CINXE.COM

Probabilistic Logic Research Papers - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Probabilistic Logic Research Papers - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "by_tag", 'action': "show_one", 'controller_action': 'by_tag#show_one', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="Vq4zsprepvJMDF8t6TGLrXp7ujJAdTFzDjoZ7MyeVbmVNnV4qXSFDAlWdGcUlk/W7Dm07g9Hz97vopH6F9QIlA==" /> <link href="/Documents/in/Probabilistic_Logic?after=50%2C26799173" rel="next" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="description" content="View Probabilistic Logic Research Papers on Academia.edu for free." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'by_tag'; var $action_name = "show_one"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15275,"monthly_visitors":"113 million","monthly_visitor_count":113468711,"monthly_visitor_count_in_millions":113,"user_count":277147353,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732429968000); window.Aedu.timeDifference = new Date().getTime() - 1732429968000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://www.academia.edu/Documents/in/Probabilistic_Logic" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-by_tag a-show_one logged_out u-bgColorWhite'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-by_tag a-show_one logged_out u-bgColorWhite'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav no-sm no-md"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <div class="DesignSystem" style="margin-top:-40px"><div class="PageHeader"><div class="container"><div class="row"><style type="text/css">.sor-abstract { display: -webkit-box; overflow: hidden; text-overflow: ellipsis; -webkit-line-clamp: 3; -webkit-box-orient: vertical; }</style><div class="col-xs-12 clearfix"><div class="u-floatLeft"><h1 class="PageHeader-title u-m0x u-fs30">Probabilistic Logic</h1><div class="u-tcGrayDark">346&nbsp;Followers</div><div class="u-tcGrayDark u-mt2x">Recent papers in&nbsp;<b>Probabilistic Logic</b></div></div></div></div></div></div><div class="TabbedNavigation"><div class="container"><div class="row"><div class="col-xs-12 clearfix"><ul class="nav u-m0x u-p0x list-inline u-displayFlex"><li class="active"><a href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Top Papers</a></li><li><a href="https://www.academia.edu/Documents/in/Probabilistic_Logic/MostCited">Most Cited Papers</a></li><li><a href="https://www.academia.edu/Documents/in/Probabilistic_Logic/MostDownloaded">Most Downloaded Papers</a></li><li><a href="https://www.academia.edu/Documents/in/Probabilistic_Logic/MostRecent">Newest Papers</a></li><li><a class="" href="https://www.academia.edu/People/Probabilistic_Logic">People</a></li></ul></div><style type="text/css">ul.nav{flex-direction:row}@media(max-width: 567px){ul.nav{flex-direction:column}.TabbedNavigation li{max-width:100%}.TabbedNavigation li.active{background-color:var(--background-grey, #dddde2)}.TabbedNavigation li.active:before,.TabbedNavigation li.active:after{display:none}}</style></div></div></div><div class="container"><div class="row"><div class="col-xs-12"><div class="u-displayFlex"><div class="u-flexGrow1"><div class="works"><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_73749035" data-work_id="73749035" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/73749035/Quantitative_Model_Checking_of_an_RSA_based_Email_Protocol_on_Mobile_Devices">Quantitative Model Checking of an RSA-based Email Protocol on Mobile Devices</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Abstract—The current proliferation of mobile devices has resulted in a large diversity of hardware specifications, each designed for different services and applications (e.g. cell phones, smart phones, PDAs). At the same time, e-mail... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_73749035" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Abstract—The current proliferation of mobile devices has resulted in a large diversity of hardware specifications, each designed for different services and applications (e.g. cell phones, smart phones, PDAs). At the same time, e-mail message delivery has become a vital part of everyday communications. This article provides a cost-aware study of an RSA-based e-mail protocol executed upon the widely used Apple iPhone1,2 with ARM1176JZF-S, operating in an High Speed Downlink Packet Access (HSDPA) mobile environment. The proposed study employs formal analysis techniques, such as probabilistic model checking, and proceeds to a quantitative analysis of the e-mail protocol, taking into account computational parameters derived by the devices ’ specifications. The value of this study is to form a computer-aided framework which balances the tradeoff between gaining in security, using high-length RSA keys, and conserving CPU resources, due to hardware limitations of mobile devices. To the best...</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/73749035" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="912c0bfbbc68ca74eaae17996e755248" rel="nofollow" data-download="{&quot;attachment_id&quot;:82148140,&quot;asset_id&quot;:73749035,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/82148140/download_file?st=MTczMjQyOTk2Nyw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="122251922" href="https://independent.academia.edu/SPetridou">Sophia Petridou</a><script data-card-contents-for-user="122251922" type="text/json">{"id":122251922,"first_name":"Sophia","last_name":"Petridou","domain_name":"independent","page_name":"SPetridou","display_name":"Sophia Petridou","profile_url":"https://independent.academia.edu/SPetridou?f_ri=43610","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_73749035 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="73749035"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 73749035, container: ".js-paper-rank-work_73749035", }); });</script></li><li class="js-percentile-work_73749035 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73749035; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_73749035"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_73749035 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="73749035"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73749035; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73749035]").text(description); $(".js-view-count-work_73749035").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_73749035").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="73749035"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">20</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="2203" href="https://www.academia.edu/Documents/in/Model_Checking">Model Checking</a>,&nbsp;<script data-card-contents-for-ri="2203" type="text/json">{"id":2203,"name":"Model Checking","url":"https://www.academia.edu/Documents/in/Model_Checking?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19883" href="https://www.academia.edu/Documents/in/Protocol_Design">Protocol Design</a>,&nbsp;<script data-card-contents-for-ri="19883" type="text/json">{"id":19883,"name":"Protocol Design","url":"https://www.academia.edu/Documents/in/Protocol_Design?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26825" href="https://www.academia.edu/Documents/in/Mobile_Computing">Mobile Computing</a>,&nbsp;<script data-card-contents-for-ri="26825" type="text/json">{"id":26825,"name":"Mobile Computing","url":"https://www.academia.edu/Documents/in/Mobile_Computing?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="28298" href="https://www.academia.edu/Documents/in/Formal_Analysis">Formal Analysis</a><script data-card-contents-for-ri="28298" type="text/json">{"id":28298,"name":"Formal Analysis","url":"https://www.academia.edu/Documents/in/Formal_Analysis?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=73749035]'), work: {"id":73749035,"title":"Quantitative Model Checking of an RSA-based Email Protocol on Mobile Devices","created_at":"2022-03-14T07:58:04.009-07:00","url":"https://www.academia.edu/73749035/Quantitative_Model_Checking_of_an_RSA_based_Email_Protocol_on_Mobile_Devices?f_ri=43610","dom_id":"work_73749035","summary":"Abstract—The current proliferation of mobile devices has resulted in a large diversity of hardware specifications, each designed for different services and applications (e.g. cell phones, smart phones, PDAs). At the same time, e-mail message delivery has become a vital part of everyday communications. This article provides a cost-aware study of an RSA-based e-mail protocol executed upon the widely used Apple iPhone1,2 with ARM1176JZF-S, operating in an High Speed Downlink Packet Access (HSDPA) mobile environment. The proposed study employs formal analysis techniques, such as probabilistic model checking, and proceeds to a quantitative analysis of the e-mail protocol, taking into account computational parameters derived by the devices ’ specifications. The value of this study is to form a computer-aided framework which balances the tradeoff between gaining in security, using high-length RSA keys, and conserving CPU resources, due to hardware limitations of mobile devices. To the best...","downloadable_attachments":[{"id":82148140,"asset_id":73749035,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":122251922,"first_name":"Sophia","last_name":"Petridou","domain_name":"independent","page_name":"SPetridou","display_name":"Sophia Petridou","profile_url":"https://independent.academia.edu/SPetridou?f_ri=43610","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":2203,"name":"Model Checking","url":"https://www.academia.edu/Documents/in/Model_Checking?f_ri=43610","nofollow":false},{"id":19883,"name":"Protocol Design","url":"https://www.academia.edu/Documents/in/Protocol_Design?f_ri=43610","nofollow":false},{"id":26825,"name":"Mobile Computing","url":"https://www.academia.edu/Documents/in/Mobile_Computing?f_ri=43610","nofollow":false},{"id":28298,"name":"Formal Analysis","url":"https://www.academia.edu/Documents/in/Formal_Analysis?f_ri=43610","nofollow":false},{"id":37434,"name":"Quantitative analysis","url":"https://www.academia.edu/Documents/in/Quantitative_analysis?f_ri=43610"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":85294,"name":"Computer Model","url":"https://www.academia.edu/Documents/in/Computer_Model?f_ri=43610"},{"id":99531,"name":"Probabilistic Model Checking","url":"https://www.academia.edu/Documents/in/Probabilistic_Model_Checking?f_ri=43610"},{"id":154850,"name":"Mobile Device","url":"https://www.academia.edu/Documents/in/Mobile_Device?f_ri=43610"},{"id":168071,"name":"Computational Efficiency","url":"https://www.academia.edu/Documents/in/Computational_Efficiency?f_ri=43610"},{"id":172035,"name":"Formal Verification","url":"https://www.academia.edu/Documents/in/Formal_Verification?f_ri=43610"},{"id":197069,"name":"Electronic mail","url":"https://www.academia.edu/Documents/in/Electronic_mail?f_ri=43610"},{"id":222999,"name":"Public key cryptography","url":"https://www.academia.edu/Documents/in/Public_key_cryptography?f_ri=43610"},{"id":413300,"name":"Analytical Model","url":"https://www.academia.edu/Documents/in/Analytical_Model?f_ri=43610"},{"id":433449,"name":"Cryptographic Protocols","url":"https://www.academia.edu/Documents/in/Cryptographic_Protocols?f_ri=43610"},{"id":641216,"name":"Quantitative Analysis","url":"https://www.academia.edu/Documents/in/Quantitative_Analysis-1?f_ri=43610"},{"id":910490,"name":"Smart Phone","url":"https://www.academia.edu/Documents/in/Smart_Phone?f_ri=43610"},{"id":2467595,"name":"Probabilistic Model","url":"https://www.academia.edu/Documents/in/Probabilistic_Model?f_ri=43610"},{"id":2472819,"name":"RSA Cryptosystem","url":"https://www.academia.edu/Documents/in/RSA_Cryptosystem?f_ri=43610"},{"id":2728924,"name":"Mobile Environment","url":"https://www.academia.edu/Documents/in/Mobile_Environment?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_15569399" data-work_id="15569399" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/15569399/Learning_Probabilistic_Automata_for_Model_Checking">Learning Probabilistic Automata for Model Checking</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/15569399" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="de6114c7736059236f1eb9c6caab5567" rel="nofollow" data-download="{&quot;attachment_id&quot;:43078151,&quot;asset_id&quot;:15569399,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/43078151/download_file?st=MTczMjQyOTk2Nyw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="34730539" href="https://aalborg.academia.edu/BrianNielsen">Brian Nielsen</a><script data-card-contents-for-user="34730539" type="text/json">{"id":34730539,"first_name":"Brian","last_name":"Nielsen","domain_name":"aalborg","page_name":"BrianNielsen","display_name":"Brian Nielsen","profile_url":"https://aalborg.academia.edu/BrianNielsen?f_ri=43610","photo":"https://0.academia-photos.com/34730539/10133390/11306822/s65_brian.nielsen.jpg"}</script></span></span></li><li class="js-paper-rank-work_15569399 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="15569399"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 15569399, container: ".js-paper-rank-work_15569399", }); });</script></li><li class="js-percentile-work_15569399 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 15569399; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_15569399"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_15569399 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="15569399"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 15569399; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=15569399]").text(description); $(".js-view-count-work_15569399").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_15569399").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="15569399"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">18</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="2203" href="https://www.academia.edu/Documents/in/Model_Checking">Model Checking</a>,&nbsp;<script data-card-contents-for-ri="2203" type="text/json">{"id":2203,"name":"Model Checking","url":"https://www.academia.edu/Documents/in/Model_Checking?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5473" href="https://www.academia.edu/Documents/in/Embedded_Systems">Embedded Systems</a>,&nbsp;<script data-card-contents-for-ri="5473" type="text/json">{"id":5473,"name":"Embedded Systems","url":"https://www.academia.edu/Documents/in/Embedded_Systems?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="43610" href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Probabilistic Logic</a>,&nbsp;<script data-card-contents-for-ri="43610" type="text/json">{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="85294" href="https://www.academia.edu/Documents/in/Computer_Model">Computer Model</a><script data-card-contents-for-ri="85294" type="text/json">{"id":85294,"name":"Computer Model","url":"https://www.academia.edu/Documents/in/Computer_Model?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=15569399]'), work: {"id":15569399,"title":"Learning Probabilistic Automata for Model Checking","created_at":"2015-09-10T02:11:31.081-07:00","url":"https://www.academia.edu/15569399/Learning_Probabilistic_Automata_for_Model_Checking?f_ri=43610","dom_id":"work_15569399","summary":null,"downloadable_attachments":[{"id":43078151,"asset_id":15569399,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":34730539,"first_name":"Brian","last_name":"Nielsen","domain_name":"aalborg","page_name":"BrianNielsen","display_name":"Brian Nielsen","profile_url":"https://aalborg.academia.edu/BrianNielsen?f_ri=43610","photo":"https://0.academia-photos.com/34730539/10133390/11306822/s65_brian.nielsen.jpg"}],"research_interests":[{"id":2203,"name":"Model Checking","url":"https://www.academia.edu/Documents/in/Model_Checking?f_ri=43610","nofollow":false},{"id":5473,"name":"Embedded Systems","url":"https://www.academia.edu/Documents/in/Embedded_Systems?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false},{"id":85294,"name":"Computer Model","url":"https://www.academia.edu/Documents/in/Computer_Model?f_ri=43610","nofollow":false},{"id":108385,"name":"Learning Automata","url":"https://www.academia.edu/Documents/in/Learning_Automata?f_ri=43610"},{"id":133934,"name":"Levels of Abstraction","url":"https://www.academia.edu/Documents/in/Levels_of_Abstraction?f_ri=43610"},{"id":166775,"name":"Learning Model","url":"https://www.academia.edu/Documents/in/Learning_Model?f_ri=43610"},{"id":172035,"name":"Formal Verification","url":"https://www.academia.edu/Documents/in/Formal_Verification?f_ri=43610"},{"id":196189,"name":"Sample Size","url":"https://www.academia.edu/Documents/in/Sample_Size?f_ri=43610"},{"id":215385,"name":"Linear Temporal Logic","url":"https://www.academia.edu/Documents/in/Linear_Temporal_Logic?f_ri=43610"},{"id":413300,"name":"Analytical Model","url":"https://www.academia.edu/Documents/in/Analytical_Model?f_ri=43610"},{"id":523853,"name":"System modeling","url":"https://www.academia.edu/Documents/in/System_modeling?f_ri=43610"},{"id":741671,"name":"Markov Process","url":"https://www.academia.edu/Documents/in/Markov_Process?f_ri=43610"},{"id":821024,"name":"Probabilistic Automata","url":"https://www.academia.edu/Documents/in/Probabilistic_Automata?f_ri=43610"},{"id":953822,"name":"Power Modeling","url":"https://www.academia.edu/Documents/in/Power_Modeling?f_ri=43610"},{"id":1148030,"name":"Embedded System","url":"https://www.academia.edu/Documents/in/Embedded_System?f_ri=43610"},{"id":1150876,"name":"Temporal Logic","url":"https://www.academia.edu/Documents/in/Temporal_Logic?f_ri=43610"},{"id":1272625,"name":"Adaptive Algorithm","url":"https://www.academia.edu/Documents/in/Adaptive_Algorithm?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_40475691" data-work_id="40475691" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/40475691/Multiple_Fault_Diagnosis_in_Electrical_Power_Systems_with_Probabilistic_Neural_Networks">Multiple Fault Diagnosis in Electrical Power Systems with Probabilistic Neural Networks</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/40475691" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="0e7182dd66362ce79d89c4eacdab4c06" rel="nofollow" data-download="{&quot;attachment_id&quot;:60741748,&quot;asset_id&quot;:40475691,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/60741748/download_file?st=MTczMjQyOTk2Nyw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="34253042" href="https://itesm.academia.edu/RubenMoralesMenendez">Ruben Morales-Menendez</a><script data-card-contents-for-user="34253042" type="text/json">{"id":34253042,"first_name":"Ruben","last_name":"Morales-Menendez","domain_name":"itesm","page_name":"RubenMoralesMenendez","display_name":"Ruben Morales-Menendez","profile_url":"https://itesm.academia.edu/RubenMoralesMenendez?f_ri=43610","photo":"https://0.academia-photos.com/34253042/20023613/53745318/s65_ruben.morales-menendez.jpg"}</script></span></span></li><li class="js-paper-rank-work_40475691 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="40475691"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 40475691, container: ".js-paper-rank-work_40475691", }); });</script></li><li class="js-percentile-work_40475691 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 40475691; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_40475691"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_40475691 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="40475691"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 40475691; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=40475691]").text(description); $(".js-view-count-work_40475691").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_40475691").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="40475691"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">17</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="4205" href="https://www.academia.edu/Documents/in/Data_Analysis">Data Analysis</a>,&nbsp;<script data-card-contents-for-ri="4205" type="text/json">{"id":4205,"name":"Data Analysis","url":"https://www.academia.edu/Documents/in/Data_Analysis?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5748" href="https://www.academia.edu/Documents/in/Power_System">Power System</a>,&nbsp;<script data-card-contents-for-ri="5748" type="text/json">{"id":5748,"name":"Power System","url":"https://www.academia.edu/Documents/in/Power_System?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="11598" href="https://www.academia.edu/Documents/in/Neural_Networks">Neural Networks</a>,&nbsp;<script data-card-contents-for-ri="11598" type="text/json">{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="11898" href="https://www.academia.edu/Documents/in/Fault_Detection">Fault Detection</a><script data-card-contents-for-ri="11898" type="text/json">{"id":11898,"name":"Fault Detection","url":"https://www.academia.edu/Documents/in/Fault_Detection?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=40475691]'), work: {"id":40475691,"title":"Multiple Fault Diagnosis in Electrical Power Systems with Probabilistic Neural Networks","created_at":"2019-09-29T20:20:16.853-07:00","url":"https://www.academia.edu/40475691/Multiple_Fault_Diagnosis_in_Electrical_Power_Systems_with_Probabilistic_Neural_Networks?f_ri=43610","dom_id":"work_40475691","summary":null,"downloadable_attachments":[{"id":60741748,"asset_id":40475691,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":34253042,"first_name":"Ruben","last_name":"Morales-Menendez","domain_name":"itesm","page_name":"RubenMoralesMenendez","display_name":"Ruben Morales-Menendez","profile_url":"https://itesm.academia.edu/RubenMoralesMenendez?f_ri=43610","photo":"https://0.academia-photos.com/34253042/20023613/53745318/s65_ruben.morales-menendez.jpg"}],"research_interests":[{"id":4205,"name":"Data Analysis","url":"https://www.academia.edu/Documents/in/Data_Analysis?f_ri=43610","nofollow":false},{"id":5748,"name":"Power System","url":"https://www.academia.edu/Documents/in/Power_System?f_ri=43610","nofollow":false},{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=43610","nofollow":false},{"id":11898,"name":"Fault Detection","url":"https://www.academia.edu/Documents/in/Fault_Detection?f_ri=43610","nofollow":false},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=43610"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":117101,"name":"Fault diagnosis","url":"https://www.academia.edu/Documents/in/Fault_diagnosis?f_ri=43610"},{"id":153168,"name":"Data Collection","url":"https://www.academia.edu/Documents/in/Data_Collection?f_ri=43610"},{"id":219476,"name":"Electric Power System","url":"https://www.academia.edu/Documents/in/Electric_Power_System?f_ri=43610"},{"id":221822,"name":"Historical Data","url":"https://www.academia.edu/Documents/in/Historical_Data?f_ri=43610"},{"id":224852,"name":"Eigenvalues","url":"https://www.academia.edu/Documents/in/Eigenvalues?f_ri=43610"},{"id":247924,"name":"Sistemas Y Computacion","url":"https://www.academia.edu/Documents/in/Sistemas_Y_Computacion?f_ri=43610"},{"id":389165,"name":"Voltage","url":"https://www.academia.edu/Documents/in/Voltage?f_ri=43610"},{"id":450311,"name":"Probabilistic Neural Network","url":"https://www.academia.edu/Documents/in/Probabilistic_Neural_Network?f_ri=43610"},{"id":646015,"name":"Dynamic Loading","url":"https://www.academia.edu/Documents/in/Dynamic_Loading?f_ri=43610"},{"id":1755350,"name":"Power System Simulation","url":"https://www.academia.edu/Documents/in/Power_System_Simulation?f_ri=43610"},{"id":2534325,"name":"Correlation Matrix","url":"https://www.academia.edu/Documents/in/Correlation_Matrix?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_71682326" data-work_id="71682326" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/71682326/Text_summarization_features_selection_method_using_pseudo_Genetic_based_model">Text summarization features selection method using pseudo Genetic-based model</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">The features are considered the cornerstone of text summarization. The most important issue is what feature to be considered in a text summarization process. Including all the features in the summarization process may not be considered as... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_71682326" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">The features are considered the cornerstone of text summarization. The most important issue is what feature to be considered in a text summarization process. Including all the features in the summarization process may not be considered as an optimal solution. Therefore, other methods need to be deployed. In this paper, random five features used and investigated using a (pseudo) Genetic concept as an optimized trainable features selection mechanism. The Document Understanding Conference (DUC2002) used to train our proposed model; hence the objective of this paper is to learn the weight (importance) of each used feature. For each input document using the genetic concept, the size of the generation is defined and the chromosome dimension (genes) is equal to number of features used. Each gene is represents a feature and in binary format. A chromosome with high fitness value is selected to be enrolled in the final round. The average of each gene is computed for all best chromosomes and c...</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/71682326" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="184035935" href="https://independent.academia.edu/AmeerHamza683">Ameer Hamza</a><script data-card-contents-for-user="184035935" type="text/json">{"id":184035935,"first_name":"Ameer","last_name":"Hamza","domain_name":"independent","page_name":"AmeerHamza683","display_name":"Ameer Hamza","profile_url":"https://independent.academia.edu/AmeerHamza683?f_ri=43610","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_71682326 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="71682326"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 71682326, container: ".js-paper-rank-work_71682326", }); });</script></li><li class="js-percentile-work_71682326 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71682326; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_71682326"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_71682326 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="71682326"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71682326; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71682326]").text(description); $(".js-view-count-work_71682326").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_71682326").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="71682326"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">15</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="156" href="https://www.academia.edu/Documents/in/Genetics">Genetics</a>,&nbsp;<script data-card-contents-for-ri="156" type="text/json">{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="464" href="https://www.academia.edu/Documents/in/Information_Retrieval">Information Retrieval</a>,&nbsp;<script data-card-contents-for-ri="464" type="text/json">{"id":464,"name":"Information Retrieval","url":"https://www.academia.edu/Documents/in/Information_Retrieval?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5187" href="https://www.academia.edu/Documents/in/Statistical_Analysis">Statistical Analysis</a><script data-card-contents-for-ri="5187" type="text/json">{"id":5187,"name":"Statistical Analysis","url":"https://www.academia.edu/Documents/in/Statistical_Analysis?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=71682326]'), work: {"id":71682326,"title":"Text summarization features selection method using pseudo Genetic-based model","created_at":"2022-02-16T05:13:45.331-08:00","url":"https://www.academia.edu/71682326/Text_summarization_features_selection_method_using_pseudo_Genetic_based_model?f_ri=43610","dom_id":"work_71682326","summary":"The features are considered the cornerstone of text summarization. The most important issue is what feature to be considered in a text summarization process. Including all the features in the summarization process may not be considered as an optimal solution. Therefore, other methods need to be deployed. In this paper, random five features used and investigated using a (pseudo) Genetic concept as an optimized trainable features selection mechanism. The Document Understanding Conference (DUC2002) used to train our proposed model; hence the objective of this paper is to learn the weight (importance) of each used feature. For each input document using the genetic concept, the size of the generation is defined and the chromosome dimension (genes) is equal to number of features used. Each gene is represents a feature and in binary format. A chromosome with high fitness value is selected to be enrolled in the final round. The average of each gene is computed for all best chromosomes and c...","downloadable_attachments":[],"ordered_authors":[{"id":184035935,"first_name":"Ameer","last_name":"Hamza","domain_name":"independent","page_name":"AmeerHamza683","display_name":"Ameer Hamza","profile_url":"https://independent.academia.edu/AmeerHamza683?f_ri=43610","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics?f_ri=43610","nofollow":false},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=43610","nofollow":false},{"id":464,"name":"Information Retrieval","url":"https://www.academia.edu/Documents/in/Information_Retrieval?f_ri=43610","nofollow":false},{"id":5187,"name":"Statistical Analysis","url":"https://www.academia.edu/Documents/in/Statistical_Analysis?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":43619,"name":"Feature Selection","url":"https://www.academia.edu/Documents/in/Feature_Selection?f_ri=43610"},{"id":43981,"name":"Optimization","url":"https://www.academia.edu/Documents/in/Optimization?f_ri=43610"},{"id":80538,"name":"Probabilistic","url":"https://www.academia.edu/Documents/in/Probabilistic?f_ri=43610"},{"id":92738,"name":"Text Analysis","url":"https://www.academia.edu/Documents/in/Text_Analysis?f_ri=43610"},{"id":150019,"name":"Similarity","url":"https://www.academia.edu/Documents/in/Similarity?f_ri=43610"},{"id":159149,"name":"Data Reduction","url":"https://www.academia.edu/Documents/in/Data_Reduction?f_ri=43610"},{"id":160144,"name":"Feature Extraction","url":"https://www.academia.edu/Documents/in/Feature_Extraction?f_ri=43610"},{"id":466816,"name":"Text Summarization","url":"https://www.academia.edu/Documents/in/Text_Summarization?f_ri=43610"},{"id":971413,"name":"Summarization","url":"https://www.academia.edu/Documents/in/Summarization?f_ri=43610"},{"id":1993320,"name":"Optimal Solution","url":"https://www.academia.edu/Documents/in/Optimal_Solution?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_47266702" data-work_id="47266702" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/47266702/Probabilistic_Analysis_of_Dynamic_Scenes_and_Collision_Risks_Assessment_to_Improve_Driving_Safety">Probabilistic Analysis of Dynamic Scenes and Collision Risks Assessment to Improve Driving Safety</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/47266702" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="4caf46e9a3742b7ea899d66e1127c38a" rel="nofollow" data-download="{&quot;attachment_id&quot;:66449770,&quot;asset_id&quot;:47266702,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/66449770/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="34580844" href="https://independent.academia.edu/ChristianLaugier">Christian Laugier</a><script data-card-contents-for-user="34580844" type="text/json">{"id":34580844,"first_name":"Christian","last_name":"Laugier","domain_name":"independent","page_name":"ChristianLaugier","display_name":"Christian Laugier","profile_url":"https://independent.academia.edu/ChristianLaugier?f_ri=43610","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_47266702 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="47266702"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 47266702, container: ".js-paper-rank-work_47266702", }); });</script></li><li class="js-percentile-work_47266702 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47266702; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_47266702"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_47266702 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="47266702"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47266702; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47266702]").text(description); $(".js-view-count-work_47266702").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_47266702").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="47266702"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">9</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="9589" href="https://www.academia.edu/Documents/in/Intelligent_Transportation_Systems">Intelligent Transportation Systems</a>,&nbsp;<script data-card-contents-for-ri="9589" type="text/json">{"id":9589,"name":"Intelligent Transportation Systems","url":"https://www.academia.edu/Documents/in/Intelligent_Transportation_Systems?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="10583" href="https://www.academia.edu/Documents/in/Motion_control">Motion control</a>,&nbsp;<script data-card-contents-for-ri="10583" type="text/json">{"id":10583,"name":"Motion control","url":"https://www.academia.edu/Documents/in/Motion_control?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="12061" href="https://www.academia.edu/Documents/in/Risk_Management">Risk Management</a>,&nbsp;<script data-card-contents-for-ri="12061" type="text/json">{"id":12061,"name":"Risk Management","url":"https://www.academia.edu/Documents/in/Risk_Management?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="16664" href="https://www.academia.edu/Documents/in/Risk_assessment">Risk assessment</a><script data-card-contents-for-ri="16664" type="text/json">{"id":16664,"name":"Risk assessment","url":"https://www.academia.edu/Documents/in/Risk_assessment?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=47266702]'), work: {"id":47266702,"title":"Probabilistic Analysis of Dynamic Scenes and Collision Risks Assessment to Improve Driving Safety","created_at":"2021-04-21T09:26:24.042-07:00","url":"https://www.academia.edu/47266702/Probabilistic_Analysis_of_Dynamic_Scenes_and_Collision_Risks_Assessment_to_Improve_Driving_Safety?f_ri=43610","dom_id":"work_47266702","summary":null,"downloadable_attachments":[{"id":66449770,"asset_id":47266702,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":34580844,"first_name":"Christian","last_name":"Laugier","domain_name":"independent","page_name":"ChristianLaugier","display_name":"Christian Laugier","profile_url":"https://independent.academia.edu/ChristianLaugier?f_ri=43610","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":9589,"name":"Intelligent Transportation Systems","url":"https://www.academia.edu/Documents/in/Intelligent_Transportation_Systems?f_ri=43610","nofollow":false},{"id":10583,"name":"Motion control","url":"https://www.academia.edu/Documents/in/Motion_control?f_ri=43610","nofollow":false},{"id":12061,"name":"Risk Management","url":"https://www.academia.edu/Documents/in/Risk_Management?f_ri=43610","nofollow":false},{"id":16664,"name":"Risk assessment","url":"https://www.academia.edu/Documents/in/Risk_assessment?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":49161,"name":"Safety","url":"https://www.academia.edu/Documents/in/Safety?f_ri=43610"},{"id":143084,"name":"Collision Avoidance","url":"https://www.academia.edu/Documents/in/Collision_Avoidance?f_ri=43610"},{"id":143115,"name":"Sensor Fusion","url":"https://www.academia.edu/Documents/in/Sensor_Fusion?f_ri=43610"},{"id":622589,"name":"Risk Assessment","url":"https://www.academia.edu/Documents/in/Risk_Assessment-2?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_19633798" data-work_id="19633798" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/19633798/Lumpability_of_absorbing_Markov_chains_and_replacement_chains_on_fuzzy_partitions">Lumpability of absorbing Markov chains and replacement chains on fuzzy partitions</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/19633798" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="84f0cdc9732bf0a3c5263f84b0c7859e" rel="nofollow" data-download="{&quot;attachment_id&quot;:40749996,&quot;asset_id&quot;:19633798,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/40749996/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="1418821" href="https://teikav.academia.edu/httpmaisteiemtgrindexphpgerontidisioannis">Ioannis Gerontidis</a><script data-card-contents-for-user="1418821" type="text/json">{"id":1418821,"first_name":"Ioannis","last_name":"Gerontidis","domain_name":"teikav","page_name":"httpmaisteiemtgrindexphpgerontidisioannis","display_name":"Ioannis Gerontidis","profile_url":"https://teikav.academia.edu/httpmaisteiemtgrindexphpgerontidisioannis?f_ri=43610","photo":"https://0.academia-photos.com/1418821/511339/642323/s65_ioannis.gerontidis.jpg"}</script></span></span></li><li class="js-paper-rank-work_19633798 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="19633798"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 19633798, container: ".js-paper-rank-work_19633798", }); });</script></li><li class="js-percentile-work_19633798 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 19633798; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_19633798"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_19633798 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="19633798"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 19633798; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=19633798]").text(description); $(".js-view-count-work_19633798").