CINXE.COM
Mathematics - Algebraic Topology, Homology, Cohomology | Britannica
<!doctype html> <html lang="en" class="topic-desktop ui-ie7 ui-ie"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb#"> <meta charset="utf-8"> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <link rel="dns-prefetch" href="https://cdn.britannica.com/mendel-resources/3-133"> <link rel="preconnect" href="https://cdn.britannica.com/mendel-resources/3-133"> <link rel="preload" as="script" href="https://www.googletagservices.com/tag/js/gpt.js" /> <link rel="icon" href="/favicon.png" /> <meta name="description" content="Mathematics - Algebraic Topology, Homology, Cohomology: The early 20th century saw the emergence of a number of theories whose power and utility reside in large part in their generality. Typically, they are marked by an attention to the set or space of all examples of a particular kind. (Functional analysis is such an endeavour.) One of the most energetic of these general theories was that of algebraic topology. In this subject a variety of ways are developed for replacing a space by a group and a map between spaces by a map between groups. It is like using X-rays: information is lost, but the shadowy image" /> <meta name="keywords" content="mathematics, encyclopedia, encyclopeadia, britannica, article" /> <link rel="canonical" href="https://www.britannica.com/science/mathematics/Algebraic-topology" /> <title>Mathematics - Algebraic Topology, Homology, Cohomology | Britannica</title> <!-- **** cafemedia top **** --> <script> !function(){"use strict";function e(e){const t=e.match(/((?=([a-z0-9._!#$%+^&*()[\]<>-]+))\2@[a-z0-9._-]+\.[a-z0-9._-]+)/gi);return t?t[0]:""}function t(t){return e(a(t.toLowerCase()))}function a(e){return e.replace(/\s/g,"")}async function n(e){const t={sha256Hash:"",sha1Hash:""};if(!("msCrypto"in window)&&"https:"===location.protocol&&"crypto"in window&&"TextEncoder"in window){const a=(new TextEncoder).encode(e),[n,c]=await Promise.all([s("SHA-256",a),s("SHA-1",a)]);t.sha256Hash=n,t.sha1Hash=c}return t}async function s(e,t){const a=await crypto.subtle.digest(e,t);return Array.from(new Uint8Array(a)).map(e=>("00"+e.toString(16)).slice(-2)).join("")}function c(e){let t=!0;return Object.keys(e).forEach(a=>{0===e[a].length&&(t=!1)}),t}function i(e,t,a){e.splice(t,1);const n="?"+e.join("&")+a.hash;history.replaceState(null,"",n)}var o={checkEmail:e,validateEmail:t,trimInput:a,hashEmail:n,hasHashes:c,removeEmailAndReplaceHistory:i,detectEmails:async function(){const e=new URL(window.location.href),a=Array.from(e.searchParams.entries()).map(e=>`=`);let s,o;const r=["adt_eih","sh_kit"];if(a.forEach((e,t)=>{const a=decodeURIComponent(e),[n,c]=a.split("=");if("adt_ei"===n&&(s={value:c,index:t,emsrc:"url"}),r.includes(n)){o={value:c,index:t,emsrc:"sh_kit"===n?"urlhck":"urlh"}}}),s)t(s.value)&&n(s.value).then(e=>{if(c(e)){const t={value:e,created:Date.now()};localStorage.setItem("adt_ei",JSON.stringify(t)),localStorage.setItem("adt_emsrc",s.emsrc)}});else if(o){const e={value:{sha256Hash:o.value,sha1Hash:""},created:Date.now()};localStorage.setItem("adt_ei",JSON.stringify(e)),localStorage.setItem("adt_emsrc",o.emsrc)}s&&i(a,s.index,e),o&&i(a,o.index,e)},cb:"adthrive"};const{detectEmails:r,cb:l}=o;r()}(); </script> <script type="text/javascript" data-type="Init Mendel"> window.$UI = {}; window.Constants = {"LICENSE_URL": "/bps/license","DEFAULT_TEST_VERSION": "A","DEFAULT_STATE": "XX","QUIZ_URL": "/quiz","SPOTLIGHT_BROWSE_URL": "/stories/spotlight","CONTENT_TYPE_TEXT": "text/plain;charset=UTF-8","TOPIC_FACTS_DATA_URL": "/facts","QUIZ_BROWSE_IMAGE_QUIZZES": "images","TOPIC_MEDIA_PATH": "/images-videos","USER_PROFILE_URL": "/user","DEBUG_URL": "/debug","ONE_GOOD_FACT_URL": "/one-good-fact","ERROR_404_URL": "/error404","PROCON_CITED_IN_THE_NEWS_URL": "/procon/ProCon-in-the-News","PROCON_URL": "/procon","TOPIC_PAGE_CONTENT_AJAX_URL": "/topic-content/page","INFINITE_SCROLL_PREFIX_URL": "/scroll","TOPIC_TOP_QUESTION_BROWSE_URL": "/questions","CC_USD": "USD","domain": "britannica.com","PROCON_EDITOR_ID": "12941390","SURVEY_URL": "/survey","CATEGORY_BROWSE_URL": "/browse","STORY_BROWSE_URL": "/stories","COUNTRY_US": "US","OPEN_MEDIA_OVERLAY_PARAMETER": "/media","NEWSLETTER_SUBSCRIPTION_URL": "/newsletter-subscription","MAINTENANCE_ERROR_URL": "https://maintenance.eb.com","IMARS_EDITOR_ID": "12365882","PROFILE_EB_EDITOR_URL": "/editor","WEB_INF_RESOURCES_PATH": "WEB-INF/resources","AI_ABOUT_PAGE_URL": "/about-britannica-ai","TOPIC_ADDITIONAL_INFO_PATH": "/additional-info","SUDOKU_GAME_URL": "/games/sudoku","CC_INR": "INR","ARTICLE_PRINT_URL": "/print/article","FIRST_EDITION_URL": "/subscriber/firstedition","WW1_PORTAL_URL": "/discover/World-War-I","MENDEL_COOKIE": "__mendel","topicUrlClasses": "[topic, animal, art, biography, event, place, plant, science, sports, technology, procon, money]","DEMYSTIFIED_BROWSE_URL": "/stories/demystified","LIST_BROWSE_URL": "/list/browse","PROFILE_EXPERT_URL": "/contributor","ASSEMBLY_IMAGE_URL": "/image/assembly","DAY_IN_HISTORY_URL": "/on-this-day","DEFAULT_CURRENCY": "USD","CONTENT_TYPE_XML": "text/xml;charset=UTF-8","PORTAL_FINANCE_BROWSE_URL_PREFIX": "/money/browse","MONEY_IMARS_CATEGORY": "13000","AJAX_PREFIX_URL": "/ajax","TOPIC_BROWSE_URL": "/topic-browse","MARKETING_CONTENT": "/marketing-content","ENV_RUNTIME": "runtime","GALLERY_URL": "/gallery","topicUrlClassesList": "topic|animal|art|biography|event|place|plant|science|sports|technology|procon","CONTENT_TYPE_HTML": "text/html;charset=UTF-8","ENV_LOCAL": "override","MEDIA_OVERLAY_URL": "/media-overlay","CHATBOT_PAGE_URL": "/chatbot","NEWSLETTER_PAGE_URL": "/newsletters","ENV_DEV": "development","MEDIA_URL": "/media","TOPIC_TOP_QUESTION_URL": "/question","PORTAL_FINANCE_URL_PREFIX": "/money","PODCASTS_URL": "/podcasts","STAND_ALONE_VIDEO_URL": "/video","MORE_ON_THIS_DAY_URL": "/more-on-this-day","TOPIC_QUOTES_URL": "/quotes","SEARCH_PAGE_URL": "/search","PROCON_CLASS": "PROCON","KUSTOM_MENDEL_APPLICATION_ID": "1","TOPIC_CONTENT_AJAX_URL": "/topic-content/topic","ENV_BRANCH": "branch","ERROR_URL": "/error","MAIN_VERSION": "mainVersion","TOPIC_COLLECTION_URL": "/summary","LOGINBOX_URL": "/auth/loginbox","PROCON_DEBATE_TOPICS_URL": "/procon/Debate-Topics","ONE_GOOD_FACT_BROWSE_URL": "/one-good-fact/all-good-facts","QUIZ_BROWSE_URL": "/quiz/browse","BIO_BROWSE_URL": "/browse/biographies","LIST_URL": "/list","TIGHTROPE_QUIZ_URL": "/quiz/tightrope","ALPHA_BROWSE_URL": "/sitemap","CONTENT_TYPE_JSON": "application/json","DICTIONARY_URL": "/dictionary","COBRAND_IMAGE_URL": "/image/cobrand","PROCON_IN_THE_NEWS_URL": "/procon/pro-and-con-issues-in-the-news","PROCON_BROWSE_URL": "/procon","QUIZ_BROWSE_VOCAB_QUIZZES": "vocabulary-quizzes","SUBMISSION_URL": "/submission","EB_LOG_OUT": "/auth2/logout","ENV_PRODUCTION": "production","EXPLORE_PORTAL_URL": "/explore","TOPIC_AJAX_URL": "/ajax/topic","TOPIC_SUMMARY_BROWSE_URL": "/summaries","WTFACT_BROWSE_URL": "/stories/wtfact","VIDEO_CHANNEL_URL": "/videos","GALLERY_BROWSE_URL": "/gallery/browse","CACHE_URL": "/cache","PROCON_ABOUT_URL": "/procon/About-ProCon","COMPANION_BROWSE_URL": "/stories/companion","MEDIA_FOLDER": "/eb-media","SHOW_ALL_CONTRIBUTORS": "/additional-info#contributors","BRITANNICA_EDITORS_ID": "4419","ENV_CACHE_DISABLED": "mendelCache","CALCULATORS_BROWSE_URL": "/calculators","STORY_URL": "/story","DEFAULT_COUNTRY": "US","NAVBAR_URL": "/ajax/navbar","EB_LOGIN_URL": "/auth/eb-login","NEW_ARTICLES_URL": "/new-articles",}; window.CDN = "https://cdn.britannica.com"; window.CAM_SETTINGS_URL = "https://cam.britannica.com/settings"; window.CAM_LOGIN_URL = "https://cam.britannica.com/login"; window.CAM_SIGN_UP_URL = "https://cam.britannica.com/registration" window.Mendel = { "config" : { "domain": "britannica.com", "page": "Topic", "videoPlayerId": "UyMCoK2v", "sharedUrl": "https://www.britannica.com/science/mathematics/Algebraic-topology", "amuselabsUrl": "https://cdn3.amuselabs.com", "resourcesPrefixUrl": "https://cdn.britannica.com/mendel-resources/3-133/[url]?v=3.133.9", "date": 20250217, "userInfo": { "type": "ANONYMOUS" ,"currency": "AUUS" ,"country": "SG" ,"state": "XX" ,"timezone": "Asia/Singapore" ,"bcomId": "6593550293738078785" ,"hasAds": true ,"testVersion": "D" ,"adsTestVersion": "C" ,"consumerId": "" ,"instId": "" ,"consumerUserName": "" ,"instUserName": "" ,"cognito": null }, "tvs":{ "r":[25,25,25,25], "a": [25,25,45,5]}, "isLoggedInAsUser": false, "isPhone": false, "isDesktop": true, "logoutUrl": "/auth2/logout", "selfServiceUrl": "https://myaccount.britannica.com", "cdnUrl": "https://cdn.britannica.com", "chatbotApi": "https://www.britannica.com/chat-api", "fetchOffset": 800, "mendelCookieName": "__mendel", "mendelCookie": {"surveyShown":false,"visitedTopicId":369194,"currentDate":20250217}, "autocompleteToSearchPage": false,"topicUrl": "https://www.britannica.com/science/mathematics", "freeTopicReason": "NO_REFERRER", "topicId": 369194, "template": "DESKTOP", "type": "CORE", "hasToc": true, "chatbotApi": "https://www.britannica.com/chat-api", "showPreview": false, }, "GA": {"leg":"D","adLeg":"C","userType":"ANONYMOUS","pageType":"Topic","articleTemplateType":"PAGINATED","gisted":false,"pageNumber":25,"hasSummarizeButton":false,"hasAskButton":true} }; </script> <meta property="fb:app_id" content="1887621861548296"/ <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@britannica" /> <meta name="twitter:image" content="https://cdn.britannica.com/54/2354-050-B47B3735/Babylonian-tablet.jpg" /> <meta name="twitter:description" content="Mathematics - Algebraic Topology, Homology, Cohomology: The early 20th century saw the emergence of a number of theories whose power and utility reside in large part in their generality. Typically, they are marked by an attention to the set or space of all examples of a particular kind. (Functional analysis is such an endeavour.) One of the most energetic of these general theories was that of algebraic topology. In this subject a variety of ways are developed for replacing a space by a group and a map between spaces by a map between groups. It is like using X-rays: information is lost, but the shadowy image"/> <meta property="og:type" content="ARTICLE"/> <meta property="og:title" content="Mathematics - Algebraic Topology, Homology, Cohomology | Britannica"/> <meta property="og:description" content="Mathematics - Algebraic Topology, Homology, Cohomology: The early 20th century saw the emergence of a number of theories whose power and utility reside in large part in their generality. Typically, they are marked by an attention to the set or space of all examples of a particular kind. (Functional analysis is such an endeavour.) One of the most energetic of these general theories was that of algebraic topology. In this subject a variety of ways are developed for replacing a space by a group and a map between spaces by a map between groups. It is like using X-rays: information is lost, but the shadowy image"/> <meta property="og:site_name" content="Encyclopedia Britannica" /> <meta property="og:url" content="https://www.britannica.com/science/mathematics"/> <meta property="og:image" content="https://cdn.britannica.com/54/2354-050-B47B3735/Babylonian-tablet.jpg" /> <meta property="og:image:type" content="image/jpeg" /> <script type="text/javascript" data-type="init opengraph"> Mendel.openGraph = {"type":"ARTICLE","title":"Mathematics - Algebraic Topology, Homology, Cohomology","description":"Mathematics - Algebraic Topology, Homology, Cohomology: The early 20th century saw the emergence of a number of theories whose power and utility reside in large part in their generality. Typically, they are marked by an attention to the set or space of all examples of a particular kind. (Functional analysis is such an endeavour.) One of the most energetic of these general theories was that of algebraic topology. In this subject a variety of ways are developed for replacing a space by a group and a map between spaces by a map between groups. It is like using X-rays: information is lost, but the shadowy image","imageUrl":"https://cdn.britannica.com/54/2354-050-B47B3735/Babylonian-tablet.jpg","imageType":"image/jpeg","pageUrl":"https://www.britannica.com/science/mathematics"}</script> <link rel="preconnect" href="https://fonts.googleapis.com/"> <link rel="dns-prefetch" href="https://fonts.googleapis.com/" > <link rel="stylesheet" href="https://fonts.googleapis.com/icon?family=Material+Icons"> <link href="https://cdn.britannica.com/mendel-resources/3-133/dist/vendor-bundle.css?v=3.133.9" rel="stylesheet" /> <link href="https://cdn.britannica.com/mendel-resources/3-133/dist/mendel-css.css?v=3.133.9" rel="stylesheet" /> <link href="https://cdn.britannica.com/mendel-resources/3-133/dist/topic-page.css?v=3.133.9" rel="stylesheet" /> <script type="text/javascript"> if (self !== top) { top.location = self.location; } </script> <script src="https://cdn.britannica.com/mendel-resources/3-133/js/at.js?v=3.133.9" async ></script> <script> dataLayer = []; </script> <script type="text/javascript">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= '//www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-5W6NC8'); </script> <meta name="last-modified" content="2025-02-14" /> <script type="application/ld+json"> {"headline":"Mathematics | Definition, History, & Importance","image":{"url":"https://cdn.britannica.com/54/2354-050-B47B3735/Babylonian-tablet.jpg","@type":"ImageObject"},"author":[{"name":"Craig G. Fraser","url":"https://www.britannica.com/contributor/Craig-G-Fraser/3532","@type":"Person"},{"name":"Jeremy John Gray","url":"https://www.britannica.com/contributor/Jeremy-John-Gray/3547","@type":"Person"}],"keywords":"mathematics","wordcount":41449,"url":"https://www.britannica.com/science/mathematics","datePublished":"1999-07-26T00:00:00Z","dateModified":"2025-02-14T00:00:00Z","description":"Mathematics, the science of structure, order, and relation that has evolved from counting, measuring, and describing the shapes of objects. Mathematics has been an indispensable adjunct to the physical sciences and technology and has assumed a similar role in the life sciences.","publisher":{"name":"Encyclopedia Britannica","@type":"Organization","logo":{"url":"https://corporate.britannica.com/wp-content/themes/eb-corporate/_img/logo.png","@type":"ImageObject"}},"@context":"https://schema.org","@type":"article"} </script> </head> <body data-leg="D" class="new-topic topic-desktop first-page-false user-ANONYMOUS user-ads md-desktop leg-d b-ie"> <!