CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 54 results for author: <span class="mathjax">Jiang, D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Jiang%2C+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Jiang, D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Jiang%2C+D&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Jiang, D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Jiang%2C+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11299">arXiv:2408.11299</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11299">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.21.024021">10.1103/PhysRevApplied.21.024021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Substrate-induced spin-torque-like signal in spin-torque ferromagnetic resonance measurement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Dingsong Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hetian Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+G">Guiping Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chai%2C+Y">Yahong Chai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chenye Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+Y">Yuhan Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jingchun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skowro%C5%84ski%2C+W">Witold Skowro艅ski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+P">Pu Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+D">Di Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nan%2C+T">Tianxiang Nan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11299v1-abstract-short" style="display: inline;"> Oxide thin films and interfaces with strong spin-orbit coupling have recently shown exceptionally high charge-to-spin conversion, making them potential spin-source materials for spintronics. Epitaxial strain engineering using oxide substrates with different lattice constants and symmetries has emerged as a mean to further enhance charge-to-spin conversion. However, high relative permittivity and d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11299v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11299v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11299v1-abstract-full" style="display: none;"> Oxide thin films and interfaces with strong spin-orbit coupling have recently shown exceptionally high charge-to-spin conversion, making them potential spin-source materials for spintronics. Epitaxial strain engineering using oxide substrates with different lattice constants and symmetries has emerged as a mean to further enhance charge-to-spin conversion. However, high relative permittivity and dielectric loss of commonly used oxide substrates, such as SrTiO3, can cause significant current shunting in substrates at high frequency, which may strongly affect spin-torque measurement and potentially result in an inaccurate estimation of charge-to-spin conversion efficiency. In this study, we systematically evaluate the influence of various oxide substrates for the widely-used spin-torque ferromagnetic resonance (ST-FMR) measurement. Surprisingly, we observed substantial spin-torque signals in samples comprising only ferromagnetic metal on oxide substrates with high relative permittivity (e.g., SrTiO3 and KTaO3), where negligible signal should be initially expected. Notably, this unexpected signal shows a strong correlation with the capacitive reactance of oxide substrates and the leakage radio frequency (RF) current within the substrate. By revising the conventional ST-FMR analysis model, we attribute this phenomenon to a 90-degree phase difference between the RF current flowing in the metal layer and in the substrate. We suggest that extra attention should be paid during the ST-FMR measurements, as this artifact could dominate over the real spin-orbit torque signal from high-resistivity spin-source materials grown on substrate with high relative permittivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11299v1-abstract-full').style.display = 'none'; document.getElementById('2408.11299v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 22 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.06284">arXiv:2408.06284</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.06284">pdf</a>, <a href="https://arxiv.org/ps/2408.06284">ps</a>, <a href="https://arxiv.org/format/2408.06284">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> $^{19}$F NMR and defect spins in vacuum-annealed LaO$_{0.5}$F$_{0.5}$BiS$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yadav%2C+S">S. Yadav</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Delgado%2C+S">S. Delgado</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernal%2C+O+O">O. O. Bernal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=MacLaughlin%2C+D+E">D. E. MacLaughlin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">D. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Santana%2C+O">O. Santana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mushammel%2C+A">A. Mushammel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shu%2C+L">Lei Shu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+K">K. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazici%2C+D">D. Yazici</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maple%2C+M+B">M. B. Maple</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.06284v2-abstract-short" style="display: inline;"> We report results of magnetization and $^{19}$F NMR measurements in the normal state of as-grown LaO$_{0.5}$F$_{0.5}$BiS$_2$. The magnetization is dominated by a temperature-independent diamagnetic component and a field- and temperature-dependent paramagnetic contribution $M_渭(H,T)$ from a $\sim$1000~ppm concentration of local moments, an order of magnitude higher than can be accounted for by meas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06284v2-abstract-full').style.display = 'inline'; document.getElementById('2408.06284v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.06284v2-abstract-full" style="display: none;"> We report results of magnetization and $^{19}$F NMR measurements in the normal state of as-grown LaO$_{0.5}$F$_{0.5}$BiS$_2$. The magnetization is dominated by a temperature-independent diamagnetic component and a field- and temperature-dependent paramagnetic contribution $M_渭(H,T)$ from a $\sim$1000~ppm concentration of local moments, an order of magnitude higher than can be accounted for by measured rare-earth impurity concentrations. $M_渭(H,T)$ can be fit by the Brillouin function $B_J(x)$ or, perhaps more realistically, a two-level $\tanh(x)$ model for magnetic Bi $6p$ ions in defect crystal fields. Both fits require a phenomenological Curie-Weiss argument $x = 渭_\mathrm{eff}H/(T + T_W)$, $T_W \approx 1.7$ K. There is no evidence for magnetic order down to 2 K, and the origin of $T_W$ is not clear. $^{19}$F frequency shifts, linewidths, and spin-lattice relaxation rates are consistent with purely dipolar $^{19}$F/defect-spin interactions. The defect-spin correlation time $蟿_c(T)$ obtained from $^{19}$F spin-lattice relaxation rates obeys the Korringa relation $蟿_cT = \text{const.}$, indicating the relaxation is dominated by conduction-band fluctuations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06284v2-abstract-full').style.display = 'none'; document.getElementById('2408.06284v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Corrected citations, 15 pages, 15 figures, 6 tables, 69 references, corresponding author O. O. Bernal: obernal@calstatela.edu</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00299">arXiv:2408.00299</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00299">pdf</a>, <a href="https://arxiv.org/ps/2408.00299">ps</a>, <a href="https://arxiv.org/format/2408.00299">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.110.034113">10.1103/PhysRevE.110.034113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulation of the continuous-time random walk using subordination schemes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Danhua Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+Y">Yuanze Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wanli Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00299v2-abstract-short" style="display: inline;"> The continuous time random walk model has been widely applied in various fields, including physics, biology, chemistry, finance, social phenomena, etc. In this work, we present an algorithm that utilizes a subordinate formula to generate data of the continuous time random walk in the long time limit. The algorithm has been validated using commonly employed observables, such as typical fluctuations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00299v2-abstract-full').style.display = 'inline'; document.getElementById('2408.00299v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00299v2-abstract-full" style="display: none;"> The continuous time random walk model has been widely applied in various fields, including physics, biology, chemistry, finance, social phenomena, etc. In this work, we present an algorithm that utilizes a subordinate formula to generate data of the continuous time random walk in the long time limit. The algorithm has been validated using commonly employed observables, such as typical fluctuations of the positional distribution, rare fluctuations, the mean and the variance of the position, and breakthrough curves with time-dependent bias, demonstrating a perfect match. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00299v2-abstract-full').style.display = 'none'; document.getElementById('2408.00299v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">http://link.aps.org/doi/10.1103/PhysRevE.110.034113</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.05070">arXiv:2405.05070</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.05070">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Equivalence analysis between Quasi-coarse-grained and Atomistic Simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Dong-Dong Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+J">Jian-Li Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.05070v2-abstract-short" style="display: inline;"> In recent years, simulation methods based on the scaling of atomic potential functions, such as quasi-coarse-grained dynamics and coarse-grained dynamics, have shown promising results for modeling crystalline systems at multiple scales. However, this letter presents evidence suggesting that the spatiotemporal trajectories of coarse-grained systems generated by such simulation methods exhibit a com&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05070v2-abstract-full').style.display = 'inline'; document.getElementById('2405.05070v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.05070v2-abstract-full" style="display: none;"> In recent years, simulation methods based on the scaling of atomic potential functions, such as quasi-coarse-grained dynamics and coarse-grained dynamics, have shown promising results for modeling crystalline systems at multiple scales. However, this letter presents evidence suggesting that the spatiotemporal trajectories of coarse-grained systems generated by such simulation methods exhibit a complete correspondence with those of specific molecular dynamics systems. In essence, current coarse-grained simulation methods involve a direct amplification of the results obtained from molecular dynamics simulations across spatial and temporal scales, yet they may lack the capability to adequately capture authentic scale effects. Consequently, the findings of related studies warrant careful re-evaluation. Furthermore, this study underscores the importance of not only verifying the consistency of mesoscale simulation methods with microscopic simulations but also meticulously assessing their capability to accurately forecast mesoscale physical phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05070v2-abstract-full').style.display = 'none'; document.getElementById('2405.05070v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.07943">arXiv:2311.07943</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.07943">pdf</a>, <a href="https://arxiv.org/ps/2311.07943">ps</a>, <a href="https://arxiv.org/format/2311.07943">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Superconductivity with $T_c$ up to 30.7 K in air-annealed CaFeAsF </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yixin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Teng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zulei Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Da Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yi Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y">Yanpeng Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoni Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+M">Ming Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+M">Mao Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+W">Wei Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+G">Gang Mu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.07943v1-abstract-short" style="display: inline;"> Exploring new unconventional superconductors is of great value for both fundamental research and practical applications. It is a long-term challenge to develop and study more hole-doped superconductors in 1111 system of iron-based superconductors. However, fifteen years after the discovery of iron-based superconductors, it has become increasingly difficult to discover new members in this system by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07943v1-abstract-full').style.display = 'inline'; document.getElementById('2311.07943v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.07943v1-abstract-full" style="display: none;"> Exploring new unconventional superconductors is of great value for both fundamental research and practical applications. It is a long-term challenge to develop and study more hole-doped superconductors in 1111 system of iron-based superconductors. However, fifteen years after the discovery of iron-based superconductors, it has become increasingly difficult to discover new members in this system by conventional means. Here we report the discovery of superconductivity with the critical transition temperature up to 30.7 K in the parent compound CaFeAsF by an annealing treatment in air atmosphere. The superconducting behaviors are verified in both the single-crystalline and polycrystalline samples by the resistance and magnetization measurements. The analysis by combining the depth-resolved time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) measurements show that the introduction of oxygen elements and the consequent changing in Fe valence by the annealing treatment may lead to the hole-type doping, which is the origin for the occurrence of superconductivity. Our results provide a new route to induce hole-doped superconductivity in Fe-based superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07943v1-abstract-full').style.display = 'none'; document.getElementById('2311.07943v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07140">arXiv:2310.07140</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.07140">pdf</a>, <a href="https://arxiv.org/format/2310.07140">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.144437">10.1103/PhysRevB.108.144437 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absence of topological Hall effect in Fe$_x$Rh$_{100-x}$ epitaxial films: revisiting their phase diagram </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xiaoyan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+J">Jing Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xinwei Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhen%2C+Z">Zhixuan Zhen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Haoyu Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+B">Bocheng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+W">Wenjuan Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Dongmei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+T">Tian Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+Q">Qingfeng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07140v1-abstract-short" style="display: inline;"> A series of Fe$_x$Rh$_{100-x}$ ($30 \leq x \leq 57$) films were epitaxially grown using magnetron sputtering, and were systematically studied by magnetization-, electrical resistivity-, and Hall resistivity measurements. After optimizing the growth conditions, phase-pure Fe$_{x}$Rh$_{100-x}$ films were obtained, and their magnetic phase diagram was revisited. The ferromagnetic (FM) to antiferromag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07140v1-abstract-full').style.display = 'inline'; document.getElementById('2310.07140v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07140v1-abstract-full" style="display: none;"> A series of Fe$_x$Rh$_{100-x}$ ($30 \leq x \leq 57$) films were epitaxially grown using magnetron sputtering, and were systematically studied by magnetization-, electrical resistivity-, and Hall resistivity measurements. After optimizing the growth conditions, phase-pure Fe$_{x}$Rh$_{100-x}$ films were obtained, and their magnetic phase diagram was revisited. The ferromagnetic (FM) to antiferromagnetic (AFM) transition is limited at narrow Fe-contents with $48 \leq x \leq 54$ in the bulk Fe$_x$Rh$_{100-x}$ alloys. By contrast, the FM-AFM transition in the Fe$_x$Rh$_{100-x}$ films is extended to cover a much wider $x$ range between 33 % and 53 %, whose critical temperature slightly decreases as increasing the Fe-content. The resistivity jump and magnetization drop at the FM-AFM transition are much more significant in the Fe$_x$Rh$_{100-x}$ films with $\sim$50 % Fe-content than in the Fe-deficient films, the latter have a large amount of paramagnetic phase. The magnetoresistivity (MR) is rather weak and positive in the AFM state, while it becomes negative when the FM phase shows up, and a giant MR appears in the mixed FM- and AFM states. The Hall resistivity is dominated by the ordinary Hall effect in the AFM state, while in the mixed state or high-temperature FM state, the anomalous Hall effect takes over. The absence of topological Hall resistivity in Fe$_{x}$Rh$_{100-x}$ films with various Fe-contents implies that the previously observed topological Hall effect is most likely extrinsic. We propose that the anomalous Hall effect caused by the FM iron moments at the interfaces nicely explains the hump-like anomaly in the Hall resistivity. Our systematic investigations may offer valuable insights into the spintronics based on iron-rhodium alloys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07140v1-abstract-full').style.display = 'none'; document.getElementById('2310.07140v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 10 figures; accepted by Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 144437 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.14614">arXiv:2309.14614</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.14614">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Multiferroic Magnon Spin-Torque Based Reconfigurable Logic-In-Memory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chai%2C+Y">Yahong Chai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+Y">Yuhan Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+C">Cancheng Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yue Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Dingsong Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pal%2C+P">Pratap Pal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Y">Yongjian Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hetian Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuejie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skowro%C5%84ski%2C+W">Witold Skowro艅ski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+L">Lin Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Jing Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+P">Pu Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+J">Jianshi Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Y">Yuan-Hua Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+D">Di Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ralph%2C+D+C">Daniel C. Ralph</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eom%2C+C">Chang-Beom Eom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H">Huaqiang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nan%2C+T">Tianxiang Nan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.14614v1-abstract-short" style="display: inline;"> Magnons, bosonic quasiparticles carrying angular momentum, can flow through insulators for information transmission with minimal power dissipation. However, it remains challenging to develop a magnon-based logic due to the lack of efficient electrical manipulation of magnon transport. Here we present a magnon logic-in-memory device in a spin-source/multiferroic/ferromagnet structure, where multife&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14614v1-abstract-full').style.display = 'inline'; document.getElementById('2309.14614v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.14614v1-abstract-full" style="display: none;"> Magnons, bosonic quasiparticles carrying angular momentum, can flow through insulators for information transmission with minimal power dissipation. However, it remains challenging to develop a magnon-based logic due to the lack of efficient electrical manipulation of magnon transport. Here we present a magnon logic-in-memory device in a spin-source/multiferroic/ferromagnet structure, where multiferroic magnon modes can be electrically excited and controlled. In this device, magnon information is encoded to ferromagnetic bits by the magnon-mediated spin torque. We show that the ferroelectric polarization can electrically modulate the magnon spin-torque by controlling the non-collinear antiferromagnetic structure in multiferroic bismuth ferrite thin films with coupled antiferromagnetic and ferroelectric orders. By manipulating the two coupled non-volatile state variables (ferroelectric polarization and magnetization), we further demonstrate reconfigurable logic-in-memory operations in a single device. Our findings highlight the potential of multiferroics for controlling magnon information transport and offer a pathway towards room-temperature voltage-controlled, low-power, scalable magnonics for in-memory computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14614v1-abstract-full').style.display = 'none'; document.getElementById('2309.14614v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09810">arXiv:2306.09810</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.09810">pdf</a>, <a href="https://arxiv.org/format/2306.09810">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Hall anomaly by vacancies vs fragments of vortex lattice: Quantitative analyses of new evidences </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+R">Ruonan Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yong-Cong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Da Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ao%2C+P">Ping Ao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09810v2-abstract-short" style="display: inline;"> Despite numerous recent studies on the Hall anomaly following the discovery of cuprate superconductivity, the origin of this phenomenon remains contentious. We demonstrate that a previously proposed mechanism, in which vacancy-on-fragment of the flux-line crystal, provides an alternative explanation for the observations of $\rm{Bi_{2}Sr_{2}CaCu_{2}O_{x}}$ thin films made by Nitzav and Kanigel [Phy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09810v2-abstract-full').style.display = 'inline'; document.getElementById('2306.09810v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09810v2-abstract-full" style="display: none;"> Despite numerous recent studies on the Hall anomaly following the discovery of cuprate superconductivity, the origin of this phenomenon remains contentious. We demonstrate that a previously proposed mechanism, in which vacancy-on-fragment of the flux-line crystal, provides an alternative explanation for the observations of $\rm{Bi_{2}Sr_{2}CaCu_{2}O_{x}}$ thin films made by Nitzav and Kanigel [Phys. Rev. B. 107, 094516 (2023)], without the need for adjustable parameters. Specifically, we show that the power-law behavior of $蟻_{xy}$ over $蟻_{xx}$, with and without sign reversal, is consistent with the picture of vacancies versus fragments. Interestingly, we find that the effective length of vortex lines is consistently 1.5 unit cells (UC) across different experiments, independent of film thickness. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09810v2-abstract-full').style.display = 'none'; document.getElementById('2306.09810v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:2206.03384</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.17566">arXiv:2305.17566</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.17566">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41557-023-01288-w">10.1038/s41557-023-01288-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hybrid organic-inorganic two-dimensional metal carbide MXenes with amido- and imido-terminated surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+C">Chenkun Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+D">Di Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lagunas%2C+F">Francisco Lagunas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atterberry%2C+B">Benjamin Atterberry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+M">Ming Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Huicheng Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zirui Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filatov%2C+A+S">Alexander S. Filatov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">De-en Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossini%2C+A+J">Aaron J. Rossini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klie%2C+R+F">Robert F. Klie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Talapin%2C+D+V">Dmitri V. Talapin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.17566v1-abstract-short" style="display: inline;"> Two-dimensional (2D) transition-metal carbides and nitrides (MXenes) show impressive performance in applications, such as supercapacitors, batteries, electromagnetic interference shielding, or electrocatalysis. These materials combine the electronic and mechanical properties of 2D inorganic crystals with chemically modifiable surfaces, and surface-engineered MXenes represent an ideal platform for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17566v1-abstract-full').style.display = 'inline'; document.getElementById('2305.17566v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.17566v1-abstract-full" style="display: none;"> Two-dimensional (2D) transition-metal carbides and nitrides (MXenes) show impressive performance in applications, such as supercapacitors, batteries, electromagnetic interference shielding, or electrocatalysis. These materials combine the electronic and mechanical properties of 2D inorganic crystals with chemically modifiable surfaces, and surface-engineered MXenes represent an ideal platform for fundamental and applied studies of interfaces in 2D functional materials. A natural step in structural engineering of MXene compounds is the development and understanding of MXenes with various organic functional groups covalently bound to inorganic 2D sheets. Such hybrid structures have the potential to unite the tailorability of organic molecules with the unique electronic properties of inorganic 2D solids. Here, we introduce a new family of hybrid MXenes (h-MXenes) with amido- and imido-bonding between organic and inorganic parts. The description of h-MXene structure requires an intricate mix of concepts from the fields of coordination chemistry, self-assembled monolayers (SAMs) and surface science. The optical properties of h-MXenes reveal coherent coupling between the organic and inorganic components. h-MXenes also show superior stability against hydrolysis in aqueous solutions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17566v1-abstract-full').style.display = 'none'; document.getElementById('2305.17566v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.12984">arXiv:2302.12984</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.12984">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Unusual Nonlinear Optical Responses in Layered Ferroelectric Niobium Oxide Dihalides: Origin and Manipulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+L">Liangting Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+W">Wenju Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+D">Dajian Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+D">Donghan Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Q">Qiangbing Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Dequan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yonggang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiaoqiang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gou%2C+H">Huiyang Gou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+B">Bing Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.12984v1-abstract-short" style="display: inline;"> Realization of large and highly tunable second-order nonlinear optical (NLO) responses, e.g., second-harmonic generation (SHG) and bulk photovoltaic effect (BPVE), is critical for developing modern optical and optoelectronic devices. Very recently, the two-dimensional van der Waals ferroelectric NbOX2 (X = Cl, Br or I) are discovered to exhibit unusually large and anisotropic SHG. However, the phy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.12984v1-abstract-full').style.display = 'inline'; document.getElementById('2302.12984v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.12984v1-abstract-full" style="display: none;"> Realization of large and highly tunable second-order nonlinear optical (NLO) responses, e.g., second-harmonic generation (SHG) and bulk photovoltaic effect (BPVE), is critical for developing modern optical and optoelectronic devices. Very recently, the two-dimensional van der Waals ferroelectric NbOX2 (X = Cl, Br or I) are discovered to exhibit unusually large and anisotropic SHG. However, the physical origin and possible tunability of NLO responses in NbOX2 remain to be unclear. In this article, we reveal that the large SHG in NbOCl2 is dominated by the synergy between large transition dipole moment and band-nesting-induced large intensity of electron-hole pairs. Remarkably, the NbOCl2 can exhibit dramatically different strain-dependent BPVE under different polarized light, originating from the interesting light-polarization-dependent orbital transition. Importantly, we successfully achieve a reversible ferroelectric-to-antiferroelectric phase transition via controlling ambient temperature or external pressure, accompanied by the greatly tunable NLO responses. Furthermore, we discover that the evolutions of SHG and BPVE in NbOX2 with variable X obey different rules. Our study provides a deep understanding on the novel NLO physics in NbOX2 and establishes great external-field tunability for device applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.12984v1-abstract-full').style.display = 'none'; document.getElementById('2302.12984v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.04049">arXiv:2212.04049</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.04049">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Acoustic-Driven Magnetic Skyrmion Motion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Le Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+D">Di Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+T">Teng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chai%2C+Y">Yahong Chai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chenye Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Dingsong Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Y">Yahui Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wanjun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+J">Jianshi Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+P">Pu Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H">Huaqiang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nan%2C+T">Tianxiang Nan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.04049v1-abstract-short" style="display: inline;"> Magnetic skyrmions have great potential for developing novel spintronic devices. The electrical manipulation of skyrmions has mainly relied on current-induced spin-orbit torques. A recent theoretical model suggested that the skyrmions could be more efficiently manipulated by surface acoustic waves (SAW), an elastic wave that can couple with magnetic moment through magnetoelastic effect. However, t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.04049v1-abstract-full').style.display = 'inline'; document.getElementById('2212.04049v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.04049v1-abstract-full" style="display: none;"> Magnetic skyrmions have great potential for developing novel spintronic devices. The electrical manipulation of skyrmions has mainly relied on current-induced spin-orbit torques. A recent theoretical model suggested that the skyrmions could be more efficiently manipulated by surface acoustic waves (SAW), an elastic wave that can couple with magnetic moment through magnetoelastic effect. However, the directional motion of skyrmions that is driven by SAW is still missing. Here, we experimentally demonstrate the motion of N茅el-type skyrmions in Ta/CoFeB/MgO/Ta multilayers driven by propagating SAW pulses from on-chip piezoelectric transducers. Our results reveal that the elastic wave with longitudinal and shear vertical displacements (Rayleigh wave) traps skyrmions, while the shear horizontal wave effectively drives the motion of skyrmions. In particular, a longitudinal motion along the SAW propagation direction and a transverse motion due to topological charge, are observed and further confirmed by our micromagnetic simulations. This work demonstrates a promising approach based on acoustic waves for manipulating skyrmions, which could offer new opportunities for ultra-low power spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.04049v1-abstract-full').style.display = 'none'; document.getElementById('2212.04049v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.02294">arXiv:2201.02294</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.02294">pdf</a>, <a href="https://arxiv.org/format/2201.02294">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.014423">10.1103/PhysRevB.105.014423 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin order and fluctuations in the EuAl$_4$ and EuGa$_4$ topological antiferromagnets: A $渭$SR study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X+Y">X. Y. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gawryluk%2C+D+J">D. J. Gawryluk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhen%2C+Z+X">Z. X. Zhen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+B+C">B. C. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ju%2C+S+L">S. L. Ju</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+W">W. Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D+M">D. M. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+W+J">W. J. Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Y. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">M. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+Q+F">Q. F. Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shiroka%2C+T">T. Shiroka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+T">T. Shang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.02294v1-abstract-short" style="display: inline;"> We report on systematic muon-spin rotation and relaxation ($渭$SR) studies of the magnetic properties of EuAl$_4$ and EuGa$_4$ single crystals at a microscopic level. Transverse-field $渭$SR measurements, spanning a wide temperature range (from 1.5 to 50 K), show clear bulk AFM transitions, with an almost 100% magnetic volume fraction in both cases. Zero-field $渭$SR measurements, covering both the A&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02294v1-abstract-full').style.display = 'inline'; document.getElementById('2201.02294v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.02294v1-abstract-full" style="display: none;"> We report on systematic muon-spin rotation and relaxation ($渭$SR) studies of the magnetic properties of EuAl$_4$ and EuGa$_4$ single crystals at a microscopic level. Transverse-field $渭$SR measurements, spanning a wide temperature range (from 1.5 to 50 K), show clear bulk AFM transitions, with an almost 100% magnetic volume fraction in both cases. Zero-field $渭$SR measurements, covering both the AFM and the paramagnetic (PM) states, reveal internal magnetic fields $B_\mathrm{int}(0) = 0.33$ T and 0.89 T in EuAl$_4$ and EuGa$_4$, respectively. The transverse muon-spin relaxation rate $位_\mathrm{T}$, a measure of the internal field distribution at the muon-stopping site, shows a contrasting behavior. In EuGa$_4$, it decreases with lowering the temperature, reaching its minimum at zero temperature, $位_\mathrm{T}(0) = 0.71$ $渭$s$^{-1}$. In EuAl$_4$, it increases significantly below $T_\mathrm{N}$, to reach 58 $渭$s$^{-1}$ at 1.5 K, most likely reflecting the complex magnetic structure and the competing interactions in the AFM state of EuAl$_4$. In both compounds, the temperature-dependent longitudinal muon-spin relaxation $位_\mathrm{L}(T)$, an indication of the rate of spin fluctuations, diverges near the onset of AFM order, followed by a significant drop at $T &lt; T_\mathrm{N}$. In the AFM state, spin fluctuations are much stronger in EuAl$_4$ than in EuGa$_4$, while being comparable in the PM state. The evidence of robust spin fluctuations against the external magnetic fields provided by $渭$SR may offer new insights into the origin of the topological Hall effect and the possible magnetic skyrmions in the EuAl$_4$ and EuGa$_4$ compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02294v1-abstract-full').style.display = 'none'; document.getElementById('2201.02294v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures, accepted by Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, 014423 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.00689">arXiv:2112.00689</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.00689">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0066835">10.1063/5.0066835 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proton dynamics in water confined at the interface of the graphene-MXene heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+L">Lihua Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">De-en Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.00689v1-abstract-short" style="display: inline;"> Heterostructures of 2D materials offer a fertile ground to study ion transport and charge storage. Here we employ ab initio molecular dynamics to examine the proton-transfer/diffusion and redox behavior in a water layer confined in the graphene-Ti3C2O2 heterostructure. We find that in comparison with the similar interface of water confined between Ti3C2O2 layers, proton redox rate in the dissimila&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00689v1-abstract-full').style.display = 'inline'; document.getElementById('2112.00689v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.00689v1-abstract-full" style="display: none;"> Heterostructures of 2D materials offer a fertile ground to study ion transport and charge storage. Here we employ ab initio molecular dynamics to examine the proton-transfer/diffusion and redox behavior in a water layer confined in the graphene-Ti3C2O2 heterostructure. We find that in comparison with the similar interface of water confined between Ti3C2O2 layers, proton redox rate in the dissimilar interface of graphene-Ti3C2O2 is much higher, owning to the very different interfacial structure as well as the interfacial electric field induced by an electron transfer in the latter. Water molecules in the dissimilar interface of the graphene-Ti3C2O2 heterostructure form a denser hydrogen-bond network with a preferred orientation of water molecules, leading to an increase of proton mobility with proton concentration in the graphene-Ti3C2O2 interface. As the proton concentration further increases, proton mobility deceases, due to increasingly more frequent surface redox events that slow down proton mobility due to binding with surface O atoms. Our work provides important insights into how the dissimilar interface and their associated interfacial structure and properties impact proton transfer and redox in the confined space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00689v1-abstract-full').style.display = 'none'; document.getElementById('2112.00689v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The article has been accepted by Journal of Chemical Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.09180">arXiv:2107.09180</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.09180">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.5.054007">10.1103/PhysRevMaterials.5.054007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interfacial charge transfer and interaction in the MXene/TiO2 heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+L">Lihua Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">Tao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kent%2C+P+R+C">Paul R. C. Kent</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">De-en Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.09180v1-abstract-short" style="display: inline;"> Hybrid materials of MXenes (2D carbides and nitrides) and transition-metal oxides (TMOs) have shown great promise in electrical energy storage and 2D heterostructures have been proposed as the next-generation electrode materials to expand the limits of current technology. Here we use first principles density functional theory to investigate the interfacial structure, energetics, and electronic pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.09180v1-abstract-full').style.display = 'inline'; document.getElementById('2107.09180v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.09180v1-abstract-full" style="display: none;"> Hybrid materials of MXenes (2D carbides and nitrides) and transition-metal oxides (TMOs) have shown great promise in electrical energy storage and 2D heterostructures have been proposed as the next-generation electrode materials to expand the limits of current technology. Here we use first principles density functional theory to investigate the interfacial structure, energetics, and electronic properties of the heterostructures of MXenes (Tin+1CnT2; T=terminal groups) and anatase TiO2. We find that the greatest work-function differences are between OH-terminated-MXene (1.6 eV) and anatase TiO2(101) (6.4 eV), resulting in the largest interfacial electron transfer (~0.9 e/nm2 across the interface) from MXene to the TiO2 layer. This interface also has the strongest adhesion and further strengthened by hydrogen bond formation. For O-, F-, or mixed O-/F- terminated Tin+1Cn MXenes, electron transfer is minimal and interfacial adhesion is weak for their heterostructures with TiO2. The strong dependence of the interfacial properties of the MXene/TiO2 heterostructures on the surface chemistry of the MXenes will be useful to tune the heterostructures for electric-energy-storage applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.09180v1-abstract-full').style.display = 'none'; document.getElementById('2107.09180v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Mater., 2021, 5, 054007 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.07732">arXiv:2105.07732</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.07732">pdf</a>, <a href="https://arxiv.org/ps/2105.07732">ps</a>, <a href="https://arxiv.org/format/2105.07732">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6668/ad06c4">10.1088/1361-6668/ad06c4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhancement of the superconductivity and quantum metallic state in the thin film of superconducting Kagome metal KV$_3$Sb$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Teng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+A">Aobo Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Han Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yixin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+W">Wei Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di%2C+Z">Zengfeng Di</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Da Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+G">Gang Mu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.07732v1-abstract-short" style="display: inline;"> Recently V-based Kagome metal attracted intense attention due to the emergence of superconductivity in the low temperature. Here we report the fabrication and physical investigations of the high quality single-crystalline thin films of the Kagome metal KV$_3$Sb$_5$. For the sample with the thickness of about 15 nm, the temperature dependent resistance reveals a Berezinskii-Kosterlitz-Thouless (BKT&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.07732v1-abstract-full').style.display = 'inline'; document.getElementById('2105.07732v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.07732v1-abstract-full" style="display: none;"> Recently V-based Kagome metal attracted intense attention due to the emergence of superconductivity in the low temperature. Here we report the fabrication and physical investigations of the high quality single-crystalline thin films of the Kagome metal KV$_3$Sb$_5$. For the sample with the thickness of about 15 nm, the temperature dependent resistance reveals a Berezinskii-Kosterlitz-Thouless (BKT) type behavior, indicating the presence of two-dimensional superconductivity. Compared with the bulk sample, the onset transition temperature $T^{onset}_{c}$ and the out-of-plane upper critical field $H_{c2}$ are enhanced by 15\% and more than 10 times respectively. Moreover, the zero-resistance state is destroyed by a magnetic field as low as 50 Oe. Meanwhile, the temperature-independent resistance is observed in a wide field region, which is the hallmark of quantum metallic state. Our results provide evidences for the existence of unconventional superconductivity in this material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.07732v1-abstract-full').style.display = 'none'; document.getElementById('2105.07732v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Supercond. Sci. Technol. 