CINXE.COM

HOMFLY-PT polynomial (changes) in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> HOMFLY-PT polynomial (changes) in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="noindex,nofollow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> HOMFLY-PT polynomial (changes) </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/diff/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussions/?CategoryID=0" title="Discuss this page on the nForum. It does not yet have a dedicated thread; feel free to create one, giving it the same name as the title of this page" style="color:black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <p class="show_diff"> Showing changes from revision #9 to #10: <ins class="diffins">Added</ins> | <del class="diffdel">Removed</del> | <del class="diffmod">Chan</del><ins class="diffmod">ged</ins> </p> <div class='rightHandSide'> <div class='toc clickDown' tabindex='0'> <h3 id='context'>Context</h3> <h4 id='knot_theory'>Knot theory</h4> <div class='hide'> <p><strong><a class='existingWikiWord' href='/nlab/show/diff/knot'>knot theory</a></strong></p> <p><strong><a class='existingWikiWord' href='/nlab/show/diff/knot'>knot</a></strong>, <strong><a class='existingWikiWord' href='/nlab/show/diff/link'>link</a></strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/isotopy'>isotopy</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/knot+complement'>knot complement</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/link+diagram'>knot diagrams</a>, <a class='existingWikiWord' href='/nlab/show/diff/chord+diagram'>chord diagram</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Reidemeister+move'>Reidemeister move</a></p> </li> </ul> <p><strong>Examples/classes:</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/trefoil+knot'>trefoil knot</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/torus+knot'>torus knot</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/singular+knot'>singular knot</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/hyperbolic+link'>hyperbolic knot</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Borromean+link'>Borromean link</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Whitehead+link'>Whitehead link</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Hopf+link'>Hopf link</a></p> </li> </ul> <p><strong>Types</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/prime+knot'>prime knot</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/mutant+knot'>mutant knot</a></p> </li> </ul> <p><strong><a class='existingWikiWord' href='/nlab/show/diff/knot+invariant'>knot invariants</a></strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/crossing+number'>crossing number</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/bridge+number'>bridge number</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/unknotting+number'>unknotting number</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/colorable+knot'>colorability</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/knot+group'>knot group</a></p> </li> <li> <p><span class='newWikiWord'>knot genus<a href='/nlab/new/knot+genus'>?</a></span></p> </li> <li> <p>polynomial knot invariants</p> <p>(<a class='existingWikiWord' href='/nlab/show/diff/quantum+observable'>observables</a> of <a class='existingWikiWord' href='/nlab/show/diff/non-perturbative+quantum+field+theory'>non-perturbative</a> <a class='existingWikiWord' href='/nlab/show/diff/Chern-Simons+theory'>Chern-Simons theory</a>)</p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Jones+polynomial'>Jones polynomial</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/HOMFLY-PT+polynomial'>HOMFLY polynomial</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Alexander+polynomial'>Alexander polynomial</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Reshetikhin-Turaev+construction'>Reshetikhin-Turaev invariants</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Vassiliev+invariant'>Vassiliev knot invariants</a></p> <p>(<a class='existingWikiWord' href='/nlab/show/diff/quantum+observable'>observables</a> of <a class='existingWikiWord' href='/nlab/show/diff/perturbative+quantum+field+theory'>pertrubative</a> <a class='existingWikiWord' href='/nlab/show/diff/Chern-Simons+theory'>Chern-Simons theory</a>)</p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Khovanov+homology'>Khovanov homology</a></p> </li> <li> <p><span class='newWikiWord'>Kauffman bracket<a href='/nlab/new/Kauffman+bracket'>?