CINXE.COM
Search results for: bi-axial stress
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: bi-axial stress</title> <meta name="description" content="Search results for: bi-axial stress"> <meta name="keywords" content="bi-axial stress"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="bi-axial stress" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="bi-axial stress"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3915</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: bi-axial stress</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3915</span> Analyses of Uniaxial and Biaxial Flexure Tests Used in Ceramic Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barry%20Hojjatie">Barry Hojjatie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uniaxial (e.g., three-point bending) and biaxial flexure tests are used frequently for determining the strength of ceramics. It is generally believed that the biaxial test has an advantage as compared to uniaxial test because it produces a state of pure tension on the lower surface of the specimen and the maximum tensile stress, which is usually responsible for crack initiation and failure is unaffected by the edge condition. However, inconsistent strength values have been reported for the same material and testing conditions. The objective of this study was to analyze the strength of dental porcelain materials using the two different test methods and evaluate the main contributions to variability in biaxial testing and to analyze the relative influence of variables such as specimen geometric conditions and loading conditions on calculated strength of porcelain subjected to biaxial testing. Porcelain disks (16 mm dia x 2 mm thick) were subjected to biaxial flexure (pin-on-three-ball), and flexure strength values were calculated. A 3-D finite element model was developed to simulate various biaxial flexure test conditions. Stresses were analyzed for ceramic thickness in the range of 1.0-3.0 mm. For a 2-mm-thick disk subjected to a point load of 200 N, the maximum tensile stress at the lower surface was 180 MPa. This stress decreased to 95, 77, 68, and 59 MPa for the radius of the load values of 0.15, 0.3, 0.6, and 1.0 mm, respectively. Tensile stresses which developed at the top surface near the site of loading were small for the radius of the load ≥ 0.6 mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramis" title="ceramis">ceramis</a>, <a href="https://publications.waset.org/abstracts/search?q=biaxial" title=" biaxial"> biaxial</a>, <a href="https://publications.waset.org/abstracts/search?q=flexure%20test" title=" flexure test"> flexure test</a>, <a href="https://publications.waset.org/abstracts/search?q=uniaxial" title=" uniaxial"> uniaxial</a> </p> <a href="https://publications.waset.org/abstracts/106029/analyses-of-uniaxial-and-biaxial-flexure-tests-used-in-ceramic-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3914</span> Mechanical Response of Aluminum Foam Under Biaxial Combined Quasi-Static Compression-Torsional Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Solomon%20Huluka">Solomon Huluka</a>, <a href="https://publications.waset.org/abstracts/search?q=Akrum%20Abdul-Latif"> Akrum Abdul-Latif</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Baleh"> Rachid Baleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal foams have been developed intensively as a new class of materials for the last two decades due to their unique structural and multifunctional properties. The aim of this experimental work was to characterize the effect of biaxial loading complexity (combined compression-torsion) on the plastic response of highly uniform architecture open-cell aluminum foams of spherical porous with a density of 80%. For foam manufacturing, the Kelvin cells model was used to generate the generally spherical shape with a cell diameter of 11 mm. A patented rig called ACTP (Absorption par Compression-Torsion Plastique), was used to investigate the foam response under quasi-static complex loading paths having different torsional components (i.e. 0°, 45° and 60°). The key mechanical responses to be examined are yield stress, stress plateau, and energy absorption capacity. The collapse mode was also investigated. It was concluded that the higher the loading complexity, the greater the yield strength and the greater energy absorption capacity of the foam. Experimentally, it was also noticed that there were large softening effects that occurred after the first pick stress for both biaxial-45° and biaxial-60° loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20foam" title="aluminum foam">aluminum foam</a>, <a href="https://publications.waset.org/abstracts/search?q=loading%20complexity" title=" loading complexity"> loading complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=biaxial%20loading" title=" biaxial loading"> biaxial loading</a> </p> <a href="https://publications.waset.org/abstracts/150523/mechanical-response-of-aluminum-foam-under-biaxial-combined-quasi-static-compression-torsional-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3913</span> Effect of Hydrostatic Stress on Yield Behavior of the High Density Polyethylene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Hachour">Kamel Hachour</a>, <a href="https://publications.waset.org/abstracts/search?q=Lydia%20Sadeg"> Lydia Sadeg</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Sersab"> Djamel Sersab</a>, <a href="https://publications.waset.org/abstracts/search?q=Tassadit%20Bellahcen"> Tassadit Bellahcen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hydrostatic stress is, for polymers, a significant parameter which affects the yield behavior of these materials. In this work, we investigate the influence of this parameter on yield behavior of the high density polyethylene (hdpe). Some tests on specimens with diverse geometries are described in this paper. Uniaxial tests: tensile on notched round bar specimens with different curvature radii, compression on cylindrical specimens and simple shear on parallelepiped specimens were performed. Biaxial tests with various combinations of tensile/compressive and shear loading on butterfly specimens were also realized in order to determine the hydrostatic stress for different states of solicitation. The experimental results show that the yield stress is very affected by the hydrostatic stress developed in the material during solicitations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biaxial%20tests" title="biaxial tests">biaxial tests</a>, <a href="https://publications.waset.org/abstracts/search?q=hdpe" title=" hdpe"> hdpe</a>, <a href="https://publications.waset.org/abstracts/search?q=Hydrostatic%20stress" title=" Hydrostatic stress"> Hydrostatic stress</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20behavior" title=" yield behavior"> yield behavior</a> </p> <a href="https://publications.waset.org/abstracts/28124/effect-of-hydrostatic-stress-on-yield-behavior-of-the-high-density-polyethylene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3912</span> Biaxial Fatigue Specimen Design and Testing Rig Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20H.%20Elkholy">Ahmed H. Elkholy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An elastic analysis is developed to obtain the distribution of stresses, strains, bending moment and deformation for a thin hollow, variable thickness cylindrical specimen when subjected to different biaxial loadings. The specimen was subjected to a combination of internal pressure, axial tensile loading and external pressure. Several axial to circumferential stress ratios were investigated in detail. The analytical model was then validated using experimental results obtained from a test rig using several biaxial loadings. Based on the preliminary results obtained, the specimen was then modified geometrically to ensure uniform strain distribution through its wall thickness and along its gauge length. The new design of the specimen has a higher buckling strength and a maximum value of equivalent stress according to the maximum distortion energy theory. A cyclic function generator of the standard servo-controlled, electro-hydraulic testing machine is used to generate a specific signal shape (sine, square,…) at a certain frequency. The two independent controllers of the electronic circuit cause an independent movement to each servo-valve piston. The movement of each piston pressurizes the upper and lower sides of the actuators alternately. So, the