CINXE.COM
미분 - 위키백과, 우리 모두의 백과사전
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="ko" dir="ltr"> <head> <meta charset="UTF-8"> <title>미분 - 위키백과, 우리 모두의 백과사전</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )kowikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"ko", "wgMonthNames":["","1월","2월","3월","4월","5월","6월","7월","8월","9월","10월","11월","12월"],"wgRequestId":"a4919a5e-d116-42a7-a4e8-e35843c861ad","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"미분","wgTitle":"미분","wgCurRevisionId":38048884,"wgRevisionId":38048884,"wgArticleId":34115,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["해결되지 않은 속성이 있는 문서","CS1 - 영어 인용 (en)","위키데이터 속성 P18을 사용하는 문서","위키데이터 속성 P227을 사용하는 문서","위키데이터 속성 P244를 사용하는 문서","위키데이터 속성 P691을 사용하는 문서","위키데이터 속성 P7859를 사용하는 문서","위키데이터 속성 P8189를 사용하는 문서","한국 한자 표기를 포함한 문서","영어 표기를 포함한 문서","GND 식별자를 포함한 위키백과 문서", "J9U 식별자를 포함한 위키백과 문서","LCCN 식별자를 포함한 위키백과 문서","NKC 식별자를 포함한 위키백과 문서","미분학"],"wgPageViewLanguage":"ko","wgPageContentLanguage":"ko","wgPageContentModel":"wikitext","wgRelevantPageName":"미분","wgRelevantArticleId":34115,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"ko","pageLanguageDir":"ltr","pageVariantFallbacks":"ko"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true, "wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q29175","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.SectionFont":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements", "mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.directcommons","ext.gadget.edittools","ext.gadget.refToolbar","ext.gadget.siteNotice","ext.gadget.scrollUpButton","ext.gadget.strikethroughTOC","ext.gadget.switcher","ext.gadget.WikiMiniAtlas","ext.gadget.Calculator","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=ko&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=ko&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=ko&modules=ext.gadget.SectionFont&only=styles&skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=ko&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.16"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Tangent_to_a_curve.svg/1200px-Tangent_to_a_curve.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="840"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Tangent_to_a_curve.svg/800px-Tangent_to_a_curve.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="560"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Tangent_to_a_curve.svg/640px-Tangent_to_a_curve.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="448"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="미분 - 위키백과, 우리 모두의 백과사전"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//ko.m.wikipedia.org/wiki/%EB%AF%B8%EB%B6%84"> <link rel="alternate" type="application/x-wiki" title="편집" href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="위키백과 (ko)"> <link rel="EditURI" type="application/rsd+xml" href="//ko.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://ko.wikipedia.org/wiki/%EB%AF%B8%EB%B6%84"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.ko"> <link rel="alternate" type="application/atom+xml" title="위키백과 아톰 피드" href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EC%B5%9C%EA%B7%BC%EB%B0%94%EB%80%9C&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-미분 rootpage-미분 skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">본문으로 이동</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="사이트"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="주 메뉴" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="주 메뉴" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">주 메뉴</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">주 메뉴</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">사이드바로 이동</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">숨기기</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> 둘러보기 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%8C%80%EB%AC%B8" title="대문으로 가기 [z]" accesskey="z"><span>대문</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B5%9C%EA%B7%BC%EB%B0%94%EB%80%9C" title="위키의 최근 바뀐 목록 [r]" accesskey="r"><span>최근 바뀜</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/%ED%8F%AC%ED%84%B8:%EC%9A%94%EC%A6%98_%ED%99%94%EC%A0%9C" title="최근의 소식 알아 보기"><span>요즘 화제</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EC%9E%84%EC%9D%98%EB%AC%B8%EC%84%9C" title="무작위로 선택된 문서 불러오기 [x]" accesskey="x"><span>임의의 문서로</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%ED%8A%B9%EC%88%98%EB%AC%B8%EC%84%9C"><span>특수 문서 목록</span></a></li> </ul> </div> </div> <div id="p-사용자_모임" class="vector-menu mw-portlet mw-portlet-사용자_모임" > <div class="vector-menu-heading"> 사용자 모임 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-projectchat" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%82%AC%EB%9E%91%EB%B0%A9"><span>사랑방</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%82%AC%EC%9A%A9%EC%9E%90_%EB%AA%A8%EC%9E%84" title="위키백과 참여자를 위한 토론/대화 공간입니다."><span>사용자 모임</span></a></li><li id="n-request" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%9A%94%EC%B2%AD"><span>관리 요청</span></a></li> </ul> </div> </div> <div id="p-편집_안내" class="vector-menu mw-portlet mw-portlet-편집_안내" > <div class="vector-menu-heading"> 편집 안내 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-helpintro" class="mw-list-item"><a href="/wiki/%EB%8F%84%EC%9B%80%EB%A7%90:%EC%86%8C%EA%B0%9C"><span>소개</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%8F%84%EC%9B%80%EB%A7%90" title="도움말"><span>도움말</span></a></li><li id="n-policy" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%A0%95%EC%B1%85%EA%B3%BC_%EC%A7%80%EC%B9%A8"><span>정책과 지침</span></a></li><li id="n-qna" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%A7%88%EB%AC%B8%EB%B0%A9"><span>질문방</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%8C%80%EB%AC%B8" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="위키백과" src="/static/images/mobile/copyright/wikipedia-wordmark-ko.svg" style="width: 7.5em; height: 1.75em;"> <img class="mw-logo-tagline" alt="" src="/static/images/mobile/copyright/wikipedia-tagline-ko.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/%ED%8A%B9%EC%88%98:%EA%B2%80%EC%83%89" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="위키백과 검색 [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>검색</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="위키백과 검색" aria-label="위키백과 검색" autocapitalize="sentences" title="위키백과 검색 [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="특수:검색"> </div> <button class="cdx-button cdx-search-input__end-button">검색</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="개인 도구"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="보이기"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="문서의 글꼴 크기, 폭, 색의 모습을 변경합니다" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="보이기" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">보이기</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=ko.wikipedia.org&uselang=ko" class=""><span>기부</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EA%B3%84%EC%A0%95%EB%A7%8C%EB%93%A4%EA%B8%B0&returnto=%EB%AF%B8%EB%B6%84" title="계정을 만들고 로그인하는 것이 좋습니다. 하지만 필수는 아닙니다" class=""><span>계정 만들기</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EB%A1%9C%EA%B7%B8%EC%9D%B8&returnto=%EB%AF%B8%EB%B6%84" title="위키백과에 로그인하면 여러가지 편리한 기능을 사용할 수 있습니다. [o]" accesskey="o" class=""><span>로그인</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="더 많은 옵션" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="개인 도구" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">개인 도구</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="사용자 메뉴" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=ko.wikipedia.org&uselang=ko"><span>기부</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EA%B3%84%EC%A0%95%EB%A7%8C%EB%93%A4%EA%B8%B0&returnto=%EB%AF%B8%EB%B6%84" title="계정을 만들고 로그인하는 것이 좋습니다. 하지만 필수는 아닙니다"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>계정 만들기</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EB%A1%9C%EA%B7%B8%EC%9D%B8&returnto=%EB%AF%B8%EB%B6%84" title="위키백과에 로그인하면 여러가지 편리한 기능을 사용할 수 있습니다. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>로그인</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> 로그아웃한 편집자를 위한 문서 <a href="/wiki/%EB%8F%84%EC%9B%80%EB%A7%90:%EC%86%8C%EA%B0%9C" aria-label="편집에 관해 더 알아보기"><span>더 알아보기</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%82%B4%EA%B8%B0%EC%97%AC" title="이 IP 주소의 편집 목록 [y]" accesskey="y"><span>기여</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%82%B4%EC%82%AC%EC%9A%A9%EC%9E%90%ED%86%A0%EB%A1%A0" title="현재 사용하는 IP 주소에 대한 토론 문서 [n]" accesskey="n"><span>토론</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="사이트"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="목차" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">목차</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">사이드바로 이동</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">숨기기</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">처음 위치</div> </a> </li> <li id="toc-미분이_나오는_예" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#미분이_나오는_예"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>미분이 나오는 예</span> </div> </a> <button aria-controls="toc-미분이_나오는_예-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>미분이 나오는 예 하위섹션 토글하기</span> </button> <ul id="toc-미분이_나오는_예-sublist" class="vector-toc-list"> <li id="toc-접선_문제" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#접선_문제"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>접선 문제</span> </div> </a> <ul id="toc-접선_문제-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-증분과_평균_변화율과_순간_변화율" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#증분과_평균_변화율과_순간_변화율"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>증분과 평균 변화율과 순간 변화율</span> </div> </a> <ul id="toc-증분과_평균_변화율과_순간_변화율-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-순간_속도_문제" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#순간_속도_문제"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>순간 속도 문제</span> </div> </a> <ul id="toc-순간_속도_문제-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-정의" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#정의"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>정의</span> </div> </a> <button aria-controls="toc-정의-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>정의 하위섹션 토글하기</span> </button> <ul id="toc-정의-sublist" class="vector-toc-list"> <li id="toc-좌미분과_우미분" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#좌미분과_우미분"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>좌미분과 우미분</span> </div> </a> <ul id="toc-좌미분과_우미분-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-미분가능_함수" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#미분가능_함수"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>미분가능 함수</span> </div> </a> <ul id="toc-미분가능_함수-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-도함수" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#도함수"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>도함수</span> </div> </a> <ul id="toc-도함수-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-고계_도함수" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#고계_도함수"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>고계 도함수</span> </div> </a> <ul id="toc-고계_도함수-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-표기" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#표기"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>표기</span> </div> </a> <button aria-controls="toc-표기-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>표기 하위섹션 토글하기</span> </button> <ul id="toc-표기-sublist" class="vector-toc-list"> <li id="toc-라이프니츠의_표기법" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#라이프니츠의_표기법"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>라이프니츠의 표기법</span> </div> </a> <ul id="toc-라이프니츠의_표기법-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-라그랑주의_표기법" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#라그랑주의_표기법"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>라그랑주의 표기법</span> </div> </a> <ul id="toc-라그랑주의_표기법-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-뉴턴의_표기법" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#뉴턴의_표기법"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>뉴턴의 표기법</span> </div> </a> <ul id="toc-뉴턴의_표기법-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-오일러의_표기법" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#오일러의_표기법"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>오일러의 표기법</span> </div> </a> <ul id="toc-오일러의_표기법-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-성질" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#성질"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>성질</span> </div> </a> <button aria-controls="toc-성질-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>성질 하위섹션 토글하기</span> </button> <ul id="toc-성질-sublist" class="vector-toc-list"> <li id="toc-미분_가능성" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#미분_가능성"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>미분 가능성</span> </div> </a> <ul id="toc-미분_가능성-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-간단한_미분_법칙" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#간단한_미분_법칙"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>간단한 미분 법칙</span> </div> </a> <ul id="toc-간단한_미분_법칙-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-단조성과의_관계" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#단조성과의_관계"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>단조성과의 관계</span> </div> </a> <ul id="toc-단조성과의_관계-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-극값과의_관계" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#극값과의_관계"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>극값과의 관계</span> </div> </a> <ul id="toc-극값과의_관계-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-볼록성과의_관계" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#볼록성과의_관계"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>볼록성과의 관계</span> </div> </a> <ul id="toc-볼록성과의_관계-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-기타" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#기타"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>기타</span> </div> </a> <ul id="toc-기타-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-예" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#예"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>예</span> </div> </a> <button aria-controls="toc-예-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>예 하위섹션 토글하기</span> </button> <ul id="toc-예-sublist" class="vector-toc-list"> <li id="toc-정의를_통한_계산" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#정의를_통한_계산"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>정의를 통한 계산</span> </div> </a> <ul id="toc-정의를_통한_계산-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-초등_함수" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#초등_함수"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>초등 함수</span> </div> </a> <ul id="toc-초등_함수-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-미분_가능성_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#미분_가능성_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>미분 가능성</span> </div> </a> <ul id="toc-미분_가능성_2-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-응용" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#응용"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>응용</span> </div> </a> <ul id="toc-응용-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-일반화" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#일반화"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>일반화</span> </div> </a> <button aria-controls="toc-일반화-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>일반화 하위섹션 토글하기</span> </button> <ul id="toc-일반화-sublist" class="vector-toc-list"> <li id="toc-다변수_벡터_함수의_경우" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#다변수_벡터_함수의_경우"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>다변수 벡터 함수의 경우</span> </div> </a> <ul id="toc-다변수_벡터_함수의_경우-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-바나흐_공간_사이의_함수의_경우" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#바나흐_공간_사이의_함수의_경우"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>바나흐 공간 사이의 함수의 경우</span> </div> </a> <ul id="toc-바나흐_공간_사이의_함수의_경우-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-기타_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#기타_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>기타</span> </div> </a> <ul id="toc-기타_2-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-역사" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#역사"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>역사</span> </div> </a> <button aria-controls="toc-역사-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>역사 하위섹션 토글하기</span> </button> <ul id="toc-역사-sublist" class="vector-toc-list"> <li id="toc-어원" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#어원"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>어원</span> </div> </a> <ul id="toc-어원-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-같이_보기" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#같이_보기"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>같이 보기</span> </div> </a> <ul id="toc-같이_보기-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-각주" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#각주"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>각주</span> </div> </a> <ul id="toc-각주-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-외부_링크" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#외부_링크"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>외부 링크</span> </div> </a> <ul id="toc-외부_링크-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="목차" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="목차" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="목차 토글" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">목차 토글</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">미분</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="다른 언어로 문서를 방문합니다. 91개 언어로 읽을 수 있습니다" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-91" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">91개 언어</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Afgeleide" title="Afgeleide – 아프리칸스어" lang="af" hreflang="af" data-title="Afgeleide" data-language-autonym="Afrikaans" data-language-local-name="아프리칸스어" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%8B%8D%E1%8B%B5%E1%8B%B5%E1%88%AD" title="ውድድር – 암하라어" lang="am" hreflang="am" data-title="ውድድር" data-language-autonym="አማርኛ" data-language-local-name="암하라어" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Derivada" title="Derivada – 아라곤어" lang="an" hreflang="an" data-title="Derivada" data-language-autonym="Aragonés" data-language-local-name="아라곤어" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%B4%D8%AA%D9%82_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)" title="مشتق (رياضيات) – 아랍어" lang="ar" hreflang="ar" data-title="مشتق (رياضيات)" data-language-autonym="العربية" data-language-local-name="아랍어" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Derivada" title="Derivada – 아스투리아어" lang="ast" hreflang="ast" data-title="Derivada" data-language-autonym="Asturianu" data-language-local-name="아스투리아어" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/T%C3%B6r%C9%99m%C9%99" title="Törəmə – 아제르바이잔어" lang="az" hreflang="az" data-title="Törəmə" data-language-autonym="Azərbaycanca" data-language-local-name="아제르바이잔어" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D8%AA%D8%A4%D8%B1%D9%87%E2%80%8C%D9%85%D9%87" title="تؤرهمه – South Azerbaijani" lang="azb" hreflang="azb" data-title="تؤرهمه" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F%D0%BD%D1%8B%D2%A3_%D1%81%D1%8B%D2%93%D0%B0%D1%80%D1%8B%D0%BB%D0%BC%D0%B0%D2%BB%D1%8B" title="Функцияның сығарылмаһы – 바슈키르어" lang="ba" hreflang="ba" data-title="Функцияның сығарылмаһы" data-language-autonym="Башҡортса" data-language-local-name="바슈키르어" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%92%D1%8B%D1%82%D0%B2%D0%BE%D1%80%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D1%8B%D1%96" title="Вытворная функцыі – 벨라루스어" lang="be" hreflang="be" data-title="Вытворная функцыі" data-language-autonym="Беларуская" data-language-local-name="벨라루스어" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%92%D1%8B%D1%82%D0%B2%D0%BE%D1%80%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D1%8B%D1%96" title="Вытворная функцыі – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Вытворная функцыі" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%BE%D0%B4%D0%BD%D0%B0" title="Производна – 불가리아어" lang="bg" hreflang="bg" data-title="Производна" data-language-autonym="Български" data-language-local-name="불가리아어" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%85%E0%A4%B5%E0%A4%95%E0%A4%B2%E0%A4%A8" title="अवकलन – Bhojpuri" lang="bh" hreflang="bh" data-title="अवकलन" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%85%E0%A6%A8%E0%A7%8D%E0%A6%A4%E0%A6%B0%E0%A6%9C" title="অন্তরজ – 벵골어" lang="bn" hreflang="bn" data-title="অন্তরজ" data-language-autonym="বাংলা" data-language-local-name="벵골어" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Izvod" title="Izvod – 보스니아어" lang="bs" hreflang="bs" data-title="Izvod" data-language-autonym="Bosanski" data-language-local-name="보스니아어" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca badge-Q17437796 badge-featuredarticle mw-list-item" title="알찬 글"><a href="https://ca.wikipedia.org/wiki/Derivada" title="Derivada – 카탈로니아어" lang="ca" hreflang="ca" data-title="Derivada" data-language-autonym="Català" data-language-local-name="카탈로니아어" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%AF%D8%B1%D8%AA%DB%95" title="گرتە – 소라니 쿠르드어" lang="ckb" hreflang="ckb" data-title="گرتە" data-language-autonym="کوردی" data-language-local-name="소라니 쿠르드어" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Derivace" title="Derivace – 체코어" lang="cs" hreflang="cs" data-title="Derivace" data-language-autonym="Čeština" data-language-local-name="체코어" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%BD_%D1%82%C4%83%D1%85%C4%83%D0%BC%C4%95" title="Функцин тăхăмĕ – 추바시어" lang="cv" hreflang="cv" data-title="Функцин тăхăмĕ" data-language-autonym="Чӑвашла" data-language-local-name="추바시어" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Deilliant" title="Deilliant – 웨일스어" lang="cy" hreflang="cy" data-title="Deilliant" data-language-autonym="Cymraeg" data-language-local-name="웨일스어" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-de badge-Q70894304 mw-list-item" title=""><a href="https://de.wikipedia.org/wiki/Ableitung_(Mathematik)" title="Ableitung (Mathematik) – 독일어" lang="de" hreflang="de" data-title="Ableitung (Mathematik)" data-language-autonym="Deutsch" data-language-local-name="독일어" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A0%CE%B1%CF%81%CE%AC%CE%B3%CF%89%CE%B3%CE%BF%CF%82" title="Παράγωγος – 그리스어" lang="el" hreflang="el" data-title="Παράγωγος" data-language-autonym="Ελληνικά" data-language-local-name="그리스어" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en badge-Q17437798 badge-goodarticle mw-list-item" title="좋은 글"><a href="https://en.wikipedia.org/wiki/Derivative" title="Derivative – 영어" lang="en" hreflang="en" data-title="Derivative" data-language-autonym="English" data-language-local-name="영어" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Deriva%C4%B5o_(matematiko)" title="Derivaĵo (matematiko) – 에스페란토어" lang="eo" hreflang="eo" data-title="Derivaĵo (matematiko)" data-language-autonym="Esperanto" data-language-local-name="에스페란토어" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Derivada" title="Derivada – 스페인어" lang="es" hreflang="es" data-title="Derivada" data-language-autonym="Español" data-language-local-name="스페인어" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Tuletis_(matemaatika)" title="Tuletis (matemaatika) – 에스토니아어" lang="et" hreflang="et" data-title="Tuletis (matemaatika)" data-language-autonym="Eesti" data-language-local-name="에스토니아어" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Deribatu" title="Deribatu – 바스크어" lang="eu" hreflang="eu" data-title="Deribatu" data-language-autonym="Euskara" data-language-local-name="바스크어" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%B4%D8%AA%D9%82" title="مشتق – 페르시아어" lang="fa" hreflang="fa" data-title="مشتق" data-language-autonym="فارسی" data-language-local-name="페르시아어" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Derivaatta" title="Derivaatta – 핀란드어" lang="fi" hreflang="fi" data-title="Derivaatta" data-language-autonym="Suomi" data-language-local-name="핀란드어" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/D%C3%A9riv%C3%A9e" title="Dérivée – 프랑스어" lang="fr" hreflang="fr" data-title="Dérivée" data-language-autonym="Français" data-language-local-name="프랑스어" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-fur mw-list-item"><a href="https://fur.wikipedia.org/wiki/Derivade" title="Derivade – 프리울리어" lang="fur" hreflang="fur" data-title="Derivade" data-language-autonym="Furlan" data-language-local-name="프리울리어" class="interlanguage-link-target"><span>Furlan</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/D%C3%ADorthach" title="Díorthach – 아일랜드어" lang="ga" hreflang="ga" data-title="Díorthach" data-language-autonym="Gaeilge" data-language-local-name="아일랜드어" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Derivada" title="Derivada – 갈리시아어" lang="gl" hreflang="gl" data-title="Derivada" data-language-autonym="Galego" data-language-local-name="갈리시아어" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A0%D7%92%D7%96%D7%A8%D7%AA" title="נגזרת – 히브리어" lang="he" hreflang="he" data-title="נגזרת" data-language-autonym="עברית" data-language-local-name="히브리어" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%85%E0%A4%B5%E0%A4%95%E0%A4%B2%E0%A4%9C" title="अवकलज – 힌디어" lang="hi" hreflang="hi" data-title="अवकलज" data-language-autonym="हिन्दी" data-language-local-name="힌디어" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Derivacija" title="Derivacija – 크로아티아어" lang="hr" hreflang="hr" data-title="Derivacija" data-language-autonym="Hrvatski" data-language-local-name="크로아티아어" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Deriv%C3%A1lt" title="Derivált – 헝가리어" lang="hu" hreflang="hu" data-title="Derivált" data-language-autonym="Magyar" data-language-local-name="헝가리어" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B1%D5%AE%D5%A1%D5%B6%D6%81%D5%B5%D5%A1%D5%AC" title="Ածանցյալ – 아르메니아어" lang="hy" hreflang="hy" data-title="Ածանցյալ" data-language-autonym="Հայերեն" data-language-local-name="아르메니아어" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Turunan" title="Turunan – 인도네시아어" lang="id" hreflang="id" data-title="Turunan" data-language-autonym="Bahasa Indonesia" data-language-local-name="인도네시아어" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Derivajo" title="Derivajo – 이도어" lang="io" hreflang="io" data-title="Derivajo" data-language-autonym="Ido" data-language-local-name="이도어" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Aflei%C3%B0a_(st%C3%A6r%C3%B0fr%C3%A6%C3%B0i)" title="Afleiða (stærðfræði) – 아이슬란드어" lang="is" hreflang="is" data-title="Afleiða (stærðfræði)" data-language-autonym="Íslenska" data-language-local-name="아이슬란드어" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Derivata" title="Derivata – 이탈리아어" lang="it" hreflang="it" data-title="Derivata" data-language-autonym="Italiano" data-language-local-name="이탈리아어" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%BE%AE%E5%88%86" title="微分 – 일본어" lang="ja" hreflang="ja" data-title="微分" data-language-autonym="日本語" data-language-local-name="일본어" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%AC%E1%83%90%E1%83%A0%E1%83%9B%E1%83%9D%E1%83%94%E1%83%91%E1%83%A3%E1%83%9A%E1%83%98" title="წარმოებული – 조지아어" lang="ka" hreflang="ka" data-title="წარმოებული" data-language-autonym="ქართული" data-language-local-name="조지아어" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kaa mw-list-item"><a href="https://kaa.wikipedia.org/wiki/Differencial" title="Differencial – 카라칼파크어" lang="kaa" hreflang="kaa" data-title="Differencial" data-language-autonym="Qaraqalpaqsha" data-language-local-name="카라칼파크어" class="interlanguage-link-target"><span>Qaraqalpaqsha</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Derivativum" title="Derivativum – 라틴어" lang="la" hreflang="la" data-title="Derivativum" data-language-autonym="Latina" data-language-local-name="라틴어" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lmo badge-Q17437796 badge-featuredarticle mw-list-item" title="알찬 글"><a href="https://lmo.wikipedia.org/wiki/Derivada" title="Derivada – 롬바르드어" lang="lmo" hreflang="lmo" data-title="Derivada" data-language-autonym="Lombard" data-language-local-name="롬바르드어" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/I%C5%A1vestin%C4%97" title="Išvestinė – 리투아니아어" lang="lt" hreflang="lt" data-title="Išvestinė" data-language-autonym="Lietuvių" data-language-local-name="리투아니아어" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Atvasin%C4%81jums" title="Atvasinājums – 라트비아어" lang="lv" hreflang="lv" data-title="Atvasinājums" data-language-autonym="Latviešu" data-language-local-name="라트비아어" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%98%D0%B7%D0%B2%D0%BE%D0%B4" title="Извод – 마케도니아어" lang="mk" hreflang="mk" data-title="Извод" data-language-autonym="Македонски" data-language-local-name="마케도니아어" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%85%E0%B4%B5%E0%B4%95%E0%B4%B2%E0%B4%9C%E0%B4%82" title="അവകലജം – 말라얄람어" lang="ml" hreflang="ml" data-title="അവകലജം" data-language-autonym="മലയാളം" data-language-local-name="말라얄람어" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%94%D0%B5%D1%80%D0%B8%D0%B2%D0%B0%D1%82%D0%B8%D0%B2" title="Дериватив – 몽골어" lang="mn" hreflang="mn" data-title="Дериватив" data-language-autonym="Монгол" data-language-local-name="몽골어" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%85%E0%A4%B5%E0%A4%95%E0%A4%B2%E0%A4%A8" title="अवकलन – 마라티어" lang="mr" hreflang="mr" data-title="अवकलन" data-language-autonym="मराठी" data-language-local-name="마라티어" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Terbitan" title="Terbitan – 말레이어" lang="ms" hreflang="ms" data-title="Terbitan" data-language-autonym="Bahasa Melayu" data-language-local-name="말레이어" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mt mw-list-item"><a href="https://mt.wikipedia.org/wiki/Derivata" title="Derivata – 몰타어" lang="mt" hreflang="mt" data-title="Derivata" data-language-autonym="Malti" data-language-local-name="몰타어" class="interlanguage-link-target"><span>Malti</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%A1%E1%80%9C%E1%80%AD%E1%80%AF%E1%80%80%E1%80%BA%E1%80%95%E1%80%BC%E1%80%B1%E1%80%AC%E1%80%84%E1%80%BA%E1%80%B8%E1%80%94%E1%80%BE%E1%80%AF%E1%80%94%E1%80%BA%E1%80%B8_%E1%80%90%E1%80%BD%E1%80%80%E1%80%BA%E1%80%91%E1%80%AF%E1%80%90%E1%80%BA%E1%80%81%E1%80%BC%E1%80%84%E1%80%BA%E1%80%B8" title="အလိုက်ပြောင်းနှုန်း တွက်ထုတ်ခြင်း – 버마어" lang="my" hreflang="my" data-title="အလိုက်ပြောင်းနှုန်း တွက်ထုတ်ခြင်း" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="버마어" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Afgeleide" title="Afgeleide – 네덜란드어" lang="nl" hreflang="nl" data-title="Afgeleide" data-language-autonym="Nederlands" data-language-local-name="네덜란드어" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Derivasjon" title="Derivasjon – 노르웨이어(니노르스크)" lang="nn" hreflang="nn" data-title="Derivasjon" data-language-autonym="Norsk nynorsk" data-language-local-name="노르웨이어(니노르스크)" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Derivasjon" title="Derivasjon – 노르웨이어(보크말)" lang="nb" hreflang="nb" data-title="Derivasjon" data-language-autonym="Norsk bokmål" data-language-local-name="노르웨이어(보크말)" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Derivada" title="Derivada – 오크어" lang="oc" hreflang="oc" data-title="Derivada" data-language-autonym="Occitan" data-language-local-name="오크어" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Babbaafamaa" title="Babbaafamaa – 오로모어" lang="om" hreflang="om" data-title="Babbaafamaa" data-language-autonym="Oromoo" data-language-local-name="오로모어" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Pochodna_funkcji" title="Pochodna funkcji – 폴란드어" lang="pl" hreflang="pl" data-title="Pochodna funkcji" data-language-autonym="Polski" data-language-local-name="폴란드어" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D9%85%D8%B4%D8%AA%D9%82" title="مشتق – Western Punjabi" lang="pnb" hreflang="pnb" data-title="مشتق" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Derivada" title="Derivada – 포르투갈어" lang="pt" hreflang="pt" data-title="Derivada" data-language-autonym="Português" data-language-local-name="포르투갈어" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Derivat%C4%83" title="Derivată – 루마니아어" lang="ro" hreflang="ro" data-title="Derivată" data-language-autonym="Română" data-language-local-name="루마니아어" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%BE%D0%B4%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8" title="Производная функции – 러시아어" lang="ru" hreflang="ru" data-title="Производная функции" data-language-autonym="Русский" data-language-local-name="러시아어" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Dirivata_(matim%C3%A0tica)" title="Dirivata (matimàtica) – 시칠리아어" lang="scn" hreflang="scn" data-title="Dirivata (matimàtica)" data-language-autonym="Sicilianu" data-language-local-name="시칠리아어" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Derivative" title="Derivative – 스코틀랜드어" lang="sco" hreflang="sco" data-title="Derivative" data-language-autonym="Scots" data-language-local-name="스코틀랜드어" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Izvod" title="Izvod – 세르비아-크로아티아어" lang="sh" hreflang="sh" data-title="Izvod" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="세르비아-크로아티아어" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Derivative_(mathematics)" title="Derivative (mathematics) – Simple English" lang="en-simple" hreflang="en-simple" data-title="Derivative (mathematics)" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Deriv%C3%A1cia_(funkcia)" title="Derivácia (funkcia) – 슬로바키아어" lang="sk" hreflang="sk" data-title="Derivácia (funkcia)" data-language-autonym="Slovenčina" data-language-local-name="슬로바키아어" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Odvod" title="Odvod – 슬로베니아어" lang="sl" hreflang="sl" data-title="Odvod" data-language-autonym="Slovenščina" data-language-local-name="슬로베니아어" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Derivati" title="Derivati – 알바니아어" lang="sq" hreflang="sq" data-title="Derivati" data-language-autonym="Shqip" data-language-local-name="알바니아어" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%98%D0%B7%D0%B2%D0%BE%D0%B4" title="Извод – 세르비아어" lang="sr" hreflang="sr" data-title="Извод" data-language-autonym="Српски / srpski" data-language-local-name="세르비아어" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Derivata" title="Derivata – 스웨덴어" lang="sv" hreflang="sv" data-title="Derivata" data-language-autonym="Svenska" data-language-local-name="스웨덴어" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-szl mw-list-item"><a href="https://szl.wikipedia.org/wiki/Pochodno" title="Pochodno – 실레시아어" lang="szl" hreflang="szl" data-title="Pochodno" data-language-autonym="Ślůnski" data-language-local-name="실레시아어" class="interlanguage-link-target"><span>Ślůnski</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%B5%E0%AE%95%E0%AF%88%E0%AE%AF%E0%AE%BF%E0%AE%9F%E0%AE%B2%E0%AF%8D" title="வகையிடல் – 타밀어" lang="ta" hreflang="ta" data-title="வகையிடல்" data-language-autonym="தமிழ்" data-language-local-name="타밀어" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%AD%E0%B8%99%E0%B8%B8%E0%B8%9E%E0%B8%B1%E0%B8%99%E0%B8%98%E0%B9%8C" title="อนุพันธ์ – 태국어" lang="th" hreflang="th" data-title="อนุพันธ์" data-language-autonym="ไทย" data-language-local-name="태국어" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Deribatibo" title="Deribatibo – 타갈로그어" lang="tl" hreflang="tl" data-title="Deribatibo" data-language-autonym="Tagalog" data-language-local-name="타갈로그어" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/T%C3%BCrev" title="Türev – 튀르키예어" lang="tr" hreflang="tr" data-title="Türev" data-language-autonym="Türkçe" data-language-local-name="튀르키예어" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_%D1%87%D1%8B%D0%B3%D0%B0%D1%80%D1%8B%D0%BB%D0%BC%D0%B0%D1%81%D1%8B" title="Функция чыгарылмасы – 타타르어" lang="tt" hreflang="tt" data-title="Функция чыгарылмасы" data-language-autonym="Татарча / tatarça" data-language-local-name="타타르어" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D0%BE%D1%85%D1%96%D0%B4%D0%BD%D0%B0" title="Похідна – 우크라이나어" lang="uk" hreflang="uk" data-title="Похідна" data-language-autonym="Українська" data-language-local-name="우크라이나어" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%85%D8%B4%D8%AA%D9%82" title="مشتق – 우르두어" lang="ur" hreflang="ur" data-title="مشتق" data-language-autonym="اردو" data-language-local-name="우르두어" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Differensial" title="Differensial – 우즈베크어" lang="uz" hreflang="uz" data-title="Differensial" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="우즈베크어" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vec mw-list-item"><a href="https://vec.wikipedia.org/wiki/Derivada" title="Derivada – 베네치아어" lang="vec" hreflang="vec" data-title="Derivada" data-language-autonym="Vèneto" data-language-local-name="베네치아어" class="interlanguage-link-target"><span>Vèneto</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/%C4%90%E1%BA%A1o_h%C3%A0m" title="Đạo hàm – 베트남어" lang="vi" hreflang="vi" data-title="Đạo hàm" data-language-autonym="Tiếng Việt" data-language-local-name="베트남어" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wa mw-list-item"><a href="https://wa.wikipedia.org/wiki/Deriv%C3%AAye" title="Derivêye – 왈론어" lang="wa" hreflang="wa" data-title="Derivêye" data-language-autonym="Walon" data-language-local-name="왈론어" class="interlanguage-link-target"><span>Walon</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%B0%8E%E6%95%B8" title="導數 – 우어" lang="wuu" hreflang="wuu" data-title="導數" data-language-autonym="吴语" data-language-local-name="우어" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%93%D7%A2%D7%A8%D7%99%D7%95%D7%95%D7%90%D7%98%D7%99%D7%95%D7%95" title="דעריוואטיוו – 이디시어" lang="yi" hreflang="yi" data-title="דעריוואטיוו" data-language-autonym="ייִדיש" data-language-local-name="이디시어" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh badge-Q17437798 badge-goodarticle mw-list-item" title="좋은 글"><a href="https://zh.wikipedia.org/wiki/%E5%AF%BC%E6%95%B0" title="导数 – 중국어" lang="zh" hreflang="zh" data-title="导数" data-language-autonym="中文" data-language-local-name="중국어" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E5%B0%8E%E6%95%B8" title="導數 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="導數" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%B0%8E%E6%95%B8" title="導數 – 광둥어" lang="yue" hreflang="yue" data-title="導數" data-language-autonym="粵語" data-language-local-name="광둥어" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q29175#sitelinks-wikipedia" title="언어 간 링크 편집" class="wbc-editpage">링크 편집</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="이름공간"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%EB%AF%B8%EB%B6%84" title="본문 보기 [c]" accesskey="c"><span>문서</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/%ED%86%A0%EB%A1%A0:%EB%AF%B8%EB%B6%84" rel="discussion" title="문서의 내용에 대한 토론 문서 [t]" accesskey="t"><span>토론</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="언어 변종 바꾸기" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">한국어</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="보기"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%EB%AF%B8%EB%B6%84"><span>읽기</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit" title="이 문서의 원본 코드를 편집 [e]" accesskey="e"><span>편집</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=history" title="이 문서의 과거 편집 내역입니다. [h]" accesskey="h"><span>역사 보기</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="페이지 도구"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="도구" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">도구</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">도구</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">사이드바로 이동</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">숨기기</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="더 많은 옵션" > <div class="vector-menu-heading"> 동작 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/%EB%AF%B8%EB%B6%84"><span>읽기</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit" title="이 문서의 원본 코드를 편집 [e]" accesskey="e"><span>편집</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=history"><span>역사 보기</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> 일반 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EA%B0%80%EB%A6%AC%ED%82%A4%EB%8A%94%EB%AC%B8%EC%84%9C/%EB%AF%B8%EB%B6%84" title="여기를 가리키는 모든 위키 문서의 목록 [j]" accesskey="j"><span>여기를 가리키는 문서</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%A7%81%ED%81%AC%EC%B5%9C%EA%B7%BC%EB%B0%94%EB%80%9C/%EB%AF%B8%EB%B6%84" rel="nofollow" title="이 문서에서 링크한 문서의 최근 바뀜 [k]" accesskey="k"><span>가리키는 글의 최근 바뀜</span></a></li><li id="t-upload" class="mw-list-item"><a href="//ko.wikipedia.org/wiki/위키백과:파일_올리기" title="파일 올리기 [u]" accesskey="u"><span>파일 올리기</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&oldid=38048884" title="이 문서의 이 판에 대한 고유 링크"><span>고유 링크</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=info" title="이 문서에 대한 자세한 정보"><span>문서 정보</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EC%9D%B4%EB%AC%B8%EC%84%9C%EC%9D%B8%EC%9A%A9&page=%EB%AF%B8%EB%B6%84&id=38048884&wpFormIdentifier=titleform" title="이 문서를 인용하는 방법에 대한 정보"><span>이 문서 인용하기</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:UrlShortener&url=https%3A%2F%2Fko.wikipedia.org%2Fwiki%2F%25EB%25AF%25B8%25EB%25B6%2584"><span>축약된 URL 얻기</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:QrCode&url=https%3A%2F%2Fko.wikipedia.org%2Fwiki%2F%25EB%25AF%25B8%25EB%25B6%2584"><span>QR 코드 다운로드</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> 인쇄/내보내기 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EC%B1%85&bookcmd=book_creator&referer=%EB%AF%B8%EB%B6%84"><span>책 만들기</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:DownloadAsPdf&page=%EB%AF%B8%EB%B6%84&action=show-download-screen"><span>PDF로 다운로드</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&printable=yes" title="이 문서의 인쇄용 판 [p]" accesskey="p"><span>인쇄용 판</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> 다른 프로젝트 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q29175" title="데이터 저장소에 연결된 항목을 가리키는 링크 [g]" accesskey="g"><span>위키데이터 항목</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="페이지 도구"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="보이기"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">보이기</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">사이드바로 이동</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">숨기기</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">위키백과, 우리 모두의 백과사전.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="ko" dir="ltr"><p><span class="nowrap"></span> </p> <div class="dablink hatnote"><span typeof="mw:File"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%8F%99%EC%9D%8C%EC%9D%B4%EC%9D%98%EC%96%B4_%EB%AC%B8%EC%84%9C" title="위키백과:동음이의어 문서"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Disambig_grey.svg/23px-Disambig_grey.svg.png" decoding="async" width="23" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Disambig_grey.svg/35px-Disambig_grey.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Disambig_grey.svg/46px-Disambig_grey.svg.png 2x" data-file-width="260" data-file-height="200" /></a></span> 다른 뜻에 대해서는 <a href="/wiki/%EB%AF%B8%EB%B6%84_(%EB%8F%99%EC%9D%8C%EC%9D%B4%EC%9D%98)" class="mw-disambig" title="미분 (동음이의)">미분 (동음이의)</a> 문서를 참고하십시오.</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Tangent_to_a_curve.svg" class="mw-file-description"><img alt="함수의 그래프와 그 접선" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Tangent_to_a_curve.svg/220px-Tangent_to_a_curve.svg.png" decoding="async" width="220" height="154" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Tangent_to_a_curve.svg/330px-Tangent_to_a_curve.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Tangent_to_a_curve.svg/440px-Tangent_to_a_curve.svg.png 2x" data-file-width="400" data-file-height="280" /></a><figcaption><a href="/wiki/%ED%95%A8%EC%88%98%EC%9D%98_%EA%B7%B8%EB%9E%98%ED%94%84" title="함수의 그래프">함수의 그래프</a>와 그 <a href="/wiki/%EC%A0%91%EC%84%A0" title="접선">접선</a>. 함수의 점에서의 미분은 그 점에서의 접선의 <a href="/wiki/%EA%B8%B0%EC%9A%B8%EA%B8%B0" title="기울기">기울기</a>와 같다.</figcaption></figure> <style data-mw-deduplicate="TemplateStyles:r36480591">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}.mw-parser-output .hlist-pipe dd:after,.mw-parser-output .hlist-pipe li:after{content:" | ";font-weight:normal}.mw-parser-output .hlist-hyphen dd:after,.mw-parser-output .hlist-hyphen li:after{content:" - ";font-weight:normal}.mw-parser-output .hlist-comma dd:after,.mw-parser-output .hlist-comma li:after{content:", ";font-weight:normal}.mw-parser-output .hlist-slash dd:after,.mw-parser-output .hlist-slash li:after{content:" / ";font-weight:normal}</style><style data-mw-deduplicate="TemplateStyles:r36480595">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r38592357">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r38592357"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r38592357"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r38592357"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r38592357"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r38592357"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r38592357"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r38592357"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r38592357"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r38592357"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r38592357"><table class="sidebar sidebar-collapse nomobile nowraplinks plainlist"><tbody><tr><td class="sidebar-pretitle">관련 문서 둘러보기</td></tr><tr><th class="sidebar-title-with-pretitle" style="padding-bottom:0.25em;"><a href="/wiki/%EB%AF%B8%EC%A0%81%EB%B6%84%ED%95%99" title="미적분학">미적분학</a></th></tr><tr><td class="sidebar-above" style="padding:0.15em 0.25em 0.3em;font-weight:normal;"> <ul><li><a href="/wiki/%EB%AF%B8%EC%A0%81%EB%B6%84%ED%95%99%EC%9D%98_%EA%B8%B0%EB%B3%B8%EC%A0%95%EB%A6%AC" class="mw-redirect" title="미적분학의 기본정리">미적분학의 기본정리</a></li></ul> <div class="hlist"> <ul><li><a href="/wiki/%ED%95%A8%EC%88%98%EC%9D%98_%EA%B7%B9%ED%95%9C" title="함수의 극한">함수의 극한</a></li> <li><a href="/wiki/%EC%97%B0%EC%86%8D_%ED%95%A8%EC%88%98" title="연속 함수">연속 함수</a></li></ul> </div><div class="hlist"> <ul><li><a href="/wiki/%ED%8F%89%EA%B7%A0%EA%B0%92_%EC%A0%95%EB%A6%AC" title="평균값 정리">평균값 정리</a></li> <li><a href="/wiki/%EB%A1%A4%EC%9D%98_%EC%A0%95%EB%A6%AC" title="롤의 정리">롤의 정리</a></li></ul> </div></td></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base);display:block;margin-top:0.65em;"><span style="font-size:110%;"><a href="/wiki/%EB%AF%B8%EB%B6%84%ED%95%99" title="미분학">미분</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar nomobile nowraplinks" style="border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><th class="sidebar-heading"> 정의</th></tr><tr><td class="sidebar-content hlist"> <div class="hlist" style="padding:0.1em 0;line-height:1.2em;"> <ul><li><a class="mw-selflink selflink">미분</a> <ul><li><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84%EC%9D%98_%EC%9D%BC%EB%B0%98%ED%99%94&action=edit&redlink=1" class="new" title="미분의 일반화 (없는 문서)">일반화</a></li> <li><a href="/wiki/%EB%AF%B8%EB%B6%84%EC%86%8C" title="미분소">무한소</a></li> <li><a href="/wiki/%EB%AF%B8%EB%B6%84_(%EC%A3%BC%EC%9A%94_%EB%B6%80%EB%B6%84)" title="미분 (주요 부분)">주요 부분</a></li> <li><a href="/wiki/%EC%A0%84%EB%AF%B8%EB%B6%84" title="전미분">전미분</a></li></ul></li></ul> </div></td> </tr><tr><th class="sidebar-heading"> 개념</th></tr><tr><td class="sidebar-content hlist"> <div class="hlist"> <ul><li><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84_%ED%91%9C%EA%B8%B0%EB%B2%95&action=edit&redlink=1" class="new" title="미분 표기법 (없는 문서)">미분 표기법</a></li> <li><a href="/wiki/%EA%B3%A0%EA%B3%84_%EB%8F%84%ED%95%A8%EC%88%98" class="mw-redirect" title="고계 도함수">고계 도함수</a></li> <li><a href="/wiki/%EB%B3%80%EC%88%98_%EB%B3%80%ED%99%98" title="변수 변환">변수 변환</a></li> <li><a href="/wiki/%ED%85%8C%EC%9D%BC%EB%9F%AC_%EC%A0%95%EB%A6%AC" title="테일러 정리">테일러 정리</a></li></ul> </div></td> </tr><tr><th class="sidebar-heading"> <a href="/wiki/%EB%AF%B8%EB%B6%84%ED%91%9C" class="mw-redirect" title="미분표">법칙과 항등식</a></th></tr><tr><td class="sidebar-content hlist"> <div class="hlist"> <ul><li><a href="/wiki/%ED%95%A9_%EA%B7%9C%EC%B9%99" title="합 규칙">합 규칙</a></li> <li><a href="/wiki/%EA%B3%B1_%EA%B7%9C%EC%B9%99" title="곱 규칙">곱 규칙</a></li> <li><a href="/wiki/%EB%AA%AB_%EA%B7%9C%EC%B9%99" title="몫 규칙">몫 규칙</a></li> <li><a href="/wiki/%EB%A9%B1_%EA%B7%9C%EC%B9%99" title="멱 규칙">멱 규칙</a></li> <li><a href="/wiki/%EC%97%B0%EC%87%84_%EB%B2%95%EC%B9%99" title="연쇄 법칙">연쇄 법칙</a></li> <li><a href="/wiki/%EC%97%AD%ED%95%A8%EC%88%98%EC%9D%98_%EB%AF%B8%EB%B6%84" class="mw-redirect" title="역함수의 미분">역함수의 미분</a></li> <li><a href="/wiki/%EC%9D%8C%ED%95%A8%EC%88%98%EC%9D%98_%EB%AF%B8%EB%B6%84" class="mw-redirect" title="음함수의 미분">음함수의 미분</a></li></ul> </div></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:110%;"><a href="/wiki/%EC%A0%81%EB%B6%84" title="적분">적분</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar nomobile nowraplinks" style="border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/%EC%A0%81%EB%B6%84%ED%91%9C" title="적분표">적분표</a></li></ul></td> </tr><tr><th class="sidebar-heading"> 정의</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/%EB%B6%80%EC%A0%95%EC%A0%81%EB%B6%84" title="부정적분">부정적분</a></li> <li><a href="/wiki/%EC%A0%81%EB%B6%84" title="적분">적분</a> (<a href="/wiki/%EC%9D%B4%EC%83%81%EC%A0%81%EB%B6%84" class="mw-redirect" title="이상적분">이상적분</a>)</li> <li><a href="/wiki/%EB%A6%AC%EB%A7%8C_%EC%A0%81%EB%B6%84" title="리만 적분">리만 적분</a></li> <li><a href="/wiki/%EB%A5%B4%EB%B2%A0%EA%B7%B8_%EC%A0%81%EB%B6%84" title="르베그 적분">르베그 적분</a></li> <li><a href="/wiki/%EA%B2%BD%EB%A1%9C%EC%A0%81%EB%B6%84%EB%B2%95" title="경로적분법">경로적분</a></li></ul></td> </tr><tr><th class="sidebar-heading"> 적분법</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/%EB%B6%80%EB%B6%84%EC%A0%81%EB%B6%84" class="mw-redirect" title="부분적분">부분적분</a></li> <li><a href="/w/index.php?title=%EB%94%94%EC%8A%A4%ED%81%AC_%EB%B0%A9%EB%B2%95&action=edit&redlink=1" class="new" title="디스크 방법 (없는 문서)">디스크 방법</a></li> <li><a href="/wiki/%EC%9B%90%ED%86%B5%EC%85%B8_%EB%B0%A9%EB%B2%95" title="원통셸 방법">원통셸 방법</a></li> <li><a href="/wiki/%EC%B9%98%ED%99%98%EC%A0%81%EB%B6%84" class="mw-redirect" title="치환적분">치환적분</a> (<a href="/wiki/%EC%82%BC%EA%B0%81_%EC%B9%98%ED%99%98" title="삼각 치환">삼각 치환</a>)</li> <li><a href="/wiki/%EB%B6%80%EB%B6%84%EB%B6%84%EC%88%98" title="부분분수">부분분수 적분법</a></li> <li><a href="/w/index.php?title=%EC%A0%81%EB%B6%84_%EC%88%9C%EC%84%9C&action=edit&redlink=1" class="new" title="적분 순서 (없는 문서)">적분 순서</a></li> <li><a href="/wiki/%EC%A0%81%EB%B6%84%EC%9D%98_%EC%A0%90%ED%99%94%EC%8B%9D" title="적분의 점화식">적분의 점화식</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:110%;"><a href="/wiki/%EC%88%98%EC%97%B4" title="수열">수열</a>과 <a href="/wiki/%EA%B8%89%EC%88%98_(%EC%88%98%ED%95%99)" title="급수 (수학)">급수</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar nomobile nowraplinks" style="border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/%EA%B8%B0%ED%95%98%EA%B8%89%EC%88%98" class="mw-redirect" title="기하급수">기하급수</a> (<a href="/wiki/%EC%82%B0%EC%88%A0-%EA%B8%B0%ED%95%98_%EC%88%98%EC%97%B4" title="산술-기하 수열">산술-기하 수열</a>)</li> <li><a href="/wiki/%EC%A1%B0%ED%99%94%EA%B8%89%EC%88%98" title="조화급수">조화급수</a></li> <li><a href="/wiki/%EA%B5%90%EB%8C%80%EA%B8%89%EC%88%98" title="교대급수">교대급수</a></li> <li><a href="/wiki/%EB%A9%B1%EA%B8%89%EC%88%98" title="멱급수">멱급수</a></li> <li><a href="/wiki/%EC%9D%B4%ED%95%AD%EA%B8%89%EC%88%98" class="mw-redirect" title="이항급수">이항급수</a></li> <li><a href="/wiki/%ED%85%8C%EC%9D%BC%EB%9F%AC_%EA%B8%89%EC%88%98" title="테일러 급수">테일러 급수</a></li></ul></td> </tr><tr><th class="sidebar-heading"> <a href="/wiki/%EC%88%98%EB%A0%B4%ED%8C%90%EC%A0%95%EB%B2%95" title="수렴판정법">수렴판정법</a></th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/%EC%9D%BC%EB%B0%98%ED%95%AD_%ED%8C%90%EC%A0%95%EB%B2%95" title="일반항 판정법">일반항 판정법</a></li> <li><a href="/wiki/%EB%B9%84%ED%8C%90%EC%A0%95%EB%B2%95" class="mw-redirect" title="비판정법">비판정법</a></li> <li><a href="/wiki/%EA%B7%BC%ED%8C%90%EC%A0%95%EB%B2%95" class="mw-redirect" title="근판정법">근판정법</a></li> <li><a href="/wiki/%EC%A0%81%EB%B6%84%ED%8C%90%EC%A0%95%EB%B2%95" class="mw-redirect" title="적분판정법">적분판정법</a></li> <li><a href="/wiki/%EB%B9%84%EA%B5%90%ED%8C%90%EC%A0%95%EB%B2%95" class="mw-redirect" title="비교판정법">비교판정법</a></li> <li><a href="/wiki/%EA%B7%B9%ED%95%9C%EB%B9%84%EA%B5%90%ED%8C%90%EC%A0%95%EB%B2%95" class="mw-redirect" title="극한비교판정법">극한비교판정법</a></li> <li><a href="/wiki/%EA%B5%90%EB%8C%80%EA%B8%89%EC%88%98%ED%8C%90%EC%A0%95%EB%B2%95" class="mw-redirect" title="교대급수판정법">교대급수판정법</a></li> <li><a href="/wiki/%EC%BD%94%EC%8B%9C_%EC%9D%91%EC%A7%91%ED%8C%90%EC%A0%95%EB%B2%95" title="코시 응집판정법">코시 응집판정법</a></li> <li><a href="/wiki/%EB%94%94%EB%A6%AC%ED%81%B4%EB%A0%88_%ED%8C%90%EC%A0%95%EB%B2%95" title="디리클레 판정법">디리클레 판정법</a></li> <li><a href="/wiki/%EC%95%84%EB%B2%A8_%ED%8C%90%EC%A0%95%EB%B2%95" title="아벨 판정법">아벨 판정법</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:110%;"><a href="/wiki/%EB%B2%A1%ED%84%B0_%EB%AF%B8%EC%A0%81%EB%B6%84%ED%95%99" title="벡터 미적분학">벡터 미적분학</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar nomobile nowraplinks" style="border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/%EA%B8%B0%EC%9A%B8%EA%B8%B0_(%EB%B2%A1%ED%84%B0)" title="기울기 (벡터)">기울기</a></li> <li><a href="/wiki/%EB%B0%9C%EC%82%B0_(%EB%B2%A1%ED%84%B0)" title="발산 (벡터)">발산</a></li> <li><a href="/wiki/%ED%9A%8C%EC%A0%84_(%EB%B2%A1%ED%84%B0)" title="회전 (벡터)">회전</a></li> <li><a href="/wiki/%EB%9D%BC%ED%94%8C%EB%9D%BC%EC%8A%A4_%EC%97%B0%EC%82%B0%EC%9E%90" title="라플라스 연산자">라플라시안</a></li> <li><a href="/wiki/%EB%B0%A9%ED%96%A5%EB%8F%84%ED%95%A8%EC%88%98" class="mw-redirect" title="방향도함수">방향도함수</a></li> <li><a href="/w/index.php?title=%EB%B2%A1%ED%84%B0_%EB%AF%B8%EC%A0%81%EB%B6%84%ED%91%9C&action=edit&redlink=1" class="new" title="벡터 미적분표 (없는 문서)">벡터 미적분표</a></li></ul></td> </tr><tr><th class="sidebar-heading"> 정리</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/%EB%B0%9C%EC%82%B0%EC%A0%95%EB%A6%AC" class="mw-redirect" title="발산정리">발산정리</a></li> <li><a href="/w/index.php?title=%EA%B8%B0%EC%9A%B8%EA%B8%B0%EC%A0%95%EB%A6%AC&action=edit&redlink=1" class="new" title="기울기정리 (없는 문서)">기울기정리</a></li> <li><a href="/wiki/%EA%B7%B8%EB%A6%B0_%EC%A0%95%EB%A6%AC" title="그린 정리">그린 정리</a></li> <li><a href="/wiki/%EC%BC%88%EB%B9%88-%EC%8A%A4%ED%86%A0%ED%81%AC%EC%8A%A4_%EC%A0%95%EB%A6%AC" class="mw-redirect" title="켈빈-스토크스 정리">켈빈-스토크스 정리</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:110%;"><a href="/wiki/%EB%8B%A4%EB%B3%80%EC%88%98_%EB%AF%B8%EC%A0%81%EB%B6%84%ED%95%99" class="mw-redirect" title="다변수 미적분학">다변수 미적분학</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar nomobile nowraplinks" style="border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><th class="sidebar-heading"> 형식</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/w/index.php?title=%ED%96%89%EB%A0%AC_%EB%AF%B8%EC%A0%81%EB%B6%84%ED%95%99&action=edit&redlink=1" class="new" title="행렬 미적분학 (없는 문서)">행렬</a></li> <li><a href="/wiki/%ED%85%90%EC%84%9C_%EB%AF%B8%EC%A0%81%EB%B6%84%ED%95%99" title="텐서 미적분학">텐서</a></li> <li><a href="/wiki/%EC%99%B8%EB%AF%B8%EB%B6%84" class="mw-redirect" title="외미분">외미분</a></li> <li><a href="/w/index.php?title=%EA%B8%B0%ED%95%98_%EB%AF%B8%EC%A0%81%EB%B6%84%ED%95%99&action=edit&redlink=1" class="new" title="기하 미적분학 (없는 문서)">기하</a></li></ul></td> </tr><tr><th class="sidebar-heading"> 정의</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/%ED%8E%B8%EB%AF%B8%EB%B6%84" title="편미분">편미분</a></li> <li><a href="/wiki/%EC%A4%91%EC%A0%81%EB%B6%84" title="중적분">중적분</a></li> <li><a href="/wiki/%EC%84%A0%EC%A0%81%EB%B6%84" title="선적분">선적분</a></li> <li><a href="/wiki/%EB%A9%B4%EC%A0%81%EB%B6%84" title="면적분">면적분</a></li> <li><a href="/wiki/%EC%82%BC%EC%A4%91%EC%A0%81%EB%B6%84" class="mw-redirect" title="삼중적분">삼중적분</a></li> <li><a href="/wiki/%EC%95%BC%EC%BD%94%EB%B9%84_%ED%96%89%EB%A0%AC" title="야코비 행렬">야코비안</a></li> <li><a href="/wiki/%ED%97%A4%EC%84%B8_%ED%96%89%EB%A0%AC" title="헤세 행렬">헤세 행렬</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:110%;">특수한 경우</span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><div class="hlist"> <ul><li><a href="/wiki/%EB%B6%84%EC%88%98%EA%B3%84_%EB%AF%B8%EC%A0%81%EB%B6%84%ED%95%99" title="분수계 미적분학">분수계 미적분학</a></li> <li><a href="/w/index.php?title=%EB%A7%90%EB%A6%AC%EC%95%84%EB%B9%88_%EB%AF%B8%EC%A0%81%EB%B6%84&action=edit&redlink=1" class="new" title="말리아빈 미적분 (없는 문서)">말리아빈 미적분</a></li> <li><a href="/wiki/%ED%99%95%EB%A5%A0%EB%AF%B8%EC%A0%81%EB%B6%84%ED%95%99" title="확률미적분학">확률미적분학</a></li> <li><a href="/wiki/%EB%B3%80%EB%B6%84%EB%B2%95" title="변분법">변분법</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><style data-mw-deduplicate="TemplateStyles:r38585741">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-보기"><a href="/wiki/%ED%8B%80:%EB%AF%B8%EC%A0%81%EB%B6%84%ED%95%99" title="틀:미적분학"><abbr title="이 틀을 보기">v</abbr></a></li><li class="nv-토론"><a href="/wiki/%ED%8B%80%ED%86%A0%EB%A1%A0:%EB%AF%B8%EC%A0%81%EB%B6%84%ED%95%99" title="틀토론:미적분학"><abbr title="이 틀에 관해 토론하기">t</abbr></a></li><li class="nv-편집"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%AC%B8%EC%84%9C%ED%8E%B8%EC%A7%91/%ED%8B%80:%EB%AF%B8%EC%A0%81%EB%B6%84%ED%95%99" title="특수:문서편집/틀:미적분학"><abbr title="이 틀을 편집하기">e</abbr></a></li></ul></div></td></tr></tbody></table> <p><b>미분</b>(<span lang="ko-hani" style="font-size: smaller;"><a href="/wiki/%ED%95%9C%EA%B5%AD%EC%96%B4_%ED%95%9C%EC%9E%90" title="한국어 한자">한국 한자</a>: </span>微分, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">derivative</span>) 또는 <b>도함수</b>(<span lang="ko-hani" style="font-size: smaller;"><a href="/wiki/%ED%95%9C%EA%B5%AD%EC%96%B4_%ED%95%9C%EC%9E%90" title="한국어 한자">한국 한자</a>: </span>導函數)는 어떤 <a href="/wiki/%ED%95%A8%EC%88%98" title="함수">함수</a>의 <a href="/wiki/%EC%A0%95%EC%9D%98%EC%97%AD" title="정의역">정의역</a> 속 각 점에서 함숫값의 변화량과 독립 변숫값의 변화량 비의 <a href="/wiki/%EA%B7%B9%ED%95%9C" title="극한">극한</a> 혹은 극한들로 치역이 구성되는 새로운 함수다.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> 어떤 함수의 <b>순간 변화율</b>(미분계수)을 구하는 것을 의미하며 순간변화율 독립 변수 x의 증분에 관한 함숫값 ƒ(x)의 증분의 비가 한없이 일정한 값에 가까워질 때 그 일정한 값, 즉 함수에서 변수 x값의 변화량에 관한 함숫값 ƒ(x)의 변화량 비가 한없이 일정한 값에 가까워질 때 그 일정한 값 <b>dy/dx</b>로 나타낸다. </p><p>동사로서 미분(<span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">differentiation</span>)은 이러한 극한이나 도함수를 구하는 일, 즉 미분법을 뜻하기도 한다. 도함수에서 미분의 역연산을 통해 원시함수(antiderivative)를 구하는 것 역시 미분법(differential calculus)의 주요 주제다. </p><p>미분은 비선형 함수를 선형함수로 근사적으로 나타내려는 시도다. 비선형 함수를 미분하여 한 점 주변에서 1차 함수로 생각한다. 이를 반복하면 함수의 다항함수 근사를 얻으며 무한 번 하면 <a href="/wiki/%ED%85%8C%EC%9D%BC%EB%9F%AC_%EA%B8%89%EC%88%98" title="테일러 급수">테일러 급수</a>를 얻는다. 이는 14세기 인도 수학자의 저작에도 등장한다. 기하학적으로는, 비선형적인 함수로 표현되는 곡선의 한 점에서 그 곡선과 비슷한 직선인 접선을 구하는 것으로도 볼 수 있다. 일반적으로 <a href="/wiki/%EB%AF%B8%EB%B6%84%EA%B8%B0%ED%95%98%ED%95%99" title="미분기하학">미분기하학</a>에서는 선형 공간인 <a href="/wiki/%EC%A0%91%EB%8B%A4%EB%B0%9C" title="접다발">접공간</a>을 생각하여 <a href="/wiki/%EB%A7%A4%EB%81%84%EB%9F%AC%EC%9A%B4_%EB%8B%A4%EC%96%91%EC%B2%B4" title="매끄러운 다양체">미분다양체</a>를 선형적으로 바라보며, <a href="/wiki/%EB%AF%B8%EB%B6%84_%ED%98%95%EC%8B%9D" title="미분 형식">미분형식</a>, 미분다양체에서 <a href="/wiki/%EC%A0%81%EB%B6%84" title="적분">적분</a> 등은 모두 접공간이 필수적으로 고려되어야 한다. </p><p>함수 미분은 존재하지 않을 수 있다. 미분이 모든 곳에서 존재하는 함수를 <a href="/wiki/%EB%AF%B8%EB%B6%84_%EA%B0%80%EB%8A%A5_%ED%95%A8%EC%88%98" class="mw-redirect" title="미분 가능 함수">미분 가능 함수</a>라고 한다. 미분 가능 함수는 반드시 <a href="/wiki/%EC%97%B0%EC%86%8D_%ED%95%A8%EC%88%98" title="연속 함수">연속 함수</a>(=독립 변수의 변화가 미세할 때 함숫값의 변화 역시 미세한 함수)이어야 한다. 그러나 연속 함수가 반드시 미분 가능 함수이지는 않다. 연속함수이지만 모든 정의역에서 미분 불가능한 함수가 아주 많이 존재한다(예: <a href="/wiki/%EB%B0%94%EC%9D%B4%EC%96%B4%EC%8A%88%ED%8A%B8%EB%9D%BC%EC%8A%A4_%ED%95%A8%EC%88%98" title="바이어슈트라스 함수">바이어슈트라스 함수</a>). 함수 미분을 정의역 속 각 점에 그 점에서의 미분을 대응시키는 <a href="/wiki/%ED%95%A8%EC%88%98" title="함수">함수</a>(도함수)로 여길 수 있다. 따라서, 함수의 도함수의 도함수, 함수의 도함수의 도함수의 도함수 따위를 생각할 수 있으며, 이들을 그 함수의 고계 도함수(高階導函數, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">higher order derivative</span>) 또는 고계 미분(高階微分)이라고 한다. 이런 고계미분이 되고 그 고계도함수가 연속함수인 함수들의 집합을 기호로 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {C}}^{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">C</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {C}}^{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12bdcba86ef3941d51adeab5567f1b3ff4cb91d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.298ex; height:2.676ex;" alt="{\displaystyle {\mathcal {C}}^{0}}"></span>( 연속함수), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {C}}^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">C</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {C}}^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9791a5c97f2cf7a4a7ab3559dc4968fc60590fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.298ex; height:2.676ex;" alt="{\displaystyle {\mathcal {C}}^{1}}"></span>(1회 미분가능이고 연속), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {C}}^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">C</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {C}}^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fa78532f9ecd4d2c24067453326c56c10a2507f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.462ex; height:2.343ex;" alt="{\displaystyle {\mathcal {C}}^{n}}"></span>(n회 미분가능이고 연속), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {C}}^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">C</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {C}}^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5ed72bb2fb83c421d84887d252bbee98aa6eae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.119ex; height:2.343ex;" alt="{\displaystyle {\mathcal {C}}^{\infty }}"></span>(무한번 미분가능이고 연속), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {C}}^{\omega }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">C</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>ω<!-- ω --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {C}}^{\omega }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd35a2c3b38fb1c394430ca384e2bb8fe3875cf4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.498ex; height:2.343ex;" alt="{\displaystyle {\mathcal {C}}^{\omega }}"></span>(해석함수) 등으로 나타낸다. <a href="/wiki/%EB%AF%B8%EC%A0%81%EB%B6%84%ED%95%99%EC%9D%98_%EA%B8%B0%EB%B3%B8_%EC%A0%95%EB%A6%AC" title="미적분학의 기본 정리">미적분학의 기본 정리</a>에 따르면 원시함수는 <a href="/wiki/%EB%B6%80%EC%A0%95%EC%A0%81%EB%B6%84" title="부정적분">부정적분</a>과 같아서 <a href="/wiki/%EC%A0%95%EC%A0%81%EB%B6%84" class="mw-redirect" title="정적분">정적분</a>을 미분법의 역연산을 통해 구할 수 있으므로 미분과 <a href="/wiki/%EC%A0%81%EB%B6%84" title="적분">적분</a>은 대략 서로 역연산의 관계이다. </p><p>미분의 개념에 대한 여러 가지 일반화가 존재한다. <a href="/wiki/%EB%B2%A1%ED%84%B0_%EB%AF%B8%EC%A0%81%EB%B6%84%ED%95%99" title="벡터 미적분학">벡터 미적분학</a>의 <a href="/wiki/%EA%B8%B0%EC%9A%B8%EA%B8%B0_(%EB%B2%A1%ED%84%B0)" title="기울기 (벡터)">기울기</a>, <a href="/wiki/%EB%8B%A4%EB%B3%80%EC%88%98_%EB%AF%B8%EC%A0%81%EB%B6%84%ED%95%99" class="mw-redirect" title="다변수 미적분학">다변수 미적분학</a>의 <a href="/wiki/%EC%95%BC%EC%BD%94%EB%B9%84_%ED%96%89%EB%A0%AC" title="야코비 행렬">야코비 행렬</a>, <a href="/wiki/%ED%95%A8%EC%88%98%ED%95%B4%EC%84%9D%ED%95%99" title="함수해석학">함수해석학</a>의 <a href="/wiki/%ED%94%84%EB%A0%88%EC%85%B0_%EB%8F%84%ED%95%A8%EC%88%98" title="프레셰 도함수">프레셰 도함수</a> 따위가 있다. 