CINXE.COM

progroup in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> progroup in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> progroup </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/2033/#Item_8" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="category_theory">Category theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a></strong></p> <h2 id="sidebar_concepts">Concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category">category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/functor">functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cat">Cat</a></p> </li> </ul> <h2 id="sidebar_universal_constructions">Universal constructions</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+construction">universal construction</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/representable+functor">representable functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+functor">adjoint functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/limit">limit</a>/<a class="existingWikiWord" href="/nlab/show/colimit">colimit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/weighted+limit">weighted limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/end">end</a>/<a class="existingWikiWord" href="/nlab/show/coend">coend</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kan+extension">Kan extension</a></p> </li> </ul> </li> </ul> <h2 id="sidebar_theorems">Theorems</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Isbell+duality">Isbell duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+construction">Grothendieck construction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+functor+theorem">adjoint functor theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monadicity+theorem">monadicity theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+lifting+theorem">adjoint lifting theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tannaka+duality">Tannaka duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gabriel-Ulmer+duality">Gabriel-Ulmer duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/small+object+argument">small object argument</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Freyd-Mitchell+embedding+theorem">Freyd-Mitchell embedding theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relation+between+type+theory+and+category+theory">relation between type theory and category theory</a></p> </li> </ul> <h2 id="sidebar_extensions">Extensions</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/sheaf+and+topos+theory">sheaf and topos theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+category+theory">enriched category theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+category+theory">higher category theory</a></p> </li> </ul> <h2 id="sidebar_applications">Applications</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/applications+of+%28higher%29+category+theory">applications of (higher) category theory</a></li> </ul> <div> <p> <a href="/nlab/edit/category+theory+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#definition'>Definition</a></li> <li><a href='#surjective_progroups_versus_localic_groups'>Surjective progroups versus localic groups</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="definition">Definition</h2> <p>A <strong>progroup</strong> is a <a class="existingWikiWord" href="/nlab/show/pro-object">pro-object</a> in the <a class="existingWikiWord" href="/nlab/show/category">category</a> <a class="existingWikiWord" href="/nlab/show/Grp">Grp</a> of <a class="existingWikiWord" href="/nlab/show/groups">groups</a>. In other words, it is a formal <a class="existingWikiWord" href="/nlab/show/cofiltered+limit">cofiltered limit</a> of groups.</p> <h2 id="surjective_progroups_versus_localic_groups">Surjective progroups versus localic groups</h2> <p>Of course, the category <a class="existingWikiWord" href="/nlab/show/Grp">Grp</a> is <a class="existingWikiWord" href="/nlab/show/complete+category">complete</a>, but in general a progroup represented by some cofiltered diagram of groups is not equivalent to the actual limit of that diagram in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Grp</mi></mrow><annotation encoding="application/x-tex">Grp</annotation></semantics></math>. However, <a class="existingWikiWord" href="/nlab/show/profinite+groups">profinite groups</a> (i.e. cofiltered systems of <em>finite</em> groups) can be identified with actual limits of finite groups if we take those limits, not in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Grp</mi></mrow><annotation encoding="application/x-tex">Grp</annotation></semantics></math>, but in the larger category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>TopGrp</mi></mrow><annotation encoding="application/x-tex">TopGrp</annotation></semantics></math> of <a class="existingWikiWord" href="/nlab/show/topological+groups">topological groups</a>. The resulting topological groups are precisely those with <a class="existingWikiWord" href="/nlab/show/Stone+space">Stone</a> topologies.</p> <p>This is not true for pro-systems of non-finite groups, even if we restrict to those with surjective transition maps. The following counterexample is due to Higman and Stone, and is reproduced in (<a href="#Moerdijk">Moerdijk</a>). Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ω</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">\omega_1</annotation></semantics></math> be the set of countable ordinals, with the reverse of its usual ordering, and for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi><mo>∈</mo><msub><mi>ω</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">\alpha\in\omega_1</annotation></semantics></math> let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>S</mi> <mi>α</mi></msub></mrow><annotation encoding="application/x-tex">S_\alpha</annotation></semantics></math> be the set of strictly increasing functions <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mi>α</mi><mo stretchy="false">]</mo><mo>→</mo><mi>ℝ</mi></mrow><annotation encoding="application/x-tex">[0,\alpha]\to \mathbb{R}</annotation></semantics></math>. For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi><mo>&lt;</mo><mi>β</mi></mrow><annotation encoding="application/x-tex">\alpha\lt \beta</annotation></semantics></math>, let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>S</mi> <mi>β</mi></msub><mo>→</mo><msub><mi>S</mi> <mi>α</mi></msub></mrow><annotation encoding="application/x-tex">S_\beta \to S_\alpha</annotation></semantics></math> be the restriction. Then each such transition map is surjective, but the inverse limit is empty. The sets <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>S</mi> <mi>α</mi></msub></mrow><annotation encoding="application/x-tex">S_\alpha</annotation></semantics></math> are not groups, but if we take the free <a class="existingWikiWord" href="/nlab/show/vector+space">vector space</a> on each of them, we obtain a nontrivial pro-group with surjective transition maps whose limit in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Grp</mi></mrow><annotation encoding="application/x-tex">Grp</annotation></semantics></math>, hence also in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>TopGrp</mi></mrow><annotation encoding="application/x-tex">TopGrp</annotation></semantics></math>, is trivial.</p> <p>However, we do get an embedding on pro-groups with surjective transition maps if instead of <a class="existingWikiWord" href="/nlab/show/Top">Top</a> we take the limit in the category <a class="existingWikiWord" href="/nlab/show/Loc">Loc</a> of <a class="existingWikiWord" href="/nlab/show/locales">locales</a>.</p> <div class="un_prop" id="EquivalentCharacterizations"> <h6 id="proposition">Proposition</h6> <p>The following are equivalent for a <a class="existingWikiWord" href="/nlab/show/localic+group">localic group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>: 1. <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> is a cofiltered limit of <a class="existingWikiWord" href="/nlab/show/discrete+group">discrete group</a>s (considered as discrete localic groups) 1. <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> is a cofiltered limit of discrete groups with <a class="existingWikiWord" href="/nlab/show/surjection">surjective</a> transition maps. 1. The <a class="existingWikiWord" href="/nlab/show/open+subset">open</a> <a class="existingWikiWord" href="/nlab/show/normal+subgroup">normal subgroup</a>s of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> form a <a class="existingWikiWord" href="/nlab/show/neighborhood">neighborhood</a> <a class="existingWikiWord" href="/nlab/show/topological+base">base</a> at the identity <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>e</mi><mo>∈</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">e\in G</annotation></semantics></math>.</p> </div> <div class="proof"> <h6 id="proof">Proof</h6> <p>This can be found in (<a href="#Moerdijk">Moerdijk</a>).</p> </div> <div class="un_defn"> <h6 id="definition_2">Definition</h6> <p>A localic group with these properties is called <strong>prodiscrete</strong>.</p> </div> <p>We may as well assume that any surjective progroup is indexed on a directed <a class="existingWikiWord" href="/nlab/show/poset">poset</a>. If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>G</mi> <mi>i</mi></msub><msub><mo stretchy="false">)</mo> <mrow><mi>i</mi><mo>∈</mo><mi>I</mi></mrow></msub></mrow><annotation encoding="application/x-tex">(G_i)_{i\in I}</annotation></semantics></math> is such an inverse system, then the localic group <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo>=</mo><msub><mi>lim</mi> <mi>i</mi></msub><msub><mi>G</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">G=\lim_i G_i</annotation></semantics></math> is presented by the following <a class="existingWikiWord" href="/nlab/show/posite">posite</a>. The elements of the underlying poset are pairs <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>i</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(x,i)</annotation></semantics></math> where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><msub><mi>G</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">x\in G_i</annotation></semantics></math>, with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>i</mi><mo stretchy="false">)</mo><mo>≤</mo><mo stretchy="false">(</mo><mi>y</mi><mo>,</mo><mi>j</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(x,i)\le (y,j)</annotation></semantics></math> when <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>i</mi><mo>≤</mo><mi>j</mi></mrow><annotation encoding="application/x-tex">i\le j</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>f</mi> <mi>ij</mi></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">f_{ij}(x)=y</annotation></semantics></math>. The coverings are given as follows: for any <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>j</mi></mrow><annotation encoding="application/x-tex">j</annotation></semantics></math>, the element <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>i</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(x,i)</annotation></semantics></math> is covered by the family of all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>z</mi><mo>,</mo><mi>k</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(z,k)</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi><mo>≤</mo><mi>j</mi></mrow><annotation encoding="application/x-tex">k\le j</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>z</mi><mo>,</mo><mi>k</mi><mo stretchy="false">)</mo><mo>≤</mo><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>i</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(z,k)\le (x,i)</annotation></semantics></math>.</p> <div class="un_defn"> <h6 id="definition_3">Definition</h6> <p>A <strong>surjective progroup</strong>, also called a <strong>strict progroup</strong>, is a progroup whose cofiltered diagram consists of <a class="existingWikiWord" href="/nlab/show/surjection">surjection</a>s.</p> </div> <p>One can show that a progroup is isomorphic to a surjective one, in the category of pro-groups, if and only if it satisfies the <strong>Mittag-Leffler condition</strong>: for each <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>G</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">G_i</annotation></semantics></math> the images of the functions <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>G</mi> <mi>j</mi></msub><mo>→</mo><msub><mi>G</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">G_j\to G_i</annotation></semantics></math> are eventually constant.</p> <p>By a fundamental fact about <a class="existingWikiWord" href="/nlab/show/locales">locales</a>, if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> is prodiscrete and represented as the limit of a system with surjective transition maps, then the legs <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo>→</mo><msub><mi>G</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">G\to G_i</annotation></semantics></math> of the limiting cone are also surjective (i.e. they are represented by injective <a class="existingWikiWord" href="/nlab/show/frame">frame</a> homomorphisms). This is false for limits of topological spaces.</p> <div class="un_theorem"> <h6 id="theorem">Theorem</h6> <p>The category of prodiscrete localic groups is equivalent to the category of surjective progroups.</p> </div> <div class="proof"> <h6 id="proof_2">Proof</h6> <p>In view of the <a href="#EquivalentCharacterizations">above proposition</a> it suffices to show that for surjective progroups <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>G</mi> <mi>i</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(G_i)</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>H</mi> <mi>j</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(H_j)</annotation></semantics></math>, with prodiscrete localic limits <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>H</mi></mrow><annotation encoding="application/x-tex">H</annotation></semantics></math>, we have</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>Hom</mi> <mi>LocGrp</mi></msub><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo stretchy="false">)</mo><mo>≅</mo><munder><mi>lim</mi> <mi>j</mi></munder><msub><mo lspace="0em" rspace="thinmathspace">colim</mo> <mi>i</mi></msub><msub><mi>Hom</mi> <mi>Grp</mi></msub><mo stretchy="false">(</mo><msub><mi>G</mi> <mi>i</mi></msub><mo>,</mo><msub><mi>H</mi> <mi>j</mi></msub><mo stretchy="false">)</mo><mo>.</mo></mrow><annotation encoding="application/x-tex">Hom_{LocGrp}(G,H) \cong \lim_j \colim_i Hom_{Grp}(G_i,H_j).</annotation></semantics></math></div> <p>But since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>H</mi><mo>=</mo><msub><mi>lim</mi> <mi>j</mi></msub><msub><mi>H</mi> <mi>j</mi></msub></mrow><annotation encoding="application/x-tex">H = \lim_j H_j</annotation></semantics></math>, we have <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Hom</mi> <mi>LocGrp</mi></msub><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo stretchy="false">)</mo><mo>≅</mo><msub><mi>lim</mi> <mi>j</mi></msub><msub><mi>Hom</mi> <mi>LocGrp</mi></msub><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><msub><mi>H</mi> <mi>j</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Hom_{LocGrp}(G,H) \cong \lim_j Hom_{LocGrp}(G,H_j)</annotation></semantics></math>. Thus it suffices to show that any map from <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> to a <a class="existingWikiWord" href="/nlab/show/discrete+group">discrete group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math> (such as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>H</mi> <mi>j</mi></msub></mrow><annotation encoding="application/x-tex">H_j</annotation></semantics></math>) factors through some essentially unique <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>G</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">G_i</annotation></semantics></math>.