CINXE.COM
Search results for: marginal water
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: marginal water</title> <meta name="description" content="Search results for: marginal water"> <meta name="keywords" content="marginal water"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="marginal water" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="marginal water"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8844</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: marginal water</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8844</span> Effect of Marginal Quality Groundwater on Yield of Cotton Crop and Soil Salinity Status</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20L.%20Qureshi">A. L. Qureshi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Mahessar"> A. A. Mahessar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Dashti"> R. K. Dashti</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Yasin"> S. M. Yasin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, effect of marginal quality groundwater on yield of cotton crop and soil salinity was studied. In this connection, three irrigation treatments each with four replications were applied. These treatments were use of canal water, use of marginal quality groundwater from tube well, and conjunctive use by mixing with the ratio of 1:1 of canal water and marginal quality tubewell water. Water was applied to the crop cultivated in Kharif season 2011; its quantity has been measured using cut-throat flume. Total 11 watering each of 50 mm depth have been applied from 20th April to 20th July, 2011. Further, irrigations were stopped from last week of July, 2011 due to monsoon rainfall. Maximum crop yield (seed cotton) was observed under T1 which was 1,516.8 kg/ha followed by T3 (mixed canal and tube well water) having 1009 kg/ha and 709 kg/ha for T2 i.e. marginal quality groundwater. This concludes that crop yield in T2 and T3 with in comparison to T1was reduced by about 53 and 30% respectively. It has been observed that yield of cotton crop is below potential limit for three treatments due to unexpected rainfall at the time of full flowering season; thus the yield was adversely affected. However, salt deposition in soil profiles was not observed that is due to leaching effect of heavy rainfall occurred during monsoon season. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conjunctive%20use" title="conjunctive use">conjunctive use</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton%20crop" title=" cotton crop"> cotton crop</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20salinity%20status" title=" soil salinity status"> soil salinity status</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiency" title=" water use efficiency "> water use efficiency </a> </p> <a href="https://publications.waset.org/abstracts/17342/effect-of-marginal-quality-groundwater-on-yield-of-cotton-crop-and-soil-salinity-status" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8843</span> Reduction of Toxic Matter from Marginal Water Using Sludge Recycling from Combination of Stepped Cascade Weir with Limestone Trickling Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dheyaa%20Wajid%20Abbood">Dheyaa Wajid Abbood</a>, <a href="https://publications.waset.org/abstracts/search?q=Eitizaz%20Awad%20Jasim"> Eitizaz Awad Jasim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this investigation is to confirm the activity of a sludge recycling process in trickling filter filled with limestone as an alternative biological process over conventional high-cost treatment process with regard to toxic matter reduction from marginal water. The combination system of stepped cascade weir with limestone trickling filter has been designed and constructed in the environmental hydraulic laboratory, Al-Mustansiriya University, College of Engineering. A set of experiments has been conducted during the period from August 2013 to July 2014. Seven days of continuous operation with different continuous flow rates (0.4m3/hr, 0.5 m3/hr, 0.6 m3/hr, 0.7m3/hr,0.8 m3/hr, 0.9 m3/hr, and 1m3/hr) after ten days of acclimatization experiments were carried out. Results indicate that the concentrations of toxic matter were decreasing with increasing of operation time, sludge recirculation ratio, and flow rate. The toxic matter measured includes (Mineral oils, Petroleum products, Phenols, Biocides, Polychlorinated biphenyls (PCBs), and Surfactants) which are used in these experiments were ranged between (0.074 nm-0.156 nm). Results indicated that the overall reduction efficiency after 4, 28, 52, 76, 100, 124, and 148 hours of operation were (55%, 48%, 42%, 50%, 59%, 61%, and 64%) when the combination of stepped cascade weir with limestone trickling filter is used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=toxic%20matter" title="toxic matter">toxic matter</a>, <a href="https://publications.waset.org/abstracts/search?q=marginal%20water" title=" marginal water"> marginal water</a>, <a href="https://publications.waset.org/abstracts/search?q=trickling%20filter" title=" trickling filter"> trickling filter</a>, <a href="https://publications.waset.org/abstracts/search?q=stepped%20cascade%20weir" title=" stepped cascade weir"> stepped cascade weir</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20efficiency" title=" removal efficiency"> removal efficiency</a> </p> <a href="https://publications.waset.org/abstracts/32593/reduction-of-toxic-matter-from-marginal-water-using-sludge-recycling-from-combination-of-stepped-cascade-weir-with-limestone-trickling-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8842</span> Reduction of Toxic Matter from Marginal Water Treatment Using Sludge Recycling from Combination of Stepped Cascade Weir with Limestone Trickling Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dheyaa%20Wajid%20Abbood">Dheyaa Wajid Abbood</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mohammed%20Tawfeeq%20Baqer"> Ali Mohammed Tawfeeq Baqer</a>, <a href="https://publications.waset.org/abstracts/search?q=Eitizaz%20Awad%20Jasim"> Eitizaz Awad Jasim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this investigation is to confirm the activity of a sludge recycling process in trickling filter filled with limestone as an alternative biological process over conventional high-cost treatment process with regard to toxic matter reduction from marginal water. The combination system of stepped cascade weir with limestone trickling filter has been designed and constructed in the Environmental Hydraulic Laboratory, Al-Mustansiriya University, College of Engineering. A set of experiments has been conducted during the period from August 2013 to July 2014. Seven days of continuous operation with different continuous flow rates (0.4m3/hr, 0.5 m3/hr, 0.6 m3/hr, 0.7m3/hr,0.8 m3/hr, 0.9 m3/hr, and 1m3/hr) after ten days of acclimatization experiments were carried out. Results indicate that the concentrations of toxic matter were decreasing with increasing of operation time, sludge recirculation ratio, and flow rate. The toxic matter measured includes (Mineral oils, Petroleum products, Phenols, Biocides, Polychlorinated biphenyls (PCBs), and Surfactants) which are used in these experiments were ranged between (0.074 nm-0.156 nm). Results indicated that the overall reduction efficiency after 4, 28, 52, 76, 100, 124, and 148 hours of operation were (55%, 48%, 42%, 50%, 59%, 61%, and 64%) when the combination of stepped cascade weir with limestone trickling filter is used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marginal%20water" title="Marginal water ">Marginal water </a>, <a href="https://publications.waset.org/abstracts/search?q=Toxic%20matter" title="Toxic matter">Toxic matter</a>, <a href="https://publications.waset.org/abstracts/search?q=Stepped%20Cascade%20weir" title=" Stepped Cascade weir"> Stepped Cascade weir</a>, <a href="https://publications.waset.org/abstracts/search?q=limestone%20trickling%20filter" title=" limestone trickling filter"> limestone trickling filter</a> </p> <a href="https://publications.waset.org/abstracts/33447/reduction-of-toxic-matter-from-marginal-water-treatment-using-sludge-recycling-from-combination-of-stepped-cascade-weir-with-limestone-trickling-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8841</span> Soil Degradation Processes in Marginal Uplands of Samar Island, Philippines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dernie%20Taganna%20Olguera">Dernie Taganna Olguera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Marginal uplands are fragile ecosystems in the tropics that need to be evaluated for sustainable utilization and land degradation mitigation. Thus, this study evaluated the dominant soil degradation processes in selected marginal uplands