또한, 미분을 주어진 함수에 새 함수를 대응시키는 연산자(<a href="/wiki/%EB%AF%B8%EB%B6%84_%EC%97%B0%EC%82%B0%EC%9E%90" title="미분 연산자">미분 연산자</a>)로 생각할 수 있다. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="미분이_나오는_예"><span id=".EB.AF.B8.EB.B6.84.EC.9D.B4_.EB.82.98.EC.98.A4.EB.8A.94_.EC.98.88"></span>미분이 나오는 예</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=1" title="부분 편집: 미분이 나오는 예"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="접선_문제"><span id=".EC.A0.91.EC.84.A0_.EB.AC.B8.EC.A0.9C"></span>접선 문제</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=2" title="부분 편집: 접선 문제"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Secant-calculus.svg" class="mw-file-description"><img alt="곡선과 그 위의 두 점을 지나는 할선" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/61/Secant-calculus.svg/220px-Secant-calculus.svg.png" decoding="async" width="220" height="157" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/61/Secant-calculus.svg/330px-Secant-calculus.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/61/Secant-calculus.svg/440px-Secant-calculus.svg.png 2x" data-file-width="823" data-file-height="586" /></a><figcaption>곡선의 서로 다른 두 점의 연결선을 <a href="/wiki/%ED%95%A0%EC%84%A0" title="할선">할선</a>이라고 한다.</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Lim-secant.svg" class="mw-file-description"><img alt="곡선의 같은 점을 지나는 여러 할선들" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Lim-secant.svg/220px-Lim-secant.svg.png" decoding="async" width="220" height="157" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Lim-secant.svg/330px-Lim-secant.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Lim-secant.svg/440px-Lim-secant.svg.png 2x" data-file-width="823" data-file-height="586" /></a><figcaption><a href="/wiki/%EC%A0%91%EC%84%A0" title="접선">접선</a>은 할선의 극한이다.</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Tangent_animation.gif" class="mw-file-description"><img alt="할선이 접선에 가까워지는 과정을 나타낸 애니메이션" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Tangent_animation.gif/220px-Tangent_animation.gif" decoding="async" width="220" height="173" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Tangent_animation.gif/330px-Tangent_animation.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/c/cc/Tangent_animation.gif 2x" data-file-width="400" data-file-height="314" /></a><figcaption>할선은 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x\to 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x\to 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe52bdad1526bf729093fbbb01b989111c99bbe8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.042ex; height:2.176ex;" alt="{\displaystyle \Delta x\to 0}"></span>일 때 접선이 된다.</figcaption></figure> <p><a href="/wiki/%EA%B8%B0%ED%95%98%ED%95%99" title="기하학">기하학</a>적 관점에서, 미분은 주어진 <a href="/wiki/%EA%B3%A1%EC%84%A0" title="곡선">곡선</a>의 <a href="/wiki/%EC%A0%91%EC%84%A0" title="접선">접선</a>을 구하는 문제와 동치이다. 접선의 기하학적 의미는 곡선과 스치듯이 만나는 직선이다. 즉, 직선에 미세한 변화를 가하면 곡선과의 교점의 개수가 변화하게 된다. 예를 들어, 직선 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953917eaf52f2e1baad54c8c9e3d6f9bb3710cdc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle x=0}"></span>과 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/094f824655138f6b11d96a0da32e7f0716ba6959" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.416ex; height:2.509ex;" alt="{\displaystyle y=0}"></span> 모두 <a href="/wiki/%ED%8F%AC%EB%AC%BC%EC%84%A0" title="포물선">포물선</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=x^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=x^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad1108c4c9ee8ac7de90b77f9bd27415b13b6bf1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.638ex; height:3.009ex;" alt="{\displaystyle y=x^{2}}"></span>과 유일한 교점을 갖지만, 전자는 약간 흔들어도 유일한 교점을 가지므로 접선이 아니며, 후자는 약간 흔들었을 때 교점을 잃거나 얻으므로 접선이다. </p><p>평면 곡선 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2311a6a75c54b0ea085a381ba472c31d59321514" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.672ex; height:2.843ex;" alt="{\displaystyle y=f(x)}"></span>의 점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,f(a))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,f(a))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2250e602b41f737373c715600ba8f2d2cad1759d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.391ex; height:2.843ex;" alt="{\displaystyle (a,f(a))}"></span>에서의 접선을 구하려면, 그 기울기를 구하기만 하면 된다. 우선, 점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,f(x))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,f(x))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b21dd0c5c5815bc0516f679f631fd588ceb458d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.59ex; height:2.843ex;" alt="{\displaystyle (x,f(x))}"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\neq a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>≠<!-- ≠ --></mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\neq a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bce8c12100e8901f52095cc47c2e66d6e01a46b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.658ex; height:2.676ex;" alt="{\displaystyle x\neq a}"></span>)을 하나 더 취했을 때, 이 두 점을 지나는 할선의 기울기 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>k</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83e3cf8c15b3115d4181670927cf62feda9f1199" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.509ex;" alt="{\displaystyle {\bar {k}}}"></span>는 다음과 같다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {k}}={\frac {\Delta y}{\Delta x}}={\frac {f(x)-f(a)}{x-a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>k</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>y</mi> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {k}}={\frac {\Delta y}{\Delta x}}={\frac {f(x)-f(a)}{x-a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecc3b7fde47057454f34a19d3a9d84c74c680c83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:23.922ex; height:5.843ex;" alt="{\displaystyle {\bar {k}}={\frac {\Delta y}{\Delta x}}={\frac {f(x)-f(a)}{x-a}}}"></span></dd></dl> <p>점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,f(x))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,f(x))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b21dd0c5c5815bc0516f679f631fd588ceb458d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.59ex; height:2.843ex;" alt="{\displaystyle (x,f(x))}"></span>가 점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,f(a))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,f(a))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2250e602b41f737373c715600ba8f2d2cad1759d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.391ex; height:2.843ex;" alt="{\displaystyle (a,f(a))}"></span>에 가까워질수록, 소폭의 변화를 가했을 때 곡선과의 교점의 개수가 변화하는 효과가 더 뚜렷해지며, 또한 할선은 실제 접선의 위치에 더 가까워진다. 따라서, 접선을 할선의 극한으로 정의할 수 있다. 이 경우 접선의 기울기는 할선의 기울기의 극한이며, 다음과 같이 나타낼 수 있다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=\tan \alpha =\lim _{\Delta x\to 0}{\frac {\Delta y}{\Delta x}}=\lim _{x\to a}{\frac {f(x)-f(a)}{x-a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>α<!-- α --></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>y</mi> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mi>a</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=\tan \alpha =\lim _{\Delta x\to 0}{\frac {\Delta y}{\Delta x}}=\lim _{x\to a}{\frac {f(x)-f(a)}{x-a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fac85c918b1133064dde503a6a3c6766ee7f0984" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:41.256ex; height:6.009ex;" alt="{\displaystyle k=\tan \alpha =\lim _{\Delta x\to 0}{\frac {\Delta y}{\Delta x}}=\lim _{x\to a}{\frac {f(x)-f(a)}{x-a}}}"></span></dd></dl> <p>접선의 기울기 역시 함수의 변화량과 독립 변수의 변화량의 비의 극한이므로, 함수의 미분과 같다. 즉, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=\tan \alpha =f'(a)=\left.{\frac {dy}{dx}}\right|_{x=a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>α<!-- α --></mi> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>=</mo> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=\tan \alpha =f'(a)=\left.{\frac {dy}{dx}}\right|_{x=a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87d7385c5951dd1d8baa82e48ef173ffb940a9ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:28.134ex; height:6.009ex;" alt="{\displaystyle k=\tan \alpha =f'(a)=\left.{\frac {dy}{dx}}\right|_{x=a}}"></span></dd></dl> <p>이다. </p> <div class="mw-heading mw-heading3"><h3 id="증분과_평균_변화율과_순간_변화율"><span id=".EC.A6.9D.EB.B6.84.EA.B3.BC_.ED.8F.89.EA.B7.A0_.EB.B3.80.ED.99.94.EC.9C.A8.EA.B3.BC_.EC.88.9C.EA.B0.84_.EB.B3.80.ED.99.94.EC.9C.A8"></span>증분과 평균 변화율과 순간 변화율</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=3" title="부분 편집: 증분과 평균 변화율과 순간 변화율"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>일반적인 함수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2311a6a75c54b0ea085a381ba472c31d59321514" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.672ex; height:2.843ex;" alt="{\displaystyle y=f(x)}"></span>에 대하여, <b>증분</b>(增分, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">increment</span>)은 독립 변숫값의 변화량 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3890eb866b6258d7a304fc34c70ee3fb3a81a70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.266ex; height:2.176ex;" alt="{\displaystyle \Delta x}"></span></dd></dl> <p>및 함숫값의 변화량 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta y=f(x+\Delta x)-f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta y=f(x+\Delta x)-f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce43d41f207f5cdc2737e774b438b6cee1aa7401" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.971ex; height:2.843ex;" alt="{\displaystyle \Delta y=f(x+\Delta x)-f(x)}"></span></dd></dl> <p>을 뜻하는 용어이며, <b>평균 변화율</b>(平均變化率, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">average rate of change</span>)은 두 증분의 비 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\Delta y}{\Delta x}}={\frac {f(x+\Delta x)-f(x)}{\Delta x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>y</mi> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\Delta y}{\Delta x}}={\frac {f(x+\Delta x)-f(x)}{\Delta x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7077d8f691a8dfe22ea939a23ac81e0bc70bab7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:25.818ex; height:5.843ex;" alt="{\displaystyle {\frac {\Delta y}{\Delta x}}={\frac {f(x+\Delta x)-f(x)}{\Delta x}}}"></span></dd></dl> <p>를 뜻하는 용어이다.<sup id="cite_ref-박은순_2-0" class="reference"><a href="#cite_note-박은순-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:211–212</sup></span> 미분 또는 <b>미분 계수</b>(微分係數, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">differential coefficient</span>) 또는 <b>순간 변화율</b>(瞬間變化率, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">instantaneous rate of change</span>)은 평균 변화율의 극한 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dy}{dx}}=\lim _{\Delta x\to 0}{\frac {\Delta y}{\Delta x}}=\lim _{\Delta x\to 0}{\frac {f(x+\Delta x)-f(x)}{\Delta x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>y</mi> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dy}{dx}}=\lim _{\Delta x\to 0}{\frac {\Delta y}{\Delta x}}=\lim _{\Delta x\to 0}{\frac {f(x+\Delta x)-f(x)}{\Delta x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/731355a21e3ca457060e3043c7088b6b7d38890c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:42.621ex; height:6.009ex;" alt="{\displaystyle {\frac {dy}{dx}}=\lim _{\Delta x\to 0}{\frac {\Delta y}{\Delta x}}=\lim _{\Delta x\to 0}{\frac {f(x+\Delta x)-f(x)}{\Delta x}}}"></span></dd></dl> <p>을 뜻하는 용어이다.<sup id="cite_ref-박은순_2-1" class="reference"><a href="#cite_note-박은순-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> 여기서 극한 대신 <a href="/wiki/%EC%A2%8C%EA%B7%B9%ED%95%9C" class="mw-redirect" title="좌극한">좌극한</a>을 사용하면 좌미분 또는 <b>좌미분 계수</b>(左微分係數)의 개념을 얻으며, <a href="/wiki/%EC%9A%B0%EA%B7%B9%ED%95%9C" class="mw-redirect" title="우극한">우극한</a>을 사용하면 우미분 또는 <b>우미분 계수</b>(右微分係數)의 개념을 얻는다. </p> <div class="mw-heading mw-heading3"><h3 id="순간_속도_문제"><span id=".EC.88.9C.EA.B0.84_.EC.86.8D.EB.8F.84_.EB.AC.B8.EC.A0.9C"></span>순간 속도 문제</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=4" title="부분 편집: 순간 속도 문제"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Falling_ball.jpg" class="mw-file-description"><img alt="자유 낙하하는 농구공의 간격이 일정한 각 시점의 위치를 나타낸 그림" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/02/Falling_ball.jpg/250px-Falling_ball.jpg" decoding="async" width="250" height="840" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/02/Falling_ball.jpg/375px-Falling_ball.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/02/Falling_ball.jpg/500px-Falling_ball.jpg 2x" data-file-width="819" data-file-height="2751" /></a><figcaption>자유 낙하 과정을 스트로보스코프로 촬영하여 시간과 변위의 함수 관계를 구할 수 있으며, 여기에 미분을 취하면 (순간) 속도가 된다.</figcaption></figure> <p>어떤 물체의 시간에 따른 <a href="/wiki/%EB%B3%80%EC%9C%84" title="변위">변위</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=s(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mi>s</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=s(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14acdab8bb33a0931f9679f477e7491010e1698a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.928ex; height:2.843ex;" alt="{\displaystyle s=s(t)}"></span>가 주어졌을 때, 시간 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\sim t+\Delta t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>∼<!-- ∼ --></mo> <mi>t</mi> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\sim t+\Delta t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e0fea41ccfc82cae5aa04d0d3f31cd8e164888d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.394ex; height:2.343ex;" alt="{\displaystyle t\sim t+\Delta t}"></span> 동안의 <a href="/wiki/%ED%8F%89%EA%B7%A0_%EC%86%8D%EB%8F%84" class="mw-redirect" title="평균 속도">평균 속도</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba1d09340f8f6c1979330c2f23e514e38f243a3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.227ex; height:2.009ex;" alt="{\displaystyle {\bar {v}}}"></span>는 이동한 거리와 소모한 시간의 비이며, 식을 써서 나타내면 다음과 같다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {v}}={\frac {\Delta s}{\Delta t}}={\frac {s(t+\Delta t)-s(t)}{\Delta t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>s</mi> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>s</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>s</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {v}}={\frac {\Delta s}{\Delta t}}={\frac {s(t+\Delta t)-s(t)}{\Delta t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cac73dfd8bf537d38b83119dc35af9c7e52fd6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:28.058ex; height:5.843ex;" alt="{\displaystyle {\bar {v}}={\frac {\Delta s}{\Delta t}}={\frac {s(t+\Delta t)-s(t)}{\Delta t}}}"></span></dd></dl> <p><a href="/wiki/%EB%93%B1%EC%86%8D_%EC%9A%B4%EB%8F%99" class="mw-redirect" title="등속 운동">등속 운동</a>의 경우 각 시점의 빠르기는 서로 같으며, 이는 아무 부분의 평균 속도와도 같다. 하지만, 일반적인 물체의 운동은 <a href="/wiki/%EB%B3%80%EC%86%8D_%EC%9A%B4%EB%8F%99" class="mw-redirect" title="변속 운동">변속 운동</a>이므로, 빠르기가 시간에 따라 변화한다. 이 경우 평균 속도는 각 시점의 빠르기를 정확하게 반영하지 못하므로, <a href="/wiki/%EC%88%9C%EA%B0%84_%EC%86%8D%EB%8F%84" class="mw-redirect" title="순간 속도">순간 속도</a>라는 개념이 필요하게 된다. 평균 속도를 구하는 과정의 시간 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c28867ecd34e2caed12cf38feadf6a81a7ee542" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.775ex; height:2.176ex;" alt="{\displaystyle \Delta t}"></span>가 짧아질수록 평균 속도가 순간 속도와 가까워진다는 점에 주의하여, 순간 속도를 평균 속도의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta t\to 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta t\to 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5c59b4f951f4bcd6954ba444dcd840185fe058a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.552ex; height:2.176ex;" alt="{\displaystyle \Delta t\to 0}"></span>일 때의 극한으로 정의할 수 있으며, 식을 써서 나타내면 다음과 같다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v(t)=\lim _{\Delta t\to 0}{\frac {\Delta s}{\Delta t}}=\lim _{\Delta t\to 0}{\frac {s(t+\Delta t)-s(t)}{\Delta t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>s</mi> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>s</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>s</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v(t)=\lim _{\Delta t\to 0}{\frac {\Delta s}{\Delta t}}=\lim _{\Delta t\to 0}{\frac {s(t+\Delta t)-s(t)}{\Delta t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c0ef9a87dfeba3194b5a7fcc7f45ff1a38060f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:40.237ex; height:6.009ex;" alt="{\displaystyle v(t)=\lim _{\Delta t\to 0}{\frac {\Delta s}{\Delta t}}=\lim _{\Delta t\to 0}{\frac {s(t+\Delta t)-s(t)}{\Delta t}}}"></span></dd></dl> <p>일반적인 함수에 대하여, 미분은 그 함수의 변화량과 독립 변수의 변화량의 비가, 변화량이 0에 가까워질 때 갖는 극한으로 정의된다. 이에 따라, 순간 속도 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/243a0bf98a12f48552ba6a70302122d81b237b3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.777ex; height:2.843ex;" alt="{\displaystyle v(t)}"></span>는 변위 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c484de351ba40ccb9a5ad522c29c1aac5686c0df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.739ex; height:2.843ex;" alt="{\displaystyle s(t)}"></span>의 (시간 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>에 대한) 미분이며, 이를 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v(t)=s'(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>s</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v(t)=s'(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7dd3aa12966986f5a2502fd8926dd2de25df4c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.299ex; height:3.009ex;" alt="{\displaystyle v(t)=s'(t)}"></span></dd></dl> <p>또는 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v={\frac {ds}{dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>s</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v={\frac {ds}{dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52931df917fb9cbd33d9a41bce2979743f80f28c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:7.369ex; height:5.509ex;" alt="{\displaystyle v={\frac {ds}{dt}}}"></span></dd></dl> <p>와 같이 표기할 수 있다. </p><p>예를 들어, <a href="/wiki/%EB%8B%A4%EB%A6%AC" class="mw-disambig" title="다리">다리</a> 위에서 손에 쥐었던 <a href="/wiki/%EB%86%8D%EA%B5%AC" title="농구">농구</a>공을 가만히 놓아 떨어뜨렸을 때, 공기 저항이나 <a href="/wiki/%EB%B0%94%EB%9E%8C" title="바람">바람</a>의 영향이 크지 않다면, 농구공의 운동은 <a href="/wiki/%EC%9E%90%EC%9C%A0_%EB%82%99%ED%95%98" title="자유 낙하">자유 낙하</a>이며, 그 변위는 다음과 같다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h={\frac {1}{2}}gt^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>g</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h={\frac {1}{2}}gt^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52c62ae3ad0d572a603c060462187370a645d8a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:9.446ex; height:5.176ex;" alt="{\displaystyle h={\frac {1}{2}}gt^{2}}"></span></dd></dl> <p>따라서, 그 순간 속도를 다음과 같이 구할 수 있다.<sup id="cite_ref-미야구치_3-0" class="reference"><a href="#cite_note-미야구치-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}v&={\frac {dh}{dt}}\\&=\lim _{\Delta t\to 0}{\frac {{\frac {1}{2}}g(t+\Delta t)^{2}-{\frac {1}{2}}gt^{2}}{\Delta t}}\\&=\lim _{\Delta t\to 0}(gt+{\frac {1}{2}}g\Delta t)\\&=gt\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>v</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>h</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>g</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mo stretchy="false">(</mo> <mi>g</mi> <mi>t</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>g</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>g</mi> <mi>t</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}v&={\frac {dh}{dt}}\\&=\lim _{\Delta t\to 0}{\frac {{\frac {1}{2}}g(t+\Delta t)^{2}-{\frac {1}{2}}gt^{2}}{\Delta t}}\\&=\lim _{\Delta t\to 0}(gt+{\frac {1}{2}}g\Delta t)\\&=gt\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cd4b797062d7f69b31db0c7dc33d0b18ed24271" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.838ex; width:30.23ex; height:20.843ex;" alt="{\displaystyle {\begin{aligned}v&={\frac {dh}{dt}}\\&=\lim _{\Delta t\to 0}{\frac {{\frac {1}{2}}g(t+\Delta t)^{2}-{\frac {1}{2}}gt^{2}}{\Delta t}}\\&=\lim _{\Delta t\to 0}(gt+{\frac {1}{2}}g\Delta t)\\&=gt\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="정의"><span id=".EC.A0.95.EC.9D.98"></span>정의</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=5" title="부분 편집: 정의"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/%ED%95%A8%EC%88%98" title="함수">함수</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon I\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:<!-- : --></mo> <mi>I</mi> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon I\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa91b80587ee863c353413b3919b8704ef799018" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.776ex; height:2.509ex;" alt="{\displaystyle f\colon I\to \mathbb {R} }"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>는 <a href="/wiki/%EC%97%B4%EB%A6%B0%EA%B5%AC%EA%B0%84" class="mw-redirect" title="열린구간">열린구간</a>)의 점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c06736171fb6cabbf6888f6c07cfc4630cd799ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.242ex; height:2.176ex;" alt="{\displaystyle a\in I}"></span>에서의 <b>미분</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d98c61769b4906b6c0bd72f9de874410c7bf0d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.044ex; height:3.009ex;" alt="{\displaystyle f'(a)}"></span>은 다음과 같은 <a href="/wiki/%ED%95%A8%EC%88%98%EC%9D%98_%EA%B7%B9%ED%95%9C" title="함수의 극한">극한</a>이다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f'(a)&=\lim _{x\to a}{\frac {f(x)-f(a)}{x-a}}\\&=\lim _{\Delta x\to 0}{\frac {f(a+\Delta x)-f(a)}{\Delta x}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mi>a</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f'(a)&=\lim _{x\to a}{\frac {f(x)-f(a)}{x-a}}\\&=\lim _{\Delta x\to 0}{\frac {f(a+\Delta x)-f(a)}{\Delta x}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88349812ad8e22727ed7e2f3280a5b6b8e970ef6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.338ex; width:32.473ex; height:11.843ex;" alt="{\displaystyle {\begin{aligned}f'(a)&=\lim _{x\to a}{\frac {f(x)-f(a)}{x-a}}\\&=\lim _{\Delta x\to 0}{\frac {f(a+\Delta x)-f(a)}{\Delta x}}\end{aligned}}}"></span></dd></dl> <p>이러한 극한은 존재하지 않을 수 있다. 이 극한이 존재하는 경우, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>가 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>에서 <b>미분가능</b>하다고 한다. 미분의 기호는 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d98c61769b4906b6c0bd72f9de874410c7bf0d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.044ex; height:3.009ex;" alt="{\displaystyle f'(a)}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Df(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Df(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17c83c98b9b68b09db509888726883bae6a68aba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.242ex; height:2.843ex;" alt="{\displaystyle Df(a)}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {df}{dx}}(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {df}{dx}}(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a60ced9e53ddeca26d9353c342ff23c1df4240f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:6.421ex; height:5.509ex;" alt="{\displaystyle {\frac {df}{dx}}(a)}"></span>와 같이 여러 가지가 있다.<sup id="cite_ref-한상현_4-0" class="reference"><a href="#cite_note-한상현-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:217–218</sup></span> </p> <div class="mw-heading mw-heading3"><h3 id="좌미분과_우미분"><span id=".EC.A2.8C.EB.AF.B8.EB.B6.84.EA.B3.BC_.EC.9A.B0.EB.AF.B8.EB.B6.84"></span>좌미분과 우미분</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=6" title="부분 편집: 좌미분과 우미분"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>함수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon (b,a]\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:<!-- : --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>,</mo> <mi>a</mi> <mo stretchy="false">]</mo> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon (b,a]\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac43d0d26d5d1018c11178b4784863b201275d0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.417ex; height:2.843ex;" alt="{\displaystyle f\colon (b,a]\to \mathbb {R} }"></span>의 점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>에서의 <b>좌미분</b>(左微分, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">left derivative</span>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'_{-}(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'_{-}(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f69e79beb830dc789e43700e084c8359ad2cd7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.689ex; height:3.009ex;" alt="{\displaystyle f'_{-}(a)}"></span>은 다음과 같은 <a href="/wiki/%EC%A2%8C%EA%B7%B9%ED%95%9C" class="mw-redirect" title="좌극한">좌극한</a>이다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f'_{-}(a)&=\lim _{x\to a^{-}}{\frac {f(x)-f(a)}{x-a}}\\&=\lim _{\Delta x\to 0^{-}}{\frac {f(a+\Delta x)-f(a)}{\Delta x}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f'_{-}(a)&=\lim _{x\to a^{-}}{\frac {f(x)-f(a)}{x-a}}\\&=\lim _{\Delta x\to 0^{-}}{\frac {f(a+\Delta x)-f(a)}{\Delta x}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cfecb0a6e6c549025a07c5e149674db6c8d804c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.505ex; width:34.32ex; height:12.176ex;" alt="{\displaystyle {\begin{aligned}f'_{-}(a)&=\lim _{x\to a^{-}}{\frac {f(x)-f(a)}{x-a}}\\&=\lim _{\Delta x\to 0^{-}}{\frac {f(a+\Delta x)-f(a)}{\Delta x}}\end{aligned}}}"></span></dd></dl> <p>마찬가지로, 함수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon [a,c)\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:<!-- : --></mo> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon [a,c)\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06df3b5ca0ebe58675cc99597445bceb35ea6241" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.427ex; height:2.843ex;" alt="{\displaystyle f\colon [a,c)\to \mathbb {R} }"></span>의 점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>에서의 <b>우미분</b>(右微分, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">right derivative</span>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'_{+}(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'_{+}(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c292d46e93255255a2b25ef438a0648cad65900" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.689ex; height:3.009ex;" alt="{\displaystyle f'_{+}(a)}"></span>은 다음과 같은 <a href="/wiki/%EC%9A%B0%EA%B7%B9%ED%95%9C" class="mw-redirect" title="우극한">우극한</a>이다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f'_{+}(a)&=\lim _{x\to a^{+}}{\frac {f(x)-f(a)}{x-a}}\\&=\lim _{\Delta x\to 0^{+}}{\frac {f(a+\Delta x)-f(a)}{\Delta x}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f'_{+}(a)&=\lim _{x\to a^{+}}{\frac {f(x)-f(a)}{x-a}}\\&=\lim _{\Delta x\to 0^{+}}{\frac {f(a+\Delta x)-f(a)}{\Delta x}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58ea4af9841fddf9b51e1367e3e20d58acb8a4be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.505ex; width:34.32ex; height:12.176ex;" alt="{\displaystyle {\begin{aligned}f'_{+}(a)&=\lim _{x\to a^{+}}{\frac {f(x)-f(a)}{x-a}}\\&=\lim _{\Delta x\to 0^{+}}{\frac {f(a+\Delta x)-f(a)}{\Delta x}}\end{aligned}}}"></span></dd></dl> <p>미분과 좌미분과 우미분의 관계는 극한과 좌극한과 우극한의 관계와 유사하다. 좌미분과 우미분은 존재하지 않을 수 있으며, 모두 존재하더라도 서로 같지 않을 수 있다. 만약 좌미분과 우미분이 모두 존재하며 서로 같다면, 그 점에서의 미분 역시 존재하게 된다. </p> <div class="mw-heading mw-heading3"><h3 id="미분가능_함수"><span id=".EB.AF.B8.EB.B6.84.EA.B0.80.EB.8A.A5_.ED.95.A8.EC.88.98"></span>미분가능 함수</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=7" title="부분 편집: 미분가능 함수"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r34311305">.mw-parser-output .hatnote{}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}</style><div role="note" class="hatnote navigation-not-searchable"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/18px-Icons8_flat_search.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/27px-Icons8_flat_search.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/36px-Icons8_flat_search.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span> 이 부분의 본문은 <a href="/wiki/%EB%AF%B8%EB%B6%84%EA%B0%80%EB%8A%A5_%ED%95%A8%EC%88%98" class="mw-redirect" title="미분가능 함수">미분가능 함수</a>입니다.</div> <p>열린구간 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span>에 정의된 함수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon (a,b)\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:<!-- : --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon (a,b)\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6be90b157a47318b0043b84bb712295e8a03107" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.675ex; height:2.843ex;" alt="{\displaystyle f\colon (a,b)\to \mathbb {R} }"></span>가 다음 조건을 만족시키면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>를 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span>에서의 <b>미분가능 함수</b>라고 한다. </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>는 열린구간 속 임의의 점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae3086a4c11c5439b2f5a5b712e1dd9c06dcb535" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.241ex; height:2.843ex;" alt="{\displaystyle x\in (a,b)}"></span>에서 미분가능하다.</li></ul> <p>닫힌구간 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span>에 정의된 함수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon [a,b]\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:<!-- : --></mo> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon [a,b]\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5ab61178bf5349838758ffe3d96135406ed0245" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.16ex; height:2.843ex;" alt="{\displaystyle f\colon [a,b]\to \mathbb {R} }"></span>가 다음 조건들을 만족시키면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>를 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span>에서의 <b>미분가능 함수</b>라고 한다. </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>는 열린구간 속 임의의 점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae3086a4c11c5439b2f5a5b712e1dd9c06dcb535" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.241ex; height:2.843ex;" alt="{\displaystyle x\in (a,b)}"></span>에서 미분가능하다.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>는 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>에서 우미분이 존재한다.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>는 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>에서 좌미분이 존재한다.</li></ul> <p>비슷하게, 임의의 유형의 구간에서의 미분가능 함수를 정의할 수 있다. 즉, 구간에서의 미분가능 함수는 내부점에서 미분가능하며, 구간에 속하는 왼쪽 끝점에서 우미분이 존재하며, 구간에 속하는 오른쪽 끝점에서 좌미분이 존재하는 함수이다. </p> <div class="mw-heading mw-heading3"><h3 id="도함수"><span id=".EB.8F.84.ED.95.A8.EC.88.98"></span>도함수</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=8" title="부분 편집: 도함수"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Tangent_function_animation.gif" class="mw-file-description"><img alt="함수 f(x)=xsinx^2+1의 접선을 왼쪽부터 오른쪽까지 그려보이는 애니메이션" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2d/Tangent_function_animation.gif/220px-Tangent_function_animation.gif" decoding="async" width="220" height="209" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/2/2d/Tangent_function_animation.gif 1.5x" data-file-width="300" data-file-height="285" /></a><figcaption>함수 <i>f</i>(<i>x</i>) = <i>x</i>sin<i>x</i><sup>2</sup> + 1의 도함수는 <i>f'</i> = sin<i>x</i><sup>2</sup> + 2<i>x</i><sup>2</sup>cos<i>x</i><sup>2</sup>이다.</figcaption></figure> <p>미분 가능 함수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon I\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:<!