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_19633798").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="19633798"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">9</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="2377" href="https://www.academia.edu/Documents/in/Finite_Element_Methods">Finite Element Methods</a>,&nbsp;<script data-card-contents-for-ri="2377" type="text/json">{"id":2377,"name":"Finite Element Methods","url":"https://www.academia.edu/Documents/in/Finite_Element_Methods?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5394" href="https://www.academia.edu/Documents/in/Fuzzy_set_theory">Fuzzy set theory</a>,&nbsp;<script data-card-contents-for-ri="5394" type="text/json">{"id":5394,"name":"Fuzzy set theory","url":"https://www.academia.edu/Documents/in/Fuzzy_set_theory?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="10182" href="https://www.academia.edu/Documents/in/Fuzzy_Sets">Fuzzy Sets</a>,&nbsp;<script data-card-contents-for-ri="10182" type="text/json">{"id":10182,"name":"Fuzzy Sets","url":"https://www.academia.edu/Documents/in/Fuzzy_Sets?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="10817" href="https://www.academia.edu/Documents/in/Markov_Processes">Markov Processes</a><script data-card-contents-for-ri="10817" type="text/json">{"id":10817,"name":"Markov Processes","url":"https://www.academia.edu/Documents/in/Markov_Processes?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=19633798]'), work: {"id":19633798,"title":"Lumpability of absorbing Markov chains and replacement chains on fuzzy partitions","created_at":"2015-12-13T05:31:59.181-08:00","url":"https://www.academia.edu/19633798/Lumpability_of_absorbing_Markov_chains_and_replacement_chains_on_fuzzy_partitions?f_ri=43610","dom_id":"work_19633798","summary":null,"downloadable_attachments":[{"id":40749996,"asset_id":19633798,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":1418821,"first_name":"Ioannis","last_name":"Gerontidis","domain_name":"teikav","page_name":"httpmaisteiemtgrindexphpgerontidisioannis","display_name":"Ioannis Gerontidis","profile_url":"https://teikav.academia.edu/httpmaisteiemtgrindexphpgerontidisioannis?f_ri=43610","photo":"https://0.academia-photos.com/1418821/511339/642323/s65_ioannis.gerontidis.jpg"}],"research_interests":[{"id":2377,"name":"Finite Element Methods","url":"https://www.academia.edu/Documents/in/Finite_Element_Methods?f_ri=43610","nofollow":false},{"id":5394,"name":"Fuzzy set theory","url":"https://www.academia.edu/Documents/in/Fuzzy_set_theory?f_ri=43610","nofollow":false},{"id":10182,"name":"Fuzzy Sets","url":"https://www.academia.edu/Documents/in/Fuzzy_Sets?f_ri=43610","nofollow":false},{"id":10817,"name":"Markov Processes","url":"https://www.academia.edu/Documents/in/Markov_Processes?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":135913,"name":"State Space","url":"https://www.academia.edu/Documents/in/State_Space?f_ri=43610"},{"id":327660,"name":"Absorbing Markov Chain","url":"https://www.academia.edu/Documents/in/Absorbing_Markov_Chain?f_ri=43610"},{"id":348010,"name":"Context Modeling","url":"https://www.academia.edu/Documents/in/Context_Modeling?f_ri=43610"},{"id":595993,"name":"Markov chain","url":"https://www.academia.edu/Documents/in/Markov_chain?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_4287756" data-work_id="4287756" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/4287756/PRISM_2_0_A_Tool_for_Probabilistic_Model_Checking">PRISM 2.0: A Tool for Probabilistic Model Checking</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/4287756" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="dfe9906e25ce85496adde7212c6193bc" rel="nofollow" data-download="{&quot;attachment_id&quot;:31754879,&quot;asset_id&quot;:4287756,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/31754879/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="5209504" href="https://glasgow.academia.edu/GethinNorman">Gethin Norman</a><script data-card-contents-for-user="5209504" type="text/json">{"id":5209504,"first_name":"Gethin","last_name":"Norman","domain_name":"glasgow","page_name":"GethinNorman","display_name":"Gethin Norman","profile_url":"https://glasgow.academia.edu/GethinNorman?f_ri=43610","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_4287756 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="4287756"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 4287756, container: ".js-paper-rank-work_4287756", }); });</script></li><li class="js-percentile-work_4287756 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 4287756; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_4287756"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_4287756 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="4287756"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 4287756; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=4287756]").text(description); $(".js-view-count-work_4287756").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_4287756").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="4287756"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">17</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="2203" href="https://www.academia.edu/Documents/in/Model_Checking">Model Checking</a>,&nbsp;<script data-card-contents-for-ri="2203" type="text/json">{"id":2203,"name":"Model Checking","url":"https://www.academia.edu/Documents/in/Model_Checking?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="10919" href="https://www.academia.edu/Documents/in/Markov_Decision_Process">Markov Decision Process</a>,&nbsp;<script data-card-contents-for-ri="10919" type="text/json">{"id":10919,"name":"Markov Decision Process","url":"https://www.academia.edu/Documents/in/Markov_Decision_Process?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="43610" href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Probabilistic Logic</a>,&nbsp;<script data-card-contents-for-ri="43610" type="text/json">{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="67959" href="https://www.academia.edu/Documents/in/Probability_Distribution_and_Applications">Probability Distribution &amp; Applications</a><script data-card-contents-for-ri="67959" type="text/json">{"id":67959,"name":"Probability Distribution \u0026 Applications","url":"https://www.academia.edu/Documents/in/Probability_Distribution_and_Applications?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=4287756]'), work: {"id":4287756,"title":"PRISM 2.0: A Tool for Probabilistic Model Checking","created_at":"2013-08-21T00:03:01.990-07:00","url":"https://www.academia.edu/4287756/PRISM_2_0_A_Tool_for_Probabilistic_Model_Checking?f_ri=43610","dom_id":"work_4287756","summary":null,"downloadable_attachments":[{"id":31754879,"asset_id":4287756,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":5209504,"first_name":"Gethin","last_name":"Norman","domain_name":"glasgow","page_name":"GethinNorman","display_name":"Gethin Norman","profile_url":"https://glasgow.academia.edu/GethinNorman?f_ri=43610","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":2203,"name":"Model Checking","url":"https://www.academia.edu/Documents/in/Model_Checking?f_ri=43610","nofollow":false},{"id":10919,"name":"Markov Decision Process","url":"https://www.academia.edu/Documents/in/Markov_Decision_Process?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false},{"id":67959,"name":"Probability Distribution \u0026 Applications","url":"https://www.academia.edu/Documents/in/Probability_Distribution_and_Applications?f_ri=43610","nofollow":false},{"id":96047,"name":"Case Study","url":"https://www.academia.edu/Documents/in/Case_Study?f_ri=43610"},{"id":96628,"name":"Formal Specification","url":"https://www.academia.edu/Documents/in/Formal_Specification?f_ri=43610"},{"id":99531,"name":"Probabilistic Model Checking","url":"https://www.academia.edu/Documents/in/Probabilistic_Model_Checking?f_ri=43610"},{"id":126194,"name":"Formal method","url":"https://www.academia.edu/Documents/in/Formal_method?f_ri=43610"},{"id":172035,"name":"Formal Verification","url":"https://www.academia.edu/Documents/in/Formal_Verification?f_ri=43610"},{"id":229390,"name":"Real Time","url":"https://www.academia.edu/Documents/in/Real_Time?f_ri=43610"},{"id":274353,"name":"Probabilistic Modelling","url":"https://www.academia.edu/Documents/in/Probabilistic_Modelling?f_ri=43610"},{"id":679783,"name":"Boolean Satisfiability","url":"https://www.academia.edu/Documents/in/Boolean_Satisfiability?f_ri=43610"},{"id":991101,"name":"Discrete Time Systems","url":"https://www.academia.edu/Documents/in/Discrete_Time_Systems?f_ri=43610"},{"id":1128994,"name":"Timed Automata","url":"https://www.academia.edu/Documents/in/Timed_Automata?f_ri=43610"},{"id":1150876,"name":"Temporal Logic","url":"https://www.academia.edu/Documents/in/Temporal_Logic?f_ri=43610"},{"id":1222271,"name":"Quantitative Evaluation","url":"https://www.academia.edu/Documents/in/Quantitative_Evaluation?f_ri=43610"},{"id":2467595,"name":"Probabilistic Model","url":"https://www.academia.edu/Documents/in/Probabilistic_Model?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_22405256 coauthored" data-work_id="22405256" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/22405256/A_deterministic_energy_efficient_clustering_protocol_for_wireless_sensor_networks">A deterministic energy-efficient clustering protocol for wireless sensor networks</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/22405256" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="b0baf73081a7b08aaae0904c73704e24" rel="nofollow" data-download="{&quot;attachment_id&quot;:43027983,&quot;asset_id&quot;:22405256,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/43027983/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="38518082" href="https://otago.academia.edu/FAderohunmu">Femi Aderohunmu</a><script data-card-contents-for-user="38518082" type="text/json">{"id":38518082,"first_name":"Femi","last_name":"Aderohunmu","domain_name":"otago","page_name":"FAderohunmu","display_name":"Femi Aderohunmu","profile_url":"https://otago.academia.edu/FAderohunmu?f_ri=43610","photo":"/images/s65_no_pic.png"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-22405256">+1</span><div class="hidden js-additional-users-22405256"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://otago.academia.edu/JeremiahDeng">Jeremiah Deng</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-22405256'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-22405256').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_22405256 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="22405256"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 22405256, container: ".js-paper-rank-work_22405256", }); });</script></li><li class="js-percentile-work_22405256 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22405256; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_22405256"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_22405256 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="22405256"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22405256; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22405256]").text(description); $(".js-view-count-work_22405256").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_22405256").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="22405256"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">8</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="311" href="https://www.academia.edu/Documents/in/Approximation_Theory">Approximation Theory</a>,&nbsp;<script data-card-contents-for-ri="311" type="text/json">{"id":311,"name":"Approximation Theory","url":"https://www.academia.edu/Documents/in/Approximation_Theory?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2345" href="https://www.academia.edu/Documents/in/Wireless_Communications">Wireless Communications</a>,&nbsp;<script data-card-contents-for-ri="2345" type="text/json">{"id":2345,"name":"Wireless Communications","url":"https://www.academia.edu/Documents/in/Wireless_Communications?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4252" href="https://www.academia.edu/Documents/in/Computer_Networks">Computer Networks</a>,&nbsp;<script data-card-contents-for-ri="4252" type="text/json">{"id":4252,"name":"Computer Networks","url":"https://www.academia.edu/Documents/in/Computer_Networks?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="9136" href="https://www.academia.edu/Documents/in/Wireless_Sensor_Networks">Wireless Sensor Networks</a><script data-card-contents-for-ri="9136" type="text/json">{"id":9136,"name":"Wireless Sensor Networks","url":"https://www.academia.edu/Documents/in/Wireless_Sensor_Networks?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=22405256]'), work: {"id":22405256,"title":"A deterministic energy-efficient clustering protocol for wireless sensor networks","created_at":"2016-02-24T14:34:04.028-08:00","url":"https://www.academia.edu/22405256/A_deterministic_energy_efficient_clustering_protocol_for_wireless_sensor_networks?f_ri=43610","dom_id":"work_22405256","summary":null,"downloadable_attachments":[{"id":43027983,"asset_id":22405256,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":38518082,"first_name":"Femi","last_name":"Aderohunmu","domain_name":"otago","page_name":"FAderohunmu","display_name":"Femi Aderohunmu","profile_url":"https://otago.academia.edu/FAderohunmu?f_ri=43610","photo":"/images/s65_no_pic.png"},{"id":49045,"first_name":"Jeremiah","last_name":"Deng","domain_name":"otago","page_name":"JeremiahDeng","display_name":"Jeremiah Deng","profile_url":"https://otago.academia.edu/JeremiahDeng?f_ri=43610","photo":"https://0.academia-photos.com/49045/850787/1058872/s65_jeremiah.deng.png"}],"research_interests":[{"id":311,"name":"Approximation Theory","url":"https://www.academia.edu/Documents/in/Approximation_Theory?f_ri=43610","nofollow":false},{"id":2345,"name":"Wireless Communications","url":"https://www.academia.edu/Documents/in/Wireless_Communications?f_ri=43610","nofollow":false},{"id":4252,"name":"Computer Networks","url":"https://www.academia.edu/Documents/in/Computer_Networks?f_ri=43610","nofollow":false},{"id":9136,"name":"Wireless Sensor Networks","url":"https://www.academia.edu/Documents/in/Wireless_Sensor_Networks?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":82999,"name":"Protocols","url":"https://www.academia.edu/Documents/in/Protocols?f_ri=43610"},{"id":459384,"name":"Energy efficient","url":"https://www.academia.edu/Documents/in/Energy_efficient?f_ri=43610"},{"id":1211847,"name":"Wireless Sensor Network","url":"https://www.academia.edu/Documents/in/Wireless_Sensor_Network?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_63302036" data-work_id="63302036" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/63302036/Efficient_Algorithms_for_Prolog_Based_Probabilistic_Logic_Programming_Effici%C3%ABnte_algoritmen_voor_prolog_gebaseerd_probabilistisch_logisch_programmeren_">Efficient Algorithms for Prolog Based Probabilistic Logic Programming (Efficiënte algoritmen voor prolog gebaseerd probabilistisch logisch programmeren)</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">The integration of probabilistic reasoning with logic programming has become one of the challenges in Artificial Intelligence. Lately, a lot of Probabilistic Logic Programming (PLP) formalisms have surfaced. Given that PLP is the... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_63302036" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">The integration of probabilistic reasoning with logic programming has become one of the challenges in Artificial Intelligence. Lately, a lot of Probabilistic Logic Programming (PLP) formalisms have surfaced. Given that PLP is the combination of logic programming and probabilities which are two very different fields, it is expected that researchers from several fields come up with different approaches to tackle the presented challenges. This has resulted in a new discipline called Probabilistic Logic Learning (PLL) or Statistical Relational Learning (SRL) and a very active research community. Within this community, ProbLog a probabilistic extension of Prolog, has appeared. ProbLog was motivated by the task of mining links in large probabilistic graphs. The simple but powerful ProbLog formulation was extended in order to support inference on several different models. Soon ProbLog evolved into a general purpose probabilistic programming language that provides infrastructure for many PL...</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/63302036" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="031cb9c15fd6c7eb65a0b44678469de9" rel="nofollow" data-download="{&quot;attachment_id&quot;:75857288,&quot;asset_id&quot;:63302036,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/75857288/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="70921572" href="https://independent.academia.edu/TheofrastosMantadelis">Theofrastos Mantadelis</a><script data-card-contents-for-user="70921572" type="text/json">{"id":70921572,"first_name":"Theofrastos","last_name":"Mantadelis","domain_name":"independent","page_name":"TheofrastosMantadelis","display_name":"Theofrastos Mantadelis","profile_url":"https://independent.academia.edu/TheofrastosMantadelis?f_ri=43610","photo":"https://0.academia-photos.com/70921572/65469760/53806723/s65_theofrastos.mantadelis.png"}</script></span></span></li><li class="js-paper-rank-work_63302036 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="63302036"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 63302036, container: ".js-paper-rank-work_63302036", }); });</script></li><li class="js-percentile-work_63302036 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 63302036; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_63302036"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_63302036 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="63302036"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 63302036; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=63302036]").text(description); $(".js-view-count-work_63302036").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_63302036").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="63302036"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">5</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>,&nbsp;<script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="39699" href="https://www.academia.edu/Documents/in/Probabilistic_Graphical_Models">Probabilistic Graphical Models</a>,&nbsp;<script data-card-contents-for-ri="39699" type="text/json">{"id":39699,"name":"Probabilistic Graphical Models","url":"https://www.academia.edu/Documents/in/Probabilistic_Graphical_Models?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="43610" href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Probabilistic Logic</a>,&nbsp;<script data-card-contents-for-ri="43610" type="text/json">{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="144497" href="https://www.academia.edu/Documents/in/Statistical_Relational_Learning">Statistical Relational Learning</a><script data-card-contents-for-ri="144497" type="text/json">{"id":144497,"name":"Statistical Relational Learning","url":"https://www.academia.edu/Documents/in/Statistical_Relational_Learning?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=63302036]'), work: {"id":63302036,"title":"Efficient Algorithms for Prolog Based Probabilistic Logic Programming (Efficiënte algoritmen voor prolog gebaseerd probabilistisch logisch programmeren)","created_at":"2021-12-05T23:04:18.794-08:00","url":"https://www.academia.edu/63302036/Efficient_Algorithms_for_Prolog_Based_Probabilistic_Logic_Programming_Effici%C3%ABnte_algoritmen_voor_prolog_gebaseerd_probabilistisch_logisch_programmeren_?f_ri=43610","dom_id":"work_63302036","summary":"The integration of probabilistic reasoning with logic programming has become one of the challenges in Artificial Intelligence. Lately, a lot of Probabilistic Logic Programming (PLP) formalisms have surfaced. Given that PLP is the combination of logic programming and probabilities which are two very different fields, it is expected that researchers from several fields come up with different approaches to tackle the presented challenges. This has resulted in a new discipline called Probabilistic Logic Learning (PLL) or Statistical Relational Learning (SRL) and a very active research community. Within this community, ProbLog a probabilistic extension of Prolog, has appeared. ProbLog was motivated by the task of mining links in large probabilistic graphs. The simple but powerful ProbLog formulation was extended in order to support inference on several different models. Soon ProbLog evolved into a general purpose probabilistic programming language that provides infrastructure for many PL...","downloadable_attachments":[{"id":75857288,"asset_id":63302036,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":70921572,"first_name":"Theofrastos","last_name":"Mantadelis","domain_name":"independent","page_name":"TheofrastosMantadelis","display_name":"Theofrastos Mantadelis","profile_url":"https://independent.academia.edu/TheofrastosMantadelis?f_ri=43610","photo":"https://0.academia-photos.com/70921572/65469760/53806723/s65_theofrastos.mantadelis.png"}],"research_interests":[{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=43610","nofollow":false},{"id":39699,"name":"Probabilistic Graphical Models","url":"https://www.academia.edu/Documents/in/Probabilistic_Graphical_Models?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false},{"id":144497,"name":"Statistical Relational Learning","url":"https://www.academia.edu/Documents/in/Statistical_Relational_Learning?f_ri=43610","nofollow":false},{"id":3056116,"name":"Problog","url":"https://www.academia.edu/Documents/in/Problog?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_67540131" data-work_id="67540131" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/67540131/Classification_of_Classic_Turkish_Music_Makams">Classification of Classic Turkish Music Makams</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">In this work, Classical Turkish Music songs are classified into six makams. Makam is a modal framework for melodic development in Classical Turkish Music. The effect of the sound clip length on the system performance was also evaluated.... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_67540131" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">In this work, Classical Turkish Music songs are classified into six makams. Makam is a modal framework for melodic development in Classical Turkish Music. The effect of the sound clip length on the system performance was also evaluated. The Mel Frequency Cepstral Coefficients (MFCC) were used as features. Obtained data were classified by using Probabilistic Neural Network. The best correct recognition ratio was obtained as 89,4% by using a clip length of 6 s.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/67540131" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="a0ae502672615437dba6d3fd69d51b31" rel="nofollow" data-download="{&quot;attachment_id&quot;:78318014,&quot;asset_id&quot;:67540131,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/78318014/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="57156840" href="https://independent.academia.edu/BolatB%C3%BClent">Bülent Bolat</a><script data-card-contents-for-user="57156840" type="text/json">{"id":57156840,"first_name":"Bülent","last_name":"Bolat","domain_name":"independent","page_name":"BolatBülent","display_name":"Bülent Bolat","profile_url":"https://independent.academia.edu/BolatB%C3%BClent?f_ri=43610","photo":"https://0.academia-photos.com/57156840/15580899/16166150/s65_b_lent.bolat.jpg"}</script></span></span></li><li class="js-paper-rank-work_67540131 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="67540131"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 67540131, container: ".js-paper-rank-work_67540131", }); });</script></li><li class="js-percentile-work_67540131 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67540131; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_67540131"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_67540131 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="67540131"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67540131; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67540131]").text(description); $(".js-view-count-work_67540131").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_67540131").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="67540131"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">19</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2560" href="https://www.academia.edu/Documents/in/Probabilistic_Networks">Probabilistic Networks</a>,&nbsp;<script data-card-contents-for-ri="2560" type="text/json">{"id":2560,"name":"Probabilistic Networks","url":"https://www.academia.edu/Documents/in/Probabilistic_Networks?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4095" href="https://www.academia.edu/Documents/in/Classification_Machine_Learning_">Classification (Machine Learning)</a>,&nbsp;<script data-card-contents-for-ri="4095" type="text/json">{"id":4095,"name":"Classification (Machine Learning)","url":"https://www.academia.edu/Documents/in/Classification_Machine_Learning_?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4148" href="https://www.academia.edu/Documents/in/Audio_Signal_Processing">Audio Signal Processing</a><script data-card-contents-for-ri="4148" type="text/json">{"id":4148,"name":"Audio Signal Processing","url":"https://www.academia.edu/Documents/in/Audio_Signal_Processing?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=67540131]'), work: {"id":67540131,"title":"Classification of Classic Turkish Music Makams","created_at":"2022-01-07T09:00:36.346-08:00","url":"https://www.academia.edu/67540131/Classification_of_Classic_Turkish_Music_Makams?f_ri=43610","dom_id":"work_67540131","summary":"In this work, Classical Turkish Music songs are classified into six makams. Makam is a modal framework for melodic development in Classical Turkish Music. The effect of the sound clip length on the system performance was also evaluated. The Mel Frequency Cepstral Coefficients (MFCC) were used as features. Obtained data were classified by using Probabilistic Neural Network. The best correct recognition ratio was obtained as 89,4% by using a clip length of 6 s.","downloadable_attachments":[{"id":78318014,"asset_id":67540131,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":57156840,"first_name":"Bülent","last_name":"Bolat","domain_name":"independent","page_name":"BolatBülent","display_name":"Bülent Bolat","profile_url":"https://independent.academia.edu/BolatB%C3%BClent?f_ri=43610","photo":"https://0.academia-photos.com/57156840/15580899/16166150/s65_b_lent.bolat.jpg"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=43610","nofollow":false},{"id":2560,"name":"Probabilistic Networks","url":"https://www.academia.edu/Documents/in/Probabilistic_Networks?f_ri=43610","nofollow":false},{"id":4095,"name":"Classification (Machine Learning)","url":"https://www.academia.edu/Documents/in/Classification_Machine_Learning_?f_ri=43610","nofollow":false},{"id":4148,"name":"Audio Signal Processing","url":"https://www.academia.edu/Documents/in/Audio_Signal_Processing?f_ri=43610","nofollow":false},{"id":9038,"name":"Digital Signal Processing","url":"https://www.academia.edu/Documents/in/Digital_Signal_Processing?f_ri=43610"},{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=43610"},{"id":40754,"name":"Classical Music","url":"https://www.academia.edu/Documents/in/Classical_Music?f_ri=43610"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":45658,"name":"MFCC","url":"https://www.academia.edu/Documents/in/MFCC?f_ri=43610"},{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=43610"},{"id":70154,"name":"Musical Information Retrieval","url":"https://www.academia.edu/Documents/in/Musical_Information_Retrieval?f_ri=43610"},{"id":160144,"name":"Feature Extraction","url":"https://www.academia.edu/Documents/in/Feature_Extraction?f_ri=43610"},{"id":220049,"name":"Accuracy","url":"https://www.academia.edu/Documents/in/Accuracy?f_ri=43610"},{"id":450311,"name":"Probabilistic Neural Network","url":"https://www.academia.edu/Documents/in/Probabilistic_Neural_Network?f_ri=43610"},{"id":545008,"name":"Mel Frequency Cepstral Coefficient","url":"https://www.academia.edu/Documents/in/Mel_Frequency_Cepstral_Coefficient?f_ri=43610"},{"id":552150,"name":"Filter Banks","url":"https://www.academia.edu/Documents/in/Filter_Banks?f_ri=43610"},{"id":592191,"name":"Turkish makam maqam classical music","url":"https://www.academia.edu/Documents/in/Turkish_makam_maqam_classical_music?f_ri=43610"},{"id":1374329,"name":"Mel-frequency Cepstral Coefficients","url":"https://www.academia.edu/Documents/in/Mel-frequency_Cepstral_Coefficients?f_ri=43610"},{"id":3142462,"name":"Neural nets","url":"https://www.academia.edu/Documents/in/Neural_nets?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_78690354" data-work_id="78690354" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/78690354/Probabilistic_Interpretation_of_Complex_Fuzzy_Set">Probabilistic Interpretation of Complex Fuzzy Set</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/78690354" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="6bc15f8761dba761d911c6d8da4ac0d7" rel="nofollow" data-download="{&quot;attachment_id&quot;:85649442,&quot;asset_id&quot;:78690354,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/85649442/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="124327316" href="https://independent.academia.edu/NilambarSethi">Nilambar Sethi</a><script data-card-contents-for-user="124327316" type="text/json">{"id":124327316,"first_name":"Nilambar","last_name":"Sethi","domain_name":"independent","page_name":"NilambarSethi","display_name":"Nilambar Sethi","profile_url":"https://independent.academia.edu/NilambarSethi?f_ri=43610","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_78690354 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="78690354"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 78690354, container: ".js-paper-rank-work_78690354", }); });</script></li><li class="js-percentile-work_78690354 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78690354; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_78690354"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_78690354 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="78690354"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78690354; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78690354]").text(description); $(".js-view-count-work_78690354").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_78690354").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="78690354"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">17</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="344" href="https://www.academia.edu/Documents/in/Probability_Theory">Probability Theory</a>,&nbsp;<script data-card-contents-for-ri="344" type="text/json">{"id":344,"name":"Probability Theory","url":"https://www.academia.edu/Documents/in/Probability_Theory?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>,&nbsp;<script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5394" href="https://www.academia.edu/Documents/in/Fuzzy_set_theory">Fuzzy set theory</a><script data-card-contents-for-ri="5394" type="text/json">{"id":5394,"name":"Fuzzy set theory","url":"https://www.academia.edu/Documents/in/Fuzzy_set_theory?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=78690354]'), work: {"id":78690354,"title":"Probabilistic Interpretation of Complex Fuzzy Set","created_at":"2022-05-07T10:10:55.973-07:00","url":"https://www.academia.edu/78690354/Probabilistic_Interpretation_of_Complex_Fuzzy_Set?f_ri=43610","dom_id":"work_78690354","summary":null,"downloadable_attachments":[{"id":85649442,"asset_id":78690354,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":124327316,"first_name":"Nilambar","last_name":"Sethi","domain_name":"independent","page_name":"NilambarSethi","display_name":"Nilambar Sethi","profile_url":"https://independent.academia.edu/NilambarSethi?f_ri=43610","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":344,"name":"Probability Theory","url":"https://www.academia.edu/Documents/in/Probability_Theory?f_ri=43610","nofollow":false},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=43610","nofollow":false},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=43610","nofollow":false},{"id":5394,"name":"Fuzzy set theory","url":"https://www.academia.edu/Documents/in/Fuzzy_set_theory?f_ri=43610","nofollow":false},{"id":12022,"name":"Numerical Analysis","url":"https://www.academia.edu/Documents/in/Numerical_Analysis?f_ri=43610"},{"id":22613,"name":"Probability and statistics","url":"https://www.academia.edu/Documents/in/Probability_and_statistics?f_ri=43610"},{"id":31412,"name":"Probability and Mathematical Statistics","url":"https://www.academia.edu/Documents/in/Probability_and_Mathematical_Statistics?f_ri=43610"},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability?f_ri=43610"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":315908,"name":"Probability distributions to model air pollutant data","url":"https://www.academia.edu/Documents/in/Probability_distributions_to_model_air_pollutant_data?f_ri=43610"},{"id":343413,"name":"Applied Probability and Statistics","url":"https://www.academia.edu/Documents/in/Applied_Probability_and_Statistics?f_ri=43610"},{"id":571797,"name":"Introduction to Probability","url":"https://www.academia.edu/Documents/in/Introduction_to_Probability?f_ri=43610"},{"id":2008020,"name":"Complex Fuzzy Set","url":"https://www.academia.edu/Documents/in/Complex_Fuzzy_Set?f_ri=43610"},{"id":2008021,"name":"Type-2 Complex Fuzzy Set","url":"https://www.academia.edu/Documents/in/Type-2_Complex_Fuzzy_Set?f_ri=43610"},{"id":2976127,"name":"Complex fuzzy relation","url":"https://www.academia.edu/Documents/in/Complex_fuzzy_relation?f_ri=43610"},{"id":2976128,"name":"complement of complex fuzzy relation","url":"https://www.academia.edu/Documents/in/complement_of_complex_fuzzy_relation?f_ri=43610"},{"id":2976129,"name":"δ -equality","url":"https://www.academia.edu/Documents/in/%CE%B4_-equality?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_12326418" data-work_id="12326418" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/12326418/Active_Visual_Segmentation">Active Visual Segmentation</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/12326418" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="06ef1873a0349a4328fba7c698c831cc" rel="nofollow" data-download="{&quot;attachment_id&quot;:37598563,&quot;asset_id&quot;:12326418,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/37598563/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="30982945" href="https://independent.academia.edu/AjayMishra36">Ajay Mishra</a><script data-card-contents-for-user="30982945" type="text/json">{"id":30982945,"first_name":"Ajay","last_name":"Mishra","domain_name":"independent","page_name":"AjayMishra36","display_name":"Ajay Mishra","profile_url":"https://independent.academia.edu/AjayMishra36?f_ri=43610","photo":"https://0.academia-photos.com/30982945/9072983/10120555/s65_ajay.mishra.jpg"}</script></span></span></li><li class="js-paper-rank-work_12326418 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="12326418"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 12326418, container: ".js-paper-rank-work_12326418", }); });</script></li><li class="js-percentile-work_12326418 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12326418; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_12326418"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_12326418 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="12326418"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12326418; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12326418]").text(description); $(".js-view-count-work_12326418").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_12326418").