrate-by-using-air-and-carbon-dioxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1481</span> Nondestructive Natural Gas Hydrate Production by Using Air and Carbon Dioxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahn%20Yun-Ho">Ahn Yun-Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyery%20Kang"> Hyery Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Koh%20Dong-Yeun"> Koh Dong-Yeun</a>, <a href="https://publications.waset.org/abstracts/search?q=Huen%20Lee"> Huen Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we demonstrate the production of natural gas hydrates from permeable marine sediments with simultaneous mechanisms for methane recovery and methane-air or methane-air/carbon dioxide replacement. The simultaneous melting happens until the chemical potentials become equal in both phases as natural gas hydrate depletion continues and self-regulated methane-air replacement occurs over an arbitrary point. We observed certain point between dissociation and replacement mechanisms in the natural gas hydrate reservoir, and we call this boundary as critical methane concentration. By the way, when carbon dioxide was added, the process of chemical exchange of methane by air/carbon dioxide was observed in the natural gas hydrate. The suggested process will operate well for most global natural gas hydrate reservoirs, regardless of the operating conditions or geometrical constraints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20injection" title="air injection">air injection</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20sequestration" title=" carbon dioxide sequestration"> carbon dioxide sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrate%20production" title=" hydrate production"> hydrate production</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas%20hydrate" title=" natural gas hydrate"> natural gas hydrate</a> </p> <a href="https://publications.waset.org/abstracts/25132/nondestructive-natural-gas-hydrate-production-by-using-air-and-carbon-dioxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">573</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1480</span> Photo-Enhanced Catalytic Dry Reforming of Methane on Ni@SiO2 with High Resistance to Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinrui%20Zhang">Jinrui Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tianlong%20Yang"> Tianlong Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Pan"> Ying Pan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methane and carbon dioxide are major greenhouse gases contributor. CO₂ dry reforming of methane (DRM) for syngas production is a promising approach to reducing global CO₂ emission and extensive utilization of natural gas. However, the reported catalysts endured rapid deactivation due to severe carbon deposition at high temperature. Here, CO₂ reduction by CH4 on hexagonal nano-nickel flakes packed by porous SiO₂ (Ni@SiO₂) catalysts driven by thermal and solar light are tested. High resistance to carbon deposition and higher reactive activity are demonstrated under focused solar light at moderate temperature (400-500 ℃). Furthermore, the photocatalytic DRM under different wavelength is investigated, and even IR irradiation can enhance the catalytic activity. The mechanism of light-enhanced reaction reactivity and equilibrium is investigated by Infrared and Raman spectroscopy, and the unique reaction pathway with light is depicted. The photo-enhanced DRM provides a promising method of renewable solar energy conversion and CO₂ emission reduction due to the excellent activity and durability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20emission%20reduction" title="CO₂ emission reduction">CO₂ emission reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=methane" title=" methane"> methane</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20DRM" title=" photocatalytic DRM"> photocatalytic DRM</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20to%20carbon%20deposition" title=" resistance to carbon deposition"> resistance to carbon deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a> </p> <a href="https://publications.waset.org/abstracts/162389/photo-enhanced-catalytic-dry-reforming-of-methane-on-ni-at-sio2-with-high-resistance-to-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1479</span> Enhanced Methane Yield from Organic Fraction of Municipal Solid Waste with Coconut Biochar as Syntrophic Metabolism Biostimulant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Altamirano">Maria Altamirano</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfonso%20Duran"> Alfonso Duran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biostimulation has recently become important in order to improve the stability and performance of the anaerobic digestion (AD) process. This strategy involves the addition of nutrients or supplements to improve the rate of degradation of a native microbial consortium. With the aim of biostimulate sytrophism between secondary fermenting bacteria and methanogenic archaea, improving metabolite degradation and efficient conversion to methane, the addition of conductive materials, mainly carbon based have been studied. This research seeks to highlight the effect that coconut biochar (CBC) has on the metanogenic conversion of the organic fraction of municipal solid waste (OFMSW), analyzing the surface chemistry properties that