-- **** cafemedia **** --> <script>Mendel.config.adProvider='cafemedia';</script> <script data-no-optimize="1" data-cfasync="false"> (function(w, d) { w.adthrive = w.adthrive || {}; w.adthrive.cmd = w. adthrive.cmd || []; w.adthrive.plugin = 'adthrive-ads-manual'; w.adthrive.host = 'ads.adthrive.com';var s = d.createElement('script'); s.async = true; s.referrerpolicy='no-referrer-when-downgrade'; s.src = 'https://' + w.adthrive.host + '/sites/61575e5c934c481d714b3ca9/ads.min.js?referrer=' + w.encodeURIComponent(w.location.href) + '&cb=' + (Math.floor(Math.random() * 100) + 1); var n = d.getElementsByTagName('script')[0]; n.parentNode.insertBefore(s, n); })(window, document); </script> <div class="ie-warning d-flex align-items-center align-self-center justify-content-center site-alert bg-orange"> <div> You are using an <strong>outdated</strong> browser. Please <a class="text-white text-underscore" href="https://browsehappy.com/">upgrade your browser</a> to improve your experience and security. </div> </div> <script id="json-navbar-info" type="application/json"> {"topSectionLinks":[{"title":"Ask the Chatbot","url":"/chatbot","navbarId":"CHATBOT"},{"title":"Games & Quizzes","url":"/quiz/browse","navbarId":"QUIZZES"},{"title":"History & Society","url":"/History-Society","navbarId":"HISTORY"},{"title":"Science & Tech","url":"/Science-Tech","selected":true,"navbarId":"SCIENCE"},{"title":"Biographies","url":"/Biographies","navbarId":"BIOS"},{"title":"Animals & Nature","url":"/Animals-Nature","navbarId":"ANIMALS"},{"title":"Geography & Travel","url":"/Geography-Travel","navbarId":"GEOGRAPHY"},{"title":"Arts & Culture","url":"/Arts-Culture","navbarId":"ART"},{"title":"ProCon","url":"/procon","navbarId":"PROCON"},{"title":"Money","url":"/money","navbarId":"MONEY"},{"title":"Videos","url":"/videos","navbarId":"VIDEOS"}],"selectedSuperCategory":{"id":6,"title":"Science & Tech","url":"Science-Tech","description":"Explore science and technology; astronomy; biology; chemistry; earth science; mathematics; physics; technology, agriculture, cars, computers, engineering, industry, inventions, communication","keywords":"astronomy; biology; chemistry; earth science; mathematics; physics; technology, agriculture, cars, computers, engineering, industry, inventions, communication","classId":"SCIENCE","sortOrder":2},"selectedNavbarLink":{"title":"Science & Tech","url":"/Science-Tech","selected":true,"navbarId":"SCIENCE"}} </script> <script id="json-hamburger-menu" type="application/json"> {"britannicaMenu1":[{"title":"Home","url":"/"},{"title":"History & Society","url":"/History-Society"},{"title":"Science & Tech","url":"/Science-Tech"},{"title":"Biographies","url":"/Biographies"},{"title":"Animals & Nature","url":"/Animals-Nature"},{"title":"Geography & Travel","url":"/Geography-Travel"},{"title":"Arts & Culture","url":"/Arts-Culture"},{"title":"ProCon","url":"/procon"},{"title":"Money","url":"/money"}],"britannicaMenu2":[{"title":"Games & Quizzes","url":"/quiz/browse"},{"title":"Videos","url":"/videos"},{"title":"On This Day","url":"/on-this-day"},{"title":"One Good Fact","url":"/one-good-fact"},{"title":"Dictionary","url":"/dictionary"},{"title":"New Articles","url":"/new-articles"}],"browseByCategory":[{"title":{"id":5,"title":"History & Society","url":"/History-Society"},"links":[{"title":"Lifestyles & Social Issues","url":"/browse/Lifestyles-Social-Issues"},{"title":"Philosophy & Religion","url":"/browse/Philosophy-Religion"},{"title":"Politics, Law & Government","url":"/browse/Politics-Law-Government"},{"title":"World History","url":"/browse/World-History"}]},{"title":{"id":6,"title":"Science & Tech","url":"/Science-Tech"},"links":[{"title":"Health & Medicine","url":"/browse/Health-Medicine"},{"title":"Science","url":"/browse/Science"},{"title":"Technology","url":"/browse/Technology"}]},{"title":{"id":3,"title":"Biographies","url":"/Biographies"},"links":[{"title":"Browse Biographies","url":"/browse/biographies"}]},{"title":{"id":1,"title":"Animals & Nature","url":"/Animals-Nature"},"links":[{"title":"Birds, Reptiles & Other Vertebrates","url":"/browse/Birds-Reptiles-Vertebrates"},{"title":"Bugs, Mollusks & Other Invertebrates","url":"/browse/Bugs-Mollusks-Invertebrates"},{"title":"Environment","url":"/browse/Environment"},{"title":"Fossils & Geologic Time","url":"/browse/Fossil-Geologic-Time"},{"title":"Mammals","url":"/browse/Mammals"},{"title":"Plants","url":"/browse/Plants"}]},{"title":{"id":4,"title":"Geography & Travel","url":"/Geography-Travel"},"links":[{"title":"Geography & Travel","url":"/browse/Geography-Travel"}]},{"title":{"id":2,"title":"Arts & Culture","url":"/Arts-Culture"},"links":[{"title":"Entertainment & Pop Culture","url":"/browse/Entertainment-Pop-Culture"},{"title":"Literature","url":"/browse/Literature"},{"title":"Sports & Recreation","url":"/browse/Sports-Recreation"},{"title":"Visual Arts","url":"/browse/Visual-Arts"}]}],"browseByFeature":[{"title":"Companions","url":"/stories/companion"},{"title":"Demystified","url":"/stories/demystified"},{"title":"Image Galleries","url":"/gallery/browse"},{"title":"Lists","url":"/list/browse"},{"title":"Podcasts","url":"/podcasts"},{"title":"Spotlight","url":"/stories/spotlight"},{"title":"Summaries","url":"/summary"},{"title":"The Forum","url":"/stories/the-forum"},{"title":"Top Questions","url":"/question"},{"title":"#WTFact","url":"/stories/wtfact"}],"moreFromBritannica":[{"title":"Britannica Kids","url":"https://kids.britannica.com/","newTab":true}],"menuType":"DEFAULT"} </script> <header id="header" class="bg-navy-dark"> <div class="global-nav-top-bar"> <div class="grid gx-0 h-100 justify-content-between align-items-center container-lg mx-auto p-0 position-relative"> <div class="d-flex align-items-center"> <button class="d-flex align-items-center justify-self-start js-toggle js-toggle-hamburger btn btn-link link-white btn-sm rounded-0 p-10"> <div class="hamburger-tooltip"> <em class="material-icons d-inline-block font-24" id="nav-toggle" data-icon="menu"></em> </div> <em class="material-icons d-inline-block font-24 global-nav-search-icon" id="nav-search-icon" data-icon="search" ></em> </button> <a href="/" class="d-flex align-items-center justify-content-center ml-10"> <img loading="lazy" src="https://cdn.britannica.com/mendel/eb-logo/MendelNewThistleLogo.png" alt="Encyclopedia Britannica" class="global-nav-logo global-nav-logo-left" /> </a> <div class="global-nav-top-search-bar global-nav-top-search-container global-nav-search-container" id="global-nav-top-search-bar"> <form method="get" action="/search" id="global-nav-search" class="md-search-form m-0 global-nav-search-bar-small"> <div class="search-box position-relative col-100"> <label class="sr-only" for="global-nav-search-query">Search Britannica</label> <input name="query" id="global-nav-search-query" placeholder="Search Britannica..." class="form-control form-control-lg rounded-lg font-16 search-query pl-20 pr-70 shadow-sm" maxlength="200" autocomplete="off" aria-label="Search Britannica" /> <button class="search-reset-btn btn btn-link px-10 position-absolute top-0 h-100 d-none" type="reset"> <em class="material-icons" data-icon="close"></em> </button> <button class="search-submit btn btn-link text-blue px-10 position-absolute top-0 right-0 h-100" type="submit" disabled> <span class="sr-only">Click here to search</span> <em class="material-icons search-icon" data-icon="search"></em> </button> </div> </form> </div> </div> <a href="/" class="d-flex align-items-center justify-content-center"> <img loading="lazy" src="https://cdn.britannica.com/mendel/eb-logo/MendelNewThistleLogo.png" alt="Encyclopedia Britannica" class="global-nav-center global-nav-logo non-homepage-logo" /> </a> <form method="get" action="/search" id="global-nav-search" class="md-search-form m-0 global-nav-search-bar-small global-nav-center search global-nav-center-search-container"> <div class="search-box position-relative col-100"> <label class="sr-only" for="global-nav-search-query">Search Britannica</label> <input name="query" id="global-nav-search-query" placeholder="Search Britannica..." class="form-control form-control-lg rounded-lg font-16 search-query pl-20 pr-70 shadow-sm" maxlength="200" autocomplete="off" aria-label="Search Britannica" /> <button class="search-reset-btn btn btn-link px-10 position-absolute top-0 h-100 d-none" type="reset"> <em class="material-icons" data-icon="close"></em> </button> <button class="search-submit btn btn-link text-blue px-10 position-absolute top-0 right-0 h-100" type="submit" disabled> <span class="sr-only">Click here to search</span> <em class="material-icons search-icon" data-icon="search"></em> </button> </div> </form> <div class="col-35 col-sm-auto text-right order-3 mr-lg-15 align-items-center d-flex justify-content-end"> <div class="d-none d-md-inline-block"> <SPAN class="marketing-HEADER_SUBSCRIPTION_DESKTOP2 marketing-content" data-marketing-id="HEADER_SUBSCRIPTION_DESKTOP2"><a href="https://premium.britannica.com/premium-membership/?utm_source=premium&utm_medium=global-nav&utm_campaign=evergreen-cap" class="subscribe-link btn btn-sm btn-orange py-5 mr-10" target="_blank" rel="noopener"> SUBSCRIBE </a></SPAN></div> <div class="d-inline-block d-md-none mr-5 mr-sm-10"> <SPAN class="marketing-HEADER_SUBSCRIPTION_MOBILE marketing-content" data-marketing-id="HEADER_SUBSCRIPTION_MOBILE"><a href="https://premium.britannica.com/premium-membership/?utm_source=premium&utm_medium=global-nav-mobile&utm_campaign=evergreen" class="subscribe-link btn btn-xs btn-orange p-5" target="_blank" rel="noopener"> SUBSCRIBE </a></SPAN></div> <button class="js-toggle-user-dropdown js-toggle btn btn-sm btn-link link-white rounded-0 px-md-15 pl-5 pr-5"> <span class="d-none d-md-inline-block mr-5">Login</span> <em class="material-icons d-inline-block d-md-none font-16 font-sm-20" data-icon="account_circle"></em> <div class="d-none dropdown-menu-subscription-link">https://premium.britannica.com/premium-membership/?utm_source=premium&utm_medium=nav-login-box&utm_campaign=evergreen</div> <em class="material-icons inactive-icon d-inline-block font-18" data-icon="keyboard_arrow_down"></em> <em class="material-icons active-icon d-inline-block font-18" data-icon="keyboard_arrow_up"></em> </button> </div> </div> </div> <div class="d-none hamburger-menu-subscription-link"><DIV class="marketing-HAMBURGER_MENU_CTA marketing-content" data-marketing-id="HAMBURGER_MENU_CTA"><a href="https://premium.britannica.com/premium-membership/?utm_source=premium&utm_medium=hamburger-menu&utm_campaign=evergreen" class="subscribe-link btn btn-sm btn-orange py-5" target="_blank"> SUBSCRIBE </a></DIV></div> <div id="global-nav-react"> <div class="d-none"> <ul> <li><a href="/">Home</a></li> <li><a href="/History-Society">History & Society</a></li> <li><a href="/Science-Tech">Science & Tech</a></li> <li><a href="/Biographies">Biographies</a></li> <li><a href="/Animals-Nature">Animals & Nature</a></li> <li><a href="/Geography-Travel">Geography & Travel</a></li> <li><a href="/Arts-Culture">Arts & Culture</a></li> <li><a href="/procon">ProCon</a></li> <li><a href="/money">Money</a></li> </ul> <ul> <li><a href="/quiz/browse">Games & Quizzes</a></li> <li><a href="/videos">Videos</a></li> <li><a href="/on-this-day">On This Day</a></li> <li><a href="/one-good-fact">One Good Fact</a></li> <li><a href="/dictionary">Dictionary</a></li> <li><a href="/new-articles">New Articles</a></li> </ul> <a href="/History-Society">History & Society</a> <ul> <li><a href="/browse/Lifestyles-Social-Issues">Lifestyles & Social Issues</a></li> <li><a href="/browse/Philosophy-Religion">Philosophy & Religion</a></li> <li><a href="/browse/Politics-Law-Government">Politics, Law & Government</a></li> <li><a href="/browse/World-History">World History</a></li> </ul> <a href="/Science-Tech">Science & Tech</a> <ul> <li><a href="/browse/Health-Medicine">Health & Medicine</a></li> <li><a href="/browse/Science">Science</a></li> <li><a href="/browse/Technology">Technology</a></li> </ul> <a href="/Biographies">Biographies</a> <ul> <li><a href="/browse/biographies">Browse Biographies</a></li> </ul> <a href="/Animals-Nature">Animals & Nature</a> <ul> <li><a href="/browse/Birds-Reptiles-Vertebrates">Birds, Reptiles & Other Vertebrates</a></li> <li><a href="/browse/Bugs-Mollusks-Invertebrates">Bugs, Mollusks & Other Invertebrates</a></li> <li><a href="/browse/Environment">Environment</a></li> <li><a href="/browse/Fossil-Geologic-Time">Fossils & Geologic Time</a></li> <li><a href="/browse/Mammals">Mammals</a></li> <li><a href="/browse/Plants">Plants</a></li> </ul> <a href="/Geography-Travel">Geography & Travel</a> <ul> <li><a href="/browse/Geography-Travel">Geography & Travel</a></li> </ul> <a href="/Arts-Culture">Arts & Culture</a> <ul> <li><a href="/browse/Entertainment-Pop-Culture">Entertainment & Pop Culture</a></li> <li><a href="/browse/Literature">Literature</a></li> <li><a href="/browse/Sports-Recreation">Sports & Recreation</a></li> <li><a href="/browse/Visual-Arts">Visual Arts</a></li> </ul> <ul> <li><a href="/stories/companion">Companions</a></li> <li><a href="/stories/demystified">Demystified</a></li> <li><a href="/gallery/browse">Image Galleries</a></li> <li><a href="/list/browse">Lists</a></li> <li><a href="/podcasts">Podcasts</a></li> <li><a href="/stories/spotlight">Spotlight</a></li> <li><a href="/summary">Summaries</a></li> <li><a href="/stories/the-forum">The Forum</a></li> <li><a href="/question">Top Questions</a></li> <li><a href="/stories/wtfact">#WTFact</a></li> </ul> <ul> <li><a href="https://kids.britannica.com/">Britannica Kids</a></li> </ul> </div> </div> </header> <div class="bg-navy-dark"> <div class="container-lg p-0 d-flex justify-content-center global-nav-categories-bar overflow-hidden"> <div class="slider js-slider position-relative d-inline-flex align-items-center mw-100 global-nav-slider category-snap-slider"> <div class="slider-container js-slider-container overflow-hidden d-flex