</a></span></p> </li> </ul> <p><a class='existingWikiWord' href='/nlab/show/diff/link+invariant'>link invariants</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Milnor+mu-bar+invariant'>Milnor mu-bar invariants</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/linking+number'>linking number</a></p> </li> </ul> <p><strong>Related concepts:</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Vassiliev+skein+relation'>Vassiliev skein relation</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Seifert+surface'>Seifert surface</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/virtual+knot+theory'>virtual knot theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Dehn+surgery'>Dehn surgery</a>, <a class='existingWikiWord' href='/nlab/show/diff/Kirby+calculus'>Kirby calculus</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/volume+conjecture'>volume conjecture</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/arithmetic+topology'>arithmetic topology</a></p> </li> </ul> </div> </div> </div> <h1 id='the_homflypt_polynomial'>The HOMFLY-PT Polynomial</h1> <div class='maruku_toc'><ul><li><a href='#idea'>Idea</a></li><li><a href='#definition'>Definition</a></li><li><a href='#properties'>Properties</a></li><ins class='diffins'><li><a href='#related_entries'>Related entries</a></li></ins><li><a href='#references'>References</a></li></ul></div> <h2 id='idea'>Idea</h2> <p>The HOMFLY-PT polynomial is a <a class='existingWikiWord' href='/nlab/show/diff/knot'>knot</a> and <a class='existingWikiWord' href='/nlab/show/diff/link'>link</a> <a class='existingWikiWord' href='/nlab/show/diff/knot+invariant'>invariant</a>. Confusingly, there are several variants depending on exactly which relationships are used to define it. All are related by simple substitutions.</p> <h2 id='definition'>Definition</h2> <p>To compute the HOMFLY-PT polynomial, one starts from an <a class='existingWikiWord' href='/nlab/show/diff/oriented+link+diagram'>oriented link diagram</a> and uses the following rules:</p> <ol> <li> <p><math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math> is an isotopy invariant (thus, unchanged by <a class='existingWikiWord' href='/nlab/show/diff/Reidemeister+move'>Reidemeister moves</a>).</p> </li> <li> <p><math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>P</mi><mo stretchy='false'>(</mo><mtext>unknot</mtext><mo stretchy='false'>)</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>P(\text{unknot}) = 1</annotation></semantics></math></p> </li> <li> <p>Let <math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>L</mi> <mo>+</mo></msub></mrow><annotation encoding='application/x-tex'>L_+</annotation></semantics></math>, <math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>L</mi> <mo>−</mo></msub></mrow><annotation encoding='application/x-tex'>L_-</annotation></semantics></math>, and <math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>L</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>L_0</annotation></semantics></math> be links which are the same except for one part where they differ according to the diagrams below. Then, depending on the choice of variables:</p> <ol> <li><math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>l</mi><mo>⋅</mo><mi>P</mi><mo stretchy='false'>(</mo><msub><mi>L</mi> <mo>+</mo></msub><mo stretchy='false'>)</mo><mo>+</mo><msup><mi>l</mi> <mrow><mo lspace='verythinmathspace' rspace='0em'>−</mo><mn>1</mn></mrow></msup><mo>⋅</mo><mi>P</mi><mo stretchy='false'>(</mo><msub><mi>L</mi> <mo>−</mo></msub><mo stretchy='false'>)</mo><mo>+</mo><mi>m</mi><mo>⋅</mo><mi>P</mi><mo stretchy='false'>(</mo><msub><mi>L</mi> <mn>0</mn></msub><mo stretchy='false'>)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>l \cdot P(L_+) + l^{-1} \cdot P(L_-) + m \cdot P(L_0) = 0</annotation></semantics></math>.