CINXE.COM
Search results for: nanocomposites
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: nanocomposites</title> <meta name="description" content="Search results for: nanocomposites"> <meta name="keywords" content="nanocomposites"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="nanocomposites" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="nanocomposites"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 77</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: nanocomposites</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Studying the Effect of Nanoclays on the Mechanical Properties of Polypropylene/Polyamide Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Benalia%20Kouini">Benalia Kouini</a>, <a href="https://publications.waset.org/search?q=Aicha%20Serier"> Aicha Serier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanocomposites based on polypropylene/polyamide 66 (PP/PA66) nanoblends containing organophilic montmorillonite (OMMT) and maleic anhydride grafted polypropylene (PP-g-MAH) were prepared by melt compounding method followed by injection molding. Two different types of nanoclays were used in this work. DELLITE LVF is the untreated nanoclay and DELLITE 67G is the treated one. The morphology of the nanocomposites was studied using the XR diffraction (XRD). The results indicate that the incorporation of treated nanoclay has a significant effect on the impact strength of PP/PA66 nanocomposites. Furthermore, it was found that XRD results revealed the intercalation, exfoliation of nanaclays of nanocomposites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanoclay" title="Nanoclay">Nanoclay</a>, <a href="https://publications.waset.org/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/search?q=polyamide" title=" polyamide"> polyamide</a>, <a href="https://publications.waset.org/search?q=melt%20processing" title=" melt processing"> melt processing</a>, <a href="https://publications.waset.org/search?q=mechanical%20properties." title=" mechanical properties."> mechanical properties.</a> </p> <a href="https://publications.waset.org/10003989/studying-the-effect-of-nanoclays-on-the-mechanical-properties-of-polypropylenepolyamide-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003989/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003989/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003989/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003989/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003989/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003989/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003989/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003989/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003989/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003989/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1267</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Structural and Electrical Characterization of Polypyrrole and Cobalt Aluminum Oxide Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sutar%20Rani%20Ananda">Sutar Rani Ananda</a>, <a href="https://publications.waset.org/search?q=M.%20V.%20Murugendrappa"> M. V. Murugendrappa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To investigate electrical properties of conducting polypyrrole (PPy) and cobalt aluminum oxide (CAO) nanocomposites, impedance analyzer in frequency range of 100 Hz to 5 MHz is used. In this work, PPy/CAO nanocomposites were synthesized by chemical oxidation polymerization method in different weight percent of CAO in PPy. The dielectric properties and AC conductivity studies were carried out for different nanocomposites in temperature range of room temperature to 180 °C. With the increase in frequency, the dielectric constant for all the nanocomposites was observed to decrease. AC conductivity of PPy was improved by addition of CAO nanopowder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Polypyrrole" title="Polypyrrole">Polypyrrole</a>, <a href="https://publications.waset.org/search?q=dielectric%20constant" title=" dielectric constant"> dielectric constant</a>, <a href="https://publications.waset.org/search?q=dielectric%20loss" title=" dielectric loss"> dielectric loss</a>, <a href="https://publications.waset.org/search?q=AC%20conductivity." title=" AC conductivity."> AC conductivity.</a> </p> <a href="https://publications.waset.org/10005639/structural-and-electrical-characterization-of-polypyrrole-and-cobalt-aluminum-oxide-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005639/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005639/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005639/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005639/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005639/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005639/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005639/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005639/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005639/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005639/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1406</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> The Role of Halloysite’s Surface Area and Aspect Ratio on Tensile Properties of Ethylene Propylene Diene Monomer Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Pooria%20Pasbakhsh">Pooria Pasbakhsh</a>, <a href="https://publications.waset.org/search?q=Rangika%20T.%20De%20Silva"> Rangika T. De Silva</a>, <a href="https://publications.waset.org/search?q=Vahdat%20Vahedi"> Vahdat Vahedi</a>, <a href="https://publications.waset.org/search?q=Hanafi%20Ismail"> Hanafi Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The influence of three different types of halloysite nanotubes (HNTs) with different dimensions, namely as camel lake (CLA), Jarrahdale (JA) and Matauri Bay (MB), on their reinforcing ability of ethylene propylene dine monomer (EPDM) were investigated by varying the HNTs loading (from 0-15 phr). Mechanical properties of the nanocomposites improved with addition of all three HNTs, but CLA based nanocomposites exhibited a significant enhancement compared to the other HNTs. For instance, tensile properties of EPDM nanocomposites increased by 120%, 256% and 340% for MB, JA and CLA, respectively, with addition of 15 phr of HNTs. This could be due to the higher aspect ratio and higher surface area of CLA compared to others. Scanning electron microscopy (SEM) of nanocomposites at 15 phr of HNT loadings showed low amounts of pulled-out nanotubes which confirmed the presence of more embedded nanotubes inside the EPDM matrix, as well as aggregates within the fracture surface of EPDM/HNT nanocomposites</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Aspect%20ratio" title="Aspect ratio">Aspect ratio</a>, <a href="https://publications.waset.org/search?q=Halloysite%20nanotubes%20%28HNTs%29" title=" Halloysite nanotubes (HNTs)"> Halloysite nanotubes (HNTs)</a>, <a href="https://publications.waset.org/search?q=Mechanical%20properties" title=" Mechanical properties"> Mechanical properties</a>, <a href="https://publications.waset.org/search?q=Rubber%2Fclay%20nanocomposites." title=" Rubber/clay nanocomposites."> Rubber/clay nanocomposites.</a> </p> <a href="https://publications.waset.org/9999989/the-role-of-halloysites-surface-area-and-aspect-ratio-on-tensile-properties-of-ethylene-propylene-diene-monomer-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999989/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999989/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999989/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999989/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999989/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999989/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999989/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999989/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999989/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999989/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2431</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Effect of Modified Layered Silicate Nanoclay on the Dynamic Viscoelastic Properties of Thermoplastic Polymers Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Benalia%20Kouini">Benalia Kouini</a>, <a href="https://publications.waset.org/search?q=Aicha%20Serier"> Aicha Serier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to investigate the structure–property relationship in ternary nanocomposites consisting of polypropylene as the matrix, polyamide 66 as the minor phase and treated nanoclay DELLITE 67G as the reinforcement. All PP/PA66/Nanoclay systems with polypropylene grafted maleic anhydride PP-g-MAH as a compatibilizer were prepared via melt compounding and characterized in terms of nanoclay content. Morphological structure was investigated by scanning electron microscopy. The rheological behavior of the nanocomposites was determined by various methods, viz melt flow index (MFI) and parallel plate rheological measurements. The PP/PP-g-MAH/PA66 nanocomposites showed a homogeneous morphology supporting the compatibility improvement between PP, PA66, and nanoclay. SEM results revealed the formation of nanocomposites as the nanoclay was intercalated and exfoliated. In the ternary nanocomposites, the rheological behavior showed that, the complex viscosity is increased with increasing the nanoclay. The results showed that the use of nanoclay affects the variations of storage modulus (G′), loss modulus (G″) and the melt elasticity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanocomposites" title="Nanocomposites">Nanocomposites</a>, <a href="https://publications.waset.org/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/search?q=polyamide66" title=" polyamide66"> polyamide66</a>, <a href="https://publications.waset.org/search?q=modified%20nanoclay" title=" modified nanoclay"> modified nanoclay</a>, <a href="https://publications.waset.org/search?q=rheology." title=" rheology."> rheology.