-- : --></mo> <mi>I</mi> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon I\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa91b80587ee863c353413b3919b8704ef799018" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.776ex; height:2.509ex;" alt="{\displaystyle f\colon I\to \mathbb {R} }"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>는 <a href="/wiki/%EA%B5%AC%EA%B0%84" title="구간">구간</a>)가 주어졌다고 하자. 그렇다면, 임의의 점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dec8caa8f241cb38a5348d7937b538227ad32c48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.342ex; height:2.176ex;" alt="{\displaystyle x\in I}"></span>에 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>에서의 미분(구간에 속하는 끝점의 경우 좌미분 또는 우미분) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0cd7d7c75340e779d82658e19d1720ce84ab127" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.144ex; height:3.009ex;" alt="{\displaystyle f'(x)}"></span>를 대응시키는 함수를 생각할 수 있다. 이 함수를 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>의 <b>도함수</b>라고 하거나, 똑같이 <b>미분</b>이라고 한다. 즉, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>의 도함수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/258eaada38956fb69b8cb1a2eef46bcb97d3126b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.005ex; height:2.843ex;" alt="{\displaystyle f'}"></span>는 다음과 같은 함수이다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'\colon I\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo>:<!-- : --></mo> <mi>I</mi> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'\colon I\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f52e71e88cb8ebe16c30a4360a5d689aec5363d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.503ex; height:2.843ex;" alt="{\displaystyle f'\colon I\to \mathbb {R} }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'\colon x\mapsto \lim _{I\ni y\to x}{\frac {f(y)-f(x)}{y-x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo>:<!-- : --></mo> <mi>x</mi> <mo stretchy="false">↦<!-- ↦ --></mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> <mo>∋<!-- ∋ --></mo> <mi>y</mi> <mo stretchy="false">→<!-- → --></mo> <mi>x</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>y</mi> <mo>−<!-- − --></mo> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'\colon x\mapsto \lim _{I\ni y\to x}{\frac {f(y)-f(x)}{y-x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f742ee8988c02cd163d69b454f7e978f075c1626" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.033ex; height:6.176ex;" alt="{\displaystyle f'\colon x\mapsto \lim _{I\ni y\to x}{\frac {f(y)-f(x)}{y-x}}}"></span></dd></dl> <p>함수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>의 미분의 기호는 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/258eaada38956fb69b8cb1a2eef46bcb97d3126b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.005ex; height:2.843ex;" alt="{\displaystyle f'}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Df}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Df}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/683279b8feba655b049a1c55f4bd9026218fcdb5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.203ex; height:2.509ex;" alt="{\displaystyle Df}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {df}{dx}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {df}{dx}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5d4eb531911adb8362a989a2c6b9e10bd46c099" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:3.382ex; height:5.509ex;" alt="{\displaystyle {\frac {df}{dx}}}"></span> 등이 있다. </p> <div class="mw-heading mw-heading3"><h3 id="고계_도함수"><span id=".EA.B3.A0.EA.B3.84_.EB.8F.84.ED.95.A8.EC.88.98"></span>고계 도함수</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=9" title="부분 편집: 고계 도함수"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r34311305"><div role="note" class="hatnote navigation-not-searchable"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/18px-Icons8_flat_search.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/27px-Icons8_flat_search.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/36px-Icons8_flat_search.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span> 이 부분의 본문은 <a href="/wiki/%EA%B3%A0%EA%B3%84_%EB%8F%84%ED%95%A8%EC%88%98" class="mw-redirect" title="고계 도함수">고계 도함수</a>입니다.</div> <p>함수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon I\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:<!-- : --></mo> <mi>I</mi> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon I\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa91b80587ee863c353413b3919b8704ef799018" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.776ex; height:2.509ex;" alt="{\displaystyle f\colon I\to \mathbb {R} }"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>는 구간)가 다음과 같은 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>중 극한 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(n)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(n)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9dfb1963ccde0e87eb3838f51dc19041e2ff3816" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.818ex; height:3.176ex;" alt="{\displaystyle f^{(n)}}"></span>을 가진다면, 이를 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>의 <b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>계 도함수</b>(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>階導函數) 또는 <b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>계 미분</b>(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>階微分, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>th derivative</span>)이라고 한다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(n)}=f^{\overbrace {''\cdots '} ^{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mrow> <msup> <mi></mi> <mo>″</mo> </msup> <msup> <mo>⋯<!-- ⋯ --></mo> <mo>′</mo> </msup> </mrow> <mo>⏞<!-- ⏞ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mover> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(n)}=f^{\overbrace {''\cdots '} ^{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bab42cdfa003184a1302a7b61e964637664acf6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.826ex; height:5.343ex;" alt="{\displaystyle f^{(n)}=f^{\overbrace {''\cdots '} ^{n}}}"></span></dd></dl> <p>즉, 이는 다음과 같다. </p> <ul><li>(<b>영계 도함수/미분</b>, 零階導函數/微分, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">zeroth derivative</span>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(0)}=f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(0)}=f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c605cc879751dbc6e9e1f3d8921b36fa54993f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.031ex; height:3.176ex;" alt="{\displaystyle f^{(0)}=f}"></span>.</li> <li>(<b>일계 도함수/미분</b>, 一階導函數/微分, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">first derivative</span>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(0)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(0)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df3a8021945a1669fbbb044265ef5e459188a940" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.654ex; height:3.176ex;" alt="{\displaystyle f^{(0)}}"></span>가 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>에서 미분 가능 함수라면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(1)}={f^{(0)}}'=f'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </msup> </mrow> <mo>′</mo> </msup> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(1)}={f^{(0)}}'=f'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8578ac39e2bd6bab9369f1b4f66e9145b5ce3ae7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.195ex; height:3.343ex;" alt="{\displaystyle f^{(1)}={f^{(0)}}'=f'}"></span>이다. 그렇지 않다면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(1)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(1)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/481660444bb8ac912498594ceb71942e0e5931f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.654ex; height:3.176ex;" alt="{\displaystyle f^{(1)}}"></span>는 정의되지 않는다.</li> <li>(<b>이계 도함수/미분</b>, 二階導函數/微分, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">second derivative</span>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(1)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(1)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/481660444bb8ac912498594ceb71942e0e5931f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.654ex; height:3.176ex;" alt="{\displaystyle f^{(1)}}"></span>가 정의되었으며, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>에서 미분 가능 함수라면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(2)}={f^{(1)}}'=f''}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> </mrow> <mo>′</mo> </msup> <mo>=</mo> <msup> <mi>f</mi> <mo>″</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(2)}={f^{(1)}}'=f''}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ee54ed4b8e4c0557c8ab709790b0bab5ee91f70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.648ex; height:3.343ex;" alt="{\displaystyle f^{(2)}={f^{(1)}}'=f''}"></span>이다. 그렇지 않다면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(2)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(2)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f05fe79ea3527e72af77264bf61ccc4c7157050" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.654ex; height:3.176ex;" alt="{\displaystyle f^{(2)}}"></span>는 정의되지 않는다. 이계 미분의 기호는 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f''}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>″</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f''}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbbdf186092f4353b7630fa8dda903e493cbbdc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.458ex; height:2.843ex;" alt="{\displaystyle f''}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D^{2}f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D^{2}f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e2aa2c27636e204f55804c81ae8188de262d5d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.257ex; height:3.009ex;" alt="{\displaystyle D^{2}f}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d^{2}f}{dx^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d^{2}f}{dx^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9eb3485c467b9a7471113bff667ecc022754fb12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:4.436ex; height:6.009ex;" alt="{\displaystyle {\frac {d^{2}f}{dx^{2}}}}"></span> 등등이다.<sup id="cite_ref-박진홍_5-0" class="reference"><a href="#cite_note-박진홍-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:39</sup></span></li> <li>(<b>삼계 도함수/미분</b>, 三階導函數/微分, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">third derivative</span>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(2)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(2)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f05fe79ea3527e72af77264bf61ccc4c7157050" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.654ex; height:3.176ex;" alt="{\displaystyle f^{(2)}}"></span>가 정의되었으며, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>에서 미분 가능 함수라면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(3)}={f^{(2)}}'=f'''}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msup> </mrow> <mo>′</mo> </msup> <mo>=</mo> <msup> <mi>f</mi> <mo>‴</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(3)}={f^{(2)}}'=f'''}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ca1dca0417518d08661dd1641c4e30aca34ceec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.1ex; height:3.343ex;" alt="{\displaystyle f^{(3)}={f^{(2)}}'=f'''}"></span>이다. 그렇지 않다면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(3)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(3)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cf19db0abba850fcf07584454621374b27081e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.654ex; height:3.176ex;" alt="{\displaystyle f^{(3)}}"></span>는 정의되지 않는다. 삼계 미분의 기호는 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'''}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>‴</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'''}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b05804fd3402a8dc714b756d2f1e42c6653641a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.91ex; height:2.843ex;" alt="{\displaystyle f'''}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D^{3}f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D^{3}f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f782fba836d62665012ce954cc6303881d2b67d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.257ex; height:3.009ex;" alt="{\displaystyle D^{3}f}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d^{3}f}{dx^{3}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d^{3}f}{dx^{3}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e2245d40d09b2dce34232586b18a192bc0712b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:4.436ex; height:6.009ex;" alt="{\displaystyle {\frac {d^{3}f}{dx^{3}}}}"></span> 등등이다.</li> <li>...</li> <li>(<b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>계 도함수/미분</b>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>階導函數/微分, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>th derivative</span>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(n-1)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(n-1)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/957b8bdb9a01db3e59c2ef183cff7da46c220f9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.919ex; height:3.176ex;" alt="{\displaystyle f^{(n-1)}}"></span>가 정의되었으며, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>에서 미분 가능 함수라면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(n)}={f^{(n-1)}}'=f^{\overbrace {''\cdots '} ^{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> </mrow> <mo>′</mo> </msup> <mo>=</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mrow> <msup> <mi></mi> <mo>″</mo> </msup> <msup> <mo>⋯<!-- ⋯ --></mo> <mo>′</mo> </msup> </mrow> <mo>⏞<!-- ⏞ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mover> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(n)}={f^{(n-1)}}'=f^{\overbrace {''\cdots '} ^{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7be8887d1ad09eaf8934509d4fba402105b549d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.528ex; height:5.343ex;" alt="{\displaystyle f^{(n)}={f^{(n-1)}}'=f^{\overbrace {''\cdots '} ^{n}}}"></span>이다. 그렇지 않다면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(n)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(n)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9dfb1963ccde0e87eb3838f51dc19041e2ff3816" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.818ex; height:3.176ex;" alt="{\displaystyle f^{(n)}}"></span>는 정의되지 않는다. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>계 미분의 기호는 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(n)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(n)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9dfb1963ccde0e87eb3838f51dc19041e2ff3816" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.818ex; height:3.176ex;" alt="{\displaystyle f^{(n)}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D^{n}f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D^{n}f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e99b5ed4fe7fb8a37d4ceea918c0820722772063" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.421ex; height:2.676ex;" alt="{\displaystyle D^{n}f}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d^{n}f}{dx^{n}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d^{n}f}{dx^{n}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fe47b98f88eab92e3a02caa848a4f2583fa7a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:4.6ex; height:5.509ex;" alt="{\displaystyle {\frac {d^{n}f}{dx^{n}}}}"></span> 등등이다.</li> <li>...</li></ul> <p>이러한 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(n)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(n)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9dfb1963ccde0e87eb3838f51dc19041e2ff3816" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.818ex; height:3.176ex;" alt="{\displaystyle f^{(n)}}"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\geq 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>≥<!-- ≥ --></mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\geq 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73136e4a27fe39c123d16a7808e76d3162ce42bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.656ex; height:2.343ex;" alt="{\displaystyle n\geq 3}"></span>)을 통틀어 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>의 <b>고계 도함수</b> 또는 <b>고계 미분</b>라고 한다. </p><p>함수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon I\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:<!-- : --></mo> <mi>I</mi> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon I\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa91b80587ee863c353413b3919b8704ef799018" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.776ex; height:2.509ex;" alt="{\displaystyle f\colon I\to \mathbb {R} }"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>는 구간)가 도함수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/258eaada38956fb69b8cb1a2eef46bcb97d3126b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.005ex; height:2.843ex;" alt="{\displaystyle f'}"></span>를 가지며, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/258eaada38956fb69b8cb1a2eef46bcb97d3126b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.005ex; height:2.843ex;" alt="{\displaystyle f'}"></span>가 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>에서의 <a href="/wiki/%EC%97%B0%EC%86%8D_%ED%95%A8%EC%88%98" title="연속 함수">연속 함수</a>라면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>를 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>에서의 <b><a href="/wiki/%EC%97%B0%EC%86%8D_%EB%AF%B8%EB%B6%84_%EA%B0%80%EB%8A%A5_%ED%95%A8%EC%88%98" class="mw-redirect" title="연속 미분 가능 함수">연속 미분 가능 함수</a></b> 또는 <b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {C}}^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">C</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {C}}^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9791a5c97f2cf7a4a7ab3559dc4968fc60590fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.298ex; height:2.676ex;" alt="{\displaystyle {\mathcal {C}}^{1}}"></span> 함수</b>라고 한다. 보다 일반적으로, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>가 연속 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>계 도함수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(k)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(k)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f82710840b1339682b934240d2a019ebd856b2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.689ex; height:3.176ex;" alt="{\displaystyle f^{(k)}}"></span>를 가진다면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>를 <b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {C}}^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">C</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {C}}^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/119cdf8d90948dbf32e0db74eb837ba3ae4fa170" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.332ex; height:2.676ex;" alt="{\displaystyle {\mathcal {C}}^{k}}"></span> 함수</b>라고 한다. 또한, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>가 임의의 고계 도함수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(1)},f^{(2)},f^{(3)},\dots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>,</mo> <mo>…<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(1)},f^{(2)},f^{(3)},\dots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b893d28f4f6fdeb852d2ad4d016955c53301423e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.787ex; height:3.176ex;" alt="{\displaystyle f^{(1)},f^{(2)},f^{(3)},\dots }"></span>를 가진다면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>를 <b><a href="/wiki/%EB%A7%A4%EB%81%84%EB%9F%AC%EC%9A%B4_%ED%95%A8%EC%88%98" title="매끄러운 함수">매끄러운 함수</a></b> 또는 <b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {C}}^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">C</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {C}}^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5ed72bb2fb83c421d84887d252bbee98aa6eae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.119ex; height:2.343ex;" alt="{\displaystyle {\mathcal {C}}^{\infty }}"></span> 함수</b>라고 한다. 이보다 강한 개념인 <b><a href="/wiki/%ED%95%B4%EC%84%9D_%ED%95%A8%EC%88%98" title="해석 함수">해석 함수</a></b> 또는 <b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {C}}^{\omega }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">C</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>ω<!-- ω --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {C}}^{\omega }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd35a2c3b38fb1c394430ca384e2bb8fe3875cf4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.498ex; height:2.343ex;" alt="{\displaystyle {\mathcal {C}}^{\omega }}"></span> 함수</b>는 <a href="/wiki/%ED%85%8C%EC%9D%BC%EB%9F%AC_%EA%B8%89%EC%88%98" title="테일러 급수">테일러 급수</a>가 자기 자신으로 수렴하는 함수이다. 이 경우, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>계 도함수의 존재는 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {C}}^{k-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">C</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {C}}^{k-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8867a88166a57217525cc81b51ea5c3322ea2183" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.433ex; height:2.676ex;" alt="{\displaystyle {\mathcal {C}}^{k-1}}"></span> 함수보다 강하고 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {C}}^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">C</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {C}}^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/119cdf8d90948dbf32e0db74eb837ba3ae4fa170" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.332ex; height:2.676ex;" alt="{\displaystyle {\mathcal {C}}^{k}}"></span> 함수보다는 약한 조건이다. </p> <div class="mw-heading mw-heading2"><h2 id="표기"><span id=".ED.91.9C.EA.B8.B0"></span>표기</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=10" title="부분 편집: 표기"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="라이프니츠의_표기법"><span id=".EB.9D.BC.EC.9D.B4.ED.94.84.EB.8B.88.EC.B8.A0.EC.9D.98_.ED.91.9C.EA.B8.B0.EB.B2.95"></span>라이프니츠의 표기법</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=11" title="부분 편집: 라이프니츠의 표기법"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/%EA%B3%A0%ED%8A%B8%ED%94%84%EB%A6%AC%ED%8A%B8_%EB%B9%8C%ED%97%AC%EB%A6%84_%EB%9D%BC%EC%9D%B4%ED%94%84%EB%8B%88%EC%B8%A0" title="고트프리트 빌헬름 라이프니츠">고트프리트 빌헬름 라이프니츠</a>는 도함수를 미분 계수를 통해 표기하였다. 이 표기에서, 도함수의 표기는 다음 가운데 하나이다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dy}{dx}}={\frac {df}{dx}}={\frac {d}{dx}}f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dy}{dx}}={\frac {df}{dx}}={\frac {d}{dx}}f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25756dc4aef9c65c89f26fe9c8b1a91d2cc9c85f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:17.621ex; height:5.509ex;" alt="{\displaystyle {\frac {dy}{dx}}={\frac {df}{dx}}={\frac {d}{dx}}f}"></span></dd></dl> <p>또한, 점에서의 미분의 표기는 다음 가운데 하나이다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left.{\frac {df}{dx}}\right|_{x=a}={\frac {df}{dx}}(a)={\frac {d}{dx}}f(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>=</mo> <mi>a</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left.{\frac {df}{dx}}\right|_{x=a}={\frac {df}{dx}}(a)={\frac {d}{dx}}f(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eb0a7f5015e82150ca0e4704291b8dfc1609d35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:27.666ex; height:6.009ex;" alt="{\displaystyle \left.{\frac {df}{dx}}\right|_{x=a}={\frac {df}{dx}}(a)={\frac {d}{dx}}f(a)}"></span></dd></dl> <p>또한, 고계 도함수의 표기는 다음 가운데 하나이다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d^{n}y}{dx^{n}}}={\frac {d^{n}f}{dx^{n}}}={\frac {d^{n}}{dx^{n}}}f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d^{n}y}{dx^{n}}}={\frac {d^{n}f}{dx^{n}}}={\frac {d^{n}}{dx^{n}}}f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c66bcf28fce2542af31a0b013f04f08ef8899338" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:21.276ex; height:5.509ex;" alt="{\displaystyle {\frac {d^{n}y}{dx^{n}}}={\frac {d^{n}f}{dx^{n}}}={\frac {d^{n}}{dx^{n}}}f}"></span></dd></dl> <p>어떤 미분 법칙들은 라이프니츠 표기법으로 표기할 경우 더 기억하기 쉽다. 예를 들어, <a href="/wiki/%EC%97%B0%EC%87%84_%EB%B2%95%EC%B9%99" title="연쇄 법칙">연쇄 법칙</a>을 다음과 같이 표기할 수 있다.<sup id="cite_ref-마오_6-0" class="reference"><a href="#cite_note-마오-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:142–144</sup></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dy}{dx}}={\frac {dy}{du}}\cdot {\frac {du}{dx}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>u</mi> </mrow> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>u</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dy}{dx}}={\frac {dy}{du}}\cdot {\frac {du}{dx}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/955d845cb30bede7b50f3b9bef5e07e613e4373f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:14.923ex; height:5.509ex;" alt="{\displaystyle {\frac {dy}{dx}}={\frac {dy}{du}}\cdot {\frac {du}{dx}}}"></span></dd></dl> <p>기호 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c5eda9ec854eb0076d43c147eb8956637a1003f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.371ex; height:2.509ex;" alt="{\displaystyle dy}"></span>의 의미는 문맥에 따라 다를 수 있다. <a href="/wiki/%EB%AF%B8%EC%A0%81%EB%B6%84%ED%95%99" title="미적분학">미적분학</a>에서, 이는 <a href="/wiki/%EC%84%A0%ED%98%95_%EC%A3%BC%EC%9A%94_%EB%B6%80%EB%B6%84" class="mw-redirect" title="선형 주요 부분">선형 주요 부분</a>을 뜻한다. <a href="/wiki/%EB%B9%84%ED%91%9C%EC%A4%80_%ED%95%B4%EC%84%9D%ED%95%99" title="비표준 해석학">비표준 해석학</a>에서, 이는 일종의 무한소로 정의된다. <a href="/wiki/%EB%AF%B8%EB%B6%84%EA%B8%B0%ED%95%98%ED%95%99" title="미분기하학">미분기하학</a>에서, 이는 <a href="/wiki/%EC%99%B8%EB%AF%B8%EB%B6%84" class="mw-redirect" title="외미분">외미분</a>을 뜻한다. </p> <div class="mw-heading mw-heading3"><h3 id="라그랑주의_표기법"><span id=".EB.9D.BC.EA.B7.B8.EB.9E.91.EC.A3.BC.EC.9D.98_.ED.91.9C.EA.B8.B0.EB.B2.95"></span>라그랑주의 표기법</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=12" title="부분 편집: 라그랑주의 표기법"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/%EC%A1%B0%EC%A0%9C%ED%94%84%EB%A3%A8%EC%9D%B4_%EB%9D%BC%EA%B7%B8%EB%9E%91%EC%A3%BC" title="조제프루이 라그랑주">조제프루이 라그랑주</a>는 도함수를 함수 기호의 오른쪽 위에 <a href="/w/index.php?title=%ED%94%84%EB%9D%BC%EC%9E%84_%EB%B6%80%ED%98%B8&action=edit&redlink=1" class="new" title="프라임 부호 (없는 문서)">프라임 부호</a>를 써서 표기하였다. 즉, 도함수·이계 도함수·삼계 도함수·고계 도함수의 표기는 각각 다음과 같다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(1)}=f'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(1)}=f'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e3c667da899a35fe9be95e72e1ff223021d4cbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.758ex; height:3.176ex;" alt="{\displaystyle f^{(1)}=f'}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(2)}=f''}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mi>f</mi> <mo>″</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(2)}=f''}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4eb002b4f33f96e61dea5074092a75f446e28d51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.21ex; height:3.176ex;" alt="{\displaystyle f^{(2)}=f''}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(3)}=f'''}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mi>f</mi> <mo>‴</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(3)}=f'''}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8069e8f715d203f1785903d81905c4fb5c8f8627" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.663ex; height:3.176ex;" alt="{\displaystyle f^{(3)}=f'''}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(n)}=f{\overbrace {''{}^{\cdots }{'}} ^{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mrow> <msup> <mi></mi> <mo>″</mo> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>⋯<!-- ⋯ --></mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi></mi> <mo>′</mo> </msup> </mrow> </mrow> <mo>⏞<!-- ⏞ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(n)}=f{\overbrace {''{}^{\cdots }{'}} ^{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64c786101bb1a104dea798370ed2c7a97e2743aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.028ex; width:12.203ex; height:5.676ex;" alt="{\displaystyle f^{(n)}=f{\overbrace {''{}^{\cdots }{'}} ^{n}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="뉴턴의_표기법"><span id=".EB.89.B4.ED.84.B4.EC.9D.98_.ED.91.9C.EA.B8.B0.EB.B2.95"></span>뉴턴의 표기법</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=13" title="부분 편집: 뉴턴의 표기법"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/%EC%95%84%EC%9D%B4%EC%9E%91_%EB%89%B4%ED%84%B4" title="아이작 뉴턴">아이작 뉴턴</a>은 도함수를 함수 위에 점을 찍어 표기하였다. 즉, 일계·이계·삼계·사계·고계 도함수의 표기는 각각 다음과 같다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overset {\overset {1}{.}}{y}}={\dot {y}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mover> <mo>.</mo> <mn>1</mn> </mover> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overset {\overset {1}{.}}{y}}={\dot {y}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40f987e94afd9fdcae596b9252744158a1296f04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.556ex; height:4.176ex;" alt="{\displaystyle {\overset {\overset {1}{.}}{y}}={\dot {y}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overset {\overset {2}{.}}{y}}={\ddot {y}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mover> <mo>.</mo> <mn>2</mn> </mover> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo>¨<!-- ¨ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overset {\overset {2}{.}}{y}}={\ddot {y}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e74cb6914e60980429538189ae0e6d73e0cf70c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.556ex; height:4.176ex;" alt="{\displaystyle {\overset {\overset {2}{.}}{y}}={\ddot {y}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overset {\overset {3}{.}}{y}}={\overset {...}{y}}={\dot {\ddot {y}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mover> <mo>.</mo> <mn>3</mn> </mover> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mrow> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mrow> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo>¨<!-- ¨ --></mo> </mover> </mrow> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overset {\overset {3}{.}}{y}}={\overset {...}{y}}={\dot {\ddot {y}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43daef8196717e3a45deb8995b740b165b7ffd28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.037ex; height:4.176ex;" alt="{\displaystyle {\overset {\overset {3}{.}}{y}}={\overset {...}{y}}={\dot {\ddot {y}}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overset {\overset {4}{.}}{y}}={\overset {....}{y}}={\ddot {\ddot {y}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mover> <mo>.</mo> <mn>4</mn> </mover> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mrow> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mrow> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo>¨<!-- ¨ --></mo> </mover> </mrow> <mo>¨<!-- ¨ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overset {\overset {4}{.}}{y}}={\overset {....}{y}}={\ddot {\ddot {y}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8517b24989b01fae3f57ea1551a54511291aea16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.495ex; height:4.176ex;" alt="{\displaystyle {\overset {\overset {4}{.}}{y}}={\overset {....}{y}}={\ddot {\ddot {y}}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overset {\overset {n}{.}}{y}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mover> <mo>.</mo> <mi>n</mi> </mover> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overset {\overset {n}{.}}{y}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de210697e1ba31a8f4769da8790c7f5100bfb9b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:4.009ex;" alt="{\displaystyle {\overset {\overset {n}{.