of Samar Island, Philippines; evaluated the important factors influencing soil degradation in the selected sites and identified the indicators of soil degradation in marginal uplands of the tropical landscape of Samar Island, Philippines. Two (2) sites were selected (Sta. Rita, Samar and Salcedo, Eastern, Samar) representing the western and eastern sides of Samar Island respectively. These marginal uplands represent different agro-climatic zones suitable for the study. Soil erosion is the major soil degradation process in the marginal uplands studied. It resulted in not only considerable soil losses but nutrient losses as well. Soil erosion varied with vegetation cover and site. It was much higher in the sweetpotato, cassava, and gabi crops than under natural vegetation. In addition, soil erosion was higher in Salcedo than in Sta. Rita, which is related to climatic and soil characteristics. Bulk density, porosity, aggregate stability, soil pH, organic matter, and carbon dioxide evolution are good indicators of soil degradation. The dominance of Saccharum spontaneum Linn., Imperata cylindrica Linn, Melastoma malabathricum Linn. and Psidium guajava Linn indicated degraded soil condition. Farmer’s practices particularly clean culture and organic fertilizer application influenced the degree of soil degradation in the marginal uplands of Samar Island, Philippines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20degradation" title="soil degradation">soil degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=marginal%20uplands" title=" marginal uplands"> marginal uplands</a>, <a href="https://publications.waset.org/abstracts/search?q=Samar%20island" title=" Samar island"> Samar island</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippines" title=" Philippines"> Philippines</a> </p> <a href="https://publications.waset.org/abstracts/38693/soil-degradation-processes-in-marginal-uplands-of-samar-island-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8840</span> Study of Some Physiochemical Properties of Ain Kaam Water Lagoon and Assessing Their Suitability for Human Use and Irrigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keri%20Alhadi%20Ighwela">Keri Alhadi Ighwela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research some physiochemical properties represented by temperature, pH, total hardness (TH), electrical conductivity (EC), total dissolved solids (TDS), chloride and hardness of calcium (Ca-H) and magnesium (Mg-H) were measured in the water of Ain Kaam Zliten in Libya (South side of the lagoon). A comparison of water quality with the values adopted internationally was accomplished to demonstrate the suitability for human and irrigation use. The experimental results showed that the values of pH and EC of the studied for water samples did not exceed the allowed range for drinking water. While TDS, TH, (Mg-H) and chloride values have exceeded the acceptable limit for drinking water internationally, calcium (Ca-H) results have shown a decrease in values of all samples except the first sample which record a marginal increase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physiochemical%20properties" title="physiochemical properties">physiochemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Ain%20Kaam%20lagoon" title=" Ain Kaam lagoon"> Ain Kaam lagoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Zliten" title=" Zliten"> Zliten</a>, <a href="https://publications.waset.org/abstracts/search?q=Libya" title=" Libya"> Libya</a> </p> <a href="https://publications.waset.org/abstracts/41833/study-of-some-physiochemical-properties-of-ain-kaam-water-lagoon-and-assessing-their-suitability-for-human-use-and-irrigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8839</span> Analysis of Cross-Sectional and Retrograde Data on the Prevalence of Marginal Gingivitis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilma%20Robo">Ilma Robo</a>, <a href="https://publications.waset.org/abstracts/search?q=Saimir%20Heta"> Saimir Heta</a>, <a href="https://publications.waset.org/abstracts/search?q=Nedja%20Hysi"> Nedja Hysi</a>, <a href="https://publications.waset.org/abstracts/search?q=Vera%20Ostreni"> Vera Ostreni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Marginal gingivitis is a disease with considerable frequency among patients who present routinely for periodontal control and treatment. In fact, this disease may not have alarming symptoms in patients and may go unnoticed by themselves when personal hygiene conditions are optimal. The aim of this study was to collect retrograde data on the prevalence of marginal gingiva in the respective group of patients, evaluated according to specific periodontal diagnostic tools. Materials and methods: The study was conducted in two patient groups. The first group was with 34 patients, during December 2019-January 2020, and the second group was with 64 patients during 2010-2018 (each year in the mentioned monthly period). Bacterial plaque index, hemorrhage index, amount of gingival fluid, presence of xerostomia and candidiasis were recorded in patients. Results: Analysis of the collected data showed that susceptibility to marginal gingivitis shows higher values according to retrograde data, compared to cross-sectional ones. Susceptibility to candidiasis and the occurrence of xerostomia, even in the combination of both pathologies, as risk factors for the occurrence of marginal gingivitis, show higher values according to retrograde data. The female are presented with a reduced bacterial plaque index than the males, but more importantly, this index in the females is also associated with a reduced index of gingival hemorrhage, in contrast to the males. Conclusions: Cross-sectional data show that the prevalence of marginal gingivitis is more reduced, compared to retrograde data, based on the hemorrhage index and the bacterial plaque index together. Changes in production in the amount of gingival fluid show a higher prevalence of marginal gingivitis in cross-sectional data than in retrograde data; this is based on the sophistication of the way data are recorded, which evolves over time and also based on professional sensitivity to this phenomenon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marginal%20gingivitis" title="marginal gingivitis">marginal gingivitis</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-sectional" title=" cross-sectional"> cross-sectional</a>, <a href="https://publications.waset.org/abstracts/search?q=retrograde" title=" retrograde"> retrograde</a>, <a href="https://publications.waset.org/abstracts/search?q=prevalence" title=" prevalence"> prevalence</a> </p> <a href="https://publications.waset.org/abstracts/128774/analysis-of-cross-sectional-and-retrograde-data-on-the-prevalence-of-marginal-gingivitis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8838</span> Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20P.%20Panapakidis">Ioannis P. Panapakidis</a>, <a href="https://publications.waset.org/abstracts/search?q=Marios%20N.%20Moschakis"> Marios N. Moschakis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deregulated%20energy%20market" title="deregulated energy market">deregulated energy market</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20marginal%20price" title=" system marginal price"> system marginal price</a> </p> <a href="https://publications.waset.org/abstracts/85227/comparison-of-machine-learning-models-for-the-prediction-of-system-marginal-price-of-greek-energy-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8837</span> Review on Quaternion Gradient Operator with Marginal and Vector Approaches for Colour Edge Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Ben%20Youssef">Nadia Ben Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Bouzid"> Aicha Bouzid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gradient estimation is one of the most fundamental tasks in the field of image processing in general, and more particularly for color images since that the research in color image gradient remains limited. The widely used gradient method is Di Zenzo’s gradient operator, which is based on the measure of squared local contrast of color images. The proposed gradient mechanism, presented in this paper, is based on the principle of the Di Zenzo’s approach using quaternion representation. This edge detector is compared to a marginal approach based on multiscale product of wavelet transform and another vector approach based on quaternion convolution and vector gradient approach. The experimental results indicate that the proposed color gradient operator outperforms marginal approach, however, it is less efficient then the second vector approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gradient" title="gradient">gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20detection" title=" edge detection"> edge detection</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20image" title=" color image"> color image</a>, <a href="https://publications.waset.org/abstracts/search?q=quaternion" title=" quaternion"> quaternion</a> </p> <a href="https://publications.waset.org/abstracts/141138/review-on-quaternion-gradient-operator-with-marginal-and-vector-approaches-for-colour-edge-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8836</span> Short Term Tests on Performance Evaluation of Water-Washed and Dry-Washed Biodiesel from Used Cooking Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shumani%20Ramuhaheli">Shumani Ramuhaheli</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20C.