</a> </p> <a href="https://publications.waset.org/10003276/effect-of-modified-layered-silicate-nanoclay-on-the-dynamic-viscoelastic-properties-of-thermoplastic-polymers-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003276/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003276/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003276/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003276/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003276/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003276/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003276/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003276/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003276/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003276/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1727</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Response Surface Based Optimization of Toughness of Hybrid Polyamide 6 Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=E.%20Hajizadeh">E. Hajizadeh</a>, <a href="https://publications.waset.org/search?q=H.%20Garmabi"> H. Garmabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Toughening of polyamide 6 (PA6)/ Nanoclay (NC) nanocomposites with styrene-ethylene/butadiene-styrene copolymer (SEBS) using maleated styrene-ethylene/butadiene-styrene copolymer (mSEBS)/ as a compatibilizer were investigated by blending them in a co-rotating twin-screw extruder. Response surface method of experimental design was used for optimizing the material and processing parameters. Effect of four factors, including SEBS, mSEBS and NC contents as material variables and order of mixing as a processing factor, on toughness of hybrid nanocomposites were studied. All the prepared samples showed ductile behavior and low temperature Izod impact toughness of some of the hybrid nanocomposites demonstrated 900% improvement compared to the PA6 matrix while the modulus showed maximum enhancement of 20% compared to the pristine PA6 resin.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hybrid%20nanocomposites" title="Hybrid nanocomposites">Hybrid nanocomposites</a>, <a href="https://publications.waset.org/search?q=PA6" title=" PA6"> PA6</a>, <a href="https://publications.waset.org/search?q=SEBS%20rubber" title=" SEBS rubber"> SEBS rubber</a>, <a href="https://publications.waset.org/search?q=toughness." title="toughness.">toughness.</a> </p> <a href="https://publications.waset.org/1966/response-surface-based-optimization-of-toughness-of-hybrid-polyamide-6-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1966/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1966/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1966/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1966/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1966/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1966/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1966/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1966/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1966/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1966/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1624</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Optimization of Carbon Nanotube Content of Asphalt Nanocomposites with Regard to Resistance to Permanent Deformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jo%C3%A3o%20V.%20Staub%20de%20Melo">João V. Staub de Melo</a>, <a href="https://publications.waset.org/search?q=Glic%C3%A9rio%20Trich%C3%AAs"> Glicério Trichês</a>, <a href="https://publications.waset.org/search?q=Liseane%20P.%20Thives"> Liseane P. Thives</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents the results of the development of asphalt nanocomposites containing carbon nanotubes (CNTs) with high resistance to permanent deformation, aiming to increase the performance of asphalt surfaces in relation to the rutting problem. Asphalt nanocomposites were prepared with the addition of different proportions of CNTs (1%, 2% and 3%) in relation to the weight of asphalt binder. The base binder used was a conventional binder (50-70 penetration) classified as PG 58-22. The optimum percentage of CNT addition in the asphalt binder (base) was determined through the evaluation of the rheological and empirical characteristics of the nanocomposites produced. In order to evaluate the contribution and the effects of the nanocomposite (optimized) in relation to the rutting, the conventional and nanomodified asphalt mixtures were tested in a French traffic simulator (Orniéreur). The results obtained demonstrate the efficient contribution of the asphalt nanocomposite containing CNTs to the resistance to permanent deformation of the asphalt mixture.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Asphalt%20nanocomposites" title="Asphalt nanocomposites">Asphalt nanocomposites</a>, <a href="https://publications.waset.org/search?q=asphalt%20mixtures" title=" asphalt mixtures"> asphalt mixtures</a>, <a href="https://publications.waset.org/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a>, <a href="https://publications.waset.org/search?q=permanent%20deformation." title=" permanent deformation."> permanent deformation.</a> </p> <a href="https://publications.waset.org/10008572/optimization-of-carbon-nanotube-content-of-asphalt-nanocomposites-with-regard-to-resistance-to-permanent-deformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008572/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008572/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008572/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008572/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008572/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008572/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008572/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008572/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008572/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008572/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1490</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Contact Angle Measurement of the Vinyl Ester Matrix Nanocomposites Based On Layered Silicate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20I.%20Alateyah">A. I. Alateyah</a>, <a href="https://publications.waset.org/search?q=H.%20N.%20Dhakal"> H. N. Dhakal</a>, <a href="https://publications.waset.org/search?q=Z.%20Y.%20Zhang"> Z. Y. Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Contact angle measurement was utilized in order to study the subject of the wettability and surface chemistry of the nanocomposites materials. Water and glycerol droplets were used in this study. The incorporation of layered silicate into the vinyl ester matrix helped to improve the wettability and reduced the θ values of both liquids used. The addition of 2 wt.% clay loading reduced the θ values of water and glycerol by up to 21% and 6% respectively. Likewise, the incorporation of 4 wt.% clay loading reduced the water and glycerol θ values by 49% and 38% respectively. Also this study confirms the findings in the literature regarding the relationship between the intercalation nanocomposites level and the wettability. Wide Angle X-ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy were utilised in order to characterise the interlamellar structure of nanocomposites.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Vinyl%20ester" title="Vinyl ester">Vinyl ester</a>, <a href="https://publications.waset.org/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/search?q=layered%20silicate" title=" layered silicate"> layered silicate</a>, <a href="https://publications.waset.org/search?q=characterisations" title=" characterisations"> characterisations</a>, <a href="https://publications.waset.org/search?q=contact%20angle%20measurement" title=" contact angle measurement"> contact angle measurement</a>, <a href="https://publications.waset.org/search?q=wettability." title=" wettability."> wettability.</a> </p> <a href="https://publications.waset.org/9996738/contact-angle-measurement-of-the-vinyl-ester-matrix-nanocomposites-based-on-layered-silicate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996738/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996738/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996738/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996738/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996738/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996738/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996738/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996738/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996738/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996738/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2123</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Flexural Properties of Halloysite Nanotubes-Polyester Nanocomposites Exposed to Aggressive Environment </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohd%20Shahneel%20Saharudin">Mohd Shahneel Saharudin</a>, <a href="https://publications.waset.org/search?q=Jiacheng%20Wei"> Jiacheng Wei</a>, <a href="https://publications.waset.org/search?q=Islam%20Shyha"> Islam Shyha</a>, <a href="https://publications.waset.org/search?q=Fawad%20Inam"> Fawad Inam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This study aimed to investigate the effect of aggressive environment on the flexural properties of halloysite nanotubes-polyester nanocomposites. Results showed that the addition of halloysite nanotubes into polyester matrix was found to improve flexural properties of the nanocomposites in dry condition and after water-methanol exposure. Significant increase in surface roughness was also observed and measured by Alicona Infinite Focus optical microscope.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Halloysite%20nanotubes" title="Halloysite nanotubes">Halloysite nanotubes</a>, <a href="https://publications.waset.org/search?q=polymer%20degradation" title=" polymer degradation"> polymer degradation</a>, <a href="https://publications.waset.org/search?q=flexural%20properties" title=" flexural properties"> flexural properties</a>, <a href="https://publications.waset.org/search?q=surface%20roughness." title=" surface roughness."> surface roughness.