</li> <li><math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>a</mi><mo>⋅</mo><mi>P</mi><mo stretchy='false'>(</mo><msub><mi>L</mi> <mo>+</mo></msub><mo stretchy='false'>)</mo><mo>−</mo><msup><mi>a</mi> <mrow><mo lspace='verythinmathspace' rspace='0em'>−</mo><mn>1</mn></mrow></msup><mo>⋅</mo><mi>P</mi><mo stretchy='false'>(</mo><msub><mi>L</mi> <mo>−</mo></msub><mo stretchy='false'>)</mo><mo>=</mo><mi>z</mi><mo>⋅</mo><mi>P</mi><mo stretchy='false'>(</mo><msub><mi>L</mi> <mn>0</mn></msub><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>a \cdot P(L_+) - a^{-1} \cdot P(L_-) = z \cdot P(L_0)</annotation></semantics></math>. (Sometimes <math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ν</mi></mrow><annotation encoding='application/x-tex'>\nu</annotation></semantics></math> is used instead of <math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math>)</li> <li><math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>α</mi> <mrow><mo lspace='verythinmathspace' rspace='0em'>−</mo><mn>1</mn></mrow></msup><mo>⋅</mo><mi>P</mi><mo stretchy='false'>(</mo><msub><mi>L</mi> <mo>+</mo></msub><mo stretchy='false'>)</mo><mo>−</mo><mi>α</mi><mo>⋅</mo><mi>P</mi><mo stretchy='false'>(</mo><msub><mi>L</mi> <mo>−</mo></msub><mo stretchy='false'>)</mo><mo>=</mo><mi>z</mi><mo>⋅</mo><mi>P</mi><mo stretchy='false'>(</mo><msub><mi>L</mi> <mn>0</mn></msub><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\alpha^{-1} \cdot P(L_+) - \alpha \cdot P(L_-) = z \cdot P(L_0)</annotation></semantics></math>.</li> <li>Using <em>three</em> variables: <math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi><mo>⋅</mo><mi>P</mi><mo stretchy='false'>(</mo><msub><mi>L</mi> <mo>+</mo></msub><mo stretchy='false'>)</mo><mo>+</mo><mi>y</mi><mo>⋅</mo><mi>P</mi><mo stretchy='false'>(</mo><msub><mi>L</mi> <mo>−</mo></msub><mo stretchy='false'>)</mo><mo>+</mo><mi>z</mi><mo>⋅</mo><mi>P</mi><mo stretchy='false'>(</mo><msub><mi>L</mi> <mn>0</mn></msub><mo stretchy='false'>)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x \cdot P(L_+) + y \cdot P(L_-) + z \cdot P(L_0) = 0</annotation></semantics></math>.</li> </ol> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_12' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mtable columnalign='center center center' displaystyle='false' rowspacing='0.5ex'><mtr><mtd><semantics><annotation-xml encoding='SVG1.1'><svg height='62pt' viewBox='-2.5 -2.5 61.90549 61.90549 ' width='62pt' xmlns:xlink='http://www.w3.org/1999/xlink' xmlns='http://www.w3.org/2000/svg'><g transform='translate(0 59) scale(1 -1) translate(0 2.5)'><g stroke='#000'><g fill='#000'><g stroke-width='.4pt'><g stroke-width='2pt'><g stroke='#fff'><g fill='#fff'><g stroke-width='5pt'><path d='m57 0l-57 57' fill='none' /><g stroke-width='1pt'><g stroke='#f00'><path d='m57 0l-57 57' fill='none' /></g></g></g><g stroke='#f00'><g fill='#f00'><g transform='matrix(-.71 .71 -.71 -.71 1.7 55)'><g transform='matrix(1 0 0 1 0 0)'><g stroke-dasharray='none' stroke-dashoffset='0pt'><g stroke-linejoin='miter'><path d='m-7.3 4.5l7.8-4.5-7.8-4.5z' /></g></g></g></g></g></g><g stroke-width='2pt'><g stroke='#fff'><g fill='#fff' /></g></g></g></g></g><g stroke-width='2pt'><g stroke='#fff'><g fill='#fff'><g stroke-width='5pt'><path d='m0 0l57 57' fill='none' /><g stroke-width='1pt'><g stroke='#f00'><path d='m0 0l57 57' fill='none' /></g></g></g><g stroke='#f00'><g fill='#f00'><g transform='matrix(.71 .71 -.71 .71 55 55)'><g transform='matrix(1 0 0 1 0 0)'><g stroke-dasharray='none' stroke-dashoffset='0pt'><g stroke-linejoin='miter'><path d='m-7.3 4.5l7.8-4.5-7.8-4.5z' /></g></g></g></g></g></g><g stroke-width='2pt'><g stroke='#fff'><g fill='#fff' /></g></g></g></g></g></g></g></g></g></svg></annotation-xml></semantics></mtd> <mtd><semantics><annotation-xml encoding='SVG1.1'><svg height='62pt' viewBox='-2.5 -2.5 61.90549 61.90549 ' width='62pt' xmlns:xlink='http://www.w3.org/1999/xlink' xmlns='http://www.w3.org/2000/svg'><g transform='translate(0 59) scale(1 -1) translate(0 2.5)'><g stroke='#000'><g fill='#000'><g stroke-width='.4pt'><g stroke-width='2pt'><g stroke='#fff'><g fill='#fff'><g stroke-width='5pt'><path d='m0 0l57 57' fill='none' /><g stroke-width='1pt'><g stroke='#f00'><path d='m0 0l57 57' fill='none' /></g></g></g><g stroke='#f00'><g fill='#f00'><g transform='matrix(.71 .71 -.71 .71 55 55)'><g transform='matrix(1 0 0 1 0 0)'><g stroke-dasharray='none' stroke-dashoffset='0pt'><g stroke-linejoin='miter'><path d='m-7.3 4.5l7.8-4.5-7.8-4.5z' /></g></g></g></g></g></g><g stroke-width='2pt'><g