CINXE.COM

Search results for: high surface area

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: high surface area</title> <meta name="description" content="Search results for: high surface area"> <meta name="keywords" content="high surface area"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="high surface area" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="high surface area"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 29655</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: high surface area</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29655</span> The Preparation of High Surface Area Ni/MgAl2O4 Catalysts for Syngas Methanation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jingyu%20Zhou">Jingyu Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongfang%20Ma"> Hongfang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High surface area MgAl2O4 supported Nickel catalysts with PVA loadings varying from 0% to 15% were prepared by precipitation and impregnation method. The catalysts were characterized by low temperature N2 adsorption/desorption, X-ray diffraction and H2 temperature programmed reduction. Compared with Ni/γ-Al2O3 catalyst, Ni/MgAl2O4 catalysts exhibited higher activity and selectivity in high temperature. Among the catalysts, Ni/MgAl2O4-5P with 5 wt% PVA showed the best performance, and achieved 95% CO conversion and 96% CH4 selectivity at 600°C, 2.0 MPa, and a WHSV of 12,000 mL·g⁻¹.h⁻¹. It also maintained good stability in 50h life test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methanation" title="methanation">methanation</a>, <a href="https://publications.waset.org/abstracts/search?q=MgAl2O4%20support" title=" MgAl2O4 support"> MgAl2O4 support</a>, <a href="https://publications.waset.org/abstracts/search?q=PVA" title=" PVA"> PVA</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20surface%20area" title=" high surface area"> high surface area</a> </p> <a href="https://publications.waset.org/abstracts/60130/the-preparation-of-high-surface-area-nimgal2o4-catalysts-for-syngas-methanation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29654</span> Scale Up-Mechanochemical Synthesis of High Surface Area Alpha-Alumina</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Triller">Sarah Triller</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferdi%20Sch%C3%BCth"> Ferdi Schüth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The challenges encountered in upscaling the mechanochemical synthesis of high surface area α-alumina are investigated in this study. After lab-scale experiments in shaker mills and planetary ball mills, the optimization of reaction parameters of the conversion in the smallest vessel of a scalable mill, named Simoloyer, was developed. Furthermore, the future perspectives by scaling up the conversion in several steps are described. Since abrasion from the steel equipment can be problematic, the process was transferred to a ceramically lined mill, which solved the contamination problem. The recovered alpha-alumina shows a high specific surface area in all investigated scales. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanochemistry" title="mechanochemistry">mechanochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=scale-up" title=" scale-up"> scale-up</a>, <a href="https://publications.waset.org/abstracts/search?q=ball%20milling" title=" ball milling"> ball milling</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20lining" title=" ceramic lining"> ceramic lining</a> </p> <a href="https://publications.waset.org/abstracts/175554/scale-up-mechanochemical-synthesis-of-high-surface-area-alpha-alumina" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29653</span> Occurrence of High Nocturnal Surface Ozone at a Tropical Urban Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Dey">S. Dey</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Sibanda"> P. Sibanda</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Gupta"> S. Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chakraborty"> A. Chakraborty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The occurrence of high nocturnal surface ozone over a tropical urban area (23̊ 32&prime;16.99&Prime; N and 87̊ 17&prime; 38.95&Prime; E) is analyzed in this paper. Five incidences of nocturnal ozone maxima are recorded during the observational span of two years (June, 2013 to May, 2015). The maximum and minimum values of the surface ozone during these five occasions are 337.630 &mu;g/m<sup>3</sup> and 13.034 &mu;g/m<sup>3</sup> respectively. HYSPLIT backward trajectory analyses and wind rose diagrams support the horizontal transport of ozone from distant polluted places. Planetary boundary layer characteristics, concentration of precursor (NO<sub>2</sub>) and meteorology are found to play important role in the horizontal and vertical transport of surface ozone during nighttime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nocturnal%20ozone" title="nocturnal ozone">nocturnal ozone</a>, <a href="https://publications.waset.org/abstracts/search?q=planetary%20boundary%20layer" title=" planetary boundary layer"> planetary boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20transport" title=" horizontal transport"> horizontal transport</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorology" title=" meteorology"> meteorology</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20area" title=" urban area"> urban area</a> </p> <a href="https://publications.waset.org/abstracts/53051/occurrence-of-high-nocturnal-surface-ozone-at-a-tropical-urban-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29652</span> Porosity and Surface Chemistry of Functionalized Carbonaceous Materials from Date Palm Leaflets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El-Said%20I.%20El-Shafey">El-Said I. El-Shafey</a>, <a href="https://publications.waset.org/abstracts/search?q=Syeda%20Naheed%20F.%20Ali"> Syeda Naheed F. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleh%20S.%20Al-Busafi"> Saleh S. Al-Busafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Haider%20A.%20J.%20Al-Lawati"> Haider A. J. Al-Lawati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Date palm leaflets were utilized as a precursor for activated carbon (AC) preparation using KOH activation. AC produced was oxidized using nitric acid producing oxidized activated carbon (OAC). OAC that possesses acidic surface was surface functionalized to produce basic activated carbons using linear diamine compounds (ethylene diamine and propylene diamine). OAC was also functionalized to produce hydrophobic activated carbons using ethylamine (EA) and aniline (AN). Dehydrated carbon was also prepared from date palm leaflets using sulfuric acid dehydration/ oxidation and was surface functionalized in the same way as AC. Nitric acid oxidation was not necessary for DC as it is acidic carbon. The surface area of AC is high (823 m2/g) with microporosity domination, however, after oxidation and surface functionalization, both the surface area and surface microporosity decrease tremendously. DC surface area was low (15 m2/g) with mesoporosity domination. Surface functionalization has decreased the surface area of activated carbons. FTIR spectra show that -COOH group on DC and OAC almost disappeared after surface functionalization. The surface chemistry of all carbons produced was tested for pHzpc, basic sites, boehm titration, thermogravimetric analysis and zeta potential measurement. Scanning electron microscopy and energy dispersive spectroscopy in addition to CHN elemental analysis were also carried out. DC and OAC possess low pHzpc and high surface functionality, however, basic and hydrophobic carbons possess high pHzpc and low surface functionality. The different behavior of carbons is related to their different surface chemistry. Methylene blue adsorption was found to be faster on hydrophobic carbons based on AC and DC. The Larger adsorption capacity of methylene blue was found for hydrophobic carbons. Dominating adsorption forces of methylene blue varies from carbon to another depending on its surface nature. Sorption forces include hydrophobic forces, H-bonding, electrostatic interactions and van der Waals forces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon" title="carbon">carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=acidic" title=" acidic"> acidic</a>, <a href="https://publications.waset.org/abstracts/search?q=basic" title=" basic"> basic</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic" title=" hydrophobic"> hydrophobic</a> </p> <a