CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;15 of 15 results for author: <span class="mathjax">Tumer, K</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Tumer%2C+K">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Tumer, K"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Tumer%2C+K&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Tumer, K"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.07315">arXiv:1906.07315</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.07315">pdf</a>, <a href="https://arxiv.org/format/1906.07315">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Evolutionary Reinforcement Learning for Sample-Efficient Multiagent Coordination </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Khadka%2C+S">Shauharda Khadka</a>, <a href="/search/cs?searchtype=author&amp;query=Majumdar%2C+S">Somdeb Majumdar</a>, <a href="/search/cs?searchtype=author&amp;query=Miret%2C+S">Santiago Miret</a>, <a href="/search/cs?searchtype=author&amp;query=McAleer%2C+S">Stephen McAleer</a>, <a href="/search/cs?searchtype=author&amp;query=Tumer%2C+K">Kagan Tumer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.07315v3-abstract-short" style="display: inline;"> Many cooperative multiagent reinforcement learning environments provide agents with a sparse team-based reward, as well as a dense agent-specific reward that incentivizes learning basic skills. Training policies solely on the team-based reward is often difficult due to its sparsity. Furthermore, relying solely on the agent-specific reward is sub-optimal because it usually does not capture the team&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.07315v3-abstract-full').style.display = 'inline'; document.getElementById('1906.07315v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.07315v3-abstract-full" style="display: none;"> Many cooperative multiagent reinforcement learning environments provide agents with a sparse team-based reward, as well as a dense agent-specific reward that incentivizes learning basic skills. Training policies solely on the team-based reward is often difficult due to its sparsity. Furthermore, relying solely on the agent-specific reward is sub-optimal because it usually does not capture the team coordination objective. A common approach is to use reward shaping to construct a proxy reward by combining the individual rewards. However, this requires manual tuning for each environment. We introduce Multiagent Evolutionary Reinforcement Learning (MERL), a split-level training platform that handles the two objectives separately through two optimization processes. An evolutionary algorithm maximizes the sparse team-based objective through neuroevolution on a population of teams. Concurrently, a gradient-based optimizer trains policies to only maximize the dense agent-specific rewards. The gradient-based policies are periodically added to the evolutionary population as a way of information transfer between the two optimization processes. This enables the evolutionary algorithm to use skills learned via the agent-specific rewards toward optimizing the global objective. Results demonstrate that MERL significantly outperforms state-of-the-art methods, such as MADDPG, on a number of difficult coordination benchmarks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.07315v3-abstract-full').style.display = 'none'; document.getElementById('1906.07315v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the 37th International Conference on Machine Learning, Vienna, Austria, PMLR 108, 2020</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the 37th International Conference on Machine Learning, Vienna, Austria, PMLR 119, 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.00976">arXiv:1905.00976</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.00976">pdf</a>, <a href="https://arxiv.org/format/1905.00976">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Collaborative Evolutionary Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Khadka%2C+S">Shauharda Khadka</a>, <a href="/search/cs?searchtype=author&amp;query=Majumdar%2C+S">Somdeb Majumdar</a>, <a href="/search/cs?searchtype=author&amp;query=Nassar%2C+T">Tarek Nassar</a>, <a href="/search/cs?searchtype=author&amp;query=Dwiel%2C+Z">Zach Dwiel</a>, <a href="/search/cs?searchtype=author&amp;query=Tumer%2C+E">Evren Tumer</a>, <a href="/search/cs?searchtype=author&amp;query=Miret%2C+S">Santiago Miret</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Y">Yinyin Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Tumer%2C+K">Kagan Tumer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.00976v2-abstract-short" style="display: inline;"> Deep reinforcement learning algorithms have been successfully applied to a range of challenging control tasks. However, these methods typically struggle with achieving effective exploration and are extremely sensitive to the choice of hyperparameters. One reason is that most approaches use a noisy version of their operating policy to explore - thereby limiting the range of exploration. In this pap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.00976v2-abstract-full').style.display = 'inline'; document.getElementById('1905.00976v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.00976v2-abstract-full" style="display: none;"> Deep reinforcement learning algorithms have been successfully applied to a range of challenging control tasks. However, these methods typically struggle with achieving effective exploration and are extremely sensitive to the choice of hyperparameters. One reason is that most approaches use a noisy version of their operating policy to explore - thereby limiting the range of exploration. In this paper, we introduce Collaborative Evolutionary Reinforcement Learning (CERL), a scalable framework that comprises a portfolio of policies that