CINXE.COM
Search results for: Eudragit
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Eudragit</title> <meta name="description" content="Search results for: Eudragit"> <meta name="keywords" content="Eudragit"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Eudragit" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Eudragit"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 15</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Eudragit</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Formulation of Film Forming Transdermal Spray Containing Fluconazole Using Full Factorial Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paresh%20M.%20Patel">Paresh M. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20A.%20Patel"> Amit A. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20H.%20Parikh"> R. H. Parikh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present investigation was undertaken to fabricate modified transport fluconazole that belongs to BCS class II and have a poor applicability on topical infection. So to improve topical application, transdermal spray could play a vital role by using ethyl cellulose and Eudragit® S100 as film-forming polymers. Concentration of Eudragit® S100, ethyl cellulose and permeation enhancer (camphor and menthol) were selected as independent variables, whereas drying time, viscosity and in-vitro drug release were selected as dependent variables in factorial design. The viscosity, drying time and in-vitro drug release of the optimize batch B15 was 40.1 cps, 47 sec. and 90.79% respectively. The film of optimized batch was flexible and dermal-adhesive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eudragit" title="Eudragit">Eudragit</a>, <a href="https://publications.waset.org/abstracts/search?q=ethyl%20cellulose" title=" ethyl cellulose"> ethyl cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=fluconazole" title=" fluconazole"> fluconazole</a>, <a href="https://publications.waset.org/abstracts/search?q=transdermal%20spray" title=" transdermal spray"> transdermal spray</a> </p> <a href="https://publications.waset.org/abstracts/14151/formulation-of-film-forming-transdermal-spray-containing-fluconazole-using-full-factorial-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Development and Efficacy Assessment of an Enteric Coated Porous Tablet Loaded with F4 Fimbriae for Oral Vaccination against Enterotoxigenic Escherichia coli Infections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atul%20Srivastava">Atul Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20V.%20Gowda"> D. V. Gowda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enterotoxigenic Escherichia coli (ETEC) infection is one of the major causes contributing to the development of diarrhoea in adults and children in developing countries. To date, no preventive/treatment strategy showed promising results, which could be due to the lack of potent vaccines, and/or due to the development of resistance of ETEC to antibiotics. Therefore, in the present investigation, a novel porous Sodium Alginate (SA) tablet formulation loaded with F4 fimbriae antigen was developed and tested for efficacy against ETEC infections in piglet models. Pre-compression parameters of the powder mixes and post compression parameters of tablets have been evaluated and results were found to be satisfactory. Loading of F4 fimbrial antigens in to the tablets was achieved by inducing pores in the tablets via the sublimation of camphor followed by incubation with purified F4 fimbriae. The loaded tablets have been coated with Eudragit L100 to protect the F4 fimbriae from (a) highly acidic gastric environment; (b) proteolytic cleavage by pepsin; and (c) to promote subsequent release in the intestine. Evaluation of developed F4 fimbrial tablets in a Pig model demonstrated induction of mucosal immunity, and a significant reduction of F4+ E. coli in faeces. Therefore, F4 fimbriae loaded porous tablets could be a novel oral vaccination candidate to induce mucosal and systemic immunity against ETEC infections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous%20tablets" title="porous tablets">porous tablets</a>, <a href="https://publications.waset.org/abstracts/search?q=sublimation" title=" sublimation"> sublimation</a>, <a href="https://publications.waset.org/abstracts/search?q=f4%20fimbriae" title=" f4 fimbriae"> f4 fimbriae</a>, <a href="https://publications.waset.org/abstracts/search?q=eudragit%20l100" title=" eudragit l100"> eudragit l100</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccination" title=" vaccination"> vaccination</a> </p> <a href="https://publications.waset.org/abstracts/27290/development-and-efficacy-assessment-of-an-enteric-coated-porous-tablet-loaded-with-f4-fimbriae-for-oral-vaccination-against-enterotoxigenic-escherichia-coli-infections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Transdermal Therapeutic System of Lercanıdipine Hydrochloride: Fabrication and in Vivo Evaluation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiji%20Jose">Jiji Jose</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Narayanacharyulu"> R. Narayanacharyulu</a>, <a href="https://publications.waset.org/abstracts/search?q=Molly%20Mathew"> Molly Mathew</a>, <a href="https://publications.waset.org/abstracts/search?q=Jisha%20Prems"> Jisha