}}{y}}}"></span></dd></dl> <p>뉴턴의 표기법은 주로 <a href="/wiki/%EB%AC%BC%EB%A6%AC%ED%95%99" title="물리학">물리학</a>에서 시간 변수에 대한 미분을 표기하는 데 사용된다. 이는 고계 도함수를 나타내기 힘겨운 표기법이지만, 시간에 대한 미분은 보통 이계를 넘지 않는 편이다. </p> <div class="mw-heading mw-heading3"><h3 id="오일러의_표기법"><span id=".EC.98.A4.EC.9D.BC.EB.9F.AC.EC.9D.98_.ED.91.9C.EA.B8.B0.EB.B2.95"></span>오일러의 표기법</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=14" title="부분 편집: 오일러의 표기법"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/%EB%A0%88%EC%98%A8%ED%95%98%EB%A5%B4%ED%8A%B8_%EC%98%A4%EC%9D%BC%EB%9F%AC" title="레온하르트 오일러">레온하르트 오일러</a>는 도함수를 <a href="/wiki/%EB%AF%B8%EB%B6%84_%EC%97%B0%EC%82%B0%EC%9E%90" title="미분 연산자">미분 연산자</a>를 통해 표기하였다. 즉, 일계·고계 도함수의 표기는 각각 다음과 같다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Df}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Df}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/683279b8feba655b049a1c55f4bd9026218fcdb5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.203ex; height:2.509ex;" alt="{\displaystyle Df}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D^{n}f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D^{n}f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e99b5ed4fe7fb8a37d4ceea918c0820722772063" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.421ex; height:2.676ex;" alt="{\displaystyle D^{n}f}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="성질"><span id=".EC.84.B1.EC.A7.88"></span>성질</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=15" title="부분 편집: 성질"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="미분_가능성"><span id=".EB.AF.B8.EB.B6.84_.EA.B0.80.EB.8A.A5.EC.84.B1"></span>미분 가능성</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=16" title="부분 편집: 미분 가능성"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Right-continuous.svg" class="mw-file-description"><img alt="x≥0일 때 1, x<0일 때 -1을 함숫값으로 하는 함수의 그래프" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Right-continuous.svg/220px-Right-continuous.svg.png" decoding="async" width="220" height="183" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Right-continuous.svg/330px-Right-continuous.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Right-continuous.svg/440px-Right-continuous.svg.png 2x" data-file-width="180" data-file-height="150" /></a><figcaption>이 함수는 0을 도약 불연속점으로 하므로, 0에서 미분 가능하지 않다.</figcaption></figure> <p>미분 가능 함수는 항상 <a href="/wiki/%EC%97%B0%EC%86%8D_%ED%95%A8%EC%88%98" title="연속 함수">연속 함수</a>이다. (이는 연속 함수가 아니라면, 독립 변숫값이 0에 가까워질 때 함숫값이 0에 가까워지지 않으므로, 이 둘의 비가 유한한 값으로 수렴하지 못하기 때문이다.) 그러나 연속 함수는 미분 가능 함수가 아닐 수 있다. </p><p>열린구간 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>에 정의된 함수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon I\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:<!-- : --></mo> <mi>I</mi> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon I\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa91b80587ee863c353413b3919b8704ef799018" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.776ex; height:2.509ex;" alt="{\displaystyle f\colon I\to \mathbb {R} }"></span> 및 점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c06736171fb6cabbf6888f6c07cfc4630cd799ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.242ex; height:2.176ex;" alt="{\displaystyle a\in I}"></span>에 대하여, 다음 세 조건이 서로 동치이다. </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d98c61769b4906b6c0bd72f9de874410c7bf0d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.044ex; height:3.009ex;" alt="{\displaystyle f'(a)}"></span>가 존재한다. 즉, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>는 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>에서 미분 가능하다.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'_{+}(a)=f'_{-}(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'_{+}(a)=f'_{-}(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e01a25130dba88e31246b38618fbb549acb2e428" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.477ex; height:3.009ex;" alt="{\displaystyle f'_{+}(a)=f'_{-}(a)}"></span>. 즉, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>에서의 좌미분 및 우미분이 존재하며 서로 같다.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \limsup _{x\to a}{\frac {f(x)-f(a)}{x-a}}=\liminf _{x\to a}{\frac {f(x)-f(a)}{x-a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mi>a</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim inf</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mi>a</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \limsup _{x\to a}{\frac {f(x)-f(a)}{x-a}}=\liminf _{x\to a}{\frac {f(x)-f(a)}{x-a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9aaa04dfcfe757b147798449fc17cae0c9ddd25e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:42.084ex; height:6.176ex;" alt="{\displaystyle \limsup _{x\to a}{\frac {f(x)-f(a)}{x-a}}=\liminf _{x\to a}{\frac {f(x)-f(a)}{x-a}}}"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="간단한_미분_법칙"><span id=".EA.B0.84.EB.8B.A8.ED.95.9C_.EB.AF.B8.EB.B6.84_.EB.B2.95.EC.B9.99"></span>간단한 미분 법칙</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=17" title="부분 편집: 간단한 미분 법칙"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r34311305"><div role="note" class="hatnote navigation-not-searchable"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/18px-Icons8_flat_search.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/27px-Icons8_flat_search.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/36px-Icons8_flat_search.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span> <a href="/wiki/%EB%AF%B8%EB%B6%84_%EB%B2%95%EC%B9%99" class="mw-redirect" title="미분 법칙">미분 법칙</a> 문서를 참고하십시오.</div> <p>미분 가능 함수에 대하여, 다음과 같은 미분 법칙들이 성립한다. </p> <ul><li>(<a href="/wiki/%ED%95%A9_%EA%B7%9C%EC%B9%99" title="합 규칙">합의 법칙</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f(x)+g(x))'=f'(x)+g'(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f(x)+g(x))'=f'(x)+g'(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/495eb1abf4532cc99cbed028643fff67e8d19f8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.032ex; height:3.009ex;" alt="{\displaystyle (f(x)+g(x))'=f'(x)+g'(x)}"></span></li> <li>(<a href="/wiki/%EA%B3%B1_%EA%B7%9C%EC%B9%99" title="곱 규칙">곱의 법칙</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f(x)g(x))'=f'(x)g(x)+f(x)g'(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f(x)g(x))'=f'(x)g(x)+f(x)g'(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6e1be6b9bea662f212e987586fecb88f4cad28f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.864ex; height:3.009ex;" alt="{\displaystyle (f(x)g(x))'=f'(x)g(x)+f(x)g'(x)}"></span></li> <li>(<a href="/wiki/%EB%AA%AB%EC%9D%98_%EB%B2%95%EC%B9%99" class="mw-redirect" title="몫의 법칙">몫의 법칙</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\frac {f(x)}{g(x)}}\right)'={\frac {f'(x)g(x)-f(x)g'(x)}{g^{2}(x)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\frac {f(x)}{g(x)}}\right)'={\frac {f'(x)g(x)-f(x)g'(x)}{g^{2}(x)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2265d04d4c1055ee9129705eff37783da9dbce2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:34.893ex; height:6.676ex;" alt="{\displaystyle \left({\frac {f(x)}{g(x)}}\right)'={\frac {f'(x)g(x)-f(x)g'(x)}{g^{2}(x)}}}"></span></li> <li>(<a href="/wiki/%EC%97%B0%EC%87%84_%EB%B2%95%EC%B9%99" title="연쇄 법칙">연쇄 법칙</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f(g(x)))'=f'(g(x))g'(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f(g(x)))'=f'(g(x))g'(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a73837730e5341386e79b2293639f8672b1b80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.947ex; height:3.009ex;" alt="{\displaystyle (f(g(x)))'=f'(g(x))g'(x)}"></span></li> <li>(<a href="/wiki/%EC%97%AD%ED%95%A8%EC%88%98_%EC%A0%95%EB%A6%AC" title="역함수 정리">역함수 정리</a>) 만약 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>가 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0658ce0bb04657047a1d06c2ac51986a2a649af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.405ex; height:3.009ex;" alt="{\displaystyle f'(x)\neq 0}"></span>를 만족시킨다면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {f^{-1}}'(x)={\frac {1}{f'(f^{-1}(x))}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {f^{-1}}'(x)={\frac {1}{f'(f^{-1}(x))}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0791135b3e8868013be530fa514f5527ca0ebc8f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:22.018ex; height:6.009ex;" alt="{\displaystyle {f^{-1}}'(x)={\frac {1}{f'(f^{-1}(x))}}}"></span></li> <li>(<a href="/wiki/%EC%9D%8C%ED%95%A8%EC%88%98_%EC%A0%95%EB%A6%AC" title="음함수 정리">음함수 정리</a>) 만약 <a href="/wiki/%EC%9D%8C%ED%95%A8%EC%88%98" class="mw-redirect" title="음함수">음함수</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x,y)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(x,y)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c910dd64922e23f212bc46e970af0540811c48f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.33ex; height:2.843ex;" alt="{\displaystyle F(x,y)=0}"></span>가 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>가 연속 미분 가능 함수이며 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{y}\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{y}\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a932a4a478f68de76e3980a04c1341d42243561" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.805ex; height:2.843ex;" alt="{\displaystyle F_{y}\neq 0}"></span>임을 만족시킨다면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{x}=-{\frac {F_{x}(x,y)}{F_{y}(x,y)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{x}=-{\frac {F_{x}(x,y)}{F_{y}(x,y)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0db89a305227860c1c001bc2935f7b09c0638181" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:16.05ex; height:6.509ex;" alt="{\displaystyle y_{x}=-{\frac {F_{x}(x,y)}{F_{y}(x,y)}}}"></span></li> <li>만약 <a href="/wiki/%EB%A7%A4%EA%B0%9C_%EB%B3%80%EC%88%98_%ED%95%A8%EC%88%98" class="mw-redirect" title="매개 변수 함수">매개 변수 함수</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=x(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ae1e02df253e3adc6e5d080f37a40a5bc805320" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.407ex; height:2.843ex;" alt="{\displaystyle x=x(t)}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=y(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=y(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b87dc4cd066d2bdd5379752e0fd7133eb79c2f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.058ex; height:2.843ex;" alt="{\displaystyle y=y(t)}"></span>가 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d54c275db3a1e620737b58e143b0818107fa5f5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.979ex; height:2.843ex;" alt="{\displaystyle x(t)}"></span>와 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/397de1edef5bf2ee15c020f325d7d781a3aa7f50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.804ex; height:2.843ex;" alt="{\displaystyle y(t)}"></span>가 미분 가능 함수이며, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x'(t)\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x'(t)\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7814164216425d7ff1efe7ba6578e780e7205d76" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.924ex; height:3.009ex;" alt="{\displaystyle x'(t)\neq 0}"></span>임을 만족시킨다면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{x}={\frac {y'(t)}{x'(t)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{x}={\frac {y'(t)}{x'(t)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30ca146c8f1d55ff1911b4bb5595cb0c33bd1430" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:10.91ex; height:6.509ex;" alt="{\displaystyle y_{x}={\frac {y'(t)}{x'(t)}}}"></span></li> <li>만약 <a href="/wiki/%EA%B7%B9%EC%A2%8C%ED%91%9C" class="mw-redirect" title="극좌표">극좌표</a> 함수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=r(\theta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=r(\theta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/979c97f7e8c52e8ee26aa2e5ccd517cc76e31508" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.096ex; height:2.843ex;" alt="{\displaystyle r=r(\theta )}"></span>가 일정 조건을 만족시킨다면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{x}={\frac {\tan \theta +r(\theta )/r'(\theta )}{1-r(\theta )\tan \theta /r'(\theta )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> <mo>+</mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>r</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>r</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{x}={\frac {\tan \theta +r(\theta )/r'(\theta )}{1-r(\theta )\tan \theta /r'(\theta )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41dc2493793a4e75ad4f83d64141a5776aaba2ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:25.217ex; height:6.509ex;" alt="{\displaystyle y_{x}={\frac {\tan \theta +r(\theta )/r'(\theta )}{1-r(\theta )\tan \theta /r'(\theta )}}}"></span></li></ul> <p>라이프니츠 표기법을 사용하면 다음과 같다. </p> <ul><li>(<a href="/wiki/%ED%95%A9_%EA%B7%9C%EC%B9%99" title="합 규칙">합의 법칙</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d(f+g)}{dx}}={\frac {df}{dx}}+{\frac {dg}{dx}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo>+</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>g</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d(f+g)}{dx}}={\frac {df}{dx}}+{\frac {dg}{dx}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/367875a937dee9b186f93b7c5c0621901e742ce7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:21.799ex; height:5.843ex;" alt="{\displaystyle {\frac {d(f+g)}{dx}}={\frac {df}{dx}}+{\frac {dg}{dx}}}"></span></li> <li>(<a href="/wiki/%EA%B3%B1_%EA%B7%9C%EC%B9%99" title="곱 규칙">곱의 법칙</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d(fg)}{dx}}=g{\frac {df}{dx}}+f{\frac {dg}{dx}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mi>g</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>g</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d(fg)}{dx}}=g{\frac {df}{dx}}+f{\frac {dg}{dx}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e339acd0fe96c95a1c5eb91feccdd3913cad6dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:21.353ex; height:5.843ex;" alt="{\displaystyle {\frac {d(fg)}{dx}}=g{\frac {df}{dx}}+f{\frac {dg}{dx}}}"></span></li> <li>(<a href="/wiki/%EB%AA%AB%EC%9D%98_%EB%B2%95%EC%B9%99" class="mw-redirect" title="몫의 법칙">몫의 법칙</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dx}}{\frac {f}{g}}={\frac {1}{g^{2}}}\left(g{\frac {df}{dx}}-f{\frac {dg}{dx}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>f</mi> <mi>g</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>g</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dx}}{\frac {f}{g}}={\frac {1}{g^{2}}}\left(g{\frac {df}{dx}}-f{\frac {dg}{dx}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/112c88a8e238623acddf22228a422146a11af2d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:27.41ex; height:6.176ex;" alt="{\displaystyle {\frac {d}{dx}}{\frac {f}{g}}={\frac {1}{g^{2}}}\left(g{\frac {df}{dx}}-f{\frac {dg}{dx}}\right)}"></span></li> <li>(<a href="/wiki/%EC%97%B0%EC%87%84_%EB%B2%95%EC%B9%99" title="연쇄 법칙">연쇄 법칙</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dy}{dx}}={\frac {dy}{du}}{\frac {du}{dx}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>u</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>u</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dy}{dx}}={\frac {dy}{du}}{\frac {du}{dx}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acd600bb6b9c07b8fad75d62f0952f87c42ac220" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:13.244ex; height:5.509ex;" alt="{\displaystyle {\frac {dy}{dx}}={\frac {dy}{du}}{\frac {du}{dx}}}"></span></li> <li>(<a href="/wiki/%EC%97%AD%ED%95%A8%EC%88%98_%EC%A0%95%EB%A6%AC" title="역함수 정리">역함수 정리</a>) 만약 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>가 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dy}{dx}}\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dy}{dx}}\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b665a11fafe21c28c3cfe82546b6059004ca8448" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:7.643ex; height:5.509ex;" alt="{\displaystyle {\frac {dy}{dx}}\neq 0}"></span>를 만족시킨다면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dx}{dy}}=1{\bigg /}{\frac {dy}{dx}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>d</mi> <mi>y</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo fence="true" stretchy="true" symmetric="true" maxsize="2.047em" minsize="2.047em">/</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dx}{dy}}=1{\bigg /}{\frac {dy}{dx}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b4134a7fa12069335563836331d3ba7491807d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:13.45ex; height:6.176ex;" alt="{\displaystyle {\frac {dx}{dy}}=1{\bigg /}{\frac {dy}{dx}}}"></span></li> <li>(<a href="/wiki/%EC%9D%8C%ED%95%A8%EC%88%98_%EC%A0%95%EB%A6%AC" title="음함수 정리">음함수 정리</a>) 만약 <a href="/wiki/%EC%9D%8C%ED%95%A8%EC%88%98" class="mw-redirect" title="음함수">음함수</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x,y)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(x,y)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c910dd64922e23f212bc46e970af0540811c48f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.33ex; height:2.843ex;" alt="{\displaystyle F(x,y)=0}"></span>가 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>가 연속 미분 가능 함수이며 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{y}\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{y}\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a932a4a478f68de76e3980a04c1341d42243561" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.805ex; height:2.843ex;" alt="{\displaystyle F_{y}\neq 0}"></span>임을 만족시킨다면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dy}{dx}}=-{\frac {\partial F}{\partial x}}{\bigg /}{\frac {\partial F}{\partial y}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>F</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo fence="true" stretchy="true" symmetric="true" maxsize="2.047em" minsize="2.047em">/</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>F</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>y</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dy}{dx}}=-{\frac {\partial F}{\partial x}}{\bigg /}{\frac {\partial F}{\partial y}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2df3a74d8b3fe40fc697ea32e74d4d33667bb7c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:18.504ex; height:6.176ex;" alt="{\displaystyle {\frac {dy}{dx}}=-{\frac {\partial F}{\partial x}}{\bigg /}{\frac {\partial F}{\partial y}}}"></span></li> <li>만약 <a href="/wiki/%EB%A7%A4%EA%B0%9C_%EB%B3%80%EC%88%98_%ED%95%A8%EC%88%98" class="mw-redirect" title="매개 변수 함수">매개 변수 함수</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=x(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ae1e02df253e3adc6e5d080f37a40a5bc805320" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.407ex; height:2.843ex;" alt="{\displaystyle x=x(t)}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=y(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=y(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b87dc4cd066d2bdd5379752e0fd7133eb79c2f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.058ex; height:2.843ex;" alt="{\displaystyle y=y(t)}"></span>가 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d54c275db3a1e620737b58e143b0818107fa5f5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.979ex; height:2.843ex;" alt="{\displaystyle x(t)}"></span>와 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/397de1edef5bf2ee15c020f325d7d781a3aa7f50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.804ex; height:2.843ex;" alt="{\displaystyle y(t)}"></span>가 미분 가능 함수이며, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x'(t)\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x'(t)\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7814164216425d7ff1efe7ba6578e780e7205d76" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.924ex; height:3.009ex;" alt="{\displaystyle x'(t)\neq 0}"></span>임을 만족시킨다면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dy}{dx}}={\frac {dy}{dt}}{\bigg /}{\frac {dx}{dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo fence="true" stretchy="true" symmetric="true" maxsize="2.047em" minsize="2.047em">/</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dy}{dx}}={\frac {dy}{dt}}{\bigg /}{\frac {dx}{dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c6083ef2d9a479764e887c418e68720f87fd9a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:15.495ex; height:6.176ex;" alt="{\displaystyle {\frac {dy}{dx}}={\frac {dy}{dt}}{\bigg /}{\frac {dx}{dt}}}"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="단조성과의_관계"><span id=".EB.8B.A8.EC.A1.B0.EC.84.B1.EA.B3.BC.EC.9D.98_.EA.B4.80.EA.B3.84"></span>단조성과의 관계</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=18" title="부분 편집: 단조성과의 관계"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>함수의 일부 성질은 도함수 또는 고계 도함수를 통해 판정할 수 있다. 예를 들어, <a href="/wiki/%EB%8B%A8%EC%A1%B0_%ED%95%A8%EC%88%98" class="mw-redirect" title="단조 함수">단조성</a>과 도함수의 관계는 다음과 같다. </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon I\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:<!-- : --></mo> <mi>I</mi> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon I\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa91b80587ee863c353413b3919b8704ef799018" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.776ex; height:2.509ex;" alt="{\displaystyle f\colon I\to \mathbb {R} }"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>는 구간)가 미분 가능 함수라고 하자. <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>가 <a href="/wiki/%EC%A6%9D%EA%B0%80_%ED%95%A8%EC%88%98" class="mw-redirect" title="증가 함수">증가 함수</a>일 필요충분조건은 임의의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dec8caa8f241cb38a5348d7937b538227ad32c48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.342ex; height:2.176ex;" alt="{\displaystyle x\in I}"></span>에 대하여 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abca05edca49c1dd3adb220efd6ceae0199aae65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.405ex; height:3.009ex;" alt="{\displaystyle f'(x)\geq 0}"></span>인 것이다.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>가 <a href="/wiki/%EA%B0%90%EC%86%8C_%ED%95%A8%EC%88%98" class="mw-redirect" title="감소 함수">감소 함수</a>일 필요충분조건은 임의의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dec8caa8f241cb38a5348d7937b538227ad32c48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.342ex; height:2.176ex;" alt="{\displaystyle x\in I}"></span>에 대하여 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)\leq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)\leq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b17ae5e8dd871250489ce71320e984f322a72bf9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.405ex; height:3.009ex;" alt="{\displaystyle f'(x)\leq 0}"></span>인 것이다.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>가 <a href="/wiki/%EC%97%84%EA%B2%A9_%EC%A6%9D%EA%B0%80_%ED%95%A8%EC%88%98" class="mw-redirect" title="엄격 증가 함수">엄격 증가 함수</a>일 필요충분조건은 임의의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dec8caa8f241cb38a5348d7937b538227ad32c48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.342ex; height:2.176ex;" alt="{\displaystyle x\in I}"></span>에 대하여 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abca05edca49c1dd3adb220efd6ceae0199aae65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.405ex; height:3.009ex;" alt="{\displaystyle f'(x)\geq 0}"></span>이면서, 임의의 부분 구간 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J\subseteq I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo>⊆<!-- ⊆ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J\subseteq I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76ac10d0192d1da551ee96115a645f1faa4465de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.742ex; height:2.343ex;" alt="{\displaystyle J\subseteq I}"></span>에 대하여 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0658ce0bb04657047a1d06c2ac51986a2a649af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.405ex; height:3.009ex;" alt="{\displaystyle f'(x)\neq 0}"></span>인 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed6a5c38797dcd5ae51aab185c91dc738b5732d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.642ex; height:2.176ex;" alt="{\displaystyle x\in J}"></span>가 존재하는 것이다.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>가 <a href="/wiki/%EC%97%84%EA%B2%A9_%EA%B0%90%EC%86%8C_%ED%95%A8%EC%88%98" class="mw-redirect" title="엄격 감소 함수">엄격 감소 함수</a>일 필요충분조건은 임의의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dec8caa8f241cb38a5348d7937b538227ad32c48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.342ex; height:2.176ex;" alt="{\displaystyle x\in I}"></span>에 대하여 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)\leq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)\leq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b17ae5e8dd871250489ce71320e984f322a72bf9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.405ex; height:3.009ex;" alt="{\displaystyle f'(x)\leq 0}"></span>이면서, 임의의 부분 구간 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J\subseteq I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo>⊆<!-- ⊆ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J\subseteq I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76ac10d0192d1da551ee96115a645f1faa4465de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.742ex; height:2.343ex;" alt="{\displaystyle J\subseteq I}"></span>에 대하여 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0658ce0bb04657047a1d06c2ac51986a2a649af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.405ex; height:3.009ex;" alt="{\displaystyle f'(x)\neq 0}"></span>인 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed6a5c38797dcd5ae51aab185c91dc738b5732d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.642ex; height:2.176ex;" alt="{\displaystyle x\in J}"></span>가 존재하는 것이다.</li></ul></li></ul> <div class="mw-heading mw-heading3"><h3 id="극값과의_관계"><span id=".EA.B7.B9.EA.B0.92.EA.B3.BC.EC.9D.98_.EA.B4.80.EA.B3.84"></span>극값과의 관계</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=19" title="부분 편집: 극값과의 관계"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>또한, <a href="/wiki/%EA%B7%B9%EA%B0%92" title="극값">극값</a>과 도함수의 관계는 다음과 같다. </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon I\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:<!-- : --></mo> <mi>I</mi> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon I\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa91b80587ee863c353413b3919b8704ef799018" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.776ex; height:2.509ex;" alt="{\displaystyle f\colon I\to \mathbb {R} }"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>는 구간)가 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>에서 연속 함수, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I\setminus \{a\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo class="MJX-variant">∖<!-- ∖ --></mo> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I\setminus \{a\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e6d2a762cadcb7854f62b91788e078373f126f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.921ex; height:2.843ex;" alt="{\displaystyle I\setminus \{a\}}"></span>에서 미분 가능 함수라고 하자. <ul><li>만약 어떤 <a href="/wiki/%EB%B9%A0%EC%A7%84_%EA%B7%BC%EB%B0%A9" class="mw-redirect" title="빠진 근방">빠진 근방</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J\setminus \{a\}\subseteq I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo class="MJX-variant">∖<!-- ∖ --></mo> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mo fence="false" stretchy="false">}</mo> <mo>⊆<!-- ⊆ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J\setminus \{a\}\subseteq I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c443398ef42c60c2f7da2883bb66ef9fa0af904a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.491ex; height:2.843ex;" alt="{\displaystyle J\setminus \{a\}\subseteq I}"></span>의 임의의 점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in J\setminus \{a\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>J</mi> <mo class="MJX-variant">∖<!-- ∖ --></mo> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in J\setminus \{a\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4fa48dec6f76d84ca781d3335a8dc979f71d427" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.391ex; height:2.843ex;" alt="{\displaystyle x\in J\setminus \{a\}}"></span>에 대하여 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)(x-a)<0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo><</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)(x-a)<0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66d0d09d62d83b587ac0c38e066c94518bcfa847" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.614ex; height:3.009ex;" alt="{\displaystyle f'(x)(x-a)<0}"></span>라면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/368cb4b81ba5754d7a354a4ce49c2f1084bdaace" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.318ex; height:2.843ex;" alt="{\displaystyle f(a)}"></span>는 <a href="/wiki/%EC%97%84%EA%B2%A9_%EA%B7%B9%EB%8C%93%EA%B0%92" class="mw-redirect" title="엄격 극댓값">엄격 극댓값</a>이다.</li> <li>만약 어떤 빠진 근방 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J\setminus \{a\}\subseteq I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo class="MJX-variant">∖<!-- ∖ --></mo> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mo fence="false" stretchy="false">}</mo> <mo>⊆<!-- ⊆ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J\setminus \{a\}\subseteq I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c443398ef42c60c2f7da2883bb66ef9fa0af904a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.491ex; height:2.843ex;" alt="{\displaystyle J\setminus \{a\}\subseteq I}"></span>의 임의의 점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in J\setminus \{a\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>J</mi> <mo class="MJX-variant">∖<!-- ∖ --></mo> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in J\setminus \{a\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4fa48dec6f76d84ca781d3335a8dc979f71d427" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.391ex; height:2.843ex;" alt="{\displaystyle x\in J\setminus \{a\}}"></span>에 대하여 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)(x-a)>0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)(x-a)>0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10e60a16b3e5c19befe0e40650caef63fc1ae624" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.614ex; height:3.009ex;" alt="{\displaystyle f'(x)(x-a)>0}"></span>라면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/368cb4b81ba5754d7a354a4ce49c2f1084bdaace" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.318ex; height:2.843ex;" alt="{\displaystyle f(a)}"></span>는 <a href="/wiki/%EC%97%84%EA%B2%A9_%EA%B7%B9%EC%86%9F%EA%B0%92" class="mw-redirect" title="엄격 극솟값">엄격 극솟값</a>이다.</li></ul></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon I\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:<!-- : --></mo> <mi>I</mi> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon I\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa91b80587ee863c353413b3919b8704ef799018" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.776ex; height:2.509ex;" alt="{\displaystyle f\colon I\to \mathbb {R} }"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>는 구간)의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>계 도함수가 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>에서 존재하며, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0=f^{(1)}(a)=f^{(2)}(a)=\cdots =f^{(n-1)}(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>=</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>⋯<!