simultaneously explore and exploit diverse regions of the solution space. A collection of learners - typically proven algorithms like TD3 - optimize over varying time-horizons leading to this diverse portfolio. All learners contribute to and use a shared replay buffer to achieve greater sample efficiency. Computational resources are dynamically distributed to favor the best learners as a form of online algorithm selection. Neuroevolution binds this entire process to generate a single emergent learner that exceeds the capabilities of any individual learner. Experiments in a range of continuous control benchmarks demonstrate that the emergent learner significantly outperforms its composite learners while remaining overall more sample-efficient - notably solving the Mujoco Humanoid benchmark where all of its composite learners (TD3) fail entirely in isolation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.00976v2-abstract-full').style.display = 'none'; document.getElementById('1905.00976v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Added link to public Github repo. Minor editorial changes. Order of authors modified to reflect ICML submission</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the 36th International Conference on Machine Learning, Long Beach, California, PMLR 97, 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.07917">arXiv:1805.07917</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.07917">pdf</a>, <a href="https://arxiv.org/format/1805.07917">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Evolution-Guided Policy Gradient in Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Khadka%2C+S">Shauharda Khadka</a>, <a href="/search/cs?searchtype=author&amp;query=Tumer%2C+K">Kagan Tumer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.07917v2-abstract-short" style="display: inline;"> Deep Reinforcement Learning (DRL) algorithms have been successfully applied to a range of challenging control tasks. However, these methods typically suffer from three core difficulties: temporal credit assignment with sparse rewards, lack of effective exploration, and brittle convergence properties that are extremely sensitive to hyperparameters. Collectively, these challenges severely limit the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.07917v2-abstract-full').style.display = 'inline'; document.getElementById('1805.07917v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.07917v2-abstract-full" style="display: none;"> Deep Reinforcement Learning (DRL) algorithms have been successfully applied to a range of challenging control tasks. However, these methods typically suffer from three core difficulties: temporal credit assignment with sparse rewards, lack of effective exploration, and brittle convergence properties that are extremely sensitive to hyperparameters. Collectively, these challenges severely limit the applicability of these approaches to real-world problems. Evolutionary Algorithms (EAs), a class of black box optimization techniques inspired by natural evolution, are well suited to address each of these three challenges. However, EAs typically suffer from high sample complexity and struggle to solve problems that require optimization of a large number of parameters. In this paper, we introduce Evolutionary Reinforcement Learning (ERL), a hybrid algorithm that leverages the population of an EA to provide diversified data to train an RL agent, and reinserts the RL agent into the EA population periodically to inject gradient information into the EA. ERL inherits EA&#39;s ability of temporal credit assignment with a fitness metric, effective exploration with a diverse set of policies, and stability of a population-based approach and complements it with off-policy DRL&#39;s ability to leverage gradients for higher sample efficiency and faster learning. Experiments in a range of challenging continuous control benchmarks demonstrate that ERL significantly outperforms prior DRL and EA methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.07917v2-abstract-full').style.display = 'none'; document.getElementById('1805.07917v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32nd Conference on Neural Information Processing Systems (NIPS 2018), Montr茅al, Canada</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1106.1821">arXiv:1106.1821</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1106.1821">pdf</a>, <a href="https://arxiv.org/ps/1106.1821">ps</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1613/jair.995">10.1613/jair.995 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Collective Intelligence, Data Routing and Braess&#39; Paradox </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Tumer%2C+K">K. Tumer</a>, <a href="/search/cs?searchtype=author&amp;query=Wolpert%2C+D+H">D. H. Wolpert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1106.1821v1-abstract-short" style="display: inline;"> We consider the problem of designing the the utility functions of the utility-maximizing agents in a multi-agent system so that they work synergistically to maximize a global utility. The particular problem domain we explore is the control of network routing by placing agents on all the routers in the network. Conventional approaches to this task have the agents all use the Ideal S&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1106.1821v1-abstract-full').style.display = 'inline'; document.getElementById('1106.1821v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1106.1821v1-abstract-full" style="display: none;"> We consider the problem of designing the the utility functions of the utility-maximizing agents in a multi-agent system so that they work synergistically to maximize a global utility. The particular problem domain we explore is the control of network routing by placing agents on all the routers in the