CINXE.COM
Search results for: statistical moments
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: statistical moments</title> <meta name="description" content="Search results for: statistical moments"> <meta name="keywords" content="statistical moments"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="statistical moments" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="statistical moments"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4316</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: statistical moments</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4316</span> Characteristic Function in Estimation of Probability Distribution Moments </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20S.%20Timofeev">Vladimir S. Timofeev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article the problem of distributional moments estimation is considered. The new approach of moments estimation based on usage of the characteristic function is proposed. By statistical simulation technique, author shows that new approach has some robust properties. For calculation of the derivatives of characteristic function there is used numerical differentiation. Obtained results confirmed that author’s idea has a certain working efficiency and it can be recommended for any statistical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristic%20function" title="characteristic function">characteristic function</a>, <a href="https://publications.waset.org/abstracts/search?q=distributional%20moments" title=" distributional moments"> distributional moments</a>, <a href="https://publications.waset.org/abstracts/search?q=robustness" title=" robustness"> robustness</a>, <a href="https://publications.waset.org/abstracts/search?q=outlier" title=" outlier"> outlier</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20estimation%20problem" title=" statistical estimation problem"> statistical estimation problem</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20simulation" title=" statistical simulation"> statistical simulation</a> </p> <a href="https://publications.waset.org/abstracts/11779/characteristic-function-in-estimation-of-probability-distribution-moments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4315</span> Content-Based Color Image Retrieval Based on the 2-D Histogram and Statistical Moments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El%20Asnaoui%20Khalid">El Asnaoui Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Aksasse%20Brahim"> Aksasse Brahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouanan%20Mohammed"> Ouanan Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we are interested in the problem of finding similar images in a large database. For this purpose we propose a new algorithm based on a combination of the 2-D histogram intersection in the HSV space and statistical moments. The proposed histogram is based on a 3x3 window and not only on the intensity of the pixel. This approach can overcome the drawback of the conventional 1-D histogram which is ignoring the spatial distribution of pixels in the image, while the statistical moments are used to escape the effects of the discretisation of the color space which is intrinsic to the use of histograms. We compare the performance of our new algorithm to various methods of the state of the art and we show that it has several advantages. It is fast, consumes little memory and requires no learning. To validate our results, we apply this algorithm to search for similar images in different image databases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2-D%20histogram" title="2-D histogram">2-D histogram</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20moments" title=" statistical moments"> statistical moments</a>, <a href="https://publications.waset.org/abstracts/search?q=indexing" title=" indexing"> indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20distance" title=" similarity distance"> similarity distance</a>, <a href="https://publications.waset.org/abstracts/search?q=histograms%20intersection" title=" histograms intersection"> histograms intersection</a> </p> <a href="https://publications.waset.org/abstracts/19796/content-based-color-image-retrieval-based-on-the-2-d-histogram-and-statistical-moments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4314</span> A Theorem Related to Sample Moments and Two Types of Moment-Based Density Estimates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serge%20B.%20Provost">Serge B. Provost</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerous statistical inference and modeling methodologies are based on sample moments rather than the actual observations. A result justifying the validity of this approach is introduced. More specifically, it will be established that given the first n moments of a sample of size n, one can recover the original n sample points. This implies that a sample of size n and its first associated n moments contain precisely the same amount of information. However, it is efficient to make use of a limited number of initial moments as most of the relevant distributional information is included in them. Two types of density estimation techniques that rely on such moments will be discussed. The first one expresses a density estimate as the product of a suitable base density and a polynomial adjustment whose coefficients are determined by equating the moments of the density estimate to the sample moments. The second one assumes that the derivative of the logarithm of a density function can be represented as a rational function. This gives rise to a system of linear equations involving sample moments, the density estimate is then obtained by solving a differential equation. Unlike kernel density estimation, these methodologies are ideally suited to model ‘big data’ as they only require a limited number of moments, irrespective of the sample size. What is more, they produce simple closed form expressions that are amenable to algebraic manipulations. They also turn out to be more accurate as will be shown in several illustrative examples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20estimation" title="density estimation">density estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=log-density" title=" log-density"> log-density</a>, <a href="https://publications.waset.org/abstracts/search?q=polynomial%20adjustments" title=" polynomial adjustments"> polynomial adjustments</a>, <a href="https://publications.waset.org/abstracts/search?q=sample%20moments" title=" sample moments"> sample moments</a> </p> <a href="https://publications.waset.org/abstracts/107130/a-theorem-related-to-sample-moments-and-two-types-of-moment-based-density-estimates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4313</span> A Proposed Mechanism for Skewing Symmetric Distributions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Alodat">M. T. Alodat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a mechanism for skewing any symmetric distribution. The new distribution is called the deflation-inflation distribution (DID). We discuss some statistical properties of the DID such moments, stochastic representation, log-concavity. Also we fit the distribution to real data and we compare it to normal distribution and Azzlaini's skew normal distribution. Numerical results show that the DID fits the the tree ring data better than the other two distributions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=normal%20distribution" title="normal distribution">normal distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=moments" title=" moments"> moments</a>, <a href="https://publications.waset.org/abstracts/search?q=Fisher%20information" title=" Fisher information"> Fisher information</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetric%20distributions" title=" symmetric distributions"> symmetric distributions</a> </p> <a href="https://publications.waset.org/abstracts/28593/a-proposed-mechanism-for-skewing-symmetric-distributions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">658</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4312</span> Face Recognition Using Discrete Orthogonal Hahn Moments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Akhmedova">Fatima Akhmedova</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Liao"> Simon Liao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most critical decision points in the design of a face recognition system is the choice of an appropriate face representation. Effective feature descriptors are expected to convey sufficient, invariant and non-redundant facial information. In this work, we propose a set of Hahn moments as a new approach for feature description. Hahn moments have been widely used in image analysis due to their invariance, non-redundancy and the ability to extract features either globally and locally. To assess the applicability of Hahn moments to Face Recognition we conduct two experiments on the Olivetti Research Laboratory (ORL) database and University of Notre-Dame (UND) X1 biometric collection. Fusion of the global features along with the features from local facial regions are used as an input for the conventional k-NN classifier. The method reaches an accuracy of 93% of correctly recognized subjects for the ORL database and 94% for the UND database. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=face%20recognition" title="face recognition">face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=Hahn%20moments" title=" Hahn moments"> Hahn moments</a>, <a href="https://publications.waset.org/abstracts/search?q=recognition-by-parts" title=" recognition-by-parts"> recognition-by-parts</a>, <a href="https://publications.waset.org/abstracts/search?q=time-lapse" title=" time-lapse"> time-lapse</a> </p> <a href="https://publications.waset.org/abstracts/27781/face-recognition-using-discrete-orthogonal-hahn-moments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4311</span> Video Text Information Detection and Localization in Lecture Videos Using Moments </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belkacem%20Soundes">Belkacem Soundes</a>, <a href="https://publications.waset.org/abstracts/search?q=Guezouli%20Larbi"> Guezouli Larbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a robust and accurate method for text detection and localization over lecture videos. Frame regions are classified into text or background based on visual feature analysis. However, lecture video shows significant degradation mainly related to acquisition conditions, camera motion and environmental changes resulting in low quality videos. Hence, affecting feature extraction and description efficiency. Moreover, traditional text detection methods cannot be directly applied to lecture videos. Therefore, robust feature extraction methods dedicated to this specific video genre are required for robust and accurate text detection and extraction. Method consists of a three-step process: Slide region detection and segmentation; Feature extraction and non-text filtering. For robust and effective features extraction moment functions are used. Two distinct types of moments are used: orthogonal and non-orthogonal. For orthogonal Zernike Moments, both Pseudo Zernike moments are used, whereas for non-orthogonal ones Hu moments are used. Expressivity and description efficiency are given and discussed. Proposed approach shows that in general, orthogonal moments show high accuracy in comparison to the non-orthogonal one. Pseudo Zernike moments are more effective than Zernike with better computation time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=text%20detection" title="text detection">text detection</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20localization" title=" text localization"> text localization</a>, <a href="https://publications.waset.org/abstracts/search?q=lecture%20videos" title=" lecture videos"> lecture videos</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo%20zernike%20moments" title=" pseudo zernike moments"> pseudo zernike moments</a> </p> <a href="https://publications.waset.org/abstracts/109549/video-text-information-detection-and-localization-in-lecture-videos-using-moments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4310</span> An Extended Inverse Pareto Distribution, with Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdel%20Hadi%20Ebraheim">Abdel Hadi Ebraheim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces a new extension of the Inverse Pareto distribution in the framework of Marshal-Olkin (1997) family of distributions. This model is capable of modeling various shapes of aging and failure data. The statistical properties of the new model are discussed. Several methods are used to estimate the parameters involved. Explicit expressions are derived for different types of moments of value in reliability analysis are obtained. Besides, the order statistics of samples from the new proposed model have been studied. Finally, the usefulness of the new model for modeling reliability data is illustrated using two real data sets with simulation study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pareto%20distribution" title="pareto distribution">pareto distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=marshal-Olkin" title=" marshal-Olkin"> marshal-Olkin</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard%20functions" title=" hazard functions"> hazard functions</a>, <a href="https://publications.waset.org/abstracts/search?q=moments" title=" moments"> moments</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation" title=" estimation"> estimation</a> </p> <a href="https://publications.waset.org/abstracts/169013/an-extended-inverse-pareto-distribution-with-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4309</span> Moment Estimators of the Parameters of Zero-One Inflated Negative Binomial Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafid%20Saeed%20Abdulrazak%20Alshkaki">Rafid Saeed Abdulrazak Alshkaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, zero-one inflated negative binomial distribution is considered, along with some of its structural properties, then its parameters were estimated using the method of moments. It is found that the method of moments to estimate the parameters of the zero-one inflated negative binomial models is not a proper method and may give incorrect conclusions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zero%20one%20inflated%20models" title="zero one inflated models">zero one inflated models</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20binomial%20distribution" title=" negative binomial distribution"> negative binomial distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=moments%20estimator" title=" moments estimator"> moments estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20negative%20integer%20sampling" title=" non negative integer sampling"> non negative integer sampling</a> </p> <a href="https://publications.waset.org/abstracts/62054/moment-estimators-of-the-parameters-of-zero-one-inflated-negative-binomial-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4308</span> Sorting Fish by Hu Moments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Hern%C3%A1ndez-Ontiveros">J. M. Hernández-Ontiveros</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20E.