%20Enweremadu"> Christopher C. Enweremadu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilary%20L.%20Rutto"> Hilary L. Rutto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, biodiesel from used cooking oil was produced as purified by washing with water (water wash) and amberlite (dry wash). The work presents the results of short term tests on performance characteristics of diesel engine using both biodiesel-fuel samples. In this investigation, the water wash biodiesel and dry wash biodiesel and diesel were compared for performance using a four-cylinder diesel engine. The torque, brake power, specific fuel consumption and brake thermal efficiency were analyzed. The tests showed that in all cases, dry wash biodiesel performed marginally poorer compared to water wash biodiesel. Except for brake thermal efficiency, diesel fuel had better engine performance characteristics compared to the biodiesel-fuel samples. According to these results, dry washing of biodiesel has a marginal effect on engine performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20performance" title=" engine performance"> engine performance</a>, <a href="https://publications.waset.org/abstracts/search?q=used%20cooking%20oil" title=" used cooking oil"> used cooking oil</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20wash" title=" water wash"> water wash</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20wash" title=" dry wash"> dry wash</a> </p> <a href="https://publications.waset.org/abstracts/8086/short-term-tests-on-performance-evaluation-of-water-washed-and-dry-washed-biodiesel-from-used-cooking-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8835</span> Estimating Directional Shadow Prices of Air Pollutant Emissions by Transportation Modes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huey-Kuo%20Chen">Huey-Kuo Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper applies directional marginal productivity model to study the shadow price of emissions by transportation modes in the years of 2011 and 2013 with the aim to provide a reference for policy makers to improve the emission of pollutants. One input variable (i.e., energy consumption), one desirable output variable (i.e., vehicle kilometers traveled) and three undesirable output variables (i.e., carbon dioxide, sulfur oxides and nitrogen oxides) generated by road transportation modes were used to evaluate directional marginal productivity and directional shadow price for 18 transportation modes. The results show that the directional shadow price (DSP) of SOx is much higher than CO2 and NOx. Nevertheless, the emission of CO2 is the largest among the three kinds of pollutants. To improve the air quality, the government should pay more attention to the emission of CO2 and apply the alternative solution such as promoting public transportation and subsidizing electric vehicles to reduce the use of private vehicles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marginal%20productivity" title="marginal productivity">marginal productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20transportation%20modes" title=" road transportation modes"> road transportation modes</a>, <a href="https://publications.waset.org/abstracts/search?q=shadow%20price" title=" shadow price"> shadow price</a>, <a href="https://publications.waset.org/abstracts/search?q=undesirable%20outputs" title=" undesirable outputs"> undesirable outputs</a> </p> <a href="https://publications.waset.org/abstracts/123589/estimating-directional-shadow-prices-of-air-pollutant-emissions-by-transportation-modes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8834</span> Subsea Processing: Deepwater Operation and Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md%20Imtiaz">Md Imtiaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanchita%20Dei"> Sanchita Dei</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubham%20Damke"> Shubham Damke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, there has been a rapidly accelerating shift from traditional surface processing operations to subsea processing operation. This shift has been driven by a number of factors including the depletion of shallow fields around the world, technological advances in subsea processing equipment, the need for production from marginal fields, and lower initial upfront investment costs compared to traditional production facilities. Moving production facilities to the seafloor offers a number of advantage, including a reduction in field development costs, increased production rates from subsea wells, reduction in the need for chemical injection, minimization of risks to worker ,reduction in spills due to hurricane damage, and increased in oil production by enabling production from marginal fields. Subsea processing consists of a range of technologies for separation, pumping, compression that enables production from offshore well without the need for surface facilities. At present, there are two primary technologies being used for subsea processing: subsea multiphase pumping and subsea separation. Multiphase pumping is the most basic subsea processing technology. Multiphase pumping involves the use of boosting system to transport the multiphase mixture through pipelines to floating production vessels. The separation system is combined with single phase pumps or water would be removed and either pumped to the surface, re-injected, or discharged to the sea. Subsea processing can allow for an entire topside facility to be decommissioned and the processed fluids to be tied back to a new, more distant, host. This type of application reduces costs and increased both overall facility and integrity and recoverable reserve. In future, full subsea processing could be possible, thereby eliminating the need for surface facilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FPSO" title="FPSO">FPSO</a>, <a href="https://publications.waset.org/abstracts/search?q=marginal%20field" title=" marginal field"> marginal field</a>, <a href="https://publications.waset.org/abstracts/search?q=Subsea%20processing" title=" Subsea processing"> Subsea processing</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAG" title=" SWAG"> SWAG</a> </p> <a href="https://publications.waset.org/abstracts/33428/subsea-processing-deepwater-operation-and-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8833</span> Parametric Inference of Elliptical and Archimedean Family of Copulas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alam%20Ali">Alam Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Kumar%20Pathak"> Ashok Kumar Pathak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, copulas have attracted significant attention for modeling multivariate observations, and the foremost feature of copula functions is that they give us the liberty to study the univariate marginal distributions and their joint behavior separately. The copula parameter apprehends the intrinsic dependence among the marginal variables, and it can be estimated using parametric, semiparametric, or nonparametric techniques. This work aims to compare the coverage rates between an Elliptical and an Archimedean family of copulas via a fully parametric estimation technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elliptical%20copula" title="elliptical copula">elliptical copula</a>, <a href="https://publications.waset.org/abstracts/search?q=archimedean%20copula" title=" archimedean copula"> archimedean copula</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation" title=" estimation"> estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=coverage%20rate" title=" coverage rate"> coverage rate</a> </p> <a href="https://publications.waset.org/abstracts/171985/parametric-inference-of-elliptical-and-archimedean-family-of-copulas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8832</span> An Exploratory Approach of the Latin American Migrants’ Urban Space Transformation of Antofagasta City, Chile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carolina%20Arriagada">Carolina