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="12326418"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">21</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="37" href="https://www.academia.edu/Documents/in/Information_Systems">Information Systems</a>,&nbsp;<script data-card-contents-for-ri="37" type="text/json">{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="428" href="https://www.academia.edu/Documents/in/Algorithms">Algorithms</a>,&nbsp;<script data-card-contents-for-ri="428" type="text/json">{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="854" href="https://www.academia.edu/Documents/in/Computer_Vision">Computer Vision</a>,&nbsp;<script data-card-contents-for-ri="854" type="text/json">{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1440" href="https://www.academia.edu/Documents/in/Visualization">Visualization</a><script data-card-contents-for-ri="1440" type="text/json">{"id":1440,"name":"Visualization","url":"https://www.academia.edu/Documents/in/Visualization?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=12326418]'), work: {"id":12326418,"title":"Active Visual Segmentation","created_at":"2015-05-10T23:36:09.259-07:00","url":"https://www.academia.edu/12326418/Active_Visual_Segmentation?f_ri=43610","dom_id":"work_12326418","summary":null,"downloadable_attachments":[{"id":37598563,"asset_id":12326418,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":30982945,"first_name":"Ajay","last_name":"Mishra","domain_name":"independent","page_name":"AjayMishra36","display_name":"Ajay Mishra","profile_url":"https://independent.academia.edu/AjayMishra36?f_ri=43610","photo":"https://0.academia-photos.com/30982945/9072983/10120555/s65_ajay.mishra.jpg"}],"research_interests":[{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems?f_ri=43610","nofollow":false},{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms?f_ri=43610","nofollow":false},{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=43610","nofollow":false},{"id":1440,"name":"Visualization","url":"https://www.academia.edu/Documents/in/Visualization?f_ri=43610","nofollow":false},{"id":4008,"name":"Visual attention","url":"https://www.academia.edu/Documents/in/Visual_attention?f_ri=43610"},{"id":26870,"name":"Image segmentation","url":"https://www.academia.edu/Documents/in/Image_segmentation?f_ri=43610"},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability?f_ri=43610"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans?f_ri=43610"},{"id":81788,"name":"Edge Detection","url":"https://www.academia.edu/Documents/in/Edge_Detection?f_ri=43610"},{"id":82283,"name":"Form perception","url":"https://www.academia.edu/Documents/in/Form_perception?f_ri=43610"},{"id":88325,"name":"Cues","url":"https://www.academia.edu/Documents/in/Cues?f_ri=43610"},{"id":128282,"name":"Visual System","url":"https://www.academia.edu/Documents/in/Visual_System?f_ri=43610"},{"id":245634,"name":"Eye","url":"https://www.academia.edu/Documents/in/Eye?f_ri=43610"},{"id":313989,"name":"Visual Cues","url":"https://www.academia.edu/Documents/in/Visual_Cues?f_ri=43610"},{"id":368127,"name":"Object segmentation","url":"https://www.academia.edu/Documents/in/Object_segmentation?f_ri=43610"},{"id":884993,"name":"Cue integration","url":"https://www.academia.edu/Documents/in/Cue_integration?f_ri=43610"},{"id":998925,"name":"Human Visual System","url":"https://www.academia.edu/Documents/in/Human_Visual_System?f_ri=43610"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering?f_ri=43610"},{"id":1432574,"name":"Scale Invariance","url":"https://www.academia.edu/Documents/in/Scale_Invariance?f_ri=43610"},{"id":1800837,"name":"Image Color Analysis","url":"https://www.academia.edu/Documents/in/Image_Color_Analysis?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_8308719" data-work_id="8308719" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/8308719/Fuzzy_behavior_hierarchies_for_multi_robot_control">Fuzzy behavior hierarchies for multi-robot control</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/8308719" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="921cb0e31364ee669ed7b67d66036ae1" rel="nofollow" data-download="{&quot;attachment_id&quot;:34717543,&quot;asset_id&quot;:8308719,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/34717543/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="16552829" href="https://ufg.academia.edu/MarcoAAssfalkdeOliveira">Marco A Assfalk de Oliveira</a><script data-card-contents-for-user="16552829" type="text/json">{"id":16552829,"first_name":"Marco A","last_name":"Assfalk de Oliveira","domain_name":"ufg","page_name":"MarcoAAssfalkdeOliveira","display_name":"Marco A Assfalk de Oliveira","profile_url":"https://ufg.academia.edu/MarcoAAssfalkdeOliveira?f_ri=43610","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_8308719 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="8308719"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 8308719, container: ".js-paper-rank-work_8308719", }); });</script></li><li class="js-percentile-work_8308719 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8308719; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_8308719"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_8308719 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="8308719"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8308719; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8308719]").text(description); $(".js-view-count-work_8308719").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_8308719").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="8308719"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">16</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="237" href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a>,&nbsp;<script data-card-contents-for-ri="237" type="text/json">{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4165" href="https://www.academia.edu/Documents/in/Fuzzy_Logic">Fuzzy Logic</a>,&nbsp;<script data-card-contents-for-ri="4165" type="text/json">{"id":4165,"name":"Fuzzy Logic","url":"https://www.academia.edu/Documents/in/Fuzzy_Logic?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="10977" href="https://www.academia.edu/Documents/in/Intelligent_Systems">Intelligent Systems</a>,&nbsp;<script data-card-contents-for-ri="10977" type="text/json">{"id":10977,"name":"Intelligent Systems","url":"https://www.academia.edu/Documents/in/Intelligent_Systems?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="35399" href="https://www.academia.edu/Documents/in/Control_system">Control system</a><script data-card-contents-for-ri="35399" type="text/json">{"id":35399,"name":"Control system","url":"https://www.academia.edu/Documents/in/Control_system?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=8308719]'), work: {"id":8308719,"title":"Fuzzy behavior hierarchies for multi-robot control","created_at":"2014-09-13T01:58:09.339-07:00","url":"https://www.academia.edu/8308719/Fuzzy_behavior_hierarchies_for_multi_robot_control?f_ri=43610","dom_id":"work_8308719","summary":null,"downloadable_attachments":[{"id":34717543,"asset_id":8308719,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":16552829,"first_name":"Marco A","last_name":"Assfalk de Oliveira","domain_name":"ufg","page_name":"MarcoAAssfalkdeOliveira","display_name":"Marco A Assfalk de Oliveira","profile_url":"https://ufg.academia.edu/MarcoAAssfalkdeOliveira?f_ri=43610","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science?f_ri=43610","nofollow":false},{"id":4165,"name":"Fuzzy Logic","url":"https://www.academia.edu/Documents/in/Fuzzy_Logic?f_ri=43610","nofollow":false},{"id":10977,"name":"Intelligent Systems","url":"https://www.academia.edu/Documents/in/Intelligent_Systems?f_ri=43610","nofollow":false},{"id":35399,"name":"Control system","url":"https://www.academia.edu/Documents/in/Control_system?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":115002,"name":"Autonomous navigation","url":"https://www.academia.edu/Documents/in/Autonomous_navigation?f_ri=43610"},{"id":179654,"name":"Mobile Robot","url":"https://www.academia.edu/Documents/in/Mobile_Robot?f_ri=43610"},{"id":181847,"name":"First-Order Logic","url":"https://www.academia.edu/Documents/in/First-Order_Logic?f_ri=43610"},{"id":189381,"name":"Robot Control","url":"https://www.academia.edu/Documents/in/Robot_Control?f_ri=43610"},{"id":246163,"name":"Knowledge base","url":"https://www.academia.edu/Documents/in/Knowledge_base?f_ri=43610"},{"id":294220,"name":"Control System Design","url":"https://www.academia.edu/Documents/in/Control_System_Design?f_ri=43610"},{"id":335089,"name":"Autonomic System","url":"https://www.academia.edu/Documents/in/Autonomic_System?f_ri=43610"},{"id":467682,"name":"Fuzzy Logic Controller","url":"https://www.academia.edu/Documents/in/Fuzzy_Logic_Controller?f_ri=43610"},{"id":758278,"name":"Large Scale","url":"https://www.academia.edu/Documents/in/Large_Scale?f_ri=43610"},{"id":994520,"name":"Design and Implementation","url":"https://www.academia.edu/Documents/in/Design_and_Implementation?f_ri=43610"},{"id":1621567,"name":"Hierarchical Control","url":"https://www.academia.edu/Documents/in/Hierarchical_Control?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_11849151" data-work_id="11849151" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/11849151/Localization_of_mobile_robots_using_an_extended_kalman_filter_in_a_lego_nxt">Localization of mobile robots using an extended kalman filter in a lego nxt</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/11849151" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="41ac2a14efdee2351b573f7600f53736" rel="nofollow" data-download="{&quot;attachment_id&quot;:46487860,&quot;asset_id&quot;:11849151,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/46487860/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="29250076" href="https://independent.academia.edu/MatosAnibal">Anibal Matos</a><script data-card-contents-for-user="29250076" type="text/json">{"id":29250076,"first_name":"Anibal","last_name":"Matos","domain_name":"independent","page_name":"MatosAnibal","display_name":"Anibal Matos","profile_url":"https://independent.academia.edu/MatosAnibal?f_ri=43610","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_11849151 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="11849151"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 11849151, container: ".js-paper-rank-work_11849151", }); });</script></li><li class="js-percentile-work_11849151 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11849151; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_11849151"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_11849151 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="11849151"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11849151; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11849151]").text(description); $(".js-view-count-work_11849151").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_11849151").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="11849151"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">17</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="48" href="https://www.academia.edu/Documents/in/Engineering">Engineering</a>,&nbsp;<script data-card-contents-for-ri="48" type="text/json">{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="77" href="https://www.academia.edu/Documents/in/Robotics">Robotics</a>,&nbsp;<script data-card-contents-for-ri="77" type="text/json">{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="922" href="https://www.academia.edu/Documents/in/Education">Education</a>,&nbsp;<script data-card-contents-for-ri="922" type="text/json">{"id":922,"name":"Education","url":"https://www.academia.edu/Documents/in/Education?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2023" href="https://www.academia.edu/Documents/in/Engineering_Education">Engineering Education</a><script data-card-contents-for-ri="2023" type="text/json">{"id":2023,"name":"Engineering Education","url":"https://www.academia.edu/Documents/in/Engineering_Education?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=11849151]'), work: {"id":11849151,"title":"Localization of mobile robots using an extended kalman filter in a lego nxt","created_at":"2015-04-08T07:43:24.166-07:00","url":"https://www.academia.edu/11849151/Localization_of_mobile_robots_using_an_extended_kalman_filter_in_a_lego_nxt?f_ri=43610","dom_id":"work_11849151","summary":null,"downloadable_attachments":[{"id":46487860,"asset_id":11849151,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":29250076,"first_name":"Anibal","last_name":"Matos","domain_name":"independent","page_name":"MatosAnibal","display_name":"Anibal Matos","profile_url":"https://independent.academia.edu/MatosAnibal?f_ri=43610","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering?f_ri=43610","nofollow":false},{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=43610","nofollow":false},{"id":922,"name":"Education","url":"https://www.academia.edu/Documents/in/Education?f_ri=43610","nofollow":false},{"id":2023,"name":"Engineering Education","url":"https://www.academia.edu/Documents/in/Engineering_Education?f_ri=43610","nofollow":false},{"id":12009,"name":"Educational Robotics","url":"https://www.academia.edu/Documents/in/Educational_Robotics?f_ri=43610"},{"id":21636,"name":"Student Assessment","url":"https://www.academia.edu/Documents/in/Student_Assessment?f_ri=43610"},{"id":33252,"name":"State Estimation","url":"https://www.academia.edu/Documents/in/State_Estimation?f_ri=43610"},{"id":42564,"name":"LEGO Mindstorms","url":"https://www.academia.edu/Documents/in/LEGO_Mindstorms?f_ri=43610"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":49146,"name":"Kalman Filter","url":"https://www.academia.edu/Documents/in/Kalman_Filter?f_ri=43610"},{"id":66823,"name":"Mobile Robots","url":"https://www.academia.edu/Documents/in/Mobile_Robots?f_ri=43610"},{"id":179654,"name":"Mobile Robot","url":"https://www.academia.edu/Documents/in/Mobile_Robot?f_ri=43610"},{"id":247345,"name":"Experiments","url":"https://www.academia.edu/Documents/in/Experiments?f_ri=43610"},{"id":381495,"name":"Tool Development","url":"https://www.academia.edu/Documents/in/Tool_Development?f_ri=43610"},{"id":550905,"name":"Robot programming","url":"https://www.academia.edu/Documents/in/Robot_programming?f_ri=43610"},{"id":872410,"name":"Extended Kalman Filter","url":"https://www.academia.edu/Documents/in/Extended_Kalman_Filter?f_ri=43610"},{"id":1302340,"name":"Electrical and Computer Engineering","url":"https://www.academia.edu/Documents/in/Electrical_and_Computer_Engineering?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_35954159" data-work_id="35954159" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/35954159/Propagating_Uncertainty_in_Bayesian_Networks_by_Probabilistic_Logic_Sampling">Propagating Uncertainty in Bayesian Networks by Probabilistic Logic Sampling</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/35954159" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="dd8f720e21e98e00ac53c29a9f632470" rel="nofollow" data-download="{&quot;attachment_id&quot;:55836968,&quot;asset_id&quot;:35954159,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/55836968/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="33914262" href="https://cmu.academia.edu/MaxHenrion">Max Henrion</a><script data-card-contents-for-user="33914262" type="text/json">{"id":33914262,"first_name":"Max","last_name":"Henrion","domain_name":"cmu","page_name":"MaxHenrion","display_name":"Max Henrion","profile_url":"https://cmu.academia.edu/MaxHenrion?f_ri=43610","photo":"https://0.academia-photos.com/33914262/19079552/19029161/s65_max.henrion.jpg"}</script></span></span></li><li class="js-paper-rank-work_35954159 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="35954159"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 35954159, container: ".js-paper-rank-work_35954159", }); });</script></li><li class="js-percentile-work_35954159 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 35954159; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_35954159"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_35954159 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="35954159"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 35954159; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=35954159]").text(description); $(".js-view-count-work_35954159").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_35954159").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="35954159"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">3</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="43610" href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Probabilistic Logic</a>,&nbsp;<script data-card-contents-for-ri="43610" type="text/json">{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="274599" href="https://www.academia.edu/Documents/in/Bayesian_Network">Bayesian Network</a>,&nbsp;<script data-card-contents-for-ri="274599" type="text/json">{"id":274599,"name":"Bayesian Network","url":"https://www.academia.edu/Documents/in/Bayesian_Network?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1376033" href="https://www.academia.edu/Documents/in/UAI">UAI</a><script data-card-contents-for-ri="1376033" type="text/json">{"id":1376033,"name":"UAI","url":"https://www.academia.edu/Documents/in/UAI?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=35954159]'), work: {"id":35954159,"title":"Propagating Uncertainty in Bayesian Networks by Probabilistic Logic Sampling","created_at":"2018-02-18T19:16:59.841-08:00","url":"https://www.academia.edu/35954159/Propagating_Uncertainty_in_Bayesian_Networks_by_Probabilistic_Logic_Sampling?f_ri=43610","dom_id":"work_35954159","summary":null,"downloadable_attachments":[{"id":55836968,"asset_id":35954159,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":33914262,"first_name":"Max","last_name":"Henrion","domain_name":"cmu","page_name":"MaxHenrion","display_name":"Max Henrion","profile_url":"https://cmu.academia.edu/MaxHenrion?f_ri=43610","photo":"https://0.academia-photos.com/33914262/19079552/19029161/s65_max.henrion.jpg"}],"research_interests":[{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false},{"id":274599,"name":"Bayesian Network","url":"https://www.academia.edu/Documents/in/Bayesian_Network?f_ri=43610","nofollow":false},{"id":1376033,"name":"UAI","url":"https://www.academia.edu/Documents/in/UAI?f_ri=43610","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_12481459" data-work_id="12481459" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/12481459/A_propositional_probabilistic_logic_with_discrete_linear_time_for_reasoning_about_evidence">A propositional probabilistic logic with discrete linear time for reasoning about evidence</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/12481459" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="ed0a0d4a222b7c467e95712f16dd9e46" rel="nofollow" data-download="{&quot;attachment_id&quot;:46152052,&quot;asset_id&quot;:12481459,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/46152052/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="17341542" href="https://uni-lu.academia.edu/DraganDoder">Dragan Doder</a><script data-card-contents-for-user="17341542" type="text/json">{"id":17341542,"first_name":"Dragan","last_name":"Doder","domain_name":"uni-lu","page_name":"DraganDoder","display_name":"Dragan Doder","profile_url":"https://uni-lu.academia.edu/DraganDoder?f_ri=43610","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_12481459 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="12481459"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 12481459, container: ".js-paper-rank-work_12481459", }); });</script></li><li class="js-percentile-work_12481459 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12481459; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_12481459"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_12481459 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="12481459"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12481459; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12481459]").text(description); $(".js-view-count-work_12481459").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_12481459").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="12481459"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">5</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="305" href="https://www.academia.edu/Documents/in/Applied_Mathematics">Applied Mathematics</a>,&nbsp;<script data-card-contents-for-ri="305" type="text/json">{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="15092" href="https://www.academia.edu/Documents/in/Evidence">Evidence</a>,&nbsp;<script data-card-contents-for-ri="15092" type="text/json">{"id":15092,"name":"Evidence","url":"https://www.academia.edu/Documents/in/Evidence?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="43610" href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Probabilistic Logic</a>,&nbsp;<script data-card-contents-for-ri="43610" type="text/json">{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="986890" href="https://www.academia.edu/Documents/in/Decidability">Decidability</a><script data-card-contents-for-ri="986890" type="text/json">{"id":986890,"name":"Decidability","url":"https://www.academia.edu/Documents/in/Decidability?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=12481459]'), work: {"id":12481459,"title":"A propositional probabilistic logic with discrete linear time for reasoning about evidence","created_at":"2015-05-20T02:34:52.290-07:00","url":"https://www.academia.edu/12481459/A_propositional_probabilistic_logic_with_discrete_linear_time_for_reasoning_about_evidence?f_ri=43610","dom_id":"work_12481459","summary":null,"downloadable_attachments":[{"id":46152052,"asset_id":12481459,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":17341542,"first_name":"Dragan","last_name":"Doder","domain_name":"uni-lu","page_name":"DraganDoder","display_name":"Dragan Doder","profile_url":"https://uni-lu.academia.edu/DraganDoder?f_ri=43610","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=43610","nofollow":false},{"id":15092,"name":"Evidence","url":"https://www.academia.edu/Documents/in/Evidence?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false},{"id":986890,"name":"Decidability","url":"https://www.academia.edu/Documents/in/Decidability?f_ri=43610","nofollow":false},{"id":1150876,"name":"Temporal Logic","url":"https://www.academia.edu/Documents/in/Temporal_Logic?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_12615219" data-work_id="12615219" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/12615219/Synthesis_Modeling_and_Experimental_Characterization_of_Graphite_Nanoplatelet_Based_Composites_for_EMC_Applications">Synthesis, Modeling, and Experimental Characterization of Graphite Nanoplatelet-Based Composites for EMC Applications</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/12615219" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="0d1b7ebed0295113f523f3ab58fd11a2" rel="nofollow" data-download="{&quot;attachment_id&quot;:46048993,&quot;asset_id&quot;:12615219,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/46048993/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="31563852" href="https://independent.academia.edu/GiovanniBellis">Giovanni Bellis</a><script data-card-contents-for-user="31563852" type="text/json">{"id":31563852,"first_name":"Giovanni","last_name":"Bellis","domain_name":"independent","page_name":"GiovanniBellis","display_name":"Giovanni Bellis","profile_url":"https://independent.academia.edu/GiovanniBellis?f_ri=43610","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_12615219 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="12615219"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 12615219, container: ".js-paper-rank-work_12615219", }); });</script></li><li class="js-percentile-work_12615219 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12615219; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_12615219"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_12615219 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="12615219"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12615219; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12615219]").text(description); $(".js-view-count-work_12615219").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_12615219").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="12615219"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">6</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="12842" href="https://www.academia.edu/Documents/in/Carbon_Nanotube">Carbon Nanotube</a>,&nbsp;<script data-card-contents-for-ri="12842" type="text/json">{"id":12842,"name":"Carbon Nanotube","url":"https://www.academia.edu/Documents/in/Carbon_Nanotube?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="43610" href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Probabilistic Logic</a>,&nbsp;<script data-card-contents-for-ri="43610" type="text/json">{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="574681" href="https://www.academia.edu/Documents/in/Radar-absorbing_materials">Radar-absorbing materials</a>,&nbsp;<script data-card-contents-for-ri="574681" type="text/json">{"id":574681,"name":"Radar-absorbing materials","url":"https://www.academia.edu/Documents/in/Radar-absorbing_materials?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1228946" href="https://www.academia.edu/Documents/in/Physical_Properties">Physical Properties</a><script data-card-contents-for-ri="1228946" type="text/json">{"id":1228946,"name":"Physical Properties","url":"https://www.academia.edu/Documents/in/Physical_Properties?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=12615219]'), work: {"id":12615219,"title":"Synthesis, Modeling, and Experimental Characterization of Graphite Nanoplatelet-Based Composites for EMC Applications","created_at":"2015-05-26T12:30:12.021-07:00","url":"https://www.academia.edu/12615219/Synthesis_Modeling_and_Experimental_Characterization_of_Graphite_Nanoplatelet_Based_Composites_for_EMC_Applications?f_ri=43610","dom_id":"work_12615219","summary":null,"downloadable_attachments":[{"id":46048993,"asset_id":12615219,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":31563852,"first_name":"Giovanni","last_name":"Bellis","domain_name":"independent","page_name":"GiovanniBellis","display_name":"Giovanni Bellis","profile_url":"https://independent.academia.edu/GiovanniBellis?f_ri=43610","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":12842,"name":"Carbon Nanotube","url":"https://www.academia.edu/Documents/in/Carbon_Nanotube?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false},{"id":574681,"name":"Radar-absorbing materials","url":"https://www.academia.edu/Documents/in/Radar-absorbing_materials?f_ri=43610","nofollow":false},{"id":1228946,"name":"Physical Properties","url":"https://www.academia.edu/Documents/in/Physical_Properties?f_ri=43610","nofollow":false},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering?f_ri=43610"},{"id":1554801,"name":"Complex permittivity","url":"https://www.academia.edu/Documents/in/Complex_permittivity?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_752070" data-work_id="752070" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/752070/Joint_and_marginal_probability_analyses_of_Markov_Random_Field_networks_for_digital_logic_circuits">Joint and marginal probability analyses of Markov Random Field networks for digital logic circuits</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/752070" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="d57938bd3f215d9041d80e46ef581c96" rel="nofollow" data-download="{&quot;attachment_id&quot;:51253016,&quot;asset_id&quot;:752070,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/51253016/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="74370" href="https://uniroma1.academia.edu/USMANKHALID">USMAN KHALID</a><script data-card-contents-for-user="74370" type="text/json">{"id":74370,"first_name":"USMAN","last_name":"KHALID","domain_name":"uniroma1","page_name":"USMANKHALID","display_name":"USMAN KHALID","profile_url":"https://uniroma1.academia.edu/USMANKHALID?f_ri=43610","photo":"https://0.academia-photos.com/74370/20531/9336527/s65_usman.khalid.jpg"}</script></span></span></li><li class="js-paper-rank-work_752070 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="752070"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 752070, container: ".js-paper-rank-work_752070", }); });</script></li><li class="js-percentile-work_752070 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 752070; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_752070"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_752070 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="752070"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 752070; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=752070]").text(description); $(".js-view-count-work_752070").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_752070").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="752070"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">17</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="10817" href="https://www.academia.edu/Documents/in/Markov_Processes">Markov Processes</a>,&nbsp;<script data-card-contents-for-ri="10817" type="text/json">{"id":10817,"name":"Markov Processes","url":"https://www.academia.edu/Documents/in/Markov_Processes?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="33069" href="https://www.academia.edu/Documents/in/Probability">Probability</a>,&nbsp;<script data-card-contents-for-ri="33069" type="text/json">{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="43610" href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Probabilistic Logic</a>,&nbsp;<script data-card-contents-for-ri="43610" type="text/json">{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="103994" href="https://www.academia.edu/Documents/in/Intelligent">Intelligent</a><script data-card-contents-for-ri="103994" type="text/json">{"id":103994,"name":"Intelligent","url":"https://www.academia.edu/Documents/in/Intelligent?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=752070]'), work: {"id":752070,"title":"Joint and marginal probability analyses of Markov Random Field networks for digital logic circuits","created_at":"2011-07-17T03:19:10.868-07:00","url":"https://www.academia.edu/752070/Joint_and_marginal_probability_analyses_of_Markov_Random_Field_networks_for_digital_logic_circuits?f_ri=43610","dom_id":"work_752070","summary":null,"downloadable_attachments":[{"id":51253016,"asset_id":752070,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":74370,"first_name":"USMAN","last_name":"KHALID","domain_name":"uniroma1","page_name":"USMANKHALID","display_name":"USMAN KHALID","profile_url":"https://uniroma1.academia.edu/USMANKHALID?f_ri=43610","photo":"https://0.academia-photos.com/74370/20531/9336527/s65_usman.khalid.jpg"}],"research_interests":[{"id":10817,"name":"Markov Processes","url":"https://www.academia.edu/Documents/in/Markov_Processes?f_ri=43610","nofollow":false},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false},{"id":103994,"name":"Intelligent","url":"https://www.academia.edu/Documents/in/Intelligent?f_ri=43610","nofollow":false},{"id":161282,"name":"Scaling up","url":"https://www.academia.edu/Documents/in/Scaling_up?f_ri=43610"},{"id":164637,"name":"Bit Error Rate","url":"https://www.academia.edu/Documents/in/Bit_Error_Rate?f_ri=43610"},{"id":168144,"name":"Redundancy","url":"https://www.academia.edu/Documents/in/Redundancy?f_ri=43610"},{"id":234111,"name":"Digital Logic","url":"https://www.academia.edu/Documents/in/Digital_Logic?f_ri=43610"},{"id":305820,"name":"Circuit Design","url":"https://www.academia.edu/Documents/in/Circuit_Design?f_ri=43610"},{"id":320537,"name":"Belief Propagation","url":"https://www.academia.edu/Documents/in/Belief_Propagation?f_ri=43610"},{"id":609191,"name":"Logic Design","url":"https://www.academia.edu/Documents/in/Logic_Design?f_ri=43610"},{"id":628286,"name":"Logic Gates","url":"https://www.academia.edu/Documents/in/Logic_Gates?f_ri=43610"},{"id":648356,"name":"Integrated Circuit","url":"https://www.academia.edu/Documents/in/Integrated_Circuit?f_ri=43610"},{"id":813981,"name":"Fault Tolerant","url":"https://www.academia.edu/Documents/in/Fault_Tolerant?f_ri=43610"},{"id":1216932,"name":"Rule Based","url":"https://www.academia.edu/Documents/in/Rule_Based?f_ri=43610"},{"id":2240546,"name":"Integrated Circuit Design","url":"https://www.academia.edu/Documents/in/Integrated_Circuit_Design?f_ri=43610"},{"id":2287400,"name":"Markov Random Field","url":"https://www.academia.edu/Documents/in/Markov_Random_Field?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_14726369 coauthored" data-work_id="14726369" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/14726369/Hyper_graph_matching_via_reweighted_random_walks">Hyper-graph matching via reweighted random walks</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/14726369" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="b7e9fabdba7a8f8879bf869d458d6e4f" rel="nofollow" data-download="{&quot;attachment_id&quot;:39231309,&quot;asset_id&quot;:14726369,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/39231309/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="31049395" href="https://postech.academia.edu/MinsuCHO">Minsu Cho</a><script data-card-contents-for-user="31049395" type="text/json">{"id":31049395,"first_name":"Minsu","last_name":"Cho","domain_name":"postech","page_name":"MinsuCHO","display_name":"Minsu Cho","profile_url":"https://postech.academia.edu/MinsuCHO?f_ri=43610","photo":"https://0.academia-photos.com/31049395/9102810/10152865/s65_minsu.cho.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-14726369">+2</span><div class="hidden js-additional-users-14726369"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/KyoungMuLee">Kyoung Mu Lee</a></span></div><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/JungminL">Lee Jungmin</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-14726369'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-14726369').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_14726369 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="14726369"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 14726369, container: ".js-paper-rank-work_14726369", }); });</script></li><li class="js-percentile-work_14726369 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14726369; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_14726369"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_14726369 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="14726369"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14726369; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14726369]").text(description); $(".js-view-count-work_14726369").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_14726369").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="14726369"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">16</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="854" href="https://www.academia.edu/Documents/in/Computer_Vision">Computer Vision</a>,&nbsp;<script data-card-contents-for-ri="854" type="text/json">{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a>,&nbsp;<script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2616" href="https://www.academia.edu/Documents/in/Graph_Theory">Graph Theory</a>,&nbsp;<script data-card-contents-for-ri="2616" type="text/json">{"id":2616,"name":"Graph Theory","url":"https://www.academia.edu/Documents/in/Graph_Theory?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5109" href="https://www.academia.edu/Documents/in/Pattern_Recognition">Pattern Recognition</a><script data-card-contents-for-ri="5109" type="text/json">{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=14726369]'), work: {"id":14726369,"title":"Hyper-graph matching via reweighted random walks","created_at":"2015-08-06T17:12:30.193-07:00","url":"https://www.academia.edu/14726369/Hyper_graph_matching_via_reweighted_random_walks?f_ri=43610","dom_id":"work_14726369","summary":null,"downloadable_attachments":[{"id":39231309,"asset_id":14726369,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":31049395,"first_name":"Minsu","last_name":"Cho","domain_name":"postech","page_name":"MinsuCHO","display_name":"Minsu Cho","profile_url":"https://postech.academia.edu/MinsuCHO?f_ri=43610","photo":"https://0.academia-photos.com/31049395/9102810/10152865/s65_minsu.cho.jpg"},{"id":45406094,"first_name":"Kyoung Mu","last_name":"Lee","domain_name":"independent","page_name":"KyoungMuLee","display_name":"Kyoung Mu Lee","profile_url":"https://independent.academia.edu/KyoungMuLee?f_ri=43610","photo":"/images/s65_no_pic.png"},{"id":45340622,"first_name":"Lee","last_name":"Jungmin","domain_name":"independent","page_name":"JungminL","display_name":"Lee Jungmin","profile_url":"https://independent.academia.edu/JungminL?f_ri=43610","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=43610","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=43610","nofollow":false},{"id":2616,"name":"Graph Theory","url":"https://www.academia.edu/Documents/in/Graph_Theory?f_ri=43610","nofollow":false},{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition?f_ri=43610","nofollow":false},{"id":7973,"name":"Approximation Algorithms","url":"https://www.academia.edu/Documents/in/Approximation_Algorithms?f_ri=43610"},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability?f_ri=43610"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":49247,"name":"Higher Order Thinking","url":"https://www.academia.edu/Documents/in/Higher_Order_Thinking?f_ri=43610"},{"id":68431,"name":"Noise","url":"https://www.academia.edu/Documents/in/Noise?f_ri=43610"},{"id":72304,"name":"Graph matching","url":"https://www.academia.edu/Documents/in/Graph_matching?f_ri=43610"},{"id":78086,"name":"Random Walk","url":"https://www.academia.edu/Documents/in/Random_Walk?f_ri=43610"},{"id":97644,"name":"Computer Vision and Pattern Recognition","url":"https://www.academia.edu/Documents/in/Computer_Vision_and_Pattern_Recognition?f_ri=43610"},{"id":160144,"name":"Feature Extraction","url":"https://www.academia.edu/Documents/in/Feature_Extraction?f_ri=43610"},{"id":1154530,"name":"Tensile Stress","url":"https://www.academia.edu/Documents/in/Tensile_Stress?f_ri=43610"},{"id":1167632,"name":"Synthetic Data Generation","url":"https://www.academia.edu/Documents/in/Synthetic_Data_Generation?f_ri=43610"},{"id":1340817,"name":"CVPR","url":"https://www.academia.edu/Documents/in/CVPR?