%20Garc%C3%ADa-Guerrero"> E. E. García-Guerrero</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Inzunza-Gonz%C3%A1lez"> E. Inzunza-González</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20R.%20L%C3%B3pez-Bonilla"> O. R. López-Bonilla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the implementation of an algorithm that identifies and accounts different fish species: Catfish, Sea bream, Sawfish, Tilapia, and Totoaba. The main contribution of the method is the fusion of the characteristics of invariance to the position, rotation and scale of the Hu moments, with the proper counting of fish. The identification and counting is performed, from an image under different noise conditions. From the experimental results obtained, it is inferred the potentiality of the proposed algorithm to be applied in different scenarios of aquaculture production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=counting%20fish" title="counting fish">counting fish</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20processing" title=" digital image processing"> digital image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=invariant%20moments" title=" invariant moments"> invariant moments</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a> </p> <a href="https://publications.waset.org/abstracts/27652/sorting-fish-by-hu-moments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4307</span> Extreme Rainfall Frequency Analysis For Meteorological Sub-Division 4 Of India Using L-Moments. </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arti%20Devi">Arti Devi</a>, <a href="https://publications.waset.org/abstracts/search?q=Parthasarthi%20Choudhury"> Parthasarthi Choudhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extreme rainfall frequency analysis for Meteorological Sub-Division 4 of India was analysed using L-moments approach. Serial Correlation and Mann Kendall tests were conducted for checking serially independent and stationarity of the observations. The discordancy measure for the sites was conducted to detect the discordant sites. The regional homogeneity was tested by comparing with 500 generated homogeneous regions using a 4 parameter Kappa distribution. The best fit distribution was selected based on ZDIST statistics and L-moments ratio diagram from the five extreme value distributions GPD, GLO, GEV, P3 and LP3. The LN3 distribution was selected and regional rainfall frequency relationship was established using index-rainfall procedure. A regional mean rainfall relationship was developed using multiple linear regression with latitude and longitude of the sites as variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=L-moments" title="L-moments">L-moments</a>, <a href="https://publications.waset.org/abstracts/search?q=ZDIST%20statistics" title=" ZDIST statistics"> ZDIST statistics</a>, <a href="https://publications.waset.org/abstracts/search?q=serial%20correlation" title=" serial correlation"> serial correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=Mann%20Kendall%20test" title=" Mann Kendall test"> Mann Kendall test</a> </p> <a href="https://publications.waset.org/abstracts/3033/extreme-rainfall-frequency-analysis-for-meteorological-sub-division-4-of-india-using-l-moments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4306</span> A Generalisation of Pearson's Curve System and Explicit Representation of the Associated Density Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20Provost">S. B. Provost</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Zareamoghaddam"> Hossein Zareamoghaddam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A univariate density approximation technique whereby the derivative of the logarithm of a density function is assumed to be expressible as a rational function is introduced. This approach which extends Pearson’s curve system is solely based on the moments of a distribution up to a determinable order. Upon solving a system of linear equations, the coefficients of the polynomial ratio can readily be identified. An explicit solution to the integral representation of the resulting density approximant is then obtained. It will be explained that when utilised in conjunction with sample moments, this methodology lends itself to the modelling of ‘big data’. Applications to sets of univariate and bivariate observations will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20estimation" title="density estimation">density estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=log-density" title=" log-density"> log-density</a>, <a href="https://publications.waset.org/abstracts/search?q=moments" title=" moments"> moments</a>, <a href="https://publications.waset.org/abstracts/search?q=Pearson%27s%20curve%20system" title=" Pearson's curve system"> Pearson's curve system</a> </p> <a href="https://publications.waset.org/abstracts/89345/a-generalisation-of-pearsons-curve-system-and-explicit-representation-of-the-associated-density-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4305</span> The Normal-Generalized Hyperbolic Secant Distribution: Properties and Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hazem%20M.%20Al-Mofleh">Hazem M. Al-Mofleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new four-parameter univariate continuous distribution called the Normal-Generalized Hyperbolic Secant Distribution (NGHS) is defined and studied. Some general and structural distributional properties are investigated and discussed, including: central and non-central n-th moments and incomplete moments, quantile and generating functions, hazard function, Rényi and Shannon entropies, shapes: skewed right, skewed left, and symmetric, modality regions: unimodal and bimodal, maximum likelihood (MLE) estimators for the parameters. Finally, two real data sets are used to demonstrate empirically its flexibility and prove the strength of the new distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bimodality" title="bimodality">bimodality</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation" title=" estimation"> estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard%20function" title=" hazard function"> hazard function</a>, <a href="https://publications.waset.org/abstracts/search?q=moments" title=" moments"> moments</a>, <a href="https://publications.waset.org/abstracts/search?q=Shannon%E2%80%99s%20entropy" title=" Shannon’s entropy"> Shannon’s entropy</a> </p> <a href="https://publications.waset.org/abstracts/62567/the-normal-generalized-hyperbolic-secant-distribution-properties-and-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4304</span> A Novel Breast Cancer Detection Algorithm Using Point Region Growing Segmentation and Pseudo-Zernike Moments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aileen%20F.%20Wang">Aileen F. Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mammography has been one of the most reliable methods for early detection and diagnosis of breast cancer. However, mammography misses about 17% and up to 30% of breast cancers due to the subtle and unstable appearances of breast cancer in their early stages. Recent computer-aided diagnosis (CADx) technology using Zernike moments has improved detection accuracy. However, it has several drawbacks: it uses manual segmentation, Zernike moments are not robust, and it still has a relatively high false negative rate (FNR)–17.6%. This project will focus on the development of a novel breast cancer detection algorithm to automatically segment the breast mass and further reduce FNR. The algorithm consists of automatic segmentation of a single breast mass using Point Region Growing Segmentation, reconstruction of the segmented breast mass using Pseudo-Zernike moments, and classification of the breast mass using the root mean square (RMS). A comparative study among the various algorithms on the segmentation and reconstruction of breast masses was performed on randomly selected mammographic images. The results demonstrated that the newly developed algorithm is the best in terms of accuracy and cost effectiveness. More importantly, the new classifier RMS has the lowest FNR–6%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20aided%20diagnosis" title="computer aided diagnosis">computer aided diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=mammography" title=" mammography"> mammography</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20region%20growing%20segmentation" title=" point region growing segmentation"> point region growing segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo-zernike%20moments" title=" pseudo-zernike moments"> pseudo-zernike moments</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20mean%20square" title=" root mean square"> root mean square</a> </p> <a href="https://publications.waset.org/abstracts/10488/a-novel-breast-cancer-detection-algorithm-using-point-region-growing-segmentation-and-pseudo-zernike-moments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4303</span> A Methodology for Characterising the Tail Behaviour of a Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serge%20Provost">Serge Provost</a>, <a href="https://publications.waset.org/abstracts/search?q=Yishan%20Zang"> Yishan Zang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Following a review of various approaches that are utilized for classifying the tail behavior of a distribution, an easily implementable methodology that relies on an arctangent transformation is presented. The classification criterion is actually based on the difference between two specific quantiles of the transformed distribution. The resulting categories enable one to classify distributional tails as distinctly short, short, nearly medium, medium, extended medium and somewhat long, providing that at least two moments exist. Distributions possessing a single moment are said to be long tailed while those failing to have any finite moments are classified as having an extremely long tail. Several illustrative examples will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arctangent%20transformation" title="arctangent transformation">arctangent transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=tail%20classification" title=" tail classification"> tail classification</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy-tailed%20distributions" title=" heavy-tailed distributions"> heavy-tailed distributions</a>, <a href="https://publications.waset.org/abstracts/search?q=distributional%20moments" title=" distributional moments"> distributional moments</a> </p> <a href="https://publications.waset.org/abstracts/125602/a-methodology-for-characterising-the-tail-behaviour-of-a-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4302</span> Speeding-up Gray-Scale FIC by Moments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20A.%20Al-Hilo">Eman A. Al-Hilo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hawraa%20H.%20Al-Waelly"> Hawraa H. Al-Waelly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, fractal compression (FIC) technique is introduced based on using moment features to block indexing the zero-mean range-domain blocks. The moment features have been used to speed up the IFS-matching stage. Its moments ratio descriptor is used to filter the domain blocks and keep only the blocks that are suitable to be IFS matched with tested range block. The results of tests conducted on Lena picture and Cat picture (256 pixels, resolution 24 bits/pixel) image showed a minimum encoding time (0.89 sec for Lena image and 0.78 of Cat image) with appropriate PSNR (30.01dB for Lena image and 29.8 of Cat image). The reduction in ET is about 12% for Lena and 67% for Cat image. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractal%20gray%20level%20image" title="fractal gray level image">fractal gray level image</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20compression%20technique" title=" fractal compression technique"> fractal compression technique</a>, <a href="https://publications.waset.org/abstracts/search?q=iterated%20function%20system" title=" iterated function system"> iterated function system</a>, <a href="https://publications.waset.org/abstracts/search?q=moments%20feature" title=" moments feature"> moments feature</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-mean%20range-domain%20block" title=" zero-mean range-domain block"> zero-mean range-domain block</a> </p> <a href="https://publications.waset.org/abstracts/19903/speeding-up-gray-scale-fic-by-moments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4301</span> An Accurate Computation of 2D Zernike Moments via Fast Fourier Transform </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20S.%20Al-Rawi">Mohammed S. Al-Rawi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Bastos"> J. Bastos</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Rodriguez"> J. Rodriguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Object detection and object recognition are essential components of every computer vision system. Despite the high computational complexity and other problems related to numerical stability and accuracy, Zernike moments of 2D images (ZMs) have shown resilience when used in object recognition and have been used in various image analysis applications. In this work, we propose a novel method for computing ZMs via Fast Fourier Transform (FFT). Notably, this is the first algorithm that can generate ZMs up to extremely high orders accurately, e.g., it can be used to generate ZMs for orders up to 1000 or even higher. Furthermore, the proposed method is also simpler and faster than the other methods due to the availability of FFT software and/or hardware. The accuracies and numerical stability of ZMs computed via FFT have been confirmed using the orthogonality property. We also introduce normalizing ZMs with Neumann factor when the image is embedded in a larger grid, and color image reconstruction based on RGB normalization of the reconstructed images. Astonishingly, higher-order image reconstruction experiments show that the proposed methods are superior, both quantitatively and subjectively, compared to the q-recursive method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chebyshev%20polynomial" title="Chebyshev polynomial">Chebyshev polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=fourier%20transform" title=" fourier transform"> fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20algorithms" title=" fast algorithms"> fast algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20recognition" title=" image recognition"> image recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo%20Zernike%20moments" title=" pseudo Zernike moments"> pseudo Zernike moments</a>, <a href="https://publications.waset.org/abstracts/search?q=Zernike%20moments" title=" Zernike moments"> Zernike moments</a> </p> <a href="https://publications.waset.org/abstracts/58226/an-accurate-computation-of-2d-zernike-moments-via-fast-fourier-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4300</span> Percentage Contribution of Lower Limb Moments to Vertical Ground Reaction Force in Normal Walking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salam%20M.