Arriagada</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasna%20Contreras"> Yasna Contreras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since mid-2000, the migratory flows of Latin American migrants to Chile have been increasing constantly. There are two reasons that would explain why Chile is presented as an attractive country for the migrants. On the one hand, traditional centres of migrants’ attraction such as the United States and Europe have begun to close their borders. On the other hand, Chile exhibits relative economic and political stability, which offers greater job opportunities and better standard of living when compared to the migrants’ origin country. At the same time, the neoliberal economic model of Chile, developed under an extractive production of the natural resources, has privatized the urban space. The market regulates the growth of the fragmented and segregated cities. Then, the vulnerable population, most of the time, is located in the periphery and in the marginal areas of the urban space. In this aspect, the migrants have begun to occupy those degraded and depressed areas of the city. The problem raised is that the increase of the social spatial segregation could be also attributed to the migrants´ occupation of the marginal urban places of the city. The aim of this investigation is to carry out an analysis of the migrants’ housing strategies, which are transforming the marginal areas of the city. The methodology focused on the urban experience of the migrants, through the observation of spatial practices, ways of living and networks configuration in order to transform the marginal territory. The techniques applied in this study are semi–structured interviews in-depth interviews. The study reveals that the migrants housing strategies for living in the marginal areas of the city are built on a paradox way. On the one hand, the migrants choose proximity to their place of origin, maintaining their identity and customs. On the other hand, the migrants choose proximity to their social and familiar places, generating sense of belonging. In conclusion, the migration as international displacements under a globalized economic model increasing socio spatial segregation in cities is evidenced, but the transformation of the marginal areas is a fundamental resource of their integration migratory process. The importance of this research is that it is everybody´s responsibility not only the right to live in a city without any discrimination but also to integrate the citizens within the social urban space of a city. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=migrations" title="migrations">migrations</a>, <a href="https://publications.waset.org/abstracts/search?q=marginal%20space" title=" marginal space"> marginal space</a>, <a href="https://publications.waset.org/abstracts/search?q=resignification" title=" resignification"> resignification</a>, <a href="https://publications.waset.org/abstracts/search?q=visibility" title=" visibility"> visibility</a> </p> <a href="https://publications.waset.org/abstracts/99195/an-exploratory-approach-of-the-latin-american-migrants-urban-space-transformation-of-antofagasta-city-chile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8831</span> Laboratory Evaluation of Asphalt Concrete Prepared with Over Burnt Brick Aggregate Treated by Zycosoil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Sarkar">D. Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pal"> M. Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Sarkar"> A. K. Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Asphaltic concrete for pavement construction in India are produced by using crushed stone, gravels etc. as aggregate. In north-Eastern region of India, there is a scarcity o f stone aggregate. Therefore the road engineers are always in search of an optional material as aggregate which can replace the regularly used material. The purpose of this work was to evaluate the utilization of substandard or marginal aggregates in flexible pavement construction. The investigation was undertaken to evaluate the effects of using lower quality aggregates such as over burnt brick aggregate on the preparation of asphalt concrete for flexible pavements. The scope of this work included a review of available literature and existing data, a laboratory evaluation organized to determine the effects of marginal aggregates and potential techniques to upgrade these substandard materials, and a laboratory evaluation of these upgraded marginal aggregate asphalt mixtures. Over burnt brick aggregates are water susceptible and can leads to moisture damage. Moisture damage is the progressive loss of functionality of the material owing to loss of the adhesion bond between the asphalt binder and the aggregate surface. Hence, zycosoil as an anti striping additive were evaluated in this study. This study summarizes the results of the laboratory evaluation carried out to investigate the properties of asphalt concrete prepared with zycosoil modified over burnt brick aggregate. Marshall specimen were prepared with stone aggregate, zycosoil modified stone aggregate, over burnt brick aggregate and zycosoil modified over burnt brick aggregate. Results show that addition of zycosoil with stone aggregate increased stability by 6% and addition of zycosoil with over burnt brick aggregate increased stability by 30%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20concrete" title="asphalt concrete">asphalt concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=over%20burnt%20brick%20aggregate" title=" over burnt brick aggregate"> over burnt brick aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=marshall%20stability" title=" marshall stability"> marshall stability</a>, <a href="https://publications.waset.org/abstracts/search?q=zycosoil" title=" zycosoil"> zycosoil</a> </p> <a href="https://publications.waset.org/abstracts/10998/laboratory-evaluation-of-asphalt-concrete-prepared-with-over-burnt-brick-aggregate-treated-by-zycosoil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8830</span> Assessment of Water Quality of Euphrates River at Babylon Governorate, for Drinking, Irrigation and general, Using Water Quality Index (Canadian Version) (CCMEWQI)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amer%20Obaid%20Saud">Amer Obaid Saud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water quality index (WQI) is considered as an effective tool in categorization of water resources for its quality and suitability for different uses. The Canadian version of water quality index (CCME WQI) which based on the comparison of the water quality parameters to regulatory standards and give a single value to the water quality of a source was applied in this study to assess the water quality of Euphrates river in Iraq at Babylon Governorate north of Baghdad and determine its suitability for aquatic environment (GWQI), drinking water (PWSI) and irrigation(IWQI). Five stations were selected on the river in Babylon (Euphrates River/AL-Musiab, Hindia barrage, two stations at Hilla city and the fifth station at Al-Hshmeya north of Hilla. Fifteen water samples were collected every month during August 2013 to July 2014 at the study sites and analyzed for the physico-chemical parameters like (Temperature, pH, Electrical Conductivity, Total Dissolved Solids(TDS), Total Suspended Solids(TSS), Total Alkalinity, Total Hardness, Calcium and Magnesium Concentration, some of nutrient like Nitrite, Nitrate, Phosphate also the study of concentration of some heavy metals (Fe, Pb, Zn, Cu, Mn, and Cd) in water and comparison of measures to benchmarks such as guidelines and objectives to assess change in water quality. The result of Canadian version of(CCME .WQI) to assess the irrigation water quality (IWQI) of Euphrates river was (83-good) at site one during second seasonal period while the lowest was (66-Fair) in the second station during the fourth seasonal period, the values of potable water supply index (PWSI)that the highest value was (68-Fair) in the fifth site during the second period while the lowest value (42 -Poor) in the second site during the first seasonal period,the highest value for general water quality (GWQI) was (74-Fair) in site five during the second seasonal period, the lowest value (48-Marginal) in the second site during the first seasonal period. It was observed that the main cause of deterioration in water quality was due to the lack of, unprotected river sites ,high anthropogenic activities and direct discharge of industrial effluent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babylon%20governorate" title="Babylon governorate">Babylon governorate</a>, <a href="https://publications.waset.org/abstracts/search?q=Canadian%20version" title=" Canadian