stroke='#fff'><g fill='#fff' /></g></g></g></g></g><g stroke-width='2pt'><g stroke='#fff'><g fill='#fff'><g stroke-width='5pt'><path d='m57 0l-57 57' fill='none' /><g stroke-width='1pt'><g stroke='#f00'><path d='m57 0l-57 57' fill='none' /></g></g></g><g stroke='#f00'><g fill='#f00'><g transform='matrix(-.71 .71 -.71 -.71 1.7 55)'><g transform='matrix(1 0 0 1 0 0)'><g stroke-dasharray='none' stroke-dashoffset='0pt'><g stroke-linejoin='miter'><path d='m-7.3 4.5l7.8-4.5-7.8-4.5z' /></g></g></g></g></g></g><g stroke-width='2pt'><g stroke='#fff'><g fill='#fff' /></g></g></g></g></g></g></g></g></g></svg></annotation-xml></semantics></mtd> <mtd><semantics><annotation-xml encoding='SVG1.1'><svg height='62pt' viewBox='-2.5 -2.5 61.90549 61.90549 ' width='62pt' xmlns:xlink='http://www.w3.org/1999/xlink' xmlns='http://www.w3.org/2000/svg'><g transform='translate(0 59) scale(1 -1) translate(0 2.5)'><g stroke='#000'><g fill='#000'><g stroke-width='.4pt'><g stroke-width='2pt'><g stroke='#fff'><g fill='#fff'><g stroke-width='5pt'><path d='m0 0c21 21 21 36 .28 57' fill='none' /><g stroke-width='1pt'><g stroke='#f00'><path d='m0 0c21 21 21 36 .28 57' fill='none' /></g></g></g><g stroke='#f00'><g fill='#f00'><g transform='matrix(-.71 .71 -.71 -.71 2 55)'><g transform='matrix(1 0 0 1 0 0)'><g stroke-dasharray='none' stroke-dashoffset='0pt'><g stroke-linejoin='miter'><path d='m-7.3 4.5l7.8-4.5-7.8-4.5z' /></g></g></g></g></g></g><g stroke='#f00'><g fill='#f00'><g transform='matrix(-.71 .71 -.71 -.71 2 55)'><g transform='matrix(1 0 0 1 0 0)'><g stroke-dasharray='none' stroke-dashoffset='0pt'><g stroke-linejoin='miter'><path d='m-7.3 4.5l7.8-4.5-7.8-4.5z' /></g></g></g></g></g></g><g stroke-width='2pt'><g stroke='#fff'><g fill='#fff' /></g></g></g></g></g><g stroke-width='2pt'><g stroke='#fff'><g fill='#fff'><g stroke-width='5pt'><path d='m57 0c-21 21-21 36 0 57' fill='none' /><g stroke-width='1pt'><g stroke='#f00'><path d='m57 0c-21 21-21 36 0 57' fill='none' /></g></g></g><g stroke='#f00'><g fill='#f00'><g transform='matrix(.71 .71 -.71 .71 55 55)'><g transform='matrix(1 0 0 1 0 0)'><g stroke-dasharray='none' stroke-dashoffset='0pt'><g stroke-linejoin='miter'><path d='m-7.3 4.5l7.8-4.5-7.8-4.5z' /></g></g></g></g></g></g><g stroke='#f00'><g fill='#f00'><g transform='matrix(.71 .71 -.71 .71 55 55)'><g transform='matrix(1 0 0 1 0 0)'><g stroke-dasharray='none' stroke-dashoffset='0pt'><g stroke-linejoin='miter'><path d='m-7.3 4.5l7.8-4.5-7.8-4.5z' /></g></g></g></g></g></g><g stroke-width='2pt'><g stroke='#fff'><g fill='#fff' /></g></g></g></g></g></g></g></g></g></svg></annotation-xml></semantics></mtd></mtr> <mtr><mtd><msub><mi>L</mi> <mo>+</mo></msub></mtd> <mtd><msub><mi>L</mi> <mo>−</mo></msub></mtd> <mtd><msub><mi>L</mi> <mn>0</mn></msub></mtd></mtr></mtable></mrow><annotation encoding='application/x-tex'> \begin{array}{ccc} \begin{svg}&lt;svg viewBox=&quot;-2.5 -2.5 61.90549 61.90549 &quot; width=&quot;62pt&quot; xmlns=&quot;http://www.w3.org/2000/svg&quot; xmlns:xlink=&quot;http://www.w3.org/1999/xlink&quot; height=&quot;62pt&quot;&gt;&lt;g transform=&quot;translate(0 59) scale(1 -1) translate(0 2.5)&quot;&gt;&lt;g stroke=&quot;#000&quot;&gt;&lt;g fill=&quot;#000&quot;&gt;&lt;g stroke-width=&quot;.4pt&quot;&gt;&lt;g stroke-width=&quot;2pt&quot;&gt;&lt;g stroke=&quot;#fff&quot;&gt;&lt;g fill=&quot;#fff&quot;&gt;&lt;g stroke-width=&quot;5pt&quot;&gt;&lt;path d=&quot;m57 0l-57 57&quot; fill=&quot;none&quot;/&gt;&lt;g stroke-width=&quot;1pt&quot;&gt;&lt;g stroke=&quot;#f00&quot;&gt;&lt;path d=&quot;m57 0l-57 57&quot; fill=&quot;none&quot;/&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;g stroke=&quot;#f00&quot;&gt;&lt;g fill=&quot;#f00&quot;&gt;&lt;g transform=&quot;matrix(-.71 .71 -.71 -.71 1.7 55)&quot;&gt;&lt;g transform=&quot;matrix(1 0 0 1 0 0)&quot;&gt;&lt;g stroke-dasharray=&quot;none&quot; stroke-dashoffset=&quot;0pt&quot;&gt;&lt;g stroke-linejoin=&quot;miter&quot;&gt;&lt;path d=&quot;m-7.3 4.5l7.8-4.5-7.8-4.5z&quot;/&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;g stroke-width=&quot;2pt&quot;&gt;&lt;g stroke=&quot;#fff&quot;&gt;&lt;g fill=&quot;#fff&quot;&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;g stroke-width=&quot;2pt&quot;&gt;&lt;g stroke=&quot;#fff&quot;&gt;&lt;g fill=&quot;#fff&quot;&gt;&lt;g