CINXE.COM
Search results for: parametric estimators
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: parametric estimators</title> <meta name="description" content="Search results for: parametric estimators"> <meta name="keywords" content="parametric estimators"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="parametric estimators" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="parametric estimators"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 873</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: parametric estimators</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">873</span> Some Generalized Multivariate Estimators for Population Mean under Multi Phase Stratified Systematic Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muqaddas%20Javed">Muqaddas Javed</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hanif"> Muhammad Hanif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The generalized multivariate ratio and regression type estimators for population mean are suggested under multi-phase stratified systematic sampling (MPSSS) using multi auxiliary information. Estimators are developed under the two different situations of availability of auxiliary information. The expressions of bias and mean square error (MSE) are developed. Special cases of suggested estimators are also discussed and simulation study is conducted to observe the performance of estimators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20estimators" title="generalized estimators">generalized estimators</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-phase%20sampling" title=" multi-phase sampling"> multi-phase sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=stratified%20random%20sampling" title=" stratified random sampling"> stratified random sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=systematic%20sampling" title=" systematic sampling"> systematic sampling</a> </p> <a href="https://publications.waset.org/abstracts/27296/some-generalized-multivariate-estimators-for-population-mean-under-multi-phase-stratified-systematic-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">729</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">872</span> Alternative Robust Estimators for the Shape Parameters of the Burr XII Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Zehra%20Do%C4%9Fru">Fatma Zehra Doğru</a>, <a href="https://publications.waset.org/abstracts/search?q=Olcay%20Arslan"> Olcay Arslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose alternative robust estimators for the shape parameters of the Burr XII distribution. We provide a small simulation study and a real data example to illustrate the performance of the proposed estimators over the ML and the LS estimators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=burr%20xii%20distribution" title="burr xii distribution">burr xii distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20estimator" title=" robust estimator"> robust estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=m-estimator" title=" m-estimator"> m-estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20squares" title=" least squares"> least squares</a> </p> <a href="https://publications.waset.org/abstracts/30038/alternative-robust-estimators-for-the-shape-parameters-of-the-burr-xii-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">871</span> A Generalized Family of Estimators for Estimation of Unknown Population Variance in Simple Random Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saba%20Riaz">Saba Riaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20A.%20Hussain"> Syed A. Hussain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is addressing the estimation method of the unknown population variance of the variable of interest. A new generalized class of estimators of the finite population variance has been suggested using the auxiliary information. To improve the precision of the proposed class, known population variance of the auxiliary variable has been used. Mathematical expressions for the biases and the asymptotic variances of the suggested class are derived under large sample approximation. Theoretical and numerical comparisons are made to investigate the performances of the proposed class of estimators. The empirical study reveals that the suggested class of estimators performs better than the usual estimator, classical ratio estimator, classical product estimator and classical linear regression estimator. It has also been found that the suggested class of estimators is also more efficient than some recently published estimators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=study%20variable" title="study variable">study variable</a>, <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20variable" title=" auxiliary variable"> auxiliary variable</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20population%20variance" title=" finite population variance"> finite population variance</a>, <a href="https://publications.waset.org/abstracts/search?q=bias" title=" bias"> bias</a>, <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20variance" title=" asymptotic variance"> asymptotic variance</a>, <a href="https://publications.waset.org/abstracts/search?q=percent%20relative%20efficiency" title=" percent relative efficiency"> percent relative efficiency</a> </p> <a href="https://publications.waset.org/abstracts/87115/a-generalized-family-of-estimators-for-estimation-of-unknown-population-variance-in-simple-random-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">870</span> Point Estimation for the Type II Generalized Logistic Distribution Based on Progressively Censored Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rana%20Rimawi">Rana Rimawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20Baklizi"> Ayman Baklizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Skewed distributions are important models that are frequently used in applications. Generalized distributions form a class of skewed distributions and gain widespread use in applications because of their flexibility in data analysis. More specifically, the Generalized Logistic Distribution with its different types has received considerable attention recently. In this study, based on progressively type-II censored data, we will consider point estimation in type II Generalized Logistic Distribution (Type II GLD). We will develop several estimators for its unknown parameters, including maximum likelihood estimators (MLE), Bayes estimators and linear estimators (BLUE). The estimators will be compared using simulation based on the criteria of bias and Mean square error (MSE). An illustrative example of a real data set will be given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=point%20estimation" title="point estimation">point estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=type%20II%20generalized%20logistic%20distribution" title=" type II generalized logistic distribution"> type II generalized logistic distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=progressive%20censoring" title=" progressive censoring"> progressive censoring</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood%20estimation" title=" maximum likelihood estimation"> maximum likelihood estimation</a> </p> <a href="https://publications.waset.org/abstracts/142979/point-estimation-for-the-type-ii-generalized-logistic-distribution-based-on-progressively-censored-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">869</span> Comparative Study of Estimators of Population Means in Two Phase Sampling in the Presence of Non-Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Ali%20Taqi">Syed