font-14 overflow-hidden text-nowrap mx-5"> <a class="nav-bar-category mx-5 category-link-CHATBOT " href="/chatbot">Ask the Chatbot</a> <a class="nav-bar-category mx-5 category-link-QUIZZES " href="/quiz/browse">Games & Quizzes</a> <a class="nav-bar-category mx-5 category-link-HISTORY " href="/History-Society">History & Society</a> <a class="nav-bar-category mx-5 category-link-SCIENCE selected selected" href="/Science-Tech">Science & Tech</a> <a class="nav-bar-category mx-5 category-link-BIOS " href="/Biographies">Biographies</a> <a class="nav-bar-category mx-5 category-link-ANIMALS " href="/Animals-Nature">Animals & Nature</a> <a class="nav-bar-category mx-5 category-link-GEOGRAPHY " href="/Geography-Travel">Geography & Travel</a> <a class="nav-bar-category mx-5 category-link-ART " href="/Arts-Culture">Arts & Culture</a> <a class="nav-bar-category mx-5 category-link-PROCON " href="/procon">ProCon</a> <a class="nav-bar-category mx-5 category-link-MONEY " href="/money">Money</a> <a class="nav-bar-category mx-5 category-link-VIDEOS " href="/videos">Videos</a> </div> <button disabled class="prev-button js-prev-button position-absolute btn btn-circle shadow btn-blue " aria-label="Previous"> <span class="material-icons md-24" data-icon="keyboard_arrow_left"></span> </button> <button disabled class="next-button js-next-button position-absolute btn btn-circle shadow btn-blue " aria-label="Next"> <span class="material-icons md-24" data-icon="keyboard_arrow_right"></span> </button> </div> </div> </div> <main> <div class="md-page-wrapper"> <div id="content" class="md-content"> <div class="md-article-container template-desktop infinite-pagination"> <div class="infinite-scroll-container article last"> <script> Object.assign( window.Mendel.config, { "infiniteScrollList": [{"p":27,"t":369194},{"p":11,"t":14885},{"p":1,"t":89161},{"p":10,"t":229851},{"p":4,"t":422325},{"p":10,"t":564172},{"p":4,"t":599686},{"p":8,"t":536159},{"p":1,"t":213751},{"p":1,"t":2228673}], "sequence": 25, "topics": {} }); </script> <article class="article-content container-lg qa-content px-0 pt-0 pb-40 py-lg-20 content md-expanded" data-topic-id="369194"> <div class="grid gx-0"> <div class="col-auto"> <div class="topic-left-rail md-article-drawer position-relative d-flex border-right-sm border-left-sm open"> <div class="drawer d-flex flex-column open"> <div class="left-rail-section-content"> <div class="topic-left-rail-header text-truncate bg-gray-50 position-relative text-right d-flex align-items-center"> <div class="tlr-title px-20 py-15 text-left"> <em class="material-icons text-gray-400 d-lg-none" data-icon="toc"></em> <a class="font-serif font-weight-bold text-black link-blue" href="https://www.britannica.com/science/mathematics">mathematics</a> </div> <button aria-label="Close" class="js-sections-close-button btn-link btn-sm btn d-lg-none position-absolute top-0 p-10 right-0" > <em class="material-icons font-26" data-icon="close"></em> </button> </div> <div class="section-content pl-10 pr-20 pl-sm-50 pr-sm-60 pl-lg-5 pr-lg-10 pt-10 pt-lg-0 bg-gray-50 clear-catfish-ad"> <div class="toc mb-20"> <div class="font-serif font-14 font-weight-bold mx-15 mb-15 mt-20"> Table of Contents </div> <ul class="list-unstyled my-0" data-level="h1"><li data-target="#ref1"><div class="pl-25"><a class="link-gray-900 w-100" href="/science/mathematics">Introduction</a></div><div class="ml-40 toc-drawer sub-toc-drawer"></div></li><li data-target="#ref253521"><div class="d-flex align-items-center"><div class="ml-25"></div><a class="w-100 link-gray-900" href="/science/mathematics/Ancient-mathematical-sources">Ancient mathematical sources</a></div><div class="ml-40 toc-drawer sub-toc-drawer"></div></li><li data-target="#ref65969"><div class="d-flex align-items-center"><button class="h1-link-drawer-button btn btn-xs btn-circle d-flex rounded" type="button" aria-label="Toggle Heading"><em class="material-icons font-18" data-icon="keyboard_arrow_right"></em></button><a class="w-100 link-gray-900" href="/science/mathematics/Ancient-mathematical-sources#ref65969">Mathematics in ancient Mesopotamia</a></div><div class="ml-40 toc-drawer sub-toc-drawer"><ul class="list-unstyled" data-level="h2"><li data-target="#ref65970"><a class="w-100 link-gray-900" href="/science/mathematics/Ancient-mathematical-sources#ref65970">The numeral system and arithmetic operations</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref65971"><a class="w-100 link-gray-900" href="/science/mathematics/Geometric-and-algebraic-problems">Geometric and algebraic problems</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref65972"><a class="w-100 link-gray-900" href="/science/mathematics/Geometric-and-algebraic-problems#ref65972">Mathematical astronomy</a></li></ul></div></li><li data-target="#ref65973"><div class="d-flex align-items-center"><button class="h1-link-drawer-button btn btn-xs btn-circle d-flex rounded" type="button" aria-label="Toggle Heading"><em class="material-icons font-18" data-icon="keyboard_arrow_right"></em></button><a class="w-100 link-gray-900" href="/science/mathematics/Mathematics-in-ancient-Egypt">Mathematics in ancient Egypt</a></div><div class="ml-40 toc-drawer sub-toc-drawer"><ul class="list-unstyled" data-level="h2"><li data-target="#ref65974"><a class="w-100 link-gray-900" href="/science/mathematics/Mathematics-in-ancient-Egypt#ref65974">The numeral system and arithmetic operations</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref65975"><a class="w-100 link-gray-900" href="/science/mathematics/Mathematics-in-ancient-Egypt#ref65975">Geometry</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref65976"><a class="w-100 link-gray-900" href="/science/mathematics/Assessment-of-Egyptian-mathematics">Assessment of Egyptian mathematics</a></li></ul></div></li><li data-target="#ref65977"><div class="d-flex align-items-center"><button class="h1-link-drawer-button btn btn-xs btn-circle d-flex rounded" type="button" aria-label="Toggle Heading"><em class="material-icons font-18" data-icon="keyboard_arrow_right"></em></button><a class="w-100 link-gray-900" href="/science/mathematics/Assessment-of-Egyptian-mathematics#ref65977">Greek mathematics</a></div><div class="ml-40 toc-drawer sub-toc-drawer"><ul class="list-unstyled" data-level="h2"><li data-target="#ref65978"><a class="w-100 link-gray-900" href="/science/mathematics/Assessment-of-Egyptian-mathematics#ref65978">The development of pure mathematics</a><ul class="list-unstyled" data-level="h3"><li data-target="#ref65979"><a class="w-100 link-gray-900" href="/science/mathematics/Assessment-of-Egyptian-mathematics#ref65979">The pre-Euclidean period</a></li></ul><ul class="list-unstyled" data-level="h3"><li data-target="#ref65980"><a class="w-100 link-gray-900" href="/science/mathematics/Assessment-of-Egyptian-mathematics#ref65980">The <em>Elements</em></a></li></ul><ul class="list-unstyled" data-level="h3"><li data-target="#ref65981"><a class="w-100 link-gray-900" href="/science/mathematics/The-three-classical-problems">The three classical problems</a></li></ul></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref65982"><a class="w-100 link-gray-900" href="/science/mathematics/The-three-classical-problems#ref65982">Geometry in the 3rd century <span class="text-smallcaps">bce</span></a><ul class="list-unstyled" data-level="h3"><li data-target="#ref65983"><a class="w-100 link-gray-900" href="/science/mathematics/The-three-classical-problems#ref65983">Archimedes</a></li></ul><ul class="list-unstyled" data-level="h3"><li data-target="#ref65984"><a class="w-100 link-gray-900" href="/science/mathematics/Apollonius">Apollonius</a></li></ul><ul class="list-unstyled" data-level="h3"><li data-target="#ref65985"><a class="w-100 link-gray-900" href="/science/mathematics/Applied-geometry">Applied geometry</a></li></ul></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref65986"><a class="w-100 link-gray-900" href="/science/mathematics/Applied-geometry#ref65986">Later trends in geometry and arithmetic</a><ul class="list-unstyled" data-level="h3"><li data-target="#ref65987"><a class="w-100 link-gray-900" href="/science/mathematics/Applied-geometry#ref65987">Greek trigonometry and mensuration</a></li></ul><ul class="list-unstyled" data-level="h3"><li data-target="#ref65988"><a class="w-100 link-gray-900" href="/science/mathematics/Number-theory">Number theory</a></li></ul><ul class="list-unstyled" data-level="h3"><li data-target="#ref65989"><a class="w-100 link-gray-900" href="/science/mathematics/Number-theory#ref65989">Survival and influence of Greek mathematics</a></li></ul></li></ul></div></li><li data-target="#ref65990"><div class="d-flex align-items-center"><button class="h1-link-drawer-button btn btn-xs btn-circle d-flex rounded" type="button" aria-label="Toggle Heading"><em class="material-icons font-18" data-icon="keyboard_arrow_right"></em></button><a class="w-100 link-gray-900" href="/science/mathematics/Mathematics-in-the-Islamic-world-8th-15th-century">Mathematics in the Islamic world (8th–15th century)</a></div><div class="ml-40 toc-drawer sub-toc-drawer"><ul class="list-unstyled" data-level="h2"><li data-target="#ref65991"><a class="w-100 link-gray-900" href="/science/mathematics/Mathematics-in-the-Islamic-world-8th-15th-century#ref65991">Origins</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref65992"><a class="w-100 link-gray-900" href="/science/mathematics/Mathematics-in-the-Islamic-world-8th-15th-century#ref65992">Mathematics in the 9th century</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref65993"><a class="w-100 link-gray-900" href="/science/mathematics/Mathematics-in-the-Islamic-world-8th-15th-century#ref65993">Mathematics in the 10th century</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref65994"><a class="w-100 link-gray-900" href="/science/mathematics/Omar-Khayyam">Omar Khayyam</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref65995"><a class="w-100 link-gray-900" href="/science/mathematics/Omar-Khayyam#ref65995">Islamic mathematics to the 15th century</a></li></ul></div></li><li data-target="#ref65996"><div class="d-flex align-items-center"><button class="h1-link-drawer-button btn btn-xs btn-circle d-flex rounded" type="button" aria-label="Toggle Heading"><em class="material-icons font-18" data-icon="keyboard_arrow_right"></em></button><a class="w-100 link-gray-900" href="/science/mathematics/Omar-Khayyam#ref65996">European mathematics during the Middle Ages and Renaissance</a></div><div class="ml-40 toc-drawer sub-toc-drawer"><ul class="list-unstyled" data-level="h2"><li data-target="#ref65997"><a class="w-100 link-gray-900" href="/science/mathematics/The-transmission-of-Greek-and-Arabic-learning">The transmission of Greek and Arabic learning</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref65998"><a class="w-100 link-gray-900" href="/science/mathematics/The-transmission-of-Greek-and-Arabic-learning#ref65998">The universities</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref65999"><a class="w-100 link-gray-900" href="/science/mathematics/The-transmission-of-Greek-and-Arabic-learning#ref65999">The Renaissance</a></li></ul></div></li><li data-target="#ref66000"><div class="d-flex align-items-center"><button class="h1-link-drawer-button btn btn-xs btn-circle d-flex rounded" type="button" aria-label="Toggle Heading"><em class="material-icons font-18" data-icon="keyboard_arrow_right"></em></button><a class="w-100 link-gray-900" href="/science/mathematics/Mathematics-in-the-17th-and-18th-centuries">Mathematics in the 17th and 18th centuries</a></div><div class="ml-40 toc-drawer sub-toc-drawer"><ul class="list-unstyled" data-level="h2"><li data-target="#ref66001"><a class="w-100 link-gray-900" href="/science/mathematics/Mathematics-in-the-17th-and-18th-centuries#ref66001">The 17th century</a><ul class="list-unstyled" data-level="h3"><li data-target="#ref66002"><a class="w-100 link-gray-900" href="/science/mathematics/Mathematics-in-the-17th-and-18th-centuries#ref66002">Institutional background</a></li></ul><ul class="list-unstyled" data-level="h3"><li data-target="#ref66003"><a class="w-100 link-gray-900" href="/science/mathematics/Mathematics-in-the-17th-and-18th-centuries#ref66003">Numerical calculation</a></li></ul><ul class="list-unstyled" data-level="h3"><li data-target="#ref66004"><a class="w-100 link-gray-900" href="/science/mathematics/Analytic-geometry">Analytic geometry</a></li></ul><ul class="list-unstyled" data-level="h3"><li data-target="#ref66005" class="has-children"><a class="w-100 link-gray-900" href="/science/mathematics/The-calculus">The calculus</a><ul class="list-unstyled" data-level="h4"><li data-target="#ref66006"><a class="w-100 link-gray-900" href="/science/mathematics/The-calculus#ref66006">The precalculus period</a></li></ul><ul class="list-unstyled" data-level="h4"><li data-target="#ref66007"><a class="w-100 link-gray-900" href="/science/mathematics/Newton-and-Leibniz">Newton and Leibniz</a></li></ul></li></ul></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref66008"><a class="w-100 link-gray-900" href="/science/mathematics/Newton-and-Leibniz#ref66008">The 18th century</a><ul class="list-unstyled" data-level="h3"><li data-target="#ref66009"><a class="w-100 link-gray-900" href="/science/mathematics/Newton-and-Leibniz#ref66009">Institutional background</a></li></ul><ul class="list-unstyled" data-level="h3"><li data-target="#ref66010"><a class="w-100 link-gray-900" href="/science/mathematics/Analysis-and-mechanics">Analysis and mechanics</a></li></ul><ul class="list-unstyled" data-level="h3"><li data-target="#ref66011"><a class="w-100 link-gray-900" href="/science/mathematics/Analysis-and-mechanics#ref66011">History of analysis</a></li></ul></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref66012"><a class="w-100 link-gray-900" href="/science/mathematics/Analysis-and-mechanics#ref66012">Other developments</a><ul class="list-unstyled" data-level="h3"><li data-target="#ref66013"><a class="w-100 link-gray-900" href="/science/mathematics/Theory-of-equations">Theory of equations</a></li></ul><ul class="list-unstyled" data-level="h3"><li data-target="#ref66014"><a class="w-100 link-gray-900" href="/science/mathematics/Theory-of-equations#ref66014">Foundations