Prems</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Lercanidipine hydrochloride (LD), an effective calcium channel blocker, widely used for the treatment of chronic stable angina and hypertension seems to be potential transdermal therapeutic system candidate, mainly due to its low oral bio availability, short half life and high first-pass metabolism. Objective: To develop transdermal therapeutic systems for LD and to evaluate its in vivo performance in rabbits. Methodology: Transdermal patches of LD were formulated using the polymer blend of eudragit RL100 (ERL) and polyvinyl pyrolidone (PVP) by casting method Propylene glycol (PG) and tween 80 were used as plasticizer and permeation enhancer respectively. The pharmaco kinetic parameters of LD after the administration of transdermal patches was compared with that of oral administration. The study was carried out in a two way crossover design in male New Zealand albino rabbits. Results: The formulation with ERL: PVP ratio 1:4 with 15% w/w PG as plasticizer and 4% w/w tween 80 as permeation enhancer showed the best drug release results. The pharmacokinetic parameters such as Cmax, tmax, mean residence time (MRT) and area under the curve (AUC 0-∞) were significantly different following transdermal administration compared to oral administration. The terminal half life of transdermally administered LD was found to similar that of oral administration. A sustained drug release over a period of 24 hrs was observed after transdermal administration. Conclusion: The fabricated transdermal delivery system have the potential to provide controlled and extended drug release, better bio availability and thus, this may improve the patient compliance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transdermal%20therapeutic%20system" title="transdermal therapeutic system">transdermal therapeutic system</a>, <a href="https://publications.waset.org/abstracts/search?q=lercanidipine%20hydrochloride" title=" lercanidipine hydrochloride"> lercanidipine hydrochloride</a>, <a href="https://publications.waset.org/abstracts/search?q=eudragit" title=" eudragit"> eudragit</a>, <a href="https://publications.waset.org/abstracts/search?q=skinpermeation" title=" skinpermeation"> skinpermeation</a> </p> <a href="https://publications.waset.org/abstracts/10017/transdermal-therapeutic-system-of-lercanidipine-hydrochloride-fabrication-and-in-vivo-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">615</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Development and Optimization of Colon Targeted Drug Delivery System of Ayurvedic Churna Formulation Using Eudragit L100 and Ethyl Cellulose as Coating Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anil%20Bhandari">Anil Bhandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Imran%20Khan%20Pathan"> Imran Khan Pathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Peeyush%20K.%20Sharma"> Peeyush K. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20K.%20Patel"> Rakesh K. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Purohit"> Suresh Purohit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to prepare time and pH dependent release tablets of Ayurvedic Churna formulation and evaluate their advantages as colon targeted drug delivery system. The Vidangadi Churna was selected for this study which contains Embelin and Gallic acid. Embelin is used in Helminthiasis as therapeutic agent. Embelin is insoluble in water and unstable in gastric environment so it was formulated in time and pH dependent tablets coated with combination of two polymers Eudragit L100 and ethyl cellulose. The 150mg of core tablet of dried extract and lactose were prepared by wet granulation method. The compression coating was used in the polymer concentration of 150mg for both the layer as upper and lower coating tablet was investigated. The results showed that no release was found in 0.1 N HCl and pH 6.8 phosphate buffers for initial 5 hours and about 98.97% of the drug was released in pH 7.4 phosphate buffer in total 17 hours. The in vitro release profiles of drug from the formulation could be best expressed first order kinetics as highest linearity (r2= 0.9943). The results of the present study have demonstrated that the time and pH dependent tablets system is a promising vehicle for preventing rapid hydrolysis in gastric environment and improving oral bioavailability of Embelin and Gallic acid for treatment of Helminthiasis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embelin" title="embelin">embelin</a>, <a href="https://publications.waset.org/abstracts/search?q=gallic%20acid" title=" gallic acid"> gallic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=Vidangadi%20Churna" title=" Vidangadi Churna"> Vidangadi Churna</a>, <a href="https://publications.waset.org/abstracts/search?q=colon%20targeted%20drug%20delivery" title=" colon targeted drug delivery"> colon targeted drug delivery</a> </p> <a href="https://publications.waset.org/abstracts/1701/development-and-optimization-of-colon-targeted-drug-delivery-system-of-ayurvedic-churna-formulation-using-eudragit-l100-and-ethyl-cellulose-as-coating-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Development of Site-Specific Colonic Drug Delivery System (Nanoparticles) of Chitosan Coated with pH Sensitive Polymer for the Management of Colonic Inflammation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Mongia%20Raj">Pooja Mongia Raj</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20Raj"> Rakesh Raj</a>, <a href="https://publications.waset.org/abstracts/search?q=Alpana%20Ram"> Alpana Ram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The use of multiparticulate drug delivery systems in preference to single unit dosage forms for colon targeting purposes dates back to 1985 when Hardy and co-workers showed that multiparticulate systems enabled the drug to reach the colon quickly and were retained in the ascending colon for a relatively long period of time. Methods: Site-specific colonic drug delivery system (nanoparticles) of 5-ASA were prepared and coated with pH sensitive polymer. Chitosan nanoparticles (CTNP) bearing 5-Amino salicylic acid (5-ASA) were prepared, by ionotropic gelation method. Nanoparticulate dosage form consisting of a hydrophobic core enteric coated with pH-dependent polymer Eudragit S-100 by solvent evaporation method, for the effective delivery of drug to the colon for treatment of ulcerative colitis. Results: The mean diameter of CTNP and ECTNP formulations were 159 and 661 nm, respectively. Also optimum value of polydispersity index was found to be 0.249 [count rate (kcps) was 251.2] and 0.170 [count rate (kcps) was 173.9] was obtained for both the formulations respectively. Conclusion: CTNP and Eudragit chitosan nanoparticles (ECTNP) was characterized for shape and surface morphology by scanning electron microscopy (SEM) appeared to be spherical in shape. The in vitro drug release was investigated using USP dissolution test apparatus in different simulated GIT fluids showed promising release. In vivo experiments are in further proceeding for fruitful results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colon%20targeting" title="colon targeting">colon targeting</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=5-amino%20salicylic%20acid" title=" 5-amino salicylic acid"> 5-amino salicylic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=edragit" title=" edragit"> edragit</a> </p> <a href="https://publications.waset.org/abstracts/16156/development-of-site-specific-colonic-drug-delivery-system-nanoparticles-of-chitosan-coated-with-ph-sensitive-polymer-for-the-management-of-colonic-inflammation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Transdermal Medicated- Layered Extended-Release Patches for Co-delivery of Carbamazepine and Pyridoxine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20K.%20Amer">Sarah K. Amer</a>, <a href="https://publications.waset.org/abstracts/search?q=Walaa%20Alaa"> Walaa Alaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epilepsy is an important cause of mortality and morbidity, according to WHO statistics. It is characterized by the presence of frequent seizures occurring more than 24 hours apart. Carbamazepine (CBZ) is considered first-line treatment for epilepsy. However, reports have shown that CBZ oral formulations failed to achieve optimum systemic delivery, minimize side effects, and enhance patient compliance. Besides, the literature has signified the lack of therapeutically efficient CBZ transdermal formulation and the urge for its existence owing to its ease and convenient method of application and highlighted capability to attain higher bioavailability and more extended-release profiles compared to conventional oral CBZ tablets. This work aims to prepare CBZ microspheres (MS) that are embedded in a transdermal gel containing Vitamin B to be co-delivered. MS were prepared by emulsion-solvent diffusion method using Eudragit S as core forming polymer and hydroxypropyl methylcellulose (HPMC) polymer. The MS appeared to be spherical and porous in nature, offering a large surface area and high entrapment efficiency of CBZ. The transdermal gel was prepared by solvent-evaporation technique using HPMC that, offered high entrapment efficiency and Eudragit S that provided an extended-release profile. Polyethylene glycol, Span 80 and Pyridoxine were also added. Data indicated that combinations of CBZ with pyridoxine can reduce epileptic seizures without affecting motor coordination. Extended-release profiles were evident for this system. The patches were furthermore tested for thickness, moisture content, folding endurance, spreadability and viscosity measurements. This novel pharmaceutical formulation would be of great influence on seizure control, offering better therapeutic effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epilepsy" title="epilepsy">epilepsy</a>, <a href="https://publications.waset.org/abstracts/search?q=carbamazepine" title=" carbamazepine"> carbamazepine</a>, <a href="https://publications.waset.org/abstracts/search?q=pyridoxine" title=" pyridoxine"> pyridoxine</a>, <a href="https://publications.waset.org/abstracts/search?q=transdermal" title=" transdermal"> transdermal</a> </p> <a href="https://publications.waset.org/abstracts/182988/transdermal-medicated-layered-extended-release-patches-for-co-delivery-of-carbamazepine-and-pyridoxine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Fabrication and Characterization of Transdermal Spray Using Film Forming Polymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paresh%20Patel">Paresh Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Harshit%20Patel"> Harshit Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superficial fungal skin infection is among the most common skin disease. The drug administration through skin has received attention due to several advantages: Avoidance of significant pre-systemic metabolism, drug levels within the therapeutic window, drugs with short biological half-lives, decreased side effects, the non-invasive character, and very high acceptance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transdermal%20spray" title="transdermal spray">transdermal spray</a>, <a href="https://publications.waset.org/abstracts/search?q=ketoconazole" title=" ketoconazole"> ketoconazole</a>, <a href="https://publications.waset.org/abstracts/search?q=Eudragit%C2%AE%20RLPO" title=" Eudragit® RLPO"> Eudragit® RLPO</a>, <a href="https://publications.waset.org/abstracts/search?q=therapeutic%20window" title=" therapeutic window"> therapeutic window</a> </p> <a href="https://publications.waset.org/abstracts/2306/fabrication-and-characterization-of-transdermal-spray-using-film-forming-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Formulation of Extended-Release Ranolazine Tablet and Investigation Its Stability in the Accelerated Stability Condition at 40⁰C and 75% Humidity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Khajavi">Farzad Khajavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzaneh%20Jalilfar"> Farzaneh Jalilfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Faranak%20Jafari"> Faranak Jafari</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Shokrani"> Leila Shokrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Formulation of Ranolazine in the form of extended-release tablet in 500 mg dosage form was performed using Eudragit L100-55 as a retarding agent. Drug-release profiles were investigated in comparison with the reference Ranexa extended-release 500 mg tablet. F₂ and f₁ were calculated as 64.16 and 8.53, respectively. According to Peppas equation, the release of drug is controlled by diffusion (n=0.5). The tablets were put into accelerated stability conditions (40 °C, 75% humidity) for 3 and 6 months. The dissolution release profiles and other physical and chemical characteristics of the tablets confirmed the robustness and stability of formulation in this condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20release" title="drug release">drug release</a>, <a href="https://publications.waset.org/abstracts/search?q=extended-release%20tablet" title=" extended-release tablet"> extended-release tablet</a>, <a href="https://publications.waset.org/abstracts/search?q=ranolazine" title=" ranolazine"> ranolazine</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/127040/formulation-of-extended-release-ranolazine-tablet-and-investigation-its-stability-in-the-accelerated-stability-condition-at-40c-and-75-humidity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Encapsulation of Venlafaxine-Dowex® Resinate: A Once Daily Multiple Unit Formulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salwa%20Mohamed%20Salah%20Eldin">Salwa Mohamed Salah Eldin</a>, <a href="https://publications.waset.org/abstracts/search?q=Howida%20Kamal%20Ibrahim"> Howida Kamal Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Major depressive disorder affects high proportion of the world’s population presenting cost load in health care. Extended release venlafaxine is more convenient and could reduce discontinuation syndrome. The once daily dosing also reduces the potential for adverse events such as nausea due to reduced Cmax. Venlafaxine is an effective first-line agent in the treatment of depression. A once daily formulation was designed to enhance patient compliance. Complexing with a resin was suggested to improve loading of the water soluble drug. The formulated systems were thoroughly evaluated in vitro to prove superiority to previous trials and were compared to the commercial extended release product in experimental animals. Materials and Methods: Venlafaxine-resinates were prepared using Dowex®50WX4-400 and Dowex®50WX8-100 at drug to resin weight ratio of 1: 1. The prepared resinates were evaluated for their drug content, particle shape and surface properties and in vitro release profile in gradient pH. The release kinetics and mechanism were evaluated. Venlafaxine-Dowex® resinates were encapsulated using O/W solvent evaporation technique. Poly-ε-caprolactone, Poly(D, L-lactide-co-glycolide) ester, Poly(D, L-lactide) ester and Eudragit®RS100 were used as coating polymers alone and in combination. Drug-resinate microcapsules were evaluated for morphology, entrapment efficiency and in-vitro release profile. The selected formula was tested in rabbits using a randomized, single-dose, 2-way crossover study against Effexor-XR tablets under fasting condition. Results and Discussion: The equilibrium time was 30 min for Dowex®50WX4-400 and 90 min for Dowex®50WX8-100. The percentage drug loaded was 93.96 and 83.56% for both resins, respectively. Both drug-Dowex® resintes were efficient in sustaining venlafaxine release in comparison to the free drug (up to 8h.). Dowex®50WX4-400 based venlafaxine-resinate