specimen will be subjected to axial and diametral loads independent of each other. The hydraulic system has two different pressures: one pressure will be responsible for axial stress produced in the specimen and the other will be responsible for the tangential stress. Changing the two pressure ratios will change the stress ratios accordingly. The only restriction on the maximum stress obtained is the capacity of the testing system and specimen instability due to buckling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biaxial" title="biaxial">biaxial</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=testing" title=" testing"> testing</a> </p> <a href="https://publications.waset.org/abstracts/103421/biaxial-fatigue-specimen-design-and-testing-rig-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3911</span> Prediction of the Behavior of 304L Stainless Steel under Uniaxial and Biaxial Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aboussalih%20Amira">Aboussalih Amira</a>, <a href="https://publications.waset.org/abstracts/search?q=Zarza%20Tahar"> Zarza Tahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fedaoui%20Kamel"> Fedaoui Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammoudi%20Saleh"> Hammoudi Saleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work focuses on the simulation of the prediction of the behaviour of austenitic stainless steel (SS) 304L under complex loading in stress and imposed strain. The Chaboche model is a cable to describe the response of the material by the combination of two isotropic and nonlinear kinematic work hardening, the model is implemented in the ZébuLon computer code. First, we represent the evolution of the axial stress as a function of the plastic strain through hysteresis loops revealing a hardening behaviour caused by the increase in stress by stress in the direction of tension/compression. In a second step, the study of the ratcheting phenomenon takes a key place in this work by the appearance of the average stress. In addition to the solicitation of the material in the biaxial direction in traction / torsion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage" title="damage">damage</a>, <a href="https://publications.waset.org/abstracts/search?q=304L" title=" 304L"> 304L</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratcheting" title=" Ratcheting"> Ratcheting</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20strain" title=" plastic strain"> plastic strain</a> </p> <a href="https://publications.waset.org/abstracts/181848/prediction-of-the-behavior-of-304l-stainless-steel-under-uniaxial-and-biaxial-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3910</span> The Interaction between Hydrogen and Surface Stress in Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osamu%20Takakuwa">Osamu Takakuwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuta%20Mano"> Yuta Mano</a>, <a href="https://publications.waset.org/abstracts/search?q=Hitoshi%20Soyama"> Hitoshi Soyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reveals the interaction between hydrogen and surface stress in austenitic stainless steel by X-ray diffraction stress measurement and thermal desorption analysis before and after being charged with hydrogen. The surface residual stress was varied by surface finishing using several disc polishing agents. The obtained results show that the residual stress near surface had a significant effect on hydrogen absorption behavior, that is, tensile residual stress promoted the hydrogen absorption and compressive one did opposite. Also, hydrogen induced equi-biaxial stress and this stress has a linear correlation with hydrogen content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20embrittlement" title="hydrogen embrittlement">hydrogen embrittlement</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20finishing" title=" surface finishing"> surface finishing</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a> </p> <a href="https://publications.waset.org/abstracts/16765/the-interaction-between-hydrogen-and-surface-stress-in-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3909</span> Behaviour of Rc Column under Biaxial Cyclic Loading-State of the Art</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Pavithra">L. Pavithra</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sharmila"> R. Sharmila</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivani%20Sridhar"> Shivani Sridhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Columns severe structural damage needs proportioning a significant portion of earthquake energy can be dissipated yielding in the beams. Presence of axial load along with cyclic loading has a significant influence on column. The objective of this paper is to present the analytical results of columns subjected to biaxial cyclic loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RC%20column" title="RC column">RC column</a>, <a href="https://publications.waset.org/abstracts/search?q=Seismic%20behaviour" title=" Seismic behaviour"> Seismic behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20behaviour" title=" cyclic behaviour"> cyclic behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=biaxial%20testing" title=" biaxial testing"> biaxial testing</a>, <a href="https://publications.waset.org/abstracts/search?q=ductile%20behaviour" title=" ductile behaviour"> ductile behaviour</a> </p> <a href="https://publications.waset.org/abstracts/26015/behaviour-of-rc-column-under-biaxial-cyclic-loading-state-of-the-art" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3908</span> Research of Strong-Column-Weak-Beam Criteria of Reinforced Concrete Frames Subjected to Biaxial Seismic Excitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chong%20Zhang">Chong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mu-Xuan%20Tao"> Mu-Xuan Tao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In several earthquakes, numerous reinforced concrete (RC) frames subjected to seismic excitation demonstrated a collapse pattern characterized by column hinges, though designed according to the Strong-Column-Weak-Beam (S-C-W-B) criteria. The effect of biaxial seismic excitation on the disparity between design and actual performance is carefully investigated in this article. First, a modified load contour method is proposed to derive a closed-form equation of biaxial bending moment strength, which is verified by numerical and experimental tests. Afterwards, a group of time history analyses of a simple frame modeled by fiber beam-column elements subjected to biaxial seismic excitation are conducted to verify that the current S-C-W-B criteria are not adequate to prevent the occurrence of column hinges. A biaxial over-strength factor is developed based on the proposed equation, and the reinforcement of columns is appropriately amplified with this factor to prevent the occurrence of column hinges under biaxial excitation, which is proved to be effective by another group of time history analyses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biaxial%20bending%20moment%20capacity" title="biaxial bending moment capacity">biaxial bending moment capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=biaxial%20seismic%20excitation" title=" biaxial seismic excitation"> biaxial seismic excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20beam%20model" title=" fiber beam model"> fiber beam model</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20contour%20method" title=" load contour method"> load contour method</a>, <a href="https://publications.waset.org/abstracts/search?q=strong-column-weak-beam" title=" strong-column-weak-beam"> strong-column-weak-beam</a> </p> <a href="https://publications.waset.org/abstracts/125740/research-of-strong-column-weak-beam-criteria-of-reinforced-concrete-frames-subjected-to-biaxial-seismic-excitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3907</span> The Effect of Combined Fluid Shear Stress and Cyclic Stretch on Endothelial Cells </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daphne%20Meza">Daphne Meza</a>, <a href="https://publications.waset.org/abstracts/search?q=Louie%20Abejar"> Louie Abejar</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20A.