of geometry</a></li></ul></li></ul></div></li><li data-target="#ref335980"><div class="d-flex align-items-center"><button class="h1-link-drawer-button btn btn-xs btn-circle d-flex rounded" type="button" aria-label="Toggle Heading"><em class="material-icons font-18" data-icon="keyboard_arrow_right"></em></button><a class="w-100 link-gray-900" href="/science/mathematics/Mathematics-in-the-19th-century">Mathematics in the 19th century</a></div><div class="ml-40 toc-drawer sub-toc-drawer"><ul class="list-unstyled" data-level="h2"><li data-target="#ref337058"><a class="w-100 link-gray-900" href="/science/mathematics/Mathematics-in-the-19th-century#ref337058">Projective geometry</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref337059"><a class="w-100 link-gray-900" href="/science/mathematics/Mathematics-in-the-19th-century#ref337059">Making the calculus rigorous</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref337060"><a class="w-100 link-gray-900" href="/science/mathematics/Fourier-series">Fourier series</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref337061"><a class="w-100 link-gray-900" href="/science/mathematics/Fourier-series#ref337061">Elliptic functions</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref337062"><a class="w-100 link-gray-900" href="/science/mathematics/Fourier-series#ref337062">The theory of numbers</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref337063"><a class="w-100 link-gray-900" href="/science/mathematics/The-theory-of-equations">The theory of equations</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref337064"><a class="w-100 link-gray-900" href="/science/mathematics/The-theory-of-equations#ref337064">Gauss</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref337065"><a class="w-100 link-gray-900" href="/science/mathematics/The-theory-of-equations#ref337065">Non-Euclidean geometry</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref337066"><a class="w-100 link-gray-900" href="/science/mathematics/Riemann">Riemann</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref337067"><a class="w-100 link-gray-900" href="/science/mathematics/Riemann#ref337067">Riemann’s influence</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref337068"><a class="w-100 link-gray-900" href="/science/mathematics/Differential-equations">Differential equations</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref337069"><a class="w-100 link-gray-900" href="/science/mathematics/Differential-equations#ref337069">Linear algebra</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref337070"><a class="w-100 link-gray-900" href="/science/mathematics/Differential-equations#ref337070">The foundations of geometry</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref337071"><a class="w-100 link-gray-900" href="/science/mathematics/Differential-equations#ref337071">The foundations of mathematics</a></li></ul></div></li><li data-target="#ref337072"><div class="d-flex align-items-center"><button class="h1-link-drawer-button btn btn-xs btn-circle d-flex rounded" type="button" aria-label="Toggle Heading"><em class="material-icons font-18" data-icon="keyboard_arrow_right"></em></button><a class="w-100 link-gray-900" href="/science/mathematics/Mathematics-in-the-20th-and-21st-centuries">Mathematics in the 20th and 21st centuries</a></div><div class="ml-40 toc-drawer sub-toc-drawer"><ul class="list-unstyled" data-level="h2"><li data-target="#ref66030"><a class="w-100 link-gray-900" href="/science/mathematics/Mathematics-in-the-20th-and-21st-centuries#ref66030">Cantor</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref66031"><a class="w-100 link-gray-900" href="/science/mathematics/Mathematics-in-the-20th-and-21st-centuries#ref66031">Mathematical physics</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref66032"><a class="w-100 link-gray-900" href="/science/mathematics/Algebraic-topology">Algebraic topology</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref66033"><a class="w-100 link-gray-900" href="/science/mathematics/Algebraic-topology#ref66033">Developments in pure mathematics</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref66034"><a class="w-100 link-gray-900" href="/science/mathematics/Mathematical-physics-and-the-theory-of-groups">Mathematical physics and the theory of groups</a></li></ul><ul class="list-unstyled" data-level="h2"><li data-target="#ref335981"><a class="w-100 link-gray-900" href="/science/mathematics/Probabilistic-mathematics">Probabilistic mathematics</a></li></ul></div></li></ul> <a class="toc-extra-link link-gray-900" href="https://www.britannica.com/science/mathematics/additional-info">References & Edit History</a> <a class="toc-extra-link link-gray-900" href="/facts/mathematics">Quick Facts & Related Topics</a> </div> <div class="tlr-media-slider pb-10 mb-30"> <a class="section-header link-gray-900 font-serif font-14 font-weight-bold mb-10 mx-10" href="https://www.britannica.com/science/mathematics/images-videos">Images & Videos</a> <div class="slider js-slider position-relative d-inline-flex align-items-center mw-100 "> <div class="slider-container js-slider-container overflow-hidden d-flex overflow-hidden text-nowrap ml-15"> <a href="https://cdn.britannica.com/54/2354-050-B47B3735/Babylonian-tablet.jpg" data-href="/media/1/369194/2213" class="media-overlay-link d-inline-block mr-5"> <img loading="lazy" src="https://cdn.britannica.com/54/2354-004-969C8844/Babylonian-tablet.jpg" alt="Babylonian mathematical tablet" height="50" /> </a> <a href="https://cdn.britannica.com/92/74892-050-8F76B0AA/Egyptians-right-left-system-power-symbols.jpg" data-href="/media/1/369194/68823" class="media-overlay-link d-inline-block mr-5"> <img loading="lazy" src="https://cdn.britannica.com/92/74892-004-4EFCA3ED/Egyptians-right-left-system-power-symbols.jpg" alt="Ancient Egyptian numerals" height="50" /> </a> <a href="https://cdn.britannica.com/93/74893-050-AF385FBC/Egyptian-numerals.jpg" data-href="/media/1/369194/68835" class="media-overlay-link d-inline-block mr-5"> <img loading="lazy" src="https://cdn.britannica.com/93/74893-004-93F0C348/Egyptian-numerals.jpg" alt="Egyptian hieratic numerals" height="50" /> </a> <a href="https://cdn.britannica.com/02/69702-050-1C1B19A6/reciprocal-seked-Egyptian-run-ratio-Egyptians-definition.jpg" data-href="/media/1/369194/59963" class="media-overlay-link d-inline-block mr-5"> <img loading="lazy" src="https://cdn.britannica.com/02/69702-004-599357AC/reciprocal-seked-Egyptian-run-ratio-Egyptians-definition.jpg" alt="Egyptian seked" height="50" /> </a> <a href="https://cdn.britannica.com/61/67361-050-F48C1CC9/map-millennium-mathematicians-Greco-Roman-Thales-Hypatia-Alexandria.jpg" data-href="/media/1/369194/57444" class="media-overlay-link d-inline-block mr-5"> <img loading="lazy" src="https://cdn.britannica.com/61/67361-004-46CBD13A/map-millennium-mathematicians-Greco-Roman-Thales-Hypatia-Alexandria.jpg" alt="mathematicians of the Greco-Roman world" height="50" /> </a> <a href="https://cdn.britannica.com/06/80206-004-F6463F0F/cube-Menaechmus-volume-solution-problem-two-curves.jpg" data-href="/media/1/369194/90066" class="media-overlay-link d-inline-block mr-5"> <img loading="lazy" src="https://cdn.britannica.com/06/80206-004-F6463F0F/cube-Menaechmus-volume-solution-problem-two-curves.jpg" alt="doubling the volume of a cube" height="50" /> </a> <a href="https://cdn.britannica.com/11/66811-050-C6924436/circumscribing-cylinder-Sphere-volume-sphere-surface-area.jpg" data-href="/media/1/369194/57320" class="media-overlay-link d-inline-block mr-5"> <img loading="lazy" src="https://cdn.britannica.com/11/66811-004-96E09D0B/circumscribing-cylinder-Sphere-volume-sphere-surface-area.jpg" alt="sphere with circumscribing cylinder" height="50" /> </a> <a href="https://cdn.britannica.com/40/840-004-543CF3D4/sections-plane-figure-cone-families-ellipse-parabola.jpg" data-href="/media/1/369194/1743" class="media-overlay-link d-inline-block mr-5"> <img loading="lazy" src="https://cdn.britannica.com/40/840-004-543CF3D4/sections-plane-figure-cone-families-ellipse-parabola.jpg" alt="conic sections" height="50" /> </a> <a href="https://cdn.britannica.com/08/80208-004-0CEE43E7/curve-Conchoid-lines-P-distance-line-points.jpg" data-href="/media/1/369194/74591" class="media-overlay-link d-inline-block mr-5"> <img loading="lazy" src="https://cdn.britannica.com/08/80208-004-0CEE43E7/curve-Conchoid-lines-P-distance-line-points.jpg" alt="conchoid curve" height="50" /> </a> <a href="https://cdn.britannica.com/09/80209-004-F51212B2/Nicomedes-angle-conchoid-Angle-trisection-curve-side.jpg" data-href="/media/1/369194/90801" class="media-overlay-link d-inline-block mr-5"> <img loading="lazy" src="https://cdn.britannica.com/09/80209-004-F51212B2/Nicomedes-angle-conchoid-Angle-trisection-curve-side.jpg" alt="angle trisection using a conchoid" height="50" /> </a> </div> <button disabled class="prev-button js-prev-button position-absolute btn btn-circle shadow btn-blue " aria-label="Previous"> <span class="material-icons md-24" data-icon="keyboard_arrow_left"></span> </button> <button disabled class="next-button js-next-button position-absolute btn btn-circle shadow btn-blue " aria-label="Next"> <span class="material-icons md-24" data-icon="keyboard_arrow_right"></span> </button> </div> </div> <div class="mb-30 tlr-student-links"> <div class="text-gray-900 p-5 font-serif font-14 font-weight-bold mx-10 mb-10"> For Students </div> <div class="imagelink-with-image-on-the-side card card-horizontal tlr-img-with-side-link ml-15 link-gray-900 mb-10" > <div class="position-relative card-media" style="flex: 0;"> <a class="ilf-image position-relative" href="/summary/mathematics"> <img loading="lazy" src="https://cdn.britannica.com/mendel-resources/3-133/images/shared/default3.png?v=3.133.9" class="default " height="200" width="200"/> </a> </div> <div class="card-body ilf-content"> <a class="font-weight-semi-bold d-block mb-5 font-16 ilf-title" href="/summary/mathematics" >mathematics summary</a> </div> </div> </div> <div class="mb-30 tlr-related-quizzes"> <div class="text-gray-900 p-5 font-serif font-14 font-weight-bold mx-10 mb-10"> Quizzes </div> <div class="imagelink-with-image-on-the-side card card-horizontal tlr-img-with-side-link ml-15 link-gray-900 mb-10" > <div class="position-relative card-media" style="flex: 0;"> <a class="ilf-image position-relative" href="/quiz/Numbers-and-mathematics"> <img loading="lazy" src="https://cdn.britannica.com/86/94086-131-0BAE374D/Equations-blackboard.jpg?w=200&h=200&c=crop" alt="Equations written on blackboard" width="200" height="200" /> </a> </div> <div class="card-body ilf-content"> <a class="font-weight-semi-bold d-block mb-5 font-16 ilf-title" href="/quiz/Numbers-and-mathematics" >Numbers and Mathematics</a> </div> </div> <div class="imagelink-with-image-on-the-side card card-horizontal tlr-img-with-side-link ml-15 link-gray-900 mb-10" > <div class="position-relative card-media" style="flex: 0;"> <a class="ilf-image position-relative" href="/quiz/fun-facts-of-measurement-math"> <img loading="lazy" src="https://cdn.britannica.com/68/166068-131-03976F7B/barometer-Barometer-Technology-measurement-readout-pressure-mathematics.jpg?w=200&h=200&c=crop" alt="barometer. Antique Barometer with readout. Technology measurement, mathematics, measure atmospheric pressure" width="200" height="200" /> </a> </div> <div class="card-body ilf-content"> <a class="font-weight-semi-bold d-block mb-5 font-16 ilf-title" href="/quiz/fun-facts-of-measurement-math" >Fun Facts of Measurement & Math</a> </div> </div> <div class="imagelink-with-image-on-the-side card card-horizontal tlr-img-with-side-link ml-15 link-gray-900 mb-10" > <div class="position-relative card-media" style="flex: 0;"> <a class="ilf-image position-relative" href="/quiz/define-it-math-terms"> <img loading="lazy" src="https://cdn.britannica.com/01/115001-131-7278E518/Enrico-Fermi-Italian-problem-physics-1950.jpg?w=200&h=200&c=crop" alt="Italian-born physicist Dr. Enrico Fermi draws a diagram at a blackboard with mathematical equations. circa 1950." width="200" height="200" /> </a> </div> <div class="card-body ilf-content"> <a class="font-weight-semi-bold d-block mb-5 font-16 ilf-title" href="/quiz/define-it-math-terms" >Define It: Math Terms</a> </div> </div> </div> <div class="mb-30 tlr-read-next"> <div class="text-gray-900 p-5 font-serif font-14 font-weight-bold mx-10 mb-10"> Read Next </div> <div class="imagelink-with-image-on-the-side card card-horizontal tlr-img-with-side-link ml-15 link-gray-900 mb-10" > <div class="position-relative card-media" style="flex: 0;"> <a class="ilf-image position-relative" href="/story/is-zero-an-even-or-an-odd-number"> <img loading="lazy" src="https://cdn.britannica.com/49/191949-131-3E2AC277/balloon.jpg?w=200&h=200&c=crop" alt="number zero, 0 balloon" width="200" height="200" /> </a> </div> <div class="card-body ilf-content"> <a class="font-weight-semi-bold d-block mb-5 font-16 ilf-title" href="/story/is-zero-an-even-or-an-odd-number" >Is Zero an Even or an Odd Number?</a> </div> </div> <div class="imagelink-with-image-on-the-side card card-horizontal tlr-img-with-side-link ml-15 link-gray-900 mb-10" > <div class="position-relative card-media" style="flex: 0;"> <a class="ilf-image position-relative" href="/story/unusual-counting-systems"> <img loading="lazy" src="https://cdn.britannica.com/41/191041-131-7ECE668A/bunch-numbers.jpg?w=200&h=200&c=crop" alt="bunch of numbers" width="200" height="200" /> </a> </div> <div class="card-body ilf-content"> <a class="font-weight-semi-bold d-block mb-5 font-16 ilf-title" href="/story/unusual-counting-systems" >Unusual Counting Systems</a> </div> </div> <div class="imagelink-with-image-on-the-side card card-horizontal tlr-img-with-side-link ml-15 link-gray-900 mb-10" > <div class="position-relative card-media" style="flex: 0;"> <a class="ilf-image position-relative" href="/story/how-fast-is-the-universe-expanding"> <img loading="lazy" src="https://cdn.britannica.com/27/238127-131-9A610712/galaxy-cluster-Abell-2744.jpg?w=200&h=200&c=crop" alt="Galaxy clusters like Abell 2744 can act as a natural cosmic lens, magnifying light from more distant, background objects through gravity. NASA's James Webb Space Telescope may be able to detect light from the first stars in the universe if they are gravitationally lensed by such clusters. (astronomy, space exploration, galaxies)" width="200" height="200" /> </a> </div> <div class="card-body ilf-content"> <a class="font-weight-semi-bold d-block mb-5 font-16 ilf-title" href="/story/how-fast-is-the-universe-expanding" >How Fast Is the Universe Expanding?