was selected for further encapsulation to optimize the release profile for once daily dosing and to lower the burst effect. The selected formula (coated with a mixture of Eudragit RS and PLGA in a ratio of 50/50) was chosen by applying a group of mathematical equations according to targeted values. It recorded the minimum burst effect, the maximum MDT (Mean dissolution time) and a Q24h (percentage drug released after 24 hours) between 95 and 100%. The 90% confidence intervals for the test/reference mean ratio of the log-transformed data of AUC0–24 and AUC0−∞ are within (0.8–1.25), which satisfies the bioequivalence criteria. Conclusion: The optimized formula could be a promising extended release form of the water soluble, short half lived venlafaxine. Being a multiple unit formulation, it lowers the probability of dose dumping and reduces the inter-subject variability in absorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20polymers" title="biodegradable polymers">biodegradable polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=cation-exchange%20resin" title=" cation-exchange resin"> cation-exchange resin</a>, <a href="https://publications.waset.org/abstracts/search?q=microencapsulation" title=" microencapsulation"> microencapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=venlafaxine%20hcl" title=" venlafaxine hcl"> venlafaxine hcl</a> </p> <a href="https://publications.waset.org/abstracts/30610/encapsulation-of-venlafaxine-dowex-resinate-a-once-daily-multiple-unit-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Preparation of Biodegradable Methacrylic Nanoparticles by Semicontinuous Heterophase Polymerization for Drugs Loading: The Case of Acetylsalicylic Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Roberto%20Lopez">J. Roberto Lopez</a>, <a href="https://publications.waset.org/abstracts/search?q=Hened%20Saade"> Hened Saade</a>, <a href="https://publications.waset.org/abstracts/search?q=Graciela%20Morales"> Graciela Morales</a>, <a href="https://publications.waset.org/abstracts/search?q=Javier%20Enriquez"> Javier Enriquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Raul%20G.%20Lopez"> Raul G. Lopez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Implementation of systems based on nanostructures for drug delivery applications have taken relevance in recent studies focused on biomedical applications. Although there are several nanostructures as drugs carriers, the use of polymeric nanoparticles (PNP) has been widely studied for this purpose, however, the main issue for these nanostructures is the size control below 50 nm with a narrow distribution size, due to they must go through different physiological barriers and avoid to be filtered by kidneys (< 10 nm) or the spleen (> 100 nm). Thus, considering these and other factors, it can be mentioned that drug-loaded nanostructures with sizes varying between 10 and 50 nm are preferred in the development and study of PNP/drugs systems. In this sense, the Semicontinuous Heterophase Polymerization (SHP) offers the possibility to obtain PNP in the desired size range. Considering the above explained, methacrylic copolymer nanoparticles were obtained under SHP. The reactions were carried out in a jacketed glass reactor with the required quantities of water, ammonium persulfate as initiator, sodium dodecyl sulfate/sodium dioctyl sulfosuccinate as surfactants, methyl methacrylate and methacrylic acid as monomers with molar ratio of 2/1, respectively. The monomer solution was dosed dropwise during reaction at 70 °C with a mechanical stirring of 650 rpm. Nanoparticles of poly(methyl methacrylate-co-methacrylic acid) were loaded with acetylsalicylic acid (ASA, aspirin) by a chemical adsorption technique. The purified latex was put in contact with a solution of ASA in dichloromethane (DCM) at 0.1, 0.2, 0.4 or 0.6 wt-%, at 35°C during 12 hours. According to the boiling point of DCM, as well as DCM and water densities, the loading process is completed when the whole DCM is evaporated. The hydrodynamic diameter was measured after polymerization by quasi-elastic light scattering and transmission electron microscopy, before and after loading procedures with ASA. The quantitative and qualitative analyses of PNP loaded with ASA were measured by infrared spectroscopy, differential scattering calorimetry and thermogravimetric analysis. Also, the molar mass distributions of polymers were determined in a gel permeation chromatograph apparatus. The load capacity and efficiency were determined by gravimetric analysis. The hydrodynamic diameter results for methacrylic PNP without ASA showed a narrow distribution with an average particle size around 10 nm and a composition methyl methacrylate/methacrylic acid molar ratio equal to 2/1, same composition of Eudragit S100, which is a commercial compound widely used as excipient. Moreover, the latex was stabilized in a relative high solids content (around 11 %), a monomer conversion almost 95 % and a number molecular weight around 400 Kg/mol. The average particle size in the PNP/aspirin systems fluctuated between 18 and 24 nm depending on the initial percentage of aspirin in the loading process, being the drug content as high as 24 % with an efficiency loading of 36 %. These average sizes results have not been