Ali Taqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ismail"> Muhammad Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comparative study of estimators of population means in two phase sampling in the presence of non-response when Unknown population means of the auxiliary variable(s) and incomplete information of study variable y as well as of auxiliary variable(s) is made. Three real data sets of University students, hospital and unemployment are used for comparison of all the available techniques in two phase sampling in the presence of non-response with the newly generalized ratio estimators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-phase%20sampling" title="two-phase sampling">two-phase sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=ratio%20estimator" title=" ratio estimator"> ratio estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20estimator" title=" product estimator"> product estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20estimators" title=" generalized estimators"> generalized estimators</a> </p> <a href="https://publications.waset.org/abstracts/79636/comparative-study-of-estimators-of-population-means-in-two-phase-sampling-in-the-presence-of-non-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">868</span> Estimation of Population Mean under Random Non-Response in Two-Phase Successive Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khalid">M. Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Singh"> G. N. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have considered the problem of estimation for population mean, on current (second) occasion in the presence of random non response in two-occasion successive sampling under two phase set-up. Modified exponential type estimators have been proposed, and their properties are studied under the assumptions that numbers of sampling units follow a distribution due to random non response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=successive%20sampling" title="successive sampling">successive sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20non-response" title=" random non-response"> random non-response</a>, <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20variable" title=" auxiliary variable"> auxiliary variable</a>, <a href="https://publications.waset.org/abstracts/search?q=bias" title=" bias"> bias</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20square%20error" title=" mean square error"> mean square error</a> </p> <a href="https://publications.waset.org/abstracts/78773/estimation-of-population-mean-under-random-non-response-in-two-phase-successive-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">867</span> Estimation of Population Mean Using Characteristics of Poisson Distribution: An Application to Earthquake Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prayas%20Sharma">Prayas Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposed a generalized class of estimators, an exponential class of estimators based on the adaption of Sharma and Singh (2015) and Solanki and Singh (2013), and a simple difference estimator for estimating unknown population mean in the case of Poisson distributed population in simple random sampling without replacement. The expressions for mean square errors of the proposed classes of estimators are derived from the first order of approximation. It is shown that the adapted version of Solanki and Singh (2013), the exponential class of estimator, is always more efficient than the usual estimator, ratio, product, exponential ratio, and exponential product type estimators and equally efficient to simple difference estimator. Moreover, the adapted version of Sharma and Singh's (2015) estimator is always more efficient than all the estimators available in the literature. In addition, theoretical findings are supported by an empirical study to show the superiority of the constructed estimators over others with an application to earthquake data of Turkey. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20attribute" title="auxiliary attribute">auxiliary attribute</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20bi-serial" title=" point bi-serial"> point bi-serial</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20square%20error" title=" mean square error"> mean square error</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20random%20sampling" title=" simple random sampling"> simple random sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=Poisson%20distribution" title=" Poisson distribution"> Poisson distribution</a> </p> <a href="https://publications.waset.org/abstracts/171049/estimation-of-population-mean-using-characteristics-of-poisson-distribution-an-application-to-earthquake-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">866</span> Estimation of Population Mean under Random Non-Response in Two-Occasion Successive Sampling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khalid">M. Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Singh"> G. N. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have considered the problems of estimation for the population mean on current (second) occasion in two-occasion successive sampling under random non-response situations. Some modified exponential type estimators have been proposed and their properties are studied under the assumptions that the number of sampling unit follows a discrete distribution due to random non-response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modified%20exponential%20estimator" title="modified exponential estimator">modified exponential estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=successive%20sampling" title=" successive sampling"> successive sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20non-response" title=" random non-response"> random non-response</a>, <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20variable" title=" auxiliary variable"> auxiliary variable</a>, <a href="https://publications.waset.org/abstracts/search?q=bias" title=" bias"> bias</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20square%20error" title=" mean square error"> mean square error</a> </p> <a href="https://publications.waset.org/abstracts/85408/estimation-of-population-mean-under-random-non-response-in-two-occasion-successive-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">865</span> Finite Sample Inferences for Weak Instrument Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gubhinder%20Kundhi">Gubhinder Kundhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Rilstone"> Paul Rilstone</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well established that Instrumental Variable (IV) estimators in the presence of weak instruments can be poorly behaved, in particular, be quite biased in finite samples. Finite sample approximations to the distributions of these estimators are obtained using Edgeworth and Saddlepoint expansions. Departures from normality of the distributions of these estimators are analyzed using higher order analytical corrections in these expansions. In a Monte-Carlo experiment, the performance of these expansions is compared to the first order approximation and other methods commonly used in finite samples such as the bootstrap. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bootstrap" title="bootstrap">bootstrap</a>, <a href="https://publications.waset.org/abstracts/search?q=Instrumental%20Variable" title=" Instrumental Variable"> Instrumental Variable</a>, <a href="https://publications.waset.org/abstracts/search?q=Edgeworth%20expansions" title=" Edgeworth expansions"> Edgeworth expansions</a>, <a href="https://publications.waset.org/abstracts/search?q=Saddlepoint%20expansions" title=" Saddlepoint expansions"> Saddlepoint expansions</a> </p> <a href="https://publications.waset.org/abstracts/46824/finite-sample-inferences-for-weak-instrument-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">864</span> Ratio Type Estimators for the Estimation of Population Coefficient of Variation under Two-Stage Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Jabbar">Muhammad Jabbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we propose two ratio and ratio type exponential estimator for the estimation of population coefficient of variation using the auxiliary information under two-stage sampling. The properties of these estimators are derived up to first order of approximation. The efficiency conditions under which suggested estimator are more efficient, are obtained. Numerical and simulated studies are conducted to support the superiority of the estimators. Theoretically and numerically, we have found that our proposed estimator is always more efficient as compared to its competitor estimator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-stage%20sampling" title="two-stage sampling">two-stage sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20variation" title=" coefficient of variation"> coefficient of variation</a>, <a href="https://publications.waset.org/abstracts/search?q=ratio%20type%20exponential%20estimator" title=" ratio type exponential estimator"> ratio type exponential estimator</a> </p> <a href="https://publications.waset.org/abstracts/21936/ratio-type-estimators-for-the-estimation-of-population-coefficient-of-variation-under-two-stage-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">863</span> Introduction of Robust Multivariate Process Capability Indices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behrooz%20Khalilloo">Behrooz Khalilloo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Shahriari"> Hamid Shahriari</a>, <a href="https://publications.waset.org/abstracts/search?q=Emad%20Roghanian"> Emad Roghanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Process capability indices (PCIs) are important concepts of statistical quality control and measure the capability of processes and how much processes are meeting certain specifications. An important issue in statistical quality control is parameter estimation. Under the assumption of multivariate normality, the distribution parameters, mean vector and variance-covariance matrix must be estimated, when they are unknown. Classic estimation methods like method of moment estimation (MME) or maximum likelihood estimation (MLE) makes good estimation of the population parameters when data are not contaminated. But when outliers exist in the data, MME and MLE make weak estimators of the population parameters. So we need some estimators which have good estimation in the presence of outliers. In this work robust M-estimators for estimating these parameters are used and based on robust parameter estimators, robust process capability indices are introduced. The performances of these robust estimators in the presence of outliers and their effects on process capability indices are evaluated by real and simulated multivariate data. The results indicate that the proposed robust capability indices perform much better than the existing process capability indices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multivariate%20process%20capability%20indices" title="multivariate process capability indices">multivariate process capability indices</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20M-estimator" title=" robust M-estimator"> robust M-estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=outlier" title=" outlier"> outlier</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20quality%20control" title=" multivariate quality control"> multivariate quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20quality%20control" title=" statistical quality control"> statistical quality control</a> </p> <a href="https://publications.waset.org/abstracts/81586/introduction-of-robust-multivariate-process-capability-indices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">862</span> Heteroscedastic Parametric and Semiparametric Smooth Coefficient Stochastic Frontier Application to Technical Efficiency Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rebecca%20Owusu%20Coffie">Rebecca Owusu Coffie</a>, <a href="https://publications.waset.org/abstracts/search?q=Atakelty%20Hailu"> Atakelty Hailu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Variants of production frontier models have emerged, however, only a limited number of them are applied in empirical research. Hence the effects of these alternative frontier models are not well understood, particularly within sub-Saharan Africa. In this paper, we apply recent advances in the production frontier to examine levels of technical efficiency and efficiency drivers. Specifically, we compare the heteroscedastic parametric and the semiparametric stochastic smooth coefficient (SPSC) models. Using rice production data from Ghana, our empirical estimates reveal that alternative specification of efficiency estimators results in either downward or upward bias in the technical efficiency estimates. Methodologically, we find that the SPSC model is more suitable and generates high-efficiency estimates. Within the parametric framework, we find that parameterization of both the mean and variance of the pre-truncated function is the best model. For the drivers of technical efficiency, we observed that longer farm distances increase inefficiency through a reduction in labor productivity. High soil quality, however, increases productivity through increased land productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pre-truncated" title="pre-truncated">pre-truncated</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20production" title=" rice production"> rice production</a>, <a href="https://publications.waset.org/abstracts/search?q=smooth%20coefficient" title=" smooth coefficient"> smooth coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=technical%20efficiency" title=" technical efficiency"> technical efficiency</a> </p> <a href="https://publications.waset.org/abstracts/59500/heteroscedastic-parametric-and-semiparametric-smooth-coefficient-stochastic-frontier-application-to-technical-efficiency-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">861</span> A Semiparametric Approach to Estimate the Mode of Continuous Multivariate Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tiee-Jian%20Wu">Tiee-Jian Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Yuan%20Hsu"> Chih-Yuan Hsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mode estimation is an important task, because it has applications to data from a wide variety of sources. We propose a semi-parametric approach to estimate the mode of an unknown continuous multivariate density function. Our approach is based on a weighted average of a parametric density estimate using the Box-Cox transform and a non-parametric kernel density estimate. Our semi-parametric mode estimate improves both the parametric- and non-parametric- mode estimates. Specifically, our mode estimate solves the non-consistency problem of parametric mode estimates (at large sample sizes) and reduces the variability of non-parametric mode estimates (at small sample sizes). The performance of our method at practical sample sizes is demonstrated by simulation examples and two real examples from the fields of climatology and image recognition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Box-Cox%20transform" title="Box-Cox