network. Conventional approaches to this task have the agents all use the Ideal Shortest Path routing Algorithm (ISPA). We demonstrate that in many cases, due to the side-effects of one agent&#39;s actions on another agent&#39;s performance, having agents use ISPA&#39;s is suboptimal as far as global aggregate cost is concerned, even when they are only used to route infinitesimally small amounts of traffic. The utility functions of the individual agents are not &#34;aligned&#34; with the global utility, intuitively speaking. As a particular example of this we present an instance of Braess&#39; paradox in which adding new links to a network whose agents all use the ISPA results in a decrease in overall throughput. We also demonstrate that load-balancing, in which the agents&#39; decisions are collectively made to optimize the global cost incurred by all traffic currently being routed, is suboptimal as far as global cost averaged across time is concerned. This is also due to &#39;side-effects&#39;, in this case of current routing decision on future traffic. The mathematics of Collective Intelligence (COIN) is concerned precisely with the issue of avoiding such deleterious side-effects in multi-agent systems, both over time and space. We present key concepts from that mathematics and use them to derive an algorithm whose ideal version should have better performance than that of having all agents use the ISPA, even in the infinitesimal limit. We present experiments verifying this, and also showing that a machine-learning-based version of this COIN algorithm in which costs are only imprecisely estimated via empirical means (a version potentially applicable in the real world) also outperforms the ISPA, despite having access to less information than does the ISPA. In particular, this COIN algorithm almost always avoids Braess&#39; paradox. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1106.1821v1-abstract-full').style.display = 'none'; document.getElementById('1106.1821v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal Of Artificial Intelligence Research, Volume 16, pages 359-387, 2002 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/math/0301268">arXiv:math/0301268</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/math/0301268">pdf</a>, <a href="https://arxiv.org/ps/math/0301268">ps</a>, <a href="https://arxiv.org/format/math/0301268">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.69.017701">10.1103/PhysRevE.69.017701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improving Search Algorithms by Using Intelligent Coordinates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wolpert%2C+D">David Wolpert</a>, <a href="/search/cs?searchtype=author&amp;query=Tumer%2C+K">Kagan Tumer</a>, <a href="/search/cs?searchtype=author&amp;query=Bandari%2C+E">Esfandiar Bandari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="math/0301268v1-abstract-short" style="display: inline;"> We consider the problem of designing a set of computational agents so that as they all pursue their self-interests a global function G of the collective system is optimized. Three factors govern the quality of such design. The first relates to conventional exploration-exploitation search algorithms for finding the maxima of such a global function, e.g., simulated annealing. Game-theoretic algori&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('math/0301268v1-abstract-full').style.display = 'inline'; document.getElementById('math/0301268v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="math/0301268v1-abstract-full" style="display: none;"> We consider the problem of designing a set of computational agents so that as they all pursue their self-interests a global function G of the collective system is optimized. Three factors govern the quality of such design. The first relates to conventional exploration-exploitation search algorithms for finding the maxima of such a global function, e.g., simulated annealing. Game-theoretic algorithms instead are related to the second of those factors, and the third is related to techniques from the field of machine learning. Here we demonstrate how to exploit all three factors by modifying the search algorithm&#39;s exploration stage so that rather than by random sampling, each coordinate of the underlying search space is controlled by an associated machine-learning-based ``player&#39;&#39; engaged in a non-cooperative game. Experiments demonstrate that this modification improves SA by up to an order of magnitude for bin-packing and for a model of an economic process run over an underlying network. These experiments also reveal novel small worlds phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('math/0301268v1-abstract-full').style.display = 'none'; document.getElementById('math/0301268v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2003. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0301459">arXiv:cond-mat/0301459</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0301459">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0301459">ps</a>, <a href="https://arxiv.org/format/cond-mat/0301459">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> </div> <p class="title is-5 mathjax"> Collectives for the Optimal Combination of Imperfect Objects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Tumer%2C+K">Kagan Tumer</a>, <a href="/search/cs?searchtype=author&amp;query=Wolpert%2C+D">David Wolpert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0301459v1-abstract-short" style="display: inline;"> In this letter we summarize some recent theoretical work on the design of collectives, i.e., of systems containing many agents, each of which can be viewed as trying to maximize an associated private utility, where there is also a world utility rating the behavior of that overall system that the designer of the