%20Elhafez">Salam M. Elhafez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Ashour"> Ahmed A. Ashour</a>, <a href="https://publications.waset.org/abstracts/search?q=Naglaa%20M.%20Elhafez"> Naglaa M. Elhafez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghada%20M.%20Elhafez"> Ghada M. Elhafez</a>, <a href="https://publications.waset.org/abstracts/search?q=Azza%20M.%20Abdelmohsen"> Azza M. Abdelmohsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Patients suffering from gait disturbances are referred by having muscle group dysfunctions. There is a need for more studies investigating the contribution of muscle moments of the lower limb to the vertical ground reaction force using 3D gait analysis system. The purpose of this study was to investigate how the hip, knee and ankle moments in the sagittal plane contribute to the vertical ground reaction force in healthy subjects during normal speed of walking. Forty healthy male individuals volunteered to participate in this study. They were filmed using six high speed (120 Hz) Pro-Reflex Infrared cameras (Qualisys) while walking on an AMTI force platform. The data collected were the percentage contribution of the moments of the hip, knee and ankle joints in the sagittal plane at the instant of occurrence of the first peak, second peak, and the trough of the vertical ground reaction force. The results revealed that at the first peak of the ground reaction force (loading response), the highest contribution was generated from the knee extension moment, followed by the hip extension moment. Knee flexion and ankle plantar flexion moments produced high contribution to the trough of the ground reaction force (midstance) with approximately equal values. The second peak of the ground reaction force was mainly produced by the ankle plantar flexion moment. Conclusion: Hip and knee flexion and extension moments and ankle plantar flexion moment play important roles in the supporting phase of normal walking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gait%20analysis" title="gait analysis">gait analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20reaction%20force" title=" ground reaction force"> ground reaction force</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20contribution" title=" moment contribution"> moment contribution</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20walking" title=" normal walking"> normal walking</a> </p> <a href="https://publications.waset.org/abstracts/76697/percentage-contribution-of-lower-limb-moments-to-vertical-ground-reaction-force-in-normal-walking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4299</span> Polynomially Adjusted Bivariate Density Estimates Based on the Saddlepoint Approximation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20Provost">S. B. Provost</a>, <a href="https://publications.waset.org/abstracts/search?q=Susan%20Sheng"> Susan Sheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An alternative bivariate density estimation methodology is introduced in this presentation. The proposed approach involves estimating the density function associated with the marginal distribution of each of the two variables by means of the saddlepoint approximation technique and applying a bivariate polynomial adjustment to the product of these density estimates. Since the saddlepoint approximation is utilized in the context of density estimation, such estimates are determined from empirical cumulant-generating functions. In the univariate case, the saddlepoint density estimate is itself adjusted by a polynomial. Given a set of observations, the coefficients of the polynomial adjustments are obtained from the sample moments. Several illustrative applications of the proposed methodology shall be presented. Since this approach relies essentially on a determinate number of sample moments, it is particularly well suited for modeling massive data sets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20estimation" title="density estimation">density estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20cumulant-generating%20function" title=" empirical cumulant-generating function"> empirical cumulant-generating function</a>, <a href="https://publications.waset.org/abstracts/search?q=moments" title=" moments"> moments</a>, <a href="https://publications.waset.org/abstracts/search?q=saddlepoint%20approximation" title=" saddlepoint approximation"> saddlepoint approximation</a> </p> <a href="https://publications.waset.org/abstracts/72664/polynomially-adjusted-bivariate-density-estimates-based-on-the-saddlepoint-approximation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4298</span> Lambda-Levelwise Statistical Convergence of a Sequence of Fuzzy Numbers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Berna%20Benli">F. Berna Benli</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zg%C3%BCr%20Keskin"> Özgür Keskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lately, many mathematicians have been studied the statistical convergence of a sequence of fuzzy numbers. We know that Lambda-statistically convergence is a kind of convergence between ordinary convergence and statistical convergence. In this paper, we will introduce the new kind of convergence such as λ-levelwise statistical convergence. Then, we will define the concept of the λ-levelwise statistical cluster and limit points of a sequence of fuzzy numbers. Also, we will discuss the relations between the sets of λ-levelwise statistical cluster points and λ-levelwise statistical limit points of sequences of fuzzy numbers. This work has been extended in this paper, where some relations have been considered such that when lambda-statistical limit inferior and lambda-statistical limit superior for lambda-statistically convergent sequences of fuzzy numbers are equal. Furthermore, lambda-statistical boundedness condition for different sequences of fuzzy numbers has been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20number" title="fuzzy number">fuzzy number</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-levelwise%20statistical%20cluster%20points" title=" λ-levelwise statistical cluster points"> λ-levelwise statistical cluster points</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-levelwise%20statistical%20convergence" title=" λ-levelwise statistical convergence"> λ-levelwise statistical convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-levelwise%20statistical%20limit%20points" title=" λ-levelwise statistical limit points"> λ-levelwise statistical limit points</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-statistical%20cluster%20points" title=" λ-statistical cluster points"> λ-statistical cluster points</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-statistical%20convergence" title=" λ-statistical convergence"> λ-statistical convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-statistical%20limit%20%20points" title=" λ-statistical limit points"> λ-statistical limit points</a> </p> <a href="https://publications.waset.org/abstracts/20755/lambda-levelwise-statistical-convergence-of-a-sequence-of-fuzzy-numbers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4297</span> Response Delay Model: Bridging the Gap in Urban Fire Disaster Response System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20Yunus">Sulaiman