CINXE.COM
Malcev, protomodular, homological and semi-abelian categories in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> Malcev, protomodular, homological and semi-abelian categories in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> Malcev, protomodular, homological and semi-abelian categories </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/13502/#Item_2" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title></title></head> <body> <p>This entry is about the book:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Francis+Borceux">Francis Borceux</a>, <a class="existingWikiWord" href="/nlab/show/Dominique+Bourn">Dominique Bourn</a>,</p> <p><strong>Mal’cev, protomodular, homological and semi-abelian categories</strong></p> <p>Mathematics and Its Applications <strong>566</strong>,</p> <p>Kluwer 2004</p> <p><a href="https://link.springer.com/book/10.1007/978-1-4020-1962-3">doi:10.1007/978-1-4020-1962-3</a></p> </li> </ul> <p>on <a class="existingWikiWord" href="/nlab/show/nonabelian+homological+algebra">nonabelian homological algebra</a>, such as its <a class="existingWikiWord" href="/nlab/show/diagram+chasing+lemmas">diagram chasing lemmas</a>, in <a class="existingWikiWord" href="/nlab/show/Mal%27cev+categories">Mal'cev categories</a>, <a class="existingWikiWord" href="/nlab/show/protomodular+categories">protomodular categories</a>, <a class="existingWikiWord" href="/nlab/show/semi-abelian+categories">semi-abelian categories</a> and <a class="existingWikiWord" href="/nlab/show/homological+categories">homological categories</a>.</p> <p>From the introduction:</p> <blockquote> <p>The most striking successes of category theory, as far as clarification of mathematical situations is concerned, are probably the theory of <a class="existingWikiWord" href="/nlab/show/abelian+categories">abelian categories</a> and the theory of <a class="existingWikiWord" href="/nlab/show/toposes">toposes</a>. This is not too amazing since both theories are closely related to the development of sheaf theory, a context in which it is desirable to get rid of the usual notion of element.</p> <p>But up to recently, category theory did not provide any comparable insight in General Algebra, a domain in which element-based mathematics remains the slogan. In particular, category theory could not provide a structural tool able to grasp, even in the most representative category of classical algebra - namely, the category <a class="existingWikiWord" href="/nlab/show/Grp"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <mi mathvariant="normal">Gp</mi> </mrow> <annotation encoding="application/x-tex">\mathrm{Gp}</annotation> </semantics> </math></a> of groups - the deep essence of the notion of normal <a class="existingWikiWord" href="/nlab/show/subobject">subobject</a>: namely, an equivalence class for a congruence and not just the kernel of a morphism.</p> <p>And category theory could not grasp either the conceptual foundations of the <a class="existingWikiWord" href="/nlab/show/diagram+chasing+lemmas+-+contents">homological lemmas</a>: the Nine Lemma, the <a class="existingWikiWord" href="/nlab/show/snake+lemma">Snake Lemma</a>, which remain valid and strongly meaningful in the category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">Gp</mi></mrow><annotation encoding="application/x-tex">\mathrm{Gp}</annotation></semantics></math> of groups, even if this category does not belong to the abelian setting in which these lemmas are generally proved in a significant categorical way.