collective wishes to optimize. We then apply algorithms based on that work on a recen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0301459v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0301459v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0301459v1-abstract-full" style="display: none;"> In this letter we summarize some recent theoretical work on the design of collectives, i.e., of systems containing many agents, each of which can be viewed as trying to maximize an associated private utility, where there is also a world utility rating the behavior of that overall system that the designer of the collective wishes to optimize. We then apply algorithms based on that work on a recently suggested testbed for such optimization problems (Challet &amp; Johnson, PRL, vol 89, 028701 2002). This is the problem of finding the combination of imperfect nano-scale objects that results in the best aggregate object. We present experimental results showing that these algorithms outperform conventional methods by more than an order of magnitude in this domain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0301459v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0301459v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cs/9912012">arXiv:cs/9912012</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cs/9912012">pdf</a>, <a href="https://arxiv.org/ps/cs/9912012">ps</a>, <a href="https://arxiv.org/format/cs/9912012">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> </div> <p class="title is-5 mathjax"> Avoiding Braess&#39; Paradox through Collective Intelligence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Tumer%2C+K">Kagan Tumer</a>, <a href="/search/cs?searchtype=author&amp;query=Wolpert%2C+D+H">David H. Wolpert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cs/9912012v1-abstract-short" style="display: inline;"> In an Ideal Shortest Path Algorithm (ISPA), at each moment each router in a network sends all of its traffic down the path that will incur the lowest cost to that traffic. In the limit of an infinitesimally small amount of traffic for a particular router, its routing that traffic via an ISPA is optimal, as far as cost incurred by that traffic is concerned. We demonstrate though that in many case&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/9912012v1-abstract-full').style.display = 'inline'; document.getElementById('cs/9912012v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cs/9912012v1-abstract-full" style="display: none;"> In an Ideal Shortest Path Algorithm (ISPA), at each moment each router in a network sends all of its traffic down the path that will incur the lowest cost to that traffic. In the limit of an infinitesimally small amount of traffic for a particular router, its routing that traffic via an ISPA is optimal, as far as cost incurred by that traffic is concerned. We demonstrate though that in many cases, due to the side-effects of one router&#39;s actions on another routers performance, having routers use ISPA&#39;s is suboptimal as far as global aggregate cost is concerned, even when only used to route infinitesimally small amounts of traffic. As a particular example of this we present an instance of Braess&#39; paradox for ISPA&#39;s, in which adding new links to a network decreases overall throughput. We also demonstrate that load-balancing, in which the routing decisions are made to optimize the global cost incurred by all traffic currently being routed, is suboptimal as far as global cost averaged across time is concerned. This is also due to &#34;side-effects&#34;, in this case of current routing decision on future traffic. The theory of COllective INtelligence (COIN) is concerned precisely with the issue of avoiding such deleterious side-effects. We present key concepts from that theory and use them to derive an idealized algorithm whose performance is better than that of the ISPA, even in the infinitesimal limit. We present experiments verifying this, and also showing that a machine-learning-based version of this COIN algorithm in which costs are only imprecisely estimated (a version potentially applicable in the real world) also outperforms the ISPA, despite having access to less information than does the ISPA. In particular, this COIN algorithm avoids Braess&#39; paradox. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/9912012v1-abstract-full').style.display = 'none'; document.getElementById('cs/9912012v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 1999; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 1999. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NASA-ARC-IC-99-124 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> C.2.0; I.2.11 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cs/9912011">arXiv:cs/9912011</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cs/9912011">pdf</a>, <a href="https://arxiv.org/ps/cs/9912011">ps</a>, <a href="https://arxiv.org/format/cs/9912011">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> </div> <p class="title is-5 mathjax"> Adaptivity in Agent-Based Routing for Data Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wolpert%2C+D+H">David H. Wolpert</a>, <a href="/search/cs?searchtype=author&amp;query=Kirshner%2C+S">Sergey Kirshner</a>, <a href="/search/cs?searchtype=author&amp;query=Merz%2C+C+J">Chris J. Merz</a>, <a href="/search/cs?searchtype=author&amp;query=Tumer%2C+K">Kagan Tumer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cs/9912011v1-abstract-short" style="display: inline;"> Adaptivity, both of the individual agents and of the interaction structure among the agents, seems indispensable for scaling up multi-agent systems (MAS&#39;s) in noisy environments. One important consideration in designing adaptive agents is choosing their action spaces to be as amenable as possible to machine learning