href="https://publications.waset.org/abstracts/66827/porosity-and-surface-chemistry-of-functionalized-carbonaceous-materials-from-date-palm-leaflets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29651</span> Examination of the Influence of the Near-Surface Geology on the Initial Infrastructural Development Using High-Resolution Seismic Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Collins%20Chiemeke">Collins Chiemeke</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Ibe"> Stephen Ibe</a>, <a href="https://publications.waset.org/abstracts/search?q=Godwin%20Onyedim"> Godwin Onyedim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research work on high-resolution seismic tomography method was carried out with the aim of investigating how near-surface geology influences the initial distribution of infrastructural development in an area like Otuoke and its environs. To achieve this objective, seismic tomography method was employed. The result revealed that the overburden (highly-weathered layer) thickness ranges from 27 m to 50 m within the survey area, with an average value of 37 m. The 3D surface analysis for the overburden thickness distribution within the survey area showed that the thickness of the overburden is more in regions with less infrastructural development, and least in built-up areas. The range of velocity distribution from the surface to within a depth of 5 m is about 660 m/s to 1160 m/s, with an average value of 946 m/s. The 3D surface analysis of the velocity distribution also revealed that the areas with large infrastructural development are characterized with large velocity values compared with the undeveloped regions that has average low-velocity values. Hence, one can conclusively say that the initial settlement of Otuoke and its environs and the subsequent infrastructural development was influenced by the underlying near surface geology (rigid earth), among other factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geology" title="geology">geology</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructural" title=" infrastructural"> infrastructural</a>, <a href="https://publications.waset.org/abstracts/search?q=near-surface" title=" near-surface"> near-surface</a> </p> <a href="https://publications.waset.org/abstracts/51401/examination-of-the-influence-of-the-near-surface-geology-on-the-initial-infrastructural-development-using-high-resolution-seismic-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29650</span> Surface Modification of Poly High Internal Phase Emulsion by Solution Plasma Process for CO2 Adsorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mookyada%20Mankrut">Mookyada Mankrut</a>, <a href="https://publications.waset.org/abstracts/search?q=Manit%20Nithitanakul"> Manit Nithitanakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An increase in the amount of atmospheric carbon dioxide (CO2) resulting from anthropogenic CO2 emission has been a concerned problem so far. Adsorption using porous materials is feasible way to reduce the content of CO2 emission into the atmosphere due to several advantages: low energy consumption in regeneration process, low-cost raw materials and, high CO2 adsorption capacity. In this work, the porous poly(divinylbenzene) (poly(DVB)) support was synthesized under high internal phase emulsion (HIPE) polymerization then modified with polyethyleneimine (PEI) by using solution plasma process. These porous polymers were then used as adsorbents for CO2 adsorption study. All samples were characterized by some techniques: Fourier transform infrared spectroscopy (FT-IR), scanning electron spectroscopy (SEM), water contact angle measurement and, surface area analyzer. The results of FT-IR and a decrease in contact angle, pore volume and, surface area of PEI-loaded materials demonstrated that surface of poly(DVB) support was modified. In other words, amine groups were introduced to poly(DVB) surface. In addition, not only the outer surface of poly(DVB) adsorbent was modified, but also the inner structure as shown by FT-IR study. As a result, PEI-loaded materials exhibited higher adsorption capacity, comparing with those of the unmodified poly(DVB) support. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyHIPEs" title="polyHIPEs">polyHIPEs</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20adsorption" title=" CO2 adsorption"> CO2 adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=solution%20plasma%20process" title=" solution plasma process"> solution plasma process</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20internal%20phase%20emulsion" title=" high internal phase emulsion"> high internal phase emulsion</a> </p> <a href="https://publications.waset.org/abstracts/66802/surface-modification-of-poly-high-internal-phase-emulsion-by-solution-plasma-process-for-co2-adsorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29649</span> Rapid Generation of Octagonal Pyramids on Silicon Wafer for Photovoltaics by Swift Anisotropic Chemical Etching Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sami%20Iqbal">Sami Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Azam%20Hussain"> Azam Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiping%20Wu"> Weiping Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Guo%20Xinli"> Guo Xinli</a>, <a href="https://publications.waset.org/abstracts/search?q=Tong%20Zhang"> Tong Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel octagonal upright micro-pyramid structure was generated by wet chemical anisotropic etching on a monocrystalline silicon wafer (100). The primary objectives are to reduce front surface reflectance of silicon wafers, improve wettability, enhance surface morphology, and maximize the area coverage by generated octagonal pyramids. Under rigorous control and observation, the etching process' response time was maintained precisely. The experimental outcomes show a significant decrease in the optical surface reflectance of silicon wafers, with the lowest reflectance of 8.98%, as well as enhanced surface structure, periodicity, and surface area coverage of more than 85%. The octagonal silicon pyramid was formed with a high etch rate of 0.41 um/min and a much shorter reaction time with the addition of hydrofluoric acid coupled with magnetic stirring (mechanical agitation) at 300 rpm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=octagonal%20pyramids" title="octagonal pyramids">octagonal pyramids</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20etching" title=" rapid etching"> rapid etching</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cells" title=" solar cells"> solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20engineering" title=" surface engineering"> surface engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20reflectance" title=" surface reflectance"> surface reflectance</a> </p> <a href="https://publications.waset.org/abstracts/167589/rapid-generation-of-octagonal-pyramids-on-silicon-wafer-for-photovoltaics-by-swift-anisotropic-chemical-etching-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29648</span> Microwave Synthesis, Optical Properties and Surface Area Studies of NiO Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayed%20S.%20Al-Shihri">Ayed S. Al-Shihri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abul%20Kalam"> Abul Kalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20G.