transform">Box-Cox transform</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20estimation" title=" density estimation"> density estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20seeking" title=" mode seeking"> mode seeking</a>, <a href="https://publications.waset.org/abstracts/search?q=semiparametric%20method" title=" semiparametric method"> semiparametric method</a> </p> <a href="https://publications.waset.org/abstracts/53756/a-semiparametric-approach-to-estimate-the-mode-of-continuous-multivariate-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">860</span> Estimation of the Mean of the Selected Population</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalu%20Ram%20Meena">Kalu Ram Meena</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditi%20Kar%20Gangopadhyay"> Aditi Kar Gangopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Satrajit%20Mandal"> Satrajit Mandal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two normal populations with different means and same variance are considered, where the variances are known. The population with the smaller sample mean is selected. Various estimators are constructed for the mean of the selected normal population. Finally, they are compared with respect to the bias and MSE risks by the method of Monte-Carlo simulation and their performances are analysed with the help of graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=estimation%20after%20selection" title="estimation after selection">estimation after selection</a>, <a href="https://publications.waset.org/abstracts/search?q=Brewster-Zidek%20technique" title=" Brewster-Zidek technique"> Brewster-Zidek technique</a>, <a href="https://publications.waset.org/abstracts/search?q=estimators" title=" estimators"> estimators</a>, <a href="https://publications.waset.org/abstracts/search?q=selected%20populations" title=" selected populations"> selected populations</a> </p> <a href="https://publications.waset.org/abstracts/17179/estimation-of-the-mean-of-the-selected-population" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">859</span> Parameter Estimation for the Mixture of Generalized Gamma Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wikanda%20Phaphan">Wikanda Phaphan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mixture generalized gamma distribution is a combination of two distributions: generalized gamma distribution and length biased generalized gamma distribution. These two distributions were presented by Suksaengrakcharoen and Bodhisuwan in 2014. The findings showed that probability density function (pdf) had fairly complexities, so it made problems in estimating parameters. The problem occurred in parameter estimation was that we were unable to calculate estimators in the form of critical expression. Thus, we will use numerical estimation to find the estimators. In this study, we presented a new method of the parameter estimation by using the expectation – maximization algorithm (EM), the conjugate gradient method, and the quasi-Newton method. The data was generated by acceptance-rejection method which is used for estimating α, β, λ and p. λ is the scale parameter, p is the weight parameter, α and β are the shape parameters. We will use Monte Carlo technique to find the estimator's performance. Determining the size of sample equals 10, 30, 100; the simulations were repeated 20 times in each case. We evaluated the effectiveness of the estimators which was introduced by considering values of the mean squared errors and the bias. The findings revealed that the EM-algorithm had proximity to the actual values determined. Also, the maximum likelihood estimators via the conjugate gradient and the quasi-Newton method are less precision than the maximum likelihood estimators via the EM-algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conjugate%20gradient%20method" title="conjugate gradient method">conjugate gradient method</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-Newton%20method" title=" quasi-Newton method"> quasi-Newton method</a>, <a href="https://publications.waset.org/abstracts/search?q=EM-algorithm" title=" EM-algorithm"> EM-algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20gamma%20distribution" title=" generalized gamma distribution"> generalized gamma distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=length%20biased%20generalized%20gamma%20distribution" title=" length biased generalized gamma distribution"> length biased generalized gamma distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood%20method" title=" maximum likelihood method"> maximum likelihood method</a> </p> <a href="https://publications.waset.org/abstracts/81404/parameter-estimation-for-the-mixture-of-generalized-gamma-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">858</span> Statistical Inferences for GQARCH-It\^{o} - Jumps Model Based on The Realized Range Volatility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fu%20Jinyu">Fu Jinyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Jinguan"> Lin Jinguan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces a novel approach that unifies two types of models: one is the continuous-time jump-diffusion used to model high-frequency data, and the other is discrete-time GQARCH employed to model low-frequency financial data by embedding the discrete GQARCH structure with jumps in the instantaneous volatility process. This model is named “GQARCH-It\^{o} -Jumps mode.” We adopt the realized range-based threshold estimation for high-frequency financial data rather than the realized return-based volatility estimators, which entail the loss of intra-day information of the price movement. Meanwhile, a quasi-likelihood function for the low-frequency GQARCH structure with jumps is developed for the parametric estimate. The asymptotic theories are mainly established for the proposed estimators in the case of finite activity jumps. Moreover, simulation studies are implemented to check the finite sample performance of the proposed methodology. Specifically, it is demonstrated that how our proposed approaches can be practically used on some financial data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=It%5C%5E%7Bo%7D%20process" title="It\^{o} process">It\^{o} process</a>, <a href="https://publications.waset.org/abstracts/search?q=GQARCH" title=" GQARCH"> GQARCH</a>, <a href="https://publications.waset.org/abstracts/search?q=leverage%20effects" title=" leverage effects"> leverage effects</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold" title=" threshold"> threshold</a>, <a href="https://publications.waset.org/abstracts/search?q=realized%20range-based%20volatility%20estimator" title=" realized range-based volatility estimator"> realized range-based volatility estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-maximum%20likelihood%20estimate" title=" quasi-maximum likelihood estimate"> quasi-maximum likelihood estimate</a> </p> <a href="https://publications.waset.org/abstracts/144833/statistical-inferences-for-gqarch-ito-jumps-model-based-on-the-realized-range-volatility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">857</span> Bayes Estimation of Parameters of Binomial Type Rayleigh Class Software Reliability Growth Model using Non-informative Priors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Singh">Rajesh Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kailash%20Kale"> Kailash Kale </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the Binomial process type occurrence of software failures is considered and failure intensity has been characterized by one parameter Rayleigh class Software