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_20544986" data-work_id="20544986" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/20544986/Probabilistic_Logics">Probabilistic Logics</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">The main goal of this work is connection between theory of probability and logic (expecially logical deduction). Probabilistic logic are combining the capacity of probability theory with the capacity of deductive logic to exploit the... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_20544986" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">The main goal of this work is connection between theory of probability and logic (expecially logical deduction). Probabilistic logic are combining the capacity of probability theory with the capacity of deductive logic to exploit the structure. The result is a richer and more expressive formalism with a broad range of possible application areas. In probabilistic logic statements have no value of truth and false, but a series of truths between 0 and 1, where 0 represents an impossible situation, and 1 complete security. Difficulties arising from the probabilistic logic is that they multiply computing complexity and allow non-intuitive results as supporting the theory of probability. Probabilistic logic is divided into two forms : 1. expressions that have the probability associated with tem, and 2. evidential probability that are based on the frequency interpretation of probability. In first chapter I describe some&nbsp; historical connections between logic and theory of probability. The second part is devoted to the problems of probabilistic logic, semantic and syntax, probabilistic argumentation and Bayesian epistemology, as well. In the third part, I solve problem of probabilistic logical networks, expecially on Markov logic netwok (MLN). In coclusion, there will be presented some problems of other philosophical disciplines, such as epistemology, which problems can be solved by probabilistic calculus.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/20544986" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="3e015322f716928c194f653b4ec89e37" rel="nofollow" data-download="{&quot;attachment_id&quot;:41428751,&quot;asset_id&quot;:20544986,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/41428751/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="31584754" href="https://unizg.academia.edu/DDSSPD">Mario Jurčec</a><script data-card-contents-for-user="31584754" type="text/json">{"id":31584754,"first_name":"Mario","last_name":"Jurčec","domain_name":"unizg","page_name":"DDSSPD","display_name":"Mario Jurčec","profile_url":"https://unizg.academia.edu/DDSSPD?f_ri=43610","photo":"https://0.academia-photos.com/31584754/31191168/131549980/s65_mario.jur_ec.jpg"}</script></span></span></li><li class="js-paper-rank-work_20544986 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="20544986"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 20544986, container: ".js-paper-rank-work_20544986", }); });</script></li><li class="js-percentile-work_20544986 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20544986; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_20544986"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_20544986 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="20544986"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20544986; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20544986]").text(description); $(".js-view-count-work_20544986").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_20544986").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="20544986"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">6</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="28512" href="https://www.academia.edu/Documents/in/Bayesian_Networks">Bayesian Networks</a>,&nbsp;<script data-card-contents-for-ri="28512" type="text/json">{"id":28512,"name":"Bayesian Networks","url":"https://www.academia.edu/Documents/in/Bayesian_Networks?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="28846" href="https://www.academia.edu/Documents/in/Bayesian_Probabilistic_Analysis">Bayesian Probabilistic Analysis</a>,&nbsp;<script data-card-contents-for-ri="28846" type="text/json">{"id":28846,"name":"Bayesian Probabilistic Analysis","url":"https://www.academia.edu/Documents/in/Bayesian_Probabilistic_Analysis?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="31711" href="https://www.academia.edu/Documents/in/Non-Classical_Logic">Non-Classical Logic</a>,&nbsp;<script data-card-contents-for-ri="31711" type="text/json">{"id":31711,"name":"Non-Classical Logic","url":"https://www.academia.edu/Documents/in/Non-Classical_Logic?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="43610" href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Probabilistic Logic</a><script data-card-contents-for-ri="43610" type="text/json">{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=20544986]'), work: {"id":20544986,"title":"Probabilistic Logics","created_at":"2016-01-22T06:46:12.337-08:00","url":"https://www.academia.edu/20544986/Probabilistic_Logics?f_ri=43610","dom_id":"work_20544986","summary":"The main goal of this work is connection between theory of probability and logic (expecially logical deduction). Probabilistic logic are combining the capacity of probability theory with the capacity of deductive logic to exploit the structure. The result is a richer and more expressive formalism with a broad range of possible application areas. In probabilistic logic statements have no value of truth and false, but a series of truths between 0 and 1, where 0 represents an impossible situation, and 1 complete security. Difficulties arising from the probabilistic logic is that they multiply computing complexity and allow non-intuitive results as supporting the theory of probability. Probabilistic logic is divided into two forms : 1. expressions that have the probability associated with tem, and 2. evidential probability that are based on the frequency interpretation of probability. In first chapter I describe some historical connections between logic and theory of probability. The second part is devoted to the problems of probabilistic logic, semantic and syntax, probabilistic argumentation and Bayesian epistemology, as well. In the third part, I solve problem of probabilistic logical networks, expecially on Markov logic netwok (MLN). In coclusion, there will be presented some problems of other philosophical disciplines, such as epistemology, which problems can be solved by probabilistic calculus. ","downloadable_attachments":[{"id":41428751,"asset_id":20544986,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":31584754,"first_name":"Mario","last_name":"Jurčec","domain_name":"unizg","page_name":"DDSSPD","display_name":"Mario Jurčec","profile_url":"https://unizg.academia.edu/DDSSPD?f_ri=43610","photo":"https://0.academia-photos.com/31584754/31191168/131549980/s65_mario.jur_ec.jpg"}],"research_interests":[{"id":28512,"name":"Bayesian Networks","url":"https://www.academia.edu/Documents/in/Bayesian_Networks?f_ri=43610","nofollow":false},{"id":28846,"name":"Bayesian Probabilistic Analysis","url":"https://www.academia.edu/Documents/in/Bayesian_Probabilistic_Analysis?f_ri=43610","nofollow":false},{"id":31711,"name":"Non-Classical Logic","url":"https://www.academia.edu/Documents/in/Non-Classical_Logic?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false},{"id":1394061,"name":"Markov Logic Networks","url":"https://www.academia.edu/Documents/in/Markov_Logic_Networks?f_ri=43610"},{"id":2005459,"name":"Theory of Total Probability","url":"https://www.academia.edu/Documents/in/Theory_of_Total_Probability?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_67419748" data-work_id="67419748" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/67419748/Outlier_aware_robust_clustering">Outlier-aware robust clustering</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/67419748" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="700465f45c7c85b8a32415ecc7cdfa6f" rel="nofollow" data-download="{&quot;attachment_id&quot;:78243341,&quot;asset_id&quot;:67419748,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/78243341/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="195720446" href="https://independent.academia.edu/PedroForero10">Pedro Forero</a><script data-card-contents-for-user="195720446" type="text/json">{"id":195720446,"first_name":"Pedro","last_name":"Forero","domain_name":"independent","page_name":"PedroForero10","display_name":"Pedro Forero","profile_url":"https://independent.academia.edu/PedroForero10?f_ri=43610","photo":"https://0.academia-photos.com/195720446/58065715/46291998/s65_pedro.forero.png"}</script></span></span></li><li class="js-paper-rank-work_67419748 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="67419748"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 67419748, container: ".js-paper-rank-work_67419748", }); });</script></li><li class="js-percentile-work_67419748 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67419748; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_67419748"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_67419748 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="67419748"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67419748; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67419748]").text(description); $(".js-view-count-work_67419748").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_67419748").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="67419748"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">18</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>,&nbsp;<script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="363" href="https://www.academia.edu/Documents/in/Set_Theory">Set Theory</a>,&nbsp;<script data-card-contents-for-ri="363" type="text/json">{"id":363,"name":"Set Theory","url":"https://www.academia.edu/Documents/in/Set_Theory?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a><script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=67419748]'), work: {"id":67419748,"title":"Outlier-aware robust clustering","created_at":"2022-01-06T11:56:41.931-08:00","url":"https://www.academia.edu/67419748/Outlier_aware_robust_clustering?f_ri=43610","dom_id":"work_67419748","summary":null,"downloadable_attachments":[{"id":78243341,"asset_id":67419748,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":195720446,"first_name":"Pedro","last_name":"Forero","domain_name":"independent","page_name":"PedroForero10","display_name":"Pedro Forero","profile_url":"https://independent.academia.edu/PedroForero10?f_ri=43610","photo":"https://0.academia-photos.com/195720446/58065715/46291998/s65_pedro.forero.png"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=43610","nofollow":false},{"id":363,"name":"Set Theory","url":"https://www.academia.edu/Documents/in/Set_Theory?f_ri=43610","nofollow":false},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=43610","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=43610","nofollow":false},{"id":2141,"name":"Signal Processing","url":"https://www.academia.edu/Documents/in/Signal_Processing?f_ri=43610"},{"id":7909,"name":"Compressed Sensing","url":"https://www.academia.edu/Documents/in/Compressed_Sensing?f_ri=43610"},{"id":8056,"name":"Speech Acoustics","url":"https://www.academia.edu/Documents/in/Speech_Acoustics?f_ri=43610"},{"id":13143,"name":"Clustering Algorithms","url":"https://www.academia.edu/Documents/in/Clustering_Algorithms?f_ri=43610"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":43981,"name":"Optimization","url":"https://www.academia.edu/Documents/in/Optimization?f_ri=43610"},{"id":229267,"name":"Expectation Maximization","url":"https://www.academia.edu/Documents/in/Expectation_Maximization?f_ri=43610"},{"id":279495,"name":"Robustness","url":"https://www.academia.edu/Documents/in/Robustness?f_ri=43610"},{"id":349137,"name":"Data Models","url":"https://www.academia.edu/Documents/in/Data_Models?f_ri=43610"},{"id":364962,"name":"Data Model","url":"https://www.academia.edu/Documents/in/Data_Model?f_ri=43610"},{"id":423482,"name":"Mixture Model","url":"https://www.academia.edu/Documents/in/Mixture_Model?f_ri=43610"},{"id":568878,"name":"Covariance Matrix","url":"https://www.academia.edu/Documents/in/Covariance_Matrix?f_ri=43610"},{"id":627850,"name":"K Means","url":"https://www.academia.edu/Documents/in/K_Means?f_ri=43610"},{"id":1191609,"name":"Likelihood Function","url":"https://www.academia.edu/Documents/in/Likelihood_Function?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_47089310" data-work_id="47089310" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/47089310/Probabilistic_logic_based_characterization_of_knowledge_discovery_in_databases">Probabilistic logic-based characterization of knowledge discovery in databases</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/47089310" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="8b56c97a20f5bb42c691b3f679200255" rel="nofollow" data-download="{&quot;attachment_id&quot;:66368548,&quot;asset_id&quot;:47089310,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/66368548/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="5339336" href="https://louisiana.academia.edu/VijayRaghavan">Vijay Raghavan</a><script data-card-contents-for-user="5339336" type="text/json">{"id":5339336,"first_name":"Vijay","last_name":"Raghavan","domain_name":"louisiana","page_name":"VijayRaghavan","display_name":"Vijay Raghavan","profile_url":"https://louisiana.academia.edu/VijayRaghavan?f_ri=43610","photo":"https://0.academia-photos.com/5339336/2904206/3392936/s65_vijay.raghavan.jpg"}</script></span></span></li><li class="js-paper-rank-work_47089310 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="47089310"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 47089310, container: ".js-paper-rank-work_47089310", }); });</script></li><li class="js-percentile-work_47089310 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47089310; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_47089310"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_47089310 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="47089310"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47089310; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47089310]").text(description); $(".js-view-count-work_47089310").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_47089310").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="47089310"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">8</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="43610" href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Probabilistic Logic</a>,&nbsp;<script data-card-contents-for-ri="43610" type="text/json">{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="64642" href="https://www.academia.edu/Documents/in/Knowledge_Discovery">Knowledge Discovery</a>,&nbsp;<script data-card-contents-for-ri="64642" type="text/json">{"id":64642,"name":"Knowledge Discovery","url":"https://www.academia.edu/Documents/in/Knowledge_Discovery?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="95683" href="https://www.academia.edu/Documents/in/Formal_Logic">Formal Logic</a>,&nbsp;<script data-card-contents-for-ri="95683" type="text/json">{"id":95683,"name":"Formal Logic","url":"https://www.academia.edu/Documents/in/Formal_Logic?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="287095" href="https://www.academia.edu/Documents/in/Knowledge_Representation_and_Reasoning">Knowledge Representation and Reasoning</a><script data-card-contents-for-ri="287095" type="text/json">{"id":287095,"name":"Knowledge Representation and Reasoning","url":"https://www.academia.edu/Documents/in/Knowledge_Representation_and_Reasoning?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=47089310]'), work: {"id":47089310,"title":"Probabilistic logic-based characterization of knowledge discovery in databases","created_at":"2021-04-20T18:21:22.214-07:00","url":"https://www.academia.edu/47089310/Probabilistic_logic_based_characterization_of_knowledge_discovery_in_databases?f_ri=43610","dom_id":"work_47089310","summary":null,"downloadable_attachments":[{"id":66368548,"asset_id":47089310,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":5339336,"first_name":"Vijay","last_name":"Raghavan","domain_name":"louisiana","page_name":"VijayRaghavan","display_name":"Vijay Raghavan","profile_url":"https://louisiana.academia.edu/VijayRaghavan?f_ri=43610","photo":"https://0.academia-photos.com/5339336/2904206/3392936/s65_vijay.raghavan.jpg"}],"research_interests":[{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false},{"id":64642,"name":"Knowledge Discovery","url":"https://www.academia.edu/Documents/in/Knowledge_Discovery?f_ri=43610","nofollow":false},{"id":95683,"name":"Formal Logic","url":"https://www.academia.edu/Documents/in/Formal_Logic?f_ri=43610","nofollow":false},{"id":287095,"name":"Knowledge Representation and Reasoning","url":"https://www.academia.edu/Documents/in/Knowledge_Representation_and_Reasoning?f_ri=43610","nofollow":false},{"id":569506,"name":"Knowledge Discovery Process Models","url":"https://www.academia.edu/Documents/in/Knowledge_Discovery_Process_Models?f_ri=43610"},{"id":679783,"name":"Boolean Satisfiability","url":"https://www.academia.edu/Documents/in/Boolean_Satisfiability?f_ri=43610"},{"id":1831939,"name":"Functional Equivalence","url":"https://www.academia.edu/Documents/in/Functional_Equivalence?f_ri=43610"},{"id":1911473,"name":"Knowledge Discovery In Database (kdd)","url":"https://www.academia.edu/Documents/in/Knowledge_Discovery_In_Database_kdd_?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_1036418" data-work_id="1036418" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/1036418/Evaluating_the_reliability_of_defect_tolerant_architectures_for_nanotechnology_with_probabilistic_model_checking">Evaluating the reliability of defect-tolerant architectures for nanotechnology with probabilistic model checking</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/1036418" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="64b719a562db5a730353e95faadf4765" rel="nofollow" data-download="{&quot;attachment_id&quot;:6328692,&quot;asset_id&quot;:1036418,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/6328692/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="46291" href="https://iitk.academia.edu/SandeepShukla">Sandeep K Shukla</a><script data-card-contents-for-user="46291" type="text/json">{"id":46291,"first_name":"Sandeep","last_name":"Shukla","domain_name":"iitk","page_name":"SandeepShukla","display_name":"Sandeep K Shukla","profile_url":"https://iitk.academia.edu/SandeepShukla?f_ri=43610","photo":"https://0.academia-photos.com/46291/14556/13590/s65_sandeep.shukla.jpg"}</script></span></span></li><li class="js-paper-rank-work_1036418 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="1036418"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 1036418, container: ".js-paper-rank-work_1036418", }); });</script></li><li class="js-percentile-work_1036418 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1036418; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_1036418"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_1036418 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="1036418"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1036418; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1036418]").text(description); $(".js-view-count-work_1036418").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_1036418").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="1036418"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">14</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="434" href="https://www.academia.edu/Documents/in/Vlsi_Design">Vlsi Design</a>,&nbsp;<script data-card-contents-for-ri="434" type="text/json">{"id":434,"name":"Vlsi Design","url":"https://www.academia.edu/Documents/in/Vlsi_Design?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2979" href="https://www.academia.edu/Documents/in/Manufacturing">Manufacturing</a>,&nbsp;<script data-card-contents-for-ri="2979" type="text/json">{"id":2979,"name":"Manufacturing","url":"https://www.academia.edu/Documents/in/Manufacturing?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="6160" href="https://www.academia.edu/Documents/in/Computer_Aided_Design">Computer Aided Design</a>,&nbsp;<script data-card-contents-for-ri="6160" type="text/json">{"id":6160,"name":"Computer Aided Design","url":"https://www.academia.edu/Documents/in/Computer_Aided_Design?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="17733" href="https://www.academia.edu/Documents/in/Nanotechnology">Nanotechnology</a><script data-card-contents-for-ri="17733" type="text/json">{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=1036418]'), work: {"id":1036418,"title":"Evaluating the reliability of defect-tolerant architectures for nanotechnology with probabilistic model checking","created_at":"2011-10-23T15:07:53.284-07:00","url":"https://www.academia.edu/1036418/Evaluating_the_reliability_of_defect_tolerant_architectures_for_nanotechnology_with_probabilistic_model_checking?f_ri=43610","dom_id":"work_1036418","summary":null,"downloadable_attachments":[{"id":6328692,"asset_id":1036418,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":46291,"first_name":"Sandeep","last_name":"Shukla","domain_name":"iitk","page_name":"SandeepShukla","display_name":"Sandeep K Shukla","profile_url":"https://iitk.academia.edu/SandeepShukla?f_ri=43610","photo":"https://0.academia-photos.com/46291/14556/13590/s65_sandeep.shukla.jpg"}],"research_interests":[{"id":434,"name":"Vlsi Design","url":"https://www.academia.edu/Documents/in/Vlsi_Design?f_ri=43610","nofollow":false},{"id":2979,"name":"Manufacturing","url":"https://www.academia.edu/Documents/in/Manufacturing?f_ri=43610","nofollow":false},{"id":6160,"name":"Computer Aided Design","url":"https://www.academia.edu/Documents/in/Computer_Aided_Design?f_ri=43610","nofollow":false},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":49685,"name":"CAD","url":"https://www.academia.edu/Documents/in/CAD?f_ri=43610"},{"id":99531,"name":"Probabilistic Model Checking","url":"https://www.academia.edu/Documents/in/Probabilistic_Model_Checking?f_ri=43610"},{"id":123506,"name":"Reliability","url":"https://www.academia.edu/Documents/in/Reliability?f_ri=43610"},{"id":152918,"name":"Error Analysis","url":"https://www.academia.edu/Documents/in/Error_Analysis?f_ri=43610"},{"id":159687,"name":"Design Methodology","url":"https://www.academia.edu/Documents/in/Design_Methodology?f_ri=43610"},{"id":159726,"name":"Multiplexing","url":"https://www.academia.edu/Documents/in/Multiplexing?f_ri=43610"},{"id":168144,"name":"Redundancy","url":"https://www.academia.edu/Documents/in/Redundancy?f_ri=43610"},{"id":609191,"name":"Logic Design","url":"https://www.academia.edu/Documents/in/Logic_Design?f_ri=43610"},{"id":2467595,"name":"Probabilistic Model","url":"https://www.academia.edu/Documents/in/Probabilistic_Model?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_1626144" data-work_id="1626144" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/1626144/Uncertainty_and_Randomness_A_Holonic_Approach">Uncertainty and Randomness: A Holonic Approach</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/1626144" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="de321f20e0582749a22fb877d77812fc" rel="nofollow" data-download="{&quot;attachment_id&quot;:16411187,&quot;asset_id&quot;:1626144,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/16411187/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="1026982" href="https://independent.academia.edu/horaciopaggi">horacio paggi</a><script data-card-contents-for-user="1026982" type="text/json">{"id":1026982,"first_name":"horacio","last_name":"paggi","domain_name":"independent","page_name":"horaciopaggi","display_name":"horacio paggi","profile_url":"https://independent.academia.edu/horaciopaggi?f_ri=43610","photo":"https://0.academia-photos.com/1026982/17858602/17875115/s65_horacio.paggi.jpg"}</script></span></span></li><li class="js-paper-rank-work_1626144 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="1626144"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 1626144, container: ".js-paper-rank-work_1626144", }); });</script></li><li class="js-percentile-work_1626144 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1626144; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_1626144"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_1626144 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="1626144"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1626144; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1626144]").text(description); $(".js-view-count-work_1626144").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_1626144").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="1626144"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">15</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="221" href="https://www.academia.edu/Documents/in/Psychology">Psychology</a>,&nbsp;<script data-card-contents-for-ri="221" type="text/json">{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>,&nbsp;<script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2534" href="https://www.academia.edu/Documents/in/Multiagent_Systems">Multiagent Systems</a>,&nbsp;<script data-card-contents-for-ri="2534" type="text/json">{"id":2534,"name":"Multiagent Systems","url":"https://www.academia.edu/Documents/in/Multiagent_Systems?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4165" href="https://www.academia.edu/Documents/in/Fuzzy_Logic">Fuzzy Logic</a><script data-card-contents-for-ri="4165" type="text/json">{"id":4165,"name":"Fuzzy Logic","url":"https://www.academia.edu/Documents/in/Fuzzy_Logic?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=1626144]'), work: {"id":1626144,"title":"Uncertainty and Randomness: A Holonic Approach","created_at":"2012-06-06T06:36:14.747-07:00","url":"https://www.academia.edu/1626144/Uncertainty_and_Randomness_A_Holonic_Approach?f_ri=43610","dom_id":"work_1626144","summary":null,"downloadable_attachments":[{"id":16411187,"asset_id":1626144,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":1026982,"first_name":"horacio","last_name":"paggi","domain_name":"independent","page_name":"horaciopaggi","display_name":"horacio paggi","profile_url":"https://independent.academia.edu/horaciopaggi?f_ri=43610","photo":"https://0.academia-photos.com/1026982/17858602/17875115/s65_horacio.paggi.jpg"}],"research_interests":[{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology?f_ri=43610","nofollow":false},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=43610","nofollow":false},{"id":2534,"name":"Multiagent Systems","url":"https://www.academia.edu/Documents/in/Multiagent_Systems?f_ri=43610","nofollow":false},{"id":4165,"name":"Fuzzy Logic","url":"https://www.academia.edu/Documents/in/Fuzzy_Logic?f_ri=43610","nofollow":false},{"id":25660,"name":"Decision Theory","url":"https://www.academia.edu/Documents/in/Decision_Theory?f_ri=43610"},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability?f_ri=43610"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":45873,"name":"Multi Agent System","url":"https://www.academia.edu/Documents/in/Multi_Agent_System?f_ri=43610"},{"id":61603,"name":"Uncertainty","url":"https://www.academia.edu/Documents/in/Uncertainty?f_ri=43610"},{"id":85430,"name":"Multi Agent Systems","url":"https://www.academia.edu/Documents/in/Multi_Agent_Systems?f_ri=43610"},{"id":101530,"name":"Artificial Intelligent","url":"https://www.academia.edu/Documents/in/Artificial_Intelligent?f_ri=43610"},{"id":129087,"name":"Randomness","url":"https://www.academia.edu/Documents/in/Randomness?f_ri=43610"},{"id":372699,"name":"Information Analysis","url":"https://www.academia.edu/Documents/in/Information_Analysis?f_ri=43610"},{"id":584679,"name":"Complex Dynamical Systems","url":"https://www.academia.edu/Documents/in/Complex_Dynamical_Systems?f_ri=43610"},{"id":1931321,"name":"Application Software","url":"https://www.academia.edu/Documents/in/Application_Software?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_18267717" data-work_id="18267717" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/18267717/Pedestrian_detection_based_on_LIDAR_driven_sliding_window_and_relational_parts_based_detection">Pedestrian detection based on LIDAR-driven sliding window and relational parts-based detection</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/18267717" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="e3b86f80dbf5e6b844ccca10c4d9b518" rel="nofollow" data-download="{&quot;attachment_id&quot;:42137975,&quot;asset_id&quot;:18267717,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/42137975/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="38250234" href="https://independent.academia.edu/UrbanoNunes">Urbano Nunes</a><script data-card-contents-for-user="38250234" type="text/json">{"id":38250234,"first_name":"Urbano","last_name":"Nunes","domain_name":"independent","page_name":"UrbanoNunes","display_name":"Urbano Nunes","profile_url":"https://independent.academia.edu/UrbanoNunes?f_ri=43610","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_18267717 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="18267717"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 18267717, container: ".js-paper-rank-work_18267717", }); });</script></li><li class="js-percentile-work_18267717 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 18267717; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_18267717"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_18267717 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="18267717"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 18267717; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=18267717]").text(description); $(".js-view-count-work_18267717").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_18267717").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="18267717"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">9</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="1252" href="https://www.academia.edu/Documents/in/Remote_Sensing">Remote Sensing</a>,&nbsp;<script data-card-contents-for-ri="1252" type="text/json">{"id":1252,"name":"Remote Sensing","url":"https://www.academia.edu/Documents/in/Remote_Sensing?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="10408" href="https://www.academia.edu/Documents/in/Support_Vector_Machines">Support Vector Machines</a>,&nbsp;<script data-card-contents-for-ri="10408" type="text/json">{"id":10408,"name":"Support Vector Machines","url":"https://www.academia.edu/Documents/in/Support_Vector_Machines?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="33069" href="https://www.academia.edu/Documents/in/Probability">Probability</a>,&nbsp;<script data-card-contents-for-ri="33069" type="text/json">{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="43610" href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Probabilistic Logic</a><script data-card-contents-for-ri="43610" type="text/json">{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=18267717]'), work: {"id":18267717,"title":"Pedestrian detection based on LIDAR-driven sliding window and relational parts-based detection","created_at":"2015-11-13T02:22:55.359-08:00","url":"https://www.academia.edu/18267717/Pedestrian_detection_based_on_LIDAR_driven_sliding_window_and_relational_parts_based_detection?f_ri=43610","dom_id":"work_18267717","summary":null,"downloadable_attachments":[{"id":42137975,"asset_id":18267717,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":38250234,"first_name":"Urbano","last_name":"Nunes","domain_name":"independent","page_name":"UrbanoNunes","display_name":"Urbano Nunes","profile_url":"https://independent.academia.edu/UrbanoNunes?f_ri=43610","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":1252,"name":"Remote Sensing","url":"https://www.academia.edu/Documents/in/Remote_Sensing?f_ri=43610","nofollow":false},{"id":10408,"name":"Support Vector Machines","url":"https://www.academia.edu/Documents/in/Support_Vector_Machines?f_ri=43610","nofollow":false},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false},{"id":56368,"name":"Image Classification","url":"https://www.academia.edu/Documents/in/Image_Classification?f_ri=43610"},{"id":160144,"name":"Feature Extraction","url":"https://www.academia.edu/Documents/in/Feature_Extraction?f_ri=43610"},{"id":169392,"name":"Detectors","url":"https://www.academia.edu/Documents/in/Detectors?f_ri=43610"},{"id":383728,"name":"Vectors","url":"https://www.academia.edu/Documents/in/Vectors?f_ri=43610"},{"id":985283,"name":"Laser Radar","url":"https://www.academia.edu/Documents/in/Laser_Radar?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_10155958" data-work_id="10155958" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/10155958/Uncertainty_Aware_Sensor_Network_Deployment">Uncertainty-Aware Sensor Network Deployment</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">In this paper, we address the issue of handling uncertainty and information fusion for an efficient WSN deployment. We present a flexible framework for collaborative target detection within the transferable belief model. Using the... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_10155958" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">In this paper, we address the issue of handling uncertainty and information fusion for an efficient WSN deployment. We present a flexible framework for collaborative target detection within the transferable belief model. Using the developed framework, we propose an uncertainty-aware deployment algorithm that is able to determine the minimum number of sensors and their locations such that full area coverage is achieved. The issues of connectivity, obstacles, preferential coverage, challenging environments and sensor reliability are also discussed. Experimental results are provided to demonstrate the ability of our approach to achieve an efficient sensor deployment by exploiting a collaborative target detection scheme.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/10155958" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="74dd5dbbb53f915db2efb8acff26d2ae" rel="nofollow" data-download="{&quot;attachment_id&quot;:47504559,&quot;asset_id&quot;:10155958,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/47504559/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="24801214" href="https://ifsttar.academia.edu/latifaOukhellou">latifa Oukhellou</a><script data-card-contents-for-user="24801214" type="text/json">{"id":24801214,"first_name":"latifa","last_name":"Oukhellou","domain_name":"ifsttar","page_name":"latifaOukhellou","display_name":"latifa Oukhellou","profile_url":"https://ifsttar.academia.edu/latifaOukhellou?f_ri=43610","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_10155958 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="10155958"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 10155958, container: ".js-paper-rank-work_10155958", }); });</script></li><li class="js-percentile-work_10155958 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10155958; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_10155958"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_10155958 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="10155958"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10155958; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10155958]").text(description); $(".js-view-count-work_10155958").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_10155958").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="10155958"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">9</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="9136" href="https://www.academia.edu/Documents/in/Wireless_Sensor_Networks">Wireless Sensor Networks</a>,&nbsp;<script data-card-contents-for-ri="9136" type="text/json">{"id":9136,"name":"Wireless Sensor Networks","url":"https://www.academia.edu/Documents/in/Wireless_Sensor_Networks?