%20Al-Sehemi"> Abdullah G. Al-Sehemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaohui%20Du"> Gaohui Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Tokeer%20Ahmad"> Tokeer Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Irfan"> Ahmad Irfan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report here the synthesis of nickel oxide (NiO) nanoparticles by microwave-assisted method, using a common precipitating agent followed by calcination in air at 400°C. The effect of the microwave and pH on the crystallite size, morphology, structure, energy band gap and surface area of NiO have been investigated by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV-vis) and BET surface area studies. X-ray diffraction studies showed the formation of monophasic and highly crystalline cubic NiO. TEM analysis led to decrease the average grain size of NiO nanoparticles from 16.5 nm to 14 nm on increasing the amount of NaOH. FTIR studies also confirm the formation of NiO nanoparticles. It was observed that on increasing the volume of NaOH, the optical band gap energy (2.85 eV to 2.95 eV) and specific surface area (33.1 to 39.8 m2/g) increases, however the average particles size decreases (16.5 nm to 14 nm). This method may be extended to large scale synthesis of other metal oxides nanoparticles and the present study could be used for the potential applications in water treatment and many other fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BET%20surface%20area%20analysis" title="BET surface area analysis">BET surface area analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20microscopy" title=" electron microscopy"> electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20techniques" title=" X-ray techniques "> X-ray techniques </a> </p> <a href="https://publications.waset.org/abstracts/10258/microwave-synthesis-optical-properties-and-surface-area-studies-of-nio-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29647</span> High-Performance Supercapacitors with Activated Carbon and Nickel Sulfide Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarita%20Sindhu">Sarita Sindhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Kumar"> Vinay Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing demand for efficient energy storage in applications such as portable electronics, electric vehicles, and renewable energy systems has emphasized the need for advanced energy storage materials. This study addresses the pressing need for efficient energy storage materials by exploring the synthesis and application of a composite of activated carbon (AC) and nickel sulfide (NiS) for supercapacitors. Activated carbon, possessing high surface area and excellent electrochemical stability, was combined with nickel sulfide, a transition metal sulfide with high theoretical capacitance, to enhance the electrochemical performance of the composite material. Characterization techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), were employed to analyze the morphology, crystalline structure, and bonding characteristics, confirming the successful formation of a uniformly distributed AC/NiS composite. Electrochemical evaluations revealed that the AC/NiS composite exhibited superior capacitance, excellent rate capability, and enhanced cycling stability compared to pure AC and NiS. The synergistic effect of the large surface area from activated carbon and redox-active sites of nickel sulfide provided an improved energy storage capacity, making this composite a promising electrode material for high-performance supercapacitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfide" title=" sulfide"> sulfide</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20area" title=" surface area"> surface area</a> </p> <a href="https://publications.waset.org/abstracts/193483/high-performance-supercapacitors-with-activated-carbon-and-nickel-sulfide-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29646</span> Influence of Surface Area on Dissolution of Additively Manufactured Polyvinyl Alcohol Tablets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedebrahim%20Afkhami">Seyedebrahim Afkhami</a>, <a href="https://publications.waset.org/abstracts/search?q=Meisam%20Abdi"> Meisam Abdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Baserinia"> Reza Baserinia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing is revolutionising production in different industries, including pharmaceuticals. This case study explores the influence of surface area on the dissolution of additively manufactured polyvinyl alcohol parts as a polymer candidate. Specimens of different geometries and constant mass were fabricated using a Fused Deposition Modelling 3D printer. The dissolution behaviour of these samples was compared with respect to their surface area. Improved and accelerated dissolution was observed for samples with a larger surface area. This study highlights the capabilities of additive manufacturing to produce samples of complex geometries that cannot be manufactured otherwise to control the dissolution behaviour for pharmaceutical and biopharmaceutical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20dissolution" title=" polymer dissolution"> polymer dissolution</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modelling" title=" fused deposition modelling"> fused deposition modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=geometry%20optimization" title=" geometry optimization"> geometry optimization</a> </p> <a href="https://publications.waset.org/abstracts/168846/influence-of-surface-area-on-dissolution-of-additively-manufactured-polyvinyl-alcohol-tablets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29645</span> Pd Supported on Activated Carbon: Effect of Support Texture on the Dispersion of Pd</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%20Sun%20Kim">Ji Sun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae%20Ho%20Baek"> Jae Ho Baek</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyeong%20Ho%20Kim"> Kyeong Ho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Hae%20Ha"> Ji Hae Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong%20Soo%20Hong"> Seong Soo Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Wook%20Park"> Jung-Wook Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Sig%20Lee"> Man Sig Lee </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon supported palladium catalysts have been used in many industrial reactions, especially for hydrogenation in the fine chemical industry. Porous carbons had been widely used as catalyst supports due to its higher surface area and larger pore volume. The specific surface area, pore structure and surface chemical functional groups of porous carbon affects metal dispersion and particle size. In this paper, we confirm the effect of support texture on the dispersion of Pd. Pd catalyst supported on activated carbon having various specific surface area were characterized by BET, XRD and FE-TEM. Catalyst activity and dispersion of prepared catalyst were evaluated on the basis of the CO adsorption capacity by CO-chemisorption. As concluding remark to this part of our study, let us note that specific area of carbon play important role on the synthesis of Pd/C catalyst/. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon" title="carbon">carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=Pd%2FC" title=" Pd/C"> Pd/C</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20are" title=" specific are"> specific are</a>, <a href="https://publications.waset.org/abstracts/search?q=support" title=" support"> support</a> </p> <a href="https://publications.waset.org/abstracts/40084/pd-supported-on-activated-carbon-effect-of-support-texture-on-the-dispersion-of-pd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29644</span> Methyl Red Adsorption and Photodegradation on TiO₂ Modified Mesoporous Carbon Photocatalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Ershad%20Moradi">Seyyed Ershad Moradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Javad%20Khodaveisi"> Javad Khodaveisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Atefeh%20Nasrollahpour"> Atefeh Nasrollahpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the highly ordered mesoporous carbon molecular sieve with high surface area and pore volume have been synthesized and modified by TiO₂ doping. The titanium oxide modified mesoporous carbon (Ti-OMC) was characterized by scanning electron microscope (SEM), BET surface area, DRS also XRD analysis (low and wide angle). Degradation experiments were conducted in batch mode with the variables such as amount of contact time, initial solution concentration, and solution pH. The optimal conditions for the degradation of methyl red (MR) were 100 mg/L dye concentration, pH of 7, and 0.12 mg/L of TiO₂ modified mesoporous carbon photocatalyst dosage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20carbon" title="mesoporous carbon">mesoporous carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=photodegradation" title=" photodegradation"> photodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20oxide" title=" titanium oxide"> titanium oxide</a> </p> <a href="https://publications.waset.org/abstracts/78833/methyl-red-adsorption-and-photodegradation-on-tio2-modified-mesoporous-carbon-photocatalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29643</span> Carbon Electrode Materials for Supercapacitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu.%20Mateyshina">Yu. Mateyshina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ulihin"> A. Ulihin</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Uvarov"> N. Uvarov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supercapacitors are one of the most promising devices for energy storage applications as they can provide higher power density than batteries and higher energy density than conventional dielectric capacitors. Carbon materials with various microtextures are considered as main candidates for supercapacitors in terms of high surface area, interconnected pore structure, controlled pore size, high electrical conductivity and environmental friendliness. The specific capacitance (C) of the electrode material of the Electrochemical Double Layer Capacitors (EDLC) is known to depend on the specific surface area (Ss) and the pore structure. Activated carbons are most commonly used in supercapacitors because of their high surface area (Ss ≥ 1000 m2/g), good adhesion to electrolytes and low cost. In this work, electrochemical properties of new microporous and mesoporous carbon electrode materials were studied. The aim of the work was to investigate the relationship between the specific capacitance and specific surface area in a series of materials prepared from different organic precursors.. As supporting matrixes different carbon samples with Ss = 100-2000 m2/g were used. The materials were modified by treatment in acids (H2SO4, HNO3, acetic acid) in order to enable surface hydrophilicity. Then nanoparticles of transition metal oxides (for example NiO) were deposited on the carbon surfaces using methods of salts impregnation, mechanical treatment in ball mills and the precursors decomposition. The electrochemical characteristics of electrode hybrid materials were investigated in a symmetrical two-electrode cell using an impedance spectroscopy, voltammetry in both potentiodynamic and galvanostatic modes. It was shown that the value of C for the materials under study strongly depended on the preparation method of the electrode and the type of electrolyte (1 M H2SO4, 6 M KOH, 1 M LiClO4 in acetonitryl). Specific capacity may be increased by the introduction of nanoparticles from 50-100 F/g for initial carbon materials to 150-300 F/g for nanocomposites which may be used in supercapacitors. The work is supported by the по SC-14.604.21.0013. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supercapacitors" title="supercapacitors">supercapacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20electrode" title=" carbon electrode"> carbon electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20carbon" title=" mesoporous carbon"> mesoporous carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemistry" title=" electrochemistry "> electrochemistry </a> </p> <a href="https://publications.waset.org/abstracts/34634/carbon-electrode-materials-for-supercapacitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29642</span> Effects of Surface Insulation of Silicone Rubber Composites in HVDC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min-Hae%20Park">Min-Hae Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju-Na%20Hwang"> Ju-Na Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheong-won%20Seo"> Cheong-won Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji-Ho%20Kim"> Ji-Ho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kee-Joe%20Lim"> Kee-Joe Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymeric insulators are high hardness, corrosion resistant, lightweight and also good dielectric strength in electric equipment. For such reasons, the amount of polymeric insulators is increased consistently abroad. The current outdoor insulators are replaced by polymeric insulators. Silicone rubber of polymeric insulators is widely used in insulation materials for outdoor application since it has excellent electrical characteristics and high surface hydrophobic. However, it can be evade exposure to pollutant on surface using at outdoor. It also improve the pollution for dust and smoke due to the large are increasing, because most of the industrial area in which the electric power loads are concentrated are located at the coastal area with salt attack. Thus it is important to detect the main cause of the deterioration for outdoor insulation materials. But there has no standards for valuation to apply reliably and determine accurately deterioration under DC, still lacks DC characteristic researches in proportion to AC. In addition, a lot of ATH was added to improve tracking resistivity of silicone rubber, although the problem has been brought up about falling sharply mechanical properties. Therefore, we might compare surface resistivities of silicone rubber compounding of three kinds of filler. In this paper, specimens of silicone rubber composite usable as outdoor insulators were prepared. Micro-silica (SiO2), nano- alumina (Al2O3) and nano-ATH (Al(OH)3) were used in additives. The study aims to investigate properties of DC surface insulation on silicone rubber composite which were filled with various fillers from surface resistivity measurement and salt-fog test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=silicone%20rubber" title=" silicone rubber"> silicone rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20insulation" title=" surface insulation"> surface insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=HVDC" title=" HVDC"> HVDC</a> </p> <a href="https://publications.waset.org/abstracts/6213/effects-of-surface-insulation-of-silicone-rubber-composites-in-hvdc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29641</span> Produce High-Quality Activated Carbon with a Large Surface Area from Date Seeds Biomass for Water Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashad%20Al-Gaashani">Rashad Al-Gaashani</a>, <a href="https://publications.waset.org/abstracts/search?q=Viktor%20Kochkodan"> Viktor Kochkodan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jenny%20Lawler"> Jenny Lawler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physico-chemical activation method wasused to produce high-quality activated carbon (AC) with a large surface area of about 2000 m2/g from low-cost and abundant biomasswastes in Qatar, namely date seeds. X-Ray diffraction (XRD), scanning electron spectroscopy (SEM), energy dispersive X-Ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) surface area analysis were used to evaluate the AC samples. AC produced from date seeds have a wide range of the pores available, including micro- andnano-pores. This type of AC with a well-developed pore structure may be very attractive for different applications, including air and water purification from micro and nano pollutants. Heavy metalsiron (III) and copper (II) ions were removed from wastewater using the AC producedusinga batch adsorption technique. The AC produced from date seeds biomass wastes show high removal of heavy metals such as iron (III) ions (100%) and copper (II) ions (97.25%). The highest removal of copper (II) ions (100%) with AC produced from date seeds was found at pH 8, whereas the lowest removal (22.63%) occurred at pH 2. The effect of adsorption time, adsorbent dose, pH on the removal of heavy metalswere studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=date%20seeds" title=" date seeds"> date seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals%20removal" title=" heavy metals removal"> heavy metals removal</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/152423/produce-high-quality-activated-carbon-with-a-large-surface-area-from-date-seeds-biomass-for-water-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29640</span> Study Mercapto-Nanoscavenger as a Promising Analytical Tool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20M.