reported in the literature, thus, the methacrylic nanoparticles here reported are capable to be loaded with a considerable amount of ASA and be used as a drug carrier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspirin" title="aspirin">aspirin</a>, <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title=" biocompatibility"> biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title=" biodegradable"> biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=Eudragit%20S100" title=" Eudragit S100"> Eudragit S100</a>, <a href="https://publications.waset.org/abstracts/search?q=methacrylic%20nanoparticles" title=" methacrylic nanoparticles"> methacrylic nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/98085/preparation-of-biodegradable-methacrylic-nanoparticles-by-semicontinuous-heterophase-polymerization-for-drugs-loading-the-case-of-acetylsalicylic-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Pharmacokinetics of Oral Controlled-Release Formulation of Doxycycline Hyclate with Polymethacrylate and Acrylic Acid for Dogs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Arciniegas">S. M. Arciniegas</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Vargas"> D. Vargas</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Gutierrez"> L. Gutierrez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to develop oral drug presentation of doxycycline hyclate that maintains longer therapeutic levels than conventional forms. A polymethacrylate and acrylic acid based matrix were used in different proportions to obtain controlled-release formulations; DOX1 (1:0.25:0.0035), DOX2 (1:2:0.0225) and DOX-C (without excipients). All were tested in vivo in healthy dogs and their serum concentrations vs. time profile was investigated after its oral administration in this species. DOX1 and DOX2 show therapeutic concentrations for 60 hours, while DOX-C only for 24 hours. The pharmacokinetics values tested were K½el, Cmax, Tmax, AUC, AUC∞, AUCt, AUMC, RT, Kel, Vdss, Clb and Frel. DOX1 does not differ significantly from DOX-C, but shows significant differences in all variables with DOX2 (p<0.05). In conclusion, DOX1 presents best pharmacokinetics for time-dependent drug and longer release time of 60 hours, thereby reducing the frequency of administration, the patient's stress, the occurrence of adverse effects and the cost of treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tetracyclines" title="tetracyclines">tetracyclines</a>, <a href="https://publications.waset.org/abstracts/search?q=long-acting" title=" long-acting"> long-acting</a>, <a href="https://publications.waset.org/abstracts/search?q=sustained-release" title=" sustained-release"> sustained-release</a>, <a href="https://publications.waset.org/abstracts/search?q=carbopol" title=" carbopol"> carbopol</a>, <a href="https://publications.waset.org/abstracts/search?q=eudragit" title=" eudragit"> eudragit</a>, <a href="https://publications.waset.org/abstracts/search?q=canine" title=" canine"> canine</a> </p> <a href="https://publications.waset.org/abstracts/7169/pharmacokinetics-of-oral-controlled-release-formulation-of-doxycycline-hyclate-with-polymethacrylate-and-acrylic-acid-for-dogs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">613</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Layer-by-Layer Coated Dexamethasone Microcrystals for Experimental Inflammatory Bowel Disease Therapy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Murtada%20Ahmed%20Oshi">Murtada Ahmed Oshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Wook%20Yoo"> Jin-Wook Yoo </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Layer-by-layer (LBL) coating has gained popularity for drug delivery of therapeutic drugs. Herein we described a novel approach for enhancing the therapeutic efficiency of the locally administered dexamethasone (Dex) for inflammatory bowel disease (IBD). We utilized a LBL-coating technique on Dex microcrystals (DexMCs) with multiple layers of polyelectrolytes composed of poly (allylamine hydrochloride) (PAH), poly (sodium 4-styrene sulfonate) (PSS) and Eudragit® S100 (ES). The successful deposition of the layers onto DexMCs surfaces were confirmed through zeta potential measurement and confocal laser scanning microscopy. The surface morphology was investigated through scanning electron microscopy. The drug encapsulation efficiency was 95% with a mean particle size of 2 µm and negative surface charge (-40 mV). Moreover, in vitro drug release study showed a minimum release of the drug ( 15%) at an acidic condition during initial first 5 h, followed by sustained-release at an alkaline condition. For in vivo study, LBL-DxMCs were administered orally to ICR mice suffering from dextran sulfate sodium-induced colitis. LBL-DxMCs substantially enhanced anti-IBD activities as compared to DxMCs. Macroscopic, histological and biochemical (tumor necrosis factor-α, interleukin-6 and myeloperoxidase) examinations revealed marked improvements of colitis signs in the mice treated with LBL-DxMCs compared with those treated with DxMCs. Overall, LBL-DxMCs could be a suitable candidate for the treatment of IBD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dexamethasone" title="dexamethasone">dexamethasone</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammatory%20bowel%20disease" title=" inflammatory