</p> <p>Of course, there have been since a long time attempts to provide an axiomatic context in which to get the isomorphism theorems, the decomposition theorems or the previous homological lemmas for the varieties of Universal Algebra: Baer (1947, [6]), Goldie (1952, [48]), Atiyah (1956, [5]), Higgins (1956, [54]), Kurosh (1959, [73]), Hilton-Ledermann (1960, [55]), Eckmann-Hilton (1962, [40]), Tsalenko (1967, [92]), but also Hofmannn (1960, [56]), Fröhlich (1961, [46]), Huq (1968, [57]), Gerstenhaber (1970, [47]), Burgin (1970, [34]), Orzech (1972, [83]).</p> <p>These first attempts, despite their interest, consist generally in a long list of axioms whose independence is certainly not clear. But more importantly, these axioms look desperately heavy and complicated in comparison with the elegance of the characterization of abelian models. We refer the reader to the introduction of the paper by Janelidze-Márki-Tholen (2002, [60]) for a reliable historical approach to this topic. … Establishing an organic and synthetic connection between all these attempts the ambition of this book. To achieve this, an additional ingredient was necessary, of purely categorical nature: the <a class="existingWikiWord" href="/nlab/show/fibration+of+points">fibration of points</a>. This fibration allows representing every category as a fibration whose fibres are pointed categories, i.e. categories with a zero object (see Bourn, 1996, [17]). This book will give evidence that the fibration of points emphasizes the importance of split epimorphisms in the context of algebraic theories, but also that this fibration of points has a very strong classification power: see on page 466 the table summarizing these classification properties. …</p> </blockquote> <h2 id="contents">Contents</h2> <p>(with links to the related <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>lab entries)</p> <ul> <li>Preface</li> </ul> <ol> <li> <p>Metatheorems</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Mal%27cev+categories">Mal'cev categories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/protomodular+category">Protomodular categories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homological+category">Homological categories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/semi-abelian+category">Semi-abelian categories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/protomodular+category">Strongly protomodular categories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/essentially+affine+category">Essentially affine categories</a></p> </li> </ol> <ul> <li> <p>Appendix</p> <ol> <li> <p><a class="existingWikiWord" href="/nlab/show/algebraic+theory">Algebraic theories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+relation">Internal relations</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+groupoid">Internal groupoids</a></p> </li> <li> <p>Variations on <a class="existingWikiWord" href="/nlab/show/epimorphisms">epimorphisms</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/regular+category">Regular</a> and <a class="existingWikiWord" href="/nlab/show/exact+categories">exact categories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monad">Monads</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+fibration">Fibrations</a></p> </li> </ol> </li> <li> <p>Classification table of fibrations of points</p> </li> <li> <p>Bibliography</p> </li> <li> <p>Index of symbols</p> </li> <li> <p>Index of definitions</p> </li> </ul> <h2 id="bibliography">Bibliography</h2> <ol> <li> <p>P. Agliano, A. Ursini, Ideals and other generalizations of congruence classes, Journal of Australian Math. Soc., Ser. A <strong>53</strong> (1992) 103-115</p> </li> <li> <p>P. Agliano, A. Ursini, On subtractive varieties II: general properties, Algebra Universalis <strong>36</strong> (1996) 