%20Rubenstein"> David A. Rubenstein</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yin"> Wei Yin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Endothelial cell (ECs) morphology and function is highly impacted by the mechanical stresses these cells experience in vivo. Any change in the mechanical environment can trigger pathological EC responses. A detailed understanding of EC morphological response and function upon subjection to individual and simultaneous mechanical stimuli is needed for advancement in mechanobiology and preventive medicine. To investigate this, a programmable device capable of simultaneously applying physiological fluid shear stress (FSS) and cyclic strain (CS) has been developed, characterized and validated. Its validation was performed both experimentally, through tracer tracking, and theoretically, through the use of a computational fluid dynamics model. The effectiveness of the device was evaluated through EC morphology changes under mechanical loading conditions. Changes in cell morphology were evaluated through: cell and nucleus elongation, cell alignment and junctional actin production. The results demonstrated that the combined FSS-CS stimulation induced visible changes in EC morphology. Upon simultaneous fluid shear stress and biaxial tensile strain stimulation, cells were elongated and generally aligned with the flow direction, with stress fibers highlighted along the cell junctions. The concurrent stimulation from shear stress and biaxial cyclic stretch led to a significant increase in cell elongation compared to untreated cells. This, however, was significantly lower than that induced by shear stress alone, indicating that the biaxial tensile strain may counteract the elongating effect of shear stress to maintain the shape of ECs. A similar trend was seen in alignment, where the alignment induced by the concurrent application of shear stress and cyclic stretch fell in between that induced by shear stress and tensile stretch alone, indicating the opposite role shear stress and tensile strain may play in cell alignment. Junctional actin accumulation was increased upon shear stress alone or simultaneously with tensile stretch. Tensile stretch alone did not change junctional actin accumulation, indicating the dominant role of shear stress in damaging EC junctions. These results demonstrate that the shearing-stretching device is capable of applying well characterized dynamic shear stress and tensile strain to cultured ECs. Using this device, EC response to altered mechanical environment in vivo can be characterized in vitro. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20stretch" title="cyclic stretch">cyclic stretch</a>, <a href="https://publications.waset.org/abstracts/search?q=endothelial%20cells" title=" endothelial cells"> endothelial cells</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20shear%20stress" title=" fluid shear stress"> fluid shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=vascular%20biology" title=" vascular biology"> vascular biology</a> </p> <a href="https://publications.waset.org/abstracts/26318/the-effect-of-combined-fluid-shear-stress-and-cyclic-stretch-on-endothelial-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3906</span> Bi-Axial Stress Effects on Barkhausen-Noise</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Balogh">G. Balogh</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Szab%C3%B3"> I. A. Szabó</a>, <a href="https://publications.waset.org/abstracts/search?q=P.Z.%20Kov%C3%A1cs"> P.Z. Kovács</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mechanical stress has a strong effect on the magnitude of the Barkhausen-noise in structural steels. Because the measurements are performed at the surface of the material, for a sample sheet, the full effect can be described by a biaxial stress field. The measured Barkhausen-noise is dependent on the orientation of the exciting magnetic field relative to the axis of the stress tensor. The sample inhomogenities including the residual stress also modifies the angular dependence of the measured Barkhausen-noise. We have developed a laboratory device with a cross like specimen for bi-axial bending. The measuring head allowed performing excitations in two orthogonal directions. We could excite the two directions independently or simultaneously with different amplitudes. The simultaneous excitation of the two coils could be performed in phase or with a 90 degree phase shift. In principle this allows to measure the Barkhausen-noise at an arbitrary direction without moving the head, or to measure the Barkhausen-noise induced by a rotating magnetic field if a linear superposition of the two fields can be assumed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barkhausen-noise" title="Barkhausen-noise">Barkhausen-noise</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-axial%20stress" title=" bi-axial stress"> bi-axial stress</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20measuring" title=" stress measuring"> stress measuring</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20dependency" title=" stress dependency"> stress dependency</a> </p> <a href="https://publications.waset.org/abstracts/21369/bi-axial-stress-effects-on-barkhausen-noise" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3905</span> Energy Absorption Capacity of Aluminium Foam Manufactured by Kelvin Model Loaded Under Different Biaxial Combined Compression-Torsion Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Solomon">H. Solomon</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdul-Latif"> A. Abdul-Latif</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20%20Baleh"> R. Baleh</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Deiab"> I. Deiab</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Khanafer"> K. Khanafer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminum foams were developed and tested due to their high energy absorption abilities for multifunctional applications. The aim of this research work was to investigate experimentally the effect of quasi-static biaxial loading complexity (combined compression-torsion) on the energy absorption capacity of highly uniform architecture open-cell aluminum foam manufactured by kelvin cell model. The two generated aluminum foams have 80% and 85% porosities, spherical-shaped pores having 11mm in diameter. These foams were tested by means of several square-section specimens. A patented rig called ACTP (Absorption par Compression-Torsion Plastique), was used to investigate the foam response under quasi-static complex loading paths having different torsional components (i.e., 0°, 37° and 53°). The main mechanical responses of the aluminum foams were studied under simple, intermediate and severe loading conditions. In fact, the key responses to be examined were stress plateau and energy absorption capacity of the two foams with respect to loading complexity. It was concluded that the higher the loading complexity and the higher the relative density, the greater the energy absorption capacity of the foam. The highest energy absorption was thus recorded under the most complicated loading path (i.e., biaxial-53°) for the denser foam (i.e., 80% porosity). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=open-cell%20aluminum%20foams" title="open-cell aluminum foams">open-cell aluminum foams</a>, <a href="https://publications.waset.org/abstracts/search?q=biaxial%20loading%20complexity" title=" biaxial loading complexity"> biaxial loading complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=foams%20porosity" title=" foams porosity"> foams porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20absorption%20capacity" title=" energy absorption capacity"> energy absorption capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a> </p> <a href="https://publications.waset.org/abstracts/150738/energy-absorption-capacity-of-aluminium-foam-manufactured-by-kelvin-model-loaded-under-different-biaxial-combined-compression-torsion-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3904</span> Forming Limit Analysis of DP600-800 Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcelo%20Costa%20Cardoso">Marcelo Costa Cardoso</a>, <a href="https://publications.waset.org/abstracts/search?q=Luciano%20Pessanha%20Moreira"> Luciano Pessanha Moreira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the plastic behaviour of cold-rolled zinc coated dual-phase steel sheets DP600 and DP800 grades is firstly investigated with the help of uniaxial, hydraulic bulge and Forming Limit Curve (FLC) tests. The uniaxial tensile tests were performed in three angular orientations with respect to the rolling direction to evaluate the strain-hardening and plastic