CINXE.COM
Lie 2-algebra in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> Lie 2-algebra in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> Lie 2-algebra </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/3599/#Item_7" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Lie -algebras</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="lie_theory"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-Lie theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+theory">∞-Lie theory</a></strong> (<a class="existingWikiWord" href="/nlab/show/higher+geometry">higher geometry</a>)</p> <p><strong>Background</strong></p> <p><em>Smooth structure</em></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+smooth+space">generalized smooth space</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+manifold">smooth manifold</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/diffeological+space">diffeological space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Fr%C3%B6licher+space">Frölicher space</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+topos">smooth topos</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Cahiers+topos">Cahiers topos</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+%E2%88%9E-groupoid">smooth ∞-groupoid</a>, <a class="existingWikiWord" href="/nlab/show/concrete+smooth+%E2%88%9E-groupoid">concrete smooth ∞-groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/synthetic+differential+%E2%88%9E-groupoid">synthetic differential ∞-groupoid</a></p> </li> </ul> <p><em>Higher groupoids</em></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-groupoid">∞-groupoid</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/groupoid">groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2-groupoid">2-groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/strict+%E2%88%9E-groupoid">strict ∞-groupoid</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/crossed+complex">crossed complex</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group">∞-group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/simplicial+group">simplicial group</a></li> </ul> </li> </ul> <p><em>Lie theory</em></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+theory">Lie theory</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+integration">Lie integration</a>, <a class="existingWikiWord" href="/nlab/show/Lie+differentiation">Lie differentiation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie%27s+three+theorems">Lie's three theorems</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+theory+for+stacky+Lie+groupoids">Lie theory for stacky Lie groupoids</a></p> </li> </ul> </li> </ul> <p><strong>∞-Lie groupoids</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+groupoid">∞-Lie groupoid</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+groupoid">strict ∞-Lie groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+groupoid">Lie groupoid</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differentiable+stack">differentiable stack</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/orbifold">orbifold</a></p> </li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+group">∞-Lie group</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/simple+Lie+group">simple Lie group</a>, <a class="existingWikiWord" href="/nlab/show/semisimple+Lie+group">semisimple Lie group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+2-group">Lie 2-group</a></p> </li> </ul> </li> </ul> <p><strong>∞-Lie algebroids</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+algebroid">∞-Lie algebroid</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Lie+algebroid">Lie algebroid</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+%E2%88%9E-algebroid+representation">Lie ∞-algebroid representation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/L-%E2%88%9E-algebra">L-∞-algebra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+for+L-%E2%88%9E+algebras">model structure for L-∞ algebras</a>: <a class="existingWikiWord" href="/nlab/show/model+structure+on+dg-Lie+algebras">on dg-Lie algebras</a>, <a class="existingWikiWord" href="/nlab/show/model+structure+on+dg-coalgebras">on dg-coalgebras</a>, <a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+Lie+algebras">on simplicial Lie algebras</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+algebra">Lie algebra</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/semisimple+Lie+algebra">semisimple Lie algebra</a>, <a class="existingWikiWord" href="/nlab/show/compact+Lie+algebra">compact Lie algebra</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+2-algebra">Lie 2-algebra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/strict+Lie+2-algebra">strict Lie 2-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+crossed+module">differential crossed