</a> </p> <a href="https://publications.waset.org/10006838/flexural-properties-of-halloysite-nanotubes-polyester-nanocomposites-exposed-to-aggressive-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006838/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006838/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006838/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006838/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006838/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006838/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006838/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006838/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006838/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006838/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">973</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Micropower Composite Nanomaterials Based on Porous Silicon for Renewable Energy Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Alexey%20P.%20Antropov">Alexey P. Antropov</a>, <a href="https://publications.waset.org/search?q=Alexander%20V.%20Ragutkin"> Alexander V. Ragutkin</a>, <a href="https://publications.waset.org/search?q=Nicolay%20A.%20Yashtulov"> Nicolay A. Yashtulov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The original controlled technology for power active nanocomposite membrane-electrode assembly engineering on the basis of porous silicon is presented. The functional nanocomposites were studied by electron microscopy and cyclic voltammetry methods. The application possibility of the obtained nanocomposites as high performance renewable energy sources for micro-power electronic devices is demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cyclic%20voltammetry" title="Cyclic voltammetry">Cyclic voltammetry</a>, <a href="https://publications.waset.org/search?q=electron%20microscopy" title=" electron microscopy"> electron microscopy</a>, <a href="https://publications.waset.org/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a>, <a href="https://publications.waset.org/search?q=platinum-palladium%20nanocomposites" title=" platinum-palladium nanocomposites"> platinum-palladium nanocomposites</a>, <a href="https://publications.waset.org/search?q=porous%20silicon" title=" porous silicon"> porous silicon</a>, <a href="https://publications.waset.org/search?q=power%20activity" title=" power activity"> power activity</a>, <a href="https://publications.waset.org/search?q=renewable%20energy%20sources." title=" renewable energy sources."> renewable energy sources.</a> </p> <a href="https://publications.waset.org/10005822/micropower-composite-nanomaterials-based-on-porous-silicon-for-renewable-energy-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005822/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005822/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005822/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005822/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005822/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005822/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005822/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005822/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005822/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005822/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1224</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> The Role of Initiator in the Synthesis of Poly(Methyl Methacrylate)-Layered Silicate Nanocomposites through Bulk Polymerization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tsung-Yen%20Tsai">Tsung-Yen Tsai</a>, <a href="https://publications.waset.org/search?q=Naveen%20Bunekar"> Naveen Bunekar</a>, <a href="https://publications.waset.org/search?q=Ming%20Hsuan%20Chang"> Ming Hsuan Chang</a>, <a href="https://publications.waset.org/search?q=Wen-Kuang%20Wang"> Wen-Kuang Wang</a>, <a href="https://publications.waset.org/search?q=Satoshi%20Onda"> Satoshi Onda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The structure-property relationship and initiator effect on bulk polymerized poly(methyl methacrylate) (PMMA)–oragnomodified layered silicate nanocomposites was investigated. In this study, we used 2, 2'-azobis (4-methoxy-2,4-dimethyl valeronitrile and benzoyl peroxide initiators for bulk polymerization. The bulk polymerized nanocomposites’ morphology was investigated by X-ray diffraction and transmission electron microscopy. The type of initiator strongly influences the physiochemical properties of the polymer nanocomposite. The thermal degradation of PMMA in the presence of nanofiller was studied. 5 wt% weight loss temperature (T5d) increased as compared to pure PMMA. The peak degradation temperature increased for the nanocomposites. Differential scanning calorimetry and dynamic mechanical analysis were performed to investigate the glass transition temperature and the nature of the constrained region as the reinforcement mechanism respectively. Furthermore, the optical properties such as UV-Vis and Total Luminous Transmission of nanocomposites are examined.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Initiator" title="Initiator">Initiator</a>, <a href="https://publications.waset.org/search?q=bulk%20polymerization" title=" bulk polymerization"> bulk polymerization</a>, <a href="https://publications.waset.org/search?q=layered%20silicates" title=" layered silicates"> layered silicates</a>, <a href="https://publications.waset.org/search?q=methyl%20methacrylate." title=" methyl methacrylate."> methyl methacrylate.</a> </p> <a href="https://publications.waset.org/10009367/the-role-of-initiator-in-the-synthesis-of-polymethyl-methacrylate-layered-silicate-nanocomposites-through-bulk-polymerization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009367/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009367/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009367/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009367/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009367/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009367/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009367/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009367/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009367/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009367/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">953</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Characterization and Detection of Cadmium Ion Using Modification Calixarene with Multiwalled Carbon Nanotubes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Amira%20Shakila%20Razali">Amira Shakila Razali</a>, <a href="https://publications.waset.org/search?q=Faridah%20Lisa%20Supian"> Faridah Lisa Supian</a>, <a href="https://publications.waset.org/search?q=Muhammad%20Mat%20Salleh"> Muhammad Mat Salleh</a>, <a href="https://publications.waset.org/search?q=Suraini%20Abu%20Bakar"> Suraini Abu Bakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Water contamination by toxic compound is one of the serious environmental problems today. These toxic compounds mostly originated from industrial effluents, agriculture, natural sources and human waste. These studies focus on modification of multiwalled carbon nanotube (MWCNTs) with nanoparticle of calixarene and explore the possibility of using this modification for the remediation of cadmium in water. The nanocomposites were prepared by dissolving calixarene in chloroform solution as solvent, followed by additional multiwalled carbon nanotube (MWCNTs) then sonication process for 3 hour and fabricated the nanocomposites on substrate by spin coating method. Finally, the nanocomposites were tested on cadmium ion (10 mg/ml). The morphology of nanocomposites was investigated by FESEM showing the formation of calixarene on the outer walls of carbon nanotube and cadmium ion also clearly seen from the micrograph. This formation was supported by using energy dispersive x-ray (EDX). The presence of cadmium ions in the films, leads to some changes in the surface potential and Fourier Transform Infrared spectroscopy (FTIR).The nanocomposites MWCNTs-calixarene have potential for development of sensor for pollutant monitoring and nanoelectronics devices applications.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Calixarene" title="Calixarene">Calixarene</a>, <a href="https://publications.waset.org/search?q=Multiwalled%20Carbon%20Nanotubes" title=" Multiwalled Carbon Nanotubes"> Multiwalled Carbon Nanotubes</a>, <a href="https://publications.waset.org/search?q=Cadmium" title=" Cadmium"> Cadmium</a>, <a href="https://publications.waset.org/search?q=Surface%20Potential." title=" Surface Potential."> Surface Potential.</a> </p> <a href="https://publications.waset.org/10000527/characterization-and-detection-of-cadmium-ion-using-modification-calixarene-with-multiwalled-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000527/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000527/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000527/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000527/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000527/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000527/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000527/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000527/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000527/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000527/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2820</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Studying the Intercalation of Low Density Polyethylene/Clay Nanocomposites after Different UV Exposures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Samir%20Al-Zobaidi">Samir Al-Zobaidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study attempts to understand the effect of different UV irradiation methods on the intercalation of LDPE/MMT nanocomposites, and its molecular behavior at certain isothermal crystallization temperature. Three different methods of UV exposure were employed using single composition of LDPE/MMT nanocomposites. All samples were annealed for 5 hours at a crystallization temperature of 100<sup>o</sup>C. The crystallization temperature was chosen to be at large supercooling temperature to ensure quick and complete crystallization. The raw material of LDPE consisted of two stable monoclinic and orthorhombic phases according to XRD results. The thermal behavior of both phases acted differently when UV exposure method was changed. The monoclinic phase was more dependent on the method used compared to the orthorhombic phase. The intercalation of clay, as well as, the non-isothermal crystallization temperature, has also shown a clear dependency on the type of UV exposure. A third phase that is thermally less stable was also observed. Its respond to UV irradiation was greater since it contains low molecular weight entities which make it more vulnerable to any UV exposure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=LDPE%2FMMt%20nanocomposites" title="LDPE/MMt nanocomposites">LDPE/MMt nanocomposites</a>, <a href="https://publications.waset.org/search?q=crystallization" title=" crystallization"> crystallization</a>, <a href="https://publications.waset.org/search?q=UV%20irradiation" title=" UV irradiation"> UV irradiation</a>, <a href="https://publications.waset.org/search?q=intercalation." title=" intercalation."