stroke-width=&quot;5pt&quot;&gt;&lt;path d=&quot;m0 0l57 57&quot; fill=&quot;none&quot;/&gt;&lt;g stroke-width=&quot;1pt&quot;&gt;&lt;g stroke=&quot;#f00&quot;&gt;&lt;path d=&quot;m0 0l57 57&quot; fill=&quot;none&quot;/&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;g stroke=&quot;#f00&quot;&gt;&lt;g fill=&quot;#f00&quot;&gt;&lt;g transform=&quot;matrix(.71 .71 -.71 .71 55 55)&quot;&gt;&lt;g transform=&quot;matrix(1 0 0 1 0 0)&quot;&gt;&lt;g stroke-dasharray=&quot;none&quot; stroke-dashoffset=&quot;0pt&quot;&gt;&lt;g stroke-linejoin=&quot;miter&quot;&gt;&lt;path d=&quot;m-7.3 4.5l7.8-4.5-7.8-4.5z&quot;/&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;g stroke-width=&quot;2pt&quot;&gt;&lt;g stroke=&quot;#fff&quot;&gt;&lt;g fill=&quot;#fff&quot;&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/svg&gt;\end{svg} &amp; \begin{svg}&lt;svg viewBox=&quot;-2.5 -2.5 61.90549 61.90549 &quot; width=&quot;62pt&quot; xmlns=&quot;http://www.w3.org/2000/svg&quot; xmlns:xlink=&quot;http://www.w3.org/1999/xlink&quot; height=&quot;62pt&quot;&gt;&lt;g transform=&quot;translate(0 59) scale(1 -1) translate(0 2.5)&quot;&gt;&lt;g stroke=&quot;#000&quot;&gt;&lt;g fill=&quot;#000&quot;&gt;&lt;g stroke-width=&quot;.4pt&quot;&gt;&lt;g stroke-width=&quot;2pt&quot;&gt;&lt;g stroke=&quot;#fff&quot;&gt;&lt;g fill=&quot;#fff&quot;&gt;&lt;g stroke-width=&quot;5pt&quot;&gt;&lt;path d=&quot;m0 0l57 57&quot; fill=&quot;none&quot;/&gt;&lt;g stroke-width=&quot;1pt&quot;&gt;&lt;g stroke=&quot;#f00&quot;&gt;&lt;path d=&quot;m0 0l57 57&quot; fill=&quot;none&quot;/&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;g stroke=&quot;#f00&quot;&gt;&lt;g fill=&quot;#f00&quot;&gt;&lt;g transform=&quot;matrix(.71 .71 -.71 .71 55 55)&quot;&gt;&lt;g transform=&quot;matrix(1 0 0 1 0 0)&quot;&gt;&lt;g stroke-dasharray=&quot;none&quot; stroke-dashoffset=&quot;0pt&quot;&gt;&lt;g stroke-linejoin=&quot;miter&quot;&gt;&lt;path d=&quot;m-7.3 4.5l7.8-4.5-7.8-4.5z&quot;/&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;g stroke-width=&quot;2pt&quot;&gt;&lt;g stroke=&quot;#fff&quot;&gt;&lt;g fill=&quot;#fff&quot;&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;g stroke-width=&quot;2pt&quot;&gt;&lt;g stroke=&quot;#fff&quot;&gt;&lt;g fill=&quot;#fff&quot;&gt;&lt;g stroke-width=&quot;5pt&quot;&gt;&lt;path d=&quot;m57 0l-57 57&quot; fill=&quot;none&quot;/&gt;&lt;g stroke-width=&quot;1pt&quot;&gt;&lt;g stroke=&quot;#f00&quot;&gt;&lt;path d=&quot;m57 0l-57 57&quot; fill=&quot;none&quot;/&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;g stroke=&quot;#f00&quot;&gt;&lt;g fill=&quot;#f00&quot;&gt;&lt;g transform=&quot;matrix(-.71 .71 -.71 -.71 1.7 55)&quot;&gt;&lt;g transform=&quot;matrix(1 0 0 1 0 0)&quot;&gt;&lt;g stroke-dasharray=&quot;none&quot; stroke-dashoffset=&quot;0pt&quot;&gt;&lt;g stroke-linejoin=&quot;miter&quot;&gt;&lt;path d=&quot;m-7.3 4.5l7.8-4.5-7.8-4.5z&quot;/&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;g stroke-width=&quot;2pt&quot;&gt;&lt;g stroke=&quot;#fff&quot;&gt;&lt;g fill=&quot;#fff&quot;&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/svg&gt;\end{svg} &amp; \begin{svg}&lt;svg viewBox=&quot;-2.5 -2.5 61.90549 61.90549 &quot; width=&quot;62pt&quot; xmlns=&quot;http://www.w3.org/2000/svg&quot; xmlns:xlink=&quot;http://www.w3.org/1999/xlink&quot; height=&quot;62pt&quot;&gt;&lt;g transform=&quot;translate(0 59) scale(1 -1) translate(0 2.5)&quot;&gt;&lt;g stroke=&quot;#000&quot;&gt;&lt;g fill=&quot;#000&quot;&gt;&lt;g stroke-width=&quot;.4pt&quot;&gt;&lt;g stroke-width=&quot;2pt&quot;&gt;&lt;g stroke=&quot;#fff&quot;&gt;&lt;g fill=&quot;#fff&quot;&gt;&lt;g stroke-width=&quot;5pt&quot;&gt;&lt;path d=&quot;m0 0c21 21 21 36 .28 57&quot; fill=&quot;none&quot;/&gt;&lt;g stroke-width=&quot;1pt&quot;&gt;&lt;g stroke=&quot;#f00&quot;&gt;&lt;path d=&quot;m0 0c21 21 21 36 .28 57&quot; fill=&quot;none&quot;/&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;g stroke=&quot;#f00&quot;&gt;&lt;g fill=&quot;#f00&quot;&gt;&lt;g transform=&quot;matrix(-.71 .71 -.71 -.71 2 55)&quot;&gt;&lt;g transform=&quot;matrix(1 0 0 1 0 0)&quot;&gt;&lt;g stroke-dasharray=&quot;none&quot; stroke-dashoffset=&quot;0pt&quot;&gt;&lt;g stroke-linejoin=&quot;miter&quot;&gt;&lt;path d=&quot;m-7.3 