Reliability Growth Model (SRGM). The proposed SRGM is mathematical function of parameters namely; total number of failures i.e. η-0 and scale parameter i.e. η-1. It is assumed that very little or no information is available about both these parameters and then considering non-informative priors for both these parameters, the Bayes estimators for the parameters η-0 and η-1 have been obtained under square error loss function. The proposed Bayes estimators are compared with their corresponding maximum likelihood estimators on the basis of risk efficiencies obtained by Monte Carlo simulation technique. It is concluded that both the proposed Bayes estimators of total number of failures and scale parameter perform well for proper choice of execution time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binomial%20process" title="binomial process">binomial process</a>, <a href="https://publications.waset.org/abstracts/search?q=non-informative%20prior" title=" non-informative prior"> non-informative prior</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood%20estimator%20%28MLE%29" title=" maximum likelihood estimator (MLE)"> maximum likelihood estimator (MLE)</a>, <a href="https://publications.waset.org/abstracts/search?q=rayleigh%20class" title=" rayleigh class"> rayleigh class</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20reliability%20growth%20model%20%28SRGM%29" title=" software reliability growth model (SRGM)"> software reliability growth model (SRGM)</a> </p> <a href="https://publications.waset.org/abstracts/8925/bayes-estimation-of-parameters-of-binomial-type-rayleigh-class-software-reliability-growth-model-using-non-informative-priors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">856</span> Improved Estimation Strategies of Sensitive Characteristics Using Scrambled Response Techniques in Successive Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Suman">S. Suman</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Singh"> G. N. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research work is an effort to analyse the consequences of scrambled response technique to estimate the current population mean in two-occasion successive sampling when the characteristic of interest is sensitive in nature. The generalized estimation procedures have been proposed using sensitive auxiliary variables under additive and multiplicative scramble models. The properties of resultant estimators have been deeply examined. Simulation, as well as empirical studies, are carried out to evaluate the performances of the proposed estimators with respect to other competent estimators. The results of our studies suggest that the proposed estimation procedures are highly effective under the presence of non-response situation. The result of this study also suggests that additive scrambled response model is a better choice in the perspective of cost of the survey and privacy of the respondents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scrambled%20response" title="scrambled response">scrambled response</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitive%20characteristic" title=" sensitive characteristic"> sensitive characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=successive%20sampling" title=" successive sampling"> successive sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20replacement%20strategy" title=" optimum replacement strategy"> optimum replacement strategy</a> </p> <a href="https://publications.waset.org/abstracts/95355/improved-estimation-strategies-of-sensitive-characteristics-using-scrambled-response-techniques-in-successive-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">855</span> Bayesian Approach for Moving Extremes Ranked Set Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Said%20Ali%20Al-Hadhrami">Said Ali Al-Hadhrami</a>, <a href="https://publications.waset.org/abstracts/search?q=Amer%20Ibrahim%20Al-Omari"> Amer Ibrahim Al-Omari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, Bayesian estimation for the mean of exponential distribution is considered using Moving Extremes Ranked Set Sampling (MERSS). Three priors are used; Jeffery, conjugate and constant using MERSS and Simple Random Sampling (SRS). Some properties of the proposed estimators are investigated. It is found that the suggested estimators using MERSS are more efficient than its counterparts based on SRS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian" title="Bayesian">Bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20extreme%20ranked%20set%20sampling" title=" moving extreme ranked set sampling"> moving extreme ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=ranked%20set%20sampling" title=" ranked set sampling"> ranked set sampling</a> </p> <a href="https://publications.waset.org/abstracts/30733/bayesian-approach-for-moving-extremes-ranked-set-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">854</span> A Comparative Study of Additive and Nonparametric Regression Estimators and Variable Selection Procedures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adriano%20Z.%20Zambom">Adriano Z. Zambom</a>, <a href="https://publications.waset.org/abstracts/search?q=Preethi%20Ravikumar"> Preethi Ravikumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the biggest challenges in nonparametric regression is the curse of dimensionality. Additive models are known to overcome this problem by estimating only the individual additive effects of each covariate. However, if the model is misspecified, the accuracy of the estimator compared to the fully nonparametric one is unknown. In this work the efficiency of completely nonparametric regression estimators such as the Loess is compared to the estimators that assume additivity in several situations, including additive and non-additive regression scenarios. The comparison is done by computing the oracle mean square error of the estimators with regards to the true nonparametric regression function. Then, a backward elimination selection procedure based on the Akaike Information Criteria is proposed, which is computed from either the additive or the nonparametric model. Simulations show that if the additive model is misspecified, the percentage of time it fails to select important variables can be higher than that of the fully nonparametric approach. A dimension reduction step is included when nonparametric estimator cannot be computed due to the curse of dimensionality. Finally, the Boston housing dataset is analyzed using the proposed backward elimination procedure and the selected variables are identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20model" title="additive model">additive model</a>, <a href="https://publications.waset.org/abstracts/search?q=nonparametric%20regression" title=" nonparametric regression"> nonparametric regression</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20selection" title=" variable selection"> variable selection</a>, <a href="https://publications.waset.org/abstracts/search?q=Akaike%20Information%20Criteria" title=" Akaike Information Criteria"> Akaike Information Criteria</a> </p> <a href="https://publications.waset.org/abstracts/56158/a-comparative-study-of-additive-and-nonparametric-regression-estimators-and-variable-selection-procedures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">853</span> Comparing Xbar Charts: Conventional versus Reweighted Robust Estimation Methods for Univariate Data Sets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ece%20Cigdem%20Mutlu">Ece Cigdem Mutlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Burak%20Alakent"> Burak Alakent</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maintaining