%20Algaradah">Mohammed M. Algaradah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A chelating mercapto- nanoscavenger has been developed exploiting the high surface area of monodisperse nano-sized mesoporous silica. The nanoscavenger acts as a solid phase trace metal extractant whilst suspended as a quasi-stable sol in aqueous samples. This mode of extraction requires no external agitation as the particles move naturally through the sample by Brownian motion, convection and slow sedimentation. Careful size selection enables the nanoscavenger to be easily recovered together with the extracted analyte by conventional filtration or centrifugation. The research describes the successful attachment of chelator mercapto to ca. 136 ± 15 nm high surface area (BET surface area = 1006 m2 g-1) mesoporous silica particles. The resulting material had a copper capacity of ca. 1.34 ± 0.10 mmol g-1 and was successfully applied to the collection of a trace element from water. Essentially complete recovery of Cu (II) has been achieved from freshwater samples giving typical preconcentration factors of 100 from 50 µg/l samples. Data obtained from a nanoscavenger-based extraction of copper from samples were not significantly different from those obtained by using a conventional colorimetric procedure employing complexation/solvent extraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano%20scavenger" title="nano scavenger">nano scavenger</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20silica" title=" mesoporous silica"> mesoporous silica</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20metal" title=" trace metal"> trace metal</a>, <a href="https://publications.waset.org/abstracts/search?q=preconcentration" title=" preconcentration"> preconcentration</a> </p> <a href="https://publications.waset.org/abstracts/147914/study-mercapto-nanoscavenger-as-a-promising-analytical-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29639</span> Copper Selenide Nanobelts: An Electrocatalyst for Methanol Electro-Oxidation Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nabi%20Ullah">Nabi Ullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The energy crisis of the current society has attracted research attention for alternative energy sources. Methanol oxidation is the source of energy but needs efficient electrocatalysts like Pt. However, their practical ability is hindered due to cost and poisoning effects. In this regard, an efficient catalyst is required for methanol oxidation. Herein, high temperature, pressure, and diethylenetryamine (DETA) as reaction medium/structure directing agent during the solvothermal method are used for nanobelt Cu₃Se₂/Cu₁.₈Se (mostly hexagonal appearance) formation. The electrocatalyst shows optimized methanol electrooxidation reaction (MOR) response in 1 M KOH and 0.5 M methanol at a scan rate of 50 mV/s and delivers a current density of 7.12 mA/mg at a potential of 0.65 V (vs Ag/AgCl). The catalyst exhibits high electrochemical active surface area (ECSA) (0.088 mF/cm²) and low Rct with good stability for 3600 s, which favors its high MOR performance. This high response is due to its 2D hexagonal nanobelt morphology, which provides a large surface area for reaction. The space among nanobelts reduces diffusion kinetics, and the rough/irregular edge increases the reaction site to improve the methanol oxidation reaction overall. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20application" title="energy application">energy application</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalysis" title=" electrocatalysis"> electrocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=MOR" title=" MOR"> MOR</a>, <a href="https://publications.waset.org/abstracts/search?q=nanobelt" title=" nanobelt"> nanobelt</a> </p> <a href="https://publications.waset.org/abstracts/178090/copper-selenide-nanobelts-an-electrocatalyst-for-methanol-electro-oxidation-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29638</span> Advanced Nanostructured Materials and Their Application for Solar Fuel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Hegazy">A. Hegazy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elsayed"> Ahmed Elsayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Essam%20El%20Shenawy"> Essam El Shenawy</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Allam"> N. Allam</a>, <a href="https://publications.waset.org/abstracts/search?q=Hala%20Handal"> Hala Handal</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20R.%20Mahmoud"> K. R. Mahmoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Highly crystalline, TiO₂ pristine sub-10 nm anatase nanocrystals were fabricated at low temperatures by post hydrothermal treatment of the as-prepared TiO₂ nanoparticles. This treatment resulted in bandgap narrowing and increased photocurrent density value (3.8 mA/cm²) when this material was employed in water splitting systems. The achieved photocurrent values are among the highest reported ones so far for the fabricated nanoparticles at this low temperature. This might be explained by the increased surface defects of the prepared nanoparticles. It resulted in bandgap narrowing that was further investigated using positron annihilation experiments by measuring positron lifetime and Doppler broadening. Besides, homogeneous spherical TiO₂ nanoparticles were synthesized in large diameter and high surface area and the high percentage of (001) facet by sol-gel method using potassium persulfate (K₂S₂O₈) as an oxidizing agent. The fabricated particles exhibited high exposed surface area, high photoactivity and reduced band gap. Enhanced performance for water splitting applications was displayed by formed TiO₂ nanoparticles. Their morphological and structural properties were studied to optimize their synthesis parameters in an attempt to construct more applicable fuel cells in the industry for hydrogen fuel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=positron%20annihilation" title="positron annihilation">positron annihilation</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2%20nanoparticles" title=" TiO2 nanoparticles"> TiO2 nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20splitting" title=" water splitting"> water splitting</a> </p> <a href="https://publications.waset.org/abstracts/124606/advanced-nanostructured-materials-and-their-application-for-solar-fuel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29637</span> Improvement in Ni (II) Adsorption Capacity by Using Fe-Nano Zeolite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pham-Thi%20Huong">Pham-Thi Huong</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeong-Kyu%20Lee"> Byeong-Kyu Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitae%20Kim"> Jitae Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Hyeon%20Lee"> Chi-Hyeon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fe-nano zeolite adsorbent was used for removal of Ni (II) ions from aqueous solution. The adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and the surface area Brunauer–Emmett–Teller (BET) using for analysis of functional groups, morphology and surface area. Bath adsorption experiments were analyzed on the effect of pH, time, adsorbent doses and initial Ni (II) concentration. The optimum pH for Ni (II) removal using Fe-nano zeolite was found at 5.0 and 90 min of reaction time. The maximum adsorption capacity of Ni (II) was 231.68 mg/g based on the Langmuir isotherm. The kinetics data for the adsorption process was fitted with the pseudo-second-order model. The desorption of Ni (II) from Ni-loaded Fe-nano zeolite was analyzed and even after 10 cycles 72 % desorption was achieved. These finding supported that Fe-nano zeolite with high adsorption capacity, high reuse ability would be utilized for Ni (II) removal from water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fe-nano%20zeolite" title="Fe-nano zeolite">Fe-nano zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni%20%28II%29%20removal" title=" Ni (II) removal"> Ni (II) removal</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a> </p> <a href="https://publications.waset.org/abstracts/44506/improvement-in-ni-ii-adsorption-capacity-by-using-fe-nano-zeolite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29636</span> Correlation of Building Density toward Land Surface Temperature 2018 in Medan City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andi%20Syahputra">Andi Syahputra</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20H.%20Jatmiko"> R. H. Jatmiko</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20R.%20Hizbaron"> D. R. Hizbaron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Land surface temperature (LST) in an area is influenced by conditions of vegetation density, building density, and the number of inhabitants who live in the area. Medan City is one of the largest cities in Indonesia, with a high rate of change from vegetation to developed land. This study aims to identify the relationship between the percentage of building density and land surface temperature in Medan City. Pixel image analysis method is carried out to obtain the value of building density in pixel images of Landsat 8 images with the help of WorldView-2 satellite imagery. The results showed the highest land surface temperature in 2018 of 35, 4°C was found in Medan Perjuangan District, and the lowest was 22.5°C in Medan Belawan District. Building density samples with a density level of 889.17 m were also found in Medan Perjuangan District, while the lowest building density sample was found in Medan Timur District. Linear regression analysis of the effect of building density with land surface temperature obtained a correlation (R) was 0.64, and a coefficient of determination (R²) was 0.411 and modeling of building density based on the LST has a correlation (R), and a coefficient of determination (R²) was 0.72 with The RMSE obtained 0.853. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20surface%20temperature" title="land surface temperature">land surface temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=Landsat" title=" Landsat"> Landsat</a>, <a href="https://publications.waset.org/abstracts/search?q=imagery" title=" imagery"> imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20density" title=" building density"> building density</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation" title=" vegetation"> vegetation</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a> </p> <a href="https://publications.waset.org/abstracts/118783/correlation-of-building-density-toward-land-surface-temperature-2018-in-medan-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29635</span> Produce Large Surface Area Activated Carbon from Biomass for Water Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashad%20Al-Gaashani">Rashad Al-Gaashani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The physicochemical activation method was used to produce high-quality activated carbon (AC) with a large surface area of about 2000 m2/g from low-cost and abundant biomass wastes in Qatar, namely date seeds. X-Ray diffraction (XRD), scanning electron spectroscopy (SEM), energy dispersive X-Ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) surface area analysis was used to evaluate the AC samples. AC produced from date seeds has a wide range of pores available, including micro- and nano-pores. This type of AC with a well-developed pore structure may be very attractive for different applications, including air and water purification from micro and nano pollutants. Heavy metals iron (III) and copper (II) ions were removed from wastewater using the AC produced using a batch adsorption technique. The AC produced from date seeds biomass wastes shows high removal of heavy metals such as iron (III) ions (100%) and copper (II) ions (97.25%). The highest removal of copper (II) ions (100%) with AC produced from date seeds was found at pH 8, whereas the lowest removal (22.63%) occurred at pH 2. The effect of adsorption time, adsorbent dose, and pH on the removal of heavy metals was studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=date%20seeds" title=" date seeds"> date seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals%20removal" title=" heavy metals removal"> heavy metals removal</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/162298/produce-large-surface-area-activated-carbon-from-biomass-for-water-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29634</span> Geothermal Prospect Prediction at Mt. Ciremai Using Fault and Fracture Density Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rifqi%20Alfadhillah%20Sentosa">Rifqi Alfadhillah Sentosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasbi%20Fikru%20Syabi"> Hasbi Fikru Syabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen"> Stephen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> West Java is a province in Indonesia which has a number of volcanoes. One of those volcanoes is Mt. Ciremai, located administratively at Kuningan and Majalengka District, and is known for its significant geothermal potential in Java Island. This research aims to assume geothermal prospects at Mt. Ciremai using Fault and Fracture Density (FFD) Method, which is correlated to the geochemistry of geothermal manifestations around the mountain. This FFD method is using SRTM data to draw lineaments, which are assumed associated with fractures and faults in the research area. These faults and fractures were assumed as the paths for reservoir fluids to reached surface as geothermal manifestations. The goal of this method is to analyze the density of those lineaments found in the research area. Based on this FFD Method, it is known that area with high density of lineaments located on Mt. Kromong at the northern side of Mt. Ciremai. This prospect area is proven by its higher geothermometer values compared to geothermometer values calculated at the south area of Mt. Ciremai. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geothermal%20prospect" title="geothermal prospect">geothermal prospect</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20and%20fracture%20density" title=" fault and fracture density"> fault and fracture density</a>, <a href="https://publications.waset.org/abstracts/search?q=Mt.%20Ciremai" title=" Mt. Ciremai"> Mt. Ciremai</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20manifestation" title=" surface manifestation"> surface manifestation</a> </p> <a href="https://publications.waset.org/abstracts/64285/geothermal-prospect-prediction-at-mt-ciremai-using-fault-and-fracture-density-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29633</span> Reuse of Municipal Solid Waste Incinerator Fly Ash for the Synthesis of Zeolite: Effects of Different Operation Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyh-Cherng%20Chen">Jyh-Cherng Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Jie%20Lin"> Yi-Jie Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study tries to reuse the fly ash of municipal solid waste incinerator (MSWI) for the synthesis of zeolites. The fly ashes were treated with NaOH alkali fusion at different temperatures for 40 mins and then synthesized the zeolites with hydrothermal method at 105oC for different operation times. The effects of different operation conditions and the optimum synthesis parameters were explored. The specific surface area, surface morphology, species identification, adsorption capacity, and the reuse potentials of the synthesized zeolites were analyzed and evaluated. Experimental results showed that the optimum operation conditions for the synthesis of zeolite from the mixed fly ash were Si/Al=20, alkali/ash=1.5, alkali fusion reaction with NaOH at 800oC for 40 mins, hydrolysis with L/S=200 at 105oC for 24 hr, and hydrothermal synthesis at 105oC for 48 hr. The largest specific surface area of synthesized zeolite could be increased to 943.05m2/g. The influence of different operation parameters on the synthesis of zeolite from mixed fly ash followed the sequence of Si/Al > hydrolysis L/S> hydrothermal time > alkali fusion temperature > alkali/ash ratio. The XRD patterns of synthesized zeolites were identified to be similar with the ZSM-23 zeolite. The adsorption capacities of synthesized zeolite for pollutants were increased as rising the specific surface area of synthesized zeolite. In summary, MSWI fly ash can be treated and reused to synthesize the zeolite with high specific surface area by the alkali fusion and hydrothermal method. The zeolite can be reuse for the adsorption of various pollutants. They have great potential for development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20fusion" title="alkali fusion">alkali fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal" title=" hydrothermal"> hydrothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a> </p> <a href="https://publications.waset.org/abstracts/95849/reuse-of-municipal-solid-waste-incinerator-fly-ash-for-the-synthesis-of-zeolite-effects-of-different-operation-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29632</span> Sequential Data Assimilation with High-Frequency (HF) Radar Surface Current</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lei%20Ren">Lei Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Hartnett"> Michael Hartnett</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Nash"> Stephen Nash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The abundant measured surface current from HF radar system in coastal area is assimilated into model to improve the modeling forecasting ability. A simple sequential data assimilation scheme, Direct Insertion (DI), is applied to update model forecast states. The influence of Direct Insertion data assimilation over time is analyzed at one reference point. Vector maps of surface current from models are compared with HF radar measurements. Root-Mean-Squared-Error (RMSE) between modeling results and HF radar measurements is calculated during the last four days with no data assimilation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20assimilation" title="data assimilation">data assimilation</a>, <a href="https://publications.waset.org/abstracts/search?q=CODAR" title=" CODAR"> CODAR</a>, <a href="https://publications.waset.org/abstracts/search?q=HF%20radar" title=" HF radar"> HF