give biochar its capacity to serve as a redox mediator in the anaerobic digestion process. The biochar characterization techniques were electrical conductivity (EC) scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier Transform Infrared Transmission Spectroscopy (FTIR) and Cyclic Voltammetry (CV). Effect of coconut biochar addition was studied using Authomatic Methane Potential Test System (AMPTS II) applying a one-way variance analysis to determine the dose that leads to higher methane performance. The surface chemistry of the CBC could confer properties that enhance the AD process, such as the presence of alkaline and alkaline earth metals and their hydrophobicity that may be related to their buffering capacity and the adsorption of polar and non-polar compounds, such as NH4+ and CO2. It also has aromatic functional groups, just as quinones, whose potential as a redox mediator has been demonstrated and its morphology allows it to form an immobilizing matrix that favors a closer activity among the syntrophic microorganisms, which directly contributed in the oxidation of secondary metabolites and the final reduction to methane, whose yield is increased by 39% compared to controls, with a CBC dose of 1 g/L. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=biochar" title=" biochar"> biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=biostimulation" title=" biostimulation"> biostimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=syntrophic%20metabolism" title=" syntrophic metabolism "> syntrophic metabolism </a> </p> <a href="https://publications.waset.org/abstracts/122430/enhanced-methane-yield-from-organic-fraction-of-municipal-solid-waste-with-coconut-biochar-as-syntrophic-metabolism-biostimulant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1478</span> Catalytic Conversion of Methane into Benzene over CZO Promoted Mo/HZSM-5 for Methane Dehydroaromatization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepti%20Mishra">Deepti Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Arindam%20Modak"> Arindam Modak</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Pant"> K. K. Pant</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiu%20Song%20Zhao"> Xiu Song Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The promotional effect of mixed ceria-zirconia oxides (CZO) over the Mo/HZSM-5 catalyst for methane dehydroaromatization (MDA) reaction was studied. The surface and structural properties of the synthesized catalyst were characterized using a range of spectroscopic and microscopic techniques, and the correlation between catalytic properties and its performance for MDA reaction is discussed. The impregnation of CZO solid solution on Mo/HZSM-5 was observed to give an excellent catalytic performance and improved benzene formation rate (4.5 μmol/gcat. s) as compared to the conventional Mo/HZSM-5 (3.1 μmol/gcat. s) catalyst. In addition, a significant reduction in coke formation was observed in the CZO-modified Mo/HZSM-5 catalyst. The prevailing comprehension for higher catalytic activity could be because of the redox properties of CZO deposited Mo/HZSM-5, which acts as a selective oxygen supplier and performs hydrogen combustion during the reaction, which is indirectly probed by O₂-TPD and H₂-TPR analysis. The selective hydrogen combustion prevents the over-oxidation of aromatic species formed during the reaction while the generated steam helps in reducing the amount of coke generated in the MDA reaction. Thus, the advantage of CZO incorporated Mo/HZSM-5 is manifested as it promotes the reaction equilibrium to shift towards the formation of benzene which is favourable for MDA reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mo%2FHZSM-5" title="Mo/HZSM-5">Mo/HZSM-5</a>, <a href="https://publications.waset.org/abstracts/search?q=ceria-zirconia%20%28CZO%29" title=" ceria-zirconia (CZO)"> ceria-zirconia (CZO)</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20combustion" title=" in-situ combustion"> in-situ combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20dehydroaromatization" title=" methane dehydroaromatization"> methane dehydroaromatization</a> </p> <a href="https://publications.waset.org/abstracts/159919/catalytic-conversion-of-methane-into-benzene-over-czo-promoted-mohzsm-5-for-methane-dehydroaromatization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1477</span> High Rate Bio-Methane Generation from Petrochemical Wastewater Using Improved CSTR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Nurul%20Islam%20Siddique">Md. Nurul Islam Siddique</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20W.