-- ⋯ --></mo> <mo>=</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0=f^{(1)}(a)=f^{(2)}(a)=\cdots =f^{(n-1)}(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8bba578ea91910d4e3bb2ded32c8ab4685c01460" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.624ex; height:3.343ex;" alt="{\displaystyle 0=f^{(1)}(a)=f^{(2)}(a)=\cdots =f^{(n-1)}(a)}"></span>이라고 하자. <ul><li>만약 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>이 홀수이며 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(n)}(a)\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(n)}(a)\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3677fcf8eb4ed124010aff72b732cbfed81c9137" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.118ex; height:3.343ex;" alt="{\displaystyle f^{(n)}(a)\neq 0}"></span>이라면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/368cb4b81ba5754d7a354a4ce49c2f1084bdaace" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.318ex; height:2.843ex;" alt="{\displaystyle f(a)}"></span>는 극값이 아니다.</li> <li>만약 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>이 짝수이며 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(n)}(a)<0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo><</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(n)}(a)<0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2dfb72f19ec1d9fe959c2c079575d86d6be59123" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.118ex; height:3.343ex;" alt="{\displaystyle f^{(n)}(a)<0}"></span>이라면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/368cb4b81ba5754d7a354a4ce49c2f1084bdaace" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.318ex; height:2.843ex;" alt="{\displaystyle f(a)}"></span>는 엄격 극댓값이다.</li> <li>만약 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>이 짝수이며 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(n)}(a)>0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(n)}(a)>0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a50ffb251bb5008c2f08ebd83778e17d4d4fd1fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.118ex; height:3.343ex;" alt="{\displaystyle f^{(n)}(a)>0}"></span>이라면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/368cb4b81ba5754d7a354a4ce49c2f1084bdaace" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.318ex; height:2.843ex;" alt="{\displaystyle f(a)}"></span>는 엄격 극솟값이다.</li></ul></li></ul> <div class="mw-heading mw-heading3"><h3 id="볼록성과의_관계"><span id=".EB.B3.BC.EB.A1.9D.EC.84.B1.EA.B3.BC.EC.9D.98_.EA.B4.80.EA.B3.84"></span>볼록성과의 관계</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=20" title="부분 편집: 볼록성과의 관계"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>또한, <a href="/wiki/%EB%B3%BC%EB%A1%9D_%ED%95%A8%EC%88%98" title="볼록 함수">볼록성</a>과 도함수의 관계는 다음과 같다. </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon I\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:<!-- : --></mo> <mi>I</mi> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon I\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa91b80587ee863c353413b3919b8704ef799018" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.776ex; height:2.509ex;" alt="{\displaystyle f\colon I\to \mathbb {R} }"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>는 구간)가 임의의 함수라고 하자. <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>가 볼록 함수일 필요충분조건은 어디서나 좌미분과 우미분이 존재하며, 임의의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x<y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo><</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x<y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aeb239de6fee56ea8b6a65f7858d95b87632069f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.584ex; height:2.176ex;" alt="{\displaystyle x<y}"></span>에 대하여 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'_{-}(x)\leq f'_{+}(x)\leq f'_{-}(y)\leq f'_{+}(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'_{-}(x)\leq f'_{+}(x)\leq f'_{-}(y)\leq f'_{+}(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abed06c6f295469d4d2fb1d765056124460ccf50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:32.103ex; height:3.009ex;" alt="{\displaystyle f'_{-}(x)\leq f'_{+}(x)\leq f'_{-}(y)\leq f'_{+}(y)}"></span>인 것이다.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>가 <a href="/wiki/%EC%98%A4%EB%AA%A9_%ED%95%A8%EC%88%98" class="mw-redirect" title="오목 함수">오목 함수</a>일 필요충분조건은 어디서나 좌미분과 우미분이 존재하며, 임의의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x<y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo><</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x<y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aeb239de6fee56ea8b6a65f7858d95b87632069f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.584ex; height:2.176ex;" alt="{\displaystyle x<y}"></span>에 대하여 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'_{-}(x)\geq f'_{+}(x)\geq f'_{-}(y)\geq f'_{+}(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'_{-}(x)\geq f'_{+}(x)\geq f'_{-}(y)\geq f'_{+}(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef6c9c41160c69f43712ff1483971741915a172e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:32.103ex; height:3.009ex;" alt="{\displaystyle f'_{-}(x)\geq f'_{+}(x)\geq f'_{-}(y)\geq f'_{+}(y)}"></span>인 것이다.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>가 <a href="/wiki/%EC%97%84%EA%B2%A9_%EB%B3%BC%EB%A1%9D_%ED%95%A8%EC%88%98" class="mw-redirect" title="엄격 볼록 함수">엄격 볼록 함수</a>일 필요충분조건은 어디서나 좌미분과 우미분이 존재하며, 임의의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x<y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo><</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x<y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aeb239de6fee56ea8b6a65f7858d95b87632069f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.584ex; height:2.176ex;" alt="{\displaystyle x<y}"></span>에 대하여 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'_{-}(x)\leq f'_{+}(x)<f'_{-}(y)\leq f'_{+}(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo><</mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'_{-}(x)\leq f'_{+}(x)<f'_{-}(y)\leq f'_{+}(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec3544e7898db60c7e2c5df39f7aaf222cb8c31a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:32.103ex; height:3.009ex;" alt="{\displaystyle f'_{-}(x)\leq f'_{+}(x)<f'_{-}(y)\leq f'_{+}(y)}"></span>인 것이다.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>가 <a href="/wiki/%EC%97%84%EA%B2%A9_%EC%98%A4%EB%AA%A9_%ED%95%A8%EC%88%98" class="mw-redirect" title="엄격 오목 함수">엄격 오목 함수</a>일 필요충분조건은 어디서나 좌미분과 우미분이 존재하며, 임의의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x<y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo><</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x<y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aeb239de6fee56ea8b6a65f7858d95b87632069f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.584ex; height:2.176ex;" alt="{\displaystyle x<y}"></span>에 대하여 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'_{-}(x)\geq f'_{+}(x)>f'_{-}(y)\geq f'_{+}(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>></mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'_{-}(x)\geq f'_{+}(x)>f'_{-}(y)\geq f'_{+}(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fdd0b3ea9815787fc888c8556e5aa1f1d528022" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:32.103ex; height:3.009ex;" alt="{\displaystyle f'_{-}(x)\geq f'_{+}(x)>f'_{-}(y)\geq f'_{+}(y)}"></span>인 것이다.</li></ul></li></ul> <div class="mw-heading mw-heading3"><h3 id="기타"><span id=".EA.B8.B0.ED.83.80"></span>기타</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=21" title="부분 편집: 기타"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>도함수는 연속 함수가 아닐 수 있지만, 도함수는 충분히 좋은 성질들을 갖췄으며, 다음과 같다. </p> <ul><li>(<a href="/wiki/%EB%8B%A4%EB%A5%B4%EB%B6%80_%ED%95%A8%EC%88%98" title="다르부 함수">다르부 정리</a>) 도함수는 중간값 성질을 만족시킨다.</li> <li>도함수의 연속점은 조밀하다.</li> <li>어떤 함수가 만약 임의의 도함수의 왼쪽에 합성되었을 때 도함수가 된다면, 이 함수는 <a href="/wiki/%EC%9D%BC%EC%B0%A8_%ED%95%A8%EC%88%98" title="일차 함수">일차 함수</a>이다.</li></ul> <div class="mw-heading mw-heading2"><h2 id="예"><span id=".EC.98.88"></span>예</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=22" title="부분 편집: 예"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r34311305"><div role="note" class="hatnote navigation-not-searchable"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/18px-Icons8_flat_search.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/27px-Icons8_flat_search.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/36px-Icons8_flat_search.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span> <a href="/wiki/%EB%AF%B8%EB%B6%84%ED%91%9C" class="mw-redirect" title="미분표">미분표</a> 문서를 참고하십시오.</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Parabola2.svg" class="mw-file-description"><img alt="제곱 함수 f(x)=x^2" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/76/Parabola2.svg/220px-Parabola2.svg.png" decoding="async" width="220" height="243" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/76/Parabola2.svg/330px-Parabola2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/76/Parabola2.svg/440px-Parabola2.svg.png 2x" data-file-width="375" data-file-height="415" /></a><figcaption><a href="/wiki/%EC%A0%9C%EA%B3%B1" title="제곱">제곱</a> 함수의 그래프</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:WeierstrassFunction.svg" class="mw-file-description"><img alt="바이어슈트라스 함수의 그래프" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/60/WeierstrassFunction.svg/220px-WeierstrassFunction.svg.png" decoding="async" width="220" height="140" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/60/WeierstrassFunction.svg/330px-WeierstrassFunction.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/60/WeierstrassFunction.svg/440px-WeierstrassFunction.svg.png 2x" data-file-width="795" data-file-height="505" /></a><figcaption><a href="/wiki/%EB%B0%94%EC%9D%B4%EC%96%B4%EC%8A%88%ED%8A%B8%EB%9D%BC%EC%8A%A4_%ED%95%A8%EC%88%98" title="바이어슈트라스 함수">바이어슈트라스 함수</a>는 모든 점에서 연속이면서 모든 점에서 미분 불가능한 병적 함수의 예이다.</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Absolute_value.svg" class="mw-file-description"><img alt="절댓값 함수의 그래프" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6b/Absolute_value.svg/220px-Absolute_value.svg.png" decoding="async" width="220" height="147" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6b/Absolute_value.svg/330px-Absolute_value.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6b/Absolute_value.svg/440px-Absolute_value.svg.png 2x" data-file-width="600" data-file-height="400" /></a><figcaption><a href="/wiki/%EC%A0%88%EB%8C%93%EA%B0%92" title="절댓값">절댓값</a> 함수는 0을 지나는 직선 가운데 접선과 유사한 성질을 갖는 것들은 기울기가 [-1, 1]에 속하는 직선들이며, 이는 유일하지 않다.</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Cube-root_function.svg" class="mw-file-description"><img alt="세제곱근 함수의 그래프" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Cube-root_function.svg/220px-Cube-root_function.svg.png" decoding="async" width="220" height="186" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Cube-root_function.svg/330px-Cube-root_function.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/41/Cube-root_function.svg/440px-Cube-root_function.svg.png 2x" data-file-width="520" data-file-height="440" /></a><figcaption><a href="/wiki/%EC%84%B8%EC%A0%9C%EA%B3%B1%EA%B7%BC" title="세제곱근">세제곱근</a> 함수의 0에서의 접선은 기울기가 무한대인 수직선이다.</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:X_sin_1_over_x.svg" class="mw-file-description"><img alt="f(x)=xsin(1/x)의 그래프" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/X_sin_1_over_x.svg/220px-X_sin_1_over_x.svg.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/X_sin_1_over_x.svg/330px-X_sin_1_over_x.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3a/X_sin_1_over_x.svg/440px-X_sin_1_over_x.svg.png 2x" data-file-width="720" data-file-height="540" /></a><figcaption><i>f</i>(<i>x</i>) = <i>x</i>sin(1/<i>x</i>) (<i>x</i> ≠ 0); <i>f</i>(0) = 0와 같이 정의되는 함수의, 0을 지나는 할선의 기울기는 -1과 1 사이에서 심하게 요동친다.</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="정의를_통한_계산"><span id=".EC.A0.95.EC.9D.98.EB.A5.BC_.ED.86.B5.ED.95.9C_.EA.B3.84.EC.82.B0"></span>정의를 통한 계산</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=23" title="부분 편집: 정의를 통한 계산"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>함수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=x^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=x^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84ddac4ae10b1aa4a11741c79771a583419fb1fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.9ex; height:3.176ex;" alt="{\displaystyle f(x)=x^{2}}"></span>의 미분을 정의에 따라 계산하면 다음과 같다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f'(x)&=\lim _{\Delta x\to 0}{\frac {f(x+\Delta x)-f(x)}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {(x+\Delta x)^{2}-x^{2}}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {x^{2}+2x\Delta x+(\Delta x)^{2}-x^{2}}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {2x\Delta x+(\Delta x)^{2}}{\Delta x}}\\&=\lim _{\Delta x\to 0}(2x+\Delta x)\\&=2x\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>x</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>x</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mo stretchy="false">(</mo> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f'(x)&=\lim _{\Delta x\to 0}{\frac {f(x+\Delta x)-f(x)}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {(x+\Delta x)^{2}-x^{2}}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {x^{2}+2x\Delta x+(\Delta x)^{2}-x^{2}}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {2x\Delta x+(\Delta x)^{2}}{\Delta x}}\\&=\lim _{\Delta x\to 0}(2x+\Delta x)\\&=2x\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a82072817c63833a6f86273c97df7868c4afff45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -15.505ex; width:40.167ex; height:32.176ex;" alt="{\displaystyle {\begin{aligned}f'(x)&=\lim _{\Delta x\to 0}{\frac {f(x+\Delta x)-f(x)}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {(x+\Delta x)^{2}-x^{2}}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {x^{2}+2x\Delta x+(\Delta x)^{2}-x^{2}}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {2x\Delta x+(\Delta x)^{2}}{\Delta x}}\\&=\lim _{\Delta x\to 0}(2x+\Delta x)\\&=2x\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="초등_함수"><span id=".EC.B4.88.EB.93.B1_.ED.95.A8.EC.88.98"></span>초등 함수</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=24" title="부분 편집: 초등 함수"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>몇 가지 기본적인 실수 <a href="/wiki/%EC%B4%88%EB%93%B1_%ED%95%A8%EC%88%98" class="mw-redirect" title="초등 함수">초등 함수</a>의 (<a href="/wiki/%EC%9E%90%EC%97%B0_%EC%A0%95%EC%9D%98%EC%97%AD" class="mw-redirect" title="자연 정의역">자연 정의역</a>에서의) 미분은 다음과 같다. </p> <style data-mw-deduplicate="TemplateStyles:r34752755">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><div class="div-col"> <ul><li>(<a href="/wiki/%EC%83%81%EC%88%98_%ED%95%A8%EC%88%98" title="상수 함수">상수 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (C)'=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>C</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (C)'=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bdc4599fe82f4b476437b96ff11eb31f6ad9a21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.521ex; height:3.009ex;" alt="{\displaystyle (C)'=0}"></span></li> <li>(<a href="/wiki/%EB%A9%B1%ED%95%A8%EC%88%98" title="멱함수">멱함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x^{\alpha })'=\alpha x^{\alpha -1}\qquad (\alpha \in \mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mi>α<!-- α --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mspace width="2em" /> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x^{\alpha })'=\alpha x^{\alpha -1}\qquad (\alpha \in \mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2c175fc08dcf9d9d8de2831d02c25bd4940df62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.869ex; height:3.176ex;" alt="{\displaystyle (x^{\alpha })'=\alpha x^{\alpha -1}\qquad (\alpha \in \mathbb {R} )}"></span></li> <li>(<a href="/wiki/%EC%A7%80%EC%88%98_%ED%95%A8%EC%88%98" title="지수 함수">지수 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (e^{x})'=e^{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (e^{x})'=e^{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50a4d22233add55acb96aaa44951065db556b4ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.104ex; height:3.009ex;" alt="{\displaystyle (e^{x})'=e^{x}}"></span></li> <li>(<a href="/wiki/%EC%A7%80%EC%88%98_%ED%95%A8%EC%88%98" title="지수 함수">지수 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a^{x})'=a^{x}\ln a\qquad (a>0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mi>ln</mi> <mo>⁡<!-- --></mo> <mi>a</mi> <mspace width="2em" /> <mo stretchy="false">(</mo> <mi>a</mi> <mo>></mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a^{x})'=a^{x}\ln a\qquad (a>0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14e3f0faf12db3086f55135f79536d3752ad8070" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.286ex; height:3.009ex;" alt="{\displaystyle (a^{x})'=a^{x}\ln a\qquad (a>0)}"></span></li> <li>(<a href="/wiki/%EB%A1%9C%EA%B7%B8_%ED%95%A8%EC%88%98" class="mw-redirect" title="로그 함수">로그 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\ln x)'={\frac {1}{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\ln x)'={\frac {1}{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/189cac786f57ab6a12a34c4621923fc41aa8ca05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:11.414ex; height:5.176ex;" alt="{\displaystyle (\ln x)'={\frac {1}{x}}}"></span></li> <li>(<a href="/wiki/%EB%A1%9C%EA%B7%B8_%ED%95%A8%EC%88%98" class="mw-redirect" title="로그 함수">로그 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\log _{a}x)'={\frac {1}{x\ln a}}\qquad (a>0,\;a\neq 1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mi>ln</mi> <mo>⁡<!-- --></mo> <mi>a</mi> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mo stretchy="false">(</mo> <mi>a</mi> <mo>></mo> <mn>0</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mi>a</mi> <mo>≠<!-- ≠ --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\log _{a}x)'={\frac {1}{x\ln a}}\qquad (a>0,\;a\neq 1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4652074212a4a8bde9fc94b26d19a87e30b78be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:36.607ex; height:5.343ex;" alt="{\displaystyle (\log _{a}x)'={\frac {1}{x\ln a}}\qquad (a>0,\;a\neq 1)}"></span></li> <li>(<a href="/wiki/%EC%82%BC%EA%B0%81_%ED%95%A8%EC%88%98" title="삼각 함수">삼각 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\sin x)'=\cos x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\sin x)'=\cos x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be1c3642eba65ff3d1b953c65d5a34ab274025bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.993ex; height:3.009ex;" alt="{\displaystyle (\sin x)'=\cos x}"></span></li> <li>(<a href="/wiki/%EC%82%BC%EA%B0%81_%ED%95%A8%EC%88%98" title="삼각 함수">삼각 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\cos x)'=-\sin x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\cos x)'=-\sin x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af53dce9f55d9386fde4f9458b4057897f3564b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.188ex; height:3.009ex;" alt="{\displaystyle (\cos x)'=-\sin x}"></span></li> <li>(<a href="/wiki/%EC%82%BC%EA%B0%81_%ED%95%A8%EC%88%98" title="삼각 함수">삼각 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\tan x)'=\sec ^{2}x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <msup> <mi>sec</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\tan x)'=\sec ^{2}x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb025bd070c8754c6561337918b8ed801dffb59d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.421ex; height:3.176ex;" alt="{\displaystyle (\tan x)'=\sec ^{2}x}"></span></li> <li>(<a href="/wiki/%EC%82%BC%EA%B0%81_%ED%95%A8%EC%88%98" title="삼각 함수">삼각 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\cot x)'=-\csc ^{2}x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>cot</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <msup> <mi>csc</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\cot x)'=-\csc ^{2}x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aa527115a46928a16fb77f0ca79335d7d2aaf80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.356ex; height:3.176ex;" alt="{\displaystyle (\cot x)'=-\csc ^{2}x}"></span></li> <li>(<a href="/wiki/%EC%82%BC%EA%B0%81_%ED%95%A8%EC%88%98" title="삼각 함수">삼각 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\sec x)'=\sec x\tan x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>sec</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mi>sec</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\sec x)'=\sec x\tan x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/145371e1ee006e03a8cda2593c8e083c15623d91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.452ex; height:3.009ex;" alt="{\displaystyle (\sec x)'=\sec x\tan x}"></span></li> <li>(<a href="/wiki/%EC%82%BC%EA%B0%81_%ED%95%A8%EC%88%98" title="삼각 함수">삼각 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\csc x)'=-\csc x\cot x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>csc</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mi>csc</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mi>cot</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\csc x)'=-\csc x\cot x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/586f52ab9fec97e89e131ff87156a82c5c2d2f7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.387ex; height:3.009ex;" alt="{\displaystyle (\csc x)'=-\csc x\cot x}"></span></li> <li>(<a href="/wiki/%EC%97%AD%EC%82%BC%EA%B0%81_%ED%95%A8%EC%88%98" title="역삼각 함수">역삼각 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\arcsin x)'={\frac {1}{\sqrt {1-x^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>arcsin</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\arcsin x)'={\frac {1}{\sqrt {1-x^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/025af97698793b3046de007a0238edaa976802b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:22.818ex; height:6.509ex;" alt="{\displaystyle (\arcsin x)'={\frac {1}{\sqrt {1-x^{2}}}}}"></span></li> <li>(<a href="/wiki/%EC%97%AD%EC%82%BC%EA%B0%81_%ED%95%A8%EC%88%98" title="역삼각 함수">역삼각 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\arccos x)'=-{\frac {1}{\sqrt {1-x^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>arccos</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\arccos x)'=-{\frac {1}{\sqrt {1-x^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbc6e2e002dc4f0855904b462cb4778d145964ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:24.882ex; height:6.509ex;" alt="{\displaystyle (\arccos x)'=-{\frac {1}{\sqrt {1-x^{2}}}}}"></span></li> <li>(<a href="/wiki/%EC%97%AD%EC%82%BC%EA%B0%81_%ED%95%A8%EC%88%98" title="역삼각 함수">역삼각 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\arctan x)'={\frac {1}{1+x^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>arctan</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\arctan x)'={\frac {1}{1+x^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f820ba1580b9ffb560219911695faeb58ad1a2dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:20.998ex; height:5.676ex;" alt="{\displaystyle (\arctan x)'={\frac {1}{1+x^{2}}}}"></span></li> <li>(<a href="/wiki/%EC%97%AD%EC%82%BC%EA%B0%81_%ED%95%A8%EC%88%98" title="역삼각 함수">역삼각 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\operatorname {arccot} x)'=-{\frac {1}{1+x^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>arccot</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\operatorname {arccot} x)'=-{\frac {1}{1+x^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46da1e214292196608a70c37e75b3c5b5719d3a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:22.546ex; height:5.676ex;" alt="{\displaystyle (\operatorname {arccot} x)'=-{\frac {1}{1+x^{2}}}}"></span></li> <li>(<a href="/wiki/%EC%97%AD%EC%82%BC%EA%B0%81_%ED%95%A8%EC%88%98" title="역삼각 함수">역삼각 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\operatorname {arcsec} x)'={\frac {1}{|x|{\sqrt {x^{2}-1}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>arcsec</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\operatorname {arcsec} x)'={\frac {1}{|x|{\sqrt {x^{2}-1}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1189bda1fd73fa4fc8c78d8bd67fa0297ef532fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:25.567ex; height:6.509ex;" alt="{\displaystyle (\operatorname {arcsec} x)'={\frac {1}{|x|{\sqrt {x^{2}-1}}}}}"></span></li> <li>(<a href="/wiki/%EC%97%AD%EC%82%BC%EA%B0%81_%ED%95%A8%EC%88%98" title="역삼각 함수">역삼각 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\operatorname {arccsc} x)'=-{\frac {1}{|x|{\sqrt {x^{2}-1}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>arccsc</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\operatorname {arccsc} x)'=-{\frac {1}{|x|{\sqrt {x^{2}-1}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66017487c07dac02258db513abef876b0ae4bd62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:27.375ex; height:6.509ex;" alt="{\displaystyle (\operatorname {arccsc} x)'=-{\frac {1}{|x|{\sqrt {x^{2}-1}}}}}"></span></li> <li>(<a href="/wiki/%EC%8C%8D%EA%B3%A1%EC%84%A0_%ED%95%A8%EC%88%98" title="쌍곡선 함수">쌍곡선 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\sinh x)'=\cosh x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>sinh</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mi>cosh</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\sinh x)'=\cosh x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3dd3ed63c4f1073c96522699a05a01be2a3076f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.578ex; height:3.009ex;" alt="{\displaystyle (\sinh x)'=\cosh x}"></span></li> <li>(<a href="/wiki/%EC%8C%8D%EA%B3%A1%EC%84%A0_%ED%95%A8%EC%88%98" title="쌍곡선 함수">쌍곡선 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\cosh x)'=\sinh x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>cosh</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mi>sinh</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\cosh x)'=\sinh x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/852e949957b636f83fd4f3c98961b48cac77b806" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.578ex; height:3.009ex;" alt="{\displaystyle (\cosh x)'=\sinh x}"></span></li> <li>(<a href="/wiki/%EC%8C%8D%EA%B3%A1%EC%84%A0_%ED%95%A8%EC%88%98" title="쌍곡선 함수">쌍곡선 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\tanh x)'=\operatorname {sech} ^{2}x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>tanh</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <msup> <mi>sech</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\tanh x)'=\operatorname {sech} ^{2}x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83145976ad6706db47692bcc3026bb077d9c9ee9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.006ex; height:3.176ex;" alt="{\displaystyle (\tanh x)'=\operatorname {sech} ^{2}x}"></span></li> <li>(<a href="/wiki/%EC%8C%8D%EA%B3%A1%EC%84%A0_%ED%95%A8%EC%88%98" title="쌍곡선 함수">쌍곡선 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\coth x)'=-\operatorname {csch} ^{2}x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>coth</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <msup> <mi>csch</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\coth x)'=-\operatorname {csch} ^{2}x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39b39a78bd11ae4c5dd163d7d9738e1df0225689" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.941ex; height:3.176ex;" alt="{\displaystyle (\coth x)'=-\operatorname {csch} ^{2}x}"></span></li> <li>(<a href="/wiki/%EC%8C%8D%EA%B3%A1%EC%84%A0_%ED%95%A8%EC%88%98" title="쌍곡선 함수">쌍곡선 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\operatorname {sech} x)'=-\operatorname {sech} x\tanh x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>sech</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mi>sech</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mi>tanh</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\operatorname {sech} x)'=-\operatorname {sech} x\tanh x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32695473c5ee60fefb9bbb458e273dbccdb42b51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.524ex; height:3.009ex;" alt="{\displaystyle (\operatorname {sech} x)'=-\operatorname {sech} x\tanh x}"></span></li> <li>(<a href="/wiki/%EC%8C%8D%EA%B3%A1%EC%84%A0_%ED%95%A8%EC%88%98" title="쌍곡선 함수">쌍곡선 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\operatorname {csch} x)'=-\operatorname {csch} x\coth x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>csch</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mi>csch</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mi>coth</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\operatorname {csch} x)'=-\operatorname {csch} x\coth x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46263deac84ea6878b6e35cdd22573b576ab9d80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.264ex; height:3.009ex;" alt="{\displaystyle (\operatorname {csch} x)'=-\operatorname {csch} x\coth x}"></span></li> <li>(<a href="/wiki/%EC%97%AD%EC%8C%8D%EA%B3%A1%EC%84%A0_%ED%95%A8%EC%88%98" class="mw-redirect" title="역쌍곡선 함수">역쌍곡선 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\operatorname {arsinh} x)'={\frac {1}{\sqrt {x^{2}+1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>arsinh</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\operatorname {arsinh} x)'={\frac {1}{\sqrt {x^{2}+1}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/769870fa7251c8b2a5f30ddd27b2b8947ceab8f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:23.078ex; height:6.509ex;" alt="{\displaystyle (\operatorname {arsinh} x)'={\frac {1}{\sqrt {x^{2}+1}}}}"></span></li> <li>(<a href="/wiki/%EC%97%AD%EC%8C%8D%EA%B3%A1%EC%84%A0_%ED%95%A8%EC%88%98" class="mw-redirect" title="역쌍곡선 함수">역쌍곡선 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\operatorname {arcosh} x)'={\frac {1}{\sqrt {x^{2}-1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>arcosh</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\operatorname {arcosh} x)'={\frac {1}{\sqrt {x^{2}-1}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f5c60815063b941105edc82e273c73cf6157054" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:23.334ex; height:6.509ex;" alt="{\displaystyle (\operatorname {arcosh} x)'={\frac {1}{\sqrt {x^{2}-1}}}}"></span></li> <li>(<a href="/wiki/%EC%97%AD%EC%8C%8D%EA%B3%A1%EC%84%A0_%ED%95%A8%EC%88%98" class="mw-redirect" title="역쌍곡선 함수">역쌍곡선 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\operatorname {artanh} x)'={\frac {1}{1-x^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>artanh</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\operatorname {artanh} x)'={\frac {1}{1-x^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fa59a65532e8144d2a5ca4772c5b5153fe69a95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:21.258ex; height:5.676ex;" alt="{\displaystyle (\operatorname {artanh} x)'={\frac {1}{1-x^{2}}}}"></span></li> <li>(<a href="/wiki/%EC%97%AD%EC%8C%8D%EA%B3%A1%EC%84%A0_%ED%95%A8%EC%88%98" class="mw-redirect" title="역쌍곡선 함수">역쌍곡선 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\operatorname {arcoth} x)'={\frac {1}{1-x^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>arcoth</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\operatorname {arcoth} x)'={\frac {1}{1-x^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132ef126b86222b696f57fa610ffa9cc59bbaf0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:20.998ex; height:5.676ex;" alt="{\displaystyle (\operatorname {arcoth} x)'={\frac {1}{1-x^{2}}}}"></span></li> <li>(<a href="/wiki/%EC%97%AD%EC%8C%8D%EA%B3%A1%EC%84%A0_%ED%95%A8%EC%88%98" class="mw-redirect" title="역쌍곡선 함수">역쌍곡선 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\operatorname {arsech} x)'=-{\frac {1}{x{\sqrt {1-x^{2}}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>arsech</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\operatorname {arsech} x)'=-{\frac {1}{x{\sqrt {1-x^{2}}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc962f7fae8f51dbdb7b8d1218206936a69d9b5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:26.341ex; height:6.509ex;" alt="{\displaystyle (\operatorname {arsech} x)'=-{\frac {1}{x{\sqrt {1-x^{2}}}}}}"></span></li> <li>(<a href="/wiki/%EC%97%AD%EC%8C%8D%EA%B3%A1%EC%84%A0_%ED%95%A8%EC%88%98" class="mw-redirect" title="역쌍곡선 함수">역쌍곡선 함수</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\operatorname {arcsch} x)'=-{\frac {1}{|x|{\sqrt {1+x^{2}}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>arcsch</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\operatorname {arcsch} x)'=-{\frac {1}{|x|{\sqrt {1+x^{2}}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bb9757c16ea8cf454496f4d502ee1ae0bc0d679" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:27.635ex; height:6.509ex;" alt="{\displaystyle (\operatorname {arcsch} x)'=-{\frac {1}{|x|{\sqrt {1+x^{2}}}}}}"></span></li></ul> </div> <div class="mw-heading mw-heading3"><h3 id="미분_가능성_2"><span id=".EB.AF.B8.EB.B6.84_.EA.B0.80.EB.8A.A5.EC.84.B1_2"></span>미분 가능성</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=25" title="부분 편집: 미분 가능성"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/%EB%B0%94%EC%9D%B4%EC%96%B4%EC%8A%88%ED%8A%B8%EB%9D%BC%EC%8A%A4_%ED%95%A8%EC%88%98" title="바이어슈트라스 함수">바이어슈트라스 함수</a>는 <a href="/wiki/%EC%97%B0%EC%86%8D_%ED%95%A8%EC%88%98" title="연속 함수">연속 함수</a>이지만, 어디서도 미분 가능하지 않다. </p><p><a href="/wiki/%EC%A0%88%EB%8C%93%EA%B0%92" title="절댓값">절댓값</a> 함수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |x|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |x|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4eb41e5fd5dc37eaa1718dfbf4bc082edb991936" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.623ex; height:2.843ex;" alt="{\displaystyle |x|}"></span>는 <a href="/wiki/%EB%A6%BD%EC%8B%9C%EC%B8%A0_%EC%97%B0%EC%86%8D_%ED%95%A8%EC%88%98" title="립시츠 연속 함수">립시츠 연속 함수</a>이며, 0이 아닌 어디서나 미분 가능하지만, 0이 <a href="/w/index.php?title=%EC%B2%A8%EC%A0%90&action=edit&redlink=1" class="new" title="첨점 (없는 문서)">첨점</a>(좌미분과 우미분이 존재하지만 서로 다른 점)이므로 0에서 미분 가능하지 않다.