> intercalation.</a> </p> <a href="https://publications.waset.org/10003723/studying-the-intercalation-of-low-density-polyethyleneclay-nanocomposites-after-different-uv-exposures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003723/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003723/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003723/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003723/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003723/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003723/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003723/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003723/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003723/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003723/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1717</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> The Effect of Processing Parameters of the Vinyl Ester Matrix Nanocomposites Based On Layered Silicate on the Level of Exfoliation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20I.%20Alateyah">A. I. Alateyah</a>, <a href="https://publications.waset.org/search?q=H.%20N.%20Dhakal"> H. N. Dhakal</a>, <a href="https://publications.waset.org/search?q=Z.%20Y.%20Zhang"> Z. Y. Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The study of the effect of the processing parameters on the level of intercalation between the layered silicate and polymer of two different methodology took place. X-ray diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectrometry, and Transmission Electron Microscopy were utilized in order to examine the intercalation level of nanocomposites of both methodologies. It was found that drying the clay prior to mixing with the polymer, mixing time and speed, degassing time, and the curing method had major changes to the level of distribution of the nanocomposites structure. In methodology 1, the presence of aggregation layers was observed at only 2.5 wt.% clay loading whereas in methodology 2 the presence of aggregation layers was found at higher clay loading (i.e. 5 wt.%).</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Vinyl%20ester" title="Vinyl ester">Vinyl ester</a>, <a href="https://publications.waset.org/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/search?q=layered%20silicate" title=" layered silicate"> layered silicate</a>, <a href="https://publications.waset.org/search?q=characterisations" title=" characterisations"> characterisations</a>, <a href="https://publications.waset.org/search?q=aggregation%20layers" title=" aggregation layers"> aggregation layers</a>, <a href="https://publications.waset.org/search?q=intercalation" title=" intercalation"> intercalation</a>, <a href="https://publications.waset.org/search?q=exfoliation." title=" exfoliation."> exfoliation.</a> </p> <a href="https://publications.waset.org/9996722/the-effect-of-processing-parameters-of-the-vinyl-ester-matrix-nanocomposites-based-on-layered-silicate-on-the-level-of-exfoliation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996722/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996722/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996722/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996722/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996722/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996722/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996722/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996722/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996722/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996722/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1718</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Highly Efficient White Light-emitting Diodes Based on Layered Quantum Dot-Phosphor Nanocomposites as Converting Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=J.%20Y.%20Woo">J. Y. Woo</a>, <a href="https://publications.waset.org/search?q=J.%20Lee"> J. Lee</a>, <a href="https://publications.waset.org/search?q=N.%20Kim"> N. Kim</a>, <a href="https://publications.waset.org/search?q=C.-S.%20Han"> C.-S. Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports on the enhanced photoluminescence (PL) of nanocomposites through the layered structuring of phosphor and quantum dot (QD). Green phosphor of Sr2SiO4:Eu, red QDs of CdSe/CdS/CdZnS/ZnS core-multishell, and thermo-curable resin were used for this study. Two kinds of composite (layered and mixed) were prepared, and the schemes for optical energy transfer between QD and phosphor were suggested and investigated based on PL decay characteristics. It was found that the layered structure is more effective than the mixed one in the respects of PL intensity, PL decay and thermal loss. When this layered nanocomposite (QDs on phosphor) is used to make white light emitting diode (LED), the brightness is increased by 37 %, and the color rendering index (CRI) value is raised to 88.4 compared to the mixed case of 80.4. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Quantum%20Dot" title="Quantum Dot">Quantum Dot</a>, <a href="https://publications.waset.org/search?q=Nanocomposites" title=" Nanocomposites"> Nanocomposites</a>, <a href="https://publications.waset.org/search?q=Photoluminescence" title=" Photoluminescence"> Photoluminescence</a>, <a href="https://publications.waset.org/search?q=Light%20Emitting%20Diode" title=" Light Emitting Diode"> Light Emitting Diode</a> </p> <a href="https://publications.waset.org/12205/highly-efficient-white-light-emitting-diodes-based-on-layered-quantum-dot-phosphor-nanocomposites-as-converting-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12205/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12205/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12205/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12205/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12205/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12205/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12205/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12205/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12205/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12205/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3199</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Characterization of Biodegradable Nanocomposites with Poly (Lactic Acid) and Multi-Walled Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Md%20F.%20Mina">Md F. Mina</a>, <a href="https://publications.waset.org/search?q=Mohammad%20D.H.%20Beg"> Mohammad D.H. Beg</a>, <a href="https://publications.waset.org/search?q=Muhammad%20R.%20Islam"> Muhammad R. Islam</a>, <a href="https://publications.waset.org/search?q=Abu%20K.%20M.%20M.%20Alam%20A.%20Nizam"> Abu K. M. M. Alam A. Nizam</a>, <a href="https://publications.waset.org/search?q=Rosli%20M.%20Younus"> Rosli M. Younus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, structural, mechanical, thermal and electrical properties of poly (lactic acid) (PLA) nanocomposites with low-loaded (0-1.5 wt%) untreated, heat and nitric acid treated multiwalled carbon nanotubes (MWCNTs) were studied. Among the composites, untreated 0.5 wt % MWCNTs and acid-treated 1.0 wt% MWCNTs reinforced PLA show the tensile strength and modulus values higher than the others. These two samples along with pure PLA exhibit the stable orthorhombic α-form, whilst other samples reveal the less stable orthorhombic β-form, as demonstrated by X-ray diffraction study. Differential scanning calorimetry reveals the evolution of the mentioned different phases by controlled cooling and discloses an enhancement of PLA crystallization by nanotubes incorporation. Thermogravimetric analysis shows that the MWCNTs loaded sample degraded faster than PLA. Surface resistivity of the nanocomposites is found to be dropped drastically by a factor of 1013 with a low loading of MWCNTs (1.5 wt%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Crystallization" title="Crystallization">Crystallization</a>, <a href="https://publications.waset.org/search?q=multi-walled%20carbon%20nanotubes" title=" multi-walled carbon nanotubes"> multi-walled carbon nanotubes</a>, <a href="https://publications.waset.org/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/search?q=Poly%20%28lactic%20acid%29." title=" Poly (lactic acid)."> Poly (lactic acid).</a> </p> <a href="https://publications.waset.org/13702/characterization-of-biodegradable-nanocomposites-with-poly-lactic-acid-and-multi-walled-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13702/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13702/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13702/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13702/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13702/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13702/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13702/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13702/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13702/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13702/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2603</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Thermal and Mechanical Properties of Modified CaCO3 /PP Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Buasri">A. Buasri</a>, <a href="https://publications.waset.org/search?q=N.