the quality of manufactured products at a desired level depends on the stability of process dispersion and location parameters and detection of perturbations in these parameters as promptly as possible. Shewhart control chart is the most widely used technique in statistical process monitoring to monitor the quality of products and control process mean and variability. In the application of Xbar control charts, sample standard deviation and sample mean are known to be the most efficient conventional estimators in determining process dispersion and location parameters, respectively, based on the assumption of independent and normally distributed datasets. On the other hand, there is no guarantee that the real-world data would be normally distributed. In the cases of estimated process parameters from Phase I data clouded with outliers, efficiency of traditional estimators is significantly reduced, and performance of Xbar charts are undesirably low, e.g. occasional outliers in the rational subgroups in Phase I data set may considerably affect the sample mean and standard deviation, resulting a serious delay in detection of inferior products in Phase II. For more efficient application of control charts, it is required to use robust estimators against contaminations, which may exist in Phase I. In the current study, we present a simple approach to construct robust Xbar control charts using average distance to the median, Qn-estimator of scale, M-estimator of scale with logistic psi-function in the estimation of process dispersion parameter, and Harrell-Davis qth quantile estimator, Hodge-Lehmann estimator and M-estimator of location with Huber psi-function and logistic psi-function in the estimation of process location parameter. Phase I efficiency of proposed estimators and Phase II performance of Xbar charts constructed from these estimators are compared with the conventional mean and standard deviation statistics both under normality and against diffuse-localized and symmetric-asymmetric contaminations using 50,000 Monte Carlo simulations on MATLAB. Consequently, it is found that robust estimators yield parameter estimates with higher efficiency against all types of contaminations, and Xbar charts constructed using robust estimators have higher power in detecting disturbances, compared to conventional methods. Additionally, utilizing individuals charts to screen outlier subgroups and employing different combination of dispersion and location estimators on subgroups and individual observations are found to improve the performance of Xbar charts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=average%20run%20length" title="average run length">average run length</a>, <a href="https://publications.waset.org/abstracts/search?q=M-estimators" title=" M-estimators"> M-estimators</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20estimators" title=" robust estimators"> robust estimators</a> </p> <a href="https://publications.waset.org/abstracts/79020/comparing-xbar-charts-conventional-versus-reweighted-robust-estimation-methods-for-univariate-data-sets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">852</span> Non-Parametric Regression over Its Parametric Couterparts with Large Sample Size</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jude%20Opara">Jude Opara</a>, <a href="https://publications.waset.org/abstracts/search?q=Esemokumo%20Perewarebo%20Akpos"> Esemokumo Perewarebo Akpos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is on non-parametric linear regression over its parametric counterparts with large sample size. Data set on anthropometric measurement of primary school pupils was taken for the analysis. The study used 50 randomly selected pupils for the study. The set of data was subjected to normality test, and it was discovered that the residuals are not normally distributed (i.e. they do not follow a Gaussian distribution) for the commonly used least squares regression method for fitting an equation into a set of (x,y)-data points using the Anderson-Darling technique. The algorithms for the nonparametric Theil’s regression are stated in this paper as well as its parametric OLS counterpart. The use of a programming language software known as “R Development” was used in this paper. From the analysis, the result showed that there exists a significant relationship between the response and the explanatory variable for both the parametric and non-parametric regression. To know the efficiency of one method over the other, the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) are used, and it is discovered that the nonparametric regression performs better than its parametric regression counterparts due to their lower values in both the AIC and BIC. The study however recommends that future researchers should study a similar work by examining the presence of outliers in the data set, and probably expunge it if detected and re-analyze to compare results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Theil%E2%80%99s%20regression" title="Theil’s regression">Theil’s regression</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20information%20criterion" title=" Bayesian information criterion"> Bayesian information criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=Akaike%20information%20criterion" title=" Akaike information criterion"> Akaike information criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=OLS" title=" OLS"> OLS</a> </p> <a href="https://publications.waset.org/abstracts/58536/non-parametric-regression-over-its-parametric-couterparts-with-large-sample-size" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">851</span> Study of Cavitation Erosion of Pump-Storage Hydro Power Plant Prototype</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tine%20Cenci%C4%8D">Tine Cencič</a>, <a href="https://publications.waset.org/abstracts/search?q=Marko%20Ho%C4%8Devar"> Marko Hočevar</a>, <a href="https://publications.waset.org/abstracts/search?q=Brane%20%C5%A0irok"> Brane Širok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental investigation has been made to detect cavitation in pump–storage hydro power plant prototype suffering from cavitation in pump mode. Vibrations and acoustic emission on the housing of turbine bearing and pressure fluctuations in the draft tube were measured and the corresponding signals have been recorded and analyzed. The analysis was based on the analysis of high-frequency content of measured variables. The pump-storage hydro power plant prototype has been operated at various input loads and Thoma numbers. Several estimators of cavitation were evaluated according to coefficient of determination between Thoma number and cavitation estimators. The best results were achieved with a compound discharge coefficient cavitation estimator. Cavitation estimators were evaluated in several intervals of frequencies. Also, a prediction of cavitation erosion was made in order to choose the appropriate maintenance and repair periods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavitation%20erosion" title="cavitation erosion">cavitation erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine" title=" turbine"> turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=cavitation%20measurement" title=" cavitation measurement"> cavitation measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20dynamics" title=" fluid dynamics"> fluid dynamics</a> </p> <a href="https://publications.waset.org/abstracts/8147/study-of-cavitation-erosion-of-pump-storage-hydro-power-plant-prototype" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">850</span> Methods of Variance Estimation in