222-259</p> </li> <li> <p>P. Agliano, A. Ursini, On subtractive varieties III: from ideals of congruences, Algebra Universalis <strong>37</strong> (1997) 296-333</p> </li> <li> <p>P. Agliano, A. Ursini, On subtractive varieties IV: definability of principal ideals, Algebra Universalis <strong>38</strong> (1997) 355–389</p> </li> <li> <p>M. Atiyah, On the Krull-Schmidt Theorem with applications to sheaves, Bull. Soc. Math. France <strong>84</strong> (1956) 307-317</p> </li> <li> <p>R. Baer, Direct decomposition, Trans. Amer. Math. Soc. <strong>62</strong> (1947) 62-98</p> </li> <li> <p>M. Barr, Exact categories, Springer Lect. Notes in Math. 236 (1971) 1-120</p> </li> <li> <p>M. Barr, J. Beck, Hornology and standard constructions, Springer Lec. Notes in Math. <strong>80</strong> (1969) 245-335</p> </li> <li> <p>J. Bénabou, Introduction to bicategories, Springer Lect. Notes in Math. <strong>47</strong> (1967) 1-77</p> </li> <li> <p>J. Bénabou, Fibered categories and the foundations of naive category theory, J. of Symbolic Logic <strong>50</strong> (1985) 10</p> </li> <li> <p>F. Borceux, <a class="existingWikiWord" href="/nlab/show/Handbook+of+Categorical+Algebra">Handbook of Categorical Algebra</a>, Cambridge Univ. Press, vol. 1-3 (1994)</p> </li> <li> <p>F. Borceux, A survey of semi-abelian categories, in: Galois theory, Hopf algebras, and semiabelian categories, 27–60, Fields Inst. Commun., <strong>43</strong>, Amer. Math. Soc., Providence, RI, 2004, <a href="http://www.ams.org/mathscinet-getitem?mr=2005b:18015">MR2005b:18015</a></p> </li> <li> <p>F. Borceux, M. M. Clementino, Topological semi-abelian algebras, Adv. Math. 190 (2005), no. 2, 425–453, <a href="http://dx.doi.org/10.1016/j.aim.2004.03.002">doi</a>, <a href="http://www.ams.org/mathscinet-getitem?mr=2005b:18015">MR2005b:18015</a></p> </li> <li> <p>F. Borceux, M. Grandis, <em>Jordan-Hölder, modularity and distributivity in non-commutative algebra</em>, J. Pure Appl. Algebra <strong>208</strong> (2007), no. 2, 665–689, <a href="http://dx.doi.org/10.1016/j.jpaa.2006.03.004">doi</a>, <a href="http://www.ams.org/mathscinet-getitem?mr=2007k:18021">MR2007k:18021</a></p> </li> <li> <p>D. Bourn, The shift functor and the comprehensive factorization for internal groupoids, Cahiers Top. Géométrie Différentielle Catégoriques <strong>28</strong> (1987) 197-226</p> </li> <li> <p>D. Bourn, Normalization equivalence, kernel equivalence and alefine categories, Springer Lect. Notes in Math. <strong>1448</strong> <a class="existingWikiWord" href="/nlab/show/Como">Como</a> (1991) 43-62</p> </li> <li> <p>D. Bourn, Mal’cev categories and fibrations of pointed objects, Appl. Categorical Structures <strong>4</strong> (1996) 302-327</p> </li> <li> <p>D. Bourn, Baer sums and fibered aspects of Mal’cev operations, Cahiers Top. Géom. Diff. Catégoriques <strong>40</strong> (1999) 297-316</p> </li> <li> <p>D. Bourn, Normal subobjects and abelian objects in protomodular categories. J. Algebra <strong>228</strong> (2000) 143-164</p> </li> <li> <p>D. Bourn, Normal functors and strong protomodularity, Theory Appl. Cat- egories <strong>7</strong> (2000) 206-218</p> </li> <li> <p>D. Bourn, 3 x 3 lemma and protomodularity, J. Algebra <strong>236</strong> (2001) 778-795</p> </li> <li> <p>D. Bourn, A categorical genealogy for the congruence distributive property, Theory Appl. Categories <strong>8</strong> (2001) 391-407</p> </li> <li> <p>D. Bourn, Intrinsic centrality and associated classifying properties, J. of Algebra <strong>256</strong> (2002) 126-145</p> </li> <li> <p>D. Bourn, Aspherical abelian groupoids and their directions, J. Pure Appl. Alg. <strong>168</strong> (2002) 133 146</p> </li> <li> <p>D Bourn, The denormalized 