%20Chaiyut"> N. Chaiyut</a>, <a href="https://publications.waset.org/search?q=K.%20Borvornchettanuwat"> K. Borvornchettanuwat</a>, <a href="https://publications.waset.org/search?q=N.%20Chantanachai"> N. Chantanachai</a>, <a href="https://publications.waset.org/search?q=K.%20Thonglor"> K. Thonglor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inorganic nanoparticles filled polymer composites have extended their multiple functionalities to various applications, including mechanical reinforcement, gas barrier, dimensional stability, heat distortion temperature, flame-retardant, and thermal conductivity. Sodium stearate-modified calcium carbonate (CaCO3) nanoparticles were prepared using surface modification method. The results showed that sodium stearate attached to the surface of CaCO3 nanoparticles with the chemical bond. The effect of modified CaCO3 nanoparticles on thermal properties of polypropylene (PP) was studied by means of differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA). It was found that CaCO3 significantly affected the crystallization temperature and crystallization degree of PP. Effect of the modified CaCO3 content on mechanical properties of PP/CaCO3 nanocomposites was also studied. The results showed that the modified CaCO3 can effectively improve the mechanical properties of PP. In comparison with PP, the impact strength of PP/CaCO3 nanocomposites increased by about 65% and the hardness increased by about 5%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Polypropylene%20Nanocomposites" title="Polypropylene Nanocomposites">Polypropylene Nanocomposites</a>, <a href="https://publications.waset.org/search?q=Modified%20Calcium%0ACarbonate" title=" Modified Calcium Carbonate"> Modified Calcium Carbonate</a>, <a href="https://publications.waset.org/search?q=Sodium%20Stearate" title=" Sodium Stearate"> Sodium Stearate</a>, <a href="https://publications.waset.org/search?q=Surface%20Treatment" title=" Surface Treatment"> Surface Treatment</a> </p> <a href="https://publications.waset.org/7042/thermal-and-mechanical-properties-of-modified-caco3-pp-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7042/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7042/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7042/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7042/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7042/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7042/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7042/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7042/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7042/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7042/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4369</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Radiation Effects in the PVDF/Graphene Oxide Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Juliana%20V.%20Pereira">Juliana V. Pereira</a>, <a href="https://publications.waset.org/search?q=Adriana%20S.%20M.%20Batista"> Adriana S. M. Batista</a>, <a href="https://publications.waset.org/search?q=Jefferson%20P.%20Nascimento"> Jefferson P. Nascimento</a>, <a href="https://publications.waset.org/search?q=Clasc%C3%ADdia%20A.%20Furtado"> Clascídia A. Furtado</a>, <a href="https://publications.waset.org/search?q=Luiz%20O.%20Faria"> Luiz O. Faria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Exposure to ionizing radiation has been found to induce changes in poly(vinylidene fluoride) (PVDF) homopolymers. The high dose gamma irradiation process induces the formation of C=C and C=O bonds in its [CH<sub>2</sub>-CF<sub>2</sub>]<sub>n</sub> main chain. The irradiation also provokes crosslinking and chain scission. All these radio-induced defects lead to changes in the PVDF crystalline structure. As a consequence, it is common to observe a decrease in the melting temperature (T<sub>M</sub>) and melting latent heat (L<sub>M</sub>) and some changes in its ferroelectric features. We have investigated the possibility of preparing nanocomposites of PVDF with graphene oxide (GO) through the radio-induction of molecular bonds. In this work, we discuss how the gamma radiation interacts with the nanocomposite crystalline structure.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gamma%20irradiation" title="Gamma irradiation">Gamma irradiation</a>, <a href="https://publications.waset.org/search?q=grapheme%20oxide" title=" grapheme oxide"> grapheme oxide</a>, <a href="https://publications.waset.org/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/search?q=PVDF." title=" PVDF. "> PVDF. </a> </p> <a href="https://publications.waset.org/10006538/radiation-effects-in-the-pvdfgraphene-oxide-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006538/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006538/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006538/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006538/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006538/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006538/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006538/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006538/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006538/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006538/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1219</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Synthesis and Properties of Biobased Polyurethane/Montmorillonite Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Teuku%20Rihayat">Teuku Rihayat</a>, <a href="https://publications.waset.org/search?q=Suryani"> Suryani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyurethanes (PURs) are very versatile polymeric materials with a wide range of physical and chemical properties. PURs have desirable properties such as high abrasion resistance, tear strength, shock absorption, flexibility and elasticity. Although they have relatively poor thermal stability, this can be improved by using treated clay. Polyurethane/clay nanocomposites have been synthesized from renewable sources. A polyol for the production of polyurethane by reaction with an isocyanate was obtained by the synthesis of palm oil-based oleic acid with glycerol. Dodecylbenzene sulfonic acid (DBSA) was used as catalyst and emulsifier. The unmodified clay (kunipia-F) was treated with cetyltrimethyl ammonium bromide (CTAB-mont) and octadodecylamine (ODAmont). The d-spacing in CTAB-mont and ODA-mont were 1.571 nm and 1.798 nm respectively and larger than that of the pure-mont (1.142 nm). The organoclay was completely intercalated in the polyurethane, as confirmed by a wide angle x-ray diffraction (WAXD) pattern. The results showed that adding clay demonstrated better thermal stability in comparison with the virgin polyurethane. Onset degradation of pure PU is at 200oC, and is lower than that of the CTAB-mont PU and ODA-mont PU which takes place at about 318oC and 330oC, respectively. The mechanical properties (including the dynamic mechanical properties) of pure polyurethane (PU) and PU/clay nanocomposites, were measured. The modified organoclay had a remarkably beneficial effect on the strength and elongation at break of the nanocomposites, which both increased with increasing clay content with the increase of the tensile strength of more than 214% and 267% by the addition of only 5 wt% of the montmorillonite CTAB-mont PU and ODA-mont PU, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Polyurethane" title="Polyurethane">Polyurethane</a>, <a href="https://publications.waset.org/search?q=Clay%20nanocomposites" title=" Clay nanocomposites"> Clay nanocomposites</a>, <a href="https://publications.waset.org/search?q=Biobase" title=" Biobase"> Biobase</a> </p> <a href="https://publications.waset.org/6239/synthesis-and-properties-of-biobased-polyurethanemontmorillonite-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6239/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6239/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6239/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6239/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6239/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6239/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6239/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6239/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6239/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6239/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2602</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Enhanced Thermal, Mechanical and Morphological Properties of CNT/HDPE Nanocomposite Using MMT as Secondary Filler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20E.%20Ali%20Mohsin">M. E. Ali Mohsin</a>, <a href="https://publications.waset.org/search?q=Agus%20Arsad"> Agus Arsad</a>, <a href="https://publications.waset.org/search?q=Othman%20Y.%20Alothman"> Othman Y. Alothman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This study explains the influence of secondary filler on the dispersion of carbon nanotube (CNT) reinforced high density polyethylene (HDPE) nanocomposites (CNT/HDPE). In order to understand the mixed-fillers system, Montmorillonite (MMT) was added to CNT/HDPE nanocomposites. It was followed by investigating their effect on the thermal, mechanical and morphological properties of the aforesaid nanocomposite. Incorporation of 3 wt% each of MMT into CNT/HDPE nanocomposite resulted to the increased values for the tensile and flexural strength, as compared to the pure HDPE matrix. The thermal analysis result showed improved thermal stability of the formulated nanocomposites. Transmission electron microscopy (TEM) images revealed that larger aggregates of CNTs were disappeared upon addition of these two components leading to the enhancement of thermo-mechanical properties for such composites.