Two-Phase Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raghunath%20Arnab">Raghunath Arnab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The two-phase sampling which is also known as double sampling was introduced in 1938. In two-phase sampling, samples are selected in phases. In the first phase, a relatively large sample of size is selected by some suitable sampling design and only information on the auxiliary variable is collected. During the second phase, a sample of size is selected either from, the sample selected in the first phase or from the entire population by using a suitable sampling design and information regarding the study and auxiliary variable is collected. Evidently, two phase sampling is useful if the auxiliary information is relatively easy and cheaper to collect than the study variable as well as if the strength of the relationship between the variables and is high. If the sample is selected in more than two phases, the resulting sampling design is called a multi-phase sampling. In this article we will consider how one can use data collected at the first phase sampling at the stages of estimation of the parameter, stratification, selection of sample and their combinations in the second phase in a unified setup applicable to any sampling design and wider classes of estimators. The problem of the estimation of variance will also be considered. The variance of estimator is essential for estimating precision of the survey estimates, calculation of confidence intervals, determination of the optimal sample sizes and for testing of hypotheses amongst others. Although, the variance is a non-negative quantity but its estimators may not be non-negative. If the estimator of variance is negative, then it cannot be used for estimation of confidence intervals, testing of hypothesis or measure of sampling error. The non-negativity properties of the variance estimators will also be studied in details. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20information" title="auxiliary information">auxiliary information</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20sampling" title=" two-phase sampling"> two-phase sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=varying%20probability%20sampling" title=" varying probability sampling"> varying probability sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=unbiased%20estimators" title=" unbiased estimators"> unbiased estimators</a> </p> <a href="https://publications.waset.org/abstracts/36087/methods-of-variance-estimation-in-two-phase-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">588</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">849</span> Enhancement of Visual Comfort Using Parametric Double Skin Façade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Khamis">Ahmed A. Khamis</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20A.%20Ibrahim"> Sherif A. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20El%20Khatieb"> Mahmoud El Khatieb</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Barakat"> Mohamed A. Barakat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parametric design is an icon of the modern architectural that facilitate taking complex design decisions counting on altering various design parameters. Double skin facades are one of the parametric applications for using parametric designs. This paper opts to enhance different daylight parameters of a selected case study office building in Cairo using parametric double skin facade. First, the design and optimization process executed utilizing Grasshopper parametric design software which is a plugin in rhino. The daylighting performance of the base case building model was compared with the one used the double façade showing an enhancement in daylighting performance indicators like glare and task illuminance in the modified model, execution drawings are made for the optimized design to be executed through Revit, followed by computerized digital fabrication stages of the designed model with various scales to reach the final design decisions using Simplify 3D for mock-up digital fabrication <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parametric%20design" title="parametric design">parametric design</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20skin%20facades" title=" double skin facades"> double skin facades</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20fabrication" title=" digital fabrication"> digital fabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=grasshopper" title=" grasshopper"> grasshopper</a>, <a href="https://publications.waset.org/abstracts/search?q=simplify%203D" title=" simplify 3D"> simplify 3D</a> </p> <a href="https://publications.waset.org/abstracts/156634/enhancement-of-visual-comfort-using-parametric-double-skin-facade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">848</span> Refined Procedures for Second Order Asymptotic Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gubhinder%20Kundhi">Gubhinder Kundhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Rilstone"> Paul Rilstone</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Refined procedures for higher-order asymptotic theory for non-linear models are developed. These include a new method for deriving stochastic expansions of arbitrary order, new methods for evaluating the moments of polynomials of sample averages, a new method for deriving the approximate moments of the stochastic expansions; an application of these techniques to gather improved inferences with the weak instruments problem is considered. It is well established that Instrumental Variable (IV) estimators in the presence of weak instruments can be poorly behaved, in particular, be quite biased in finite samples. In our application, finite sample approximations to the distributions of these estimators are obtained using Edgeworth and Saddlepoint expansions. Departures from normality of the distributions of these estimators are analyzed using higher order analytical corrections in these expansions. In a Monte-Carlo experiment, the performance of these expansions is compared to the first order approximation and other methods commonly used in finite samples such as the bootstrap. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=edgeworth%20expansions" title="edgeworth expansions">edgeworth expansions</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20order%20asymptotics" title=" higher order asymptotics"> higher order asymptotics</a>, <a href="https://publications.waset.org/abstracts/search?q=saddlepoint%20expansions" title=" saddlepoint expansions"> saddlepoint expansions</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20instruments" title=" weak instruments"> weak instruments</a> </p> <a href="https://publications.waset.org/abstracts/68155/refined-procedures-for-second-order-asymptotic-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">847</span> Parametric Template-Based 3D Reconstruction of the Human Body</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiahe%20Liu">Jiahe Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongyang%20Yu"> Hongyang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Qian"> Feng Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Miao%20Luo"> Miao Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Linhang%20Zhu"> Linhang Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study proposed a 3D human body reconstruction method, which integrates multi-view joint information into a set of joints and processes it with a parametric human body template. Firstly, we obtained human body image information captured from multiple perspectives. The multi-view