radar</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20current" title=" surface current"> surface current</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20insertion" title=" direct insertion"> direct insertion</a> </p> <a href="https://publications.waset.org/abstracts/14355/sequential-data-assimilation-with-high-frequency-hf-radar-surface-current" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">573</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29631</span> Importance of Different Spatial Parameters in Water Quality Analysis within Intensive Agricultural Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marina%20Bubalo">Marina Bubalo</a>, <a href="https://publications.waset.org/abstracts/search?q=Davor%20Romi%C4%87"> Davor Romić</a>, <a href="https://publications.waset.org/abstracts/search?q=Stjepan%20Husnjak"> Stjepan Husnjak</a>, <a href="https://publications.waset.org/abstracts/search?q=Helena%20Baki%C4%87"> Helena Bakić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Even though European Council Directive 91/676/EEC known as Nitrates Directive was adopted in 1991, the issue of water quality preservation in areas of intensive agricultural production still persist all over Europe. High nitrate nitrogen concentrations in surface and groundwater originating from diffuse sources are one of the most important environmental problems in modern intensive agriculture. The fate of nitrogen in soil, surface and groundwater in agricultural area is mostly affected by anthropogenic activity (i.e. agricultural practice) and hydrological and climatological conditions. The aim of this study was to identify impact of land use, soil type, soil vulnerability to pollutant percolation, and natural aquifer vulnerability to nitrate occurrence in surface and groundwater within an intensive agricultural area. The study was set in Varaždin County (northern Croatia), which is under significant influence of the large rivers Drava and Mura and due to that entire area is dominated by alluvial soil with shallow active profile mainly on gravel base. Negative agricultural impact on water quality in this area is evident therefore the half of selected county is a part of delineated nitrate vulnerable zones (NVZ). Data on water quality were collected from 7 surface and 8 groundwater monitoring stations in the County. Also, recent study of the area implied detailed inventory of agricultural production and fertilizers use with the aim to produce new agricultural land use database as one of dominant parameters. The analysis of this database done using ArcGIS 10.1 showed that 52,7% of total County area is agricultural land and 59,2% of agricultural land is used for intensive agricultural production. On the other hand, 56% of soil within the county is classified as soil vulnerable to pollutant percolation. The situation is similar with natural aquifer vulnerability; northern part of the county ranges from high to very high aquifer vulnerability. Statistical analysis of water quality data is done using SPSS 13.0. Cluster analysis group both surface and groundwater stations in two groups according to nitrate nitrogen concentrations. Mean nitrate nitrogen concentration in surface water – group 1 ranges from 4,2 to 5,5 mg/l and in surface water – group 2 from 24 to 42 mg/l. The results are similar, but evidently higher, in groundwater samples; mean nitrate nitrogen concentration in group 1 ranges from 3,9 to 17 mg/l and in group 2 from 36 to 96 mg/l. ANOVA analysis confirmed statistical significance between stations that are classified in the same group. The previously listed parameters (land use, soil type, etc.) were used in factorial correspondence analysis (FCA) to detect importance of each stated parameter in local water quality. Since stated parameters mostly cannot be altered, there is obvious necessity for more precise and more adapted land management in such conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20area" title="agricultural area">agricultural area</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate" title=" nitrate"> nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20correspondence%20analysis" title=" factorial correspondence analysis"> factorial correspondence analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality "> water quality </a> </p> <a href="https://publications.waset.org/abstracts/32314/importance-of-different-spatial-parameters-in-water-quality-analysis-within-intensive-agricultural-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29630</span> Preparation and Characterization of AlkylAmines’ Surface Functionalized Activated Carbons for Dye Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Said%20M.%20AL-Mashaikhi">Said M. AL-Mashaikhi</a>, <a href="https://publications.waset.org/abstracts/search?q=El-Said%20I.%20El-Shafey"> El-Said I. El-Shafey</a>, <a href="https://publications.waset.org/abstracts/search?q=Fakhreldin%20O.%20Suliman"> Fakhreldin O. Suliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Al-Busafi"> Saleh Al-Busafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activated carbon (AC) was prepared from date palm leaflets via NaOH activation. AC was oxidized using nitric acid, producing oxidized activated carbon (OAC). OAC was surface functionalized using different amine surfactants, including methylamine (ONM), ethylamine (ONE), and diethylamine (ONDE) using the amide coupling process. Produced carbons were surface characterized for surface area and porosity, X-ray diffraction, SEM, FTIR, and TGA. AC surface area (580 m²/g) has shown a decrease in oxidation to 260 m²/g for OAC. On amine functionalization, the surface area has further decreased to 218, 108, and 20 m²/g on functionalization with methylamine, ethylamine, and diethylamine, respectively. FTIR and TGA showed that the nature of amine functionalization of AC is chemical. Methylene blue sorption was tested on these carbons in terms of kinetics and equilibrium. Sorption was found faster on amine-functionalized carbons than both AC and OAC, and this is due to hydrophobic interaction with the alkyl groups immobilized with data following pseudo second-order reaction. On the other hand, AC showed the slowest adsorption kinetic process due to the diffusion in the porous structure of AC. Sorption equilibrium data was found to follow the Langmuir sorption isotherm with maximum sorption found on ONE. Regardless of its lower surface area than activated carbon, ethylamine functionalized AC showed better performance than AC in terms of kinetics and equilibrium for dye removal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20removal" title=" dye removal"> dye removal</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalization" title=" functionalization"> functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic%20interaction" title=" hydrophobic interaction"> hydrophobic interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/136863/preparation-and-characterization-of-alkylamines-surface-functionalized-activated-carbons-for-dye-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29629</span> The Relations between Seismic Results and Groundwater near the Gokpinar Damp Area, Denizli, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmud%20Gungor">Mahmud Gungor</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Aydin"> Ali Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdal%20Akyol"> Erdal Akyol</a>, <a href="https://publications.waset.org/abstracts/search?q=Suat%20Tasdelen"> Suat Tasdelen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The understanding of geotechnical characteristics of near-surface material and the effects of the groundwater is very important problem in such as site studies. For showing the relations between seismic data and groundwater we selected about 25 km2 as the study area. It has been presented which is a detailed work of seismic data and groundwater depths of Gokpinar Damp area. Seismic waves velocity (Vp and Vs) are very important parameters showing the soil properties. The seismic records were used the method of the multichannel analysis of surface waves near area of Gokpinar Damp area. Sixty sites in this area have been investigated with survey lines about 60 m in length. MASW (Multichannel analysis of surface wave) method has been used to generate one-dimensional shear wave velocity profile at locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 2 and 5 m intervals up to a depth of 45 m. Levels of equivalent shear wave velocity of soil are used the classified of the study area. After the results of the study, it must be considered as components of