</a> </div> </div> </div> <div class="mb-30 tlr-discover"> <div class="text-gray-900 p-5 font-serif font-14 font-weight-bold mx-10 mb-10"> Discover </div> <div class="imagelink-with-image-on-the-side card card-horizontal tlr-img-with-side-link ml-15 link-gray-900 mb-10" > <div class="position-relative card-media" style="flex: 0;"> <a class="ilf-image position-relative" href="/story/6-important-mughal-emperors"> <img loading="lazy" src="https://cdn.britannica.com/09/172209-131-02E18D09/Shah-Jahan-watercolour-gold-ink-paper-1690.jpg?w=200&h=200&c=crop" alt="Shah Jahan. Taj Mahal. Mughal architecture. Emperor Shah Jahan fifth Mughal Emperor (reigned 1628-1658) India, Himachal Pradesh, Basohli or Jammu and Kashmir, Mankot, circa 1690 Drawings; Opaque watercolor, gold, and ink on paper (see notes)" width="200" height="200" /> </a> </div> <div class="card-body ilf-content"> <a class="font-weight-semi-bold d-block mb-5 font-16 ilf-title" href="/story/6-important-mughal-emperors" >6 Important Mughal Emperors</a> </div> </div> <div class="imagelink-with-image-on-the-side card card-horizontal tlr-img-with-side-link ml-15 link-gray-900 mb-10" > <div class="position-relative card-media" style="flex: 0;"> <a class="ilf-image position-relative" href="/list/10-women-scientists-who-should-be-famous-or-more-famous"> <img loading="lazy" src="https://cdn.britannica.com/38/148438-131-7A2FD02E/Maria-Telkes.jpg?w=200&h=200&c=crop" alt="Dr. Maria Telkes, September 4, 1956." width="200" height="200" /> </a> </div> <div class="card-body ilf-content"> <a class="font-weight-semi-bold d-block mb-5 font-16 ilf-title" href="/list/10-women-scientists-who-should-be-famous-or-more-famous" >10 Women Scientists Who Should Be Famous (or More Famous)</a> </div> </div> <div class="imagelink-with-image-on-the-side card card-horizontal tlr-img-with-side-link ml-15 link-gray-900 mb-10" > <div class="position-relative card-media" style="flex: 0;"> <a class="ilf-image position-relative" href="/story/how-many-countries-are-there-in-the-world"> <img loading="lazy" src="https://cdn.britannica.com/27/238527-131-D73B3F08/flagpoles-world-countries.jpg?w=200&h=200&c=crop" alt="Flags of the countries of the world (flagpoles)." width="200" height="200" /> </a> </div> <div class="card-body ilf-content"> <a class="font-weight-semi-bold d-block mb-5 font-16 ilf-title" href="/story/how-many-countries-are-there-in-the-world" >How Many Countries Are There in the World?</a> </div> </div> <div class="imagelink-with-image-on-the-side card card-horizontal tlr-img-with-side-link ml-15 link-gray-900 mb-10" > <div class="position-relative card-media" style="flex: 0;"> <a class="ilf-image position-relative" href="/story/who-was-the-woman-behind-the-statue-of-liberty"> <img loading="lazy" src="https://cdn.britannica.com/61/93061-131-ABCDE075/Statue-of-Liberty-Island-New-York-Bay.jpg?w=200&h=200&c=crop" alt="Statue of Liberty in front of the skyline of Manhattan, New York City, New York." width="200" height="200" /> </a> </div> <div class="card-body ilf-content"> <a class="font-weight-semi-bold d-block mb-5 font-16 ilf-title" href="/story/who-was-the-woman-behind-the-statue-of-liberty" >Who Was the Woman Behind the Statue of Liberty?</a> </div> </div> <div class="imagelink-with-image-on-the-side card card-horizontal tlr-img-with-side-link ml-15 link-gray-900 mb-10" > <div class="position-relative card-media" style="flex: 0;"> <a class="ilf-image position-relative" href="/story/is-spontaneous-human-combustion-real"> <img loading="lazy" src="https://cdn.britannica.com/07/195407-131-BF6F47C2/Illustration-Spontaneous-human-combustion.jpg?w=200&h=200&c=crop" alt="Illustration for Demystified "Spontaneous human combustion"." width="200" height="200" /> </a> </div> <div class="card-body ilf-content"> <a class="font-weight-semi-bold d-block mb-5 font-16 ilf-title" href="/story/is-spontaneous-human-combustion-real" >Is Spontaneous Human Combustion Real?</a> </div> </div> <div class="imagelink-with-image-on-the-side card card-horizontal tlr-img-with-side-link ml-15 link-gray-900 mb-10" > <div class="position-relative card-media" style="flex: 0;"> <a class="ilf-image position-relative" href="/list/10-democrats-who-made-history"> <img loading="lazy" src="https://cdn.britannica.com/89/164789-131-D3197AD4/Barack-Obama-2012.jpg?w=200&h=200&c=crop" alt="United States Presidential Election of 2012. Mitt Romney. Official portrait of President Barack Obama in the Oval Office, Dec. 6, 2012 after his reelection Nov. 6, 2012. Official portrait Obama" width="200" height="200" /> </a> </div> <div class="card-body ilf-content"> <a class="font-weight-semi-bold d-block mb-5 font-16 ilf-title" href="/list/10-democrats-who-made-history" >10 Democrats Who Made History</a> </div> </div> <div class="imagelink-with-image-on-the-side card card-horizontal tlr-img-with-side-link ml-15 link-gray-900 mb-10" > <div class="position-relative card-media" style="flex: 0;"> <a class="ilf-image position-relative" href="/list/secret-service-code-names-of-11-us-presidents"> <img loading="lazy" src="https://cdn.britannica.com/45/189145-131-45FF672E/Secret-Service-Agent-Earpiece.jpg?w=200&h=200&c=crop" alt="Secret Service Agent Listens To Earpiece" width="200" height="200" /> </a> </div> <div class="card-body ilf-content"> <a class="font-weight-semi-bold d-block mb-5 font-16 ilf-title" href="/list/secret-service-code-names-of-11-us-presidents" >Secret Service Code Names of 11 U.S. Presidents</a> </div> </div> </div> </div> </div> </div> <button class="drawerToggle btn position-sticky border btn-xs btn-white btn-circle rounded-sm d-none d-lg-flex " type="button" aria-label="Toggle Drawer"> <em class="material-icons font-18 text-blue" data-icon="keyboard_arrow_left"></em> </button> </div> </div> <div class="col"> <div class="h-100 ml-0 pr-lg-0 "> <div class="h-100 grid gx-0 gx-lg-20"> <div class="h-100 col-sm"> <div class="h-100 infinite-pagination-container d-flex flex-column position-relative"> <div class="position-absolute top-0 h-100 w-100"> <div class="toc-sticky-header d-none d-lg-none bg-gray-50 px-10 px-sm-30 position-sticky w-100 "> <div class="toc-sticky-header-inner-container align-items-center d-flex mx-auto h-100 w-100"> <button class="d-flex d-lg-none btn btn-sm btn-white text-blue border-2 border-gray-100 gtm-mobile-toc-header-button js-sections-button d-lg-none p-10"> <em class="material-icons my-n5 md-icon" data-icon="toc"></em> Contents </button> <div class="header-ai-ask-button-placeholder"></div> <div class="header-ai-summarize-button-placeholder"></div> </div> </div> </div> <div class="grey-box w-100 grey-box-top"> <div class="grey-box-content mx-auto w-100"> <script type="application/ld+json"> { "@context" : "https://schema.org", "@type" : "BreadcrumbList", "itemListElement" : [ { "@type" : "ListItem", "position" : 1, "item" : { "@id" : "https://www.britannica.com/browse/Science", "name": "Science" } } , { "@type" : "ListItem", "position" : 2, "item" : { "@id" : "https://www.britannica.com/browse/Mathematics", "name": "Mathematics" } } ] } </script> <nav class="breadcrumb mt-20"> <span class="breadcrumb-item "> <a class="link-gray-600" href="/browse/Science">Science</a> </span> <span class="breadcrumb-item "> <a class="link-gray-600" href="/browse/Mathematics">Mathematics</a> </span> </nav> <div class="page2ref-true topic-content topic-type-REGULAR" data-student-article="true"> <script class="page-description-json" type="application/json"> { "url": "/science/mathematics/Algebraic-topology", "shareUrl": "https://www.britannica.com/science/mathematics", "browserTitle": "Mathematics - Algebraic Topology, Homology, Cohomology", "firstTopicPage": false, "topicId":369194 } </script> <div class="reading-channel"> <div class="topic-header"> <div class="d-flex align-items-top justify-content-between"> <div class="d-flex flex-column"> <div> <div> <h2 class="h2"><span id="ref536600"></span><a href="https://www.britannica.com/science/algebraic-topology" class="md-crosslink " data-show-preview="true">Algebraic topology</a></h2></div> <div class="in-container"> <em class="material-icons in-arrow" data-icon="subdirectory_arrow_right"></em> <span class="in-bc">in</span><a class="in-link" href="https://www.britannica.com/science/mathematics">mathematics</a> <span class="in-bc">in</span><a class="in-link" href="/science/mathematics/Mathematics-in-the-20th-and-21st-centuries">Mathematics in the 20th and 21st centuries</a> </div> </div> </div> </div> <div class="d-none d-sm-flex flex-row"> <div class="mr-10 mb-15"> <button class="ai-ask-button btn border-2 btn-sm js-inline-ai-ask-button btn-outline-red-400 border-red-400"> Ask the Chatbot a Question </button> </div> <div class="d-block md-topic-tools qa-action-buttons mb-15" data-topic-id="369194"> <button class="js-tooltip btn btn-sm btn-outline-blue border pr-10 border-2 text-nowrap" > <em class="material-icons md-icon ml-n10 my-n5 mr-5" data-icon="more_vert"></em> More Actions </button> <div class="md-more-popover popover popover-sm p-0 font-14 z-1"> <div> <button class="js-print-modal-button js-modal gtm-topic-tool btn btn-sm btn-link gtm-topic-tool font-weight-bold btn-link" data-modal="[data-topic-id=369194] .md-print-modal" > <em class="material-icons mr-5 ml-n10 my-n5 md-icon" data-icon="print"></em> Print </button> <div class="md-print-modal size-lg d-none"> <div class="md-modal-body"> <div class="h2 font-serif d-flex align-items-center pb-15 border-bottom"> <em class="material-icons text-blue mr-10">print</em> Print </div> <div class="mt-20 mb-10"> Please select which sections you would like to print: </div> <form action="/print/article/369194" method="post" target="_blank" rel="noopener"> <div class="print-box-items"> <ul class="list-unstyled"> <li><label><input class="mr-10" type="checkbox" name="sequence[]" value="0">Table Of Contents</label></li> </ul> </div> <input type="submit" class="btn btn-blue md-disabled" value="Print" /> </form> </div> </div> </div> <div> <button class="js-modal qa-cite-modal-button btn btn-sm btn-link gtm-topic-tool font-weight-bold btn-link" data-modal="[data-topic-id=369194] .md-cite-modal"> <em class="material-icons mr-5 ml-n10 my-n5 md-icon" data-icon="verified"></em> Cite </button> <div class="md-cite-modal size-lg d-none"> <div class="md-modal-body"> <div class="h2 font-serif d-flex align-items-center pb-15 border-bottom mb-15"> <em class="material-icons text-blue mr-10">verified</em>Cite </div> <div class="font-serif"> While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions. </div> <div class="label mt-20 mb-10">Select Citation Style</div> <select class="js-citation-format-select form-select"> <option selected value="mla">MLA</option> <option value="apa">APA</option> <option value="chicago">Chicago Manual of Style</option> </select> <div class="citation font-serif border rounded p-15 mt-20" data-authors="Fraser, Craig G., Gray, Jeremy John, Berggren, John L., Knorr, Wilbur R., Folkerts, Menso" data-authors-initial="Fraser, C.G., Gray, J.J., Berggren, J.L., Knorr, W.R., Folkerts, M." data-title="mathematics" data-published-date="14 Feb. 2025" data-url="https://www.britannica.com/science/mathematics" > <div class="citation-text"></div> </div> <button class="js-copy-citation-button mt-20 btn btn-xs btn-outline-blue border shadow-sm pr-10" > <em class="material-icons md-icon ml-n10 my-n5 mr-5" data-icon="file_copy"></em> <span class="js-citation-status-text">Copy Citation</span> </button> </div> </div> </div> <div> <button class="js-share-modal-button js-modal btn btn-sm btn-link gtm-topic-tool font-weight-bold btn-link" data-modal="[data-topic-id=369194] .md-share-modal"> <em class="material-icons mr-5 ml-n10 my-n5 md-icon" data-icon="share"></em> Share </button> <div class="md-share-modal size-lg d-none qa-share-modal"> <div class="md-modal-body"> <div class="h2 font-serif d-flex align-items-center pb-15 border-bottom"> <em class="material-icons text-blue mr-10" data-icon="share"></em> Share </div> <div class="label my-20">Share to social media</div> <div class="md-social-toolbar-circle d-flex align-items-start inverted" data-value="share" title="mathematics" data-url="https://www.britannica.com/science/mathematics" > <a class="social-icon facebook justify-content-center d-flex align-items-center align-self-center" data-provider="facebook" href="https://www.facebook.com/BRITANNICA/" target="_blank" rel="noopener"><span>Facebook</span></a> <a class="social-icon x justify-content-center d-flex align-items-center align-self-center" data-provider="x" href="https://x.com/britannica" target="_blank" rel="noopener"><span>X</span></a> </div> <div class="label pt-20 mt-20 mb-5 border-top">URL</div> <a class="font-serif text-truncate d-inline-block" href="https://www.britannica.com/science/mathematics">https://www.britannica.com/science/mathematics</a> </div> </div> </div> <div> <button class="js-feedback-modal-button js-modal btn btn-sm btn-link gtm-topic-tool font-weight-bold btn-link" data-modal=".md-feedback-modal"> <em class="material-icons mr-5 ml-n10 my-n5 md-icon" data-icon="message"></em> Feedback </button> </div> <div> <button class="qa-external-website-modal-button js-modal btn btn-sm btn-link gtm-topic-tool font-weight-bold btn-link" data-modal="[data-topic-id=369194] .md-websites-modal"> <em class="material-icons md-icon ml-n10 mr-5" data-icon="link"></em> External Websites </button> </div> </div> <div class="md-feedback-modal size-lg d-none"> <div class="md-modal-body"> <div class="h2 font-serif pb-15 border-bottom"> Feedback </div> <form method="post" action="/submission/feedback/369194"> <div class="my-20"> Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login). </div> <div class="type-menu"> <label for="feedback-type" class="label mb-10">Feedback Type</label> <select id="feedback-type" class="form-select mb-30" name="feedbackTypeId" required> <option value="" selected="selected">Select a type (Required)</option> <option value="1">Factual Correction</option> <option value="2">Spelling/Grammar Correction</option> <option value="3">Link Correction</option> <option value="4">Additional Information</option> <option value="5">Other</option> </select> </div> <label for="feedback" class="label mb-10">Your Feedback</label> <textarea id="feedback" class="form-control mb-30" name="feedback" maxlength="3000" rows="7" required></textarea> <button class="btn btn-blue" type="submit">Submit Feedback</button> </form> <div class="success-messaging d-none mt-30"> <div class="title">Thank you for your feedback</div> <p>Our editors will review what you’ve submitted and determine whether to revise the article.