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="43610" href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Probabilistic Logic</a>,&nbsp;<script data-card-contents-for-ri="43610" type="text/json">{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="92088" href="https://www.academia.edu/Documents/in/Information_Fusion">Information Fusion</a>,&nbsp;<script data-card-contents-for-ri="92088" type="text/json">{"id":92088,"name":"Information Fusion","url":"https://www.academia.edu/Documents/in/Information_Fusion?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="111436" href="https://www.academia.edu/Documents/in/IEEE">IEEE</a><script data-card-contents-for-ri="111436" type="text/json">{"id":111436,"name":"IEEE","url":"https://www.academia.edu/Documents/in/IEEE?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=10155958]'), work: {"id":10155958,"title":"Uncertainty-Aware Sensor Network Deployment","created_at":"2015-01-14T01:15:01.650-08:00","url":"https://www.academia.edu/10155958/Uncertainty_Aware_Sensor_Network_Deployment?f_ri=43610","dom_id":"work_10155958","summary":"In this paper, we address the issue of handling uncertainty and information fusion for an efficient WSN deployment. We present a flexible framework for collaborative target detection within the transferable belief model. Using the developed framework, we propose an uncertainty-aware deployment algorithm that is able to determine the minimum number of sensors and their locations such that full area coverage is achieved. The issues of connectivity, obstacles, preferential coverage, challenging environments and sensor reliability are also discussed. Experimental results are provided to demonstrate the ability of our approach to achieve an efficient sensor deployment by exploiting a collaborative target detection scheme.","downloadable_attachments":[{"id":47504559,"asset_id":10155958,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":24801214,"first_name":"latifa","last_name":"Oukhellou","domain_name":"ifsttar","page_name":"latifaOukhellou","display_name":"latifa Oukhellou","profile_url":"https://ifsttar.academia.edu/latifaOukhellou?f_ri=43610","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":9136,"name":"Wireless Sensor Networks","url":"https://www.academia.edu/Documents/in/Wireless_Sensor_Networks?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false},{"id":92088,"name":"Information Fusion","url":"https://www.academia.edu/Documents/in/Information_Fusion?f_ri=43610","nofollow":false},{"id":111436,"name":"IEEE","url":"https://www.academia.edu/Documents/in/IEEE?f_ri=43610","nofollow":false},{"id":143115,"name":"Sensor Fusion","url":"https://www.academia.edu/Documents/in/Sensor_Fusion?f_ri=43610"},{"id":158569,"name":"Sensor Network","url":"https://www.academia.edu/Documents/in/Sensor_Network?f_ri=43610"},{"id":330048,"name":"Target Detection","url":"https://www.academia.edu/Documents/in/Target_Detection?f_ri=43610"},{"id":762830,"name":"Object Detection","url":"https://www.academia.edu/Documents/in/Object_Detection?f_ri=43610"},{"id":1211847,"name":"Wireless Sensor Network","url":"https://www.academia.edu/Documents/in/Wireless_Sensor_Network?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_4023103" data-work_id="4023103" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/4023103/Case_study_on_increasing_the_transport_capacity_of_220_kV_DC_OHL_Iernut_Baia_Mare_by_reconductoring_using_LM_technologies">Case study on increasing the transport capacity of 220 kV DC OHL Iernut-Baia Mare by reconductoring using LM technologies</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">In 2009 we have celebrated 30 years since the first live maintenance techniques (LMT) have been carried out in Romania. This paper, in acknowledgement of the Romanian Live Maintenance Association&#39;s valuable activity in this field, is... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_4023103" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">In 2009 we have celebrated 30 years since the first live maintenance techniques (LMT) have been carried out in Romania. This paper, in acknowledgement of the Romanian Live Maintenance Association&#39;s valuable activity in this field, is tackling a major issue for the Romanian Power Grid Company Transelectrica S.A.: the increase of the overhead line transmission capacity applying reconductoring with high temperature low sag (HTLS) conductors. The authors are proposing the use of live maintenance techniques, which considerably reduce the overhead line unavailability.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/4023103" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="42ac8521812ebe57f8841e232acf0849" rel="nofollow" data-download="{&quot;attachment_id&quot;:31565660,&quot;asset_id&quot;:4023103,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/31565660/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="4833828" href="https://independent.academia.edu/MariusOltean">Marius Oltean</a><script data-card-contents-for-user="4833828" type="text/json">{"id":4833828,"first_name":"Marius","last_name":"Oltean","domain_name":"independent","page_name":"MariusOltean","display_name":"Marius Oltean","profile_url":"https://independent.academia.edu/MariusOltean?f_ri=43610","photo":"https://0.academia-photos.com/4833828/2066627/2432655/s65_marius.oltean.jpg"}</script></span></span></li><li class="js-paper-rank-work_4023103 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="4023103"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 4023103, container: ".js-paper-rank-work_4023103", }); });</script></li><li class="js-percentile-work_4023103 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 4023103; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_4023103"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_4023103 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="4023103"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 4023103; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=4023103]").text(description); $(".js-view-count-work_4023103").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_4023103").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="4023103"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">4</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="5748" href="https://www.academia.edu/Documents/in/Power_System">Power System</a>,&nbsp;<script data-card-contents-for-ri="5748" type="text/json">{"id":5748,"name":"Power System","url":"https://www.academia.edu/Documents/in/Power_System?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="43610" href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Probabilistic Logic</a>,&nbsp;<script data-card-contents-for-ri="43610" type="text/json">{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="96047" href="https://www.academia.edu/Documents/in/Case_Study">Case Study</a>,&nbsp;<script data-card-contents-for-ri="96047" type="text/json">{"id":96047,"name":"Case Study","url":"https://www.academia.edu/Documents/in/Case_Study?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="981256" href="https://www.academia.edu/Documents/in/Load_Flow">Load Flow</a><script data-card-contents-for-ri="981256" type="text/json">{"id":981256,"name":"Load Flow","url":"https://www.academia.edu/Documents/in/Load_Flow?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=4023103]'), work: {"id":4023103,"title":"Case study on increasing the transport capacity of 220 kV DC OHL Iernut-Baia Mare by reconductoring using LM technologies","created_at":"2013-07-13T17:53:25.802-07:00","url":"https://www.academia.edu/4023103/Case_study_on_increasing_the_transport_capacity_of_220_kV_DC_OHL_Iernut_Baia_Mare_by_reconductoring_using_LM_technologies?f_ri=43610","dom_id":"work_4023103","summary":"In 2009 we have celebrated 30 years since the first live maintenance techniques (LMT) have been carried out in Romania. This paper, in acknowledgement of the Romanian Live Maintenance Association's valuable activity in this field, is tackling a major issue for the Romanian Power Grid Company Transelectrica S.A.: the increase of the overhead line transmission capacity applying reconductoring with high temperature low sag (HTLS) conductors. The authors are proposing the use of live maintenance techniques, which considerably reduce the overhead line unavailability.","downloadable_attachments":[{"id":31565660,"asset_id":4023103,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":4833828,"first_name":"Marius","last_name":"Oltean","domain_name":"independent","page_name":"MariusOltean","display_name":"Marius Oltean","profile_url":"https://independent.academia.edu/MariusOltean?f_ri=43610","photo":"https://0.academia-photos.com/4833828/2066627/2432655/s65_marius.oltean.jpg"}],"research_interests":[{"id":5748,"name":"Power System","url":"https://www.academia.edu/Documents/in/Power_System?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false},{"id":96047,"name":"Case Study","url":"https://www.academia.edu/Documents/in/Case_Study?f_ri=43610","nofollow":false},{"id":981256,"name":"Load Flow","url":"https://www.academia.edu/Documents/in/Load_Flow?f_ri=43610","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_11751691" data-work_id="11751691" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/11751691/Anomaly_Detection_for_Discrete_Sequences_A_Survey">Anomaly Detection for Discrete Sequences: A Survey</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/11751691" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="a9d796251e4533832392e4e7d7739f7f" rel="nofollow" data-download="{&quot;attachment_id&quot;:46545324,&quot;asset_id&quot;:11751691,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/46545324/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="28859030" href="https://independent.academia.edu/vipinKumar114">vipin Kumar</a><script data-card-contents-for-user="28859030" type="text/json">{"id":28859030,"first_name":"vipin","last_name":"Kumar","domain_name":"independent","page_name":"vipinKumar114","display_name":"vipin Kumar","profile_url":"https://independent.academia.edu/vipinKumar114?f_ri=43610","photo":"https://0.academia-photos.com/28859030/8200794/9176007/s65_vipin.kumar.jpg"}</script></span></span></li><li class="js-paper-rank-work_11751691 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="11751691"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 11751691, container: ".js-paper-rank-work_11751691", }); });</script></li><li class="js-percentile-work_11751691 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11751691; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_11751691"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_11751691 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="11751691"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11751691; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11751691]").text(description); $(".js-view-count-work_11751691").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_11751691").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="11751691"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">11</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="146" href="https://www.academia.edu/Documents/in/Bioinformatics">Bioinformatics</a>,&nbsp;<script data-card-contents-for-ri="146" type="text/json">{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a>,&nbsp;<script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2009" href="https://www.academia.edu/Documents/in/Data_Mining">Data Mining</a>,&nbsp;<script data-card-contents-for-ri="2009" type="text/json">{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4233" href="https://www.academia.edu/Documents/in/Computational_Biology">Computational Biology</a><script data-card-contents-for-ri="4233" type="text/json">{"id":4233,"name":"Computational Biology","url":"https://www.academia.edu/Documents/in/Computational_Biology?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=11751691]'), work: {"id":11751691,"title":"Anomaly Detection for Discrete Sequences: A Survey","created_at":"2015-04-01T03:04:23.938-07:00","url":"https://www.academia.edu/11751691/Anomaly_Detection_for_Discrete_Sequences_A_Survey?f_ri=43610","dom_id":"work_11751691","summary":null,"downloadable_attachments":[{"id":46545324,"asset_id":11751691,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":28859030,"first_name":"vipin","last_name":"Kumar","domain_name":"independent","page_name":"vipinKumar114","display_name":"vipin Kumar","profile_url":"https://independent.academia.edu/vipinKumar114?f_ri=43610","photo":"https://0.academia-photos.com/28859030/8200794/9176007/s65_vipin.kumar.jpg"}],"research_interests":[{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics?f_ri=43610","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=43610","nofollow":false},{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining?f_ri=43610","nofollow":false},{"id":4233,"name":"Computational Biology","url":"https://www.academia.edu/Documents/in/Computational_Biology?f_ri=43610","nofollow":false},{"id":4456,"name":"Time Series","url":"https://www.academia.edu/Documents/in/Time_Series?f_ri=43610"},{"id":31349,"name":"Anomaly Detection","url":"https://www.academia.edu/Documents/in/Anomaly_Detection?f_ri=43610"},{"id":32459,"name":"Data and Knowledge Modeling","url":"https://www.academia.edu/Documents/in/Data_and_Knowledge_Modeling?f_ri=43610"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":143539,"name":"hidden Markov model","url":"https://www.academia.edu/Documents/in/hidden_Markov_model?f_ri=43610"},{"id":282905,"name":"NIDS","url":"https://www.academia.edu/Documents/in/NIDS?f_ri=43610"},{"id":2218114,"name":"Frequency of occurrence","url":"https://www.academia.edu/Documents/in/Frequency_of_occurrence?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_27035347" data-work_id="27035347" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/27035347/Landslide_hazard_mapping_of_Penang_island_using_probabilistic_methods_and_logistic_regression">Landslide hazard mapping of Penang island using probabilistic methods and logistic regression</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/27035347" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="4f38e11d5df240d22c623519999b91b5" rel="nofollow" data-download="{&quot;attachment_id&quot;:47291147,&quot;asset_id&quot;:27035347,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/47291147/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="28105625" href="https://independent.academia.edu/HabibahLateh">Habibah Lateh</a><script data-card-contents-for-user="28105625" type="text/json">{"id":28105625,"first_name":"Habibah","last_name":"Lateh","domain_name":"independent","page_name":"HabibahLateh","display_name":"Habibah Lateh","profile_url":"https://independent.academia.edu/HabibahLateh?f_ri=43610","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_27035347 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="27035347"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 27035347, container: ".js-paper-rank-work_27035347", }); });</script></li><li class="js-percentile-work_27035347 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 27035347; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_27035347"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_27035347 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="27035347"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 27035347; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=27035347]").text(description); $(".js-view-count-work_27035347").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_27035347").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="27035347"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">7</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="32433" href="https://www.academia.edu/Documents/in/Logistic_Regression">Logistic Regression</a>,&nbsp;<script data-card-contents-for-ri="32433" type="text/json">{"id":32433,"name":"Logistic Regression","url":"https://www.academia.edu/Documents/in/Logistic_Regression?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="43610" href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Probabilistic Logic</a>,&nbsp;<script data-card-contents-for-ri="43610" type="text/json">{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="224767" href="https://www.academia.edu/Documents/in/Prediction_Model">Prediction Model</a>,&nbsp;<script data-card-contents-for-ri="224767" type="text/json">{"id":224767,"name":"Prediction Model","url":"https://www.academia.edu/Documents/in/Prediction_Model?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="284270" href="https://www.academia.edu/Documents/in/Hazard_Mapping">Hazard Mapping</a><script data-card-contents-for-ri="284270" type="text/json">{"id":284270,"name":"Hazard Mapping","url":"https://www.academia.edu/Documents/in/Hazard_Mapping?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=27035347]'), work: {"id":27035347,"title":"Landslide hazard mapping of Penang island using probabilistic methods and logistic regression","created_at":"2016-07-17T01:09:29.751-07:00","url":"https://www.academia.edu/27035347/Landslide_hazard_mapping_of_Penang_island_using_probabilistic_methods_and_logistic_regression?f_ri=43610","dom_id":"work_27035347","summary":null,"downloadable_attachments":[{"id":47291147,"asset_id":27035347,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":28105625,"first_name":"Habibah","last_name":"Lateh","domain_name":"independent","page_name":"HabibahLateh","display_name":"Habibah Lateh","profile_url":"https://independent.academia.edu/HabibahLateh?f_ri=43610","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":32433,"name":"Logistic Regression","url":"https://www.academia.edu/Documents/in/Logistic_Regression?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false},{"id":224767,"name":"Prediction Model","url":"https://www.academia.edu/Documents/in/Prediction_Model?f_ri=43610","nofollow":false},{"id":284270,"name":"Hazard Mapping","url":"https://www.academia.edu/Documents/in/Hazard_Mapping?f_ri=43610","nofollow":false},{"id":506474,"name":"Probabilistic Method","url":"https://www.academia.edu/Documents/in/Probabilistic_Method?f_ri=43610"},{"id":722200,"name":"IST","url":"https://www.academia.edu/Documents/in/IST?f_ri=43610"},{"id":749302,"name":"Indexation","url":"https://www.academia.edu/Documents/in/Indexation?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_3129703" data-work_id="3129703" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/3129703/Quantum_Physical_Symbol_Systems">Quantum Physical Symbol Systems</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/3129703" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="027c3dac60322a97a4b65d713c26d64c" rel="nofollow" data-download="{&quot;attachment_id&quot;:31042951,&quot;asset_id&quot;:3129703,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/31042951/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="939470" href="https://gmu.academia.edu/KathrynLaskey">Kathryn Laskey</a><script data-card-contents-for-user="939470" type="text/json">{"id":939470,"first_name":"Kathryn","last_name":"Laskey","domain_name":"gmu","page_name":"KathrynLaskey","display_name":"Kathryn Laskey","profile_url":"https://gmu.academia.edu/KathrynLaskey?f_ri=43610","photo":"https://0.academia-photos.com/939470/4051507/4726800/s65_kathryn.laskey.jpg_oh_b155c17dd5cae1d92b5d6a337d9c9e40_oe_546b818e___gda___1416471546_d38ea5c25a5701ad1df9c42aa68fe9c1"}</script></span></span></li><li class="js-paper-rank-work_3129703 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="3129703"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 3129703, container: ".js-paper-rank-work_3129703", }); });</script></li><li class="js-percentile-work_3129703 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 3129703; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_3129703"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_3129703 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="3129703"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 3129703; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=3129703]").text(description); $(".js-view-count-work_3129703").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_3129703").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="3129703"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">24</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="237" href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a>,&nbsp;<script data-card-contents-for-ri="237" type="text/json">{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="347" href="https://www.academia.edu/Documents/in/Stochastic_Process">Stochastic Process</a>,&nbsp;<script data-card-contents-for-ri="347" type="text/json">{"id":347,"name":"Stochastic Process","url":"https://www.academia.edu/Documents/in/Stochastic_Process?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="433" href="https://www.academia.edu/Documents/in/Computer_Architecture">Computer Architecture</a>,&nbsp;<script data-card-contents-for-ri="433" type="text/json">{"id":433,"name":"Computer Architecture","url":"https://www.academia.edu/Documents/in/Computer_Architecture?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="518" href="https://www.academia.edu/Documents/in/Quantum_Physics">Quantum Physics</a><script data-card-contents-for-ri="518" type="text/json">{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=3129703]'), work: {"id":3129703,"title":"Quantum Physical Symbol Systems","created_at":"2013-03-27T12:30:57.238-07:00","url":"https://www.academia.edu/3129703/Quantum_Physical_Symbol_Systems?f_ri=43610","dom_id":"work_3129703","summary":null,"downloadable_attachments":[{"id":31042951,"asset_id":3129703,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":939470,"first_name":"Kathryn","last_name":"Laskey","domain_name":"gmu","page_name":"KathrynLaskey","display_name":"Kathryn Laskey","profile_url":"https://gmu.academia.edu/KathrynLaskey?f_ri=43610","photo":"https://0.academia-photos.com/939470/4051507/4726800/s65_kathryn.laskey.jpg_oh_b155c17dd5cae1d92b5d6a337d9c9e40_oe_546b818e___gda___1416471546_d38ea5c25a5701ad1df9c42aa68fe9c1"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science?f_ri=43610","nofollow":false},{"id":347,"name":"Stochastic Process","url":"https://www.academia.edu/Documents/in/Stochastic_Process?f_ri=43610","nofollow":false},{"id":433,"name":"Computer Architecture","url":"https://www.academia.edu/Documents/in/Computer_Architecture?f_ri=43610","nofollow":false},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics?f_ri=43610","nofollow":false},{"id":803,"name":"Philosophy","url":"https://www.academia.edu/Documents/in/Philosophy?f_ri=43610"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=43610"},{"id":9270,"name":"Software Architecture","url":"https://www.academia.edu/Documents/in/Software_Architecture?f_ri=43610"},{"id":15674,"name":"Linguistics","url":"https://www.academia.edu/Documents/in/Linguistics?f_ri=43610"},{"id":22615,"name":"Knowledge Representation","url":"https://www.academia.edu/Documents/in/Knowledge_Representation?f_ri=43610"},{"id":24768,"name":"Nineteenth Century","url":"https://www.academia.edu/Documents/in/Nineteenth_Century?f_ri=43610"},{"id":25660,"name":"Decision Theory","url":"https://www.academia.edu/Documents/in/Decision_Theory?f_ri=43610"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":55378,"name":"Bayesian Learning","url":"https://www.academia.edu/Documents/in/Bayesian_Learning?f_ri=43610"},{"id":171449,"name":"Computer Application","url":"https://www.academia.edu/Documents/in/Computer_Application?f_ri=43610"},{"id":202566,"name":"Quantum Computer","url":"https://www.academia.edu/Documents/in/Quantum_Computer?f_ri=43610"},{"id":206590,"name":"Task Performance","url":"https://www.academia.edu/Documents/in/Task_Performance?f_ri=43610"},{"id":242640,"name":"Learning from experience","url":"https://www.academia.edu/Documents/in/Learning_from_experience?f_ri=43610"},{"id":258979,"name":"Computer Program","url":"https://www.academia.edu/Documents/in/Computer_Program?f_ri=43610"},{"id":274599,"name":"Bayesian Network","url":"https://www.academia.edu/Documents/in/Bayesian_Network?f_ri=43610"},{"id":403174,"name":"Quantum Measurement","url":"https://www.academia.edu/Documents/in/Quantum_Measurement?f_ri=43610"},{"id":469749,"name":"Human Computer Interface","url":"https://www.academia.edu/Documents/in/Human_Computer_Interface?f_ri=43610"},{"id":821017,"name":"Theory of Computing","url":"https://www.academia.edu/Documents/in/Theory_of_Computing?f_ri=43610"},{"id":871906,"name":"Decision Models","url":"https://www.academia.edu/Documents/in/Decision_Models?f_ri=43610"},{"id":886652,"name":"Graphical Model","url":"https://www.academia.edu/Documents/in/Graphical_Model?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_22701682" data-work_id="22701682" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/22701682/Probabilistic_Logics_and_Probabilistic_Networks">Probabilistic Logics and Probabilistic Networks</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/22701682" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="fbe57a3d3e52d40a39ec9d5a69182cfd" rel="nofollow" data-download="{&quot;attachment_id&quot;:43277876,&quot;asset_id&quot;:22701682,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/43277876/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="268998" href="https://frankfurt-school.academia.edu/GregoryWheeler">Gregory Wheeler</a><script data-card-contents-for-user="268998" type="text/json">{"id":268998,"first_name":"Gregory","last_name":"Wheeler","domain_name":"frankfurt-school","page_name":"GregoryWheeler","display_name":"Gregory Wheeler","profile_url":"https://frankfurt-school.academia.edu/GregoryWheeler?f_ri=43610","photo":"https://0.academia-photos.com/268998/11779358/13130146/s65_gregory.wheeler.jpg"}</script></span></span></li><li class="js-paper-rank-work_22701682 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="22701682"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 22701682, container: ".js-paper-rank-work_22701682", }); });</script></li><li class="js-percentile-work_22701682 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22701682; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_22701682"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_22701682 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="22701682"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22701682; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22701682]").text(description); $(".js-view-count-work_22701682").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_22701682").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="22701682"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">5</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="43610" href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Probabilistic Logic</a>,&nbsp;<script data-card-contents-for-ri="43610" type="text/json">{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="67968" href="https://www.academia.edu/Documents/in/Statistical_Inference">Statistical Inference</a>,&nbsp;<script data-card-contents-for-ri="67968" type="text/json">{"id":67968,"name":"Statistical Inference","url":"https://www.academia.edu/Documents/in/Statistical_Inference?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="100094" href="https://www.academia.edu/Documents/in/Bayesian_statistics">Bayesian statistics</a>,&nbsp;<script data-card-contents-for-ri="100094" type="text/json">{"id":100094,"name":"Bayesian statistics","url":"https://www.academia.edu/Documents/in/Bayesian_statistics?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="274599" href="https://www.academia.edu/Documents/in/Bayesian_Network">Bayesian Network</a><script data-card-contents-for-ri="274599" type="text/json">{"id":274599,"name":"Bayesian Network","url":"https://www.academia.edu/Documents/in/Bayesian_Network?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=22701682]'), work: {"id":22701682,"title":"Probabilistic Logics and Probabilistic Networks","created_at":"2016-03-02T11:52:30.513-08:00","url":"https://www.academia.edu/22701682/Probabilistic_Logics_and_Probabilistic_Networks?f_ri=43610","dom_id":"work_22701682","summary":null,"downloadable_attachments":[{"id":43277876,"asset_id":22701682,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":268998,"first_name":"Gregory","last_name":"Wheeler","domain_name":"frankfurt-school","page_name":"GregoryWheeler","display_name":"Gregory Wheeler","profile_url":"https://frankfurt-school.academia.edu/GregoryWheeler?f_ri=43610","photo":"https://0.academia-photos.com/268998/11779358/13130146/s65_gregory.wheeler.jpg"}],"research_interests":[{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false},{"id":67968,"name":"Statistical Inference","url":"https://www.academia.edu/Documents/in/Statistical_Inference?f_ri=43610","nofollow":false},{"id":100094,"name":"Bayesian statistics","url":"https://www.academia.edu/Documents/in/Bayesian_statistics?f_ri=43610","nofollow":false},{"id":274599,"name":"Bayesian Network","url":"https://www.academia.edu/Documents/in/Bayesian_Network?f_ri=43610","nofollow":false},{"id":450311,"name":"Probabilistic Neural Network","url":"https://www.academia.edu/Documents/in/Probabilistic_Neural_Network?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_78655578" data-work_id="78655578" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/78655578/Probabilistic_Seismic_Hazard_Analysis_and_Site_Characterization_of_a_Powerplant_Site_in_Chittagong_Bangladesh">Probabilistic Seismic Hazard Analysis and Site Characterization of a Powerplant Site in Chittagong, Bangladesh</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">In the present study, the Probabilistic Seismic Hazard Analysis (PSHA) has been carried out for a powerplant site in Chittagong using the latest available information on seismicity in the region. The latest updated earthquake catalog... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_78655578" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">In the present study, the Probabilistic Seismic Hazard Analysis (PSHA) has been carried out for a powerplant site in Chittagong using the latest available information on seismicity in the region. The latest updated earthquake catalog homogenized in uniform moment magnitude scale was prepared. Seismicity analysis was carried out, and the seismicity parameters for the region were estimated from the frequency magnitude distribution plot. The peak ground acceleration (PGA) and the spectral acceleration at the bedrock for 10% and 2% probability of exceedance within 50 years were evaluated using different source models and attenuation relations in a logic tree framework. The site was characterized based on the soil investigation data from 31 boreholes and amplification factors considering the local geology (SPT-N values) were obtained through ground response analysis. Subsequently, the surface level peak ground acceleration was estimated and depicted in the form of hazard contour maps.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/78655578" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="5e523e9902d3c1d1281087c7cddabdea" rel="nofollow" data-download="{&quot;attachment_id&quot;:85627883,&quot;asset_id&quot;:78655578,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/85627883/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="47127175" href="https://independent.academia.edu/SoumyadeepSengupta1">Soumyadeep Sengupta</a><script data-card-contents-for-user="47127175" type="text/json">{"id":47127175,"first_name":"Soumyadeep","last_name":"Sengupta","domain_name":"independent","page_name":"SoumyadeepSengupta1","display_name":"Soumyadeep Sengupta","profile_url":"https://independent.academia.edu/SoumyadeepSengupta1?f_ri=43610","photo":"https://0.academia-photos.com/47127175/23054840/22175656/s65_soumyadeep.sengupta.jpg"}</script></span></span></li><li class="js-paper-rank-work_78655578 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="78655578"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 78655578, container: ".js-paper-rank-work_78655578", }); });</script></li><li class="js-percentile-work_78655578 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78655578; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_78655578"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_78655578 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="78655578"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78655578; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78655578]").text(description); $(".js-view-count-work_78655578").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_78655578").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="78655578"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">2</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="3157" href="https://www.academia.edu/Documents/in/Seismic_Hazard">Seismic Hazard</a>,&nbsp;<script data-card-contents-for-ri="3157" type="text/json">{"id":3157,"name":"Seismic Hazard","url":"https://www.academia.edu/Documents/in/Seismic_Hazard?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="43610" href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Probabilistic Logic</a><script data-card-contents-for-ri="43610" type="text/json">{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=78655578]'), work: {"id":78655578,"title":"Probabilistic Seismic Hazard Analysis and Site Characterization of a Powerplant Site in Chittagong, Bangladesh","created_at":"2022-05-07T01:12:19.813-07:00","url":"https://www.academia.edu/78655578/Probabilistic_Seismic_Hazard_Analysis_and_Site_Characterization_of_a_Powerplant_Site_in_Chittagong_Bangladesh?f_ri=43610","dom_id":"work_78655578","summary":"In the present study, the Probabilistic Seismic Hazard Analysis (PSHA) has been carried out for a powerplant site in Chittagong using the latest available information on seismicity in the region. The latest updated earthquake catalog homogenized in uniform moment magnitude scale was prepared. Seismicity analysis was carried out, and the seismicity parameters for the region were estimated from the frequency magnitude distribution plot. The peak ground acceleration (PGA) and the spectral acceleration at the bedrock for 10% and 2% probability of exceedance within 50 years were evaluated using different source models and attenuation relations in a logic tree framework. The site was characterized based on the soil investigation data from 31 boreholes and amplification factors considering the local geology (SPT-N values) were obtained through ground response analysis. Subsequently, the surface level peak ground acceleration was estimated and depicted in the form of hazard contour maps.","downloadable_attachments":[{"id":85627883,"asset_id":78655578,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":47127175,"first_name":"Soumyadeep","last_name":"Sengupta","domain_name":"independent","page_name":"SoumyadeepSengupta1","display_name":"Soumyadeep Sengupta","profile_url":"https://independent.academia.edu/SoumyadeepSengupta1?f_ri=43610","photo":"https://0.academia-photos.com/47127175/23054840/22175656/s65_soumyadeep.sengupta.jpg"}],"research_interests":[{"id":3157,"name":"Seismic Hazard","url":"https://www.academia.edu/Documents/in/Seismic_Hazard?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_2991319" data-work_id="2991319" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/2991319/Cluster_Validity_For_Kernel_Fuzzy_Clustering">Cluster Validity For Kernel Fuzzy Clustering</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/2991319" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="d6109e56ebe3542d425b5e4d9fc984b5" rel="nofollow" data-download="{&quot;attachment_id&quot;:30943327,&quot;asset_id&quot;:2991319,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/30943327/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="36931" href="https://michiganstate.academia.edu/TimHavens">Timothy Havens</a><script data-card-contents-for-user="36931" type="text/json">{"id":36931,"first_name":"Timothy","last_name":"Havens","domain_name":"michiganstate","page_name":"TimHavens","display_name":"Timothy Havens","profile_url":"https://michiganstate.academia.edu/TimHavens?f_ri=43610","photo":"https://0.academia-photos.com/36931/12249/11496/s65_timothy.havens.jpeg"}</script></span></span></li><li class="js-paper-rank-work_2991319 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="2991319"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 2991319, container: ".js-paper-rank-work_2991319", }); });</script></li><li class="js-percentile-work_2991319 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2991319; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_2991319"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_2991319 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="2991319"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2991319; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2991319]").text(description); $(".js-view-count-work_2991319").