%20Zularisam"> A. W. Zularisam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of gradual increase in organic loading rate (OLR) and temperature on biomethanation from petrochemical wastewater treatment was investigated using CSTR. The digester performance was measured at hydraulic retention time (HRT) of 4 to 2d, and start up procedure of the reactor was monitored for 60 days via chemical oxygen demand (COD) removal, biogas and methane production. By enhancing the temperature from 30 to 55 ˚C Thermophilic condition was attained, and pH was adjusted at 7 ± 0.5 during the experiment. Supreme COD removal competence was 98±0.5% (r = 0.84) at an OLR of 7.5 g-COD/Ld and 4d HRT. Biogas and methane yield were logged to an extreme of 0.80 L/g-CODremoved d (r = 0.81), 0.60 L/g-CODremoved d (r = 0.83), and mean methane content of biogas was 65.49%. The full acclimatization was established at 55 ˚C with high COD removal efficiency and biogas production. An OLR of 7.5 g-COD/L d and HRT of 4 days were apposite for petrochemical wastewater treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=petrochemical%20wastewater" title=" petrochemical wastewater"> petrochemical wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=CSTR" title=" CSTR"> CSTR</a>, <a href="https://publications.waset.org/abstracts/search?q=methane" title=" methane"> methane</a> </p> <a href="https://publications.waset.org/abstracts/42465/high-rate-bio-methane-generation-from-petrochemical-wastewater-using-improved-cstr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1476</span> CO2 Sequestration for Enhanced Coal Bed Methane Recovery: A New Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhinav%20Sirvaiya">Abhinav Sirvaiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Karan%20Gupta"> Karan Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20Garg"> Pankaj Garg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The global warming due to the increased atmospheric carbon dioxide (CO2) concentration is the most prominent issue of environment that the world is facing today. To solve this problem at global level, sequestration of CO2 in deep and unmineable coal seams has come out as one of the attractive alternatives to reduce concentration in atmosphere. This sequestration technology is not only going to help in storage of CO2 beneath the sub-surface but is also playing a major role in enhancing the coal bed methane recovery (ECBM) by displacing the adsorbed methane. This paper provides the answers for the need of CO2 injection in coal seams and how recovery is enhanced. We have discussed the recent development in enhancing the coal bed methane recovery and the economic scenario of the same. The effect of injection on the coal reservoir has also been discussed. Coal is a good absorber of CO2. That is why the sequestration of CO2 is emerged out to be a great approach, not only for storage purpose but also for enhancing coal bed methane recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title="global warming">global warming</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20%28CO2%29" title=" carbon dioxide (CO2)"> carbon dioxide (CO2)</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20sequestration" title=" CO2 sequestration"> CO2 sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=enhance%20coal%20bed%20methane%20%28ECBM%29" title=" enhance coal bed methane (ECBM)"> enhance coal bed methane (ECBM)</a> </p> <a href="https://publications.waset.org/abstracts/17429/co2-sequestration-for-enhanced-coal-bed-methane-recovery-a-new-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1475</span> Iron Catalyst for Decomposition of Methane: Influence of Al/Si Ratio Support</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Al-Fatesh">A. S. Al-Fatesh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Ibrahim"> A. A. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20AlSharekh"> A. M. AlSharekh</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20S.%20Alqahtani"> F. S. Alqahtani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20O.%20Kasim"> S. O. Kasim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Fakeeha"> A. H. Fakeeha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen is the expected future fuel since it produces energy without any pollution. It can be used as a fuel directly or through the fuel cell. It is also used in chemical and petrochemical industry as reducing agent or in hydrogenation processes. It is produced by different methods such as reforming of hydrocarbon, electrolytic method and methane decomposition. The objective of the present paper is to study the decomposition of methane reaction at 700°C and 800°C. The catalysts were prepared via impregnation method using 20%Fe and different proportions of combined alumina and silica support using the following ratios [100%, 90%, 80%, and 0% Al₂O₃/SiO₂]. The prepared catalysts were calcined and activated at 600 OC and 500 OC respectively. The reaction was carried out in fixed bed reactor at atmospheric pressure using 0.3g of catalyst and feed gas ratio of 1.5/1 CH₄/N₂ with a total flow rate 25 mL/min. Catalyst characterizations (TPR, TGA, BET, XRD, etc.) have been employed to study the behavior of catalysts before and after the reaction. Moreover, a brief description of the weight loss and the CH₄ conversions versus time on stream relating the different support ratios over 20%Fe/Al₂O₃/SiO₂ catalysts has been added as well. The results of TGA analysis provided higher weights losses for catalysts operated at 700°C than 800°C. For the 90% Al₂O₃/SiO₂, the activity decreases with the time on stream using 800°C reaction temperature from 73.9% initial CH₄ conversion to 46.3% for a period of 300min, whereas the activity for the same catalyst increases from 47.1% to 64.8% when 700°C reaction temperature is employed. Likewise, for 80% Al₂O₃/SiO₂ the trend of activity is similar to that of 90% Al₂O₃/SiO₂ but with a different rate of activity variation. It can be inferred from the activity results that the ratio of Al₂O₃ to SiO₂ is crucial and it is directly proportional with the activity. Whenever the Al/Si ratio decreases the activity