3 x 3 lemma, J. Pure Appl. Algebra <strong>177</strong> (2003) 113-129</p> </li> <li> <p>D Bourn, Commutator theory in regular Mal’cev categories, Publications of the Fields Institute (to appear)</p> </li> <li> <p>D Bourn, Protomodular aspect of the dual of a topos, Advances in Mathematics, Adv. Math. <strong>187</strong> (2004), no. 1, 240–255, <a href="http://dx.doi.org/10.1016/j.aim.2003.09.004">doi</a>, <a href="http://www.ams.org/mathscinet-getitem?mr=2006a:18003">MR2006a:18003</a></p> </li> <li> <p>D Bourn, Commutator theory in strongly semi-abelian categories, Preprint, Univ. du Littoral (2003), submitted for publication</p> </li> <li> <p>D Bourn, M. Gran, Centrality and normality in protomodular categories, Theory Appl. Categories <strong>9</strong> (2002) 151-165</p> </li> <li> <p>D Bourn, M. Gran, Central extensions in semi-abelian categories, J. Pure Appl. Alg. <strong>175</strong> (2002) 31-44</p> </li> <li> <p>D. Bourn, M. Gran, Centrality and connectors in Maltsev categories, Algebra Universalis <strong>48</strong> (2002) 309-331</p> </li> <li> <p>D. Bourn, G. Janelidze, Protomodularity, descent and semi-direct product, Theory Appl. Categories <strong>4</strong> (1998) 37-46</p> </li> <li> <p>D. Bourn, G. Janelidze, Characterization of protomodular varieties of universal algebra, Theory Appl. Categories <strong>11</strong> (2003) 143-147</p> </li> <li> <p>M.S. Burgin, Categories with involution and correspondences in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>γ</mi></mrow><annotation encoding="application/x-tex">\gamma</annotation></semantics></math>-categories, Trans. Moscow Math. Soc. <strong>22</strong> (1970) 181-257</p> </li> <li> <p>A. Carboni, Categories of affine spaces, J. Pure Appl. Alg. <strong>61</strong> (1989) 243-25O</p> </li> <li> <p>A. Carboni, G. M. Kelly, M. C. Pedicchio, Some remarks on Mal’tsev and Goursat categories, Appl. Categorical Structures <strong>1</strong> (1993) 385-421</p> </li> <li> <p>A. Carboni, J. Lambek, M. C. Pedicchio, Diagram chasing in Mal’cev categories, J. Pure Appl. Alg. <strong>69</strong> (1990) 271-284</p> </li> <li> <p>A. Carboni, M. C. Pedicchio, N. Pirovano, Internal graphs and internal groupolds in Mal’cev categories, CMS Conference proceedings, Category Theory 1991 <strong>13</strong> (1992) 97-109</p> </li> <li> <p>Y. Diers, Categories of commutative algebras, Oxford University Press (1992)</p> </li> <li> <p>B. Eckmann, P.J. Hilton, Group-like structures in general categories Math. Ann. 145 (1962) 227-255</p> </li> <li> <p>T. Everaert, T. Van der Linden, Baer invariants in semi-abelian categories H: homologs, preprint (2003)</p> </li> <li> <p>T.H. Fay, On categorical conditions for congruences to commute, Algebra Univ. <strong>8</strong> (1978) 173-179</p> </li> <li> <p>R. Freese, R. McKenzie, Commutator theory for congruence modular varieties, Load. Math. Soc. Lect. Notes Series <strong>125</strong> (1987)</p> </li> <li> <p>P. Freyd, <em>Abelian categories</em>, Harper and Row (1964)</p> </li> <li> <p>P. Freyd, A. Scedrov, <em>Categories, allegories</em>, North Holland (1990)</p> </li> <li> <p>A. Fröhlich, <em>Non-abelian homological algebra I, Derived functors and <a class="existingWikiWord" href="/nlab/show/satellites">satellites</a></em>, Proc. London Math. Soc. <strong>11</strong> (1961) 239-275</p> </li> <li> <p>M. Gerstenhaber, <em>A categorical setting for the Baer extension theory</em>, Proc. in Symposia in Pure Mathematics <strong>17</strong> (1970) 50-64</p> </li> <li> <p>A. W. Goldie, <em>The Jordan-Hölder theorem for general abstract algebras</em>, Proc. London Math. Math. Soc. 2 (1950) 107-113</p> </li> <li> <p>M. Gran, Internal categories