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_2991319").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="2991319"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">8</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="5394" href="https://www.academia.edu/Documents/in/Fuzzy_set_theory">Fuzzy set theory</a>,&nbsp;<script data-card-contents-for-ri="5394" type="text/json">{"id":5394,"name":"Fuzzy set theory","url":"https://www.academia.edu/Documents/in/Fuzzy_set_theory?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="13143" href="https://www.academia.edu/Documents/in/Clustering_Algorithms">Clustering Algorithms</a>,&nbsp;<script data-card-contents-for-ri="13143" type="text/json">{"id":13143,"name":"Clustering Algorithms","url":"https://www.academia.edu/Documents/in/Clustering_Algorithms?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="38511" href="https://www.academia.edu/Documents/in/Fuzzy_Clustering">Fuzzy Clustering</a>,&nbsp;<script data-card-contents-for-ri="38511" type="text/json">{"id":38511,"name":"Fuzzy Clustering","url":"https://www.academia.edu/Documents/in/Fuzzy_Clustering?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="43610" href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Probabilistic Logic</a><script data-card-contents-for-ri="43610" type="text/json">{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=2991319]'), work: {"id":2991319,"title":"Cluster Validity For Kernel Fuzzy Clustering","created_at":"2013-03-14T07:51:58.797-07:00","url":"https://www.academia.edu/2991319/Cluster_Validity_For_Kernel_Fuzzy_Clustering?f_ri=43610","dom_id":"work_2991319","summary":null,"downloadable_attachments":[{"id":30943327,"asset_id":2991319,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":36931,"first_name":"Timothy","last_name":"Havens","domain_name":"michiganstate","page_name":"TimHavens","display_name":"Timothy Havens","profile_url":"https://michiganstate.academia.edu/TimHavens?f_ri=43610","photo":"https://0.academia-photos.com/36931/12249/11496/s65_timothy.havens.jpeg"}],"research_interests":[{"id":5394,"name":"Fuzzy set theory","url":"https://www.academia.edu/Documents/in/Fuzzy_set_theory?f_ri=43610","nofollow":false},{"id":13143,"name":"Clustering Algorithms","url":"https://www.academia.edu/Documents/in/Clustering_Algorithms?f_ri=43610","nofollow":false},{"id":38511,"name":"Fuzzy Clustering","url":"https://www.academia.edu/Documents/in/Fuzzy_Clustering?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false},{"id":191487,"name":"Kernel","url":"https://www.academia.edu/Documents/in/Kernel?f_ri=43610"},{"id":383728,"name":"Vectors","url":"https://www.academia.edu/Documents/in/Vectors?f_ri=43610"},{"id":1006047,"name":"Indexes","url":"https://www.academia.edu/Documents/in/Indexes?f_ri=43610"},{"id":1167632,"name":"Synthetic Data Generation","url":"https://www.academia.edu/Documents/in/Synthetic_Data_Generation?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_26858210" data-work_id="26858210" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/26858210/Theory_and_Practice_of_Bloom_Filters_for_Distributed_Systems">Theory and Practice of Bloom Filters for Distributed Systems</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/26858210" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="f72b3e140b646b2e65ac8a5b5f87c9e9" rel="nofollow" data-download="{&quot;attachment_id&quot;:47128375,&quot;asset_id&quot;:26858210,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/47128375/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="173426" href="https://unicamp.academia.edu/ChristianEsteveRothenberg">Christian Esteve Rothenberg</a><script data-card-contents-for-user="173426" type="text/json">{"id":173426,"first_name":"Christian","last_name":"Esteve Rothenberg","domain_name":"unicamp","page_name":"ChristianEsteveRothenberg","display_name":"Christian Esteve Rothenberg","profile_url":"https://unicamp.academia.edu/ChristianEsteveRothenberg?f_ri=43610","photo":"https://0.academia-photos.com/173426/88400/21957059/s65_christian.esteve_rothenberg.jpg"}</script></span></span></li><li class="js-paper-rank-work_26858210 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="26858210"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 26858210, container: ".js-paper-rank-work_26858210", }); });</script></li><li class="js-percentile-work_26858210 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26858210; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_26858210"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_26858210 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="26858210"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26858210; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26858210]").text(description); $(".js-view-count-work_26858210").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_26858210").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="26858210"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">12</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="440" href="https://www.academia.edu/Documents/in/Distributed_Computing">Distributed Computing</a>,&nbsp;<script data-card-contents-for-ri="440" type="text/json">{"id":440,"name":"Distributed Computing","url":"https://www.academia.edu/Documents/in/Distributed_Computing?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="22686" href="https://www.academia.edu/Documents/in/Distributed_System">Distributed System</a>,&nbsp;<script data-card-contents-for-ri="22686" type="text/json">{"id":22686,"name":"Distributed System","url":"https://www.academia.edu/Documents/in/Distributed_System?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="33069" href="https://www.academia.edu/Documents/in/Probability">Probability</a>,&nbsp;<script data-card-contents-for-ri="33069" type="text/json">{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="36837" href="https://www.academia.edu/Documents/in/Information_Processing">Information Processing</a><script data-card-contents-for-ri="36837" type="text/json">{"id":36837,"name":"Information Processing","url":"https://www.academia.edu/Documents/in/Information_Processing?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=26858210]'), work: {"id":26858210,"title":"Theory and Practice of Bloom Filters for Distributed Systems","created_at":"2016-07-09T10:53:17.933-07:00","url":"https://www.academia.edu/26858210/Theory_and_Practice_of_Bloom_Filters_for_Distributed_Systems?f_ri=43610","dom_id":"work_26858210","summary":null,"downloadable_attachments":[{"id":47128375,"asset_id":26858210,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":173426,"first_name":"Christian","last_name":"Esteve Rothenberg","domain_name":"unicamp","page_name":"ChristianEsteveRothenberg","display_name":"Christian Esteve Rothenberg","profile_url":"https://unicamp.academia.edu/ChristianEsteveRothenberg?f_ri=43610","photo":"https://0.academia-photos.com/173426/88400/21957059/s65_christian.esteve_rothenberg.jpg"}],"research_interests":[{"id":440,"name":"Distributed Computing","url":"https://www.academia.edu/Documents/in/Distributed_Computing?f_ri=43610","nofollow":false},{"id":22686,"name":"Distributed System","url":"https://www.academia.edu/Documents/in/Distributed_System?f_ri=43610","nofollow":false},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability?f_ri=43610","nofollow":false},{"id":36837,"name":"Information Processing","url":"https://www.academia.edu/Documents/in/Information_Processing?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":164634,"name":"Decode-And-Forward","url":"https://www.academia.edu/Documents/in/Decode-And-Forward?f_ri=43610"},{"id":224199,"name":"Bloom Filter","url":"https://www.academia.edu/Documents/in/Bloom_Filter?f_ri=43610"},{"id":241788,"name":"Overlay Networks","url":"https://www.academia.edu/Documents/in/Overlay_Networks?f_ri=43610"},{"id":284729,"name":"Fingerprint Recognition","url":"https://www.academia.edu/Documents/in/Fingerprint_Recognition?f_ri=43610"},{"id":853193,"name":"Peer to Peer Computing","url":"https://www.academia.edu/Documents/in/Peer_to_Peer_Computing?f_ri=43610"},{"id":855639,"name":"Overlay Network","url":"https://www.academia.edu/Documents/in/Overlay_Network?f_ri=43610"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_13395027" data-work_id="13395027" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/13395027/Hybrid_In_Network_Query_Processing_Framework_for_Wireless_Sensor_Networks">Hybrid In-Network Query Processing Framework for Wireless Sensor Networks</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/13395027" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="65af9d49ceea3818088f1930e8df2c56" rel="nofollow" data-download="{&quot;attachment_id&quot;:45390601,&quot;asset_id&quot;:13395027,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/45390601/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="32619156" href="https://independent.academia.edu/GourKarmakar">Gour Karmakar</a><script data-card-contents-for-user="32619156" type="text/json">{"id":32619156,"first_name":"Gour","last_name":"Karmakar","domain_name":"independent","page_name":"GourKarmakar","display_name":"Gour Karmakar","profile_url":"https://independent.academia.edu/GourKarmakar?f_ri=43610","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_13395027 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="13395027"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 13395027, container: ".js-paper-rank-work_13395027", }); });</script></li><li class="js-percentile-work_13395027 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13395027; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_13395027"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_13395027 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="13395027"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13395027; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13395027]").text(description); $(".js-view-count-work_13395027").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_13395027").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="13395027"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">14</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="311" href="https://www.academia.edu/Documents/in/Approximation_Theory">Approximation Theory</a>,&nbsp;<script data-card-contents-for-ri="311" type="text/json">{"id":311,"name":"Approximation Theory","url":"https://www.academia.edu/Documents/in/Approximation_Theory?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="9136" href="https://www.academia.edu/Documents/in/Wireless_Sensor_Networks">Wireless Sensor Networks</a>,&nbsp;<script data-card-contents-for-ri="9136" type="text/json">{"id":9136,"name":"Wireless Sensor Networks","url":"https://www.academia.edu/Documents/in/Wireless_Sensor_Networks?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="33069" href="https://www.academia.edu/Documents/in/Probability">Probability</a>,&nbsp;<script data-card-contents-for-ri="33069" type="text/json">{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="43610" href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Probabilistic Logic</a><script data-card-contents-for-ri="43610" type="text/json">{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=13395027]'), work: {"id":13395027,"title":"Hybrid In-Network Query Processing Framework for Wireless Sensor Networks","created_at":"2015-06-28T17:02:54.943-07:00","url":"https://www.academia.edu/13395027/Hybrid_In_Network_Query_Processing_Framework_for_Wireless_Sensor_Networks?f_ri=43610","dom_id":"work_13395027","summary":null,"downloadable_attachments":[{"id":45390601,"asset_id":13395027,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":32619156,"first_name":"Gour","last_name":"Karmakar","domain_name":"independent","page_name":"GourKarmakar","display_name":"Gour Karmakar","profile_url":"https://independent.academia.edu/GourKarmakar?f_ri=43610","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":311,"name":"Approximation Theory","url":"https://www.academia.edu/Documents/in/Approximation_Theory?f_ri=43610","nofollow":false},{"id":9136,"name":"Wireless Sensor Networks","url":"https://www.academia.edu/Documents/in/Wireless_Sensor_Networks?f_ri=43610","nofollow":false},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false},{"id":220049,"name":"Accuracy","url":"https://www.academia.edu/Documents/in/Accuracy?f_ri=43610"},{"id":276455,"name":"Query processing","url":"https://www.academia.edu/Documents/in/Query_processing?f_ri=43610"},{"id":349137,"name":"Data Models","url":"https://www.academia.edu/Documents/in/Data_Models?f_ri=43610"},{"id":360413,"name":"Merging","url":"https://www.academia.edu/Documents/in/Merging?f_ri=43610"},{"id":364962,"name":"Data Model","url":"https://www.academia.edu/Documents/in/Data_Model?f_ri=43610"},{"id":853193,"name":"Peer to Peer Computing","url":"https://www.academia.edu/Documents/in/Peer_to_Peer_Computing?f_ri=43610"},{"id":958863,"name":"Network Traffic","url":"https://www.academia.edu/Documents/in/Network_Traffic?f_ri=43610"},{"id":1211847,"name":"Wireless Sensor Network","url":"https://www.academia.edu/Documents/in/Wireless_Sensor_Network?f_ri=43610"},{"id":1323305,"name":"Approximation Method","url":"https://www.academia.edu/Documents/in/Approximation_Method?f_ri=43610"},{"id":1605361,"name":"Sensor nodes","url":"https://www.academia.edu/Documents/in/Sensor_nodes?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_78553149" data-work_id="78553149" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/78553149/Vulnerability_likelihood_A_probabilistic_approach_to_software_assurance">Vulnerability likelihood: A probabilistic approach to software assurance</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">The 2001 workshop on information security system rating and ranking 4] discussed different aspects of security metrics. What should we count and what do the numbers mean as pertaining to software security metrics was one of the challenge... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_78553149" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">The 2001 workshop on information security system rating and ranking 4] discussed different aspects of security metrics. What should we count and what do the numbers mean as pertaining to software security metrics was one of the challenge problems discussed by security experts at the 2003 UW-MSR Summer Institute 7]. The development of meaningful security metrics was chosen as a grand challenge at the onference on rand Research hallenges consecutively in 2002 5] and 2003 8]. This exemplifies the immediate need for ...</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/78553149" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="04ee70e0fd767c9652acaf1f3a33754d" rel="nofollow" data-download="{&quot;attachment_id&quot;:85561734,&quot;asset_id&quot;:78553149,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/85561734/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="14091" href="https://purdue.academia.edu/spaf">Eugene H Spafford</a><script data-card-contents-for-user="14091" type="text/json">{"id":14091,"first_name":"Eugene","last_name":"Spafford","domain_name":"purdue","page_name":"spaf","display_name":"Eugene H Spafford","profile_url":"https://purdue.academia.edu/spaf?f_ri=43610","photo":"https://0.academia-photos.com/14091/4741/423806/s65_eugene_h..spafford.jpg"}</script></span></span></li><li class="js-paper-rank-work_78553149 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="78553149"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 78553149, container: ".js-paper-rank-work_78553149", }); });</script></li><li class="js-percentile-work_78553149 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78553149; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_78553149"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_78553149 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="78553149"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78553149; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78553149]").text(description); $(".js-view-count-work_78553149").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_78553149").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="78553149"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">2</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="43610" href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Probabilistic Logic</a><script data-card-contents-for-ri="43610" type="text/json">{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=78553149]'), work: {"id":78553149,"title":"Vulnerability likelihood: A probabilistic approach to software assurance","created_at":"2022-05-05T16:42:48.033-07:00","url":"https://www.academia.edu/78553149/Vulnerability_likelihood_A_probabilistic_approach_to_software_assurance?f_ri=43610","dom_id":"work_78553149","summary":"The 2001 workshop on information security system rating and ranking 4] discussed different aspects of security metrics. What should we count and what do the numbers mean as pertaining to software security metrics was one of the challenge problems discussed by security experts at the 2003 UW-MSR Summer Institute 7]. The development of meaningful security metrics was chosen as a grand challenge at the onference on rand Research hallenges consecutively in 2002 5] and 2003 8]. This exemplifies the immediate need for ...","downloadable_attachments":[{"id":85561734,"asset_id":78553149,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":14091,"first_name":"Eugene","last_name":"Spafford","domain_name":"purdue","page_name":"spaf","display_name":"Eugene H Spafford","profile_url":"https://purdue.academia.edu/spaf?f_ri=43610","photo":"https://0.academia-photos.com/14091/4741/423806/s65_eugene_h..spafford.jpg"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_67419752" data-work_id="67419752" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/67419752/Outlier_aware_robust_clustering">Outlier-aware robust clustering</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/67419752" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="14f17a3ec803229c19f3bb9684640336" rel="nofollow" data-download="{&quot;attachment_id&quot;:78243340,&quot;asset_id&quot;:67419752,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/78243340/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="195720446" href="https://independent.academia.edu/PedroForero10">Pedro Forero</a><script data-card-contents-for-user="195720446" type="text/json">{"id":195720446,"first_name":"Pedro","last_name":"Forero","domain_name":"independent","page_name":"PedroForero10","display_name":"Pedro Forero","profile_url":"https://independent.academia.edu/PedroForero10?f_ri=43610","photo":"https://0.academia-photos.com/195720446/58065715/46291998/s65_pedro.forero.png"}</script></span></span></li><li class="js-paper-rank-work_67419752 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="67419752"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 67419752, container: ".js-paper-rank-work_67419752", }); });</script></li><li class="js-percentile-work_67419752 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67419752; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_67419752"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_67419752 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="67419752"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67419752; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67419752]").text(description); $(".js-view-count-work_67419752").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_67419752").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="67419752"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">18</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>,&nbsp;<script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="363" href="https://www.academia.edu/Documents/in/Set_Theory">Set Theory</a>,&nbsp;<script data-card-contents-for-ri="363" type="text/json">{"id":363,"name":"Set Theory","url":"https://www.academia.edu/Documents/in/Set_Theory?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a><script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=67419752]'), work: {"id":67419752,"title":"Outlier-aware robust clustering","created_at":"2022-01-06T11:56:42.402-08:00","url":"https://www.academia.edu/67419752/Outlier_aware_robust_clustering?f_ri=43610","dom_id":"work_67419752","summary":null,"downloadable_attachments":[{"id":78243340,"asset_id":67419752,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":195720446,"first_name":"Pedro","last_name":"Forero","domain_name":"independent","page_name":"PedroForero10","display_name":"Pedro Forero","profile_url":"https://independent.academia.edu/PedroForero10?f_ri=43610","photo":"https://0.academia-photos.com/195720446/58065715/46291998/s65_pedro.forero.png"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=43610","nofollow":false},{"id":363,"name":"Set Theory","url":"https://www.academia.edu/Documents/in/Set_Theory?f_ri=43610","nofollow":false},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=43610","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=43610","nofollow":false},{"id":2141,"name":"Signal Processing","url":"https://www.academia.edu/Documents/in/Signal_Processing?f_ri=43610"},{"id":7909,"name":"Compressed Sensing","url":"https://www.academia.edu/Documents/in/Compressed_Sensing?f_ri=43610"},{"id":8056,"name":"Speech Acoustics","url":"https://www.academia.edu/Documents/in/Speech_Acoustics?f_ri=43610"},{"id":13143,"name":"Clustering Algorithms","url":"https://www.academia.edu/Documents/in/Clustering_Algorithms?f_ri=43610"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":43981,"name":"Optimization","url":"https://www.academia.edu/Documents/in/Optimization?f_ri=43610"},{"id":229267,"name":"Expectation Maximization","url":"https://www.academia.edu/Documents/in/Expectation_Maximization?f_ri=43610"},{"id":279495,"name":"Robustness","url":"https://www.academia.edu/Documents/in/Robustness?f_ri=43610"},{"id":349137,"name":"Data Models","url":"https://www.academia.edu/Documents/in/Data_Models?f_ri=43610"},{"id":364962,"name":"Data Model","url":"https://www.academia.edu/Documents/in/Data_Model?f_ri=43610"},{"id":423482,"name":"Mixture Model","url":"https://www.academia.edu/Documents/in/Mixture_Model?f_ri=43610"},{"id":568878,"name":"Covariance Matrix","url":"https://www.academia.edu/Documents/in/Covariance_Matrix?f_ri=43610"},{"id":627850,"name":"K Means","url":"https://www.academia.edu/Documents/in/K_Means?f_ri=43610"},{"id":1191609,"name":"Likelihood Function","url":"https://www.academia.edu/Documents/in/Likelihood_Function?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_247124" data-work_id="247124" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/247124/Image_Segmentation_by_Probabilistic_Bottom_Up_Aggregation_and_Cue_Integration">Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue Integration</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/247124" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="7f7c22625b4b9586615a102b5035d729" rel="nofollow" data-download="{&quot;attachment_id&quot;:3237506,&quot;asset_id&quot;:247124,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/3237506/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="205103" href="https://weizmann.academia.edu/SharonAlpert">Sharon Alpert</a><script data-card-contents-for-user="205103" type="text/json">{"id":205103,"first_name":"Sharon","last_name":"Alpert","domain_name":"weizmann","page_name":"SharonAlpert","display_name":"Sharon Alpert","profile_url":"https://weizmann.academia.edu/SharonAlpert?f_ri=43610","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_247124 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="247124"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 247124, container: ".js-paper-rank-work_247124", }); });</script></li><li class="js-percentile-work_247124 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 247124; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_247124"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_247124 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="247124"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 247124; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=247124]").text(description); $(".js-view-count-work_247124").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_247124").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="247124"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">23</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="37" href="https://www.academia.edu/Documents/in/Information_Systems">Information Systems</a>,&nbsp;<script data-card-contents-for-ri="37" type="text/json">{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>,&nbsp;<script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="428" href="https://www.academia.edu/Documents/in/Algorithms">Algorithms</a><script data-card-contents-for-ri="428" type="text/json">{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=247124]'), work: {"id":247124,"title":"Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue Integration","created_at":"2010-06-20T17:06:51.748-07:00","url":"https://www.academia.edu/247124/Image_Segmentation_by_Probabilistic_Bottom_Up_Aggregation_and_Cue_Integration?f_ri=43610","dom_id":"work_247124","summary":null,"downloadable_attachments":[{"id":3237506,"asset_id":247124,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":205103,"first_name":"Sharon","last_name":"Alpert","domain_name":"weizmann","page_name":"SharonAlpert","display_name":"Sharon Alpert","profile_url":"https://weizmann.academia.edu/SharonAlpert?f_ri=43610","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems?f_ri=43610","nofollow":false},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=43610","nofollow":false},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=43610","nofollow":false},{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms?f_ri=43610","nofollow":false},{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=43610"},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=43610"},{"id":2616,"name":"Graph Theory","url":"https://www.academia.edu/Documents/in/Graph_Theory?f_ri=43610"},{"id":13143,"name":"Clustering Algorithms","url":"https://www.academia.edu/Documents/in/Clustering_Algorithms?f_ri=43610"},{"id":26870,"name":"Image segmentation","url":"https://www.academia.edu/Documents/in/Image_segmentation?f_ri=43610"},{"id":30838,"name":"Information Geometry","url":"https://www.academia.edu/Documents/in/Information_Geometry?f_ri=43610"},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability?f_ri=43610"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans?f_ri=43610"},{"id":97644,"name":"Computer Vision and Pattern Recognition","url":"https://www.academia.edu/Documents/in/Computer_Vision_and_Pattern_Recognition?f_ri=43610"},{"id":116787,"name":"Algorithm Design","url":"https://www.academia.edu/Documents/in/Algorithm_Design?f_ri=43610"},{"id":155953,"name":"Mixture of Experts","url":"https://www.academia.edu/Documents/in/Mixture_of_Experts?f_ri=43610"},{"id":279495,"name":"Robustness","url":"https://www.academia.edu/Documents/in/Robustness?f_ri=43610"},{"id":884993,"name":"Cue integration","url":"https://www.academia.edu/Documents/in/Cue_integration?f_ri=43610"},{"id":904692,"name":"Bottom Up","url":"https://www.academia.edu/Documents/in/Bottom_Up?f_ri=43610"},{"id":912908,"name":"Noise Measurement","url":"https://www.academia.edu/Documents/in/Noise_Measurement?f_ri=43610"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering?f_ri=43610"},{"id":1707689,"name":"Pixel","url":"https://www.academia.edu/Documents/in/Pixel?f_ri=43610"},{"id":2542920,"name":"Probabilistic Approach","url":"https://www.academia.edu/Documents/in/Probabilistic_Approach?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_6991951" data-work_id="6991951" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/6991951/Fuzzy_Arithmetic_for_the_DC_Load_Flow">Fuzzy Arithmetic for the DC Load Flow</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">The consideration of uncertainties in the future system operation is a key aspect in current planning methodologies. In this context, load flow studies based on probabilistic theory, fuzzy numbers, and Monte Carlo simulations have been... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_6991951" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">The consideration of uncertainties in the future <br />system operation is a key aspect in current planning methodologies. <br />In this context, load flow studies based on probabilistic theory, <br />fuzzy numbers, and Monte Carlo simulations have been proposed <br />in the literature. This work analyzes in a novel way the application <br />of fuzzy number arithmetic for the DC load flow problem. In this <br />sense, fuzzy sets theory is reviewed and is showed that there are <br />two alternative and valid procedures to perform a subtraction. <br />A key aspect for the right selection of one of these procedures is <br />the independency or dependency among the involved variables. <br />Assuming input data as independent variables, this work is focused <br />on analyzing the fuzzy subtraction between dependent state <br />variables of the system, such as voltage phase angle. Accordingly, <br />two new valid alternative methodologies are proposed and applied <br />to case studies. Results are compared to previous related works <br />showing the consistency of the proposed methodologies. Future <br />research will be focused on the consideration of ohmic losses and <br />AC network modeling in the field of expansion planning studies.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/6991951" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="ce5a2cd0afd20d5611e94bb848e1bf23" rel="nofollow" data-download="{&quot;attachment_id&quot;:34503382,&quot;asset_id&quot;:6991951,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/34503382/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="11873566" href="https://uantof.academia.edu/MarceloCortesCarmona">Marcelo Cortes-Carmona</a><script data-card-contents-for-user="11873566" type="text/json">{"id":11873566,"first_name":"Marcelo","last_name":"Cortes-Carmona","domain_name":"uantof","page_name":"MarceloCortesCarmona","display_name":"Marcelo Cortes-Carmona","profile_url":"https://uantof.academia.edu/MarceloCortesCarmona?f_ri=43610","photo":"https://0.academia-photos.com/11873566/4179561/4867196/s65_marcelo.cortes-carmona.jpg"}</script></span></span></li><li class="js-paper-rank-work_6991951 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="6991951"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 6991951, container: ".js-paper-rank-work_6991951", }); });</script></li><li class="js-percentile-work_6991951 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 6991951; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_6991951"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_6991951 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="6991951"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 6991951; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=6991951]").text(description); $(".js-view-count-work_6991951").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_6991951").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="6991951"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">12</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="1424" href="https://www.academia.edu/Documents/in/Power_Systems">Power Systems</a>,&nbsp;<script data-card-contents-for-ri="1424" type="text/json">{"id":1424,"name":"Power Systems","url":"https://www.academia.edu/Documents/in/Power_Systems?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4392" href="https://www.academia.edu/Documents/in/Monte_Carlo_Simulation">Monte Carlo Simulation</a>,&nbsp;<script data-card-contents-for-ri="4392" type="text/json">{"id":4392,"name":"Monte Carlo Simulation","url":"https://www.academia.edu/Documents/in/Monte_Carlo_Simulation?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5394" href="https://www.academia.edu/Documents/in/Fuzzy_set_theory">Fuzzy set theory</a>,&nbsp;<script data-card-contents-for-ri="5394" type="text/json">{"id":5394,"name":"Fuzzy set theory","url":"https://www.academia.edu/Documents/in/Fuzzy_set_theory?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="34019" href="https://www.academia.edu/Documents/in/Monte_Carlo_Methods">Monte Carlo Methods</a><script data-card-contents-for-ri="34019" type="text/json">{"id":34019,"name":"Monte Carlo Methods","url":"https://www.academia.edu/Documents/in/Monte_Carlo_Methods?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=6991951]'), work: {"id":6991951,"title":"Fuzzy Arithmetic for the DC Load Flow","created_at":"2014-05-08T11:07:57.107-07:00","url":"https://www.academia.edu/6991951/Fuzzy_Arithmetic_for_the_DC_Load_Flow?f_ri=43610","dom_id":"work_6991951","summary":"The consideration of uncertainties in the future\r\nsystem operation is a key aspect in current planning methodologies.\r\nIn this context, load flow studies based on probabilistic theory,\r\nfuzzy numbers, and Monte Carlo simulations have been proposed\r\nin the literature. This work analyzes in a novel way the application\r\nof fuzzy number arithmetic for the DC load flow problem. In this\r\nsense, fuzzy sets theory is reviewed and is showed that there are\r\ntwo alternative and valid procedures to perform a subtraction.\r\nA key aspect for the right selection of one of these procedures is\r\nthe independency or dependency among the involved variables.\r\nAssuming input data as independent variables, this work is focused\r\non analyzing the fuzzy subtraction between dependent state\r\nvariables of the system, such as voltage phase angle. Accordingly,\r\ntwo new valid alternative methodologies are proposed and applied\r\nto case studies. Results are compared to previous related works\r\nshowing the consistency of the proposed methodologies. Future\r\nresearch will be focused on the consideration of ohmic losses and\r\nAC network modeling in the field of expansion planning studies.","downloadable_attachments":[{"id":34503382,"asset_id":6991951,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":11873566,"first_name":"Marcelo","last_name":"Cortes-Carmona","domain_name":"uantof","page_name":"MarceloCortesCarmona","display_name":"Marcelo Cortes-Carmona","profile_url":"https://uantof.academia.edu/MarceloCortesCarmona?f_ri=43610","photo":"https://0.academia-photos.com/11873566/4179561/4867196/s65_marcelo.cortes-carmona.jpg"}],"research_interests":[{"id":1424,"name":"Power Systems","url":"https://www.academia.edu/Documents/in/Power_Systems?f_ri=43610","nofollow":false},{"id":4392,"name":"Monte Carlo Simulation","url":"https://www.academia.edu/Documents/in/Monte_Carlo_Simulation?f_ri=43610","nofollow":false},{"id":5394,"name":"Fuzzy set theory","url":"https://www.academia.edu/Documents/in/Fuzzy_set_theory?f_ri=43610","nofollow":false},{"id":34019,"name":"Monte Carlo Methods","url":"https://www.academia.edu/Documents/in/Monte_Carlo_Methods?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":96047,"name":"Case Study","url":"https://www.academia.edu/Documents/in/Case_Study?f_ri=43610"},{"id":570169,"name":"Power System Planning","url":"https://www.academia.edu/Documents/in/Power_System_Planning?f_ri=43610"},{"id":642996,"name":"Fuzzy Set","url":"https://www.academia.edu/Documents/in/Fuzzy_Set?f_ri=43610"},{"id":871148,"name":"Network Model","url":"https://www.academia.edu/Documents/in/Network_Model?f_ri=43610"},{"id":981256,"name":"Load Flow","url":"https://www.academia.edu/Documents/in/Load_Flow?f_ri=43610"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering?f_ri=43610"},{"id":2278311,"name":"Fuzzy Number","url":"https://www.academia.edu/Documents/in/Fuzzy_Number?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_20703407 coauthored" data-work_id="20703407" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/20703407/Probabilistic_dynamic_belief_revision_Journal_Paper_">Probabilistic dynamic belief revision [Journal Paper]</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">We investigate the discrete (finite) case of the Popper–Renyi theory of conditional probability, introducing discrete conditional probabilistic models for knowledge and conditional belief, and comparing them with the more standard... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_20703407" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">We investigate the discrete (finite) case of the Popper–Renyi theory of conditional probability, introducing discrete conditional probabilistic models for knowledge and conditional belief, and comparing them with the more standard plau-sibility models. We also consider a related notion, that of safe belief, which is a weak (non-negatively introspective) type of &quot; knowledge &quot;. We develop a probabilistic version of this concept (&quot; degree of safety &quot;) and we analyze its role in games. We completely axiomatize the logic of conditional belief, knowledge and safe belief over conditional probabilistic models. We develop a theory of probabilistic dynamic belief revision, introducing probabilistic &quot; action models &quot; and proposing a notion of probabilistic update product, that comes together with appropriate reduction laws.