techniques, especially to reinforcement learning (RL) techniques. One important&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/9912011v1-abstract-full').style.display = 'inline'; document.getElementById('cs/9912011v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cs/9912011v1-abstract-full" style="display: none;"> Adaptivity, both of the individual agents and of the interaction structure among the agents, seems indispensable for scaling up multi-agent systems (MAS&#39;s) in noisy environments. One important consideration in designing adaptive agents is choosing their action spaces to be as amenable as possible to machine learning techniques, especially to reinforcement learning (RL) techniques. One important way to have the interaction structure connecting agents itself be adaptive is to have the intentions and/or actions of the agents be in the input spaces of the other agents, much as in Stackelberg games. We consider both kinds of adaptivity in the design of a MAS to control network packet routing. We demonstrate on the OPNET event-driven network simulator the perhaps surprising fact that simply changing the action space of the agents to be better suited to RL can result in very large improvements in their potential performance: at their best settings, our learning-amenable router agents achieve throughputs up to three and one half times better than that of the standard Bellman-Ford routing algorithm, even when the Bellman-Ford protocol traffic is maintained. We then demonstrate that much of that potential improvement can be realized by having the agents learn their settings when the agent interaction structure is itself adaptive. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/9912011v1-abstract-full').style.display = 'none'; document.getElementById('cs/9912011v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 1999; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 1999. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NASA-ARC-IC-99-122 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.2.11; C.2.0 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cs/9908014">arXiv:cs/9908014</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cs/9908014">pdf</a>, <a href="https://arxiv.org/ps/cs/9908014">ps</a>, <a href="https://arxiv.org/format/cs/9908014">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Condensed Matter">cond-mat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> </div> <p class="title is-5 mathjax"> An Introduction to Collective Intelligence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wolpert%2C+D+H">David H. Wolpert</a>, <a href="/search/cs?searchtype=author&amp;query=Tumer%2C+K">Kagan Tumer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cs/9908014v1-abstract-short" style="display: inline;"> This paper surveys the emerging science of how to design a ``COllective INtelligence&#39;&#39; (COIN). A COIN is a large multi-agent system where: (i) There is little to no centralized communication or control; and (ii) There is a provided world utility function that rates the possible histories of the full system. In particular, we are interested in COINs in which each agent runs a reinforcement&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/9908014v1-abstract-full').style.display = 'inline'; document.getElementById('cs/9908014v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cs/9908014v1-abstract-full" style="display: none;"> This paper surveys the emerging science of how to design a ``COllective INtelligence&#39;&#39; (COIN). A COIN is a large multi-agent system where: (i) There is little to no centralized communication or control; and (ii) There is a provided world utility function that rates the possible histories of the full system. In particular, we are interested in COINs in which each agent runs a reinforcement learning (RL) algorithm. Rather than use a conventional modeling approach (e.g., model the system dynamics, and hand-tune agents to cooperate), we aim to solve the COIN design problem implicitly, via the ``adaptive&#39;&#39; character of the RL algorithms of each of the agents. This approach introduces an entirely new, profound design problem: Assuming the RL algorithms are able to achieve high rewards, what reward functions for the individual agents will, when pursued by those agents, result in high world utility? In other words, what reward functions will best ensure that we do not have phenomena like the tragedy of the commons, Braess&#39;s paradox, or the liquidity trap? Although still very young, research specifically concentrating on the COIN design problem has already resulted in successes in artificial domains, in particular in packet-routing, the leader-follower problem, and in variants of Arthur&#39;s El Farol bar problem. It is expected that as it matures and draws upon other disciplines related to COINs, this research will greatly expand the range of tasks addressable by human engineers. Moreover, in addition to drawing on them, such a fully developed scie nce of COIN design may provide much insight into other already established scientific fields, such as economics, game theory, and population biology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/9908014v1-abstract-full').style.display = 'none'; document.getElementById('cs/9908014v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 1999; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 1999. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">88 pages, 10 figs, 297 refs</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NASA-ARC-IC-99-63 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.2.6; I.2.11 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cs/9908013">arXiv:cs/9908013</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cs/9908013">pdf</a>, <a href="https://arxiv.org/ps/cs/9908013">ps</a>, <a href="https://arxiv.org/format/cs/9908013">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Condensed Matter">cond-mat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/epl/i2000-00208-x">10.1209/epl/i2000-00208-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Collective Intelligence for Control of Distributed Dynamical Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wolpert%2C+D+H">David H. Wolpert</a>, <a href="/search/cs?searchtype=author&amp;query=Wheeler%2C+K+R">Kevin R. Wheeler</a>, <a href="/search/cs?searchtype=author&amp;query=Tumer%2C+K">Kagan Tumer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cs/9908013v1-abstract-short" style="display: inline;"> We consider the El Farol bar problem, also known as the minority game (W. B. Arthur, ``The American Economic Review&#39;&#39;, 84(2): 406--411 (1994), D. Challet and Y.C. Zhang, ``Physica A&#39;&#39;, 256:514 (1998)). We view it as an instance of the general problem of how to configure the nodal elements of a distributed dynamical system so that they do not ``work at cross purposes&#39;&#39;, in that their collective d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/9908013v1-abstract-full').style.display = 'inline'; document.getElementById('cs/9908013v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cs/9908013v1-abstract-full" style="display: none;"> We consider the El Farol bar problem, also known as the minority game (W. B. Arthur, ``The American Economic Review&#39;&#39;, 84(2): 406--411 (1994), D. Challet and Y.C. Zhang, ``Physica A&#39;&#39;, 256:514 (1998)). We view it as an instance of the general problem of how to configure the nodal elements of a distributed dynamical system so that they do not ``work at cross purposes&#39;&#39;, in that their collective dynamics avoids frustration and thereby achieves a provided global goal. We summarize a mathematical theory for such configuration applicable when (as in the bar problem) the global goal can be expressed as minimizing a global energy function and the nodes can be expressed as minimizers of local free energy functions. We show that a system designed with that theory performs nearly optimally for the bar problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/9908013v1-abstract-full').style.display = 'none'; document.getElementById('cs/9908013v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 1999; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 1999. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NASA-ARC-IC-99-44 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.2.6; I.2.11 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cs/9905013">arXiv:cs/9905013</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cs/9905013">pdf</a>, <a href="https://arxiv.org/ps/cs/9905013">ps</a>, <a href="https://arxiv.org/format/cs/9905013">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> </div> </div> <p class="title is-5 mathjax"> Robust Combining of Disparate Classifiers through Order Statistics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Tumer%2C+K">Kagan Tumer</a>, <a href="/search/cs?searchtype=author&amp;query=Ghosh%2C+J">Joydeep Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cs/9905013v1-abstract-short" style="display: inline;"> Integrating the outputs of multiple classifiers via combiners or meta-learners has led to substantial improvements in several difficult pattern recognition problems. In the typical setting investigated till now, each classifier is trained on data taken or resampled from a common data set, or (almost) randomly selected subsets thereof, and thus experiences similar quality of training data. Howeve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/9905013v1-abstract-full').style.display = 'inline'; document.getElementById('cs/9905013v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cs/9905013v1-abstract-full" style="display: none;"> Integrating the outputs of multiple classifiers via combiners or meta-learners has led to substantial improvements in several difficult pattern recognition problems. In the typical setting investigated till now, each classifier is trained on data taken or resampled from a common data set, or (almost) randomly selected subsets thereof, and thus experiences similar quality of training data. However, in certain situations where data is acquired and analyzed on-line at several geographically distributed locations, the quality of data may vary substantially, leading to large discrepancies in performance of individual classifiers. In this article we introduce and investigate a family of classifiers based on order statistics, for robust handling of such cases. Based on a mathematical modeling of how the decision boundaries are affected by order statistic combiners, we derive expressions for the reductions in error expected when such combiners are used. We show analytically that the selection of the median, the maximum and in general, the $i^{th}$ order statistic improves classification performance. Furthermore, we introduce the trim and spread combiners, both based on linear combinations of the ordered classifier outputs, and show that they are quite beneficial in presence of outliers or uneven classifier performance. Experimental results on several public domain data sets corroborate these findings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/9905013v1-abstract-full').style.display = 'none'; document.getElementById('cs/9905013v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 1999; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 1999. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UT-CVIS-TR-99-001 (The University of Texas) <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.5.1; G.3 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cs/9905012">arXiv:cs/9905012</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cs/9905012">pdf</a>, <a href="https://arxiv.org/ps/cs/9905012">ps</a>, <a href="https://arxiv.org/format/cs/9905012">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Linear and Order Statistics Combiners for Pattern Classification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Tumer%2C+K">Kagan Tumer</a>, <a href="/search/cs?searchtype=author&amp;query=Ghosh%2C+J">Joydeep Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cs/9905012v1-abstract-short" style="display: inline;"> Several researchers have experimentally shown that substantial improvements can be obtained in difficult pattern recognition problems by combining or integrating the outputs of multiple classifiers. This chapter provides an analytical framework to quantify the improvements in classification results due to combining. The results apply to both linear combiners and order statistics combiners. We fi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/9905012v1-abstract-full').style.display = 'inline'; document.getElementById('cs/9905012v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cs/9905012v1-abstract-full" style="display: none;"> Several researchers have experimentally shown that substantial improvements can be obtained in difficult pattern recognition problems by combining or integrating the outputs of multiple classifiers. This chapter provides an analytical framework to quantify the improvements in classification results due to combining. The results apply to both linear combiners and order statistics combiners. We first show that to a first order approximation, the error rate obtained over and above the Bayes error rate, is directly proportional to the variance of the actual decision boundaries around the Bayes optimum boundary. Combining classifiers in output space reduces this variance, and hence reduces the &#34;added&#34; error. If N unbiased classifiers are combined by simple averaging, the added error rate can be reduced by a factor of N if the individual errors in approximating the decision boundaries are uncorrelated. Expressions are then derived for linear combiners which are biased or correlated, and the effect of output correlations on ensemble performance is quantified. For order statistics based non-linear combiners, we derive expressions that indicate how much the median, the maximum and in general the ith order statistic can improve classifier performance. The analysis presented here facilitates the understanding of the relationships among error rates, classifier boundary distributions, and combining in output space. Experimental results on several public domain data sets are provided to illustrate the benefits of combining and to support the analytical results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/9905012v1-abstract-full').style.display = 'none'; document.getElementById('cs/9905012v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 1999; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 1999. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.5.1; I.2.6 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Combining Artificial Neural Networks,Ed. Amanda Sharkey, pp 127-162, Springer Verlag, 1999 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cs/9905011">arXiv:cs/9905011</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cs/9905011">pdf</a>, <a href="https://arxiv.org/ps/cs/9905011">ps</a>, <a href="https://arxiv.org/format/cs/9905011">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Biology">q-bio</span> </div> </div> <p class="title is-5 mathjax"> Ensembles of Radial Basis Function Networks for Spectroscopic Detection of Cervical Pre-Cancer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Tumer%2C+K">Kagan Tumer</a>, <a href="/search/cs?searchtype=author&amp;query=Ramanujam%2C+N">Nirmala Ramanujam</a>, <a href="/search/cs?searchtype=author&amp;query=Ghosh%2C+J">Joydeep Ghosh</a>, <a href="/search/cs?searchtype=author&amp;query=Richards-Kortum%2C+R">Rebecca Richards-Kortum</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cs/9905011v1-abstract-short" style="display: inline;"> The mortality related to cervical cancer can be substantially reduced through early detection and treatment. However, current detection techniques, such as Pap smear and colposcopy, fail to achieve a concurrently high sensitivity and specificity. In vivo fluorescence spectroscopy is a technique which quickly, non-invasively and quantitatively probes the biochemical and morphological changes th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/9905011v1-abstract-full').style.display = 'inline'; document.getElementById('cs/9905011v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cs/9905011v1-abstract-full" style="display: none;"> The mortality related to cervical cancer can be substantially reduced through early detection and treatment. However, current detection techniques, such as Pap smear and colposcopy, fail to achieve a concurrently high sensitivity and specificity. In vivo fluorescence spectroscopy is a technique which quickly, non-invasively and quantitatively probes the biochemical and morphological changes that occur in pre-cancerous tissue. A multivariate statistical algorithm was used to extract clinically useful information from tissue spectra acquired from 361 cervical sites from 95 patients at 337, 380 and 460 nm excitation wavelengths. The multivariate statistical analysis was also employed to reduce the number of fluorescence excitation-emission wavelength pairs required to discriminate healthy tissue samples from pre-cancerous tissue samples. The use of connectionist methods such as multi layered perceptrons, radial basis function networks, and ensembles of such networks was investigated. RBF ensemble algorithms based on fluorescence spectra potentially provide automated, and near real-time implementation of pre-cancer detection in the hands of non-experts. The results are more reliable, direct and accurate than those achieved by either human experts or multivariate statistical algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/9905011v1-abstract-full').style.display = 'none'; document.getElementById('cs/9905011v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 1999; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 1999. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.5.1; J.3 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Transactions on Biomedical Engineering, vol 45, no. 8, pp 953-962, 1998 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cs/9905005">arXiv:cs/9905005</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cs/9905005">pdf</a>, <a href="https://arxiv.org/ps/cs/9905005">ps</a>, <a href="https://arxiv.org/format/cs/9905005">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> </div> <p class="title is-5 mathjax"> General Principles of Learning-Based Multi-Agent Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wolpert%2C+D+H">David H. Wolpert</a>, <a href="/search/cs?searchtype=author&amp;query=Wheeler%2C+K+R">Kevin R. Wheeler</a>, <a href="/search/cs?searchtype=author&amp;query=Tumer%2C+K">Kagan Tumer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cs/9905005v1-abstract-short" style="display: inline;"> We consider the problem of how to design large decentralized multi-agent systems (MAS&#39;s) in an automated fashion, with little or no hand-tuning. Our approach has each agent run a reinforcement learning algorithm. This converts the problem into one of how to automatically set/update the reward functions for each of the agents so that the global goal is achieved. In particular we do not want the a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/9905005v1-abstract-full').style.display = 'inline'; document.getElementById('cs/9905005v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cs/9905005v1-abstract-full" style="display: none;"> We consider the problem of how to design large decentralized multi-agent systems (MAS&#39;s) in an automated fashion, with little or no hand-tuning. Our approach has each agent run a reinforcement learning algorithm. This converts the problem into one of how to automatically set/update the reward functions for each of the agents so that the global goal is achieved. In particular we do not want the agents to ``work at cross-purposes&#39;&#39; as far as the global goal is concerned. We use the term artificial COllective INtelligence (COIN) to refer to systems that embody solutions to this problem. In this paper we present a summary of a mathematical framework for COINs. We then investigate the real-world applicability of the core concepts of that framework via two computer experiments: we show that our COINs perform near optimally in a difficult variant of Arthur&#39;s bar problem (and in particular avoid the tragedy of the commons for that problem), and we also illustrate optimal performance for our COINs in the leader-follower problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/9905005v1-abstract-full').style.display = 'none'; document.getElementById('cs/9905005v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 1999; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 1999. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.2.6; I.2.11 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the Third International Conference on Autonomous Agents, Seatle, WA 1999 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cs/9905004">arXiv:cs/9905004</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cs/9905004">pdf</a>, <a href="https://arxiv.org/ps/cs/9905004">ps</a>, <a href="https://arxiv.org/format/cs/9905004">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> </div> <p class="title is-5 mathjax"> Using Collective Intelligence to Route Internet Traffic </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wolpert%2C+D+H">David H. Wolpert</a>, <a href="/search/cs?searchtype=author&amp;query=Tumer%2C+K">Kagan Tumer</a>, <a href="/search/cs?searchtype=author&amp;query=Frank%2C+J">Jeremy Frank</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cs/9905004v1-abstract-short" style="display: inline;"> A COllective INtelligence (COIN) is a set of interacting reinforcement learning (RL) algorithms designed in an automated fashion so that their collective behavior optimizes a global utility function. We summarize the theory of COINs, then present experiments using that theory to design COINs to control internet traffic routing. These experiments indicate that COINs outperform all previously inve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/9905004v1-abstract-full').style.display = 'inline'; document.getElementById('cs/9905004v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cs/9905004v1-abstract-full" style="display: none;"> A COllective INtelligence (COIN) is a set of interacting reinforcement learning (RL) algorithms designed in an automated fashion so that their collective behavior optimizes a global utility function. We summarize the theory of COINs, then present experiments using that theory to design COINs to control internet traffic routing. These experiments indicate that COINs outperform all previously investigated RL-based, shortest path routing algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cs/9905004v1-abstract-full').style.display = 'none'; document.getElementById('cs/9905004v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 1999; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 1999. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.2.6; I.2.11 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advances in Information Processing Systems - 11, eds M. Kearns, S. Solla, D. Cohn, MIT Press, 1999 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10