version"> Canadian version</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=Euphrates%20river" title=" Euphrates river"> Euphrates river</a> </p> <a href="https://publications.waset.org/abstracts/21702/assessment-of-water-quality-of-euphrates-river-at-babylon-governorate-for-drinking-irrigation-and-general-using-water-quality-index-canadian-version-ccmewqi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8829</span> Clinical Effectiveness of Bulk-fill Resin Composite: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taraneh%20Estedlal">Taraneh Estedlal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to review in-vivo and in-vitro studies to compare the effectiveness of bulk-fill and conventional resin composites with regard to marginal adaptation, polymerization shrinkage, and other mechanical properties.PubMed and Scopus databases was investigated for in-vitro studies and randomized clinical trials comparing incidence of fractures, color stability, marginal adaptation, pain and discomfort, recurrent caries, occlusion, pulpal reaction, and proper proximal contacts of restorations made with conventional and bulk resins. The failure rate of conventional and flowable bulk-fill resin composites was not significantly different to sculptable bulk-fill resin composites. The objective of this study was to review in-vivo and in-vitro studies to compare the effectiveness of bulk-fill and conventional resin composites with regard to marginal adaptation, polymerization shrinkage, and other mechanical properties. PubMed and Scopus databases was investigated for in-vitro studies and randomized clinical trials comparing one of the pearlier mentioned properties between bulk-fill and control composites. Despite differences in physical and in-vitro properties, failure rate of conventional and flowable bulk-fill resin composites was not significantly different to sculptable bulk-fill resin composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymerization%20shrinkage" title="polymerization shrinkage">polymerization shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20stability" title=" color stability"> color stability</a>, <a href="https://publications.waset.org/abstracts/search?q=marginal%20adaptation" title=" marginal adaptation"> marginal adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrent%20caries" title=" recurrent caries"> recurrent caries</a>, <a href="https://publications.waset.org/abstracts/search?q=occlusion" title=" occlusion"> occlusion</a>, <a href="https://publications.waset.org/abstracts/search?q=pulpal%20reaction" title=" pulpal reaction"> pulpal reaction</a> </p> <a href="https://publications.waset.org/abstracts/144282/clinical-effectiveness-of-bulk-fill-resin-composite-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8828</span> Fairly Irrigation Water Distribution between Upstream and Downstream Water Users in Water Shortage Periods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Hashemy%20Shahdany">S. M. Hashemy Shahdany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Equitable water delivery becomes one of the main concerns for water authorities in arid regions. Due to water scarcity, providing reliable amount of water is not possible for most of the irrigation districts in arid regions. In this paper, water level difference control is applied to keep the water level errors equal in adjacent reaches. Distant downstream decentralized configurations of the control method are designed and tested under a realistic scenario shows canal operation under water shortage. The simulation results show that the difference controllers share the water level error among all of the users in a fair way. Therefore, water deficit has a similar influence on downstream as well as upstream and water offtakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equitable%20water%20distribution" title="equitable water distribution">equitable water distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=precise%20agriculture" title=" precise agriculture"> precise agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20agriculture" title=" sustainable agriculture"> sustainable agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20shortage" title=" water shortage"> water shortage</a> </p> <a href="https://publications.waset.org/abstracts/39301/fairly-irrigation-water-distribution-between-upstream-and-downstream-water-users-in-water-shortage-periods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8827</span> Marginal Productivity of Small Scale Yam and Cassava Farmers in Kogi State, Nigeria: Data Envelopment Analysis as a Complement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Ojo">M. A. Ojo</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Ojo"> O. A. Ojo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20Odine"> A. I. Odine</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ogaji"> A. Ogaji </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study examined marginal productivity analysis of small scale yam and cassava farmers in Kogi State, Nigeria. Data used for the study were obtained from primary source using a multi-stage sampling technique with structured questionnaires administered to 150 randomly selected yam and cassava farmers from three Local Government Areas of the State. Description statistics, data envelopment analysis and Cobb-Douglas production function were used to analyze the data. The DEA result on the overall technical efficiency of the farmers showed that 40% of the sampled yam and cassava farmers in the study area were operating at frontier and optimum level of production with mean technical efficiency of 1.00. This implies that 60% of the yam and cassava farmers in the study area can still improve their level of efficiency through better utilization of available resources, given the current state of technology. The results of the Cobb-Douglas analysis of factors affecting the output of yam and cassava farmers showed that labour, planting materials, fertilizer and capital inputs positively and significantly affected the output of the yam and cassava farmers in the study area. The study further revealed that yam and cassava farms in the study area operated under increasing returns to scale. This result of marginal productivity analysis further showed that relatively efficient farms were more marginally productive in resource utilization This study also shows that estimating production functions without separating the farms to efficient and inefficient farms bias the parameter values obtained from such production function. It is therefore recommended that yam and cassava farmers in the study area should form cooperative societies so as to enable them have access to productive inputs that will enable them expand. Also, since using a single equation model for production function produces a bias parameter estimates as confirmed above, farms should, therefore, be decomposed into efficient and inefficient ones before production function estimation is done. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marginal%20productivity" title="marginal productivity">marginal productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=DEA" title=" DEA"> DEA</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20function" title=" production function"> production function</a>, <a href="https://publications.waset.org/abstracts/search?q=Kogi%20state" title=" Kogi state"> Kogi state</a> </p> <a href="https://publications.waset.org/abstracts/35444/marginal-productivity-of-small-scale-yam-and-cassava-farmers-in-kogi-state-nigeria-data-envelopment-analysis-as-a-complement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8826</span> The Market Structure Simulation of Heterogenous Firms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arunas%20Burinskas">Arunas Burinskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuela%20Tvaronavi%C4%8Dien%C4%97"> Manuela Tvaronavičienė</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although the new trade theories, unlike the theories of an industrial organisation, see the structure of the market and competition between enterprises through their heterogeneity according to various parameters, they do not pay any particular attention to the analysis of the market structure and its development. In this article, although we relied mainly on models developed by the scholars of new trade theory, we proposed a different approach. In our simulation model, we model market demand according to normal distribution function, while on the supply side (as it is in the new trade theory models), productivity is modeled with the Pareto distribution function. The results of the simulation show that companies with higher productivity (lower marginal costs) do not pass on all the benefits of