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/20703407" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="ad7360125c4563f1624b840c7330067d" rel="nofollow" data-download="{&quot;attachment_id&quot;:41514748,&quot;asset_id&quot;:20703407,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/41514748/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="4230237" href="https://uva.academia.edu/Sonja_Smets">Sonja Smets</a><script data-card-contents-for-user="4230237" type="text/json">{"id":4230237,"first_name":"Sonja","last_name":"Smets","domain_name":"uva","page_name":"Sonja_Smets","display_name":"Sonja Smets","profile_url":"https://uva.academia.edu/Sonja_Smets?f_ri=43610","photo":"https://0.academia-photos.com/4230237/1669981/12665956/s65_sonja.smets.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-20703407">+1</span><div class="hidden js-additional-users-20703407"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://uva.academia.edu/AlexandruBaltag">Alexandru Baltag</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-20703407'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-20703407').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_20703407 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="20703407"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 20703407, container: ".js-paper-rank-work_20703407", }); });</script></li><li class="js-percentile-work_20703407 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20703407; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_20703407"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_20703407 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="20703407"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20703407; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20703407]").text(description); $(".js-view-count-work_20703407").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_20703407").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="20703407"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">7</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="2531" href="https://www.academia.edu/Documents/in/Belief_Revision_Computer_Science_">Belief Revision (Computer Science)</a>,&nbsp;<script data-card-contents-for-ri="2531" type="text/json">{"id":2531,"name":"Belief Revision (Computer Science)","url":"https://www.academia.edu/Documents/in/Belief_Revision_Computer_Science_?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="10984" href="https://www.academia.edu/Documents/in/Formal_Epistemology">Formal Epistemology</a>,&nbsp;<script data-card-contents-for-ri="10984" type="text/json">{"id":10984,"name":"Formal Epistemology","url":"https://www.academia.edu/Documents/in/Formal_Epistemology?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="43610" href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Probabilistic Logic</a>,&nbsp;<script data-card-contents-for-ri="43610" type="text/json">{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="85797" href="https://www.academia.edu/Documents/in/Doxastic_Logic">Doxastic Logic</a><script data-card-contents-for-ri="85797" type="text/json">{"id":85797,"name":"Doxastic Logic","url":"https://www.academia.edu/Documents/in/Doxastic_Logic?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=20703407]'), work: {"id":20703407,"title":"Probabilistic dynamic belief revision [Journal Paper]","created_at":"2016-01-24T08:36:37.989-08:00","url":"https://www.academia.edu/20703407/Probabilistic_dynamic_belief_revision_Journal_Paper_?f_ri=43610","dom_id":"work_20703407","summary":"We investigate the discrete (finite) case of the Popper–Renyi theory of conditional probability, introducing discrete conditional probabilistic models for knowledge and conditional belief, and comparing them with the more standard plau-sibility models. We also consider a related notion, that of safe belief, which is a weak (non-negatively introspective) type of \" knowledge \". We develop a probabilistic version of this concept (\" degree of safety \") and we analyze its role in games. We completely axiomatize the logic of conditional belief, knowledge and safe belief over conditional probabilistic models. We develop a theory of probabilistic dynamic belief revision, introducing probabilistic \" action models \" and proposing a notion of probabilistic update product, that comes together with appropriate reduction laws.","downloadable_attachments":[{"id":41514748,"asset_id":20703407,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":4230237,"first_name":"Sonja","last_name":"Smets","domain_name":"uva","page_name":"Sonja_Smets","display_name":"Sonja Smets","profile_url":"https://uva.academia.edu/Sonja_Smets?f_ri=43610","photo":"https://0.academia-photos.com/4230237/1669981/12665956/s65_sonja.smets.jpg"},{"id":42184985,"first_name":"Alexandru","last_name":"Baltag","domain_name":"uva","page_name":"AlexandruBaltag","display_name":"Alexandru Baltag","profile_url":"https://uva.academia.edu/AlexandruBaltag?f_ri=43610","photo":"https://0.academia-photos.com/42184985/18514772/18478918/s65_alexandru.baltag.jpg"}],"research_interests":[{"id":2531,"name":"Belief Revision (Computer Science)","url":"https://www.academia.edu/Documents/in/Belief_Revision_Computer_Science_?f_ri=43610","nofollow":false},{"id":10984,"name":"Formal Epistemology","url":"https://www.academia.edu/Documents/in/Formal_Epistemology?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false},{"id":85797,"name":"Doxastic Logic","url":"https://www.academia.edu/Documents/in/Doxastic_Logic?f_ri=43610","nofollow":false},{"id":85798,"name":"Belief Revision","url":"https://www.academia.edu/Documents/in/Belief_Revision?f_ri=43610"},{"id":102444,"name":"Dynamic Epistemic Logic","url":"https://www.academia.edu/Documents/in/Dynamic_Epistemic_Logic?f_ri=43610"},{"id":1399762,"name":"Belief Dynamics","url":"https://www.academia.edu/Documents/in/Belief_Dynamics?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_66734559" data-work_id="66734559" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/66734559/Modeling_a_probabilistic_ontology_for_Maritime_Domain_Awareness">Modeling a probabilistic ontology for Maritime Domain Awareness</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Situational awareness and prediction are essential elements of information fusion. Both involve various types of uncertainty and require a sound automated inferential process. Probabilistic ontologies support uncertainty management in... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_66734559" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Situational awareness and prediction are essential elements of information fusion. Both involve various types of uncertainty and require a sound automated inferential process. Probabilistic ontologies support uncertainty management in se-mantically aware systems, and facilitate modular, interoperable systems. This paper describes the process of developing a probabilistic ontology for a Maritime Domain Awareness application. The ontology was created to support identification of ships behaving suspiciously enough to be declared ships of interest. The original model was expanded in two ways: to provide reasons for declaring a ship as being of interest, and to include individual crew member associations. The latter is achieved by supporting inferences about a person&amp;#39;s close relations, group associations, communications, and background influences to assess his likelihood of having terrorist links.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/66734559" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="beb871f0759b9aa0702de4e7c84b88ef" rel="nofollow" data-download="{&quot;attachment_id&quot;:77811841,&quot;asset_id&quot;:66734559,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/77811841/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="33043525" href="https://independent.academia.edu/RichardHaberlin">Richard Haberlin</a><script data-card-contents-for-user="33043525" type="text/json">{"id":33043525,"first_name":"Richard","last_name":"Haberlin","domain_name":"independent","page_name":"RichardHaberlin","display_name":"Richard Haberlin","profile_url":"https://independent.academia.edu/RichardHaberlin?f_ri=43610","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_66734559 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="66734559"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 66734559, container: ".js-paper-rank-work_66734559", }); });</script></li><li class="js-percentile-work_66734559 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 66734559; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_66734559"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_66734559 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="66734559"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 66734559; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=66734559]").text(description); $(".js-view-count-work_66734559").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_66734559").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="66734559"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">14</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1660" href="https://www.academia.edu/Documents/in/Terrorism">Terrorism</a>,&nbsp;<script data-card-contents-for-ri="1660" type="text/json">{"id":1660,"name":"Terrorism","url":"https://www.academia.edu/Documents/in/Terrorism?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2627" href="https://www.academia.edu/Documents/in/Situation_awareness">Situation awareness</a>,&nbsp;<script data-card-contents-for-ri="2627" type="text/json">{"id":2627,"name":"Situation awareness","url":"https://www.academia.edu/Documents/in/Situation_awareness?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="9545" href="https://www.academia.edu/Documents/in/Web_Services">Web Services</a><script data-card-contents-for-ri="9545" type="text/json">{"id":9545,"name":"Web Services","url":"https://www.academia.edu/Documents/in/Web_Services?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=66734559]'), work: {"id":66734559,"title":"Modeling a probabilistic ontology for Maritime Domain Awareness","created_at":"2021-12-31T11:30:57.735-08:00","url":"https://www.academia.edu/66734559/Modeling_a_probabilistic_ontology_for_Maritime_Domain_Awareness?f_ri=43610","dom_id":"work_66734559","summary":"Situational awareness and prediction are essential elements of information fusion. Both involve various types of uncertainty and require a sound automated inferential process. Probabilistic ontologies support uncertainty management in se-mantically aware systems, and facilitate modular, interoperable systems. This paper describes the process of developing a probabilistic ontology for a Maritime Domain Awareness application. The ontology was created to support identification of ships behaving suspiciously enough to be declared ships of interest. The original model was expanded in two ways: to provide reasons for declaring a ship as being of interest, and to include individual crew member associations. The latter is achieved by supporting inferences about a person\u0026#39;s close relations, group associations, communications, and background influences to assess his likelihood of having terrorist links.","downloadable_attachments":[{"id":77811841,"asset_id":66734559,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":33043525,"first_name":"Richard","last_name":"Haberlin","domain_name":"independent","page_name":"RichardHaberlin","display_name":"Richard Haberlin","profile_url":"https://independent.academia.edu/RichardHaberlin?f_ri=43610","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=43610","nofollow":false},{"id":1660,"name":"Terrorism","url":"https://www.academia.edu/Documents/in/Terrorism?f_ri=43610","nofollow":false},{"id":2627,"name":"Situation awareness","url":"https://www.academia.edu/Documents/in/Situation_awareness?f_ri=43610","nofollow":false},{"id":9545,"name":"Web Services","url":"https://www.academia.edu/Documents/in/Web_Services?f_ri=43610","nofollow":false},{"id":28512,"name":"Bayesian Networks","url":"https://www.academia.edu/Documents/in/Bayesian_Networks?f_ri=43610"},{"id":38538,"name":"Uncertainty Management","url":"https://www.academia.edu/Documents/in/Uncertainty_Management?f_ri=43610"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":51860,"name":"Ontologies","url":"https://www.academia.edu/Documents/in/Ontologies?f_ri=43610"},{"id":61603,"name":"Uncertainty","url":"https://www.academia.edu/Documents/in/Uncertainty?f_ri=43610"},{"id":87035,"name":"Organizations","url":"https://www.academia.edu/Documents/in/Organizations?f_ri=43610"},{"id":142317,"name":"SITUATIONAL AWARENESS","url":"https://www.academia.edu/Documents/in/SITUATIONAL_AWARENESS?f_ri=43610"},{"id":143115,"name":"Sensor Fusion","url":"https://www.academia.edu/Documents/in/Sensor_Fusion?f_ri=43610"},{"id":274599,"name":"Bayesian Network","url":"https://www.academia.edu/Documents/in/Bayesian_Network?f_ri=43610"},{"id":317992,"name":"Web Service","url":"https://www.academia.edu/Documents/in/Web_Service?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_2020139" data-work_id="2020139" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/2020139/Low_power_probabilistic_floating_point_multiplier_design">Low power probabilistic floating point multiplier design</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/2020139" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="9b39d306322972da564c0788ed8498d2" rel="nofollow" data-download="{&quot;attachment_id&quot;:29358517,&quot;asset_id&quot;:2020139,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/29358517/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="154187" href="https://nanyang.academia.edu/EonStrife">Budianto Tandianus</a><script data-card-contents-for-user="154187" type="text/json">{"id":154187,"first_name":"Budianto","last_name":"Tandianus","domain_name":"nanyang","page_name":"EonStrife","display_name":"Budianto Tandianus","profile_url":"https://nanyang.academia.edu/EonStrife?f_ri=43610","photo":"https://0.academia-photos.com/154187/40193/36933/s65_budianto.tandianus.jpg"}</script></span></span></li><li class="js-paper-rank-work_2020139 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="2020139"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 2020139, container: ".js-paper-rank-work_2020139", }); });</script></li><li class="js-percentile-work_2020139 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2020139; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_2020139"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_2020139 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="2020139"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2020139; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2020139]").text(description); $(".js-view-count-work_2020139").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_2020139").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="2020139"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">12</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="43610" href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Probabilistic Logic</a>,&nbsp;<script data-card-contents-for-ri="43610" type="text/json">{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="127348" href="https://www.academia.edu/Documents/in/Energy_Saving">Energy Saving</a>,&nbsp;<script data-card-contents-for-ri="127348" type="text/json">{"id":127348,"name":"Energy Saving","url":"https://www.academia.edu/Documents/in/Energy_Saving?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="152918" href="https://www.academia.edu/Documents/in/Error_Analysis">Error Analysis</a>,&nbsp;<script data-card-contents-for-ri="152918" type="text/json">{"id":152918,"name":"Error Analysis","url":"https://www.academia.edu/Documents/in/Error_Analysis?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="160667" href="https://www.academia.edu/Documents/in/Ray_Tracing">Ray Tracing</a><script data-card-contents-for-ri="160667" type="text/json">{"id":160667,"name":"Ray Tracing","url":"https://www.academia.edu/Documents/in/Ray_Tracing?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=2020139]'), work: {"id":2020139,"title":"Low power probabilistic floating point multiplier design","created_at":"2012-10-11T19:08:14.171-07:00","url":"https://www.academia.edu/2020139/Low_power_probabilistic_floating_point_multiplier_design?f_ri=43610","dom_id":"work_2020139","summary":null,"downloadable_attachments":[{"id":29358517,"asset_id":2020139,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":154187,"first_name":"Budianto","last_name":"Tandianus","domain_name":"nanyang","page_name":"EonStrife","display_name":"Budianto Tandianus","profile_url":"https://nanyang.academia.edu/EonStrife?f_ri=43610","photo":"https://0.academia-photos.com/154187/40193/36933/s65_budianto.tandianus.jpg"}],"research_interests":[{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false},{"id":127348,"name":"Energy Saving","url":"https://www.academia.edu/Documents/in/Energy_Saving?f_ri=43610","nofollow":false},{"id":152918,"name":"Error Analysis","url":"https://www.academia.edu/Documents/in/Error_Analysis?f_ri=43610","nofollow":false},{"id":160667,"name":"Ray Tracing","url":"https://www.academia.edu/Documents/in/Ray_Tracing?f_ri=43610","nofollow":false},{"id":181287,"name":"Low Power","url":"https://www.academia.edu/Documents/in/Low_Power?f_ri=43610"},{"id":234111,"name":"Digital Logic","url":"https://www.academia.edu/Documents/in/Digital_Logic?f_ri=43610"},{"id":264606,"name":"Computer Graphic","url":"https://www.academia.edu/Documents/in/Computer_Graphic?f_ri=43610"},{"id":566851,"name":"Energy Efficient Design","url":"https://www.academia.edu/Documents/in/Energy_Efficient_Design?f_ri=43610"},{"id":609191,"name":"Logic Design","url":"https://www.academia.edu/Documents/in/Logic_Design?f_ri=43610"},{"id":628286,"name":"Logic Gates","url":"https://www.academia.edu/Documents/in/Logic_Gates?f_ri=43610"},{"id":907206,"name":"Floating Point","url":"https://www.academia.edu/Documents/in/Floating_Point?f_ri=43610"},{"id":1111094,"name":"Adders","url":"https://www.academia.edu/Documents/in/Adders?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_28371010" data-work_id="28371010" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/28371010/Web2MexADL_Discovery_and_Maintainability_Verification_of_Software_Systems_Architecture">Web2MexADL: Discovery and Maintainability Verification of Software Systems Architecture</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/28371010" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="b609a677b0a893640f0fa1e2673581f5" rel="nofollow" data-download="{&quot;attachment_id&quot;:48704892,&quot;asset_id&quot;:28371010,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/48704892/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="10552547" href="https://cnrs.academia.edu/GenovevaVargasSolar">Genoveva Vargas-Solar</a><script data-card-contents-for-user="10552547" type="text/json">{"id":10552547,"first_name":"Genoveva","last_name":"Vargas-Solar","domain_name":"cnrs","page_name":"GenovevaVargasSolar","display_name":"Genoveva Vargas-Solar","profile_url":"https://cnrs.academia.edu/GenovevaVargasSolar?f_ri=43610","photo":"https://0.academia-photos.com/10552547/3191772/3756763/s65_genoveva.vargas-solar.jpg"}</script></span></span></li><li class="js-paper-rank-work_28371010 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="28371010"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 28371010, container: ".js-paper-rank-work_28371010", }); });</script></li><li class="js-percentile-work_28371010 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28371010; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_28371010"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_28371010 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="28371010"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28371010; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28371010]").text(description); $(".js-view-count-work_28371010").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_28371010").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="28371010"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">19</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="433" href="https://www.academia.edu/Documents/in/Computer_Architecture">Computer Architecture</a>,&nbsp;<script data-card-contents-for-ri="433" type="text/json">{"id":433,"name":"Computer Architecture","url":"https://www.academia.edu/Documents/in/Computer_Architecture?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="449" href="https://www.academia.edu/Documents/in/Software_Engineering">Software Engineering</a>,&nbsp;<script data-card-contents-for-ri="449" type="text/json">{"id":449,"name":"Software Engineering","url":"https://www.academia.edu/Documents/in/Software_Engineering?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1450" href="https://www.academia.edu/Documents/in/Software_Maintenance">Software Maintenance</a>,&nbsp;<script data-card-contents-for-ri="1450" type="text/json">{"id":1450,"name":"Software Maintenance","url":"https://www.academia.edu/Documents/in/Software_Maintenance?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a><script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=28371010]'), work: {"id":28371010,"title":"Web2MexADL: Discovery and Maintainability Verification of Software Systems Architecture","created_at":"2016-09-09T08:33:23.156-07:00","url":"https://www.academia.edu/28371010/Web2MexADL_Discovery_and_Maintainability_Verification_of_Software_Systems_Architecture?f_ri=43610","dom_id":"work_28371010","summary":null,"downloadable_attachments":[{"id":48704892,"asset_id":28371010,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":10552547,"first_name":"Genoveva","last_name":"Vargas-Solar","domain_name":"cnrs","page_name":"GenovevaVargasSolar","display_name":"Genoveva Vargas-Solar","profile_url":"https://cnrs.academia.edu/GenovevaVargasSolar?f_ri=43610","photo":"https://0.academia-photos.com/10552547/3191772/3756763/s65_genoveva.vargas-solar.jpg"}],"research_interests":[{"id":433,"name":"Computer Architecture","url":"https://www.academia.edu/Documents/in/Computer_Architecture?f_ri=43610","nofollow":false},{"id":449,"name":"Software Engineering","url":"https://www.academia.edu/Documents/in/Software_Engineering?f_ri=43610","nofollow":false},{"id":1450,"name":"Software Maintenance","url":"https://www.academia.edu/Documents/in/Software_Maintenance?f_ri=43610","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=43610","nofollow":false},{"id":2725,"name":"Documentation","url":"https://www.academia.edu/Documents/in/Documentation?f_ri=43610"},{"id":9270,"name":"Software Architecture","url":"https://www.academia.edu/Documents/in/Software_Architecture?f_ri=43610"},{"id":31441,"name":"Software Verification and Validation","url":"https://www.academia.edu/Documents/in/Software_Verification_and_Validation?f_ri=43610"},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability?f_ri=43610"},{"id":36079,"name":"Probabilistic Methods","url":"https://www.academia.edu/Documents/in/Probabilistic_Methods?f_ri=43610"},{"id":42676,"name":"Software Verification","url":"https://www.academia.edu/Documents/in/Software_Verification?f_ri=43610"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":99513,"name":"SVG","url":"https://www.academia.edu/Documents/in/SVG?f_ri=43610"},{"id":109147,"name":"Bayesian methods","url":"https://www.academia.edu/Documents/in/Bayesian_methods?f_ri=43610"},{"id":172035,"name":"Formal Verification","url":"https://www.academia.edu/Documents/in/Formal_Verification?f_ri=43610"},{"id":452619,"name":"Scalable Vector Graphics","url":"https://www.academia.edu/Documents/in/Scalable_Vector_Graphics?f_ri=43610"},{"id":506474,"name":"Probabilistic Method","url":"https://www.academia.edu/Documents/in/Probabilistic_Method?f_ri=43610"},{"id":516232,"name":"Source Code","url":"https://www.academia.edu/Documents/in/Source_Code?f_ri=43610"},{"id":567681,"name":"Software Systems","url":"https://www.academia.edu/Documents/in/Software_Systems?f_ri=43610"},{"id":1191356,"name":"Internet","url":"https://www.academia.edu/Documents/in/Internet?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_6289888" data-work_id="6289888" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/6289888/A_logic_with_approximate_conditional_probabilities_that_can_model_default_reasoning">A logic with approximate conditional probabilities that can model default reasoning</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/6289888" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="92aefa88727647355522815abe2448d2" rel="nofollow" data-download="{&quot;attachment_id&quot;:48929966,&quot;asset_id&quot;:6289888,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/48929966/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="9742232" href="https://independent.academia.edu/ZoranMarkovic">Zoran Markovic</a><script data-card-contents-for-user="9742232" type="text/json">{"id":9742232,"first_name":"Zoran","last_name":"Markovic","domain_name":"independent","page_name":"ZoranMarkovic","display_name":"Zoran Markovic","profile_url":"https://independent.academia.edu/ZoranMarkovic?f_ri=43610","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_6289888 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="6289888"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 6289888, container: ".js-paper-rank-work_6289888", }); });</script></li><li class="js-percentile-work_6289888 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 6289888; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_6289888"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_6289888 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="6289888"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 6289888; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=6289888]").text(description); $(".js-view-count-work_6289888").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_6289888").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="6289888"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">8</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="892" href="https://www.academia.edu/Documents/in/Statistics">Statistics</a>,&nbsp;<script data-card-contents-for-ri="892" type="text/json">{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="31301" href="https://www.academia.edu/Documents/in/Possible_Worlds">Possible Worlds</a>,&nbsp;<script data-card-contents-for-ri="31301" type="text/json">{"id":31301,"name":"Possible Worlds","url":"https://www.academia.edu/Documents/in/Possible_Worlds?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="43610" href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Probabilistic Logic</a>,&nbsp;<script data-card-contents-for-ri="43610" type="text/json">{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="207885" href="https://www.academia.edu/Documents/in/Conditional_probability">Conditional probability</a><script data-card-contents-for-ri="207885" type="text/json">{"id":207885,"name":"Conditional probability","url":"https://www.academia.edu/Documents/in/Conditional_probability?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=6289888]'), work: {"id":6289888,"title":"A logic with approximate conditional probabilities that can model default reasoning","created_at":"2014-03-04T15:57:51.073-08:00","url":"https://www.academia.edu/6289888/A_logic_with_approximate_conditional_probabilities_that_can_model_default_reasoning?f_ri=43610","dom_id":"work_6289888","summary":null,"downloadable_attachments":[{"id":48929966,"asset_id":6289888,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":9742232,"first_name":"Zoran","last_name":"Markovic","domain_name":"independent","page_name":"ZoranMarkovic","display_name":"Zoran Markovic","profile_url":"https://independent.academia.edu/ZoranMarkovic?f_ri=43610","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics?f_ri=43610","nofollow":false},{"id":31301,"name":"Possible Worlds","url":"https://www.academia.edu/Documents/in/Possible_Worlds?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false},{"id":207885,"name":"Conditional probability","url":"https://www.academia.edu/Documents/in/Conditional_probability?f_ri=43610","nofollow":false},{"id":492767,"name":"Approximate Reasoning","url":"https://www.academia.edu/Documents/in/Approximate_Reasoning?f_ri=43610"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics?f_ri=43610"},{"id":986890,"name":"Decidability","url":"https://www.academia.edu/Documents/in/Decidability?f_ri=43610"},{"id":1201617,"name":"Default Reasoning","url":"https://www.academia.edu/Documents/in/Default_Reasoning?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_19558512" data-work_id="19558512" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/19558512/Reconfiguration_of_power_distribution_systems_using_genetic_algorithms_and_spanning_trees">Reconfiguration of power distribution systems using genetic algorithms and spanning trees</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/19558512" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="ed52af0c45d689496d54ca7b980c4196" rel="nofollow" data-download="{&quot;attachment_id&quot;:42084555,&quot;asset_id&quot;:19558512,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/42084555/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="39763599" href="https://itk.academia.edu/SaikatChakrabarti">Saikat Chakrabarti</a><script data-card-contents-for-user="39763599" type="text/json">{"id":39763599,"first_name":"Saikat","last_name":"Chakrabarti","domain_name":"itk","page_name":"SaikatChakrabarti","display_name":"Saikat Chakrabarti","profile_url":"https://itk.academia.edu/SaikatChakrabarti?f_ri=43610","photo":"https://0.academia-photos.com/39763599/10919838/12186289/s65_saikat.chakrabarti.jpg"}</script></span></span></li><li class="js-paper-rank-work_19558512 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="19558512"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 19558512, container: ".js-paper-rank-work_19558512", }); });</script></li><li class="js-percentile-work_19558512 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 19558512; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_19558512"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_19558512 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="19558512"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 19558512; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=19558512]").text(description); $(".js-view-count-work_19558512").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_19558512").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="19558512"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">15</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="4758" href="https://www.academia.edu/Documents/in/Electronics">Electronics</a>,&nbsp;<script data-card-contents-for-ri="4758" type="text/json">{"id":4758,"name":"Electronics","url":"https://www.academia.edu/Documents/in/Electronics?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="22686" href="https://www.academia.edu/Documents/in/Distributed_System">Distributed System</a>,&nbsp;<script data-card-contents-for-ri="22686" type="text/json">{"id":22686,"name":"Distributed System","url":"https://www.academia.edu/Documents/in/Distributed_System?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="30329" href="https://www.academia.edu/Documents/in/Genetic_Algorithm">Genetic Algorithm</a>,&nbsp;<script data-card-contents-for-ri="30329" type="text/json">{"id":30329,"name":"Genetic Algorithm","url":"https://www.academia.edu/Documents/in/Genetic_Algorithm?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="43610" href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Probabilistic Logic</a><script data-card-contents-for-ri="43610" type="text/json">{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=19558512]'), work: {"id":19558512,"title":"Reconfiguration of power distribution systems using genetic algorithms and spanning trees","created_at":"2015-12-08T06:55:27.585-08:00","url":"https://www.academia.edu/19558512/Reconfiguration_of_power_distribution_systems_using_genetic_algorithms_and_spanning_trees?f_ri=43610","dom_id":"work_19558512","summary":null,"downloadable_attachments":[{"id":42084555,"asset_id":19558512,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":39763599,"first_name":"Saikat","last_name":"Chakrabarti","domain_name":"itk","page_name":"SaikatChakrabarti","display_name":"Saikat Chakrabarti","profile_url":"https://itk.academia.edu/SaikatChakrabarti?f_ri=43610","photo":"https://0.academia-photos.com/39763599/10919838/12186289/s65_saikat.chakrabarti.jpg"}],"research_interests":[{"id":4758,"name":"Electronics","url":"https://www.academia.edu/Documents/in/Electronics?f_ri=43610","nofollow":false},{"id":22686,"name":"Distributed System","url":"https://www.academia.edu/Documents/in/Distributed_System?f_ri=43610","nofollow":false},{"id":30329,"name":"Genetic Algorithm","url":"https://www.academia.edu/Documents/in/Genetic_Algorithm?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false},{"id":46254,"name":"Optimization Problem","url":"https://www.academia.edu/Documents/in/Optimization_Problem?f_ri=43610"},{"id":75622,"name":"Power System Reliability","url":"https://www.academia.edu/Documents/in/Power_System_Reliability?f_ri=43610"},{"id":114953,"name":"Power system distribution","url":"https://www.academia.edu/Documents/in/Power_system_distribution?f_ri=43610"},{"id":155564,"name":"Search Algorithm","url":"https://www.academia.edu/Documents/in/Search_Algorithm?f_ri=43610"},{"id":330045,"name":"Reliability Modeling","url":"https://www.academia.edu/Documents/in/Reliability_Modeling?f_ri=43610"},{"id":469944,"name":"Search Space","url":"https://www.academia.edu/Documents/in/Search_Space?f_ri=43610"},{"id":648356,"name":"Integrated Circuit","url":"https://www.academia.edu/Documents/in/Integrated_Circuit?f_ri=43610"},{"id":958083,"name":"Spanning Tree","url":"https://www.academia.edu/Documents/in/Spanning_Tree?f_ri=43610"},{"id":1191167,"name":"Power flow","url":"https://www.academia.edu/Documents/in/Power_flow?f_ri=43610"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering?f_ri=43610"},{"id":1330964,"name":"Particle Swarm Optimizer","url":"https://www.academia.edu/Documents/in/Particle_Swarm_Optimizer?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_34118366" data-work_id="34118366" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/34118366/A_Probabilistic_Greedy_Algorithm_for_Channel_Assignment_in_Cellular_Radio_Networks">A Probabilistic Greedy Algorithm for Channel Assignment in Cellular Radio Networks</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/34118366" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="bd600408205fbd3d8f97470d8b95395e" rel="nofollow" data-download="{&quot;attachment_id&quot;:54048419,&quot;asset_id&quot;:34118366,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/54048419/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="65223998" href="https://independent.academia.edu/aliamiri45">ali amiri</a><script data-card-contents-for-user="65223998" type="text/json">{"id":65223998,"first_name":"ali","last_name":"amiri","domain_name":"independent","page_name":"aliamiri45","display_name":"ali amiri","profile_url":"https://independent.academia.edu/aliamiri45?f_ri=43610","photo":"https://0.academia-photos.com/65223998/17426625/17513616/s65_ali.amiri.jpg"}</script></span></span></li><li class="js-paper-rank-work_34118366 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="34118366"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 34118366, container: ".js-paper-rank-work_34118366", }); });</script></li><li class="js-percentile-work_34118366 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34118366; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_34118366"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_34118366 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="34118366"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34118366; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34118366]").text(description); $(".js-view-count-work_34118366").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_34118366").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="34118366"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">17</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="5447" href="https://www.academia.edu/Documents/in/Linear_Programming">Linear Programming</a>,&nbsp;<script data-card-contents-for-ri="5447" type="text/json">{"id":5447,"name":"Linear Programming","url":"https://www.academia.edu/Documents/in/Linear_Programming?