bowel disease"> inflammatory bowel disease</a>, <a href="https://publications.waset.org/abstracts/search?q=LBL-coating" title=" LBL-coating"> LBL-coating</a>, <a href="https://publications.waset.org/abstracts/search?q=polyelectrolytes" title=" polyelectrolytes"> polyelectrolytes</a> </p> <a href="https://publications.waset.org/abstracts/74316/layer-by-layer-coated-dexamethasone-microcrystals-for-experimental-inflammatory-bowel-disease-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Formulation of Famotidine Solid Lipid Nanoparticles (SLN): Preparation, Evaluation and Release Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachmat%20Mauludin">Rachmat Mauludin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurmazidah"> Nurmazidah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and purpose: Famotidine is an H2 receptor blocker. Absorption orally is rapid enough, but famotidine can be degraded by stomach acid causing dose reduction until 35.8% after 50 minutes. This drug also undergoes first-pass metabolism which reduced its bio availability only until 40-50%. To overcome these problems, Solid Lipid Nano particles (SLNs) as alternative delivery systems can be formulated. SLNs is a lipid-based drug delivery technology with 50-1000 nm particle size, where the drug incorporated into the bio compatible lipids and the lipid particles are stabilized using appropriate stabilizers. When the particle size is 200 nm or below, lipid containing famotidine can be absorbed through the lymphatic vessels to the subclavian vein, so first-pass metabolism can be avoided. Method: Famotidine SLNs with various compositions of stabilizer was prepared using a high-speed homogenization and sonication method. Then, the particle size distribution, zeta potential, entrapment efficiency, particle morphology and in vitro release profiles were evaluated. Optimization of sonication time also carried out. Result: Particle size of SLN by Particle Size Analyzer was in range 114.6 up to 455.267 nm. Ultrasonicated SLNs within 5 minutes generated smaller particle size than SLNs which was ultrasonicated for 10 and 15 minutes. Entrapment efficiency of SLNs were 74.17 up to 79.45%. Particle morphology of the SLNs was spherical and distributed individually. Release study of Famotidine revealed that in acid medium, 28.89 up to 80.55% of famotidine could be released after 2 hours. Nevertheless in basic medium, famotidine was released 40.5 up to 86.88% in the same period. Conclusion: The best formula was SLNs which stabilized by 4% Poloxamer 188 and 1 % Span 20, that had particle size 114.6 nm in diameter, 77.14% famotidine entrapped, and the particle morphology was spherical and distributed individually. SLNs with the best drug release profile was SLNs which stabilized by 4% Eudragit L 100-55 and 1% Tween 80 which had released 36.34 % in pH 1.2 solution, and 74.13% in pH 7.4 solution after 2 hours. The optimum sonication time was 5 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=famotodine" title="famotodine">famotodine</a>, <a href="https://publications.waset.org/abstracts/search?q=SLN" title=" SLN"> SLN</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20homogenization" title=" high speed homogenization"> high speed homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title=" particle size"> particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=release%20study" title=" release study"> release study</a> </p> <a href="https://publications.waset.org/abstracts/20331/formulation-of-famotidine-solid-lipid-nanoparticles-sln-preparation-evaluation-and-release-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">860</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Ph-Triggered Cationic Solid Lipid Nanoparticles Mitigated Colitis in Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naeem">Muhammad Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Juho%20Lee"> Juho Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Wook%20%20Yoo"> Jin-Wook Yoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we hypothesized that prolonged gastrointestinal transit at the inflamed colon conferred by a pH-triggered mucoadhesive smart nanoparticulate drug delivery system aids in achieving selective and sustained levels of the drug within the inflamed colon for the treatment of ulcerative colitis. We developed budesonide-loaded pH-sensitive charge-reversal solid lipid nanoparticles (SLNs) using a hot homogenization method. Polyetylenimine (PEI) was used to render SLNs cationic (PEI-SLNs). Eudragit S100 (ES) was coated on PEI-SLNs for pH-trigger charge-reversal SLNs (ES-PEI-SLNs). Therapeutic potential of the prepared SNLs formulation was evaluated in ulcerative colitis in mice. The transmission electron microscopy, zeta size and zeta potential data showed the successful formation of SLNs formulations. SLNs and PEI-SLNs showed burst drug release in acidic pH condition mimicking stomach and early small intestine environment which limiting their application as oral delivery systems. However, ES-PEI-SLNs prevented a burst drug release in acidic pH conditions and showed sustained release at a colonic pH. Most importantly, the surface charge of ES-PEI-SLNs switched from negative to positive in colonic conditions