in Mal’cev categories, J. Pure Appl. Alg. 143 (1999) 221-229</p> </li> <li> <p>M. Gran, Central extensions and internal groupolds in Maltsev categories, J. Pure Appl. Alg. 155 (2001) 139-166</p> </li> <li> <p>M. Gran, Seni-abelian exact completions, Hornology, Homotopy and Appl. 4(1) (2002) 175-189</p> </li> <li> <p>H. P. Gumm, Geometrical methods in congruence modular varieties, Mere. Amer. Math. Soc. 45 (1983)</p> </li> <li> <p>J. Hagemann, C. Herrmann, A concrete ideal multiplication .for al- gebraic systems and its relation to congruence distributivity, Arch. Math. 32 (1979) 234-245</p> </li> <li> <p>P. J. Higgins, Groups with multiple operators, Proc. London Math. Soc. 6 (1956) 366-416</p> </li> <li> <p>P. J. Hilton and W. Ledermann, On the Jordan-Hölder theorem in homological monoids, Proc. London Math. Soc. 10 (1960) 321-334</p> </li> <li> <p>F. Hofmann, Uber cine die Kategorie der Gruppen umfassende Kategorie, Sitzunss. Bayerische Akad. Wissensch. Math. Naturw. Klasse (1960) 163-204</p> </li> <li> <p>S.A. Huq, Commutator, nilpotency and solvability in categories, Quart. J. Math. Oxford (2)19 (1968) 363-389</p> </li> <li> <p>M. Huek, Productivity of properties of topological spaces, Topology Appl. 44 (1992) 189-196</p> </li> <li> <p>G. Janelidze, <em>Internal categories in Mal’cev varieties</em>, Preprint York Univ. in Toronto (1990)</p> </li> <li> <p>G. Janelidze, L. Márki, W. Tholen, Semi-abelian categories, J. Pure Appl. Alg. 168 (2002) 367-386</p> </li> <li> <p>G. Janelidze, M. C. Pedicchio, Pseudogroupoids and commutator theory, Theory Appl. Categories <strong>8</strong> (2001) 405-456</p> </li> <li> <p>P.T. Johnstone, Topos theory, London Math. Soc. Monographs 10, Aca- demic Press (1977)</p> </li> <li> <p>P.T. Johnstone, <a class="existingWikiWord" href="/nlab/show/Stone+space">Stone space</a>s, Cambridge Univ. Press (1982)</p> </li> <li> <p>P. T. Johnstone, Affine categories and naturally Mal’cev categories, J. Pure Appl. Alg. <strong>61</strong> (1989) 251-256</p> </li> <li> <p>P. T. Johnstone, The closed subgroup theorem for localic herds and pre- groupolds, J. Pure Appl. Alg. <strong>70</strong> (1991) 97-106</p> </li> <li> <p>P. T. Johnstone, <a class="existingWikiWord" href="/nlab/show/Sketches+of+an+Elephant">Sketches of an Elephant</a>: A Topos Theory Compendium, Vol. 1, 2, Oxford University Press, 2002</p> </li> <li> <p>Peter Johnstone, <em>A note on the semiabelian variety of Heyting semilattices</em>, in: Galois theory, Hopf algebras, and semiabelian categories, 317–318, Fields Inst. Commun. <strong>43</strong>, Amer. Math. Soc. 2004, <a href="http://www.ams.org/mathscinet-getitem?mr=2075591">MR2006a:18003</a></p> </li> <li> <p>P. T. Johnstone and M. C. Pedicchio, Remarks on continuous Mal’cev algebras, Rend. Univ. Trieste (1995) 277-297</p> </li> <li> <p>B. Jónsson and A. Tarski, Direct decompositions of finite algebraic systems, Notre Dame Mathematical Lectures, Notre Dame, Indiana (1947)</p> </li> <li> <p>A. Kock, The algebraic theory of moving frames, Cahiers Top. Géom. Diff. Catégoriques 23 (1982) 347-362</p> </li> <li> <p>A. Kock, Generalized fibre bundles, Springer Lect. Notes in Math. 1348 (1988) 194-207</p> </li> <li> <p>A. Kock, Fibre bundle in general categories, J. Pure Appl. Alg. 56 (1989) 233–245</p> </li> <li> <p>A. G. Kurosh, Direct decompositions in algebraic categories (Russian), Trudy Mosk. Mat. Obščestva. 8 (1959) 391-412</p> </li> <li> <p>F.W. Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A. 50 (1963) 869-873</p> </li> <li> <p>F.W. Lawvere, R. Rosebrugh, Sets for mathematics, Cambridge University Press (2002)</p> </li> <li> <p>F.W. Lawvere, S.H. Schanuel, Conceptual Mathematics, Buffalo Workshop preprint (1994)</p> </li> <li> <p>F.E.J. Linton, An outline of functorial semantics, Spinger Lect. Notes Math. <strong>80</strong> (1969) 7–52</p> </li> <li> <p>F.E.J. Linton, Applied functorial semantics, Springer LNM <strong>80</strong> (1969) 53-74</p> </li> <li> <p>S. Mac Lane, Homology, Springer Verlag (1963)</p> </li> <li> <p>S. Mac Lane, Categories for the working mathematician, 2nd edition, Springer Verlag (1998)</p> </li> <li> <p>S. Mac Lane, I. Moerdijk, <a class="existingWikiWord" href="/nlab/show/Sheaves+in+Geometry+and+Logic">Sheaves in Geometry and Logic</a>, Universitext, Springer Verlag (1992)</p> </li> <li> <p>A. I. Mal’cev, On the general theory of algebraic systems, Mat. Sbornik N. S. 35 (1954) 3-20</p> </li> <li> <p>G. Orzech, Obstruction theory in algebraic categories, I and H, J. Pure Appl. Alg. 2 (1972) 287-340</p> </li> <li> <p>M. C. Pedicchio, Maltsev categories and Maltsev operations, J. Pure Appl. Alg. 98 (1995) 67-71</p> </li> <li> <p>M. C. Pedicchio, A categorical approach to commutator theory, J. Algebra 17’7’ (1995) 647-657</p> </li> <li> <p>M. C. Pedicchio, Arithmetical categories and commutator theory, Appl. Categorical Structures 4 (1996) 297-305</p> </li> <li> <p>R.S. Pierce, Modules over commutativc regular rings, Mere. Am. Math. Soc. 70 (1967)</p> </li> <li> <p>A. F. Pixley, Distributivity and permutability of congruences in equational classes of algebras, Proc. Amer. Math. Soc. 14 (1963) 105-109</p> </li> <li> <p>J. D. H. Smith, Mal’cev varieties, Springer Lect. Notes in Math. 554 (1976)</p> </li> <li> <p>J. D. H. Smith, Centrality, Abstract of the Amer. Math. Soc. I (1980) 774-821</p> </li> <li> <p>J. D. H. Smith, On the characterization of Maltsev and Jdnsson-Tarski algebras, Preprint Iowa State Univ. (2001)</p> </li> <li> <p>M. S. Tsalenko, <em>Correspondences over a quasi-exact category</em> (Russian), Mat. Sbornik <strong>73</strong> (1967) 564-584</p> </li> <li> <p>A. Ursini, <em>On subtractive varieties, I</em>, Algebra Universalis <strong>31</strong> (1994) 204-222</p> </li> <li> <p>A. Ursini, <em>On subtractive varieties, V: congruence modularity and commutators</em>, Algebra Universalis 43 (2000) 51-78</p> </li> <li> <p>V.V. Uspenskii, <em>The Mal’tsev operation on countably compact spaces</em>, Comment. mat. Univ. Carolinæ 30 (1989) 395-402</p> </li> </ol> <div class="property">category: <a class="category_link" href="/nlab/all_pages/reference">reference</a></div></body></html> </div> <div class="revisedby"> <p> Last revised on September 22, 2021 at 09:39:37. See the <a href="/nlab/history/Malcev%2C+protomodular%2C+homological+and+semi-abelian+categories" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/Malcev%2C+protomodular%2C+homological+and+semi-abelian+categories" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/13502/#Item_2">Discuss</a><span class="backintime"><a href="/nlab/revision/Malcev%2C+protomodular%2C+homological+and+semi-abelian+categories/9" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/Malcev%2C+protomodular%2C+homological+and+semi-abelian+categories" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/Malcev%2C+protomodular%2C+homological+and+semi-abelian+categories" accesskey="S" class="navlink" id="history" rel="nofollow">History (9 revisions)</a> <a href="/nlab/show/Malcev%2C+protomodular%2C+homological+and+semi-abelian+categories/cite" style="color: black">Cite</a> <a href="/nlab/print/Malcev%2C+protomodular%2C+homological+and+semi-abelian+categories" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/Malcev%2C+protomodular%2C+homological+and+semi-abelian+categories" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>