4.5l7.8-4.5-7.8-4.5z&quot;/&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;g stroke=&quot;#f00&quot;&gt;&lt;g fill=&quot;#f00&quot;&gt;&lt;g transform=&quot;matrix(-.71 .71 -.71 -.71 2 55)&quot;&gt;&lt;g transform=&quot;matrix(1 0 0 1 0 0)&quot;&gt;&lt;g stroke-dasharray=&quot;none&quot; stroke-dashoffset=&quot;0pt&quot;&gt;&lt;g stroke-linejoin=&quot;miter&quot;&gt;&lt;path d=&quot;m-7.3 4.5l7.8-4.5-7.8-4.5z&quot;/&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;g stroke-width=&quot;2pt&quot;&gt;&lt;g stroke=&quot;#fff&quot;&gt;&lt;g fill=&quot;#fff&quot;&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;g stroke-width=&quot;2pt&quot;&gt;&lt;g stroke=&quot;#fff&quot;&gt;&lt;g fill=&quot;#fff&quot;&gt;&lt;g stroke-width=&quot;5pt&quot;&gt;&lt;path d=&quot;m57 0c-21 21-21 36 0 57&quot; fill=&quot;none&quot;/&gt;&lt;g stroke-width=&quot;1pt&quot;&gt;&lt;g stroke=&quot;#f00&quot;&gt;&lt;path d=&quot;m57 0c-21 21-21 36 0 57&quot; fill=&quot;none&quot;/&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;g stroke=&quot;#f00&quot;&gt;&lt;g fill=&quot;#f00&quot;&gt;&lt;g transform=&quot;matrix(.71 .71 -.71 .71 55 55)&quot;&gt;&lt;g transform=&quot;matrix(1 0 0 1 0 0)&quot;&gt;&lt;g stroke-dasharray=&quot;none&quot; stroke-dashoffset=&quot;0pt&quot;&gt;&lt;g stroke-linejoin=&quot;miter&quot;&gt;&lt;path d=&quot;m-7.3 4.5l7.8-4.5-7.8-4.5z&quot;/&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;g stroke=&quot;#f00&quot;&gt;&lt;g fill=&quot;#f00&quot;&gt;&lt;g transform=&quot;matrix(.71 .71 -.71 .71 55 55)&quot;&gt;&lt;g transform=&quot;matrix(1 0 0 1 0 0)&quot;&gt;&lt;g stroke-dasharray=&quot;none&quot; stroke-dashoffset=&quot;0pt&quot;&gt;&lt;g stroke-linejoin=&quot;miter&quot;&gt;&lt;path d=&quot;m-7.3 4.5l7.8-4.5-7.8-4.5z&quot;/&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;g stroke-width=&quot;2pt&quot;&gt;&lt;g stroke=&quot;#fff&quot;&gt;&lt;g fill=&quot;#fff&quot;&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/svg&gt;\end{svg} \\ L_+ &amp; L_- &amp; L_0 \end{array} </annotation></semantics></math></div></li> </ol> <p>From the rules, one can read off the relationships between the different formulations:</p> <ol> <li><math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_13' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>y</mi><mo>=</mo><mi>α</mi><mo>=</mo><msup><mi>a</mi> <mrow><mo lspace='verythinmathspace' rspace='0em'>−</mo><mn>1</mn></mrow></msup></mrow><annotation encoding='application/x-tex'>y = \alpha = a^{-1}</annotation></semantics></math></li> <li><math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_14' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi><mo>=</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><msup><mi>α</mi> <mrow><mo lspace='verythinmathspace' rspace='0em'>−</mo><mn>1</mn></mrow></msup><mo>=</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>x = - \alpha^{-1} = -a</annotation></semantics></math></li> <li><math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_15' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>a</mi><mo>=</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mi>i</mi><mi>l</mi></mrow><annotation encoding='application/x-tex'>a = - i l</annotation></semantics></math>, <math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_16' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>l</mi><mo>=</mo><mi>i</mi><mi>a</mi></mrow><annotation encoding='application/x-tex'>l = i a</annotation></semantics></math></li> <li><math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_17' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>z</mi><mo>=</mo><mi>i</mi><mi>m</mi></mrow><annotation encoding='application/x-tex'>z = i m</annotation></semantics></math>, <math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_18' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>m</mi><mo>=</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mi>i</mi><mi>z</mi></mrow><annotation encoding='application/x-tex'>m = - i z</annotation></semantics></math>.</li> </ol> <h2 id='properties'>Properties</h2> <p>The HOMFLY polynomial generalises both the <a class='existingWikiWord' href='/nlab/show/diff/Jones+polynomial'>Jones polynomial</a> and the <a class='existingWikiWord' href='/nlab/show/diff/Alexander+polynomial'>Alexander polynomial</a> (equivalently, the <a class='existingWikiWord' href='/nlab/show/diff/Conway+polynomial'>Conway polynomial</a>).