module</a></p> </li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+3-algebra">Lie 3-algebra</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/differential+2-crossed+module">differential 2-crossed module</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dg-Lie+algebra">dg-Lie algebra</a>, <a class="existingWikiWord" href="/nlab/show/simplicial+Lie+algebra">simplicial Lie algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/super+L-%E2%88%9E+algebra">super L-∞ algebra</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/super+Lie+algebra">super Lie algebra</a></li> </ul> </li> </ul> <p><strong>Formal Lie groupoids</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/formal+group">formal group</a>, <a class="existingWikiWord" href="/nlab/show/formal+groupoid">formal groupoid</a></li> </ul> <p><strong>Cohomology</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+algebra+cohomology">Lie algebra cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Chevalley-Eilenberg+algebra">Chevalley-Eilenberg algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Weil+algebra">Weil algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/invariant+polynomial">invariant polynomial</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Killing+form">Killing form</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/nonabelian+Lie+algebra+cohomology">nonabelian Lie algebra cohomology</a></p> </li> </ul> <p><strong>Homotopy</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/homotopy+groups+of+a+Lie+groupoid">homotopy groups of a Lie groupoid</a></li> </ul> <p><strong>Related topics</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Chern-Weil+theory">∞-Chern-Weil theory</a></li> </ul> <p><strong>Examples</strong></p> <p><em><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-Lie groupoids</em></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Atiyah+Lie+groupoid">Atiyah Lie groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid">fundamental ∞-groupoid</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/path+groupoid">path groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/path+n-groupoid">path n-groupoid</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">smooth principal ∞-bundle</a></p> </li> </ul> <p><em><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-Lie groups</em></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/orthogonal+group">orthogonal group</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/special+orthogonal+group">special orthogonal group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spin+group">spin group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/string+2-group">string 2-group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fivebrane+6-group">fivebrane 6-group</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/unitary+group">unitary group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/special+unitary+group">special unitary group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+groupoid">circle Lie n-group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/circle+group">circle group</a></li> </ul> </li> </ul> <p><em><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-Lie algebroids</em></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/tangent+Lie+algebroid">tangent Lie algebroid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/action+Lie+algebroid">action Lie algebroid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Atiyah+Lie+algebroid">Atiyah Lie algebroid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+Lie+n-algebroid">symplectic Lie n-algebroid</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+manifold">symplectic manifold</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Poisson+Lie+algebroid">Poisson Lie algebroid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Courant+Lie+algebroid">Courant Lie algebroid</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/generalized+complex+geometry">generalized complex geometry</a></li> </ul> </li> </ul> </li> </ul> <p><em><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-Lie algebras</em></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/general+linear+Lie+algebra">general linear Lie algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/orthogonal+Lie+algebra">orthogonal Lie algebra</a>, <a class="existingWikiWord" href="/nlab/show/special+orthogonal+Lie+algebra">special orthogonal Lie algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/endomorphism+L-%E2%88%9E+algebra">endomorphism L-∞ algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/automorphism+%E2%88%9E-Lie+algebra">automorphism ∞-Lie algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/string+Lie+2-algebra">string Lie 2-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fivebrane+Lie+6-algebra">fivebrane