Yunus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The need for modeling response to urban fire disaster cannot be over emphasized, as recurrent fire outbreaks have gutted most cities of the world. This necessitated the need for a prompt and efficient response system in order to mitigate the impact of the disaster. Promptness, as a function of time, is seen to be the fundamental determinant for efficiency of a response system and magnitude of a fire disaster. Delay, as a result of several factors, is one of the major determinants of promptgness of a response system and also the magnitude of a fire disaster. Response Delay Model (RDM) intends to bridge the gap in urban fire disaster response system through incorporating and synchronizing the delay moments in measuring the overall efficiency of a response system and determining the magnitude of a fire disaster. The model identified two delay moments (pre-notification and Intra-reflex sequence delay) that can be elastic and collectively plays a significant role in influencing the efficiency of a response system. Due to variation in the elasticity of the delay moments, the model provides for measuring the length of delays in order to arrive at a standard average delay moment for different parts of the world, putting into consideration geographic location, level of preparedness and awareness, technological advancement, socio-economic and environmental factors. It is recommended that participatory researches should be embarked on locally and globally to determine standard average delay moments within each phase of the system so as to enable determining the efficiency of response systems and predicting fire disaster magnitudes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delay%20moment" title="delay moment">delay moment</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20disaster" title=" fire disaster"> fire disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=reflex%20sequence" title=" reflex sequence"> reflex sequence</a>, <a href="https://publications.waset.org/abstracts/search?q=response" title=" response"> response</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20delay%20moment" title=" response delay moment"> response delay moment</a> </p> <a href="https://publications.waset.org/abstracts/111201/response-delay-model-bridging-the-gap-in-urban-fire-disaster-response-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4296</span> Human Gait Recognition Using Moment with Fuzzy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Bharti">Jyoti Bharti</a>, <a href="https://publications.waset.org/abstracts/search?q=Navneet%20Manjhi"> Navneet Manjhi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.Gupta"> M. K.Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Bimi%20Jain"> Bimi Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A reliable gait features are required to extract the gait sequences from an images. In this paper suggested a simple method for gait identification which is based on moments. Moment values are extracted on different number of frames of gray scale and silhouette images of CASIA database. These moment values are considered as feature values. Fuzzy logic and nearest neighbour classifier are used for classification. Both achieved higher recognition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gait" title="gait">gait</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=nearest%20neighbour" title=" nearest neighbour"> nearest neighbour</a>, <a href="https://publications.waset.org/abstracts/search?q=recognition%20rate" title=" recognition rate"> recognition rate</a>, <a href="https://publications.waset.org/abstracts/search?q=moments" title=" moments"> moments</a> </p> <a href="https://publications.waset.org/abstracts/5992/human-gait-recognition-using-moment-with-fuzzy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">757</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4295</span> Language Anxiety and Motivation as Predictors of English as a Foreign Language Achievement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fakieh%20Alrabai">Fakieh Alrabai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study examines the predictive power of foreign language anxiety and motivation, as two significant affective variables, in English as a foreign language (EFL) achievement. It also explores the causal relationship between these two factors (i.e. which variable causes the other); and which one of them best predicts other affective factors including learner attitude, self-esteem, and autonomy. The study utilized experimental treatments among 210 Saudi EFL learners divided into four groups. Group 1 was exposed to anxiety-controlling moments, group 2 was exposed to motivational moments, group 3 was exposed to anxiety-controlling and motivational moments together, and group 4 was exposed to no specific anxiety or motivation strategies. The influence of the treatment on the study variables was evaluated using a triangulation of measurements including questionnaires, classroom observations, and achievement tests. Descriptive analysis, ANOVA, ANCOVA, and regression analyses have been deployed to figure out the study findings. While both motivation and anxiety significantly predicted learners EFL achievement, motivation has been found to be the best predictor of learners’ achievement; and therefore, operates as the mediator of EFL achievement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motivation" title="motivation">motivation</a>, <a href="https://publications.waset.org/abstracts/search?q=anxiety" title=" anxiety"> anxiety</a>, <a href="https://publications.waset.org/abstracts/search?q=achievement" title=" achievement"> achievement</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomy" title=" autonomy"> autonomy</a> </p> <a href="https://publications.waset.org/abstracts/109618/language-anxiety-and-motivation-as-predictors-of-english-as-a-foreign-language-achievement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4294</span> A Study on Stochastic Integral Associated with Catastrophes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Reni%20Sagayaraj">M. Reni Sagayaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Anand%20Gnana%20Selvam"> S. Anand Gnana Selvam</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Reynald%20Susainathan"> R. Reynald Susainathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We analyze stochastic integrals associated with a mutation process. To be specific, we describe the cell population process and derive the differential equations for the joint generating functions for the number of mutants and their integrals in generating functions and their applications. We obtain first-order moments of the processes of the two-way mutation process in first-order moment structure of X (t) and Y (t) and the second-order moments of a one-way mutation process. In this paper, we obtain the limiting behaviour of the integrals in limiting distributions of X (t) and Y (t). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stochastic%20integrals" title="stochastic integrals">stochastic integrals</a>, <a href="https://publications.waset.org/abstracts/search?q=single%E2%80%93server%20queue%20model" title=" single–server queue model"> single–server queue model</a>, <a href="https://publications.waset.org/abstracts/search?q=catastrophes" title=" catastrophes"> catastrophes</a>, <a href="https://publications.waset.org/abstracts/search?q=busy%20period" title=" busy period"> busy period</a> </p> <a href="https://publications.waset.org/abstracts/21325/a-study-on-stochastic-integral-associated-with-catastrophes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">642</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4293</span> A Fuzzy Approach to Liver Tumor Segmentation with Zernike Moments </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abder-Rahman%20Ali">Abder-Rahman Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Antoine%20Vacavant"> Antoine Vacavant</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Grand-Brochier"> Manuel Grand-Brochier</a>, <a href="https://publications.waset.org/abstracts/search?q=Ad%C3%A9la%C3%AFde%20Albouy-Kissi"> Adélaïde Albouy-Kissi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Yves%20Boire"> Jean-Yves Boire</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a new segmentation approach for liver lesions in regions of interest within MRI (Magnetic Resonance Imaging). This approach, based on a two-cluster Fuzzy C-Means methodology, considers the parameter variable compactness to handle uncertainty. Fine boundaries are detected by a local recursive merging of ambiguous pixels with a sequential forward floating selection with Zernike moments. The method has been tested on both synthetic and real images. When applied on synthetic images, the proposed approach provides good performance, segmentations obtained are accurate, their shape is consistent with the ground truth, and the extracted information is reliable. The results obtained on MR images confirm such observations. Our approach allows, even for difficult cases of MR images, to extract a segmentation with good performance in terms of accuracy and shape, which implies that the geometry of the tumor is preserved for further clinical activities (such as automatic extraction of pharmaco-kinetics properties, lesion characterization, etc). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defuzzification" title="defuzzification">defuzzification</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20search" title=" floating search"> floating search</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20clustering" title=" fuzzy clustering"> fuzzy clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=Zernike%20moments" title=" Zernike moments "> Zernike moments </a> </p> <a href="https://publications.waset.org/abstracts/32509/a-fuzzy-approach-to-liver-tumor-segmentation-with-zernike-moments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4292</span> Modelling Hydrological Time Series Using Wakeby Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilaria%20Lucrezia%20Amerise">Ilaria Lucrezia Amerise</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The statistical modelling of precipitation data for a given portion of territory is fundamental for the monitoring of climatic conditions and for Hydrogeological Management Plans (HMP). This modelling is rendered particularly complex by the changes taking place in the frequency and intensity of precipitation, presumably to be attributed to the global climate change. This paper applies the Wakeby distribution (with 5 parameters) as a theoretical reference model. The number and the quality of the parameters indicate that this distribution may be the appropriate choice for the interpolations of the hydrological variables and, moreover, the Wakeby is particularly suitable for describing phenomena producing heavy tails. The proposed estimation methods for determining the value of the Wakeby parameters are the same as those used for density functions with heavy tails. The commonly used procedure is the classic method of moments weighed with probabilities (probability weighted moments, PWM) although this has often shown difficulty of convergence, or rather, convergence to a configuration of inappropriate parameters. In this paper, we analyze the problem of the likelihood estimation of a random variable expressed through its quantile function. The method of maximum likelihood, in this case, is more demanding than in the situations of more usual estimation. The reasons for this lie, in the sampling and asymptotic properties of the estimators of maximum likelihood which improve the estimates obtained with indications of their variability and, therefore, their accuracy and reliability. These features are highly appreciated in contexts where poor decisions, attributable to an inefficient or incomplete information base, can cause serious damages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20extreme%20values" title="generalized extreme values">generalized extreme values</a>, <a href="https://publications.waset.org/abstracts/search?q=likelihood%20estimation" title=" likelihood estimation"> likelihood estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation%20data" title=" precipitation data"> precipitation data</a>, <a href="https://publications.waset.org/abstracts/search?q=Wakeby%20distribution" title=" Wakeby distribution"> Wakeby distribution</a> </p> <a href="https://publications.waset.org/abstracts/105205/modelling-hydrological-time-series-using-wakeby-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4291</span> Study of Composite Beam under the Effect of Shear Deformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Hamli%20Benzahar">Hamid Hamli Benzahar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of this research is to study the deflection of a composite beam CB taking into account the effect of shear deformation. The structure is made up of two beams of different sections, joined together by thin adhesive, subjected to end moments and a distributed load. The fundamental differential equation of CB can be obtained from the total energy equation while considering the shear deformation. The differential equation found will be compared with those found in CB, where the shear deformation is zero. The CB system is numerically modeled by the finite element method, where the numerical results of deflection will be compared with those found theoretically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20beam" title="composite beam">composite beam</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20deformation" title=" shear deformation"> shear deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=moments" title=" moments"> moments</a>, <a href="https://publications.waset.org/abstracts/search?q=finites%20elements" title=" finites elements"> finites elements</a> </p> <a href="https://publications.waset.org/abstracts/167168/study-of-composite-beam-under-the-effect-of-shear-deformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4290</span> Students' Statistical Reasoning and Attitudes towards Statistics in Blended Learning, E-Learning and On-Campus Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petros%20Roussos">Petros Roussos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study focused on students' statistical reasoning related to Null Hypothesis Statistical Testing and p-values. Its objective was to test the hypothesis that neither the place (classroom, at a distance, online) nor the medium that actually supports the learning (ICT, internet, books) has an effect on understanding of statistical concepts. In addition, it was expected that students' attitudes towards statistics would not predict understanding of statistical concepts. The sample consisted of 385 undergraduate and postgraduate students from six state and private universities (five in Greece and one in Cyprus). Students were administered two questionnaires: a) the Greek version of the Survey of Attitudes Toward Statistics, and b) a short instrument