</p> <ul> <li> <p>To get the <a class='existingWikiWord' href='/nlab/show/diff/Jones+polynomial'>Jones polynomial</a>, make one of the following substitutions:</p> <ol> <li><math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_19' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>a</mi><mo>=</mo><msup><mi>q</mi> <mrow><mo lspace='verythinmathspace' rspace='0em'>−</mo><mn>1</mn></mrow></msup></mrow><annotation encoding='application/x-tex'>a = q^{-1}</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_20' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>z</mi><mo>=</mo><msup><mi>q</mi> <mrow><mn>1</mn><mo stretchy='false'>/</mo><mn>2</mn></mrow></msup><mo>−</mo><msup><mi>q</mi> <mrow><mo lspace='verythinmathspace' rspace='0em'>−</mo><mn>1</mn><mo stretchy='false'>/</mo><mn>2</mn></mrow></msup></mrow><annotation encoding='application/x-tex'>z = q^{1/2} - q^{-1/2}</annotation></semantics></math></li> <li><math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_21' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>α</mi><mo>=</mo><mi>q</mi></mrow><annotation encoding='application/x-tex'>\alpha = q</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_22' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>z</mi><mo>=</mo><msup><mi>q</mi> <mrow><mn>1</mn><mo stretchy='false'>/</mo><mn>2</mn></mrow></msup><mo>−</mo><msup><mi>q</mi> <mrow><mo lspace='verythinmathspace' rspace='0em'>−</mo><mn>1</mn><mo stretchy='false'>/</mo><mn>2</mn></mrow></msup></mrow><annotation encoding='application/x-tex'>z = q^{1/2} - q^{-1/2}</annotation></semantics></math></li> <li><math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_23' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>l</mi><mo>=</mo><mi>i</mi><msup><mi>q</mi> <mrow><mo lspace='verythinmathspace' rspace='0em'>−</mo><mn>1</mn></mrow></msup></mrow><annotation encoding='application/x-tex'>l = i q^{-1}</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_24' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>m</mi><mo>=</mo><mi>i</mi><mo stretchy='false'>(</mo><msup><mi>q</mi> <mrow><mo lspace='verythinmathspace' rspace='0em'>−</mo><mn>1</mn><mo stretchy='false'>/</mo><mn>2</mn></mrow></msup><mo>−</mo><msup><mi>q</mi> <mrow><mn>1</mn><mo stretchy='false'>/</mo><mn>2</mn></mrow></msup><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>m = i (q^{-1/2} - q^{1/2})</annotation></semantics></math></li> </ol> </li> <li> <p>To get the <a class='existingWikiWord' href='/nlab/show/diff/Conway+polynomial'>Conway polynomial</a>, make one of the following substitutions:</p> <ol> <li><math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_25' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>a</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>a = 1</annotation></semantics></math></li> <li><math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>α</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>\alpha = 1</annotation></semantics></math></li> <li><math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_27' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>l</mi><mo>=</mo><mi>i</mi></mrow><annotation encoding='application/x-tex'>l = i</annotation></semantics></math>, <math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_28' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>m</mi><mo>=</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mi>i</mi><mi>z</mi></mrow><annotation encoding='application/x-tex'>m = -i z</annotation></semantics></math></li> </ol> </li> <li> <p>To get the <a class='existingWikiWord' href='/nlab/show/diff/Alexander+polynomial'>Alexander polynomial</a>, make one of the following substitutions:</p> <ol> <li><math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_29' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>a</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>a = 1</annotation></semantics></math>, <math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_30' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>z</mi><mo>=</mo><msup><mi>q</mi> <mrow><mn>1</mn><mo stretchy='false'>/</mo><mn>2</mn></mrow></msup><mo>−</mo><msup><mi>q</mi> <mrow><mo lspace='verythinmathspace' rspace='0em'>−</mo><mn>1</mn><mo