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Secondary%20filler" title="Secondary filler">Secondary filler</a>, <a href="https://publications.waset.org/search?q=Montmorillonite" title=" Montmorillonite"> Montmorillonite</a>, <a href="https://publications.waset.org/search?q=Carbon%20nanotube" title=" Carbon nanotube"> Carbon nanotube</a>, <a href="https://publications.waset.org/search?q=nanocomposite." title=" nanocomposite."> nanocomposite.</a> </p> <a href="https://publications.waset.org/9997394/enhanced-thermal-mechanical-and-morphological-properties-of-cnthdpe-nanocomposite-using-mmt-as-secondary-filler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997394/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997394/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997394/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997394/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997394/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997394/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997394/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997394/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997394/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997394/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3233</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Electrospinning and Characterization of Silk Fibroin/Gelatin Nanofibre Mats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Mohammadzadehmoghadam">S. Mohammadzadehmoghadam</a>, <a href="https://publications.waset.org/search?q=Y.%20Dong"> Y. Dong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Bombyx mori silk fibroin/gelatin (SF/GT) nanocomposite with different GT ratio (SF/GT 100/0, 90/10 and 70/30) were prepared by electrospinning process and crosslinked with glutaraldehyde (GA) vapor. Properties of crosslinked SF/GT nanocomposites were investigated by scanning electron microscopy (SEM), mechanical test, water uptake capacity (WUC) and porosity. From SEM images, it was found that fiber diameter increased as GT content increased. The results of mechanical test indicated that the SF/GT 70/30 nanocomposites had both the highest Young’s modulus of 342 MPa and the highest tensile strength of about 14 MPa. However, porosity and WUC decreased from 62% and 405% for pristine SF to 47% and 232% for SF/GT 70/30, respectively. This behavior can be related to higher degree of crosslinking as GT ratio increased which altered the structure and physical properties of scaffolds. This study showed that incorporation of GT into SF nanofibers can enhance mechanical properties of resultant nanocomposite, but the GA treatment should be optimized to control and fine-tune other properties to warrant their biomedical application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electrospinning" title="Electrospinning">Electrospinning</a>, <a href="https://publications.waset.org/search?q=gelatin" title=" gelatin"> gelatin</a>, <a href="https://publications.waset.org/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/search?q=silk%20fibroin." title=" silk fibroin. "> silk fibroin. </a> </p> <a href="https://publications.waset.org/10009441/electrospinning-and-characterization-of-silk-fibroingelatin-nanofibre-mats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009441/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009441/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009441/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009441/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009441/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009441/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009441/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009441/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009441/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009441/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">892</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Synthesis of Polystyrene Grafting Filler Nanoparticles: Effect of Grafting on Mechanical Reinforcement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Khlifa">M. Khlifa</a>, <a href="https://publications.waset.org/search?q=A.%20Youssef"> A. Youssef</a>, <a href="https://publications.waset.org/search?q=A.%20F.%20Zaed"> A. F. Zaed</a>, <a href="https://publications.waset.org/search?q=A.%20Kraft"> A. Kraft</a>, <a href="https://publications.waset.org/search?q=V.%20Arrighi"> V. Arrighi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A series of polystyrene (PS) nanoparticles were prepared by grafting polystyrene from both aggregated silica and colloidally dispersed silica nanoparticles using atom-transfer radical polymerisation (ATRP). Cross-linking and macroscopic gelation were minimised by using a miniemulsion system. The thermal and mechanical behaviour of the nanocomposites have been examined by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA).</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=ATRP" title="ATRP">ATRP</a>, <a href="https://publications.waset.org/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/search?q=polystyrene" title=" polystyrene"> polystyrene</a>, <a href="https://publications.waset.org/search?q=reinforcement." title=" reinforcement."> reinforcement.</a> </p> <a href="https://publications.waset.org/9999962/synthesis-of-polystyrene-grafting-filler-nanoparticles-effect-of-grafting-on-mechanical-reinforcement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999962/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999962/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999962/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999962/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999962/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999962/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999962/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999962/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999962/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999962/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2501</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Synthesis and Characterization of Recycled Isotactic Polypropylene Nanocomposites Containing Date Wood Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Habib%20Shaban">Habib Shaban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanocomposites of isotactic polypropylene (iPP) and date wood fiber were prepared after modification of the host matrix by reactive extrusion grafting of maleic anhydride. Chemical and mechanical treatment of date wood flour (WF) was conducted to obtain nanocrystalline cellulose. Layered silicates (clay) were partially intercalated with date wood fiber, and the modified layered silicate was used as filler in the PP matrix via a melt-blending process. The tensile strength of composites prepared from wood fiber modified clay was greater than that of the iPP-clay and iPP-WF composites at a 6% filler concentration, whereas deterioration of mechanical properties was observed when clay and WF were used alone for reinforcement. The dispersion of the filler in the matrix significantly decreased after clay modification with cellulose at higher concentrations, as shown by X-ray diffraction (XRD) data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanocomposites" title="Nanocomposites">Nanocomposites</a>, <a href="https://publications.waset.org/search?q=isotactic%20polypropylene" title=" isotactic polypropylene"> isotactic polypropylene</a>, <a href="https://publications.waset.org/search?q=date%20wood%0D%0Aflour" title=" date wood flour"> date wood flour</a>, <a href="https://publications.waset.org/search?q=intercalated" title=" intercalated"> intercalated</a>, <a href="https://publications.waset.org/search?q=melt-blending." title=" melt-blending."> melt-blending.</a> </p> <a href="https://publications.waset.org/10003947/synthesis-and-characterization-of-recycled-isotactic-polypropylene-nanocomposites-containing-date-wood-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003947/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003947/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003947/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003947/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003947/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003947/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003947/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003947/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003947/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003947/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1097</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Mechanical and Thermal Properties Characterisation of Vinyl Ester Matrix Nanocomposites Based On Layered Silicate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20I.%20Alateyah">A. I. Alateyah</a>, <a href="https://publications.waset.org/search?q=H.%20N.%20Dhakal"> H. N. Dhakal</a>, <a href="https://publications.waset.org/search?q=Z.%20Y.%20Zhang"> Z. Y. Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The mechanical properties including flexural and tensile of neat vinyl ester and polymer based on layered silicate nanocomposite materials are discussed. The addition of layered silicate into the polymer matrix increased the tensile and flexural modulus up to 1 wt.% clay loading. The incorporation of more clay resulted in decreasing the mechanical properties which was traced to the existence of aggregation layers. Likewise, up to 1 wt.% clay loading, the thermal behaviour showed significant improvements and at higher clay loading the thermal pattern was reduced. The aggregation layers imparted a negative impact on the overall mechanical and thermal properties. Wide Angle X-ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy were utilised in order to characterise the interlamellar structure of nanocomposites.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Vinyl%20ester" title="Vinyl ester">Vinyl ester</a>, <a href="https://publications.waset.org/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/search?q=layered%20silicate" title=" layered silicate"> layered silicate</a>, <a href="https://publications.waset.org/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/search?q=thermal%20analysis." title=" thermal analysis."