which measures students' understanding of statistical significance and p-values. Results suggest that attitudes towards statistics do not predict students' understanding of statistical concepts, whereas the medium did not have an effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attitudes%20towards%20statistics" title="attitudes towards statistics">attitudes towards statistics</a>, <a href="https://publications.waset.org/abstracts/search?q=blended%20learning" title=" blended learning"> blended learning</a>, <a href="https://publications.waset.org/abstracts/search?q=e-learning" title=" e-learning"> e-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20reasoning" title=" statistical reasoning"> statistical reasoning</a> </p> <a href="https://publications.waset.org/abstracts/46506/students-statistical-reasoning-and-attitudes-towards-statistics-in-blended-learning-e-learning-and-on-campus-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4289</span> Torsional Rigidities of Reinforced Concrete Beams Subjected to Elastic Lateral Torsional Buckling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilker%20Kalkan">Ilker Kalkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Saruhan%20Kartal"> Saruhan Kartal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete (RC) beams rarely undergo lateral-torsional buckling (LTB), since these beams possess large lateral bending and torsional rigidities owing to their stocky cross-sections, unlike steel beams. However, the problem of LTB is becoming more and more pronounced in the last decades as the span lengths of concrete beams increase and the cross-sections become more slender with the use of pre-stressed concrete. The buckling moment of a beam mainly depends on its lateral bending rigidity and torsional rigidity. The nonhomogeneous and elastic-inelastic nature of RC complicates estimation of the buckling moments of concrete beams. Furthermore, the lateral bending and torsional rigidities of RC beams and the buckling moments are affected from different forms of concrete cracking, including flexural, torsional and restrained shrinkage cracking. The present study pertains to the effects of concrete cracking on the torsional rigidities of RC beams prone to elastic LTB. A series of tests on rather slender RC beams indicated that torsional cracking does not initiate until buckling in elastic LTB, while flexural cracking associated with lateral bending takes place even at the initial stages of loading. Hence, the present study clearly indicated that the un-cracked torsional rigidity needs to be used for estimating the buckling moments of RC beams liable to elastic LTB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lateral%20stability" title="lateral stability">lateral stability</a>, <a href="https://publications.waset.org/abstracts/search?q=post-cracking%20torsional%20rigidity" title=" post-cracking torsional rigidity"> post-cracking torsional rigidity</a>, <a href="https://publications.waset.org/abstracts/search?q=uncracked%20torsional%20rigidity" title=" uncracked torsional rigidity"> uncracked torsional rigidity</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20moment" title=" critical moment"> critical moment</a> </p> <a href="https://publications.waset.org/abstracts/72558/torsional-rigidities-of-reinforced-concrete-beams-subjected-to-elastic-lateral-torsional-buckling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4288</span> Positive Behaviour Management Strategies: An Action Research Conducted in a Kindergarten Classroom in Remote Regional Queensland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suxiang%20Yu">Suxiang Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As an early childhood teacher in a socially and economically highly disadvantaged suburb in regional QLD, the author endeavors to find out effective positive approaches to behavior management for a classroom that is overwhelmed with challenging behaviors. After evaluating the first-hand data collected from the action research, the author summarizes a few innovative, positive behavior management strategies. The research also implies that behavior management opportunities are actually great social and emotional teachable moments, and by tapping into those teachable moments effectively, the teacher and children will have a closer relationship. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=action%20research" title="action research">action research</a>, <a href="https://publications.waset.org/abstracts/search?q=behavior%20management" title=" behavior management"> behavior management</a>, <a href="https://publications.waset.org/abstracts/search?q=classroom%20strategies" title=" classroom strategies"> classroom strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20and%20emotional%20teaching" title=" social and emotional teaching"> social and emotional teaching</a> </p> <a href="https://publications.waset.org/abstracts/89323/positive-behaviour-management-strategies-an-action-research-conducted-in-a-kindergarten-classroom-in-remote-regional-queensland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4287</span> The Beta-Fisher Snedecor Distribution with Applications to Cancer Remission Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Adepoju">K. A. Adepoju</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20I.%20Shittu"> O. I. Shittu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20U.%20Chukwu"> A. U. Chukwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new four-parameter generalized version of the Fisher Snedecor distribution called Beta- F distribution is introduced. The comprehensive account of the statistical properties of the new distributions was considered. Formal expressions for the cumulative density function, moments, moment generating function and maximum likelihood estimation, as well as its Fisher information, were obtained. The flexibility of this distribution as well as its robustness using cancer remission time data was demonstrated. The new distribution can be used in most applications where the assumption underlying the use of other lifetime distributions is violated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fisher-snedecor%20distribution" title="fisher-snedecor distribution">fisher-snedecor distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=beta-f%20distribution" title=" beta-f distribution"> beta-f distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=outlier" title=" outlier"> outlier</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood%20method" title=" maximum likelihood method"> maximum likelihood method</a> </p> <a href="https://publications.waset.org/abstracts/46554/the-beta-fisher-snedecor-distribution-with-applications-to-cancer-remission-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20moments&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20moments&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20moments&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20moments&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20moments&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20moments&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20moments&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20moments&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20moments&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20moments&page=143">143</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20moments&page=144">144</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20moments&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>