stretchy='false'>/</mo><mn>2</mn></mrow></msup></mrow><annotation encoding='application/x-tex'>z = q^{1/2} - q^{-1/2}</annotation></semantics></math></li> <li><math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_31' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>α</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>\alpha = 1</annotation></semantics></math>, <math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_32' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>z</mi><mo>=</mo><msup><mi>q</mi> <mrow><mn>1</mn><mo stretchy='false'>/</mo><mn>2</mn></mrow></msup><mo>−</mo><msup><mi>q</mi> <mrow><mo lspace='verythinmathspace' rspace='0em'>−</mo><mn>1</mn><mo stretchy='false'>/</mo><mn>2</mn></mrow></msup></mrow><annotation encoding='application/x-tex'>z = q^{1/2} - q^{-1/2}</annotation></semantics></math></li> <li><math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_33' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>l</mi><mo>=</mo><mi>i</mi></mrow><annotation encoding='application/x-tex'>l = i</annotation></semantics></math>, <math class='maruku-mathml' display='inline' id='mathml_073549ae0f879a33ae8b9a392cd005168d733595_34' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>m</mi><mo>=</mo><mi>i</mi><mo stretchy='false'>(</mo><msup><mi>q</mi> <mrow><mo lspace='verythinmathspace' rspace='0em'>−</mo><mn>1</mn><mo stretchy='false'>/</mo><mn>2</mn></mrow></msup><mo>−</mo><msup><mi>q</mi> <mrow><mn>1</mn><mo stretchy='false'>/</mo><mn>2</mn></mrow></msup><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>m = i (q^{-1/2} - q^{1/2})</annotation></semantics></math></li> </ol> </li> </ul><ins class='diffins'> </ins><ins class='diffins'><h2 id='related_entries'>Related entries</h2></ins><ins class='diffins'> </ins><ins class='diffins'><ul> <li><a class='existingWikiWord' href='/nlab/show/diff/Shum%27s+theorem'>Shum&#39;s theorem</a></li> </ul></ins> <h2 id='references'>References</h2> <p>See the <a href='http://en.wikipedia.org/wiki/HOMFLY_polynomial'>wikipedia page</a> for the origin of the name.</p> <p>Some fairly elementary discussion of the HOMFLY polynomial is given in introductory texts such as</p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/Nick+Gilbert'>N. D. Gilbert</a> and <a class='existingWikiWord' href='/nlab/show/diff/Tim+Porter'>T. Porter</a>, Knots and Surfaces, Oxford U.P., 1994.</li> </ul> <p>The original work was published as</p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/Peter+Freyd'>P. Freyd</a>, <a class='existingWikiWord' href='/nlab/show/diff/David+Yetter'>D. Yetter</a>, J. Hoste, W.B.R. Lickorish, K. Millett, and <a class='existingWikiWord' href='/nlab/show/diff/Adrian+Ocneanu'>A. Ocneanu</a>. (1985). <em>A New Polynomial Invariant of Knots and Links</em> Bulletin of the American Mathematical Society 12 (2): 239–246.</li> </ul> <p>More recent work includes:</p> <ul> <li>A.Mironov, A.Morozov, An.Morozov, <em>Character expansion for HOMFLY polynomials. I. Integrability and difference equations</em>, <a href='http://arxiv.org/abs/1112.5754'>arxiv/1112.5754</a></li> <li>Hugh Morton, Peter Samuelson, <em>The HOMFLYPT skein algebra of the torus and the elliptic Hall algebra</em>, <a href='http://arxiv.org/abs/1410.0859'>arxiv/1410.0859</a></li> </ul> <p><div class='property'> category: <a class='category_link' href='/nlab/list/knot+theory'>knot theory</a></div></p> <p> </p> </div> <div class="revisedby"> <p> Last revised on August 31, 2024 at 18:38:59. See the <a href="/nlab/history/HOMFLY-PT+polynomial" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/HOMFLY-PT+polynomial" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussions/?CategoryID=0">Discuss</a><span class="backintime"><a href="/nlab/revision/diff/HOMFLY-PT+polynomial/9" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/HOMFLY-PT+polynomial" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Hide changes</a><a href="/nlab/history/HOMFLY-PT+polynomial" accesskey="S" class="navlink" id="history" rel="nofollow">History (9 revisions)</a> <a href="/nlab/show/HOMFLY-PT+polynomial/cite" style="color: black">Cite</a> <a href="/nlab/print/HOMFLY-PT+polynomial" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/HOMFLY-PT+polynomial" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10