such economies to buyers. However, even with higher marginal costs, firms can choose to offer higher value-added goods to stay in the market. In general, the structure of the market is formed quickly enough and depends on the skills available to firms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=market" title="market">market</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogenous%20firms" title=" heterogenous firms"> heterogenous firms</a> </p> <a href="https://publications.waset.org/abstracts/144488/the-market-structure-simulation-of-heterogenous-firms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8825</span> Biochemical Evaluation of Air Conditioning West Water in Jeddah City: Concept of Sustainable Water Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Alromi">D. Alromi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Alansari"> A. Alansari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Alghamdi"> S. Alghamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Jambi"> E. Jambi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the need for water is increasing globally, and the available water resources are barely meeting the current quality of life and economy. Air conditioning (AC) condensate water could be explored as an alternative water source, which could be considered within the global calculations of the water supply. The objective of this study is to better understand the potential for recovery of condensate water from air conditioning systems. The results generated so far showed that the AC produces a high quantity of water, and data analysis revealed that the amount of water is positively and significantly correlated with the humidity (P <= 0.05). In the meantime, the amount of heavy metals has been measuring using ICP-OES. The results, in terms of quantity, clearly show that the AC can be used as an alternative source of water, especially in the regions characterized by high humidity. The results also showed that the amount of produced water depends on the type of AC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20conditioning%20systems" title="air conditioning systems">air conditioning systems</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quantity" title=" water quantity"> water quantity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%0D%0Aresources" title=" water resources"> water resources</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/114549/biochemical-evaluation-of-air-conditioning-west-water-in-jeddah-city-concept-of-sustainable-water-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8824</span> Importance of Determining the Water Needs of Crops in the Management of Water Resources in the Province of Djelfa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imessaoudene%20Y.">Imessaoudene Y.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouhouche%20B."> Mouhouche B.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sengouga%20A."> Sengouga A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadir%20M."> Kadir M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to determine the virtual water of main crops grown in the province of Djelfa and water use efficiency (W.U.E.), Which is essential to approach the application and better integration with the offer in the region. In the case of agricultural production, virtual water is the volume of water evapo-transpired by crops. It depends on particular on the expertise of its producers and its global production area, warm and dry climates induce higher consumption. At the scale of the province, the determination of the quantities of virtual water is done by calculating the unit water requirements related to water irrigated hectare and total rainfall over the crop using the Cropwat 8.0 F.A.O. software. Quantifying the volume of agricultural virtual water of crops practiced in the study area demonstrates the quantitative importance of these volumes of water in terms of available water resources in the province, so the advantages which can be the concept of virtual water as an analysis tool and decision support for the management and distribution of water in scarcity situation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virtual%20water" title="virtual water">virtual water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiency" title=" water use efficiency"> water use efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20requirements" title=" water requirements"> water requirements</a>, <a href="https://publications.waset.org/abstracts/search?q=Djelfa" title=" Djelfa"> Djelfa</a> </p> <a href="https://publications.waset.org/abstracts/31138/importance-of-determining-the-water-needs-of-crops-in-the-management-of-water-resources-in-the-province-of-djelfa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8823</span> Water Crisis Management in a Tourism Dependent Community</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aishath%20Shakeela">Aishath Shakeela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At a global level, water stewardship, water stress and water security are crucial factors in tourism planning and development considerations. Challenges associated with water is of particular concern to the Maldives as there is limited availability of freshwater, high dependency on desalinated water, and high unit cost associated with desalinating water. While the Maldives is promoted as an example of sustainable tourism, a key sustainability challenge facing tourism dependent communities is the efficient use and management of available water resources. A water crisis event in the capital island of Maldives highlighted how precarious water related issues are in this tourism dependent destination. Applying netnography, the focus of this working paper is to present community perceptions of how government policies addressed Malé Water and Sewerage Company (MWSC) water crisis event. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crisis%20management" title="crisis management">crisis management</a>, <a href="https://publications.waset.org/abstracts/search?q=government%20policies" title=" government policies"> government policies</a>, <a href="https://publications.waset.org/abstracts/search?q=Maldives" title=" Maldives"> Maldives</a>, <a href="https://publications.waset.org/abstracts/search?q=tourism" title=" tourism"> tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water "> water </a> </p> <a href="https://publications.waset.org/abstracts/34238/water-crisis-management-in-a-tourism-dependent-community" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8822</span> Solar Aided Vacuum Desalination of Sea-Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miraz%20Hafiz%20Rossy">Miraz Hafiz Rossy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As part of planning to address shortfalls in fresh water supply for the world, Sea water can be a huge source of fresh water. But Desalinating sea water to get fresh water could require a lots of fossil fuels. To save the fossil fuel in terms of save the green world but meet the up growing need for fresh water, a very useful but energy efficient method needs to be introduced. Vacuum desalination of sea water using only the Renewable energy can be an effective solution to this issue. Taking advantage of sensitivity of water's boiling point to air pressure a vacuum desalination water treatment plant can be designed which would only use sea water as feed water and solar energy as fuel to produce fresh drinking water. The study indicates that reducing the air pressure to a certain value water can be boiled at very low temperature. Using solar energy to provide the condensation and the vacuum creation would be very useful and efficient. Compared to existing resources, desalination is considered to be expensive, but using only renewable energy the cost can be reduced significantly. Despite its very few drawbacks, it can be considered a possible solution to the world's fresh water shortages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desalination" title="desalination">desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=scarcity%20of%20fresh%20water" title=" scarcity of fresh water"> scarcity of fresh water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20purification" title=" water purification"> water purification</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/73292/solar-aided-vacuum-desalination-of-sea-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8821</span> Modeling Water Inequality and Water Security: The Role of Water Governance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pius%20Babuna">Pius Babuna</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaohua%20Yang"> Xiaohua Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto%20Xavier%20Supe%20Tulcan"> Roberto