anisotropy. True stress-strain curves at large strains were determined from hydraulic bulge testing and fitted to a work-hardening equation. The limit strains are defined at both localized necking and fracture conditions according to Nakajima’s hemispherical punch procedure. Also, an elasto-plastic localization model is proposed in order to predict strain and stress based forming limit curves. The investigated dual-phase sheets showed a good formability in the biaxial stretching and drawing FLC regions. For both DP600 and DP800 sheets, the corresponding numerical predictions overestimated and underestimated the experimental limit strains in the biaxial stretching and drawing FLC regions, respectively. This can be attributed to the restricted failure necking condition adopted in the numerical model, which is not suitable to describe the tensile and shear fracture mechanisms in advanced high strength steels under equibiaxial and biaxial stretching conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20high%20strength%20steels" title="advanced high strength steels">advanced high strength steels</a>, <a href="https://publications.waset.org/abstracts/search?q=forming%20limit%20curve" title=" forming limit curve"> forming limit curve</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modelling" title=" numerical modelling"> numerical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=sheet%20metal%20forming" title=" sheet metal forming"> sheet metal forming</a> </p> <a href="https://publications.waset.org/abstracts/35774/forming-limit-analysis-of-dp600-800-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3903</span> The Behavior of Masonry Wall Constructed Using Biaxial Interlocking Concrete Block, Solid Concrete Block and Cement Sand Brick Subjected to the Compressive Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fauziah%20Aziz">Fauziah Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd.fadzil%20Arshad"> Mohd.fadzil Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazrina%20Mansor"> Hazrina Mansor</a>, <a href="https://publications.waset.org/abstracts/search?q=Sedat%20K%C3%B6m%C3%BCrc%C3%BC"> Sedat Kömürcü</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Masonry is an isotropic and heterogeneous material due to the presence of the different components within the assembly process. Normally the mortar plays a significant role in the compressive behavior of the traditional masonry structures. Biaxial interlocking concrete block is a masonry unit that comes out with the interlocking concept. This masonry unit can improve the quality of the construction process, reduce the cost of labor, reduce high skill workmanship, and speeding the construction time. Normally, the interlocking concrete block masonry unit in the market place was designed in a way interlocking concept only either x or y-axis, shorter in length, and low compressive strength value. However, the biaxial interlocking concrete block is a dry-stack concept being introduced in this research, offered the specialty compared to the normal interlocking concrete available in the market place due to its length and the geometry of the groove and tongue. This material can be used as a non-load bearing wall, or load-bearing wall depends on the application of the masonry. But, there is a lack of technical data that was produced before. This paper presents a finding on the compressive resistance of the biaxial interlocking concrete block masonry wall compared to the other traditional masonry walls. Two series of biaxial interlocking concrete block masonry walls, namely M1 and M2, a series of solid concrete block and cement sand brick walls M3, and M4 have tested the compressive resistance. M1 is the masonry wall of a hollow biaxial interlocking concrete block meanwhile; M2 is the grouted masonry wall, M3 is a solid concrete block masonry wall, and M4 is a cement sand brick masonry wall. All the samples were tested under static compressive load. The results examine that M2 is higher in compressive resistance compared to the M1, M3, and M4. It shows that the compressive strength of the concrete masonry units plays a significant role in the capacity of the masonry wall. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interlocking%20concrete%20block" title="interlocking concrete block">interlocking concrete block</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20resistance" title=" compressive resistance"> compressive resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20masonry%20unit" title=" concrete masonry unit"> concrete masonry unit</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry" title=" masonry "> masonry </a> </p> <a href="https://publications.waset.org/abstracts/113746/the-behavior-of-masonry-wall-constructed-using-biaxial-interlocking-concrete-block-solid-concrete-block-and-cement-sand-brick-subjected-to-the-compressive-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3902</span> Biaxial Buckling of Single Layer Graphene Sheet Based on Nonlocal Plate Model and Molecular Dynamics Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Pilafkan">R. Pilafkan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kaffash%20Irzarahimi"> M. Kaffash Irzarahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20F.%20Asbaghian%20Namin"> S. F. Asbaghian Namin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The biaxial buckling behavior of single-layered graphene sheets (SLGSs) is studied in the present work. To consider the size-effects in the analysis, Eringen’s nonlocal elasticity equations are incorporated into classical plate theory (CLPT). A Generalized Differential Quadrature Method (GDQM) approach is utilized and numerical solutions for the critical buckling loads are obtained. Then, molecular dynamics (MD) simulations are performed for a series of zigzag SLGSs with different side-lengths and with various boundary conditions, the results of which are matched with those obtained by the nonlocal plate model to numerical the appropriate values of nonlocal parameter relevant to each type of boundary conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biaxial%20buckling" title="biaxial buckling">biaxial buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=single-layered%20graphene%20sheets" title=" single-layered graphene sheets"> single-layered graphene sheets</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlocal%20elasticity" title=" nonlocal elasticity"> nonlocal elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=classical%20plate%20theory" title=" classical plate theory"> classical plate theory</a> </p> <a href="https://publications.waset.org/abstracts/56460/biaxial-buckling-of-single-layer-graphene-sheet-based-on-nonlocal-plate-model-and-molecular-dynamics-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3901</span> Artificial Neural Network in Predicting the Soil Response in the Discrete Element Method Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhaofeng%20Li">Zhaofeng Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Kang%20Chow"> Jun Kang Chow</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Hsing%20Wang"> Yu-Hsing Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper attempts to bridge the soil properties and the mechanical response of soil in the discrete element method (DEM) simulation. The artificial neural network (ANN) was therefore adopted, aiming to reproduce the stress-strain-volumetric response when soil properties are given. 