</p> </div> </div> </div> <div class="md-websites-modal size-lg d-none"> <div class="md-modal-body"> <div class="h2 font-serif pb-15 border-bottom font-weight-bold"> External Websites </div> <div class="pb-20"> <ul class="list-unstyled mt-20 lh-lg"> <li><a class="external" href="https://www.livescience.com/38936-mathematics.html" target="_blank" rel="noopener ">LiveScience - What is Mathematics?</a></li> <li><a class="external" href="https://socialsci.libretexts.org/Courses/Arapahoe_Community_College/Introduction_to_Curriculum_for_Early_Childhood_Education/07%3A_Mathematics" target="_blank" rel="noopener ">Social Sci LibreTexts - Mathematics</a></li> <li><a class="external" href="https://abelprize.no/" target="_blank" rel="noopener nofollow">Official Site of The Abel Prize</a></li> <li><a class="external" href="https://illinois.pbslearningmedia.org/resource/nvmm-math-mathmusic/ancient-math-music/" target="_blank" rel="noopener ">PBS LearningMedia - Ancient Math & Music</a></li> <li><a class="external" href="https://mathweb.ucsd.edu/~harel/What%20Is%20Mathematics.pdf" target="_blank" rel="noopener ">University of California, San Diego - What is Mathematics?</a></li> </ul> </div> <div class="md-websites-ebk-title">Britannica Websites</div> <div class="md-websites-ebk-subtitle">Articles from Britannica Encyclopedias for elementary and high school students.</div> <ul class="list-unstyled bps-topic-web-sites lh-lg"> <li><a class="external" href="https://kids.britannica.com/kids/article/mathematics/353443" target="_blank" rel="noopener">mathematics - Children's Encyclopedia (Ages 8-11)</a></li> <li><a class="external" href="https://kids.britannica.com/students/article/mathematics/275734" target="_blank" rel="noopener">mathematics - Student Encyclopedia (Ages 11 and up)</a></li> </ul> </div> </div> </div> </div> <div class="toc-header-marker"></div> <button class="ai-ask-button btn border-2 js-header-ai-ask-button d-none btn-sm btn-outline-red-400 border-red-400 mr-0 mr-lg-10 ml-5 ml-sm-10 ml-lg-0 p-10"> Ask the Chatbot a Question </button> <div class="caption alternate-titles">Also known as: math</div> <div class="md-byline module-spacing "> <div class="font-serif font-12"> <span class="written-by text-gray-700"> Written by </span> <div class="editor-popover popover p-0"> <a class="d-block p-20 qa-editor-popup gtm-byline font-12 byline-contributor" href="/contributor/Craig-G-Fraser/3532" > <div class="editor-title font-16 font-weight-bold">Craig G. Fraser</div> <div class="editor-description font-12 font-serif mt-5 clamp-description text-black">Associate Professor, Institute for the History and Philosophy of Science and Technology, University of Toronto.</div> </a> <div data-popper-arrow></div> </div> <span class="btn btn-link editor-link p-0 qa-byline-link gtm-byline font-12 byline-contributor text-decoration-underline"> Craig G. Fraser</span>, <div class="editor-popover popover p-0"> <a class="d-block p-20 qa-editor-popup gtm-byline font-12 byline-contributor" href="/contributor/Jeremy-John-Gray/3547" > <div class="editor-title font-16 font-weight-bold">Jeremy John Gray</div> <div class="editor-description font-12 font-serif mt-5 clamp-description text-black">Emeritus Professor, School of Mathematics and Statistics, Open University. Author of <em>Plato's Ghost</em>; <em>Henri Poincaré: A Scientific Biography</em>; <em>Ideas of Space</em>; and others.</div> </a> <div data-popper-arrow></div> </div> <span class="btn btn-link editor-link p-0 qa-byline-link gtm-byline font-12 byline-contributor text-decoration-underline"> Jeremy John Gray</span><span class="text-gray-700 mx-5">•</span><a class="see-all border-gray-700 gtm-byline" rel="nofollow" href="https://www.britannica.com/science/mathematics/additional-info#contributors">All</a> </div> <div class="font-serif font-12 text-gray-700"> <span class="qa-fact-checked-by">Fact-checked by</span> <div class="editor-popover popover p-0"> <a class="d-block p-20 qa-editor-popup font-12" href="/editor/The-Editors-of-Encyclopaedia-Britannica/4419" > <div class="editor-title font-16 font-weight-bold">The Editors of Encyclopaedia Britannica</div> <div class="editor-description font-12 font-serif mt-5 text-black">Encyclopaedia Britannica's editors oversee subject areas in which they have extensive knowledge, whether from years of experience gained by working on that content or via study for an advanced degree. They write new content and verify and edit content received from contributors.</div> </a> <div data-popper-arrow></div> </div> <span class="btn btn-link editor-link p-0 qa-byline-link font-12 "> The Editors of Encyclopaedia Britannica</span></div> <div class="last-updated font-12 font-serif"> <span class="text-gray-700"> Last Updated: <time datetime="2025-02-14T00:00:00CST" >Feb 14, 2025</time> •</span> <a class="byline-edit-history" href="https://www.britannica.com/science/mathematics/additional-info#history" rel="nofollow">Article History</a> </div></div> </div> <button class="d-flex d-lg-none btn btn-outline-blue border rounded-sm shadow-sm mobile-toc-button gtm-mobile-toc-inline-button d-none d-sm-block js-sections-inline-button module-spacing btn d-lg-none"> <em class="material-icons mr-5 ml-n10 my-n5 md-icon" data-icon="toc"></em> Table of Contents </button> <div class="d-flex d-sm-none flex-row"> <button class="d-flex d-lg-none btn btn-outline-blue border rounded-sm shadow-sm mobile-toc-button gtm-mobile-toc-inline-button js-sections-inline-button module-spacing"> <em class="material-icons mr-5 ml-n10 my-n5 md-icon" data-icon="toc"></em> Table of Contents </button> <button class="ai-ask-button btn border-2 ai-ask-button btn border-2 module-spacing btn-sm js-inline-ai-ask-button btn-outline-red-400 border-red-400 p-10 ml-5"> Ask the Chatbot a Question </button> </div> <div class="js-qf-module qf-module px-40 px-sm-20 py-15 mx-auto module-spacing font-14 bg-gray-50 rounded"> <div class="facts-list mt-10"> <div class=""> <div class="js-fact mb-10 line-clamp clamp-3"> <dl> <dt>Key People: </dt> <dd><a href="/biography/Mary-Cartwright" topicid="2252584">Mary Cartwright</a></dd> <dd><a href="/biography/Gladys-West" topicid="2188733">Gladys West</a></dd> <dd><a href="/biography/Isaac-Newton" topicid="413189">Isaac Newton</a></dd> <dd><a href="/biography/Galileo-Galilei" topicid="224058">Galileo</a></dd> <dd><a href="/biography/Bertrand-Russell" topicid="513124">Bertrand Russell</a></dd> </dl> <button class="js-more-btn d-none btn btn-unstyled font-12 bg-gray-50" aria-label="Toggle more/less fact data"> <em class="js-content link-blue">(Show more)</em> </button> </div> </div> <div class=""> <div class="js-fact mb-10 line-clamp clamp-3"> <dl> <dt>Related Topics: </dt> <dd><a href="/science/analysis-mathematics" topicid="22486">analysis</a></dd> <dd><a href="/science/probability-theory" topicid="477530">probability theory</a></dd> <dd><a href="/topic/cryptology" topicid="145058">cryptology</a></dd> <dd><a href="/science/computer-science" topicid="130675">computer science</a></dd> <dd><a href="/topic/percentage" topicid="2124609">percentage</a></dd> </dl> <button class="js-more-btn d-none btn btn-unstyled font-12 bg-gray-50" aria-label="Toggle more/less fact data"> <em class="js-content link-blue">(Show more)</em> </button> </div> <div class="text-center"> <a class="btn btn-sm btn-link p-0" href="/facts/mathematics"> See all related content </a> </div> </div> </div> </div><div class="bg-gray-50 p-15 rounded module-spacing recent-news d-flex flex-column float-false"> <div> <h2 class="font-weight-bold font-14 m-0 d-inline"> News <span class="text-gray-600">•</span> </h2> <div class="recent-news-item first-recent-news-item d-inline"> <a class="font-14 gtm-ap-news-link" href="https://www.thehindu.com/news/cities/Coimbatore/math-teacher-arrested-for-sexually-harassing-students/article69213832.ece" rel="nofollow">Math teacher arrested in Dharmapuri for sexually harassing students</a> <span class="font-14 text-gray-600"> <span>•</span> Feb. 13, 2025, 2:39 AM ET (The Hindu) <button class="btn btn-link d-inline p-0 font-12 js-toggle-recent-news"> <span class="text-gray-500">...</span><span>(Show more)</span> </button> </span> </div> </div> <div class="rest-of-recent-news-items"> <div class="recent-news-item mt-5"> <a class="font-14 gtm-ap-news-link" href="https://indianexpress.com/article/education/jee-main-2025-session-1-day-3-btech-question-paper-analysis-students-experts-feedback-topics-asked-9794456/" rel="nofollow">JEE Main 2025 Day 3 Exam Analysis: ‘Math challenging, Physics easiest among all,’ Here’s what experts say</a> <span class="font-14 text-gray-600"> <span>•</span> Jan. 24, 2025, 5:07 PM ET (The Indian Express) </span> </div> <div class="recent-news-item mt-5"> <a class="font-14 gtm-ap-news-link" href="https://www.thehindu.com/news/cities/chennai/sri-ramakrishna-math-wins-spirit-of-mylapore-award-2025/article69131213.ece" rel="nofollow">Sri Ramakrishna Math wins Spirit of Mylapore Award 2025</a> <span class="font-14 text-gray-600"> <span>•</span> Jan. 23, 2025, 4:37 AM ET (The Hindu) </span> </div> <button class="js-toggle-recent-news d-flex btn btn-unstyled font-14 pr-10 rounded-sm mt-10" aria-label="Toggle additional news items"> Show less <em class="material-icons" data-icon="expand_less"></em> </button> </div> </div><!--[BEFORE-ARTICLE]--><span class="marker before-article"></span><section data-level="2" id="ref66032"> <!--[TOC]--> <!--[PREMOD1]--><span class="marker PREMOD1 mod-inline"></span><p class="topic-paragraph">The early 20th century saw the emergence of a number of theories whose power and utility reside in large part in their generality. Typically, they are marked by an attention to the <a href="https://www.britannica.com/topic/set-mathematics-and-logic" class="md-crosslink autoxref " data-show-preview="true">set</a> or <a href="https://www.britannica.com/science/space-physics-and-metaphysics" class="md-crosslink autoxref " data-show-preview="true">space</a> of all examples of a particular kind. (Functional <a href="https://www.britannica.com/science/analysis-mathematics" class="md-crosslink autoxref " data-show-preview="true">analysis</a> is such an endeavour.) One of the most energetic of these general theories was that of algebraic topology. In this subject a variety of ways are developed for replacing a space by a <a href="https://www.britannica.com/science/group-mathematics" class="md-crosslink autoxref " data-show-preview="true">group</a> and a map between spaces by a map between groups. It is like using X-rays: information is lost, but the shadowy image of the original space may turn out to contain, in an accessible form, enough information to solve the question at hand.</p><!--[MOD1]--><span class="marker MOD1 mod-inline"></span> <!--[PREMOD2]--><span class="marker PREMOD2 mod-inline"></span><div class="assemblies"><div class="w-100"><figure class="md-assembly m-0 mb-md-0 card card-borderless print-false" data-assembly-id="2220" data-asm-type="image"><div class="md-assembly-wrapper card-media" data-type="image"><a href="https://cdn.britannica.com/59/2359-004-DF642773/Pieces-surface-octagon-curves.jpg" class="gtm-assembly-link position-relative d-flex align-items-center justify-content-center media-overlay-link card-media" data-href="/media/1/369194/2220"><picture><source media="(min-width: 680px)" srcset="https://cdn.britannica.com/59/2359-004-DF642773/Pieces-surface-octagon-curves.jpg"><img src="https://cdn.britannica.com/59/2359-004-DF642773/Pieces-surface-octagon-curves.jpg?w=300" alt="cutting a Riemann surface" data-width="400" data-height="300" loading="eager"></picture><button class="magnifying-glass btn btn-circle position-absolute shadow btn-white top-10 right-10" aria-label="Zoom in"><em class="material-icons link-blue" data-icon="zoom_in"></em></button></a></div><figcaption class="card-body"><div class="md-assembly-caption text-muted font-14 font-serif line-clamp"><span><a class="gtm-assembly-link md-assembly-title font-weight-bold d-inline font-sans-serif mr-5 media-overlay-link" href="https://cdn.britannica.com/59/2359-004-DF642773/Pieces-surface-octagon-curves.jpg" data-href="/media/1/369194/2220">cutting a Riemann surface</a><span>(Left) Pieces of a surface given by <em>f</em>(<em>x</em>, <em>y</em>) = 0; (right) if the surface is cut along the curves, an octagon is obtained.