Xavier Supe Tulcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bian%20Dehui"> Bian Dehui</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Takase"> Mohammed Takase</a>, <a href="https://publications.waset.org/abstracts/search?q=Bismarck%20Yelfogle%20Guba"> Bismarck Yelfogle Guba</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuanliang%20Han"> Chuanliang Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Doris%20Abra%20Awudi"> Doris Abra Awudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Meishui%20Lia"> Meishui Lia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water inequality, water security, and water governance are fundamental parameters that affect the sustainable use of water resources. Through policy formulation and decision-making, water governance determines both water security and water inequality. Largely, where water inequality exists, water security is undermined through unsustainable water use practices that lead to pollution of water resources, conflicts, hoarding of water, and poor sanitation. Incidentally, the interconnectedness of water governance, water inequality, and water security has not been investigated previously. This study modified the Gini coefficient and used a Logistics Growth of Water Resources (LGWR) Model to access water inequality and water security mathematically, and discussed the connected role of water governance. We tested the validity of both models by calculating the actual water inequality and water security of Ghana. We also discussed the implications of water inequality on water security and the overarching role of water governance. The results show that regional water inequality is widespread in some parts. The Volta region showed the highest water inequality (Gini index of 0.58), while the central region showed the lowest (Gini index of 0.15). Water security is moderately sustainable. The use of water resources is currently stress-free. It was estimated to maintain such status until 2132 ± 18, when Ghana will consume half of the current total water resources of 53.2 billion cubic meters. Effectively, water inequality is a threat to water security, results in poverty, under-development heightens tensions in water use, and causes instability. With proper water governance, water inequality can be eliminated through formulating and implementing approaches that engender equal allocation and sustainable use of water resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20inequality" title="water inequality">water inequality</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20security" title=" water security"> water security</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20governance" title=" water governance"> water governance</a>, <a href="https://publications.waset.org/abstracts/search?q=Gini%20coefficient" title=" Gini coefficient"> Gini coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=moran%20index" title=" moran index"> moran index</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources%20management" title=" water resources management"> water resources management</a> </p> <a href="https://publications.waset.org/abstracts/159818/modeling-water-inequality-and-water-security-the-role-of-water-governance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8820</span> Sustainable Water Resource Management and Challenges in Indian Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajendra%20Kumar%20Isaac">Rajendra Kumar Isaac</a>, <a href="https://publications.waset.org/abstracts/search?q=Monisha%20Isaac"> Monisha Isaac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> India, having a vast cultivable area and regional climatic variability, encounters water Resource Management Problems at various levels. The agricultural production of India needs to be increased to meet out projected population growth. Sustainable water resource is the only option to ensure food security, especially in northern Indian states, where the ground and surface water resources are fast depleting. Various tools and technologies available for management of scarce water resources have been discussed. It was concluded that multiple use of water, adopting latest water management options, identification of climate adoptable cropping and farming systems, can enhance water productivity and would encounter the fast growing water management and water shortage problems in Indian agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20resource%20management" title="water resource management">water resource management</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management%20technologies" title=" water management technologies"> water management technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20productivity" title=" water productivity"> water productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a> </p> <a href="https://publications.waset.org/abstracts/69837/sustainable-water-resource-management-and-challenges-in-indian-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8819</span> On Generalized Cumulative Past Inaccuracy Measure for Marginal and Conditional Lifetimes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amit%20Ghosh">Amit Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanchal%20Kundu"> Chanchal Kundu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the notion of past cumulative inaccuracy (CPI) measure has been proposed in the literature as a generalization of cumulative past entropy (CPE) in univariate as well as bivariate setup. In this paper, we introduce the notion of CPI of order α (alpha) and study the proposed measure for conditionally specified models of two components failed at different time instants called generalized conditional CPI (GCCPI). We provide some bounds using usual stochastic order and investigate several properties of GCCPI. The effect of monotone transformation on this proposed measure has also been examined. Furthermore, we characterize some bivariate distributions under the assumption of conditional proportional reversed hazard rate model. Moreover, the role of GCCPI in reliability modeling has also been investigated for a real-life problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cumulative%20past%20inaccuracy" title="cumulative past inaccuracy">cumulative past inaccuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=marginal%20and%20conditional%20past%20lifetimes" title=" marginal and conditional past lifetimes"> marginal and conditional past lifetimes</a>, <a href="https://publications.waset.org/abstracts/search?q=conditional%20proportional%20reversed%20hazard%20rate%20model" title=" conditional proportional reversed hazard rate model"> conditional proportional reversed hazard rate model</a>, <a href="https://publications.waset.org/abstracts/search?q=usual%20stochastic%20order" title=" usual stochastic order"> usual stochastic order</a> </p> <a href="https://publications.waset.org/abstracts/79608/on-generalized-cumulative-past-inaccuracy-measure-for-marginal-and-conditional-lifetimes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8818</span> Modeling Water Resources Carrying Capacity, Optimizing Water Treatment, Smart Water Management, and Conceptualizing a Watershed Management Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pius%20Babuna">Pius Babuna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable water use is important for the existence of the human race. Water resources carrying capacity (WRCC) measures the sustainability of water use; however, the calculation and optimization of WRCC remain challenging. This study used a mathematical model (the Logistics Growth of Water Resources -LGWR) and a linear objective function to model water sustainability. We tested the validity of the models using data from Ghana. Total freshwater resources, water withdrawal, and population data were used in MATLAB. The results show that the WRCC remains sustainable until the year 2132 ±18, when half of the total annual water resources will be used. The optimized water treatment cost suggests that Ghana currently wastes GHȼ 1115.782± 50 cedis (~$182.21± 50) per water treatment plant per month or ~ 0.67 million gallons of water in an avoidable loss. Adopting an optimized water treatment scheme and a watershed management approach will help sustain the WRCC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20resources%20carrying%20capacity" title="water resources carrying capacity">water resources carrying capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20water%20management" title=" smart water management"> smart water management</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20water%20use" title=" sustainable water use"> sustainable water use</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20withdrawal" title=" water