31 biaxial shearing tests with varying soil parameters (e.g., initial void ratio and interparticle friction coefficient) were generated using the DEM simulations. Based on these 45 sets of training data, a three-layer neural network was established which can output the entire stress-strain-volumetric curve during the shearing process from the input soil parameters. Beyond the training data, 2 additional sets of data were generated to examine the validity of the network, and the stress-strain-volumetric curves for both cases were well reproduced using this network. Overall, the ANN was found promising in predicting the soil behavior and reducing repetitive simulation work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20properties" title=" soil properties"> soil properties</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-strain-volumetric%20response" title=" stress-strain-volumetric response"> stress-strain-volumetric response</a> </p> <a href="https://publications.waset.org/abstracts/59289/artificial-neural-network-in-predicting-the-soil-response-in-the-discrete-element-method-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3900</span> Effect of Particle Shape on Monotonic and Cyclic Biaxial Behaviour of Sand Using Discrete Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raj%20Banerjee">Raj Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Parulekar"> Y. M. Parulekar</a>, <a href="https://publications.waset.org/abstracts/search?q=Aniruddha%20Sengupta"> Aniruddha Sengupta</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Chattopadhyay"> J. Chattopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study proposes a Discrete Element Method (DEM) simulation using a commercial software PFC 2D (2019) for quantitatively simulating the monotonic and cyclic behaviour of sand using irregular shapes of sand grains. A preliminary analysis of the number of particles for optimal Representative Element Volume (REV) simulation of dimension 35mm x 35mm x 70mm using the scaled Grain Size Distribution (GSD) of sand is carried out. Subsequently, the effect of particle shape on the performance of sand during monotonic and cyclic bi-axial tests is assessed using numerical simulation. The validation of the numerical simulation for one case is carried out using the test results from the literature. Further numerical studies are performed in which the particles in REV are simulated by mixing round discs with irregular clumps (100% round disc, 75% round disc 25% irregular clump, 50% round disc 50% irregular clump, 25% round disc 75% irregular clump, 100% irregular clump) in different proportions using Dry Deposition (DD) method. The macro response for monotonic loading shows that irregular sand has a higher strength than round particles and that the Mohr-Coulomb failure envelope depends on the shape of the grains. During cyclic loading, it is observed that the liquefaction resistance curve (Cyclic Stress Ratio (CSR)-Number of cycles (N)) of sand is dependent on the combination of particle shapes with different proportions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biaxial%20test" title="biaxial test">biaxial test</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20shape" title=" particle shape"> particle shape</a>, <a href="https://publications.waset.org/abstracts/search?q=monotonic" title=" monotonic"> monotonic</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic" title=" cyclic"> cyclic</a> </p> <a href="https://publications.waset.org/abstracts/166777/effect-of-particle-shape-on-monotonic-and-cyclic-biaxial-behaviour-of-sand-using-discrete-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3899</span> Multiaxial Fatigue Analysis of a High Performance Nickel-Based Superalloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Selva">P. Selva</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Lorraina"> B. Lorraina</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Alexis"> J. Alexis</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Seror"> A. Seror</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Longuet"> A. Longuet</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Mary"> C. Mary</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Denard"> F. Denard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past four decades, the fatigue behavior of nickel-based alloys has been widely studied. However, in recent years, significant advances in the fabrication process leading to grain size reduction have been made in order to improve fatigue properties of aircraft turbine discs. Indeed, a change in particle size affects the initiation mode of fatigue cracks as well as the fatigue life of the material. The present study aims to investigate the fatigue behavior of a newly developed nickel-based superalloy under biaxial-planar loading. Low Cycle Fatigue (LCF) tests are performed at different stress ratios so as to study the influence of the multiaxial stress state on the fatigue life of the material. Full-field displacement and strain measurements as well as crack initiation detection are obtained using Digital Image Correlation (DIC) techniques. The aim of this presentation is first to provide an in-depth description of both the experimental set-up and protocol: the multiaxial testing machine, the specific design of the cruciform specimen and performances of the DIC code are introduced. Second, results for sixteen specimens related to different load ratios are presented. Crack detection, strain amplitude and number of cycles to crack initiation vs. triaxial stress ratio for each loading case are given. Third, from fractographic investigations by scanning electron microscopy it is found that the mechanism of fatigue crack initiation does not depend on the triaxial stress ratio and that most fatigue cracks initiate from subsurface carbides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cruciform%20specimen" title="cruciform specimen">cruciform specimen</a>, <a href="https://publications.waset.org/abstracts/search?q=multiaxial%20fatigue" title=" multiaxial fatigue"> multiaxial fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel-based%20superalloy" title=" nickel-based superalloy"> nickel-based superalloy</a> </p> <a href="https://publications.waset.org/abstracts/22039/multiaxial-fatigue-analysis-of-a-high-performance-nickel-based-superalloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3898</span> Habits for Teenagers to Remain Unruffled by Stress When They Enter the Workforce</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Nath">Sandeep Nath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are good stresses and bad stresses. To tell the difference, recognize early signs of stress, and label stress conditions correctly, we need to understand stress triggers and the mechanism of stress as it arises. By understanding this in our teenage years, we can be prepared to prevent harmful stress from escalating and ruining health, physical, mental, and emotional. We can also prepare others/peers to be stress-free. The understanding of this is available in a form closest to our natural being, in ancient oriental wisdom, and is brought together as actionable habits in the movement called RENEWALism. The constructs of RENEWALism Habits are detailed in this paper, and case studies are presented of teenagers who have been equipped with both capability and capacity to handle their situations and environments independently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=habits" title="habits">habits</a>, <a href="https://publications.waset.org/abstracts/search?q=renewalism" title=" renewalism"> renewalism</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=teenagers" title=" teenagers"> teenagers</a> </p> <a href="https://publications.waset.org/abstracts/145956/habits-for-teenagers-to-remain-unruffled-by-stress-when-they-enter-the-workforce" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3897</span> Mindful Habits to Remain Unruffled by Stress in the Workplace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Nath">Sandeep Nath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are good stresses and bad stresses. To tell the difference, recognize early signs of stress, and label stress conditions correctly, we need to understand stress triggers and the mechanism of stress as it arises. By understanding this through mindfulness of body, mind, and spirit, we can be prepared to prevent harmful stress from escalating and ruining health; physical, mental, and emotional. We can also prepare others/peers to be stress-free. The understanding of this is available in a form closest to our natural being, in ancient oriental wisdom, and is brought together as actionable habits in the movement called RENEWALism. The constructs of RENEWALism Habits are detailed in this paper, and case studies presented of how mindfulness has equipped individuals with both capability and capacity to handle their situations and environments despite the odds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=habits" title="habits">habits</a>, <a href="https://publications.waset.org/abstracts/search?q=mindfulness" title=" mindfulness"> mindfulness</a>, <a href="https://publications.waset.org/abstracts/search?q=renewalism" title=" renewalism"> renewalism</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a> </p> <a href="https://publications.waset.org/abstracts/146115/mindful-habits-to-remain-unruffled-by-stress-in-the-workplace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3896</span> Measurements of Recovery Stress and Recovery Strain of Ni-Based Shape Memory Alloys </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20J.