</p> <p>But if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo lspace="verythinmathspace">:</mo><mi>G</mi><mo>→</mo><mi>K</mi></mrow><annotation encoding="application/x-tex">f\colon G\to K</annotation></semantics></math> is such a map, then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ker</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">ker(f)</annotation></semantics></math> is an open normal subgroup of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>. And if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>p</mi> <mi>i</mi></msub><mo lspace="verythinmathspace">:</mo><mi>G</mi><mo>→</mo><msub><mi>G</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">p_i\colon G\to G_i</annotation></semantics></math> are the projections, then the <a class="existingWikiWord" href="/nlab/show/kernel">kernel</a>s <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ker</mi><mo stretchy="false">(</mo><msub><mi>p</mi> <mi>i</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">ker(p_i)</annotation></semantics></math> are a neighborhood base at <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>e</mi></mrow><annotation encoding="application/x-tex">e</annotation></semantics></math>, so we have <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ker</mi><mo stretchy="false">(</mo><msub><mi>p</mi> <mi>i</mi></msub><mo stretchy="false">)</mo><mo>⊆</mo><mi>ker</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">ker(p_i)\subseteq ker(f)</annotation></semantics></math> for some <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math>, hence <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> factors through <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo stretchy="false">/</mo><mi>ker</mi><mo stretchy="false">(</mo><msub><mi>p</mi> <mi>i</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">G/ker(p_i)</annotation></semantics></math>. Finally, this last is isomorphic to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>G</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">G_i</annotation></semantics></math>, since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>p</mi> <mi>i</mi></msub><mo lspace="verythinmathspace">:</mo><mi>G</mi><mo>→</mo><msub><mi>G</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">p_i\colon G\to G_i</annotation></semantics></math> is an open surjection of locales.</p> </div> <p>Any <a class="existingWikiWord" href="/nlab/show/localic+group">localic group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> has a <a class="existingWikiWord" href="/nlab/show/classifying+topos">classifying topos</a> consisting of continuous <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-sets, i.e. discrete locales with a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-action. In general, the resulting <a class="existingWikiWord" href="/nlab/show/functor">functor</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>LocGrp</mi><mo>→</mo><mi>Topos</mi></mrow><annotation encoding="application/x-tex"> LocGrp \to Topos </annotation></semantics></math></div> <p>is not an <a class="existingWikiWord" href="/nlab/show/embedding">embedding</a> into <a class="existingWikiWord" href="/nlab/show/Topos">Topos</a>, but it can be shown to be so when restricted to prodiscrete localic groups. One can also characterize the toposes that are sheaves on a prodiscrete localic group as the <a class="existingWikiWord" href="/nlab/show/Galois+topos">Galois toposes</a>.</p> <p>Most of these results have corresponding facts for pro-<a class="existingWikiWord" href="/nlab/show/groupoids">groupoids</a> and prodiscrete localic groupoids. However, in full generality, the category of (even surjective) pro-groupoids does not embed into localic groupoids, since the category of <a class="existingWikiWord" href="/nlab/show/pro-sets">pro-sets</a> (= categorically discrete pro-groupoids) does not embed into locales (= categorically discrete localic groupoids).</p> <h2 id="references">References</h2> <ul id="Moerdijk"> <li><a class="existingWikiWord" href="/nlab/show/Ieke+Moerdijk">Ieke Moerdijk</a>, <em>Prodiscrete groups and Galois toposes</em></li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on February 5, 2011 at 23:01:26. See the <a href="/nlab/history/progroup" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/progroup" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/2033/#Item_8">Discuss</a><span class="backintime"><a href="/nlab/revision/progroup/5" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/progroup" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/progroup" accesskey="S" class="navlink" id="history" rel="nofollow">History (5 revisions)</a> <a href="/nlab/show/progroup/cite" style="color: black">Cite</a> <a href="/nlab/print/progroup" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/progroup" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10