> thermal analysis.</a> </p> <a href="https://publications.waset.org/16584/mechanical-and-thermal-properties-characterisation-of-vinyl-ester-matrix-nanocomposites-based-on-layered-silicate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16584/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16584/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16584/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16584/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16584/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16584/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16584/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16584/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16584/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16584/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4008</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Mechanical and Thermal Properties Characterisation of Vinyl Ester Matrix Nanocomposites Based On Layered Silicate: Effect of Processing Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20I.%20Alateyah">A. I. Alateyah</a>, <a href="https://publications.waset.org/search?q=H.%20N.%20Dhakal"> H. N. Dhakal</a>, <a href="https://publications.waset.org/search?q=Z.%20Y.%20Zhang"> Z. Y. Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The mechanical properties including flexural and tensile of neat vinyl ester and polymer based on layered silicate nanocomposite materials of two different methodologies are discussed. Methodology 1 revealed that the addition of layered silicate into the polymer matrix increased the mechanical and thermal properties up to 1 wt.% clay loading. The incorporation of more clay resulted in decreasing the properties which was traced to the existence of aggregation layers. The aggregation layers imparted a negative impact on the overall mechanical and thermal properties. On the other hand, methodology 2 increased the mechanical and thermal properties up to 4 wt.% clay loading. The different amounts of improvements were assigned to the various preparation parameters. Wide Angle X-ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy were utilized in order to characterize the interlamellar structure of nanocomposites.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Vinyl%20ester" title="Vinyl ester">Vinyl ester</a>, <a href="https://publications.waset.org/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/search?q=layered%20silicate" title=" layered silicate"> layered silicate</a>, <a href="https://publications.waset.org/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/search?q=thermal%20analysis." title=" thermal analysis."> thermal analysis.</a> </p> <a href="https://publications.waset.org/9996676/mechanical-and-thermal-properties-characterisation-of-vinyl-ester-matrix-nanocomposites-based-on-layered-silicate-effect-of-processing-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996676/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996676/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996676/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996676/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996676/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996676/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996676/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996676/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996676/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996676/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1723</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Synthesis and Characterization of Silver/Polylactide Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kamyar%20Shameli">Kamyar Shameli</a>, <a href="https://publications.waset.org/search?q=Mansor%20Bin%20Ahmad"> Mansor Bin Ahmad</a>, <a href="https://publications.waset.org/search?q=Wan%20Md%20Zin%20Wan%20Yunus"> Wan Md Zin Wan Yunus</a>, <a href="https://publications.waset.org/search?q=Nor%20Azowa%20Ibrahim"> Nor Azowa Ibrahim</a>, <a href="https://publications.waset.org/search?q=Maryam%20Jokar"> Maryam Jokar</a>, <a href="https://publications.waset.org/search?q=Majid%20Darroudi">Majid Darroudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silver/polylactide nanocomposites (Ag/PLA-NCs) were synthesized via chemical reduction method in diphase solvent. Silver nitrate and sodium borohydride were used as a silver precursor and reducing agent in the polylactide (PLA). The properties of Ag/PLA-NCs were studied as a function of the weight percentages of silver nanoparticles (8, 16 and 32 wt% of Ag-NPs) relative to the weight of PLA. The Ag/PLA-NCs were characterized by Xray diffraction (XRD), transmission electron microscopy (TEM), electro-optical microscopy (EOM), UV-visible spectroscopy (UV-vis) and Fourier transform infrared spectroscopy (FT-IR). XRD patterns confirmed that Ag-NPs crystallographic planes were face centered cubic (fcc) type. TEM images showed that mean diameters of Ag-NPs were 3.30, 3.80 and 4.80 nm. Electro-optical microscopy revealed excellent dispersion and interaction between Ag-NPs and PLA films. The generation of silver nanoparticles was confirmed from the UVvisible spectra. FT-IR spectra showed that there were no significant differences between PLA and Ag/PLA-NCs films. The synthesized Ag/PLA-NCs were stable in organic solution over a long period of time without sign of precipitation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanocomposites" title="Nanocomposites">Nanocomposites</a>, <a href="https://publications.waset.org/search?q=Polylactide" title=" Polylactide"> Polylactide</a>, <a href="https://publications.waset.org/search?q=Silver%20Nanoparticles" title=" Silver Nanoparticles"> Silver Nanoparticles</a>, <a href="https://publications.waset.org/search?q=Sodium%20Borohydride" title="Sodium Borohydride">Sodium Borohydride</a>, <a href="https://publications.waset.org/search?q=Transmission%20Electron%20Microscopy." title=" Transmission Electron Microscopy."> Transmission Electron Microscopy.</a> </p> <a href="https://publications.waset.org/11959/synthesis-and-characterization-of-silverpolylactide-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11959/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11959/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11959/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11959/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11959/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11959/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11959/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11959/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11959/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11959/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3555</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Synthesis, Characterization and Physico–Chemical Properties of Nano Zinc Oxide and PVA Composites </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rashmi%20S.%20H.">Rashmi S. H.</a>, <a href="https://publications.waset.org/search?q=G.%20M.%20Madhu"> G. M. Madhu</a>, <a href="https://publications.waset.org/search?q=A.%20A.%20Kittur"> A. A. Kittur</a>, <a href="https://publications.waset.org/search?q=R.%20Suresh"> R. Suresh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Polymer nanocomposites represent a new class of materials in which nanomaterials act as the reinforcing material in composites, wherein small additions of nanomaterials lead to large enhancements in thermal, optical and mechanical properties. A boost in these properties is due to the large interfacial area per unit volume or weight of the nanoparticles and the interactions between the particle and the polymer. Micro sized particles used as reinforcing agents scatter light, thus reducing light transmittance and optical clarity. Efficient nanoparticle dispersion combined with good polymer–particle interfacial adhesion eliminates scattering and allows the exciting possibility of developing strong yet transparent films, coatings and membranes. This paper aims at synthesising zinc oxide nanoparticles which are reinforced in poly vinyl alcohol (PVA) polymer. The mechanical properties showed that the tensile strength of the PVA nanocomposites increases with the increase in the amount of nanoparticles.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Glutaraldehyde" title="Glutaraldehyde">Glutaraldehyde</a>, <a href="https://publications.waset.org/search?q=polymer%20nanocomposites" title=" polymer nanocomposites"> polymer nanocomposites</a>, <a href="https://publications.waset.org/search?q=poly%20vinyl%20alcohol" title=" poly vinyl alcohol"> poly vinyl alcohol</a>, <a href="https://publications.waset.org/search?q=zinc%20oxide." title=" zinc oxide."> zinc oxide.</a> </p> <a href="https://publications.waset.org/9997176/synthesis-characterization-and-physico-chemical-properties-of-nano-zinc-oxide-and-pva-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997176/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997176/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997176/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997176/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997176/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997176/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997176/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997176/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997176/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997176/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3036</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Characteristics of Nanosilica-Geopolymer Nanocomposites and Mixing Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20Assaedi">H. Assaedi</a>, <a href="https://publications.waset.org/search?q=F.%20U.%20A.%20Shaikh"> F. U. A. Shaikh</a>, <a href="https://publications.waset.org/search?q=I.%20M.