urban planning and building design of Gokpinar Damp area, Denizli and the application and use of these results should be required and enforced by municipal authorities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20data" title="seismic data">seismic data</a>, <a href="https://publications.waset.org/abstracts/search?q=Gokpinar%20Damp" title=" Gokpinar Damp"> Gokpinar Damp</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20planning" title=" urban planning"> urban planning</a>, <a href="https://publications.waset.org/abstracts/search?q=Denizli" title=" Denizli"> Denizli</a> </p> <a href="https://publications.waset.org/abstracts/37756/the-relations-between-seismic-results-and-groundwater-near-the-gokpinar-damp-area-denizli-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29628</span> Development of Cathode for Hybrid Zinc Ion Supercapacitor Using Secondary Marigold Floral Waste for Green Energy Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syali%20Pradhan">Syali Pradhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Neetu%20Jha"> Neetu Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Marigold flower is used in religious places for offering and decoration purpose every day. The flowers are discarded near trees or in aquatic bodies. This floral waste can be used for extracting dyes or oils. Still the secondary waste remains after processing which need to be addressed. This research aims to provide green and clean power using secondary floral waste available after processing. The carbonization of floral waste produce carbon material with high surface area and enhance active site for more reaction. The Hybrid supercapacitors are more stable, offer improved operating temperature and use less toxic material compared to battery. They provide enhanced energy density compared to supercapacitors. Hence, hybrid supercapacitor designed using waste material would be more practicable for future energy application. Here, we present the utilization of carbonized floral waste as supercapacitor electrode material. This material after carbonization gets graphitized and shows high surface area, optimum porosity along with high conductivity. Hence, this material has been tested as cathode electrode material for high performance zinc storage hybrid supercapacitor. High energy storage along with high stability has been obtained using this cathodic waste material as electrode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marigold" title="marigold">marigold</a>, <a href="https://publications.waset.org/abstracts/search?q=flower%20waste" title=" flower waste"> flower waste</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=cathode" title=" cathode"> cathode</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/163974/development-of-cathode-for-hybrid-zinc-ion-supercapacitor-using-secondary-marigold-floral-waste-for-green-energy-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29627</span> Application of Watershed Modeling System for Urbanization Management in Tabuk Area, Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abd-Alrahman%20Embaby">Abd-Alrahman Embaby</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20Abu%20Halawa"> Ayman Abu Halawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Medhat%20Ramadan"> Medhat Ramadan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The infiltrated water into the subsurface activates expansive soil in localized manner, leading to the differential heaving and destructive of the construction. The Watershed Modeling System (WMS) and Hydrologic Engineering Center (HEC-1) are used to delineate and identify the drainage system and basin morphometry in Tabuk area, where flash floods and accumulation of water may take place. Eight drainage basins effect on Tabuk city. Three of them are expected to be high. The flash floods and surface runoff behavior in these basins are important for any protection projects. It was found that the risky areas that contain Tabuk shale could be expanded when exposed to flash floods and/or surface runoff. The resident neighborhoods in the middle of Tabuk city and affected by surface runoff of the tributaries of the basin of Wadi Abu Nishayfah, Na'am and Atanah outlet, represent high-risk zones. These high-risk neighborhoods are Al Qadsiyah, Al Maseif, Arrwdah, Al Nakhil and Al Rajhi. It can be avoided new constructions on these districts. The low or very low-risk zones include the western and the eastern districts. The western side of the city is lying in the upstream of the small basin. It is suitable for a future urban extension. The direction of surface runoff flow or storm water drain discharge should be away from Tabuk city. The quicker the water can flow out, the better it is. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20elevation%20model%20%28DEM%29" title="digital elevation model (DEM)">digital elevation model (DEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=flash%20floods" title=" flash floods"> flash floods</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia"> Saudi Arabia</a>, <a href="https://publications.waset.org/abstracts/search?q=Tabuk%20City" title=" Tabuk City"> Tabuk City</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed%20modeling%20system%20%28WMS%29" title=" watershed modeling system (WMS)"> watershed modeling system (WMS)</a> </p> <a href="https://publications.waset.org/abstracts/64420/application-of-watershed-modeling-system-for-urbanization-management-in-tabuk-area-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29626</span> Electrochemical Coagulation of Synthetic Textile Dye Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20B.%20Rekha">H. B. Rekha</a>, <a href="https://publications.waset.org/abstracts/search?q=Usha%20N.%20Murthy"> Usha N. Murthy</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashanth"> Prashanth</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashoka"> Ashoka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dyes are manufactured to have high chemical resistance because they are normally species, very difficult to degrade (reactive dyes). It damages flora and fauna. Furthermore, coloured components are highly hazardous. So removal of dyes becomes a challenge for both textile industry and water treatment facility. Dyeing wastewater is usually treated by conventional methods such as biological oxidation and adsorption but nowadays them becoming in-adequate because of large variability of composition of waste water. In the present investigation, mild steel electrodes of varying surface area were used for treatment of synthetic textile dye. It appears that electro-chemical coagulation could be very effective in removing coloured from wastewater; it could also be used to remove other parameters like chlorides, COD, and solids to some extent. In the present study, coloured removal up to 99% was obtained for surface area of mild steel electrode of 80 cm2 and 96% of surface area of mild steel electrode of 50 cm2. The findings from this study could be used to improve the design of electro-chemical treatment systems and modify existing systems to improve efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20coagulation" title="electrochemical coagulation">electrochemical coagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=mild%20steel" title=" mild steel"> mild steel</a>, <a href="https://publications.waset.org/abstracts/search?q=colour" title=" colour"> colour</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20engineering" title=" environmental engineering"> environmental engineering</a> </p> <a href="https://publications.waset.org/abstracts/5718/electrochemical-coagulation-of-synthetic-textile-dye-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20surface%20area&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20surface%20area&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20surface%20area&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20surface%20area&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20surface%20area&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20surface%20area&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20surface%20area&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20surface%20area&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20surface%20area&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20surface%20area&amp;page=988">988</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20surface%20area&amp;page=989">989</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20surface%20area&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10