%20Kim">W. J. Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The behaviors of the recovery stress and strain of an ultrafine-grained Ni-50.2 at.% Ti alloy prepared by high-ratio differential speed rolling (HRDSR) were examined by a specially designed tensile-testing set up, and the factors that influence the recovery stress and strain were studied. After HRDSR, both the recovery stress and strain were enhanced compared to the initial condition. The constitutive equation showing that the maximum recovery stress is a sole function of the recovery strain was developed based on the experimental data. The recovery strain increased as the yield stress increased. The maximum recovery stress increased with an increase in yield stress. The residual recovery stress was affected by the yield stress as well as the austenite-to-martensite transformation temperature. As the yield stress increased and as the martensitic transformation temperature decreased, the residual recovery stress increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-ratio%20differential%20speed%20rolling" title="high-ratio differential speed rolling">high-ratio differential speed rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20testing" title=" tensile testing"> tensile testing</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20plastic%20deformation" title=" severe plastic deformation"> severe plastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloys" title=" shape memory alloys"> shape memory alloys</a> </p> <a href="https://publications.waset.org/abstracts/69337/measurements-of-recovery-stress-and-recovery-strain-of-ni-based-shape-memory-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3895</span> Plastic Strain Accumulation Due to Asymmetric Cyclic Loading of Zircaloy-2 at 400°C</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Rajpurohit">R. S. Rajpurohit</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20C.%20Santhi%20Srinivas"> N. C. Santhi Srinivas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vakil%20Singh"> Vakil Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Asymmetric stress cycling leads to accumulation of plastic strain which is called as ratcheting strain. The problem is generally associated with nuclear fuel cladding materials used in nuclear power plants and pressurized pipelines. In the present investigation, asymmetric stress controlled fatigue tests were conducted with three different parameters namely, mean stress, stress amplitude and stress rate (keeping two parameters constant and varying third parameter) to see the plastic strain accumulation and its effect on fatigue life and deformation behavior of Zircaloy-2 at 400°C. The tests were conducted with variable mean stress (45-70 MPa), stress amplitude (95-120 MPa) and stress rate (30-750 MPa/s) and tested specimens were characterized using transmission and scanning electron microscopy. The experimental results show that with the increase in mean stress and stress amplitude, the ratcheting strain accumulation increases with reduction in fatigue life. However, increase in stress rate leads to improvement in fatigue life of the material due to small ratcheting strain accumulation. Fractographs showed a decrease in area fraction of fatigue failed region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20cyclic%20loading" title="asymmetric cyclic loading">asymmetric cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=ratcheting%20fatigue" title=" ratcheting fatigue"> ratcheting fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20stress" title=" mean stress"> mean stress</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20amplitude" title=" stress amplitude"> stress amplitude</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20rate" title=" stress rate"> stress rate</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20strain" title=" plastic strain"> plastic strain</a> </p> <a href="https://publications.waset.org/abstracts/70722/plastic-strain-accumulation-due-to-asymmetric-cyclic-loading-of-zircaloy-2-at-400c" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3894</span> Modeling of Anisotropic Hardening Based on Crystal Plasticity Theory and Virtual Experiments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bekim%20Berisha">Bekim Berisha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Hirsiger"> Sebastian Hirsiger</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Hora"> Pavel Hora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advanced material models involving several sets of model parameters require a big experimental effort. As models are getting more and more complex like e.g. the so called “Homogeneous Anisotropic Hardening - HAH” model for description of the yielding behavior in the 2D/3D stress space, the number and complexity of the required experiments are also increasing continuously. In the context of sheet metal forming, these requirements are even more pronounced, because of the anisotropic behavior or sheet materials. In addition, some of the experiments are very difficult to perform e.g. the plane stress biaxial compression test. Accordingly, tensile tests in at least three directions, biaxial tests and tension-compression or shear-reverse shear experiments are performed to determine the parameters of the macroscopic models. Therefore, determination of the macroscopic model parameters based on virtual experiments is a very promising strategy to overcome these difficulties. For this purpose, in the framework of multiscale material modeling, a dislocation density based crystal plasticity model in combination with a FFT-based spectral solver is applied to perform virtual experiments. Modeling of the plastic behavior of metals based on crystal plasticity theory is a well-established methodology. However, in general, the computation time is very high and therefore, the computations are restricted to simplified microstructures as well as simple polycrystal models. In this study, a dislocation density based crystal plasticity model – including an implementation of the backstress – is used in a spectral solver framework to generate virtual experiments for three deep drawing materials, DC05-steel, AA6111-T4 and AA4045 aluminum alloys. For this purpose, uniaxial as well as multiaxial loading cases, including various pre-strain histories, has been computed and validated with real experiments. These investigations showed that crystal plasticity modeling in the framework of Representative Volume Elements (RVEs) can be used to replace most of the expensive real experiments. Further, model parameters of advanced macroscopic models like the HAH model can be determined from virtual experiments, even for multiaxial deformation histories. It was also found that crystal plasticity modeling can be used to model anisotropic hardening more accurately by considering the backstress, similar to well-established macroscopic kinematic hardening models. It can be concluded that an efficient coupling of crystal plasticity models and the spectral solver leads to a significant reduction of the amount of real experiments needed to calibrate macroscopic models. This advantage leads also to a significant reduction of computational effort needed for the optimization of metal forming process. Further, due to the time efficient spectral solver used in the computation of the RVE models, detailed modeling of the microstructure are possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20hardening" title="anisotropic hardening">anisotropic hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20plasticity" title=" crystal plasticity"> crystal plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20structure" title=" micro structure"> micro structure</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20solver" title=" spectral solver"> spectral solver</a> </p> <a href="https://publications.waset.org/abstracts/91272/modeling-of-anisotropic-hardening-based-on-crystal-plasticity-theory-and-virtual-experiments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3893</span> Relationship between Stress and Personality in Young Adults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sneha%20Sadana">Sneha Sadana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human beings are unique and so are their reactions towards varied stimuli. This study