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5448" href="https://www.academia.edu/Documents/in/Nonlinear_Programming">Nonlinear Programming</a>,&nbsp;<script data-card-contents-for-ri="5448" type="text/json">{"id":5448,"name":"Nonlinear Programming","url":"https://www.academia.edu/Documents/in/Nonlinear_Programming?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="6411" href="https://www.academia.edu/Documents/in/Integer_Programming">Integer Programming</a>,&nbsp;<script data-card-contents-for-ri="6411" type="text/json">{"id":6411,"name":"Integer Programming","url":"https://www.academia.edu/Documents/in/Integer_Programming?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="7462" href="https://www.academia.edu/Documents/in/Randomization">Randomization</a><script data-card-contents-for-ri="7462" type="text/json">{"id":7462,"name":"Randomization","url":"https://www.academia.edu/Documents/in/Randomization?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=34118366]'), work: {"id":34118366,"title":"A Probabilistic Greedy Algorithm for Channel Assignment in Cellular Radio Networks","created_at":"2017-08-03T05:56:43.250-07:00","url":"https://www.academia.edu/34118366/A_Probabilistic_Greedy_Algorithm_for_Channel_Assignment_in_Cellular_Radio_Networks?f_ri=43610","dom_id":"work_34118366","summary":null,"downloadable_attachments":[{"id":54048419,"asset_id":34118366,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":65223998,"first_name":"ali","last_name":"amiri","domain_name":"independent","page_name":"aliamiri45","display_name":"ali amiri","profile_url":"https://independent.academia.edu/aliamiri45?f_ri=43610","photo":"https://0.academia-photos.com/65223998/17426625/17513616/s65_ali.amiri.jpg"}],"research_interests":[{"id":5447,"name":"Linear Programming","url":"https://www.academia.edu/Documents/in/Linear_Programming?f_ri=43610","nofollow":false},{"id":5448,"name":"Nonlinear Programming","url":"https://www.academia.edu/Documents/in/Nonlinear_Programming?f_ri=43610","nofollow":false},{"id":6411,"name":"Integer Programming","url":"https://www.academia.edu/Documents/in/Integer_Programming?f_ri=43610","nofollow":false},{"id":7462,"name":"Randomization","url":"https://www.academia.edu/Documents/in/Randomization?f_ri=43610","nofollow":false},{"id":9048,"name":"Scheduling","url":"https://www.academia.edu/Documents/in/Scheduling?f_ri=43610"},{"id":25656,"name":"Greedy Algorithms","url":"https://www.academia.edu/Documents/in/Greedy_Algorithms?f_ri=43610"},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability?f_ri=43610"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":323652,"name":"Interference","url":"https://www.academia.edu/Documents/in/Interference?f_ri=43610"},{"id":418130,"name":"Telecommunication network","url":"https://www.academia.edu/Documents/in/Telecommunication_network?f_ri=43610"},{"id":679783,"name":"Boolean Satisfiability","url":"https://www.academia.edu/Documents/in/Boolean_Satisfiability?f_ri=43610"},{"id":692452,"name":"Communication Complexity","url":"https://www.academia.edu/Documents/in/Communication_Complexity?f_ri=43610"},{"id":799329,"name":"Dynamic Channel Allocation","url":"https://www.academia.edu/Documents/in/Dynamic_Channel_Allocation?f_ri=43610"},{"id":869763,"name":"Electronics Packaging","url":"https://www.academia.edu/Documents/in/Electronics_Packaging?f_ri=43610"},{"id":893452,"name":"Greedy Algorithm","url":"https://www.academia.edu/Documents/in/Greedy_Algorithm?f_ri=43610"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering?f_ri=43610"},{"id":1402673,"name":"Perturbation","url":"https://www.academia.edu/Documents/in/Perturbation?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_1626142" data-work_id="1626142" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/1626142/Beliefs_Certainty_and_Complex_Systems_Structure">Beliefs, Certainty and Complex Systems Structure</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/1626142" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="97ae68a51146dd80e52afa376bedb154" rel="nofollow" data-download="{&quot;attachment_id&quot;:16411186,&quot;asset_id&quot;:1626142,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/16411186/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="1026982" href="https://independent.academia.edu/horaciopaggi">horacio paggi</a><script data-card-contents-for-user="1026982" type="text/json">{"id":1026982,"first_name":"horacio","last_name":"paggi","domain_name":"independent","page_name":"horaciopaggi","display_name":"horacio paggi","profile_url":"https://independent.academia.edu/horaciopaggi?f_ri=43610","photo":"https://0.academia-photos.com/1026982/17858602/17875115/s65_horacio.paggi.jpg"}</script></span></span></li><li class="js-paper-rank-work_1626142 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="1626142"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 1626142, container: ".js-paper-rank-work_1626142", }); });</script></li><li class="js-percentile-work_1626142 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1626142; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_1626142"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_1626142 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="1626142"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1626142; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1626142]").text(description); $(".js-view-count-work_1626142").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_1626142").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="1626142"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">14</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="2534" href="https://www.academia.edu/Documents/in/Multiagent_Systems">Multiagent Systems</a>,&nbsp;<script data-card-contents-for-ri="2534" type="text/json">{"id":2534,"name":"Multiagent Systems","url":"https://www.academia.edu/Documents/in/Multiagent_Systems?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4165" href="https://www.academia.edu/Documents/in/Fuzzy_Logic">Fuzzy Logic</a>,&nbsp;<script data-card-contents-for-ri="4165" type="text/json">{"id":4165,"name":"Fuzzy Logic","url":"https://www.academia.edu/Documents/in/Fuzzy_Logic?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="18866" href="https://www.academia.edu/Documents/in/Beliefs">Beliefs</a>,&nbsp;<script data-card-contents-for-ri="18866" type="text/json">{"id":18866,"name":"Beliefs","url":"https://www.academia.edu/Documents/in/Beliefs?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="43610" href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Probabilistic Logic</a><script data-card-contents-for-ri="43610" type="text/json">{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=1626142]'), work: {"id":1626142,"title":"Beliefs, Certainty and Complex Systems Structure","created_at":"2012-06-06T06:36:14.531-07:00","url":"https://www.academia.edu/1626142/Beliefs_Certainty_and_Complex_Systems_Structure?f_ri=43610","dom_id":"work_1626142","summary":null,"downloadable_attachments":[{"id":16411186,"asset_id":1626142,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":1026982,"first_name":"horacio","last_name":"paggi","domain_name":"independent","page_name":"horaciopaggi","display_name":"horacio paggi","profile_url":"https://independent.academia.edu/horaciopaggi?f_ri=43610","photo":"https://0.academia-photos.com/1026982/17858602/17875115/s65_horacio.paggi.jpg"}],"research_interests":[{"id":2534,"name":"Multiagent Systems","url":"https://www.academia.edu/Documents/in/Multiagent_Systems?f_ri=43610","nofollow":false},{"id":4165,"name":"Fuzzy Logic","url":"https://www.academia.edu/Documents/in/Fuzzy_Logic?f_ri=43610","nofollow":false},{"id":18866,"name":"Beliefs","url":"https://www.academia.edu/Documents/in/Beliefs?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false},{"id":45873,"name":"Multi Agent System","url":"https://www.academia.edu/Documents/in/Multi_Agent_System?f_ri=43610"},{"id":50895,"name":"Software Agents","url":"https://www.academia.edu/Documents/in/Software_Agents?f_ri=43610"},{"id":54501,"name":"Complex System","url":"https://www.academia.edu/Documents/in/Complex_System?f_ri=43610"},{"id":61603,"name":"Uncertainty","url":"https://www.academia.edu/Documents/in/Uncertainty?f_ri=43610"},{"id":85430,"name":"Multi Agent Systems","url":"https://www.academia.edu/Documents/in/Multi_Agent_Systems?f_ri=43610"},{"id":129087,"name":"Randomness","url":"https://www.academia.edu/Documents/in/Randomness?f_ri=43610"},{"id":299563,"name":"Self Organization","url":"https://www.academia.edu/Documents/in/Self_Organization?f_ri=43610"},{"id":584679,"name":"Complex Dynamical Systems","url":"https://www.academia.edu/Documents/in/Complex_Dynamical_Systems?f_ri=43610"},{"id":963813,"name":"Decisions","url":"https://www.academia.edu/Documents/in/Decisions?f_ri=43610"},{"id":1931321,"name":"Application Software","url":"https://www.academia.edu/Documents/in/Application_Software?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_4396362 coauthored" data-work_id="4396362" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/4396362/Distributed_heuristic_algorithms_for_RAT_selection_in_wireless_heterogeneous_networks">Distributed heuristic algorithms for RAT selection in wireless heterogeneous networks</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">In wireless heterogeneous networks, one of the most challenging problems is Radio Access Technology (RAT) selection that must be designed to avoid resource wastage. In this paper we adopt a hybrid model for RAT selection where the system... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_4396362" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">In wireless heterogeneous networks, one of the most challenging problems is Radio Access Technology (RAT) selection that must be designed to avoid resource wastage. In this paper we adopt a hybrid model for RAT selection where the system allocates the downlink traffic between two different technologies in order to enhance global performance. We study the case of an integrated hybrid Wireless Local Area Network environment where the challenge we face is the high computational complexity necessary to obtain the global optimal solution. Therefore, we propose four distributed heuristic algorithms for RAT selection, where two of them are based on the distance between the user and the access points (APs), namely, distance based and probabilistic distance based algorithms. While the two others schemes are based on the peak rate that each user receives from these APs (peak rate based and probabilistic peak rate based algorithms). Results show that the proposed algorithms give efficient results compared to the optimal one depending on the spatial users distribution. Moreover these algorithms have a low computational complexity which makes them more advantageous compared to the optimal scheme in presence of a large number of users.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/4396362" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="2f0e20b3d56a3034a85470d56221d08a" rel="nofollow" data-download="{&quot;attachment_id&quot;:49883247,&quot;asset_id&quot;:4396362,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/49883247/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="5389172" href="https://usj.academia.edu/MarcIbrahim">Marc Ibrahim</a><script data-card-contents-for-user="5389172" type="text/json">{"id":5389172,"first_name":"Marc","last_name":"Ibrahim","domain_name":"usj","page_name":"MarcIbrahim","display_name":"Marc Ibrahim","profile_url":"https://usj.academia.edu/MarcIbrahim?f_ri=43610","photo":"/images/s65_no_pic.png"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-4396362">+1</span><div class="hidden js-additional-users-4396362"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/KindaKhawam">Kinda Khawam</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-4396362'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-4396362').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_4396362 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="4396362"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 4396362, container: ".js-paper-rank-work_4396362", }); });</script></li><li class="js-percentile-work_4396362 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 4396362; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_4396362"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_4396362 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="4396362"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 4396362; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=4396362]").text(description); $(".js-view-count-work_4396362").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_4396362").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="4396362"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">14</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="2189" href="https://www.academia.edu/Documents/in/Computational_Complexity">Computational Complexity</a>,&nbsp;<script data-card-contents-for-ri="2189" type="text/json">{"id":2189,"name":"Computational Complexity","url":"https://www.academia.edu/Documents/in/Computational_Complexity?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2658" href="https://www.academia.edu/Documents/in/Distributed_Algorithms">Distributed Algorithms</a>,&nbsp;<script data-card-contents-for-ri="2658" type="text/json">{"id":2658,"name":"Distributed Algorithms","url":"https://www.academia.edu/Documents/in/Distributed_Algorithms?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="18391" href="https://www.academia.edu/Documents/in/Mobile_Communication">Mobile Communication</a>,&nbsp;<script data-card-contents-for-ri="18391" type="text/json">{"id":18391,"name":"Mobile Communication","url":"https://www.academia.edu/Documents/in/Mobile_Communication?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="33069" href="https://www.academia.edu/Documents/in/Probability">Probability</a><script data-card-contents-for-ri="33069" type="text/json">{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=4396362]'), work: {"id":4396362,"title":"Distributed heuristic algorithms for RAT selection in wireless heterogeneous networks","created_at":"2013-09-03T02:50:53.850-07:00","url":"https://www.academia.edu/4396362/Distributed_heuristic_algorithms_for_RAT_selection_in_wireless_heterogeneous_networks?f_ri=43610","dom_id":"work_4396362","summary":"In wireless heterogeneous networks, one of the most challenging problems is Radio Access Technology (RAT) selection that must be designed to avoid resource wastage. In this paper we adopt a hybrid model for RAT selection where the system allocates the downlink traffic between two different technologies in order to enhance global performance. We study the case of an integrated hybrid Wireless Local Area Network environment where the challenge we face is the high computational complexity necessary to obtain the global optimal solution. Therefore, we propose four distributed heuristic algorithms for RAT selection, where two of them are based on the distance between the user and the access points (APs), namely, distance based and probabilistic distance based algorithms. While the two others schemes are based on the peak rate that each user receives from these APs (peak rate based and probabilistic peak rate based algorithms). Results show that the proposed algorithms give efficient results compared to the optimal one depending on the spatial users distribution. Moreover these algorithms have a low computational complexity which makes them more advantageous compared to the optimal scheme in presence of a large number of users.","downloadable_attachments":[{"id":49883247,"asset_id":4396362,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":5389172,"first_name":"Marc","last_name":"Ibrahim","domain_name":"usj","page_name":"MarcIbrahim","display_name":"Marc Ibrahim","profile_url":"https://usj.academia.edu/MarcIbrahim?f_ri=43610","photo":"/images/s65_no_pic.png"},{"id":174399265,"first_name":"Kinda","last_name":"Khawam","domain_name":"independent","page_name":"KindaKhawam","display_name":"Kinda Khawam","profile_url":"https://independent.academia.edu/KindaKhawam?f_ri=43610","photo":"https://0.academia-photos.com/174399265/162290405/159510873/s65_kinda.khawam.png"}],"research_interests":[{"id":2189,"name":"Computational Complexity","url":"https://www.academia.edu/Documents/in/Computational_Complexity?f_ri=43610","nofollow":false},{"id":2658,"name":"Distributed Algorithms","url":"https://www.academia.edu/Documents/in/Distributed_Algorithms?f_ri=43610","nofollow":false},{"id":18391,"name":"Mobile Communication","url":"https://www.academia.edu/Documents/in/Mobile_Communication?f_ri=43610","nofollow":false},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":107131,"name":"Global Optimization","url":"https://www.academia.edu/Documents/in/Global_Optimization?f_ri=43610"},{"id":606506,"name":"Radio Access Technology","url":"https://www.academia.edu/Documents/in/Radio_Access_Technology?f_ri=43610"},{"id":692452,"name":"Communication Complexity","url":"https://www.academia.edu/Documents/in/Communication_Complexity?f_ri=43610"},{"id":859645,"name":"Access Point","url":"https://www.academia.edu/Documents/in/Access_Point?f_ri=43610"},{"id":1003508,"name":"Cost Function","url":"https://www.academia.edu/Documents/in/Cost_Function?f_ri=43610"},{"id":1290770,"name":"Hybrid Model","url":"https://www.academia.edu/Documents/in/Hybrid_Model?f_ri=43610"},{"id":1444511,"name":"Heterogeneous Network","url":"https://www.academia.edu/Documents/in/Heterogeneous_Network?f_ri=43610"},{"id":1490963,"name":"Wireless Local Area Network","url":"https://www.academia.edu/Documents/in/Wireless_Local_Area_Network?f_ri=43610"},{"id":1950746,"name":"Heuristic algorithm","url":"https://www.academia.edu/Documents/in/Heuristic_algorithm?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_8165331" data-work_id="8165331" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/8165331/Modern_routing_protocol_for_VanNETs_MODNET">Modern routing protocol for VanNETs (MODNET</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/8165331" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="edfba22186763154c7b23189d8aec86a" rel="nofollow" data-download="{&quot;attachment_id&quot;:48196405,&quot;asset_id&quot;:8165331,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/48196405/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="15947662" href="https://ciit-attock.academia.edu/FarhanAadil">Farhan Aadil</a><script data-card-contents-for-user="15947662" type="text/json">{"id":15947662,"first_name":"Farhan","last_name":"Aadil","domain_name":"ciit-attock","page_name":"FarhanAadil","display_name":"Farhan Aadil","profile_url":"https://ciit-attock.academia.edu/FarhanAadil?f_ri=43610","photo":"https://0.academia-photos.com/15947662/4319117/67145451/s65_farhan.aadil.jpg"}</script></span></span></li><li class="js-paper-rank-work_8165331 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="8165331"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 8165331, container: ".js-paper-rank-work_8165331", }); });</script></li><li class="js-percentile-work_8165331 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8165331; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_8165331"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_8165331 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="8165331"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8165331; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8165331]").text(description); $(".js-view-count-work_8165331").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_8165331").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="8165331"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">14</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="2851" href="https://www.academia.edu/Documents/in/RFID">RFID</a>,&nbsp;<script data-card-contents-for-ri="2851" type="text/json">{"id":2851,"name":"RFID","url":"https://www.academia.edu/Documents/in/RFID?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4252" href="https://www.academia.edu/Documents/in/Computer_Networks">Computer Networks</a>,&nbsp;<script data-card-contents-for-ri="4252" type="text/json">{"id":4252,"name":"Computer Networks","url":"https://www.academia.edu/Documents/in/Computer_Networks?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="15118" href="https://www.academia.edu/Documents/in/Topology">Topology</a>,&nbsp;<script data-card-contents-for-ri="15118" type="text/json">{"id":15118,"name":"Topology","url":"https://www.academia.edu/Documents/in/Topology?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="23383" href="https://www.academia.edu/Documents/in/Routing_protocols">Routing protocols</a><script data-card-contents-for-ri="23383" type="text/json">{"id":23383,"name":"Routing protocols","url":"https://www.academia.edu/Documents/in/Routing_protocols?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=8165331]'), work: {"id":8165331,"title":"Modern routing protocol for VanNETs (MODNET","created_at":"2014-09-01T22:37:37.570-07:00","url":"https://www.academia.edu/8165331/Modern_routing_protocol_for_VanNETs_MODNET?f_ri=43610","dom_id":"work_8165331","summary":null,"downloadable_attachments":[{"id":48196405,"asset_id":8165331,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":15947662,"first_name":"Farhan","last_name":"Aadil","domain_name":"ciit-attock","page_name":"FarhanAadil","display_name":"Farhan Aadil","profile_url":"https://ciit-attock.academia.edu/FarhanAadil?f_ri=43610","photo":"https://0.academia-photos.com/15947662/4319117/67145451/s65_farhan.aadil.jpg"}],"research_interests":[{"id":2851,"name":"RFID","url":"https://www.academia.edu/Documents/in/RFID?f_ri=43610","nofollow":false},{"id":4252,"name":"Computer Networks","url":"https://www.academia.edu/Documents/in/Computer_Networks?f_ri=43610","nofollow":false},{"id":15118,"name":"Topology","url":"https://www.academia.edu/Documents/in/Topology?f_ri=43610","nofollow":false},{"id":23383,"name":"Routing protocols","url":"https://www.academia.edu/Documents/in/Routing_protocols?f_ri=43610","nofollow":false},{"id":25384,"name":"Global Positioning System","url":"https://www.academia.edu/Documents/in/Global_Positioning_System?f_ri=43610"},{"id":26825,"name":"Mobile Computing","url":"https://www.academia.edu/Documents/in/Mobile_Computing?f_ri=43610"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610"},{"id":53993,"name":"GPS","url":"https://www.academia.edu/Documents/in/GPS?f_ri=43610"},{"id":70493,"name":"Ad Hoc Networks","url":"https://www.academia.edu/Documents/in/Ad_Hoc_Networks?f_ri=43610"},{"id":194697,"name":"Vanet","url":"https://www.academia.edu/Documents/in/Vanet?f_ri=43610"},{"id":288703,"name":"Routing Protocol","url":"https://www.academia.edu/Documents/in/Routing_Protocol?f_ri=43610"},{"id":299563,"name":"Self Organization","url":"https://www.academia.edu/Documents/in/Self_Organization?f_ri=43610"},{"id":336268,"name":"Vehicular ad hoc network","url":"https://www.academia.edu/Documents/in/Vehicular_ad_hoc_network?f_ri=43610"},{"id":1921787,"name":"Mobile Node","url":"https://www.academia.edu/Documents/in/Mobile_Node?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_26799173" data-work_id="26799173" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/26799173/Voice_Conversion_Using_Dynamic_Frequency_Warping_With_Amplitude_Scaling_for_Parallel_or_Nonparallel_Corpora">Voice Conversion Using Dynamic Frequency Warping With Amplitude Scaling, for Parallel or Nonparallel Corpora</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/26799173" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="f7a0c84449a5edcebc9c6cebc034ae4a" rel="nofollow" data-download="{&quot;attachment_id&quot;:47073264,&quot;asset_id&quot;:26799173,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/47073264/download_file?st=MTczMjQyOTk2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="35678791" href="https://independent.academia.edu/OlivierRosec">Olivier Rosec</a><script data-card-contents-for-user="35678791" type="text/json">{"id":35678791,"first_name":"Olivier","last_name":"Rosec","domain_name":"independent","page_name":"OlivierRosec","display_name":"Olivier Rosec","profile_url":"https://independent.academia.edu/OlivierRosec?f_ri=43610","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_26799173 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="26799173"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 26799173, container: ".js-paper-rank-work_26799173", }); });</script></li><li class="js-percentile-work_26799173 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26799173; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_26799173"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_26799173 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="26799173"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26799173; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26799173]").text(description); $(".js-view-count-work_26799173").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_26799173").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="26799173"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">8</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="48" href="https://www.academia.edu/Documents/in/Engineering">Engineering</a>,&nbsp;<script data-card-contents-for-ri="48" type="text/json">{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="36835" href="https://www.academia.edu/Documents/in/Speech_Processing">Speech Processing</a>,&nbsp;<script data-card-contents-for-ri="36835" type="text/json">{"id":36835,"name":"Speech Processing","url":"https://www.academia.edu/Documents/in/Speech_Processing?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="42799" href="https://www.academia.edu/Documents/in/Speech">Speech</a>,&nbsp;<script data-card-contents-for-ri="42799" type="text/json">{"id":42799,"name":"Speech","url":"https://www.academia.edu/Documents/in/Speech?f_ri=43610","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="43610" href="https://www.academia.edu/Documents/in/Probabilistic_Logic">Probabilistic Logic</a><script data-card-contents-for-ri="43610" type="text/json">{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=26799173]'), work: {"id":26799173,"title":"Voice Conversion Using Dynamic Frequency Warping With Amplitude Scaling, for Parallel or Nonparallel Corpora","created_at":"2016-07-07T00:54:13.948-07:00","url":"https://www.academia.edu/26799173/Voice_Conversion_Using_Dynamic_Frequency_Warping_With_Amplitude_Scaling_for_Parallel_or_Nonparallel_Corpora?f_ri=43610","dom_id":"work_26799173","summary":null,"downloadable_attachments":[{"id":47073264,"asset_id":26799173,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":35678791,"first_name":"Olivier","last_name":"Rosec","domain_name":"independent","page_name":"OlivierRosec","display_name":"Olivier Rosec","profile_url":"https://independent.academia.edu/OlivierRosec?f_ri=43610","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering?f_ri=43610","nofollow":false},{"id":36835,"name":"Speech Processing","url":"https://www.academia.edu/Documents/in/Speech_Processing?f_ri=43610","nofollow":false},{"id":42799,"name":"Speech","url":"https://www.academia.edu/Documents/in/Speech?f_ri=43610","nofollow":false},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic?f_ri=43610","nofollow":false},{"id":64590,"name":"Voice Conversion","url":"https://www.academia.edu/Documents/in/Voice_Conversion?f_ri=43610"},{"id":81504,"name":"Correlation","url":"https://www.academia.edu/Documents/in/Correlation?f_ri=43610"},{"id":327120,"name":"Gaussian Mixture Model","url":"https://www.academia.edu/Documents/in/Gaussian_Mixture_Model?f_ri=43610"},{"id":383728,"name":"Vectors","url":"https://www.academia.edu/Documents/in/Vectors?f_ri=43610"}]}, }) } })();</script></ul></li></ul></div></div></div><div class="u-taCenter Pagination"><ul class="pagination"><li class="next_page"><a href="/Documents/in/Probabilistic_Logic?after=50%2C26799173" rel="next">Next</a></li><li class="last next"><a href="/Documents/in/Probabilistic_Logic?page=last">Last &raquo;</a></li></ul></div></div><div class="hidden-xs hidden-sm"><div class="u-pl6x"><div style="width: 300px;"><div class="panel panel-flat u-mt7x"><div class="panel-heading u-p5x"><div class="u-tcGrayDark u-taCenter u-fw700 u-textUppercase">Related Topics</div></div><ul class="list-group"><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Time_pressure">Time pressure</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="1867950">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="1867950">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Intelligent">Intelligent</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="103994">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="103994">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Inconsistency_Management">Inconsistency Management</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="43260">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="43260">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Logic_Programming">Logic Programming</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="2529">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="2529">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Inductive_Logic_Programming">Inductive Logic Programming</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="20858">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="20858">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Statistical_Relational_Learning">Statistical Relational Learning</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="144497">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="144497">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Algebraic_Logic">Algebraic Logic</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="348250">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="348250">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Autonomous_Cognitive_Agents">Autonomous Cognitive Agents</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="1689">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="1689">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Multiagent_Systems">Multiagent Systems</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="2534">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="2534">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Intelligent_Systems">Intelligent Systems</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="10977">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="10977">Following</a></div></li></ul></div></div></div></div></div></div><script>// MIT License // Copyright © 2011 Sebastian Tschan, https://blueimp.net // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. !function(n){"use strict";function d(n,t){var r=(65535&n)+(65535&t);return(n>>16)+(t>>16)+(r>>16)<<16|65535&r}function f(n,t,r,e,o,u){return d((c=d(d(t,n),d(e,u)))<<(f=o)|c>>>32-f,r);var c,f}function l(n,t,r,e,o,u,c){return f(t&r|~t&e,n,t,o,u,c)}function v(n,t,r,e,o,u,c){return f(t&e|r&~e,n,t,o,u,c)}function g(n,t,r,e,o,u,c){return f(t^r^e,n,t,o,u,c)}function m(n,t,r,e,o,u,c){return f(r^(t|~e),n,t,o,u,c)}function i(n,t){var r,e,o,u;n[t>>5]|=128<<t%32,n[14+(t+64>>>9<<4)]=t;for(var c=1732584193,f=-271733879,i=-1732584194,a=271733878,h=0;h<n.length;h+=16)c=l(r=c,e=f,o=i,u=a,n[h],7,-680876936),a=l(a,c,f,i,n[h+1],12,-389564586),i=l(i,a,c,f,n[h+2],17,606105819),f=l(f,i,a,c,n[h+3],22,-1044525330),c=l(c,f,i,a,n[h+4],7,-176418897),a=l(a,c,f,i,n[h+5],12,1200080426),i=l(i,a,c,f,n[h+6],17,-1473231341),f=l(f,i,a,c,n[h+7],22,-45705983),c=l(c,f,i,a,n[h+8],7,1770035416),a=l(a,c,f,i,n[h+9],12,-1958414417),i=l(i,a,c,f,n[h+10],17,-42063),f=l(f,i,a,c,n[h+11],22,-1990404162),c=l(c,f,i,a,n[h+12],7,1804603682),a=l(a,c,f,i,n[h+13],12,-40341101),i=l(i,a,c,f,n[h+14],17,-1502002290),c=v(c,f=l(f,i,a,c,n[h+15],22,1236535329),i,a,n[h+1],5,-165796510),a=v(a,c,f,i,n[h+6],9,-1069501632),i=v(i,a,c,f,n[h+11],14,643717713),f=v(f,i,a,c,n[h],20,-373897302),c=v(c,f,i,a,n[h+5],5,-701558691),a=v(a,c,f,i,n[h+10],9,38016083),i=v(i,a,c,f,n[h+15],14,-660478335),f=v(f,i,a,c,n[h+4],20,-405537848),c=v(c,f,i,a,n[h+9],5,568446438),a=v(a,c,f,i,n[h+14],9,-1019803690),i=v(i,a,c,f,n[h+3],14,-187363961),f=v(f,i,a,c,n[h+8],20,1163531501),c=v(c,f,i,a,n[h+13],5,-1444681467),a=v(a,c,f,i,n[h+2],9,-51403784),i=v(i,a,c,f,n[h+7],14,1735328473),c=g(c,f=v(f,i,a,c,n[h+12],20,-1926607734),i,a,n[h+5],4,-378558),a=g(a,c,f,i,n[h+8],11,-2022574463),i=g(i,a,c,f,n[h+11],16,1839030562),f=g(f,i,a,c,n[h+14],23,-35309556),c=g(c,f,i,a,n[h+1],4,-1530992060),a=g(a,c,f,i,n[h+4],11,1272893353),i=g(i,a,c,f,n[h+7],16,-155497632),f=g(f,i,a,c,n[h+10],23,-1094730640),c=g(c,f,i,a,n[h+13],4,681279174),a=g(a,c,f,i,n[h],11,-358537222),i=g(i,a,c,f,n[h+3],16,-722521979),f=g(f,i,a,c,n[h+6],23,76029189),c=g(c,f,i,a,n[h+9],4,-640364487),a=g(a,c,f,i,n[h+12],11,-421815835),i=g(i,a,c,f,n[h+15],16,530742520),c=m(c,f=g(f,i,a,c,n[h+2],23,-995338651),i,a,n[h],6,-198630844),a=m(a,c,f,i,n[h+7],10,1126891415),i=m(i,a,c,f,n[h+14],15,-1416354905),f=m(f,i,a,c,n[h+5],21,-57434055),c=m(c,f,i,a,n[h+12],6,1700485571),a=m(a,c,f,i,n[h+3],10,-1894986606),i=m(i,a,c,f,n[h+10],15,-1051523),f=m(f,i,a,c,n[h+1],21,-2054922799),c=m(c,f,i,a,n[h+8],6,1873313359),a=m(a,c,f,i,n[h+15],10,-30611744),i=m(i,a,c,f,n[h+6],15,-1560198380),f=m(f,i,a,c,n[h+13],21,1309151649),c=m(c,f,i,a,n[h+4],6,-145523070),a=m(a,c,f,i,n[h+11],10,-1120210379),i=m(i,a,c,f,n[h+2],15,718787259),f=m(f,i,a,c,n[h+9],21,-343485551),c=d(c,r),f=d(f,e),i=d(i,o),a=d(a,u);return[c,f,i,a]}function a(n){for(var t="",r=32*n.length,e=0;e<r;e+=8)t+=String.fromCharCode(n[e>>5]>>>e%32&255);return t}function h(n){var t=[];for(t[(n.length>>2)-1]=void 0,e=0;e<t.length;e+=1)t[e]=0;for(var r=8*n.length,e=0;e<r;e+=8)t[e>>5]|=(255&n.charCodeAt(e/8))<<e%32;return t}function e(n){for(var t,r="0123456789abcdef",e="",o=0;o<n.length;o+=1)t=n.charCodeAt(o),e+=r.charAt(t>>>4&15)+r.charAt(15&t);return e}function r(n){return unescape(encodeURIComponent(n))}function o(n){return a(i(h(t=r(n)),8*t.length));var t}function u(n,t){return function(n,t){var r,e,o=h(n),u=[],c=[];for(u[15]=c[15]=void 0,16<o.length&&(o=i(o,8*n.length)),r=0;r<16;r+=1)u[r]=909522486^o[r],c[r]=1549556828^o[r];return e=i(u.concat(h(t)),512+8*t.length),a(i(c.concat(e),640))}(r(n),r(t))}function t(n,t,r){return t?r?u(t,n):e(u(t,n)):r?o(n):e(o(n))}"function"==typeof define&&define.amd?define(function(){return t}):"object"==typeof module&&module.exports?module.exports=t:n.md5=t}(this);</script><script>window.AbTest = (function() { return { 'ab_test': (uniqueId, test_name, buckets) => { let override = new URLSearchParams(window.location.search).get(`ab_test[${test_name}]`); if ( override ) { return override; } const bucketNames = buckets.map((bucket) => { return typeof bucket === 'string' ? bucket : Object.keys(bucket)[0]; }); const weights = buckets.map((bucket) => { return typeof bucket === 'string' ? 1 : Object.values(bucket)[0]; }); const total = weights.reduce((sum, weight) => sum + weight); const hash = md5(`${uniqueId}${test_name}`); const hashNum = parseInt(hash.slice(-12), 16); let bucketPoint = total * (hashNum % 100000) / 100000; const bucket = bucketNames.find((_, i) => { if (weights[i] > bucketPoint) { return true; } bucketPoint -= weights[i]; return false; }); return bucket; } }; })();</script><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-landing_url="https://www.academia.edu/Documents/in/Probabilistic_Logic" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><script>function onGoogleOneTapEvent(event) { var momentType = event.getMomentType(); var momentReason = null; if (event.isNotDisplayed()) { momentReason = event.getNotDisplayedReason(); } else if (event.isSkippedMoment()) { momentReason = event.getSkippedReason(); } else if (event.isDismissedMoment()) { momentReason = event.getDismissedReason(); } Aedu.arbitraryEvents.write('GoogleOneTapEvent', { moment_type: momentType, moment_reason: momentReason, }); }</script><script>(function() { var auvid = unescape( document.cookie .split(/; ?/) .find((s) => s.startsWith('auvid')) .substring(6)); var bucket = AbTest.ab_test(auvid, 'lo_ri_one_tap_google_sign_on', ['control', 'one_tap_google_sign_on']); if (bucket === 'control') return; var oneTapTag = document.createElement('script') oneTapTag.async = true oneTapTag.defer = true oneTapTag.src = 'https://accounts.google.com/gsi/client' document.body.appendChild(oneTapTag) })();</script></div></div></div> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "514d591c4821d507b475f99db34399ac1d83096147b91cf90b813fbd80266639", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="ITdOBZVsoXwZGMJzK+/t4e2t/Ds8kOo8kUaaIeWSGCvirwjPpsaCglxC6TnWSCmae+/y53OiFJFw3hI3PthFBg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/Documents/in/Probabilistic_Logic" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="nRgGXIKKwrai/55iNpXb6RQfnXs0ni7JYyc2RB9kYdhegECWsSDhSOeltSjLMh+Sgl2Tp3us0GSCv75SxC489Q==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10