withdrawal"> water withdrawal</a> </p> <a href="https://publications.waset.org/abstracts/159894/modeling-water-resources-carrying-capacity-optimizing-water-treatment-smart-water-management-and-conceptualizing-a-watershed-management-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8817</span> Addressing the Water Shortage in Beijing: Increasing Water Use Efficiency in Domestic Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chenhong%20Peng">Chenhong Peng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Beijing, the capital city of China, is running out of water. The water resource per capita in Beijing is only 106 cubic meter, accounts for 5% of the country’s average level and less than 2% of the world average level. The tension between water supply and demand is extremely serious. For one hand, the surface and ground water have been over-exploited during the last decades; for the other hand, water demand keep increasing as the result of population and economic growth. There is a massive gap between water supply and demand. This paper will focus on addressing the water shortage in Beijing city by increasing water use efficiency in domestic sector. First, we will emphasize on the changing structure of water supply and demand in Beijing under the economic development and restructure during the last decade. Second, by analyzing the water use efficiency in agriculture, industry and domestic sectors in Beijing, we identify that the key determinant for addressing the water crisis is to increase the water use efficiency in domestic sector. Third, this article will explore the two primary causes for the water use inefficiency in Beijing: The ineffective water pricing policy and the poor water education and communication policy. Finally, policy recommendation will offered to improve the water use efficiency in domestic sector by making and implementing an effective water pricing policy and people-engaged water education and communication policy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beijing" title="Beijing">Beijing</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiency" title=" water use efficiency"> water use efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=domestic%20sector" title=" domestic sector"> domestic sector</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pricing%20policy" title=" water pricing policy"> water pricing policy</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20education%20policy" title=" water education policy"> water education policy</a> </p> <a href="https://publications.waset.org/abstracts/22092/addressing-the-water-shortage-in-beijing-increasing-water-use-efficiency-in-domestic-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8816</span> Digital Transformation and Environmental Disclosure in Industrial Firms: The Moderating Role of the Top Management Team</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongxin%20Chen">Yongxin Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Zhang"> Min Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As industrial enterprises are the primary source of national pollution, environmental information disclosure is a crucial way to demonstrate to stakeholders the work they have done in fulfilling their environmental responsibilities and accepting social supervision. In the era of the digital economy, many companies, actively embracing the opportunities that come with digital transformation, have begun to apply digital technology to information collection and disclosure within the enterprise. However, less is known about the relationship between digital transformation and environmental disclosure. This study investigates how enterprise digital transformation affects environmental disclosure in 643 Chinese industrial companies, according to information processing theory. What is intriguing is that the depth (size) and breadth (diversity) of environmental disclosure linearly increase with the rise in the collection, processing, and analytical capabilities in the digital transformation process. However, the volume of data will grow exponentially, leading to a marginal increase in the economic and environmental costs of utilizing, storing, and managing data. In our empirical findings, linearly increasing benefits and marginal costs create a unique inverted U-shaped relationship between the degree of digital transformation and environmental disclosure in the Chinese industrial sector. Besides, based on the upper echelons theory, we also propose that the top management team with high stability and managerial capabilities will invest more effort and expense into improving environmental disclosure quality, lowering the carbon footprint caused by digital technology, maintaining data security etc. In both these contexts, the increasing marginal cost curves would become steeper, weakening the inverted U-shaped slope between DT and ED. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20transformation" title="digital transformation">digital transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20disclosure" title=" environmental disclosure"> environmental disclosure</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20top%20management%20team" title=" the top management team"> the top management team</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20processing%20theory" title=" information processing theory"> information processing theory</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20echelon%20theory" title=" upper echelon theory"> upper echelon theory</a> </p> <a href="https://publications.waset.org/abstracts/160948/digital-transformation-and-environmental-disclosure-in-industrial-firms-the-moderating-role-of-the-top-management-team" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8815</span> Numerical Analysis on the Effect of Abrasive Parameters on Wall Shear Stress and Jet Exit Kinetic Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Deepak">D. Deepak</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Yagnesh%20Sharma"> N. Yagnesh Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abrasive Water Jet (AWJ) machining is a relatively new nontraditional machine tool used in machining of fiber reinforced composite. The quality of machined surface depends on jet exit kinetic energy which depends on various operating and material parameters. In the present work the effect abrasive parameters such as its size, concentration and type on jet kinetic energy is investigated using computational fluid dynamics (CFD). In addition, the effect of these parameters on wall shear stress developed inside the nozzle is also investigated. It is found that for the same operating parameters, increase in the abrasive volume fraction (concentration) results in significant decrease in the wall shear stress as well as the jet exit kinetic energy. Increase in the abrasive particle size results in marginal decrease in the jet exit kinetic energy. Numerical simulation also indicates that garnet abrasives produce better jet exit kinetic energy than aluminium oxide and silicon carbide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abrasive%20water%20jet%20machining" title="abrasive water jet machining">abrasive water jet machining</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20kinetic%20energy" title=" jet kinetic energy"> jet kinetic energy</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20pressure" title=" operating pressure"> operating pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress" title=" wall shear stress"> wall shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=Garnet%20abrasive" title=" Garnet abrasive"> Garnet abrasive</a> </p> <a href="https://publications.waset.org/abstracts/27545/numerical-analysis-on-the-effect-of-abrasive-parameters-on-wall-shear-stress-and-jet-exit-kinetic-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=marginal%20water&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=marginal%20water&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=marginal%20water&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=marginal%20water&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=marginal%20water&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=marginal%20water&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=marginal%20water&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=marginal%20water&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=marginal%20water&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=marginal%20water&page=294">294</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=marginal%20water&page=295">295</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=marginal%20water&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>