focuses on the impact personality has on how one deals with stressful situations. It can be intriguing to know how big of an impact our personality has on the way we react and how it is wired in us to respond to things in a particular manner all because of our personality and the traits which make us who we are. The study was done on 150 college going students, 75 males and 75 females mainly from Ahmedabad, India pursuing a variety of different streams and subjects. The questionnaire consists of two standardized questionnaires which measure stress and personality. The Student Stress Scale by Manju Agarwal evaluates stress of subjects and the big five personality locator by Norman. The findings showed that there exists a positive relationship between stress and neuroticism and an inverse relationship between stress and sociability, stress and openness, stress and agreeableness and stress and conscientiousness. And on doing a further comparative analysis on personality types of the same sample it was found out that females were more agreeable, followed by conscientiousness, sociability, openness, and neuroticism. In males, however, it was observed that males were more agreeable, followed by conscientiousness, neuroticism, sociability, and openness <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=college%20students" title="college students">college students</a>, <a href="https://publications.waset.org/abstracts/search?q=personality" title=" personality"> personality</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=theories%20of%20personality" title=" theories of personality"> theories of personality</a> </p> <a href="https://publications.waset.org/abstracts/85821/relationship-between-stress-and-personality-in-young-adults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3892</span> The Influence of Residual Stress on Hardness and Microstructure in Railway Rails</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammet%20Emre%20Turan">Muhammet Emre Turan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sait%20%C3%96z%C3%A7elik"> Sait Özçelik</a>, <a href="https://publications.waset.org/abstracts/search?q=Yavuz%20Sun"> Yavuz Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In railway rails, residual stress was measured and the values of residual stress were associated with hardness and micro structure in this study. At first, three rails as one meter long were taken and residual stresses were measured by cutting method according to the EN 13674-1 standardization. In this study, strain gauge that is an electrical apparatus was used. During the cutting, change in resistance in rail gave us residual stress value via computer program. After residual stress measurement, Brinell hardness distribution were performed for head parts of rails. Thus, the relationship between residual stress and hardness were established. In addition to that, micro structure analysis was carried out by optical microscope. The results show that, the micro structure and hardness value was changed with residual stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title="residual stress">residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20structure" title=" micro structure"> micro structure</a>, <a href="https://publications.waset.org/abstracts/search?q=rail" title=" rail"> rail</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20gauge" title=" strain gauge "> strain gauge </a> </p> <a href="https://publications.waset.org/abstracts/15651/the-influence-of-residual-stress-on-hardness-and-microstructure-in-railway-rails" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">602</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3891</span> Simulation of Stress in Graphite Anode of Lithium-Ion Battery: Intra and Inter-Particle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenxin%20Mei">Wenxin Mei</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinhua%20Sun"> Jinhua Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingsong%20Wang"> Qingsong Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The volume expansion of lithium-ion batteries is mainly induced by intercalation induced stress within the negative electrode, resulting in capacity degradation and even battery failure. Stress generation due to lithium intercalation into graphite particles is investigated based on an electrochemical-mechanical model in this work. The two-dimensional model presented is fully coupled, inclusive of the impacts of intercalation-induced stress, stress-induced intercalation, to evaluate the lithium concentration, stress generation, and displacement intra and inter-particle. The results show that the distribution of lithium concentration and stress exhibits an analogous pattern, which reflects the relation between lithium diffusion and stress. The results of inter-particle stress indicate that larger Von-Mises stress is displayed where the two particles are in contact with each other, and deformation at the edge of particles is also observed, predicting fracture. Additionally, the maximum inter-particle stress at the end of lithium intercalation is nearly ten times the intraparticle stress. And the maximum inter-particle displacement is increased by 24% compared to the single-particle. Finally, the effect of graphite particle arrangement on inter-particle stress is studied. It is found that inter-particle stress with tighter arrangement exhibits lower stress. This work can provide guidance for predicting the intra and inter-particle stress to take measures to avoid cracking of electrode material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical-mechanical%20model" title="electrochemical-mechanical model">electrochemical-mechanical model</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite%20particle" title=" graphite particle"> graphite particle</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20concentration" title=" lithium concentration"> lithium concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20ion%20battery" title=" lithium ion battery"> lithium ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a> </p> <a href="https://publications.waset.org/abstracts/128469/simulation-of-stress-in-graphite-anode-of-lithium-ion-battery-intra-and-inter-particle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3890</span> Variation in Adaptation Strategies of Commelina Communis L. Biotypes under Drought Stress Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Haroon">Muhammad Haroon</a>, <a href="https://publications.waset.org/abstracts/search?q=LI%20Xiangju"> LI Xiangju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> C. communis L. is an important weed of many crop, but very little information about the adaptation strategies of C. communis L. biotypes under drought stress. We investigated five biotypes of C. communis L under drought stress to identify the adaptation mechanism. The expression of drought stress related genes (DRS1, EREB and HRB1) was up-regulated in biotypes, while in some biotypes their expression was down regulated. All five biotypes can thus regulate water balance to consume less water to maintain their status under drought stress condition. This result concluded that C. communis L. biotypes can survive longer under drought stress condition. Weed scientist should seek more effective management strategies to deal with C. communis L. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20communis" title="C. communis">C. communis</a>, <a href="https://publications.waset.org/abstracts/search?q=biotypes" title=" biotypes"> biotypes</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title=" drought stress"> drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression "> gene expression </a> </p> <a href="https://publications.waset.org/abstracts/128956/variation-in-adaptation-strategies-of-commelina-communis-l-biotypes-under-drought-stress-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3889</span> The Impact of Resource-oriented Music Listening on Oversea Dispatch Employees Work Stress Relief</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yaming">Wei Yaming</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: In order to compare the stress of employees sent overseas with (GRAS) before and after, we used the resource-oriented music listening intervention in this study. We also collected pertinent experimental data. Methods: The experiment involved 47 employees who were sent abroad by the Chinese side. They completed the stress scale test and documented it before the intervention. They tested for stress after five interventions and performed one-on-one interviews. Quantitative data and SPSS software were used to analyze relationships between stress reduction and resource-oriented music listening, as well as Pearson's correlation, multiple regression levels, and ANOVA. For the qualitative analysis, content analysis of one-on-one interviews was performed. Results: A comparison of data from before and after demonstrates how resource-focused music listening activities can lessen and relieve stress in remote workers. In the qualitative study, stress is broken down into six categories: relationship stress, health stress, emotional stress, and frustration stress. External pressures include work pressure and cultural stress. And it has been determined that listening to music that is resource-oriented can better ease internal stress (health, emotion, and dissatisfaction). Conclusion: The Guide Resource-oriented Music Listening (GROML) Program appears to have had some effect on the participants' stress levels. The resources that the participants encountered while listening to music are bravery, calm, letting go, and relaxing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resource-oriented" title="resource-oriented">resource-oriented</a>, <a href="https://publications.waset.org/abstracts/search?q=music%20listening" title=" music listening"> music listening</a>, <a href="https://publications.waset.org/abstracts/search?q=oversea%20dispatch%20employees" title=" oversea dispatch employees"> oversea dispatch employees</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20stress" title=" work stress"> work stress</a> </p> <a href="https://publications.waset.org/abstracts/166122/the-impact-of-resource-oriented-music-listening-on-oversea-dispatch-employees-work-stress-relief" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3888</span> Numerical Investigation of Beam-Columns Subjected to Non-Proportional Loadings under Ambient Temperature Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20Adomako%20Kumi">George Adomako Kumi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The response of structural members, when subjected to various forms of non-proportional loading, plays a major role in the overall stability and integrity of a structure. This research seeks to present the outcome of a finite element investigation conducted by the use of finite element programming software ABAQUS to validate the experimental results of elastic and inelastic behavior and strength of beam-columns subjected to axial loading, biaxial bending, and torsion under ambient temperature conditions. The application of the rigorous and highly complicated ABAQUS finite element software will seek to account for material, non-linear geometry, deformations, and, more specifically, the contact behavior between the beam-columns and support surfaces. Comparisons of the three-dimensional model with the results of actual tests conducted and results from a solution algorithm developed through the use of the finite difference method will be established in order to authenticate the veracity of the developed model. The results of this research will seek to provide structural engineers with much-needed knowledge about the behavior of steel beam columns and their response to various non-proportional loading conditions under ambient temperature conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beam-columns" title="beam-columns">beam-columns</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20loading" title=" axial loading"> axial loading</a>, <a href="https://publications.waset.org/abstracts/search?q=biaxial%20bending" title=" biaxial bending"> biaxial bending</a>, <a href="https://publications.waset.org/abstracts/search?q=torsion" title=" torsion"> torsion</a>, <a href="https://publications.waset.org/abstracts/search?q=ABAQUS" title=" ABAQUS"> ABAQUS</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title=" finite difference method"> finite difference method</a> </p> <a href="https://publications.waset.org/abstracts/141589/numerical-investigation-of-beam-columns-subjected-to-non-proportional-loadings-under-ambient-temperature-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3887</span> Effectiveness of Raga Desi Todi on Depression, Anxiety and Stress Among Adults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sushila%20Pareek">Sushila Pareek</a>, <a href="https://publications.waset.org/abstracts/search?q=Divya%20Shekhawat"> Divya Shekhawat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Music has been shown as a therapeutic agent in depression, anxiety, and stress. A pilot study was carried out to see the therapeutic effects of Indian classical instrumental Raga Todi on depression, anxiety, and stress. 50 individuals diagnosed with depression, anxiety, and stress with DSM-V were taken for the study. Subjects were randomly divided into two groups: the experimental group and the control group. The experimental group received the instrumental raga Todi whereas the other control group didn't receive any intervention. DASS-21 was used on the baseline and after the intervention to measure depression, anxiety, and stress. The result indicates that anxiety, stress, and depression level was reduced after listening to the raga desi Todi. It was concluded that raga desi Todi is an effective intervention for reducing depression, anxiety, and stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=raga" title="raga">raga</a>, <a href="https://publications.waset.org/abstracts/search?q=anxiety" title=" anxiety"> anxiety</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=depression" title=" depression"> depression</a>, <a href="https://publications.waset.org/abstracts/search?q=DASS-21" title=" DASS-21"> DASS-21</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20health" title=" mental health"> mental health</a> </p> <a href="https://publications.waset.org/abstracts/153927/effectiveness-of-raga-desi-todi-on-depression-anxiety-and-stress-among-adults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3886</span> The Comparison of of Stress Level between Students with Parents and Those without Parents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hendeh%20Majdi">Hendeh Majdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Arzjani"> Zahra Arzjani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aimed at the comparison of level of stress between students had parents and those without parents by descriptive-analytical study. To do research number of 128 questionnaires (64 students with parents and 64 students without parents) were distributed among high school in Ray city, Tehran province through classified sampling. The results showed that level of stress in stud tent without parents has been effective and the most important proposal is that necessity study should be considered in decreasing level of stress in students without parent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress" title="stress">stress</a>, <a href="https://publications.waset.org/abstracts/search?q=students%20with%20parents" title=" students with parents"> students with parents</a>, <a href="https://publications.waset.org/abstracts/search?q=without%20parents" title=" without parents"> without parents</a>, <a href="https://publications.waset.org/abstracts/search?q=Ray%20city" title=" Ray city"> Ray city</a> </p> <a href="https://publications.waset.org/abstracts/3833/the-comparison-of-of-stress-level-between-students-with-parents-and-those-without-parents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bi-axial%20stress&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bi-axial%20stress&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bi-axial%20stress&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bi-axial%20stress&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bi-axial%20stress&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bi-axial%20stress&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bi-axial%20stress&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bi-axial%20stress&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bi-axial%20stress&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bi-axial%20stress&page=130">130</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bi-axial%20stress&page=131">131</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bi-axial%20stress&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>