</span><button class="js-more-btn d-none btn btn-unstyled font-12 bg-white js-content" aria-label="Toggle more/less fact data"><span class="link-blue">(more)</span></button></span></div></figcaption></figure></div></div><p class="topic-paragraph">Interest in this kind of research came from various directions. Galois’s theory of equations was an example of what could be achieved by transforming a problem in one branch of mathematics into a problem in another, more abstract branch. Another <a class="md-dictionary-link md-dictionary-tt-off mw" data-term="impetus" href="https://www.merriam-webster.com/dictionary/impetus" data-type="MW">impetus</a> came from Riemann’s theory of complex functions. He had studied <span id="ref536602"></span><a href="https://www.britannica.com/science/algebraic-function" class="md-crosslink ">algebraic functions</a>—that is, loci defined by equations of the form <em>f</em>(<em>x</em>, <em>y</em>) = 0, where <em>f</em> is a polynomial in <em>x</em> whose coefficients are polynomials in <em>y</em>. When <em>x</em> and <em>y</em> are complex variables, the locus can be thought of as a real <span id="ref536603"></span><a href="https://www.britannica.com/science/surface-geometry" class="md-crosslink " data-show-preview="true">surface</a> spread out over the <em>x</em> plane of complex numbers (today called a <span id="ref536604"></span><a href="https://www.britannica.com/science/Riemann-surface" class="md-crosslink ">Riemann surface</a>). To each value of <em>x</em> there correspond a finite number of values of <em>y</em>. Such surfaces are not easy to comprehend, and Riemann had proposed to draw curves along them in such a way that, if the surface was cut open along them, it could be opened out into a polygonal disk. He was able to establish a profound connection between the <a href="https://www.britannica.com/science/minimum" class="md-crosslink autoxref " data-show-preview="true">minimum</a> number of curves needed to do this for a given surface and the number of functions (becoming <a class="md-dictionary-link md-dictionary-tt-off mw" data-term="infinite" href="https://www.merriam-webster.com/dictionary/infinite" data-type="MW">infinite</a> at specified points) that the surface could then support.</p><!--[MOD2]--><span class="marker MOD2 mod-inline"></span> <!--[PREMOD3]--><span class="marker PREMOD3 mod-inline"></span><div class="assemblies"><div class="w-100"><figure class="md-assembly m-0 mb-md-0 card card-borderless print-false" data-assembly-id="90071" data-asm-type="image"><div class="md-assembly-wrapper card-media" data-type="image"><a href="https://cdn.britannica.com/16/80216-004-8416E80C/self-intersection-z--axis.jpg" class="gtm-assembly-link position-relative d-flex align-items-center justify-content-center media-overlay-link card-media" data-href="/media/1/369194/90071"><picture><source media="(min-width: 680px)" srcset="https://cdn.britannica.com/16/80216-004-8416E80C/self-intersection-z--axis.jpg"><img src="https://cdn.britannica.com/16/80216-004-8416E80C/self-intersection-z--axis.jpg?w=300" alt="algebraic topology" data-width="495" data-height="250" loading="eager"></picture><button class="magnifying-glass btn btn-circle position-absolute shadow btn-white top-10 right-10" aria-label="Zoom in"><em class="material-icons link-blue" data-icon="zoom_in"></em></button></a></div><figcaption class="card-body"><div class="md-assembly-caption text-muted font-14 font-serif line-clamp"><span><a class="gtm-assembly-link md-assembly-title font-weight-bold d-inline font-sans-serif mr-5 media-overlay-link" href="https://cdn.britannica.com/16/80216-004-8416E80C/self-intersection-z--axis.jpg" data-href="/media/1/369194/90071">algebraic topology</a><span>(Left) <em>f</em>(<em>x</em>, <em>y</em>) = <em>x</em><sup>2</sup>(<em>x</em> + 1) − <em>y</em><sup>2</sup> = 0 intersects itself at (<em>x</em>, <em>y</em>) = (0, 0). (Right) <em>E</em>(<em>x</em>, <em>y</em>, <em>z</em>) = 0 = <em>y</em><sup>2</sup>(<em>y</em> + <em>z</em><sup>2</sup>) − <em>x</em><sup>2</sup> intersects itself along the <em>z</em>-axis, but the origin is a triple self-intersection. </span><button class="js-more-btn d-none btn btn-unstyled font-12 bg-white js-content" aria-label="Toggle more/less fact data"><span class="link-blue">(more)</span></button></span></div></figcaption></figure></div></div><p class="topic-paragraph">The natural problem was to see how far Riemann’s ideas could be applied to the study of spaces of higher <a href="https://www.britannica.com/science/dimension-geometry" class="md-crosslink autoxref " data-show-preview="true">dimension</a>. Here two lines of inquiry developed. One emphasized what could be obtained from looking at the <a href="https://www.britannica.com/science/projective-geometry" class="md-crosslink autoxref " data-show-preview="true">projective geometry</a> involved. This point of view was fruitfully applied by the <span id="ref536605"></span>Italian school of algebraic geometers. It ran into problems, which it was not wholly able to solve, having to do with the singularities a surface can possess. Whereas a locus given by <em>f</em>(<em>x</em>, <em>y</em>) = 0 may intersect itself only at isolated points, a locus given by an <a href="https://www.britannica.com/science/equation" class="md-crosslink autoxref " data-show-preview="true">equation</a> of the form <em>f</em>(<em>x</em>, <em>y</em>, <em>z</em>) = 0 may intersect itself along curves, a problem that caused considerable difficulties. The second approach emphasized what can be learned from the study of <a class="md-dictionary-link md-dictionary-tt-off mw" data-term="integrals" href="https://www.merriam-webster.com/dictionary/integrals" data-type="MW">integrals</a> along paths on the surface. This approach, pursued by <span id="ref536606"></span><a href="https://www.britannica.com/biography/Charles-Emile-Picard" class="md-crosslink " data-show-preview="true">Charles-Émile Picard</a> and by Poincaré, provided a rich generalization of Riemann’s original ideas.</p><!--[MOD3]--><span class="marker MOD3 mod-inline"></span> <!--[PREMOD4]--><span class="marker PREMOD4 mod-inline"></span><p class="topic-paragraph">On this <a href="https://www.britannica.com/science/base-number-systems" class="md-crosslink autoxref " data-show-preview="true">base</a>, <span id="ref908328"></span><a href="https://www.britannica.com/science/Poincare-conjecture" class="md-crosslink " data-show-preview="true">conjectures</a> were made and a general theory produced, first by Poincaré and then by the American engineer-turned-mathematician <span id="ref536607"></span>Solomon Lefschetz, concerning the nature of <span id="ref536608"></span><a href="https://www.britannica.com/science/manifold" class="md-crosslink " data-show-preview="true">manifolds</a> of arbitrary dimension. Roughly speaking, a <a href="https://www.britannica.com/science/manifold" class="md-crosslink autoxref " data-show-preview="true">manifold</a> is the <em>n</em>-dimensional generalization of the idea of a surface; it is a space any small piece of which looks like a piece of <em>n</em>-dimensional space. Such an object is often given by a single <a href="https://www.britannica.com/science/algebraic-equation" class="md-crosslink autoxref " data-show-preview="true">algebraic equation</a> in <em>n</em> + 1 variables. At first the work of Poincaré and of Lefschetz was concerned with how these <a class="md-dictionary-link md-dictionary-tt-off eb" data-term="manifolds" href="https://www.britannica.com/dictionary/manifolds" data-type="EB">manifolds</a> may be decomposed into pieces, counting the number of pieces and decomposing them in their turn. The result was a list of numbers, called <span id="ref536609"></span><a href="https://www.britannica.com/science/Betti-number" class="md-crosslink ">Betti numbers</a> in honour of the Italian mathematician <span id="ref536610"></span><a href="https://www.britannica.com/biography/Enrico-Betti" class="md-crosslink " data-show-preview="true">Enrico Betti</a>, who had taken the first steps of this kind to extend Riemann’s work. It was only in the late 1920s that the German mathematician <span id="ref536611"></span><a href="https://www.britannica.com/biography/Emmy-Noether" class="md-crosslink " data-show-preview="true">Emmy Noether</a> suggested how the Betti numbers might be thought of as measuring the size of certain groups. At her instigation a number of people then produced a theory of these groups, the so-called <span id="ref536612"></span><a href="https://www.britannica.com/science/homology-mathematics" class="md-crosslink " data-show-preview="true">homology</a> and <span id="ref536613"></span>cohomology groups of a space.</p><!--[MOD4]--><span class="marker MOD4 mod-inline"></span> <!--[PREMOD5]--><span class="marker PREMOD5 mod-inline"></span><p class="topic-paragraph">Two objects that can be deformed into one another will have the same homology and cohomology groups. To assess how much information is lost when a space is replaced by its algebraic topological picture, Poincaré asked the crucial <a class="md-dictionary-link md-dictionary-tt-off eb" data-term="converse" href="https://www.britannica.com/dictionary/converse" data-type="EB">converse</a> question “According to what algebraic conditions is it possible to say that a space is topologically equivalent to a sphere?” He showed by an ingenious example that having the same homology is not enough and proposed a more delicate index, which has since grown into the branch of <a href="https://www.britannica.com/science/topology" class="md-crosslink autoxref " data-show-preview="true">topology</a> called <span id="ref536614"></span><a href="https://www.britannica.com/science/homotopy" class="md-crosslink " data-show-preview="true">homotopy</a> theory. Being more delicate, it is both more basic and more difficult. There are usually standard methods for computing homology and cohomology groups, and they are completely known for many spaces. In contrast, there is scarcely an interesting class of spaces for which all the homotopy groups are known. <a href="https://www.britannica.com/science/Poincare-conjecture" class="md-crosslink autoxref " data-show-preview="true">Poincaré’s conjecture</a> that a space with the homotopy of a <a href="https://www.britannica.com/science/sphere" class="md-crosslink autoxref " data-show-preview="true">sphere</a> actually is a sphere was shown to be true in the 1960s in dimensions five and above, and in the 1980s it was shown to be true for four-dimensional spaces. In 2006 <span id="ref908330"></span><a href="https://www.britannica.com/biography/Grigori-Perelman" class="md-crosslink " data-show-preview="true">Grigori Perelman</a> was awarded a <a href="https://www.britannica.com/science/Fields-Medal" class="md-crosslink " data-show-preview="true">Fields Medal</a> for proving Poincaré’s conjecture true in three dimensions, the only dimension in which Poincaré had studied it.</p><div class="module-spacing"> </div><!--[MOD5]--><span class="marker MOD5 mod-inline"></span> </section> <section data-level="2" id="ref66033"> <h2 class="h2">Developments in pure mathematics</h2> <!--[PREMOD6]--><span class="marker PREMOD6 mod-inline"></span><p class="topic-paragraph">The interest in <a class="md-dictionary-link md-dictionary-tt-off mw" data-term="axiomatic" href="https://www.merriam-webster.com/dictionary/axiomatic" data-type="MW">axiomatic</a> systems at the turn of the century led to <a href="https://www.britannica.com/topic/axiom" class="md-crosslink autoxref " data-show-preview="true">axiom</a> systems for the known <span id="ref536615"></span><a href="https://www.britannica.com/science/algebraic-structure" class="md-crosslink ">algebraic structures</a>, that for the theory of fields, for example, being developed by the German mathematician <span id="ref536616"></span><a href="https://www.britannica.com/biography/Ernst-Steinitz" class="md-crosslink ">Ernst Steinitz</a> in 1910. The theory of <span id="ref536617"></span><a href="https://www.britannica.com/science/ring-mathematics" class="md-crosslink " data-show-preview="true">rings</a> (structures in which it is possible to add, subtract, and multiply but not necessarily divide) was much harder to formalize. It is important for two reasons: the theory of <span id="ref536618"></span><a href="https://www.britannica.com/science/algebraic-integer" class="md-crosslink ">algebraic integers</a> forms part of it, because algebraic integers naturally form into rings; and (as Kronecker and Hilbert had argued) <span id="ref536619"></span><a href="https://www.britannica.com/science/algebraic-geometry" class="md-crosslink " data-show-preview="true">algebraic geometry</a> forms another part. The rings that arise there are rings of functions definable on the <a href="https://www.britannica.com/science/curve" class="md-crosslink autoxref " data-show-preview="true">curve</a>, surface, or <a class="md-dictionary-link md-dictionary-tt-off eb" data-term="manifold" href="https://www.britannica.com/dictionary/manifold" data-type="EB">manifold</a> or are definable on specific pieces of it.</p><!--[MOD6]--><span class="marker MOD6 mod-inline"></span> <!--[PREMOD7]--><span class="marker PREMOD7 mod-inline"></span><p class="topic-paragraph">Problems in <a href="https://www.britannica.com/science/number-theory" class="md-crosslink autoxref " data-show-preview="true">number theory</a> and algebraic geometry are often very difficult, and it was the hope of mathematicians such as Noether, who laboured to produce a formal, axiomatic theory of rings, that, by working at a more rarefied level, the essence of the concrete problems would remain while the distracting special features of any given case would fall away. This would make the formal theory both more general and easier, and to a surprising extent these mathematicians were successful.</p><!--[MOD7]--><span class="marker MOD7 mod-inline"></span> <!--[PREMOD8]--><span class="marker PREMOD8 mod-inline"></span><p class="topic-paragraph">A further twist to the development came with the work of the American mathematician <span id="ref536620"></span><a href="https://www.britannica.com/biography/Oscar-Zariski" class="md-crosslink ">Oscar Zariski</a>, who had studied with the Italian school of algebraic geometers but came to feel that their method of working was imprecise. He worked out a detailed program whereby every kind of geometric configuration could be redescribed in algebraic terms. His work succeeded in producing a rigorous theory, although some, notably Lefschetz, felt that the <a href="https://www.britannica.com/science/geometry" class="md-crosslink autoxref " data-show-preview="true">geometry</a> had been lost sight of in the process.</p><!--[MOD8]--><span class="marker MOD8 mod-inline"></span> <!