by pH-triggered removal of ES coating and accumulated selectively in inflamed colon. Furthermore, a charge reversal ES-PEI-SLNs showed a superior mitigation of dextran sulfate sodium (DSS)-induced acute colitis in mice as compared to SLNs and PEI-SLNs treated groups. Moreover, histopathological analysis of distal colon sections stained with hematoxylin/eosin and E-cadherin immunostaining revealed attenuated inflammation in an ES-PEI-SLNs-treated group. We also found that ES-PEI-SLNs markedly reduced the myeloperoxidase level and expression of TNF-alpha in colon tissue. Our results suggest that the pH-triggered charge reversal SLNs presented in this study would be a promising approach for ulcerative colitis therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20lipid%20nanoparticles" title="solid lipid nanoparticles">solid lipid nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=stimuli-triggered%20charge-reversal" title=" stimuli-triggered charge-reversal"> stimuli-triggered charge-reversal</a>, <a href="https://publications.waset.org/abstracts/search?q=ulcerative%20colitis" title=" ulcerative colitis"> ulcerative colitis</a>, <a href="https://publications.waset.org/abstracts/search?q=methacrylate%20copolymer" title=" methacrylate copolymer"> methacrylate copolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=budesonide" title=" budesonide"> budesonide</a> </p> <a href="https://publications.waset.org/abstracts/66887/ph-triggered-cationic-solid-lipid-nanoparticles-mitigated-colitis-in-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Formulation, Preparation, and Evaluation of Coated Desloratadine Oral Disintegrating Tablets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Etman">Mohamed A. Etman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20G.%20Abd-Elnasser"> Mona G. Abd-Elnasser</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Shams-Eldin"> Mohamed A. Shams-Eldin</a>, <a href="https://publications.waset.org/abstracts/search?q=Aly%20H.%20Nada"> Aly H. Nada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Orally disintegrating tablets (ODTs) are gaining importance as new drug delivery systems and emerged as one of the popular and widely accepted dosage forms, especially for the pediatric and geriatric patients. Their advantages such as administration without water, anywhere, anytime lead to their suitability to geriatric and pediatric patients. They are also suitable for the mentally ill, the bed-ridden and patients who do not have easy access to water. The benefits, in terms of patient compliance, rapid onset of action, increased bioavailability, and good stability make these tablets popular as a dosage form of choice in the current market. These dosage forms dissolve or disintegrate in the oral cavity within a matter of seconds without the need of water or chewing. Desloratadine is a tricyclic antihistaminic, which has a selective and peripheral H1-antagonist action. It is an antagonist at histamine H1 receptors, and an antagonist at all subtypes of the muscarinic acetylcholine receptor. Desloratadine is the major metabolite of loratadine. Twelve different placebos ODT were prepared (F1-F12) using different functional excipients. They were evaluated for their compressibility, hardness and disintegration time. All formulations were non sticky except four formulations; namely (F8, F9, F10, F11). All formulations were compressible with the exception of (F2). Variable disintegration times were found ranging between 20 and 120 seconds. It was found that (F12) showed the least disintegration time (20 secs) without showing any sticking which could be due to the use of high percentage of superdisintegrants. Desloratadine showed bitter taste when formulated as ODT without any treatment. Therefore, different techniques were tried in order to mask its bitter taste. Using Eudragit EPO resulted in complete masking of the bitter taste of the drug and increased the acceptability to volunteers. The compressible non sticky formulations (F1, F3, F4, F5, F6, F7 and F12) were subjected to further evaluation tests after addition of coated desloratadine, including weight uniformity, wetting time, and friability testing.. Fairly good weight uniformity values were observed in all the tested formulations. F12 exhibiting the shortest wetting time (14.7 seconds) and consequently the lowest (20 seconds) disintegration time. Dissolution profile showed that 100% desloratadine release was attained after only 2.5 minutes from the prepared ODT (F12) with dissolution efficiency of 95%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Desloratadine" title="Desloratadine">Desloratadine</a>, <a href="https://publications.waset.org/abstracts/search?q=orally%20disintegrating%20tablets%20%28ODTs%29" title=" orally disintegrating tablets (ODTs)"> orally disintegrating tablets (ODTs)</a>, <a href="https://publications.waset.org/abstracts/search?q=formulations" title=" formulations"> formulations</a>, <a href="https://publications.waset.org/abstracts/search?q=taste%20masking" title=" taste masking "> taste masking </a> </p> <a href="https://publications.waset.org/abstracts/10491/formulation-preparation-and-evaluation-of-coated-desloratadine-oral-disintegrating-tablets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>