information can avoid self-occlusion and occlusion problems during the reconstruction process. Then, we used the MvP algorithm to integrate multi-view joint information into a set of joints. Next, we used the parametric human body template SMPL-X to obtain more accurate three-dimensional human body reconstruction results. Compared with the traditional single-view parametric human body template reconstruction, this method significantly improved the accuracy and stability of the reconstruction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parametric%20human%20body%20templates" title="parametric human body templates">parametric human body templates</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction%20of%20the%20human%20body" title=" reconstruction of the human body"> reconstruction of the human body</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-view" title=" multi-view"> multi-view</a>, <a href="https://publications.waset.org/abstracts/search?q=joint" title=" joint"> joint</a> </p> <a href="https://publications.waset.org/abstracts/173775/parametric-template-based-3d-reconstruction-of-the-human-body" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">846</span> Parametric Design as an Approach to Respond to Complexity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sepideh%20Jabbari%20Behnam">Sepideh Jabbari Behnam</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahrasadat%20Saide%20Zarabadi"> Zahrasadat Saide Zarabadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A city is an intertwined texture from the relationship of different components in a whole which is united in a one, so designing the whole complex and its planning is not an easy matter. By considering that a city is a complex system with infinite components and communications, providing flexible layouts that can respond to the unpredictable character of the city, which is a result of its complexity, is inevitable. Parametric design approach as a new approach can produce flexible and transformative layouts in any stage of design. This study aimed to introduce parametric design as a modern approach to respond to complex urban issues by using descriptive and analytical methods. This paper firstly introduces complex systems and then giving a brief characteristic of complex systems. The flexible design and layout flexibility is another matter in response and simulation of complex urban systems that should be considered in design, which is discussed in this study. In this regard, after describing the nature of the parametric approach as a flexible approach, as well as a tool and appropriate way to respond to features such as limited predictability, reciprocating nature, complex communications, and being sensitive to initial conditions and hierarchy, this paper introduces parametric design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complexity%20theory" title="complexity theory">complexity theory</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20system" title=" complex system"> complex system</a>, <a href="https://publications.waset.org/abstracts/search?q=flexibility" title=" flexibility"> flexibility</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20design" title=" parametric design"> parametric design</a> </p> <a href="https://publications.waset.org/abstracts/62330/parametric-design-as-an-approach-to-respond-to-complexity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">845</span> Estimating the Life-Distribution Parameters of Weibull-Life PV Systems Utilizing Non-Parametric Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saleem%20Z.%20Ramadan">Saleem Z. Ramadan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a model is proposed to determine the life distribution parameters of the useful life region for the PV system utilizing a combination of non-parametric and linear regression analysis for the failure data of these systems. Results showed that this method is dependable for analyzing failure time data for such reliable systems when the data is scarce. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=masking" title="masking">masking</a>, <a href="https://publications.waset.org/abstracts/search?q=bathtub%20model" title=" bathtub model"> bathtub model</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=non-parametric%20analysis" title=" non-parametric analysis"> non-parametric analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=useful%20life" title=" useful life"> useful life</a> </p> <a href="https://publications.waset.org/abstracts/19933/estimating-the-life-distribution-parameters-of-weibull-life-pv-systems-utilizing-non-parametric-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">562</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">844</span> A Non-Parametric Based Mapping Algorithm for Use in Audio Fingerprinting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Analise%20Borg">Analise Borg</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Micallef"> Paul Micallef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past few years, the online multimedia collection has grown at a fast pace. Several companies showed interest to study the different ways to organize the amount of audio information without the need of human intervention to generate metadata. In the past few years, many applications have emerged on the market which are capable of identifying a piece of music in a short time. Different audio effects and degradation make it much harder to identify the unknown piece. In this paper, an audio fingerprinting system which makes use of a non-parametric based algorithm is presented. Parametric analysis is also performed using Gaussian Mixture Models (GMMs). The feature extraction methods employed are the Mel Spectrum Coefficients and the MPEG-7 basic descriptors. Bin numbers replaced the extracted feature coefficients during the non-parametric modelling. The results show that non-parametric analysis offer potential results as the ones mentioned in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=audio%20fingerprinting" title="audio fingerprinting">audio fingerprinting</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping%20algorithm" title=" mapping algorithm"> mapping algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20Mixture%20Models" title=" Gaussian Mixture Models"> Gaussian Mixture Models</a>, <a href="https://publications.waset.org/abstracts/search?q=MFCC" title=" MFCC"> MFCC</a>, <a href="https://publications.waset.org/abstracts/search?q=MPEG-7" title=" MPEG-7"> MPEG-7</a> </p> <a href="https://publications.waset.org/abstracts/22201/a-non-parametric-based-mapping-algorithm-for-use-in-audio-fingerprinting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parametric%20estimators&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parametric%20estimators&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parametric%20estimators&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parametric%20estimators&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parametric%20estimators&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parametric%20estimators&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parametric%20estimators&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parametric%20estimators&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parametric%20estimators&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parametric%20estimators&page=29">29</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parametric%20estimators&page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parametric%20estimators&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>