--[PREMOD9]--><span class="marker PREMOD9 mod-inline"></span><p class="topic-paragraph">The study of algebraic geometry was <a class="md-dictionary-link md-dictionary-tt-off mw" data-term="amenable" href="https://www.merriam-webster.com/dictionary/amenable" data-type="MW">amenable</a> to the topological methods of Poincaré and Lefschetz so long as the manifolds were defined by equations whose coefficients were <span id="ref536621"></span><a href="https://www.britannica.com/science/complex-number" class="md-crosslink " data-show-preview="true">complex numbers</a>. But, with the creation of an abstract theory of <span id="ref536622"></span><a href="https://www.britannica.com/science/field-mathematics" class="md-crosslink ">fields</a>, it was natural to want a theory of varieties defined by equations with coefficients in an arbitrary field. This was provided for the first time by the French mathematician <span id="ref536623"></span><a href="https://www.britannica.com/biography/Andre-Weil" class="md-crosslink " data-show-preview="true">André Weil</a>, in his <em><span id="ref536624"></span>Foundations of Algebraic Geometry</em> (1946), in a way that drew on Zariski’s work without suppressing the intuitive appeal of geometric concepts. Weil’s theory of <span id="ref536625"></span><a href="https://www.britannica.com/science/polynomial" class="md-crosslink " data-show-preview="true">polynomial</a> equations is the proper setting for any investigation that seeks to determine what properties of a geometric object can be <a class="md-dictionary-link md-dictionary-tt-off eb" data-term="derived" href="https://www.britannica.com/dictionary/derived" data-type="EB">derived</a> solely by algebraic means. But it falls tantalizingly short of one topic of importance: the solution of polynomial equations in integers. This was the topic that Weil took up next.</p><!--[MOD9]--><span class="marker MOD9 mod-inline"></span> <!--[PREMOD10]--><span class="marker PREMOD10 mod-inline"></span><p class="topic-paragraph">The central difficulty is that in a field it is possible to divide but in a <a href="https://www.britannica.com/science/ring-mathematics" class="md-crosslink autoxref " data-show-preview="true">ring</a> it is not. The integers form a ring but not a field (dividing 1 by 2 does not yield an <a href="https://www.britannica.com/science/integer" class="md-crosslink autoxref " data-show-preview="true">integer</a>). But Weil showed that simplified versions (posed over a field) of any question about integer solutions to polynomials could be profitably asked. This transferred the questions to the domain of algebraic geometry. To count the number of solutions, Weil proposed that, since the questions were now geometric, they should be amenable to the techniques of algebraic topology. This was an <a class="md-dictionary-link md-dictionary-tt-off mw" data-term="audacious" href="https://www.merriam-webster.com/dictionary/audacious" data-type="MW">audacious</a> move, since there was no suitable theory of algebraic topology available, but Weil conjectured what results it should yield. The difficulty of Weil’s conjectures may be judged by the fact that the last of them was a generalization to this setting of the famous <span id="ref536626"></span><a href="https://www.britannica.com/science/Riemann-hypothesis" class="md-crosslink " data-show-preview="true">Riemann hypothesis</a> about the <a href="https://www.britannica.com/science/Riemann-zeta-function" class="md-crosslink " data-show-preview="true">zeta function</a>, and they rapidly became the focus of international attention.</p><!--[MOD10]--><span class="marker MOD10 mod-inline"></span> <!--[PREMOD11]--><span class="marker PREMOD11 mod-inline"></span><p class="topic-paragraph">Weil, along with <span id="ref536627"></span>Claude Chevalley, <span id="ref536628"></span><a href="https://www.britannica.com/biography/Henri-Cartan" class="md-crosslink " data-show-preview="true">Henri Cartan</a>, <span id="ref536629"></span><a href="https://www.britannica.com/biography/Jean-Dieudonne" class="md-crosslink " data-show-preview="true">Jean Dieudonné</a>, and others, created a group of young French mathematicians who began to publish virtually an encyclopaedia of mathematics under the name <span id="ref536630"></span><a href="https://www.britannica.com/topic/Nicolas-Bourbaki" class="md-crosslink " data-show-preview="true">Nicolas Bourbaki</a>, taken by Weil from an obscure general of the <a href="https://www.britannica.com/event/Franco-German-War" class="md-crosslink autoxref " data-show-preview="true">Franco-German War</a>. Bourbaki became a self-selecting group of young mathematicians who were strong on <a href="https://www.britannica.com/science/algebra" class="md-crosslink autoxref " data-show-preview="true">algebra</a>, and the individual Bourbaki members were interested in the Weil conjectures. In the end they succeeded completely. A new kind of algebraic topology was developed, and the Weil conjectures were proved. The generalized Riemann <a class="md-dictionary-link md-dictionary-tt-off mw" data-term="hypothesis" href="https://www.merriam-webster.com/dictionary/hypothesis" data-type="MW">hypothesis</a> was the last to surrender, being established by the Belgian <span id="ref536631"></span><a href="https://www.britannica.com/biography/Pierre-Deligne" class="md-crosslink " data-show-preview="true">Pierre Deligne</a> in the early 1970s. Strangely, its resolution still leaves the original Riemann hypothesis unsolved.</p><!--[MOD11]--><span class="marker MOD11 mod-inline"></span> <!--[PREMOD12]--><span class="marker PREMOD12 mod-inline"></span><p class="topic-paragraph">Bourbaki was a key figure in the rethinking of structural mathematics. Algebraic topology was <span id="ref536632"></span>axiomatized by <span id="ref536633"></span><a href="https://www.britannica.com/biography/Samuel-Eilenberg" class="md-crosslink ">Samuel Eilenberg</a>, a Polish-born American mathematician and Bourbaki member, and the American mathematician <span id="ref536634"></span>Norman Steenrod. <span id="ref536635"></span><a href="https://www.britannica.com/biography/Saunders-Mac-Lane" class="md-crosslink " data-show-preview="true">Saunders Mac Lane</a>, also of the <a href="https://www.britannica.com/place/United-States" class="md-crosslink autoxref " data-show-preview="true">United States</a>, and Eilenberg extended this axiomatic approach until many types of mathematical structures were presented in families, called categories. Hence there was a <span id="ref536636"></span><a href="https://www.britannica.com/science/category-mathematics" class="md-crosslink ">category</a> consisting of all groups and all maps between them that preserve multiplication, and there was another category of all topological spaces and all <a class="md-dictionary-link md-dictionary-tt-off eb" data-term="continuous" href="https://www.britannica.com/dictionary/continuous" data-type="EB">continuous</a> maps between them. To do algebraic topology was to transfer a problem posed in one category (that of topological spaces) to another (usually that of commutative groups or rings). When he created the right algebraic topology for the Weil conjectures, the German-born French mathematician <span id="ref536637"></span><a href="https://www.britannica.com/biography/Alexandre-Grothendieck" class="md-crosslink " data-show-preview="true">Alexandre Grothendieck</a>, a Bourbaki of enormous energy, produced a new description of algebraic geometry. In his hands it became infused with the language of category theory. The route to algebraic geometry became the steepest ever, but the views from the summit have a naturalness and a profundity that have brought many experts to prefer it to the earlier formulations, including Weil’s.</p><!--[MOD12]--><span class="marker MOD12 mod-inline"></span> <!--[PREMOD13]--><span class="marker PREMOD13 mod-inline"></span><p class="topic-paragraph">Grothendieck’s formulation makes algebraic geometry the study of equations defined over rings rather than fields. Accordingly, it raises the possibility that questions about the integers can be answered directly. Building on the work of like-minded mathematicians in the United States, France, and Russia, the German <span id="ref536638"></span><a href="https://www.britannica.com/biography/Gerd-Faltings" class="md-crosslink " data-show-preview="true">Gerd Faltings</a> triumphantly <a class="md-dictionary-link md-dictionary-tt-off mw" data-term="vindicated" href="https://www.merriam-webster.com/dictionary/vindicated" data-type="MW">vindicated</a> this approach when he solved the Englishman Louis <span id="ref536639"></span><a href="https://www.britannica.com/science/Mordells-conjecture" class="md-crosslink ">Mordell’s conjecture</a> in 1983. This conjecture states that almost all polynomial equations that define curves have at most finitely many rational solutions; the cases excluded from the conjecture are the simple ones that are much better understood.</p><!--[MOD13]--><span class="marker MOD13 mod-inline"></span> <!--[PREMOD14]--><span class="marker PREMOD14 mod-inline"></span><p class="topic-paragraph">Meanwhile, <span id="ref536640"></span>Gerhard Frey of Germany had pointed out that, if <a href="https://www.britannica.com/science/Fermats-last-theorem" class="md-crosslink " data-show-preview="true">Fermat’s last theorem</a> is false, so that there are integers <em>u</em>, <em>v</em>, <em>w</em> such that <em>u</em><sup><em>p</em></sup> + <em>v</em><sup><em>p</em></sup> = <em>w</em><sup><em>p</em></sup> (<em>p</em> greater than 5), then for these values of <em>u</em>, <em>v</em>, and <em>p</em> the curve <em>y</em><sup>2</sup> = <em>x</em>(<em>x</em> − <em>u</em><sup><em>p</em></sup>)(<em>x</em> + <em>v</em><sup><em>p</em></sup>) has properties that contradict major <a class="md-dictionary-link md-dictionary-tt-off eb" data-term="conjectures" href="https://www.britannica.com/dictionary/conjectures" data-type="EB">conjectures</a> of the Japanese mathematicians Taniyama Yutaka and Shimura Goro about elliptic curves. Frey’s observation, refined by <a href="https://www.britannica.com/biography/Jean-Pierre-Serre" class="md-crosslink " data-show-preview="true">Jean-Pierre Serre</a> of France and proved by the American Ken Ribet, meant that by 1990 Taniyama’s unproven conjectures were known to imply <span id="ref536641"></span><a href="https://www.britannica.com/science/Fermats-last-theorem" class="md-crosslink " data-show-preview="true">Fermat’s last theorem</a>.</p><!--[MOD14]--><span class="marker MOD14 mod-inline"></span> <!--[PREMOD15]--><span class="marker PREMOD15 mod-inline"></span><p class="topic-paragraph">In 1993 the English mathematician <span id="ref536642"></span><a href="https://www.britannica.com/biography/Andrew-Wiles" class="md-crosslink " data-show-preview="true">Andrew Wiles</a> established the <span id="ref536643"></span>Shimura-Taniyama conjectures in a large range of cases that included Frey’s curve and therefore Fermat’s last theorem—a major feat even without the connection to Fermat. It soon became clear that the argument had a serious flaw; but in May 1995 Wiles, assisted by another English mathematician, <a href="https://www.britannica.com/biography/Richard-Taylor-filmmaker" class="md-crosslink autoxref " data-show-preview="true">Richard Taylor</a>, published a different and valid approach. In so doing, Wiles not only solved the most famous outstanding <a class="md-dictionary-link md-dictionary-tt-off eb" data-term="conjecture" href="https://www.britannica.com/dictionary/conjecture" data-type="EB">conjecture</a> in mathematics but also triumphantly vindicated the sophisticated and difficult methods of modern number theory.</p><!--[MOD15]--><span class="marker MOD15 mod-inline"></span> </section> <!--[END-OF-CONTENT]--><span class="marker end-of-content"></span><!--[AFTER-ARTICLE]--><span class="marker after-article"></span></div> <div id="chatbot-root"></div> </div> </div> </div> <div class="ai-dialog-placeholder"></div> </div> </div> <aside class="col-md-da-320"></aside> </div> </div> </div> </div> </article> </div> </div> </div> </div> </main> <div id="md-footer"></div> <noscript><iframe src="//www.googletagmanager.com/ns.html?id=GTM-5W6NC8" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <script type="text/javascript" id="_informizely_script_tag"> var IzWidget = IzWidget || {}; (function (d) { var scriptElement = d.createElement('script'); scriptElement.type = 'text/javascript'; scriptElement.async = true; scriptElement.src = "https://insitez.blob.core.windows.net/site/f780f33e-a610-4ac2-af81-3eb184037547.js"; var node = d.getElementById('_informizely_script_tag'); node.parentNode.insertBefore(scriptElement, node); } )(document); </script> <!-- Ortto ebmwprod capture code --> <script> window.ap3c = window.ap3c || {}; var ap3c = window.ap3c; ap3c.cmd = ap3c.cmd || []; ap3c.cmd.push(function() { ap3c.init('ZO4siT4cLwnykPnzZWJtd3Byb2Q', 'https://engage.email.britannica.com/'); ap3c.track({v: 0}); }); ap3c.activity = function(act) { ap3c.act = (ap3c.act || []); ap3c.act.push(act); }; var s, t; s = document.createElement('script'); s.type = 'text/javascript'; s.src = "https://engage.email.britannica.com/app.js"; t = document.getElementsByTagName('script')[0]; t.parentNode.insertBefore(s, t); </script> <script class="marketing-page-info" type="application/json"> {"pageType":"Topic","templateName":"DESKTOP","pageNumber":25,"pagesTotal":27,"pageId":369194,"pageLength":2086,"initialLoad":true,"lastPageOfScroll":false} </script> <script class="marketing-content-info" type="application/json"> [] </script> <script src="https://cdn.britannica.com/mendel-resources/3-133/js/libs/jquery-3.5.0.min.js?v=3.133.9"></script> <script type="text/javascript" data-type="Init Mendel Code Splitting"> (function() { $.ajax({ dataType: 'script', cache: true, url: 'https://cdn.britannica.com/mendel-resources/3-133/dist/topic-page.js?v=3.133.9' }); })(); </script> <script class="analytics-metadata" type="application/json"> {"leg":"D","adLeg":"C","userType":"ANONYMOUS","pageType":"Topic","pageSubtype":null,"articleTemplateType":"PAGINATED","gisted":false,"pageNumber":25,"hasSummarizeButton":false,"hasAskButton":true} </script> <script type="text/javascript"> EBStat={accountId:-1,hostnameOverride:'webstats.eb.com',domain:'www.britannica.com', json:''}; </script> <script type="text/javascript"> ( function() { $.ajax( { dataType: 'script', cache: true, url: '//www.britannica.com/webstats/mendelstats.js?v=1' } ) .done( function() { try {writeStat(null,EBStat);} catch(err){} } ); })(); </script> <div id="bc-fixed-dialogue"></div> </body> </html>