Lie 6-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/supergravity+Lie+3-algebra">supergravity Lie 3-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/supergravity+Lie+6-algebra">supergravity Lie 6-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/line+Lie+n-algebra">line Lie n-algebra</a></p> </li> </ul> </div></div> </div> </div> <h1 id="lie_algebras">Lie <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn></mrow><annotation encoding="application/x-tex">2</annotation></semantics></math>-algebras</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <ul> <li><a href='#semistrict_case'>Semistrict case</a></li> <li><a href='#strict_case'>Strict case</a></li> </ul> <li><a href='#examples'>Examples</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>A Lie 2-algebra is to a <a class="existingWikiWord" href="/nlab/show/Lie+2-group">Lie 2-group</a> as a <a class="existingWikiWord" href="/nlab/show/Lie+algebra">Lie algebra</a> is to a <a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a>. Thus, it is a <a class="existingWikiWord" href="/nlab/show/vertical+categorification">vertical categorification</a> of a <a class="existingWikiWord" href="/nlab/show/Lie+algebra">Lie algebra</a>.</p> <h2 id="definition">Definition</h2> <h3 id="semistrict_case">Semistrict case</h3> <p>A (“semistrict”) Lie 2-algebra <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝔤</mi></mrow><annotation encoding="application/x-tex">\mathfrak{g}</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/L-%E2%88%9E-algebra">L-∞-algebra</a> with generators concentrated in the lowest two degrees.</p> <p>This means that it is</p> <ul> <li> <p>a pair of <a class="existingWikiWord" href="/nlab/show/vector+space">vector space</a>s <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>𝔤</mi> <mn>0</mn></msub><mo>,</mo><msub><mi>𝔤</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">\mathfrak{g}_0, \mathfrak{g}_1</annotation></semantics></math></p> </li> <li> <p>equipped with <a class="existingWikiWord" href="/nlab/show/linear+functions">linear functions</a> as follows:</p> <p>a unary bracket <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[-]</annotation></semantics></math> encoding a <em><a class="existingWikiWord" href="/nlab/show/differential">differential</a></em></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>δ</mi><mo>:</mo><msub><mi>𝔤</mi> <mn>1</mn></msub><mo>→</mo><msub><mi>𝔤</mi> <mn>0</mn></msub><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex"> \delta : \mathfrak{g}_1 \to \mathfrak{g}_0 \, </annotation></semantics></math></div> <p>and a binary bracket <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[-,-]</annotation></semantics></math>, whose component on elements in degree 0 is a <a class="existingWikiWord" href="/nlab/show/Lie+bracket">Lie bracket</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">]</mo><mo>:</mo><msub><mi>𝔤</mi> <mn>0</mn></msub><mo>∨</mo><msub><mi>𝔤</mi> <mn>0</mn></msub><mo>→</mo><msub><mi>𝔤</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex"> [-,-] : \mathfrak{g}_0 \vee \mathfrak{g}_0 \to \mathfrak{g}_0 </annotation></semantics></math></div> <p>and whose component on elements in degree 0 and degree 1 is a <em>weak <a class="existingWikiWord" href="/nlab/show/action">action</a></em></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>α</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>:</mo><msub><mi>𝔤</mi> <mn>0</mn></msub><mo>⊗</mo><msub><mi>𝔤</mi> <mn>1</mn></msub><mo>→</mo><msub><mi>𝔤</mi> <mn>1</mn></msub><mspace width="thinmathspace"></mspace><mo>;</mo></mrow><annotation encoding="application/x-tex"> \alpha(-,-) : \mathfrak{g}_0 \otimes \mathfrak{g}_1 \to \mathfrak{g}_1 \,; </annotation></semantics></math></div> <p>and a trinary bracket</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">]</mo><mo>:</mo><msub><mi>𝔤</mi> <mn>0</mn></msub><mo>∨</mo><msub><mi>𝔤</mi> <mn>0</mn></msub><mo>∨</mo><msub><mi>𝔤</mi> <mn>0</mn></msub><mo>→</mo><msub><mi>𝔤</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex"> [-,-,-] : \mathfrak{g}_0 \vee \mathfrak{g}_0 \vee \mathfrak{g}_0 \to \mathfrak{g}_1 </annotation></semantics></math></div> <p>called the <em>Jacobiator</em>;</p> </li> <li> <p>such that</p> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[-,-]</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[-,-,-]</annotation></semantics></math> are skew-symmetric in their arguments, as indicated;</p> </li> <li> <p>the <a class="existingWikiWord" href="/nlab/show/differential">differential</a> respects the brackets: for all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><msub><mi>𝔤</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">x \in \mathfrak{g}_0</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>h</mi><mo>∈</mo><msub><mi>𝔤</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">h \in \mathfrak{g}_1</annotation></semantics></math> we have</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>δ</mi><mo stretchy="false">[</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo stretchy="false">]</mo><mo>=</mo><mo stretchy="false">[</mo><mi>x</mi><mo>,</mo><mi>δ</mi><mi>h</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex"> \delta [x,h] = [x, \delta h] </annotation></semantics></math></div> <p>hence</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>δ</mi><mi>α</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">[</mo><mi>x</mi><mo>,</mo><mi>δ</mi><mi>h</mi><mo stretchy="false">]</mo><mspace width="thinmathspace"></mspace><mo>;</mo></mrow><annotation encoding="application/x-tex"> \delta \alpha(x,h) = [x, \delta h] \,; </annotation></semantics></math></div></li> <li> <p>the <a class="existingWikiWord" href="/nlab/show/Jacobi+identity">Jacobi identity</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[-,-]</annotation></semantics></math> holds up to the image under <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>δ</mi></mrow><annotation encoding="application/x-tex">\delta</annotation></semantics></math> of the <em>Jacobiator</em> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[-,-,-]</annotation></semantics></math>: for all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>∈</mo><msub><mi>𝔤</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">x,y,z \in \mathfrak{g}_0</annotation></semantics></math> we have</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>x</mi><mo>,</mo><mo stretchy="false">[</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo stretchy="false">]</mo><mo stretchy="false">]</mo><mo>+</mo><mo stretchy="false">[</mo><mi>y</mi><mo>,</mo><mo stretchy="false">[</mo><mi>z</mi><mo>,</mo><mi>x</mi><mo stretchy="false">]</mo><mo stretchy="false">]</mo><mo>+</mo><mo stretchy="false">[</mo><mi>z</mi><mo>,</mo><mo stretchy="false">[</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">]</mo><mo stretchy="false">]</mo><mo>=</mo><mi>δ</mi><mo stretchy="false">[</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex"> [x,[y,z]] + [y,[z,x]] + [z,[x,y]] = \delta [x,y,z] </annotation></semantics></math></div></li> <li> <p>as does the <a class="existingWikiWord" href="/nlab/show/action">action</a> property:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>α</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mo stretchy="false">[</mo><mi>y</mi><mo>,</mo><mi>h</mi><mo stretchy="false">]</mo><mo stretchy="false">)</mo><mo>−</mo><mi>α</mi><mo stretchy="false">(</mo><mi>y</mi><mo>,</mo><mo stretchy="false">[</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo stretchy="false">]</mo><mo stretchy="false">)</mo><mo>=</mo><mi>α</mi><mo stretchy="false">(</mo><mo stretchy="false">[</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">]</mo><mo>,</mo><mi>h</mi><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">[</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>δ</mi><mi>h</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex"> \alpha(x,[y,h]) - \alpha(y,[x,h]) = \alpha([x,y],h) + [x,y,\delta h] </annotation></semantics></math></div></li> <li> <p>the Jacobiator is <a class="existingWikiWord" href="/nlab/show/coherence+law">coherent</a>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>w</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">]</mo><mo>,</mo><mi>z</mi><mo stretchy="false">]</mo><mo>+</mo><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>w</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo stretchy="false">]</mo><mo>,</mo><mi>x</mi><mo stretchy="false">]</mo><mo>+</mo><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>w</mi><mo>,</mo><mi>y</mi><mo stretchy="false">]</mo><mo>,</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">]</mo><mo>+</mo><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">]</mo><mo>,</mo><mi>w</mi><mo>,</mo><mi>y</mi><mo stretchy="false">]</mo><mo>=</mo><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>w</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">]</mo><mo>,</mo><mi>y</mi><mo stretchy="false">]</mo><mo>+</mo><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo stretchy="false">]</mo><mo>,</mo><mi>w</mi><mo stretchy="false">]</mo><mo>+</mo><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>w</mi><mo>,</mo><mi>x</mi><mo stretchy="false">]</mo><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo stretchy="false">]</mo><mo>+</mo><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>w</mi><mo>,</mo><mi>z</mi><mo stretchy="false">]</mo><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">]</mo><mo>+</mo><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">]</mo><mo>,</mo><mi>w</mi><mo>,</mo><mi>z</mi><mo