<sup id="cite_ref-한상현_4-1" class="reference"><a href="#cite_note-한상현-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:217–218</sup></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (|x|)'=\operatorname {sgn} x\qquad (x\neq 0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mi>sgn</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mspace width="2em" /> <mo stretchy="false">(</mo> <mi>x</mi> <mo>≠<!-- ≠ --></mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (|x|)'=\operatorname {sgn} x\qquad (x\neq 0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a019d63ac83fe4268ad04ecb1af57683b53d80b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.349ex; height:3.009ex;" alt="{\displaystyle (|x|)'=\operatorname {sgn} x\qquad (x\neq 0)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (|x|)'_{+}|_{x=0}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mo>′</mo> </msubsup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (|x|)'_{+}|_{x=0}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cac4a9bd0f3f5b54268302ae800889d7adead7bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.124ex; height:3.009ex;" alt="{\displaystyle (|x|)'_{+}|_{x=0}=1}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (|x|)'_{-}|_{x=0}=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> <mo>′</mo> </msubsup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (|x|)'_{-}|_{x=0}=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90191632fb1a53cc690aacbaac147111d24b0ff1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.932ex; height:3.009ex;" alt="{\displaystyle (|x|)'_{-}|_{x=0}=-1}"></span></dd></dl> <p><a href="/wiki/%EC%84%B8%EC%A0%9C%EA%B3%B1%EA%B7%BC" title="세제곱근">세제곱근</a> 함수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{3}]{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{3}]{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a55f866116e7a86823816615dd98fcccde75473" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.266ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{3}]{x}}}"></span>는 연속 함수이며, 0이 아닌 어디서나 미분 가능하지만, 0에서 수직선 접선을 가지므로 미분 가능하지 않다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\sqrt[{3}]{x}})'={\begin{cases}{\frac {1}{3{\sqrt[{3}]{x^{2}}}}}&x\neq 0\\\infty &x=0\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mroot> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi>x</mi> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mtd> <mtd> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\sqrt[{3}]{x}})'={\begin{cases}{\frac {1}{3{\sqrt[{3}]{x^{2}}}}}&x\neq 0\\\infty &x=0\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/758afc3e579bac7937f393ded46d4018ef6b84d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:24.469ex; height:7.509ex;" alt="{\displaystyle ({\sqrt[{3}]{x}})'={\begin{cases}{\frac {1}{3{\sqrt[{3}]{x^{2}}}}}&x\neq 0\\\infty &x=0\end{cases}}}"></span></dd></dl> <p>함수 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{cases}x\sin {\frac {1}{x}}&x\neq 0\\0&x=0\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>x</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> </mtd> <mtd> <mi>x</mi> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{cases}x\sin {\frac {1}{x}}&x\neq 0\\0&x=0\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff7982e45bbcc07514cd1679f88bb97ef96c34fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:17.144ex; height:6.176ex;" alt="{\displaystyle {\begin{cases}x\sin {\frac {1}{x}}&x\neq 0\\0&x=0\end{cases}}}"></span></dd></dl> <p>는 연속 함수이며, 0이 아닌 어디서나 미분 가능하지만, 극한 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{x\to 0}{\frac {x\sin {\frac {1}{x}}-0}{x-0}}=\lim _{x\to 0}\sin {\frac {1}{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mo>−<!-- − --></mo> <mn>0</mn> </mrow> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mn>0</mn> </mrow> </mfrac> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{x\to 0}{\frac {x\sin {\frac {1}{x}}-0}{x-0}}=\lim _{x\to 0}\sin {\frac {1}{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1feb9a243c84bc3257c520b4ac241a4f110a96a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:27.667ex; height:6.343ex;" alt="{\displaystyle \lim _{x\to 0}{\frac {x\sin {\frac {1}{x}}-0}{x-0}}=\lim _{x\to 0}\sin {\frac {1}{x}}}"></span></dd></dl> <p>가 존재하지 않으므로 0에서 미분 가능하지 않다. </p><p>미분 가능 함수가 아닌 절대 연속 함수와 모든 부분 구간에서 단조 함수가 아닌 미분 가능 함수가 존재한다. </p> <div class="mw-heading mw-heading2"><h2 id="응용"><span id=".EC.9D.91.EC.9A.A9"></span>응용</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=26" title="부분 편집: 응용"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>미분은 <a href="/wiki/%EC%B5%9C%EC%A0%81%ED%99%94" class="mw-disambig" title="최적화">최적화</a>(<a href="/wiki/%EB%B3%80%EB%B6%84%EB%B2%95" title="변분법">변분법</a>)·<a href="/wiki/%EB%AF%B8%EB%B6%84_%EB%B0%A9%EC%A0%95%EC%8B%9D" class="mw-redirect" title="미분 방정식">미분 방정식</a>·<a href="/wiki/%ED%85%8C%EC%9D%BC%EB%9F%AC_%EA%B8%89%EC%88%98" title="테일러 급수">테일러 급수</a>에서 응용된다. </p> <div class="mw-heading mw-heading2"><h2 id="일반화"><span id=".EC.9D.BC.EB.B0.98.ED.99.94"></span>일반화</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=27" title="부분 편집: 일반화"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="다변수_벡터_함수의_경우"><span id=".EB.8B.A4.EB.B3.80.EC.88.98_.EB.B2.A1.ED.84.B0_.ED.95.A8.EC.88.98.EC.9D.98_.EA.B2.BD.EC.9A.B0"></span>다변수 벡터 함수의 경우</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=28" title="부분 편집: 다변수 벡터 함수의 경우"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>일변수 실숫값 함수의 미분의 개념을 일반화하여 다변수 벡터 함수의 <a href="/wiki/%ED%8E%B8%EB%AF%B8%EB%B6%84" title="편미분">편미분</a>·<a href="/wiki/%EC%A0%84%EB%AF%B8%EB%B6%84" title="전미분">전미분</a>·<a href="/wiki/%EA%B8%B0%EC%9A%B8%EA%B8%B0_(%EB%B2%A1%ED%84%B0)" title="기울기 (벡터)">기울기</a>·<a href="/wiki/%ED%97%A4%EC%84%B8_%ED%96%89%EB%A0%AC" title="헤세 행렬">헤세 행렬</a>·<a href="/wiki/%EC%95%BC%EC%BD%94%EB%B9%84_%ED%96%89%EB%A0%AC" title="야코비 행렬">야코비 행렬</a>의 개념을 얻을 수 있다. </p> <div class="mw-heading mw-heading3"><h3 id="바나흐_공간_사이의_함수의_경우"><span id=".EB.B0.94.EB.82.98.ED.9D.90_.EA.B3.B5.EA.B0.84_.EC.82.AC.EC.9D.B4.EC.9D.98_.ED.95.A8.EC.88.98.EC.9D.98_.EA.B2.BD.EC.9A.B0"></span>바나흐 공간 사이의 함수의 경우</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=29" title="부분 편집: 바나흐 공간 사이의 함수의 경우"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/%EB%B0%94%EB%82%98%ED%9D%90_%EA%B3%B5%EA%B0%84" title="바나흐 공간">바나흐 공간</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V,W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>,</mo> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V,W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a40b0deabeee6e15bff1e3079b601986d8fe337" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.256ex; height:2.509ex;" alt="{\displaystyle V,W}"></span>에 대하여, 함수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon U\to W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:<!-- : --></mo> <mi>U</mi> <mo stretchy="false">→<!-- → --></mo> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon U\to W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13250de7b397a569a487197b140398c827d44aab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.144ex; height:2.509ex;" alt="{\displaystyle f\colon U\to W}"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U\subseteq V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>⊆<!-- ⊆ --></mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U\subseteq V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7720f1387a2e51d58daf1fb9e9b1b730430b8466" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.668ex; height:2.343ex;" alt="{\displaystyle U\subseteq V}"></span>는 <a href="/wiki/%EC%97%B4%EB%A6%B0%EC%A7%91%ED%95%A9" title="열린집합">열린집합</a>)의 점 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\in U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>∈<!-- ∈ --></mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\in U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd1991ea9cb2ab076462a5538242321f0d0ee991" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.853ex; height:2.176ex;" alt="{\displaystyle a\in U}"></span>에서의 <b><a href="/wiki/%ED%94%84%EB%A0%88%EC%85%B0_%EB%8F%84%ED%95%A8%EC%88%98" title="프레셰 도함수">프레셰 도함수</a></b>는 다음 조건을 만족시키는 <a href="/wiki/%EC%97%B0%EC%86%8D_%ED%95%A8%EC%88%98" title="연속 함수">연속</a> <a href="/wiki/%EC%84%A0%ED%98%95_%EB%B3%80%ED%99%98" title="선형 변환">선형 변환</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{a}f\colon V\to W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mi>f</mi> <mo>:<!-- : --></mo> <mi>V</mi> <mo stretchy="false">→<!-- → --></mo> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{a}f\colon V\to W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c1337b6381d7b13521ccbeeac375ec1fcb5ded7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.175ex; height:2.509ex;" alt="{\displaystyle D_{a}f\colon V\to W}"></span>이다.<sup id="cite_ref-Cartan_7-0" class="reference"><a href="#cite_note-Cartan-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{x\to a}{\frac {\Vert f(x)-f(a)-D_{a}f(x-a)\Vert }{\Vert x-a\Vert }}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mi>a</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> </mrow> <mrow> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{x\to a}{\frac {\Vert f(x)-f(a)-D_{a}f(x-a)\Vert }{\Vert x-a\Vert }}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cbedbeeea7f0107cc117e40f024c0de4e7507ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:37.192ex; height:6.509ex;" alt="{\displaystyle \lim _{x\to a}{\frac {\Vert f(x)-f(a)-D_{a}f(x-a)\Vert }{\Vert x-a\Vert }}=0}"></span></dd></dl> <p>이러한 연속 선형 변환 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{a}f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{a}f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/044f3166ed43083066b8ff2d0983fbf795bd8dcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.305ex; height:2.509ex;" alt="{\displaystyle D_{a}f}"></span>는 존재하지 않을 수 있으며, 존재한다면 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>를 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>에서 <b><a href="/wiki/%ED%94%84%EB%A0%88%EC%85%B0_%EB%AF%B8%EB%B6%84_%EA%B0%80%EB%8A%A5" class="mw-redirect" title="프레셰 미분 가능">프레셰 미분 가능</a></b>하다고 한다. 특히, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V=\mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V=\mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63d897bc226139b01f3467c554249c117a944f4a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.564ex; height:2.176ex;" alt="{\displaystyle V=\mathbb {R} }"></span>가 실수선이며, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span>가 <a href="/wiki/%EC%8B%A4%EC%88%98_%EB%B0%94%EB%82%98%ED%9D%90_%EA%B3%B5%EA%B0%84" class="mw-redirect" title="실수 바나흐 공간">실수 바나흐 공간</a>인 경우, 다음 두 조건이 서로 동치이다.<sup id="cite_ref-Cartan_7-1" class="reference"><a href="#cite_note-Cartan-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>는 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>에서 프레셰 미분 가능하다.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(a)=\lim _{x\to a}{\frac {f(x)-f(a)}{x-a}}\in W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mi>a</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> </mrow> </mfrac> </mrow> <mo>∈<!-- ∈ --></mo> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(a)=\lim _{x\to a}{\frac {f(x)-f(a)}{x-a}}\in W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bba83c973b15bba73d4d3e77f56d4bcfe9876c93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:29.671ex; height:5.843ex;" alt="{\displaystyle f'(a)=\lim _{x\to a}{\frac {f(x)-f(a)}{x-a}}\in W}"></span>가 존재한다.</li></ul> <p>또한, 이 경우 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>에서의 프레셰 도함수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{a}f\colon \mathbb {R} \to W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mi>f</mi> <mo>:<!-- : --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">→<!-- → --></mo> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{a}f\colon \mathbb {R} \to W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf685636ba1090390e848b4ff7588627ec82222d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.066ex; height:2.509ex;" alt="{\displaystyle D_{a}f\colon \mathbb {R} \to W}"></span>은 다음과 같다.<sup id="cite_ref-Cartan_7-2" class="reference"><a href="#cite_note-Cartan-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{a}f(\Delta x)=\Delta xf'(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{a}f(\Delta x)=\Delta xf'(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5edc112c1185c19bb20a5b611f692444f7a8e306" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.788ex; height:3.009ex;" alt="{\displaystyle D_{a}f(\Delta x)=\Delta xf'(a)}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="기타_2"><span id=".EA.B8.B0.ED.83.80_2"></span>기타</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=30" title="부분 편집: 기타"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>그 밖의 미분의 일반화에는 <a href="/wiki/%EB%AF%B8%EB%B6%84_%EC%97%B0%EC%82%B0%EC%9E%90" title="미분 연산자">미분 연산자</a>·<a href="/wiki/%EB%AF%B8%EB%B6%84_%EB%8C%80%EC%88%98" title="미분 대수">미분 대수</a>·두 <a href="/wiki/%EB%A7%A4%EB%81%84%EB%9F%AC%EC%9A%B4_%EB%8B%A4%EC%96%91%EC%B2%B4" title="매끄러운 다양체">매끄러운 다양체</a> 사이의 미분 가능 함수 따위가 있다. 주로 볼록 함수에 대해서 <a href="/wiki/%ED%95%98%EB%B0%A9%EB%AF%B8%EB%B6%84" title="하방미분">하방미분</a>이라는 일반화 방법이 있다. </p> <div class="mw-heading mw-heading2"><h2 id="역사"><span id=".EC.97.AD.EC.82.AC"></span>역사</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=31" title="부분 편집: 역사"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:NewtonIteration_Ani.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e0/NewtonIteration_Ani.gif/220px-NewtonIteration_Ani.gif" decoding="async" width="220" height="157" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e0/NewtonIteration_Ani.gif/330px-NewtonIteration_Ani.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e0/NewtonIteration_Ani.gif/440px-NewtonIteration_Ani.gif 2x" data-file-width="673" data-file-height="480" /></a><figcaption>뉴턴은 변화량의 순간변화율이 곡선의 접선과 같다는 점을 발견하였다.</figcaption></figure> <p><a href="/wiki/%EB%AF%B8%EB%B6%84%EC%A0%81%EB%B6%84%ED%95%99" class="mw-redirect" title="미분적분학">미분적분학</a>은 고대로 거슬러 올라간다. 대표적으로 <a href="/wiki/%ED%81%AC%EB%8B%88%EB%8F%84%EC%8A%A4%EC%9D%98_%EC%97%90%EC%9A%B0%EB%8F%85%EC%86%8C%EC%8A%A4" class="mw-redirect" title="크니도스의 에우독소스">크니도스의 에우독소스</a>와 <a href="/wiki/%EA%B3%A0%EB%8C%80_%EA%B7%B8%EB%A6%AC%EC%8A%A4" title="고대 그리스">고대 그리스</a>의 <a href="/wiki/%EC%95%84%EB%A5%B4%ED%82%A4%EB%A9%94%EB%8D%B0%EC%8A%A4" title="아르키메데스">아르키메데스</a>, 중국의 <a href="/wiki/%EC%9C%A0%ED%9C%98" title="유휘">유휘</a> 등이 있다. 고대 수학자들은 대상을 잘게 나눠서 더하는 과정을 극한으로 하여 무한대와 무한소를 고려하며 <a href="/wiki/%EC%9B%90%EC%A3%BC%EC%9C%A8" title="원주율">원주율</a>을 구하고 <a href="/wiki/%EA%B5%AC_(%EA%B8%B0%ED%95%98%ED%95%99)" title="구 (기하학)">구</a>와 <a href="/wiki/%EC%9B%90%EA%B8%B0%EB%91%A5" title="원기둥">원기둥</a>의 <a href="/wiki/%EB%B6%80%ED%94%BC" title="부피">부피</a>를 계산하였다.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> 14세기 인도 수학자 마다바(Mādhava of Sañgamāgrama)와 <a href="/wiki/%EC%BC%80%EB%9E%84%EB%9D%BC_%EC%A3%BC" class="mw-redirect" title="케랄라 주">케랄라</a> 학파(Kerala school of astronomy and mathematics)가 <a href="/wiki/%ED%85%8C%EC%9D%BC%EB%9F%AC_%EA%B8%89%EC%88%98" title="테일러 급수">테일러 급수</a>, 무한급수의 근사법, 수렴에 대한 적분판정법, 미분의 초기형태, 비선형 방정식 풀이를 위한 방법, 곡선 아래부분이 차지하는 넓이가 적분값과 같다는 이론 등 미적분을 위한 많은 요소들을 기술하였다. 17세기 프랑스 수학자 <a href="/wiki/%ED%94%BC%EC%97%90%EB%A5%B4_%EB%93%9C_%ED%8E%98%EB%A5%B4%EB%A7%88" title="피에르 드 페르마">피에르 드 페르마</a>는 무한소를 다루는 adequality 개념을 도입하여, 함수의 미분을 하였고, 미분해서 함수의 극대와 극소를 찾는 법을 만들었다. <a href="/wiki/%EC%9D%B4%ED%83%88%EB%A6%AC%EC%95%84" title="이탈리아">이탈리아</a>의 수학자 <a href="/wiki/%EC%97%90%EB%B0%98%EC%A0%A4%EB%A6%AC%EC%8A%A4%ED%83%80_%ED%86%A0%EB%A6%AC%EC%B2%BC%EB%A6%AC" title="에반젤리스타 토리첼리">에반젤리스타 토리첼리</a>는 무한소의 개념(무한히 작은 단위량)을 도입하여 <a href="/wiki/%ED%8F%AC%EB%AC%BC%EC%84%A0" title="포물선">포물선</a> 일부 구간의 면적을 구하는 방법을 정리하였다. 또한 거리와 속도의 관계를 밝혔고 넓이를 구하는 문제가 접선을 구하는 문제와 역관계가 있다는 것을 밝혔다.<sup id="cite_ref-이광연_9-0" class="reference"><a href="#cite_note-이광연-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:69–70</sup></span> </p><p>이후 아일랜드 수학자 <a href="/wiki/%EC%A0%9C%EC%9E%84%EC%8A%A4_%EA%B7%B8%EB%A0%88%EA%B3%A0%EB%A6%AC" title="제임스 그레고리">제임스 그레고리</a>(James Gregory)가 미적분학의 핵심 정리인 <a href="/wiki/%EB%AF%B8%EC%A0%81%EB%B6%84%ED%95%99_%EA%B8%B0%EB%B3%B8%EC%A0%95%EB%A6%AC" class="mw-redirect" title="미적분학 기본정리">미적분학 기본정리</a>의 증명을 출판하였으며, 영국 수학자 <a href="/w/index.php?title=%EC%95%84%EC%9D%B4%EC%9E%91_%EB%B0%B0%EB%A1%9C&action=edit&redlink=1" class="new" title="아이작 배로 (없는 문서)">아이작 배로</a>(Issac Barrow)가 좀 더 일반적인 경우를 증명하였다. 무한소 미적분과 유한차 미적분의 결합은 두 번째 <a href="/wiki/%EB%AF%B8%EC%A0%81%EB%B6%84%ED%95%99_%EA%B8%B0%EB%B3%B8%EC%A0%95%EB%A6%AC" class="mw-redirect" title="미적분학 기본정리">미적분학 기본정리</a>가 증명되고 2년이 지나서 <a href="/wiki/%EC%A1%B4_%EC%9B%94%EB%A6%AC%EC%8A%A4" title="존 월리스">존 월리스</a>(John Wallis), <a href="/w/index.php?title=%EC%95%84%EC%9D%B4%EC%9E%91_%EB%B0%B0%EB%A1%9C&action=edit&redlink=1" class="new" title="아이작 배로 (없는 문서)">아이작 배로</a>(Issac Barrow)와 <a href="/wiki/%EC%A0%9C%EC%9E%84%EC%8A%A4_%EA%B7%B8%EB%A0%88%EA%B3%A0%EB%A6%AC" title="제임스 그레고리">제임스 그레고리</a>(James Gregory)에 의해 1670년경에 완성됐다. </p><p><a href="/wiki/%EC%95%84%EC%9D%B4%EC%9E%91_%EB%89%B4%ED%84%B4" title="아이작 뉴턴">아이작 뉴턴</a>과 <a href="/wiki/%EB%9D%BC%EC%9D%B4%ED%94%84%EB%8B%88%EC%B8%A0" class="mw-redirect" title="라이프니츠">라이프니츠</a>는 각각 독자적인 방법으로 <a href="/wiki/%EB%AF%B8%EB%B6%84%EC%A0%81%EB%B6%84%ED%95%99" class="mw-redirect" title="미분적분학">미분적분학</a>에 기여하였다. 뉴턴은 기하학을 바탕으로 순간적인 변화량을 구하는 방법을 유율법(<span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">fluxion</span>)이라고 불렀다. 뉴턴은 유율법을 곡선에 대한 접선과 곡률의 견지에서 파악하였다. 뉴턴은 1687년 《자연 철학의 수학적 원리》에 유율법을 발표하였다. 한편, 라이프니츠는 함수 f(x)에서 x가 무한히 작은 증분인 미분(<span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">differential</span>)의 변화량을 가질 때 f(x)의 변화량을 구하는 방법으로서 미분을 하였다. 라이프니츠는 1677년 무렵에는 미분의 계산방법과 표기법을 완성하였다. 오늘날에는 보다 수학적으로 효율적인 라이프니츠의 방법이 주로 쓰인다.<sup id="cite_ref-마오_6-1" class="reference"><a href="#cite_note-마오-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:102–141</sup></span> </p><p>뉴턴과 라이프니츠는 미분에 대한 업적을 놓고 오랫동안 다투었으며 이로 인해 유럽의 수학계는 둘 중 누구를 지지하는 가를 놓고 심한 대립을 보이기도 하였다. 뉴턴과 라이프니츠는 서로 상대방이 자신의 아이디어를 훔쳤다고 비판하였다. 이러한 대립은 라이프니츠가 사망한 이후에도 계속되었다. 오늘날에는 뉴턴과 라이프니츠가 각자 독자적인 방법으로 미분을 발견했다고 본다.<sup id="cite_ref-마오_6-2" class="reference"><a href="#cite_note-마오-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="어원"><span id=".EC.96.B4.EC.9B.90"></span>어원</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=32" title="부분 편집: 어원"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>‘미분(微分)’이란 말은 작게 자른다는 뜻이다. ‘미분’이란 번역어를 근대에 처음 쓴 문헌은 <span title="대상 항목은 아직 없습니다. 신규 작성, 또는 다른 언어로부터의 번역이 필요합니다.]"><a href="/w/index.php?title=%EC%97%98%EB%A6%AC%EC%96%B4%EC%8A%A4_%EB%A3%A8%EB%AF%B8%EC%8A%A4&action=edit&redlink=1" class="new" title="엘리어스 루미스 (없는 문서)">엘리어스 루미스</a><span style="font-size: 0.77em; font-weight: normal;" class="noprint">(<a href="https://en.wikipedia.org/wiki/Elias_Loomis" class="extiw" title="en:Elias Loomis">영어판</a>)</span></span>의 《Analytical Geometry and of the Differential and Integral Calculus》(1835)를 1859년 <span title="대상 항목은 아직 없습니다. 신규 작성, 또는 다른 언어로부터의 번역이 필요합니다.]"><a href="/w/index.php?title=%EC%95%8C%EB%A0%89%EC%82%B0%EB%8D%94_%EC%99%80%EC%9D%BC%EB%A6%AC&action=edit&redlink=1" class="new" title="알렉산더 와일리 (없는 문서)">알렉산더 와일리</a><span style="font-size: 0.77em; font-weight: normal;" class="noprint">(<a href="https://en.wikipedia.org/wiki/Alexander_Wylie_(missionary)" class="extiw" title="en:Alexander Wylie (missionary)">영어판</a>)</span></span>와 <a href="/wiki/%EC%9D%B4%EC%84%A0%EB%9E%80" title="이선란">이선란</a>이 번역한 《대미적습급(代微積拾級)》이다. 한편 <a href="/wiki/%EC%A1%B0%EC%A7%80%ED%94%84_%EB%8B%88%EB%8D%A4" title="조지프 니덤">조지프 니덤</a>은 《<span title="대상 항목은 아직 없습니다. 신규 작성, 또는 다른 언어로부터의 번역이 필요합니다.]"><a href="/w/index.php?title=%EC%A4%91%EA%B5%AD%EC%9D%98_%EA%B3%BC%ED%95%99%EA%B3%BC_%EB%AC%B8%EB%AA%85&action=edit&redlink=1" class="new" title="중국의 과학과 문명 (없는 문서)">중국의 과학과 문명</a><span style="font-size: 0.77em; font-weight: normal;" class="noprint">(<a href="https://en.wikipedia.org/wiki/Science_and_Civilisation_in_China" class="extiw" title="en:Science and Civilisation in China">영어판</a>)</span></span>》에서 11세기 중국에서 이미 ‘미분’이라는 번역어를 사용했었다고 주장했다.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="같이_보기"><span id=".EA.B0.99.EC.9D.B4_.EB.B3.B4.EA.B8.B0"></span>같이 보기</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=33" title="부분 편집: 같이 보기"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/%EC%A0%81%EB%B6%84" title="적분">적분</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="각주"><span id=".EA.B0.81.EC.A3.BC"></span>각주</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=34" title="부분 편집: 각주"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r35556958">.mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width reflist-columns-2"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text">이 극한값을 의미하는 '미분계수'라는 용어는 현대 영어권 수학계에서 이제 사용하지 않는다. 비록 대한민국 고등학교 교과과정에서 '미분계수', '미분', '도함수'를 서로 다른 용어로 설명하고 있으나 용어를 통합하는 방향으로 재구성해야 한다.</span> </li> <li id="cite_note-박은순-2"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-박은순_2-0">가</a></sup> <sup><a href="#cite_ref-박은순_2-1">나</a></sup></span> <span class="reference-text"><cite class="citation book">박은순 (2008). 《쉬운 미분·적분학》. 숭실대학교출판부. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a> <a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/89-7450-235-6" title="특수:책찾기/89-7450-235-6"><bdi>89-7450-235-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=%EC%89%AC%EC%9A%B4+%EB%AF%B8%EB%B6%84%C2%B7%EC%A0%81%EB%B6%84%ED%95%99&rft.pub=%EC%88%AD%EC%8B%A4%EB%8C%80%ED%95%99%EA%B5%90%EC%B6%9C%ED%8C%90%EB%B6%80&rft.date=2008&rft.isbn=89-7450-235-6&rft.au=%EB%B0%95%EC%9D%80%EC%88%9C&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-미야구치-3"><span class="mw-cite-backlink"><a href="#cite_ref-미야구치_3-0">↑</a></span> <span class="reference-text"><cite class="citation book">미야구치 유우지 (2001). 《수학을 다시 시작하는 책》. 번역 김상윤. 자음과 모음. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a> <a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/89-8447-141-0" title="특수:책찾기/89-8447-141-0"><bdi>89-8447-141-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=%EC%88%98%ED%95%99%EC%9D%84+%EB%8B%A4%EC%8B%9C+%EC%8B%9C%EC%9E%91%ED%95%98%EB%8A%94+%EC%B1%85&rft.pub=%EC%9E%90%EC%9D%8C%EA%B3%BC+%EB%AA%A8%EC%9D%8C&rft.date=2001&rft.isbn=89-8447-141-0&rft.au=%EB%AF%B8%EC%95%BC%EA%B5%AC%EC%B9%98+%EC%9C%A0%EC%9A%B0%EC%A7%80&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-한상현-4"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-한상현_4-0">가</a></sup> <sup><a href="#cite_ref-한상현_4-1">나</a></sup></span> <span class="reference-text"><cite class="citation book">한상현 (2010). 《현대토목수학》. 동화기술. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a> <a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/89-425-1522-3" title="특수:책찾기/89-425-1522-3"><bdi>89-425-1522-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=%ED%98%84%EB%8C%80%ED%86%A0%EB%AA%A9%EC%88%98%ED%95%99&rft.pub=%EB%8F%99%ED%99%94%EA%B8%B0%EC%88%A0&rft.date=2010&rft.isbn=89-425-1522-3&rft.au=%ED%95%9C%EC%83%81%ED%98%84&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-박진홍-5"><span class="mw-cite-backlink"><a href="#cite_ref-박진홍_5-0">↑</a></span> <span class="reference-text"><cite class="citation book">박진홍 (1998). 《미분적분학》. 학문사. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a> <a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/89-467-4063-9" title="특수:책찾기/89-467-4063-9"><bdi>89-467-4063-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=%EB%AF%B8%EB%B6%84%EC%A0%81%EB%B6%84%ED%95%99&rft.pub=%ED%95%99%EB%AC%B8%EC%82%AC&rft.date=1998&rft.isbn=89-467-4063-9&rft.au=%EB%B0%95%EC%A7%84%ED%99%8D&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-마오-6"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-마오_6-0">가</a></sup> <sup><a href="#cite_ref-마오_6-1">나</a></sup> <sup><a href="#cite_ref-마오_6-2">다</a></sup></span> <span class="reference-text"><cite class="citation book">마오, 엘리 (2000). 《오일러가 사랑한 수 e》. 번역 허민. 경문사. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a> <a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/978-89-7282-467-1" title="특수:책찾기/978-89-7282-467-1"><bdi>978-89-7282-467-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=%EC%98%A4%EC%9D%BC%EB%9F%AC%EA%B0%80+%EC%82%AC%EB%9E%91%ED%95%9C+%EC%88%98+e&rft.pub=%EA%B2%BD%EB%AC%B8%EC%82%AC&rft.date=2000&rft.isbn=978-89-7282-467-1&rft.aulast=%EB%A7%88%EC%98%A4&rft.aufirst=%EC%97%98%EB%A6%AC&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-Cartan-7"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Cartan_7-0">가</a></sup> <sup><a href="#cite_ref-Cartan_7-1">나</a></sup> <sup><a href="#cite_ref-Cartan_7-2">다</a></sup></span> <span class="reference-text"><cite class="citation book"><a href="/wiki/%EC%95%99%EB%A6%AC_%EC%B9%B4%EB%A5%B4%ED%83%95" title="앙리 카르탕">Cartan, Henri</a> (1971). 《Differential Calculus》 (영어). Houghton Mifflin Co. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a> <a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/978-0-395-12033-0" title="특수:책찾기/978-0-395-12033-0"><bdi>978-0-395-12033-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Differential+Calculus&rft.pub=Houghton+Mifflin+Co&rft.date=1971&rft.isbn=978-0-395-12033-0&rft.aulast=Cartan&rft.aufirst=Henri&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><a href="#cite_ref-8">↑</a></span> <span class="reference-text"><cite class="citation book">Stein, Sherman (2006). 《아르키메데스》. 번역 이우영. 경문사. 145-168쪽. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a> <a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/89-7282-926-9" title="특수:책찾기/89-7282-926-9"><bdi>89-7282-926-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=%EC%95%84%EB%A5%B4%ED%82%A4%EB%A9%94%EB%8D%B0%EC%8A%A4&rft.pages=145-168&rft.pub=%EA%B2%BD%EB%AC%B8%EC%82%AC&rft.date=2006&rft.isbn=89-7282-926-9&rft.aulast=Stein&rft.aufirst=Sherman&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-이광연-9"><span class="mw-cite-backlink"><a href="#cite_ref-이광연_9-0">↑</a></span> <span class="reference-text"><cite class="citation book">이광연 (2007). 《수학자들의 전쟁》. 프로네시스. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a> <a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/89-01-07286-6" title="특수:책찾기/89-01-07286-6"><bdi>89-01-07286-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=%EC%88%98%ED%95%99%EC%9E%90%EB%93%A4%EC%9D%98+%EC%A0%84%EC%9F%81&rft.pub=%ED%94%84%EB%A1%9C%EB%84%A4%EC%8B%9C%EC%8A%A4&rft.date=2007&rft.isbn=89-01-07286-6&rft.au=%EC%9D%B4%EA%B4%91%EC%97%B0&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><a href="#cite_ref-10">↑</a></span> <span class="reference-text"><cite class="citation book">Masini, Federico (2005) [1993]. 《근대 중국의 언어와 역사》. 번역 이정재. 소명출판.