declines. Indeed, the CH₄ conversion of 100% SiO₂ support was less than 5%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al%E2%82%82O%E2%82%83" title="Al₂O₃">Al₂O₃</a>, <a href="https://publications.waset.org/abstracts/search?q=SiO%E2%82%82" title=" SiO₂"> SiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=CH%E2%82%84%20decomposition" title=" CH₄ decomposition"> CH₄ decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=iron" title=" iron "> iron </a> </p> <a href="https://publications.waset.org/abstracts/88020/iron-catalyst-for-decomposition-of-methane-influence-of-alsi-ratio-support" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1474</span> Seaweed as a Future Fuel Option: Potential and Conversion Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rizwan%20Tabassum">Muhammad Rizwan Tabassum</a>, <a href="https://publications.waset.org/abstracts/search?q=Ao%20Xia"> Ao Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Jerry%20D.%20Murphy"> Jerry D. Murphy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this work is to provide a comprehensive overview of seaweed as the alternative feedstock for biofuel production and key conversion technologies. Resource depletion and climate change are the driving forces to hunt for renewable sources of energy. Macroalgae can be preferred over land based crops for biofuel production because they are not in competition with food crops for arable land, high growth rates and low lignin contents which require less energy-intensive pre-treatments. However, some disadvantages, such as high moisture content, seasonal variation in chemical composition and process inhibition limit its economic feasibility. Seaweed can be converted into gaseous and liquid fuel by different conversion technologies, but biogas via anaerobic digestion from seaweed is attracting increased attention due to its dual benefit of an economic source of bio-fuel and environment-friendly technology. Biodiesel and bioethanol conversion technologies from seaweed are still under development. A selection of high yielding seaweed species, optimal harvesting season and process optimization make them economically feasible for the alternative source of renewable and sustainable feedstock for biofuel in future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuel" title=" biofuel"> biofuel</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-methane" title=" bio-methane"> bio-methane</a>, <a href="https://publications.waset.org/abstracts/search?q=conversion%20technologies" title=" conversion technologies"> conversion technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=seaweed" title=" seaweed"> seaweed</a> </p> <a href="https://publications.waset.org/abstracts/37226/seaweed-as-a-future-fuel-option-potential-and-conversion-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1473</span> Catalytic Combustion of Methane over Pd-Meox-CeO₂/Al₂O₃ (Me= Co or Ni) Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Silviya%20Todorova">Silviya Todorova</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%20Naydenov"> Anton Naydenov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ralitsa%20Velinova"> Ralitsa Velinova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Larin"> Alexander Larin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Catalytic combustion of methane has been extensively investigated for emission control and power generation during the last decades. The alumina-supported palladium catalyst is widely accepted as the most active catalysts for catalytic combustion of methane. The activity of Pd/Al₂O₃ decreases during the time on stream, especially underwater vapor. The following order of activity in the reaction of complete oxidation of methane was established: Co₃O₄> CuO>NiO> Mn₂O₃> Cr₂O₃. It may be expected that the combination between Pd and these oxides could lead to the promising catalysts in the reaction of complete methane. In the present work, we investigate the activity of Pd/Al₂O₃ catalysts promoted with other metal oxides (MOx; M= Ni, Co, Ce). The Pd-based catalysts modified by metal oxide were prepared by sequential impregnation of Al₂O₃ with aqueous solutions of Me(NO₃)₂.6H₂O and Pd(NO₃)₂H₂O. All samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS). An improvement of activity was observed after modification with different oxides. The results demonstrate that the Pd/Al₂O₃ catalysts modified with Co and Ce by impregnation with a common solution of respective salts, exhibit the most promising catalytic activity for methane oxidation. Most probably, the presence of Co₃O₄ and CeO₂ on catalytic surface increases surface oxygen and therefore leads to the better reactivity in methane combustion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methane%20combustion" title="methane combustion">methane combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=palladium" title=" palladium"> palladium</a>, <a href="https://publications.waset.org/abstracts/search?q=Co-Ce" title=" Co-Ce"> Co-Ce</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni-Ce" title=" Ni-Ce"> Ni-Ce</a> </p> <a href="https://publications.waset.org/abstracts/110568/catalytic-combustion-of-methane-over-pd-meox-ceo2al2o3-me-co-or-ni-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1472</span> Boosting Profits and Enhancement of Environment through Adsorption of Methane during Upstream Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudipt%20Agarwal">Sudipt Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Siddharth%20Verma"> Siddharth Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Iqbal"> S. M. Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hitik%20Kalra"> Hitik Kalra </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural gas as a fuel has created wonders, but on the contrary, the ill-effects of methane have been a great worry for professionals. The largest source of methane emission is the oil and gas industry among all industries. Methane depletes groundwater and being a greenhouse gas has devastating effects on the atmosphere too. Methane remains for a decade or two in the atmosphere and later breaks into carbon dioxide and thus damages it immensely, as it warms up the atmosphere 72 times more than carbon dioxide in those two decades and keeps on harming after breaking into carbon dioxide afterward. The property of a fluid to adhere to the surface of a solid, better known as adsorption, can be a great boon to minimize the hindrance caused by methane. Adsorption of methane during upstream processes can save the groundwater and atmospheric depletion around the site which can be hugely lucrative to earn profits which are reduced due to environmental degradation leading to project cancellation. The paper would deal with reasons why casing and cementing are not able to prevent leakage and would suggest methods to adsorb methane during upstream processes with mathematical explanation using volumetric analysis of adsorption of methane on the surface of activated carbon doped with copper oxides (which increases the absorption by 54%). The paper would explain in detail (through a cost estimation) how the proposed idea can be hugely beneficial not only to environment but also to the profits earned. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=casing" title=" casing"> casing</a>, <a href="https://publications.waset.org/abstracts/search?q=cementing" title=" cementing"> cementing</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20estimation" title=" cost estimation"> cost estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=volumetric%20analysis" title=" volumetric analysis"> volumetric analysis</a> </p> <a href="https://publications.waset.org/abstracts/85308/boosting-profits-and-enhancement-of-environment-through-adsorption-of-methane-during-upstream-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1471</span> Biogas Control: Methane Production Monitoring Using Arduino</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Ait%20Ahmed">W. Ait Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Aggour"> M. Aggour</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Naciri"> M. Naciri </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extracting energy from biomass is an important alternative to produce different types of energy (heat, electricity, or both) assuring low pollution and better efficiency. It is a new yet reliable approach to reduce green gas emission by extracting methane from industry effluents and use it to power machinery. We focused in our project on using paper and mill effluents, treated in a UASB reactor. The methane produced is used in the factory’s power supply. The aim of this work is to develop an electronic system using Arduino platform connected to a gas sensor, to measure and display the curve of daily methane production on processing. The sensor will send the gas values in ppm to the Arduino board so that the later sends the RS232 hardware protocol. The code developed with processing will transform the values into a curve and display it on the computer screen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biogas" title="biogas">biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=Arduino" title=" Arduino"> Arduino</a>, <a href="https://publications.waset.org/abstracts/search?q=processing" title=" processing"> processing</a>, <a href="https://publications.waset.org/abstracts/search?q=code" title=" code"> code</a>, <a href="https://publications.waset.org/abstracts/search?q=methane" title=" methane"> methane</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensor" title=" gas sensor"> gas sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=program" title=" program"> program</a> </p> <a href="https://publications.waset.org/abstracts/63851/biogas-control-methane-production-monitoring-using-arduino" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methane%20conversion&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methane%20conversion&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methane%20conversion&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methane%20conversion&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methane%20conversion&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methane%20conversion&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methane%20conversion&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methane%20conversion&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methane%20conversion&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methane%20conversion&page=49">49</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methane%20conversion&page=50">50</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methane%20conversion&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>