stretchy="false">]</mo><mo>+</mo><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo stretchy="false">]</mo><mo>,</mo><mi>w</mi><mo>,</mo><mi>x</mi><mo stretchy="false">]</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> [[w,x,y], z] + [[w,y,z],x] + [[w,y],x,z] + [[x,z],w,y] = [[w,x,z], y] + [[x,y,z], w] + [[w,x],y,z] + [[w,z], x,y] + [[x,y], w,z] + [[y,z],w,x] \,. </annotation></semantics></math></div></li> </ul> </li> </ul> <p>The Jacobiator identity equivalently expresses the <a class="existingWikiWord" href="/nlab/show/commuting+diagram">commutativity</a> of the following <a class="existingWikiWord" href="/nlab/show/diagram">diagram</a> in the given <a class="existingWikiWord" href="/nlab/show/2-vector+space">2-vector space</a> (analogous to the <a class="existingWikiWord" href="/nlab/show/pentagon+identity">pentagon identity</a>)</p> <p><img src="https://ncatlab.org/nlab/files/JacobiatorIdentity.jpg" width="560" /></p> <blockquote> <p>(graphics grabbed from <a href="#BaezCrans04">Baez-Crans 04, p. 19</a>)</p> </blockquote> <h3 id="strict_case">Strict case</h3> <p>If the trinary bracket <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[-,-,-]</annotation></semantics></math> in a Lie 2-algebra is trivial, one speaks of a <a class="existingWikiWord" href="/nlab/show/strict+Lie+2-algebra">strict Lie 2-algebra</a>. Strict Lie 2-algebras are equivalently <a class="existingWikiWord" href="/nlab/show/differential+crossed+module">differential crossed module</a>s (see there for details).</p> <h2 id="examples">Examples</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/derivation+Lie+2-algebra">derivation Lie 2-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/string+Lie+2-algebra">string Lie 2-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/4d+supergravity+Lie+2-algebra">4d supergravity Lie 2-algebra</a></p> </li> </ul> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+algebra">Lie algebra</a>, <a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a></p> </li> <li> <p><strong>Lie 2-algebra</strong>, <a class="existingWikiWord" href="/nlab/show/Lie+2-group">Lie 2-group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/membrane+matrix+model">membrane matrix model</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+3-algebra">Lie 3-algebra</a>, <a class="existingWikiWord" href="/nlab/show/Lie+3-group">Lie 3-group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/L-%E2%88%9E+algebra">L-∞ algebra</a>, <a class="existingWikiWord" href="/nlab/show/smooth+%E2%88%9E-group">smooth ∞-group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+algebroid">Lie algebroid</a>, <a class="existingWikiWord" href="/nlab/show/Lie+groupoid">Lie groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/L-%E2%88%9E+algebroid">L-∞ algebroid</a>, <a class="existingWikiWord" href="/nlab/show/smooth+%E2%88%9E-groupoid">smooth ∞-groupoid</a></p> </li> </ul> <h2 id="references">References</h2> <ul> <li id="BaezCrans04"> <p><a class="existingWikiWord" href="/nlab/show/John+Baez">John Baez</a>, <a class="existingWikiWord" href="/nlab/show/Alissa+Crans">Alissa Crans</a>, <em>Higher-Dimensional Algebra VI: Lie 2-Algebras</em> Theory and Applications of Categories, Vol. 12, (2004) No. 15, pp 492-528. (<a href="http://www.tac.mta.ca/tac/volumes/12/15/12-15abs.html">TAC:12-15</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Daniel+Berwick-Evans">Daniel Berwick-Evans</a>, <a class="existingWikiWord" href="/nlab/show/Eugene+Lerman">Eugene Lerman</a>, <em>Lie 2-algebras of vector fields</em>, <a href="http://arxiv.org/abs/1609.03944">arxiv/1609.03944</a></p> </li> </ul> <p>On <a class="existingWikiWord" href="/nlab/show/weak+Lie+2-algebras">weak Lie 2-algebras</a>:</p> <ul> <li id="Roytenberg07"><a class="existingWikiWord" href="/nlab/show/Dmitry+Roytenberg">Dmitry Roytenberg</a>, <em>On weak Lie 2-algebras</em>, AIP Conference Proceedings 956, 180 (2007) (<a href="http://arxiv.org/abs/0712.3461">arXiv:0712.3461</a>, <a href="https://doi.org/10.1063/1.2820967">doi:10.1063/1.2820967</a>)</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on July 17, 2022 at 16:07:28. See the <a href="/nlab/history/Lie+2-algebra" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/Lie+2-algebra" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/3599/#Item_7">Discuss</a><span class="backintime"><a href="/nlab/revision/Lie+2-algebra/12" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/Lie+2-algebra" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/Lie+2-algebra" accesskey="S" class="navlink" id="history" rel="nofollow">History (12 revisions)</a> <a href="/nlab/show/Lie+2-algebra/cite" style="color: black">Cite</a> <a href="/nlab/print/Lie+2-algebra" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/Lie+2-algebra" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>