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=%EA%B7%BC%EB%8C%80+%EC%A4%91%EA%B5%AD%EC%9D%98+%EC%96%B8%EC%96%B4%EC%99%80+%EC%97%AD%EC%82%AC&rft.pub=%EC%86%8C%EB%AA%85%EC%B6%9C%ED%8C%90&rft.date=2005&rft.aulast=Masini&rft.aufirst=Federico&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="외부_링크"><span id=".EC.99.B8.EB.B6.80_.EB.A7.81.ED.81.AC"></span>외부 링크</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%AF%B8%EB%B6%84&action=edit&section=35" title="부분 편집: 외부 링크"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r38501082">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r36538847">.mw-parser-output .sister-box .side-box-abovebelow{padding:0.75em 0;text-align:center}.mw-parser-output .sister-box .side-box-abovebelow>b{display:block}.mw-parser-output .sister-box .side-box-text>ul{border-top:1px solid #aaa;padding:0.75em 0;width:217px;margin:0 auto}.mw-parser-output .sister-box .side-box-text>ul>li{min-height:31px}.mw-parser-output .sister-logo{display:inline-block;width:31px;line-height:31px;vertical-align:middle;text-align:center}.mw-parser-output .sister-link{display:inline-block;margin-left:4px;width:182px;vertical-align:middle}</style><div role="navigation" aria-labelledby="sister-projects" class="side-box metadata side-box-right sister-box sistersitebox plainlinks"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480595"> <div class="side-box-abovebelow"> <b>도함수</b> — 위키백과의 <a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%9E%90%EB%A7%A4_%ED%94%84%EB%A1%9C%EC%A0%9D%ED%8A%B8" title="위키백과:자매 프로젝트"><span id="sister-projects">자매 프로젝트</span></a></div> <div class="side-box-flex"> <div class="side-box-text plainlist"><ul><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Wiktionary-logo.svg/27px-Wiktionary-logo.svg.png" decoding="async" width="27" height="26" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Wiktionary-logo.svg/41px-Wiktionary-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Wiktionary-logo.svg/54px-Wiktionary-logo.svg.png 2x" data-file-width="370" data-file-height="350" /></span></span></span><span class="sister-link"><a href="https://ko.wiktionary.org/wiki/Special:Search/%EB%8F%84%ED%95%A8%EC%88%98" class="extiw" title="wikt:Special:Search/도함수">사전적 정의</a> — 위키낱말사전</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/20px-Commons-logo.svg.png" decoding="async" width="20" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/40px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></span><span class="sister-link"><a href="https://commons.wikimedia.org/wiki/Special:Search/%EB%8F%84%ED%95%A8%EC%88%98" class="extiw" title="c:Special:Search/도함수">미디어</a> — 위키공용</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/27px-Wikinews-logo.svg.png" decoding="async" width="27" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/41px-Wikinews-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/54px-Wikinews-logo.svg.png 2x" data-file-width="759" data-file-height="415" /></span></span></span><span class="sister-link"><a href="https://ko.wikinews.org/wiki/Special:Search/%EB%8F%84%ED%95%A8%EC%88%98" class="extiw" title="n:Special:Search/도함수">뉴스</a> — 위키뉴스</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/23px-Wikiquote-logo.svg.png" decoding="async" width="23" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/35px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/46px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></span></span></span><span class="sister-link"><a href="https://ko.wikiquote.org/wiki/Special:Search/%EB%8F%84%ED%95%A8%EC%88%98" class="extiw" title="q:Special:Search/도함수">인용구</a> — 위키인용집</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/26px-Wikisource-logo.svg.png" decoding="async" width="26" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/39px-Wikisource-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/51px-Wikisource-logo.svg.png 2x" data-file-width="410" data-file-height="430" /></span></span></span><span class="sister-link"><a href="https://ko.wikisource.org/wiki/Special:Search/%EB%8F%84%ED%95%A8%EC%88%98" class="extiw" title="s:Special:Search/도함수">원문</a> — 위키문헌</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/27px-Wikibooks-logo.svg.png" decoding="async" width="27" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/41px-Wikibooks-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/54px-Wikibooks-logo.svg.png 2x" data-file-width="300" data-file-height="300" /></span></span></span><span class="sister-link"><a href="https://ko.wikibooks.org/wiki/Special:Search/%EB%8F%84%ED%95%A8%EC%88%98" class="extiw" title="b:Special:Search/도함수">교과서</a> — 위키책</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/27px-Wikiversity_logo_2017.svg.png" decoding="async" width="27" height="22" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/41px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/54px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></span></span></span><span class="sister-link"><a href="https://ko.wikiversity.org/wiki/Special:Search/%EB%8F%84%ED%95%A8%EC%88%98" class="extiw" title="v:Special:Search/도함수">리소스</a> — 위키배움터</span></li></ul></div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r38501082"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36538847"><div role="navigation" aria-labelledby="sister-projects" class="side-box metadata side-box-right sister-box sistersitebox plainlinks"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480595"> <div class="side-box-abovebelow"> <b>미분</b> — 위키백과의 <a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%9E%90%EB%A7%A4_%ED%94%84%EB%A1%9C%EC%A0%9D%ED%8A%B8" title="위키백과:자매 프로젝트"><span id="sister-projects">자매 프로젝트</span></a></div> <div class="side-box-flex"> <div class="side-box-text plainlist"><ul><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Wiktionary-logo.svg/27px-Wiktionary-logo.svg.png" decoding="async" width="27" height="26" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Wiktionary-logo.svg/41px-Wiktionary-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Wiktionary-logo.svg/54px-Wiktionary-logo.svg.png 2x" data-file-width="370" data-file-height="350" /></span></span></span><span class="sister-link"><a href="https://ko.wiktionary.org/wiki/Special:Search/%EB%AF%B8%EB%B6%84" class="extiw" title="wikt:Special:Search/미분">사전적 정의</a> — 위키낱말사전</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/20px-Commons-logo.svg.png" decoding="async" width="20" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/40px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></span><span class="sister-link"><a href="https://commons.wikimedia.org/wiki/Special:Search/%EB%AF%B8%EB%B6%84" class="extiw" title="c:Special:Search/미분">미디어</a> — 위키공용</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/27px-Wikinews-logo.svg.png" decoding="async" width="27" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/41px-Wikinews-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/54px-Wikinews-logo.svg.png 2x" data-file-width="759" data-file-height="415" /></span></span></span><span class="sister-link"><a href="https://ko.wikinews.org/wiki/Special:Search/%EB%AF%B8%EB%B6%84" class="extiw" title="n:Special:Search/미분">뉴스</a> — 위키뉴스</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/23px-Wikiquote-logo.svg.png" decoding="async" width="23" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/35px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/46px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></span></span></span><span class="sister-link"><a href="https://ko.wikiquote.org/wiki/Special:Search/%EB%AF%B8%EB%B6%84" class="extiw" title="q:Special:Search/미분">인용구</a> — 위키인용집</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/26px-Wikisource-logo.svg.png" decoding="async" width="26" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/39px-Wikisource-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/51px-Wikisource-logo.svg.png 2x" data-file-width="410" data-file-height="430" /></span></span></span><span class="sister-link"><a href="https://ko.wikisource.org/wiki/Special:Search/%EB%AF%B8%EB%B6%84" class="extiw" title="s:Special:Search/미분">원문</a> — 위키문헌</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/27px-Wikibooks-logo.svg.png" decoding="async" width="27" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/41px-Wikibooks-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/54px-Wikibooks-logo.svg.png 2x" data-file-width="300" data-file-height="300" /></span></span></span><span class="sister-link"><a href="https://ko.wikibooks.org/wiki/Special:Search/%EB%AF%B8%EB%B6%84" class="extiw" title="b:Special:Search/미분">교과서</a> — 위키책</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/27px-Wikiversity_logo_2017.svg.png" decoding="async" width="27" height="22" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/41px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/54px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></span></span></span><span class="sister-link"><a href="https://ko.wikiversity.org/wiki/Special:Search/%EB%AF%B8%EB%B6%84" class="extiw" title="v:Special:Search/미분">리소스</a> — 위키배움터</span></li></ul></div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r38501082"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36538847"><div role="navigation" aria-labelledby="sister-projects" class="side-box metadata side-box-right sister-box sistersitebox plainlinks"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480595"> <div class="side-box-abovebelow"> <b>derivative</b> — 위키백과의 <a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%9E%90%EB%A7%A4_%ED%94%84%EB%A1%9C%EC%A0%9D%ED%8A%B8" title="위키백과:자매 프로젝트"><span id="sister-projects">자매 프로젝트</span></a></div> <div class="side-box-flex"> <div class="side-box-text plainlist"><ul><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Wiktionary-logo.svg/27px-Wiktionary-logo.svg.png" decoding="async" width="27" height="26" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Wiktionary-logo.svg/41px-Wiktionary-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Wiktionary-logo.svg/54px-Wiktionary-logo.svg.png 2x" data-file-width="370" data-file-height="350" /></span></span></span><span class="sister-link"><a href="https://ko.wiktionary.org/wiki/Special:Search/derivative" class="extiw" title="wikt:Special:Search/derivative">사전적 정의</a> — 위키낱말사전</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/20px-Commons-logo.svg.png" decoding="async" width="20" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/40px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></span><span class="sister-link"><a href="https://commons.wikimedia.org/wiki/Special:Search/derivative" class="extiw" title="c:Special:Search/derivative">미디어</a> — 위키공용</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/27px-Wikinews-logo.svg.png" decoding="async" width="27" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/41px-Wikinews-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/54px-Wikinews-logo.svg.png 2x" data-file-width="759" data-file-height="415" /></span></span></span><span class="sister-link"><a href="https://ko.wikinews.org/wiki/Special:Search/derivative" class="extiw" title="n:Special:Search/derivative">뉴스</a> — 위키뉴스</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/23px-Wikiquote-logo.svg.png" decoding="async" width="23" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/35px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/46px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></span></span></span><span class="sister-link"><a href="https://ko.wikiquote.org/wiki/Special:Search/derivative" class="extiw" title="q:Special:Search/derivative">인용구</a> — 위키인용집</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/26px-Wikisource-logo.svg.png" decoding="async" width="26" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/39px-Wikisource-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/51px-Wikisource-logo.svg.png 2x" data-file-width="410" data-file-height="430" /></span></span></span><span class="sister-link"><a href="https://ko.wikisource.org/wiki/Special:Search/derivative" class="extiw" title="s:Special:Search/derivative">원문</a> — 위키문헌</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/27px-Wikibooks-logo.svg.png" decoding="async" width="27" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/41px-Wikibooks-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/54px-Wikibooks-logo.svg.png 2x" data-file-width="300" data-file-height="300" /></span></span></span><span class="sister-link"><a href="https://ko.wikibooks.org/wiki/Special:Search/derivative" class="extiw" title="b:Special:Search/derivative">교과서</a> — 위키책</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/27px-Wikiversity_logo_2017.svg.png" decoding="async" width="27" height="22" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/41px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/54px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></span></span></span><span class="sister-link"><a href="https://ko.wikiversity.org/wiki/Special:Search/derivative" class="extiw" title="v:Special:Search/derivative">리소스</a> — 위키배움터</span></li></ul></div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r38501082"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36538847"><div role="navigation" aria-labelledby="sister-projects" class="side-box metadata side-box-right sister-box sistersitebox plainlinks"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480595"> <div class="side-box-abovebelow"> <b>differentiation</b> — 위키백과의 <a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%9E%90%EB%A7%A4_%ED%94%84%EB%A1%9C%EC%A0%9D%ED%8A%B8" title="위키백과:자매 프로젝트"><span id="sister-projects">자매 프로젝트</span></a></div> <div class="side-box-flex"> <div class="side-box-text plainlist"><ul><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Wiktionary-logo.svg/27px-Wiktionary-logo.svg.png" decoding="async" width="27" height="26" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Wiktionary-logo.svg/41px-Wiktionary-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Wiktionary-logo.svg/54px-Wiktionary-logo.svg.png 2x" data-file-width="370" data-file-height="350" /></span></span></span><span class="sister-link"><a href="https://ko.wiktionary.org/wiki/Special:Search/differentiation" class="extiw" title="wikt:Special:Search/differentiation">사전적 정의</a> — 위키낱말사전</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/20px-Commons-logo.svg.png" decoding="async" width="20" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/40px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></span><span class="sister-link"><a href="https://commons.wikimedia.org/wiki/Special:Search/differentiation" class="extiw" title="c:Special:Search/differentiation">미디어</a> — 위키공용</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/27px-Wikinews-logo.svg.png" decoding="async" width="27" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/41px-Wikinews-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/54px-Wikinews-logo.svg.png 2x" data-file-width="759" data-file-height="415" /></span></span></span><span class="sister-link"><a href="https://ko.wikinews.org/wiki/Special:Search/differentiation" class="extiw" title="n:Special:Search/differentiation">뉴스</a> — 위키뉴스</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/23px-Wikiquote-logo.svg.png" decoding="async" width="23" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/35px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/46px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></span></span></span><span class="sister-link"><a href="https://ko.wikiquote.org/wiki/Special:Search/differentiation" class="extiw" title="q:Special:Search/differentiation">인용구</a> — 위키인용집</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/26px-Wikisource-logo.svg.png" decoding="async" width="26" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/39px-Wikisource-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/51px-Wikisource-logo.svg.png 2x" data-file-width="410" data-file-height="430" /></span></span></span><span class="sister-link"><a href="https://ko.wikisource.org/wiki/Special:Search/differentiation" class="extiw" title="s:Special:Search/differentiation">원문</a> — 위키문헌</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/27px-Wikibooks-logo.svg.png" decoding="async" width="27" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/41px-Wikibooks-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/54px-Wikibooks-logo.svg.png 2x" data-file-width="300" data-file-height="300" /></span></span></span><span class="sister-link"><a href="https://ko.wikibooks.org/wiki/Special:Search/differentiation" class="extiw" title="b:Special:Search/differentiation">교과서</a> — 위키책</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/27px-Wikiversity_logo_2017.svg.png" decoding="async" width="27" height="22" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/41px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/54px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></span></span></span><span class="sister-link"><a href="https://ko.wikiversity.org/wiki/Special:Search/differentiation" class="extiw" title="v:Special:Search/differentiation">리소스</a> — 위키배움터</span></li></ul></div></div> </div> <ul><li><cite class="citation web"><a rel="nofollow" class="external text" href="https://encyclopediaofmath.org/wiki/Derivative">“Derivative”</a>. 《Encyclopedia of Mathematics》 (영어). Springer-Verlag. 2001. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a> <a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/978-1-55608-010-4" title="특수:책찾기/978-1-55608-010-4"><bdi>978-1-55608-010-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Encyclopedia+of+Mathematics&rft.atitle=Derivative&rft.date=2001&rft.isbn=978-1-55608-010-4&rft_id=https%3A%2F%2Fencyclopediaofmath.org%2Fwiki%2FDerivative&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span> <ul><li><cite class="citation web"><a rel="nofollow" class="external text" href="https://encyclopediaofmath.org/wiki/Differentiation">“Differentiation”</a>. 《Encyclopedia of Mathematics》 (영어). Springer-Verlag. 2001. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a> <a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/978-1-55608-010-4" title="특수:책찾기/978-1-55608-010-4"><bdi>978-1-55608-010-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Encyclopedia+of+Mathematics&rft.atitle=Differentiation&rft.date=2001&rft.isbn=978-1-55608-010-4&rft_id=https%3A%2F%2Fencyclopediaofmath.org%2Fwiki%2FDifferentiation&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://encyclopediaofmath.org/wiki/One-sided_derivative">“One-sided derivative”</a>. 《Encyclopedia of Mathematics》 (영어). Springer-Verlag. 2001. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a> <a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/978-1-55608-010-4" title="특수:책찾기/978-1-55608-010-4"><bdi>978-1-55608-010-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Encyclopedia+of+Mathematics&rft.atitle=One-sided+derivative&rft.date=2001&rft.isbn=978-1-55608-010-4&rft_id=https%3A%2F%2Fencyclopediaofmath.org%2Fwiki%2FOne-sided_derivative&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://encyclopediaofmath.org/wiki/Non-differentiable_function">“Non-differentiable function”</a>. 《Encyclopedia of Mathematics》 (영어). Springer-Verlag. 2001. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a> <a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/978-1-55608-010-4" title="특수:책찾기/978-1-55608-010-4"><bdi>978-1-55608-010-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Encyclopedia+of+Mathematics&rft.atitle=Non-differentiable+function&rft.date=2001&rft.isbn=978-1-55608-010-4&rft_id=https%3A%2F%2Fencyclopediaofmath.org%2Fwiki%2FNon-differentiable_function&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></li></ul></li> <li><cite class="citation web">Weisstein, Eric Wolfgang. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Derivative.html">“Derivative”</a>. 《<a href="/wiki/%EB%A7%A4%EC%8A%A4%EC%9B%94%EB%93%9C" title="매스월드">Wolfram MathWorld</a>》 (영어). Wolfram Research.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Wolfram+MathWorld&rft.atitle=Derivative&rft.aulast=Weisstein&rft.aufirst=Eric+Wolfgang&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FDerivative.html&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span> <ul><li><cite class="citation web">Weisstein, Eric Wolfgang. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Differentiable.html">“Differentiable”</a>. 《<a href="/wiki/%EB%A7%A4%EC%8A%A4%EC%9B%94%EB%93%9C" title="매스월드">Wolfram MathWorld</a>》 (영어). Wolfram Research.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Wolfram+MathWorld&rft.atitle=Differentiable&rft.aulast=Weisstein&rft.aufirst=Eric+Wolfgang&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FDifferentiable.html&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web">Weisstein, Eric Wolfgang. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Differentiation.html">“Differentiation”</a>. 《<a href="/wiki/%EB%A7%A4%EC%8A%A4%EC%9B%94%EB%93%9C" title="매스월드">Wolfram MathWorld</a>》 (영어). Wolfram Research.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Wolfram+MathWorld&rft.atitle=Differentiation&rft.aulast=Weisstein&rft.aufirst=Eric+Wolfgang&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FDifferentiation.html&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></li></ul></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://planetmath.org/Derivative">“Derivative”</a>. 《PlanetMath》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=PlanetMath&rft.atitle=Derivative&rft_id=http%3A%2F%2Fplanetmath.org%2FDerivative&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span> <ul><li><cite class="citation web"><a rel="nofollow" class="external text" href="https://planetmath.org/DerivativeNotation">“Derivative notation”</a>. 《PlanetMath》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=PlanetMath&rft.atitle=Derivative+notation&rft_id=http%3A%2F%2Fplanetmath.org%2FDerivativeNotation&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://planetmath.org/OneSidedDerivatives">“One-sided derivatives”</a>. 《PlanetMath》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=PlanetMath&rft.atitle=One-sided+derivatives&rft_id=http%3A%2F%2Fplanetmath.org%2FOneSidedDerivatives&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://planetmath.org/DifferentiableFunction">“Differentiable function”</a>. 《PlanetMath》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=PlanetMath&rft.atitle=Differentiable+function&rft_id=http%3A%2F%2Fplanetmath.org%2FDifferentiableFunction&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://planetmath.org/HigherOrderDerivatives">“Higher order derivatives”</a>. 《PlanetMath》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=PlanetMath&rft.atitle=Higher+order+derivatives&rft_id=http%3A%2F%2Fplanetmath.org%2FHigherOrderDerivatives&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://planetmath.org/HigherOrderDerivativesOfSineAndCosine">“Higher order derivatives of sine and cosine”</a>. 《PlanetMath》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=PlanetMath&rft.atitle=Higher+order+derivatives+of+sine+and+cosine&rft_id=http%3A%2F%2Fplanetmath.org%2FHigherOrderDerivativesOfSineAndCosine&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></li></ul></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://proofwiki.org/wiki/Definition:Derivative">“Definition:Derivative”</a>. 《ProofWiki》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ProofWiki&rft.atitle=Definition%3ADerivative&rft_id=http%3A%2F%2Fproofwiki.org%2Fwiki%2FDefinition%3ADerivative&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span> <ul><li><cite class="citation web"><a rel="nofollow" class="external text" href="https://proofwiki.org/wiki/Definition:Differentiation">“Definition:Differentiation”</a>. 《ProofWiki》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ProofWiki&rft.atitle=Definition%3ADifferentiation&rft_id=http%3A%2F%2Fproofwiki.org%2Fwiki%2FDefinition%3ADifferentiation&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://proofwiki.org/wiki/Definition:Differentiable">“Definition:Differentiable”</a>. 《ProofWiki》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ProofWiki&rft.atitle=Definition%3ADifferentiable&rft_id=http%3A%2F%2Fproofwiki.org%2Fwiki%2FDefinition%3ADifferentiable&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://proofwiki.org/wiki/Definition:One-Sided_Derivative">“Definition:One-sided derivative”</a>. 《ProofWiki》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ProofWiki&rft.atitle=Definition%3AOne-sided+derivative&rft_id=http%3A%2F%2Fproofwiki.org%2Fwiki%2FDefinition%3AOne-Sided_Derivative&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://proofwiki.org/wiki/Definition:Left-Hand_Derivative">“Definition:Left-hand derivative”</a>. 《ProofWiki》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ProofWiki&rft.atitle=Definition%3ALeft-hand+derivative&rft_id=http%3A%2F%2Fproofwiki.org%2Fwiki%2FDefinition%3ALeft-Hand_Derivative&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://proofwiki.org/wiki/Definition:Right-Hand_Derivative">“Definition:Right-hand derivative”</a>. 《ProofWiki》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ProofWiki&rft.atitle=Definition%3ARight-hand+derivative&rft_id=http%3A%2F%2Fproofwiki.org%2Fwiki%2FDefinition%3ARight-Hand_Derivative&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://proofwiki.org/wiki/Equivalence_of_Definitions_of_Derivative">“Equivalence of definitions of derivative”</a>. 《ProofWiki》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ProofWiki&rft.atitle=Equivalence+of+definitions+of+derivative&rft_id=http%3A%2F%2Fproofwiki.org%2Fwiki%2FEquivalence_of_Definitions_of_Derivative&rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%AF%B8%EB%B6%84" class="Z3988"><span style="display:none;"> </span></span></li></ul></li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><style data-mw-deduplicate="TemplateStyles:r38501015">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%A0%84%EA%B1%B0_%ED%86%B5%EC%A0%9C" title="위키백과:전거 통제">전거 통제</a>: 국가 <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q29175#identifiers" title="위키데이터에서 편집하기"><img alt="위키데이터에서 편집하기" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="uid"><abbr title="Ableitung <Infinitesimalrechnung>"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4233840-2">독일</a></abbr></span></li> <li><span class="uid"><abbr title="נגזרים (מתמטיקה)"><a rel="nofollow" class="external text" href="http://uli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007574837105171">이스라엘</a></abbr></span></li> <li><span class="uid"><abbr title="Derivatives (Mathematics)"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh2011005437">미국</a></abbr></span></li> <li><span class="uid"><abbr title="derivace funkce"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph137564&CON_LNG=ENG">체코</a></abbr></span></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐5b65fffc7d‐s8gvv Cached time: 20250214181554 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.101 seconds Real time usage: 1.479 seconds Preprocessor visited node count: 5890/1000000 Post‐expand include size: 120278/2097152 bytes Template argument size: 5203/2097152 bytes Highest expansion depth: 10/100 Expensive parser function count: 12/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 140115/5000000 bytes Lua time usage: 0.347/10.000 seconds Lua memory usage: 5194746/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 843.416 1 -total 20.01% 168.764 1 틀:미적분학 19.74% 166.520 1 틀:접이식_사이드바 19.60% 165.269 1 틀:위키데이터_속성_추적 14.70% 123.993 4 틀:자매문서 13.90% 117.247 1 틀:각주 11.57% 97.618 9 틀:서적_인용 9.34% 78.772 20 틀:웹_인용 7.22% 60.929 1 틀:전거_통제 7.22% 60.916 5 틀:사이드바 --> <!-- Saved in parser cache with key kowiki:pcache:34115:|#|:idhash:canonical and timestamp 20250214181554 and revision id 38048884. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&type=1x1&usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">원본 주소 "<a dir="ltr" href="https://ko.wikipedia.org/w/index.php?title=미분&oldid=38048884">https://ko.wikipedia.org/w/index.php?title=미분&oldid=38048884</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%B6%84%EB%A5%98" title="특수:분류">분류</a>: <ul><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EB%AF%B8%EB%B6%84%ED%95%99" title="분류:미분학">미분학</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">숨은 분류: <ul><li><a href="/wiki/%EB%B6%84%EB%A5%98:%ED%95%B4%EA%B2%B0%EB%90%98%EC%A7%80_%EC%95%8A%EC%9D%80_%EC%86%8D%EC%84%B1%EC%9D%B4_%EC%9E%88%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:해결되지 않은 속성이 있는 문서">해결되지 않은 속성이 있는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:CS1_-_%EC%98%81%EC%96%B4_%EC%9D%B8%EC%9A%A9_(en)" title="분류:CS1 - 영어 인용 (en)">CS1 - 영어 인용 (en)</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P18%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P18을 사용하는 문서">위키데이터 속성 P18을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P227%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P227을 사용하는 문서">위키데이터 속성 P227을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P244%EB%A5%BC_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P244를 사용하는 문서">위키데이터 속성 P244를 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P691%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P691을 사용하는 문서">위키데이터 속성 P691을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P7859%EB%A5%BC_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P7859를 사용하는 문서">위키데이터 속성 P7859를 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P8189%EB%A5%BC_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P8189를 사용하는 문서">위키데이터 속성 P8189를 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%ED%95%9C%EA%B5%AD_%ED%95%9C%EC%9E%90_%ED%91%9C%EA%B8%B0%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EB%AC%B8%EC%84%9C" title="분류:한국 한자 표기를 포함한 문서">한국 한자 표기를 포함한 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%98%81%EC%96%B4_%ED%91%9C%EA%B8%B0%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EB%AC%B8%EC%84%9C" title="분류:영어 표기를 포함한 문서">영어 표기를 포함한 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:GND_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:GND 식별자를 포함한 위키백과 문서">GND 식별자를 포함한 위키백과 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:J9U_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:J9U 식별자를 포함한 위키백과 문서">J9U 식별자를 포함한 위키백과 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:LCCN_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:LCCN 식별자를 포함한 위키백과 문서">LCCN 식별자를 포함한 위키백과 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:NKC_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:NKC 식별자를 포함한 위키백과 문서">NKC 식별자를 포함한 위키백과 문서</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> 이 문서는 2024년 10월 22일 (화) 21:55에 마지막으로 편집되었습니다.</li> <li id="footer-info-copyright">모든 문서는 <a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/deed.ko">크리에이티브 커먼즈 저작자표시-동일조건변경허락 4.0</a>에 따라 사용할 수 있으며, 추가적인 조건이 적용될 수 있습니다. 자세한 내용은 <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/ko">이용 약관</a>을 참고하십시오.<br />Wikipedia®는 미국 및 다른 국가에 등록되어 있는 <a rel="nofollow" class="external text" href="https://www.wikimediafoundation.org">Wikimedia Foundation, Inc.</a> 소유의 등록 상표입니다.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">개인정보처리방침</a></li> <li id="footer-places-about"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%86%8C%EA%B0%9C">위키백과 소개</a></li> <li id="footer-places-disclaimers"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%A9%B4%EC%B1%85_%EC%A1%B0%ED%95%AD">면책 조항</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">행동 강령</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">개발자</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/ko.wikipedia.org">통계</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">쿠키 정책</a></li> <li id="footer-places-mobileview"><a href="//ko.m.wikipedia.org/w/index.php?title=%EB%AF%B8%EB%B6%84&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">모바일 보기</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>검색</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="위키백과 검색"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="특수:검색"> </div> <button class="cdx-button cdx-search-input__end-button">검색</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="목차" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="목차 토글" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">목차 토글</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">미분</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>91개 언어</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>새 주제</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-b766959bd-nbcs7","wgBackendResponseTime":144,"wgPageParseReport":{"limitreport":{"cputime":"1.101","walltime":"1.479","ppvisitednodes":{"value":5890,"limit":1000000},"postexpandincludesize":{"value":120278,"limit":2097152},"templateargumentsize":{"value":5203,"limit":2097152},"expansiondepth":{"value":10,"limit":100},"expensivefunctioncount":{"value":12,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":140115,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 843.416 1 -total"," 20.01% 168.764 1 틀:미적분학"," 19.74% 166.520 1 틀:접이식_사이드바"," 19.60% 165.269 1 틀:위키데이터_속성_추적"," 14.70% 123.993 4 틀:자매문서"," 13.90% 117.247 1 틀:각주"," 11.57% 97.618 9 틀:서적_인용"," 9.34% 78.772 20 틀:웹_인용"," 7.22% 60.929 1 틀:전거_통제"," 7.22% 60.916 5 틀:사이드바"]},"scribunto":{"limitreport-timeusage":{"value":"0.347","limit":"10.000"},"limitreport-memusage":{"value":5194746,"limit":52428800}},"cachereport":{"origin":"mw-api-int.codfw.main-5b65fffc7d-s8gvv","timestamp":"20250214181554","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\ubbf8\ubd84","url":"https:\/\/ko.wikipedia.org\/wiki\/%EB%AF%B8%EB%B6%84","sameAs":"http:\/\/www.wikidata.org\/entity\/Q29175","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q29175","author":{"@type":"Organization","name":"\uc704\ud0a4\ubbf8\ub514\uc5b4 \ud504\ub85c\uc81d\ud2b8 \uae30\uc5ec\uc790"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-09-13T16:36:27Z","dateModified":"2024-10-22T12:55:37Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/0\/0f\/Tangent_to_a_curve.svg","headline":"\ud568\uc218\uc758 \uc21c\uac04\ubcc0\ud654\uc728\uc744 \uad6c\ud558\ub294 \uacc4\uc0b0 \uacfc\uc815"}</script> </body> </html>