%20Low"> I. M. Low</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the effects of mixing procedures on mechanical properties of flyash-based geopolymer matrices containing nanosilica (NS) at 0.5%, 1.0%, 2.0%, and 3.0% by weight. Comparison is made with conventional mechanical dry-mixing of NS with flyash and wet-mixing of NS in alkaline solutions. Physical and mechanical properties are investigated using X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM). Results show that generally the addition of NS particles enhanced the microstructure and improved flexural and compressive strengths of geopolymer nanocomposites. However, samples, prepared using dry-mixing approach, demonstrate better physical and mechanical properties comparing to wet-mixing samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Geopolymer" title="Geopolymer">Geopolymer</a>, <a href="https://publications.waset.org/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/search?q=nanosilica." title=" nanosilica."> nanosilica.</a> </p> <a href="https://publications.waset.org/10003273/characteristics-of-nanosilica-geopolymer-nanocomposites-and-mixing-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003273/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003273/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003273/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003273/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003273/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003273/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003273/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003273/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003273/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003273/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2308</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> The Effect of Addition of Dioctyl Terephthalate and Calcite on the Tensile Properties of Organoclay/Linear Low Density Polyethylene Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20G%C3%BCrses">A. Gürses</a>, <a href="https://publications.waset.org/search?q=Z.%20Ero%C4%9Flu"> Z. Eroğlu</a>, <a href="https://publications.waset.org/search?q=E.%20%C5%9Eahin"> E. Şahin</a>, <a href="https://publications.waset.org/search?q=K.%20G%C3%BCne%C5%9F"> K. Güneş</a>, <a href="https://publications.waset.org/search?q=%C3%87.%20Do%C4%9Far"> Ç. Doğar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In recent years, polymer/clay nanocomposites have generated great interest in the polymer industry as a new type of composite material because of their superior properties, which includes high heat deflection temperature, gas barrier performance, dimensional stability, enhanced mechanical properties, optical clarity and flame retardancy when compared with the pure polymer or conventional composites. The investigation of change of the tensile properties of organoclay/linear low density polyethylene (LLDPE) nanocomposites with the use of Dioctyl terephthalate (DOTP) (as plasticizer) and calcite (as filler) has been aimed. The composites and organoclay synthesized were characterized using the techniques such as XRD, HRTEM and FTIR techniques. The spectroscopic results indicate that platelets of organoclay were well dispersed within the polymeric matrix. The tensile properties of the composites were compared considering the stress-strain curve drawn for each composite and pure polymer. It was observed that the composites prepared by adding the plasticizer at different ratios and a certain amount of calcite exhibited different tensile behaviors compared to pure polymer.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Linear%20low%20density%20polyethylene" title="Linear low density polyethylene">Linear low density polyethylene</a>, <a href="https://publications.waset.org/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/search?q=organoclay" title=" organoclay"> organoclay</a>, <a href="https://publications.waset.org/search?q=plasticizer." title=" plasticizer."> plasticizer.</a> </p> <a href="https://publications.waset.org/10005738/the-effect-of-addition-of-dioctyl-terephthalate-and-calcite-on-the-tensile-properties-of-organoclaylinear-low-density-polyethylene-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005738/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005738/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005738/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005738/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005738/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005738/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005738/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005738/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005738/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005738/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1446</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Barrier Properties of Starch - Ethylene Vinyl Alcohol Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Farid%20Amidi-Fazli">Farid Amidi-Fazli</a>, <a href="https://publications.waset.org/search?q=Neda%20Amidi-Fazli"> Neda Amidi-Fazli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Replacement of plastics used in the food industry seems to be a serious issue to overcome mainly the environmental problems in recent years. This study investigates the hydrophilicity and permeability properties of starch biopolymer which ethylene vinyl alcohol (EVOH) (0-10%) and nanocrystalline cellulose (NCC) (1-15%) were used to enhance its properties. Starch -EVOH nanocomposites were prepared by casting method in different formulations. NCC production by acid hydrolysis was confirmed by scanning electron microscopy. Solubility, water vapor permeability, water vapor transmission rate and moisture absorbance were measured on each of the nanocomposites. The results were analyzed by SAS software. The lowest moisture absorbance was measured in pure starch nanocomposite containing 8% NCC. The lowest permeability to water vapor belongs to starch nanocomposite containing 8% NCC and the sample containing 7.8% EVOH and 13% NCC. Also the lowest solubility was observed in the composite contains the highest amount of EVOH. Applied Process resulted in production of bio films which have good resistance to water vapor permeability and solubility in water. The use of NCC and EVOH leads to reduced moisture absorbance property of the biofilms.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Starch" title="Starch">Starch</a>, <a href="https://publications.waset.org/search?q=EVOH" title=" EVOH"> EVOH</a>, <a href="https://publications.waset.org/search?q=nanocrystalline%20cellulose" title=" nanocrystalline cellulose"> nanocrystalline cellulose</a>, <a href="https://publications.waset.org/search?q=Hydrophilicity." title=" Hydrophilicity."> Hydrophilicity.</a> </p> <a href="https://publications.waset.org/10000356/barrier-properties-of-starch-ethylene-vinyl-alcohol-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000356/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000356/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000356/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000356/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000356/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000356/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000356/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000356/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000356/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000356/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2994</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Thermal Characterization of Graphene Oxide-Epoxy Nanocomposites Produced by Aqueous Emulsion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20A.%20Brand%C3%A3o%20Cordeiro">H. A. Brandão Cordeiro</a>, <a href="https://publications.waset.org/search?q=M.%20G.%20Bocardo"> M. G. Bocardo</a>, <a href="https://publications.waset.org/search?q=N.%20C.%20Penteado"> N. C. Penteado</a>, <a href="https://publications.waset.org/search?q=V.%20T.%20de%20Moraes"> V. T. de Moraes</a>, <a href="https://publications.waset.org/search?q=S.%20M.%20Giampietri%20Lebr%C3%A3o"> S. M. Giampietri Lebrão</a>, <a href="https://publications.waset.org/search?q=G.%20W.%20Lebr%C3%A3o"> G. W. Lebrão</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study desired to obtain a nanocomposite of epoxy resin reinforced with graphene oxide (OG), for aerospace application, produced by aqueous emulsion. It was obtained proof bodies with 0.00 wt%, 0.10 wt%, 0.25 wt% and 0.50 wt% in weight of nanoparticles, to check the influence of it in the final quality of the obtained product. The validation of the results was done by the application thermal characterization by differential scanning calorimetry (DSC). It was seen that the nanocomposite reinforced with 0.10 wt% of OG showed the best results, the average glass transition temperature, at 2 °C, compared to the pure resin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Aqueous%20emulsion" title="Aqueous emulsion">Aqueous emulsion</a>, <a href="https://publications.waset.org/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/search?q=thermal%20characterization." title=" thermal characterization. "> thermal characterization. </a> </p> <a href="https://publications.waset.org/10009771/thermal-characterization-of-graphene-oxide-epoxy-nanocomposites-produced-by-aqueous-emulsion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009771/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009771/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009771/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009771/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009771/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009771/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009771/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009771/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009771/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009771/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">851</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=nanocomposites&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=nanocomposites&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=nanocomposites&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>