36 (2023) 125015 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.07940">arXiv:2101.07940</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.07940">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.scib.2020.10.006">10.1016/j.scib.2020.10.006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of robust edge superconductivity in Fe(Se,Te) under strong magnetic perturbation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Da Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+Y">Yinping Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shiyuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Y">Yishi Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holland%2C+C+M">Connor M. Holland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirtley%2C+J+R">John R. Kirtley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xianhui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jun Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+S">Shaoyu Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yihua Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.07940v1-abstract-short" style="display: inline;"> The iron-chalcogenide high temperature superconductor Fe(Se,Te) (FST) has been reported to exhibit complex magnetic ordering and nontrivial band topology which may lead to novel superconducting phenomena. However, the recent studies have so far been largely concentrated on its band and spin structures while its mesoscopic electronic and magnetic response, crucial for future device applications, ha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.07940v1-abstract-full').style.display = 'inline'; document.getElementById('2101.07940v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.07940v1-abstract-full" style="display: none;"> The iron-chalcogenide high temperature superconductor Fe(Se,Te) (FST) has been reported to exhibit complex magnetic ordering and nontrivial band topology which may lead to novel superconducting phenomena. However, the recent studies have so far been largely concentrated on its band and spin structures while its mesoscopic electronic and magnetic response, crucial for future device applications, has not been explored experimentally. Here, we used scanning superconducting quantum interference device microscopy for its sensitivity to both local diamagnetic susceptibility and current distribution in order to image the superfluid density and supercurrent in FST. We found that in FST with 10% interstitial Fe, whose magnetic structure was heavily disrupted, bulk superconductivity was significantly suppressed whereas edge still preserved strong superconducting diamagnetism. The edge dominantly carried supercurrent despite of a very long magnetic penetration depth. The temperature dependence of the superfluid density and supercurrent distribution were distinctively different between the edge and the bulk. Our Heisenberg modeling showed that magnetic dopants stabilize anti-ferromagnetic spin correlation along the edge, which may contribute towards its robust superconductivity. Our observations hold implication for FST as potential platforms for topological quantum computation and superconducting spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.07940v1-abstract-full').style.display = 'none'; document.getElementById('2101.07940v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Bulletin, 2021, 66(5):425-432 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.02643">arXiv:2011.02643</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.02643">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsami.0c15203">10.1021/acsami.0c15203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong in-plane magnetic field induced reemergent superconductivity in the van der Waals heterointerface of NbSe2 and CrCl3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Da Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+T">Tianzhong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yongzheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+X">Xinyuan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+G">Gang Mu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=An%2C+Z">Zhenghua An</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.02643v1-abstract-short" style="display: inline;"> A magnetic field is generally considered to be incompatible with superconductivity as it tends to spin-polarize electrons and breaks apart the opposite-spin singlet superconducting Cooper pairs. Here, an experimental phenomenon is observed that an intriguing reemergent superconductivity evolves from a conventional superconductivity undergoing a hump-like intermediate phase with a finite electric r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.02643v1-abstract-full').style.display = 'inline'; document.getElementById('2011.02643v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.02643v1-abstract-full" style="display: none;"> A magnetic field is generally considered to be incompatible with superconductivity as it tends to spin-polarize electrons and breaks apart the opposite-spin singlet superconducting Cooper pairs. Here, an experimental phenomenon is observed that an intriguing reemergent superconductivity evolves from a conventional superconductivity undergoing a hump-like intermediate phase with a finite electric resistance in the van der Waals heterointerface of layered NbSe2 and CrCl3 flakes. This phenomenon merely occurred when the applied magnetic field is parallel to the sample plane and perpendicular to the electric current direction as compared to the reference sample of a NbSe2 thin flake. The strong anisotropy of the reemergent superconducting phase is pointed to the nature of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state driven by the strong interfacial spin-orbit coupling between NbSe2 and CrCl3 layers. The theoretical picture of FFLO state nodes induced by Josephson vortices collectively pinning is presented for well understanding the experimental observation of the reemergent superconductivity. This finding sheds light on an opportunity to search for the exotic FFLO state in the van der Waals heterostructures with strong interfacial spin-orbit coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.02643v1-abstract-full').style.display = 'none'; document.getElementById('2011.02643v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Appl. Mater. Interfaces 12, 49252 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.09960">arXiv:2007.09960</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.09960">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Plasmon-field-induced Metastable States in the Wetting Layer: Detected by the Fluorescence Decay Time of InAs/GaAs Single Quantum Dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Junhui Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+X">Xiaowu He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+K">Kun Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+H">Haiqiao Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+Z">Zhichuan Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Desheng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dou%2C+X">Xiuming Dou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+B">Baoquan Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.09960v1-abstract-short" style="display: inline;"> We report a new way to slow down the spontaneous emission rate of excitons in the wetting layer (WL) through radiative field coupling between the exciton emissions and the dipole field of metal islands. As a result, a long-lifetime decay process is detected in the emission of InAs/GaAs single quantum dots (QDs). It is found that when the separation distance from WL layer (QD layer) to the metal is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.09960v1-abstract-full').style.display = 'inline'; document.getElementById('2007.09960v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.09960v1-abstract-full" style="display: none;"> We report a new way to slow down the spontaneous emission rate of excitons in the wetting layer (WL) through radiative field coupling between the exciton emissions and the dipole field of metal islands. As a result, a long-lifetime decay process is detected in the emission of InAs/GaAs single quantum dots (QDs). It is found that when the separation distance from WL layer (QD layer) to the metal islands is around 20 nm and the islands have an average size of approximately 50 nm, QD lifetime may change from approximately 1 to 160 ns. The corresponding second-order autocorrelation function g(2) (蟿) changes from antibunching into a bunching and antibunching characteristics due to the existence of long-lived metastable states in the WL. This phenomenon can be understood by treating the metal islands as many dipole oscillators in the dipole approximation, which may cause destructive interference between the exciton dipole field and the induced dipole field of metal islands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.09960v1-abstract-full').style.display = 'none'; document.getElementById('2007.09960v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.10347">arXiv:1911.10347</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.10347">pdf</a>, <a href="https://arxiv.org/format/1911.10347">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.155138">10.1103/PhysRevB.101.155138 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence the ferromagnetic order on CoSb layer of LaCoSb$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+M">Muyuan Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+J">Jianan Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+T">Tianzhong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+P">Peng Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+W">Wentao Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Da Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xuguang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+W">Wenjie Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=An%2C+Z">Zhenghua An</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+X">Xinyuan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+G">Gang Mu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.10347v5-abstract-short" style="display: inline;"> The emergence of unconventional superconductivity is generally considered to be related to spin fluctuations. Unveiling the intriguing behaviors of spin fluctuations in parent compounds with layered transition-metal ions may shed light on the search for exotic unconventional superconductors. Here, based on the framework of the first-principles calculations, we theoretically propose that LaCoSb&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.10347v5-abstract-full').style.display = 'inline'; document.getElementById('1911.10347v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.10347v5-abstract-full" style="display: none;"> The emergence of unconventional superconductivity is generally considered to be related to spin fluctuations. Unveiling the intriguing behaviors of spin fluctuations in parent compounds with layered transition-metal ions may shed light on the search for exotic unconventional superconductors. Here, based on the framework of the first-principles calculations, we theoretically propose that LaCoSb$_2$ is a weak antiferromagnetic layered metal with an in-plane ferromagnetic moment of 0.88 $渭_B$ at the Co sites, as a candidate parent compound of the cobalt-based superconductors. Importantly, this theoretical finding is experimentally supported by our magnetization measurements on polycrystalline samples of LaCo$_{0.78}$Sb$_2$. Following the symmetry analysis, we suggest a possible $p$-wave superconductivity hosted in doped LaCoSb$_2$ emerging at the verge of ferromagnetic spin fluctuations, which implies potential applications in topological quantum computing in future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.10347v5-abstract-full').style.display = 'none'; document.getElementById('1911.10347v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures, 3 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 155138 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.06466">arXiv:1904.06466</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.06466">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Microwave programmable response of Co-based microwire polymer composites through wire microstructure and arrangement optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Uddin%2C+A">A. Uddin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+F+X">F. X. Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Estevez%2C+D">D. Estevez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+S+D">S. D. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jawed%2C+S+A">S. A. Jawed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Panina%2C+L+V">L. V. Panina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+H+X">H. X. Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.06466v2-abstract-short" style="display: inline;"> Traditional approaches to realize microwave tunability in microwire polymer composites which mainly rely on topological factors, magnetic field/stress stimuli, and hybridization prove to be burdensome and restricted to rather narrow band frequencies. This work presents a novel yet facile strategy based on a single component tunable medium to program the transmission response over wide frequency ba&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.06466v2-abstract-full').style.display = 'inline'; document.getElementById('1904.06466v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.06466v2-abstract-full" style="display: none;"> Traditional approaches to realize microwave tunability in microwire polymer composites which mainly rely on topological factors, magnetic field/stress stimuli, and hybridization prove to be burdensome and restricted to rather narrow band frequencies. This work presents a novel yet facile strategy based on a single component tunable medium to program the transmission response over wide frequency bands. To this end, we demonstrated that structural modification of one type of microwire through suitable current annealing and arrangement of the annealed wires in multiple combinations were sufficient to distinctly red-shift the transmission dip frequency of the composites. Such one wire control-strategy endorsed a programmable multivariable system grounded on the variations in both the overall array conductivity or &#34;effectiv&#34; area determined by the wires arrangement and the relaxation time dictated by the annealing degree of microwires. These results can be used to prescribe transmission frequency bands of desired features via diverse microwire arrays and microwave performance from a single component to a composite system design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.06466v2-abstract-full').style.display = 'none'; document.getElementById('1904.06466v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.07960">arXiv:1903.07960</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.07960">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6668/ab09a4">10.1088/1361-6668/ab09a4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First performance test of 30 mm iron-based superconductor single pancake coil under 24 T background field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+D">Dongliang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xianping Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Donghui Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+C">Chiheng Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+H">He Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Wenge Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Q">Qingjin Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Y">Yanwei Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.07960v1-abstract-short" style="display: inline;"> The iron-based superconductor (IBS) single pancake coil (SPC) with 30 mm inner diameter was firstly fabricated and tested under 24 T background field. This SPC was successfully made using the 7-filamentary Ba1-xKxFe2As2 (Ba122) tape by wind-and-react method. This IBS coil show the highest Ic value at magnetic field reported so far. For example, the transport critical current of this Ba122 SPC achi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.07960v1-abstract-full').style.display = 'inline'; document.getElementById('1903.07960v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.07960v1-abstract-full" style="display: none;"> The iron-based superconductor (IBS) single pancake coil (SPC) with 30 mm inner diameter was firstly fabricated and tested under 24 T background field. This SPC was successfully made using the 7-filamentary Ba1-xKxFe2As2 (Ba122) tape by wind-and-react method. This IBS coil show the highest Ic value at magnetic field reported so far. For example, the transport critical current of this Ba122 SPC achieved 35 A at 4.2 K and 10 T, which is about half of that of short sample. This indicates that the non-insulation winding process together with the stainless-steel tape is suitable to the iron-based superconductor. Even more encouraging is the fact that the Ic of this SPC is still as high as 26 A under 24 T background field, which is still about 40% of that at zero external magnetic field. These results clearly demonstrate that the iron-based superconductors are very promising for high-field magnet applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.07960v1-abstract-full').style.display = 'none'; document.getElementById('1903.07960v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Supercond. Sci. Technol. 32 (2019) 04LT01 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.04822">arXiv:1903.04822</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.04822">pdf</a>, <a href="https://arxiv.org/ps/1903.04822">ps</a>, <a href="https://arxiv.org/format/1903.04822">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpcc.9b04624">10.1021/acs.jpcc.9b04624 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-crystal growth and extremely high H_c2 of 12442-type Fe-based superconductor KCa_2Fe_4As_4F_2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Teng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+J">Jianan Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+H">Hua Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Jiaxin Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lingling Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Y">Yekai Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhuojun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+T">Tao Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Da Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+W">Wei Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaosong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+G">Gang Mu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.04822v1-abstract-short" style="display: inline;"> Millimeter sized single crystals of KCa_2Fe_4As_4F_2 were grown using a self-flux method. The chemical compositions and crystal structure were characterized carefully. Superconductivity with the critical transition T_c = 33.5 K was confirmed by both the resistivity and magnetic susceptibility measurements. Moreover, the upper critical field H_c2 was studied by the resistivity measurements under di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.04822v1-abstract-full').style.display = 'inline'; document.getElementById('1903.04822v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.04822v1-abstract-full" style="display: none;"> Millimeter sized single crystals of KCa_2Fe_4As_4F_2 were grown using a self-flux method. The chemical compositions and crystal structure were characterized carefully. Superconductivity with the critical transition T_c = 33.5 K was confirmed by both the resistivity and magnetic susceptibility measurements. Moreover, the upper critical field H_c2 was studied by the resistivity measurements under different magnetic fields. A rather steep increase for the in-plane H_c2^ab with cooling, d渭_0H_c2^a/dT|T_c = -50.9 T/K, was observed, indicating an extremely high upper critical field. Possible origins for this behavior were discussed. The findings in our work is a great promotion both for understanding the physical properties and applications of 12442-type Fe-based superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.04822v1-abstract-full').style.display = 'none'; document.getElementById('1903.04822v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Chem. C 2019, 123, 13925-13929 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.00776">arXiv:1902.00776</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.00776">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.085429">10.1103/PhysRevB.99.085429 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interfacial and Electronic Properties of Heterostructures of MXene and Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R">Rui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+W">Weiwei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+C">Cheng Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kent%2C+P+R+C">Paul R. C. Kent</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">De-en Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.00776v1-abstract-short" style="display: inline;"> MXene-based heterostructures have received considerable interest owing to their unique properties. Herein, we examine various heterostructures of a prototypical MXene and graphene using density functional theory. We find that the adhesion energy, charge transfer, and band structure of these heterostructures are sensitive not only to the surface functional group, but also to the stacking order. Dif&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.00776v1-abstract-full').style.display = 'inline'; document.getElementById('1902.00776v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.00776v1-abstract-full" style="display: none;"> MXene-based heterostructures have received considerable interest owing to their unique properties. Herein, we examine various heterostructures of a prototypical MXene and graphene using density functional theory. We find that the adhesion energy, charge transfer, and band structure of these heterostructures are sensitive not only to the surface functional group, but also to the stacking order. Difference in work function dictates the direction and amount of electron transfer across the interface, which causes a shift in the Dirac point of the graphene bands in the heterostructures of monolayer graphene and monolayer MXene. In the heterostructures of bilayer graphene and monolayer MXene, the interface breaks the symmetry of the bilayer graphene; in the case of the AB-stacking bilayer, the electron transfer leads to an interfacial electric field that opens up a gap in the graphene bands at the K point. This internal polarization strengthens both the interfacial adhesions and the cohesion between the two graphene layers. The MXene-graphene-MXene and graphene-MXene-graphene sandwich structures behave as two mirror-symmetric MXene-graphene interfaces. Our first principles studies provide a comprehensive understanding for the interaction between a typical MXene and graphene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.00776v1-abstract-full').style.display = 'none'; document.getElementById('1902.00776v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 085429 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.05033">arXiv:1808.05033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.05033">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11661-018-5025-1">10.1007/s11661-018-5025-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the characterisation of a hitherto unreported icosahedral quasicrystal phase in additively manufactured aluminium alloy AA7075 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kairy%2C+S+K">Shravan K. Kairy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gharbi%2C+O">Oumaima Gharbi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nicklaus%2C+J">Juan Nicklaus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Derui Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hutchinson%2C+C+R">Christopher R. Hutchinson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birbilis%2C+N">Nick Birbilis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.05033v1-abstract-short" style="display: inline;"> Aluminium alloy AA7075 (Al-Zn-Mg-Cu) specimens were prepared using selective laser melting, also known as powder bed fusion additive manufacturing. In the as-manufactured state, which represents a locally rapidly solidified condition, the prevalence of a previously unreported icosahedral quasicrystal with 5-fold symmetry was observed. The icosahedral quasicrystal, which has been termed nu-phase, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05033v1-abstract-full').style.display = 'inline'; document.getElementById('1808.05033v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.05033v1-abstract-full" style="display: none;"> Aluminium alloy AA7075 (Al-Zn-Mg-Cu) specimens were prepared using selective laser melting, also known as powder bed fusion additive manufacturing. In the as-manufactured state, which represents a locally rapidly solidified condition, the prevalence of a previously unreported icosahedral quasicrystal with 5-fold symmetry was observed. The icosahedral quasicrystal, which has been termed nu-phase, was comprised of Zn, Cu and Mg. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05033v1-abstract-full').style.display = 'none'; document.getElementById('1808.05033v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, includes 4 figures and 1 supplementary figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.06438">arXiv:1612.06438</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.06438">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.245313">10.1103/PhysRevB.95.245313 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single Photon Emission from Deep Level Defects in Monolayer WSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Y">Yanxia Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dou%2C+X">Xiuming Dou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+K">Kun Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Desheng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">Fuhua Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+B">Baoquan Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.06438v1-abstract-short" style="display: inline;"> We report an efficient method to observe single photon emissions in monolayer WSe2 by applying hydrostatic pressure. The photoluminescence peaks of typical two-dimensional (2D) excitons show a nearly identical pressure-induced blue-shift, whereas the energy of pressure-induced discrete emission lines (quantum emitters) demonstrates a pressure insensitive behavior. The decay time of these discrete&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.06438v1-abstract-full').style.display = 'inline'; document.getElementById('1612.06438v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.06438v1-abstract-full" style="display: none;"> We report an efficient method to observe single photon emissions in monolayer WSe2 by applying hydrostatic pressure. The photoluminescence peaks of typical two-dimensional (2D) excitons show a nearly identical pressure-induced blue-shift, whereas the energy of pressure-induced discrete emission lines (quantum emitters) demonstrates a pressure insensitive behavior. The decay time of these discrete line emissions is approximately 10 ns, which is at least one order longer than the lifetime of the broad localized (L) excitons. These characteristics lead to a conclusion that the excitons bound to deep level defects can be responsible for the observed single photon emissions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.06438v1-abstract-full').style.display = 'none'; document.getElementById('1612.06438v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 245313 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.06885">arXiv:1607.06885</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.06885">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1115/1.4037882">10.1115/1.4037882 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Volume conservation during finite plastic deformation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">He-Ling Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Dong-Jie Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Li-Yuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Bin Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.06885v1-abstract-short" style="display: inline;"> An elastoplastic theory is not volume conserved if it improperly sets an arbitrary plastic strain rate tensor to be deviatoric. This paper discusses how to rigorously realize volume conservation in finite strain regime, especially when the unloading stress free configuration is not adopted or unique in the elastoplastic theories. An accurate condition of volume conservation is clarified and used i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.06885v1-abstract-full').style.display = 'inline'; document.getElementById('1607.06885v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.06885v1-abstract-full" style="display: none;"> An elastoplastic theory is not volume conserved if it improperly sets an arbitrary plastic strain rate tensor to be deviatoric. This paper discusses how to rigorously realize volume conservation in finite strain regime, especially when the unloading stress free configuration is not adopted or unique in the elastoplastic theories. An accurate condition of volume conservation is clarified and used in this paper that the density of a volume element after the applied loads are completely removed should be identical to that of the initial stress free states. For the elastoplastic theories that adopt the unloading stress free configuration (i.e. the intermediate configuration), the accurate condition of volume conservation is satisfied only if specific definitions of the plastic strain rate are used among many other different definitions. For the elastoplastic theories that do not adopt the unloading stress free configuration, it is even more difficult to realize volume conservation as the information of the stress free state lacks. To find a universal approach of realizing volume conservation for elastoplastic theories whether or not adopt the unloading stress free configuration, we propose a single assumption that the density of material only depends on the trace of the Cauchy stress, and interestingly find that the zero trace of the plastic stress rate is equivalent to the accurate condition of volume conservation. Two strategies are further proposed to satisfy the accurate condition of volume conservation: directly and slightly revising the tangential stiffness tensor or using a properly chosen stress/strain measure and elastic compliance tensor. They are implemented into existing elastoplastic theories, and the volume conservation is demonstrated by both theoretical proof and numerical examples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.06885v1-abstract-full').style.display = 'none'; document.getElementById('1607.06885v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 13 figures and 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 74C15 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.00335">arXiv:1607.00335</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.00335">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-8984/28/46/464004">10.1088/0953-8984/28/46/464004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Understanding the pseudocapacitance of RuO2 from joint density functional theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+C">Cheng Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">De-en Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.00335v1-abstract-short" style="display: inline;"> Pseudocapacitors have been experimentally studied for many years in electric energy storage. However, first principles understanding of the pseudocapacitive behavior is still not satisfactory due to the complexity involved in modeling electrochemistry. In this paper, we applied a novel simulation technique called Joint Density Functional Theory (JDFT) to simulate the pseudocapacitive behavior of R&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.00335v1-abstract-full').style.display = 'inline'; document.getElementById('1607.00335v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.00335v1-abstract-full" style="display: none;"> Pseudocapacitors have been experimentally studied for many years in electric energy storage. However, first principles understanding of the pseudocapacitive behavior is still not satisfactory due to the complexity involved in modeling electrochemistry. In this paper, we applied a novel simulation technique called Joint Density Functional Theory (JDFT) to simulate the pseudocapacitive behavior of RuO2, a prototypical material, in a model electrolyte. We obtained from JDFT a capacitive curve which showed a redox peak position comparable to that in the experimental cyclic voltammetry (CV) curve. We found that the experimental turning point from double-layer to pseudocapacitive charge storage at low scan rates could be explained by the hydrogen adsorption at low coverage. As the electrode voltage becomes more negative, H coverage increases and causes the surface structure change, leading to bended OH bonds at the on-top oxygen atoms and large capacitance. This H coverage-dependent capacitance can explain the high pseudocapacitance of hydrous RuO2. Our work here provides a first principles understanding of the pseudocapacitance for RuO2 in particular and for transition-metal oxides in general. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.00335v1-abstract-full').style.display = 'none'; document.getElementById('1607.00335v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">J. Phys. Condens. Matter; in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Condens. Matter, 28, 464004 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.06819">arXiv:1509.06819</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1509.06819">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/32/12/124204">10.1088/0256-307X/32/12/124204 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Second-order correlation function from asymmetric to symmetric transitions due to spectrally indistinguishable biexciton cascade emission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X+F">X. F. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dou%2C+X+M">X. M. Dou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+K">K. Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+P+Y">P. Y. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+H+Q">H. Q. Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+Z+C">Z. C. Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+H+J">H. J. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D+S">D. S. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+C+L">C. L. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+B+Q">B. Q. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.06819v1-abstract-short" style="display: inline;"> We report the observed photon bunching statistics of biexciton cascade emission at zero time delay in single quantum dots by second-order correlation function measurements under continuous wave excitation. It is found that the bunching phenomenon is independent of the biexciton binding energy when it varies from 0.59 meV to nearly zero. The photon bunching takes place when the exciton photon is no&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.06819v1-abstract-full').style.display = 'inline'; document.getElementById('1509.06819v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.06819v1-abstract-full" style="display: none;"> We report the observed photon bunching statistics of biexciton cascade emission at zero time delay in single quantum dots by second-order correlation function measurements under continuous wave excitation. It is found that the bunching phenomenon is independent of the biexciton binding energy when it varies from 0.59 meV to nearly zero. The photon bunching takes place when the exciton photon is not spectrally distinguishable from biexciton photon, and either of them can trigger the start in a Hanbury-Brown and Twiss setup. However, if the exciton energy is spectrally distinguishable from the biexciton the photon statistics becomes asymmetric and a cross-bunching lineshape is obtained. The theoretical calculations based on a model of three-level rate-equation analysis are consistent with the result of second-order correlation function measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.06819v1-abstract-full').style.display = 'none'; document.getElementById('1509.06819v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.06418">arXiv:1507.06418</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.06418">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.165315">10.1103/PhysRevB.92.165315 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Zinc-blende and wurtzite GaAs quantum dots in nanowires studied using hydrostatic pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shuang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+K">Kun Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dou%2C+X">Xiuming Dou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xuefei Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Y">Ying Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+H">Haiqiao Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+Z">Zhichuan Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Desheng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shu-Shen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J">Jun-Wei Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+B">Baoquan Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.06418v1-abstract-short" style="display: inline;"> We report both zinc-blende (ZB) and wurtzite (WZ) crystal phase self-assembled GaAs quantum dots (QDs) embedding in a single GaAs/AlGaAs core-shell nanowires (NWs). Optical transitions and single-photon characteristics of both kinds of QDs have been investigated by measuring photoluminescence (PL) and time-resolved PL spectra upon application of hydrostatic pressure. We find that the ZB QDs are of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.06418v1-abstract-full').style.display = 'inline'; document.getElementById('1507.06418v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.06418v1-abstract-full" style="display: none;"> We report both zinc-blende (ZB) and wurtzite (WZ) crystal phase self-assembled GaAs quantum dots (QDs) embedding in a single GaAs/AlGaAs core-shell nanowires (NWs). Optical transitions and single-photon characteristics of both kinds of QDs have been investigated by measuring photoluminescence (PL) and time-resolved PL spectra upon application of hydrostatic pressure. We find that the ZB QDs are of direct band gap transition with short recombination lifetime (~1 ns) and higher pressure coefficient (75-100 meV/GPa). On the contrary, the WZ QDs undergo a direct-to-pseudodirect bandgap transition as a result of quantum confinement effect, with remarkably longer exciton lifetime (4.5-74.5 ns) and smaller pressure coefficient (28-53 meV/GPa). These fundamentally physical properties are further examined by performing state-of-the-art atomistic pseudopotential calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.06418v1-abstract-full').style.display = 'none'; document.getElementById('1507.06418v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 165315 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.00701">arXiv:1502.00701</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.00701">pdf</a>, <a href="https://arxiv.org/format/1502.00701">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/c4cs00282b">10.1039/c4cs00282b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+X">Xiao-Fen Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+W">Wei Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jiang-Bin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">De-Sheng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+P">Ping-Heng Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.00701v1-abstract-short" style="display: inline;"> Two-dimensional (2D) transition metal dichalcogenide (TMD) nanosheets exhibit remarkable electronic and optical properties. The 2D features, sizable bandgaps, and recent advances in the synthesis, characterization, and device fabrication of the representative MoS$_2$, WS$_2$, WSe$_2$, and MoSe$_2$ TMDs make TMDs very attractive in nanoelectronics and optoelectronics. Similar to graphite and graphe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.00701v1-abstract-full').style.display = 'inline'; document.getElementById('1502.00701v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.00701v1-abstract-full" style="display: none;"> Two-dimensional (2D) transition metal dichalcogenide (TMD) nanosheets exhibit remarkable electronic and optical properties. The 2D features, sizable bandgaps, and recent advances in the synthesis, characterization, and device fabrication of the representative MoS$_2$, WS$_2$, WSe$_2$, and MoSe$_2$ TMDs make TMDs very attractive in nanoelectronics and optoelectronics. Similar to graphite and graphene, the atoms within each layer in 2D TMDs are joined together by covalent bonds, while van der Waals interactions keep the layers together. This makes the physical and chemical properties of 2D TMDs layer dependent. In this review, we discuss the basic lattice vibrations of monolayer, multilayer, and bulk TMDs, including high-frequency optical phonons, interlayer shear and layer breathing phonons, the Raman selection rule, layer-number evolution of phonons, multiple phonon replica, and phonons at the edge of the Brillouin zone. The extensive capabilities of Raman spectroscopy in investigating the properties of TMDs are discussed, such as interlayer coupling, spin--orbit splitting, and external perturbations. The interlayer vibrational modes are used in rapid and substrate-free characterization of the layer number of multilayer TMDs and in probing interface coupling in TMD heterostructures. The success of Raman spectroscopy in investigating TMD nanosheets paves the way for experiments on other 2D crystals and related van der Waals heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.00701v1-abstract-full').style.display = 'none'; document.getElementById('1502.00701v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 23 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.3896">arXiv:1412.3896</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.3896">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms6708">10.1038/ncomms6708 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-T_c superconductivity in ultrathin Bi_2Sr_2CaCu_2O_8+x down to halfunit-cell thickness by protection with graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Da Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+T">Tao Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+L">Lixing You</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qiao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+A">Ang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Haomin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+G">Gang Mu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhiying Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Haoran Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guanghui Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jie Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Q">Qiujuan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+C">Chengtian Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+H">Hong Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X">Xiaoming Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+M">Mianheng Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.3896v1-abstract-short" style="display: inline;"> High-T_c superconductors confined to two dimension exhibit novel physical phenomena, such as superconductor-insulator transition. In the Bi_2Sr_2CaCu_2O_8+x (Bi2212) model system, despite extensive studies, the intrinsic superconducting properties at the thinness limit have been difficult to determine. Here we report a method to fabricate high quality single-crystal Bi2212 films down to half-unit-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.3896v1-abstract-full').style.display = 'inline'; document.getElementById('1412.3896v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.3896v1-abstract-full" style="display: none;"> High-T_c superconductors confined to two dimension exhibit novel physical phenomena, such as superconductor-insulator transition. In the Bi_2Sr_2CaCu_2O_8+x (Bi2212) model system, despite extensive studies, the intrinsic superconducting properties at the thinness limit have been difficult to determine. Here we report a method to fabricate high quality single-crystal Bi2212 films down to half-unit-cell thickness in the form of graphene/Bi2212 van der Waals heterostructure, in which sharp superconducting transitions are observed. The heterostructure also exhibits a nonlinear current-voltage characteristic due to the Dirac nature of the graphene band structure. More interestingly, although the critical temperature remains essentially the same with reduced thickness of Bi2212, the slope of the normal state T-linear resistivity varies by a factor of 4-5, and the sheet resistance increases by three orders of magnitude, indicating a surprising decoupling of the normal state resistance and superconductivity. The developed technique is versatile, applicable to investigate other two-dimensional (2D) superconducting materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.3896v1-abstract-full').style.display = 'none'; document.getElementById('1412.3896v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications, 5, 5708 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.6017">arXiv:1408.6017</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1408.6017">pdf</a>, <a href="https://arxiv.org/ps/1408.6017">ps</a>, <a href="https://arxiv.org/format/1408.6017">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms6309">10.1038/ncomms6309 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Interlayer Shear Modes in Twisted Multi-layer Graphenes: Interlayer coupling, Davydov Splitting and Intensity Resonance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jiang-Bin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ijas%2C+M">Mari Ijas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+W">Wen-Peng Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+X">Xiao-Fen Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiao-Li Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">De-Sheng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferrari%2C+A+C">Andrea C. Ferrari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+P">Ping-Heng Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.6017v1-abstract-short" style="display: inline;"> Graphene and other two-dimensional crystals can be combined to form various hybrids and heterostructures, creating materials on demand, in which the interlayer coupling at the interface leads to modified physical properties as compared to their constituents. Here, by measuring Raman spectra of shear modes, we probe the coupling at the interface between two artificially-stacked few-layer graphenes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.6017v1-abstract-full').style.display = 'inline'; document.getElementById('1408.6017v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.6017v1-abstract-full" style="display: none;"> Graphene and other two-dimensional crystals can be combined to form various hybrids and heterostructures, creating materials on demand, in which the interlayer coupling at the interface leads to modified physical properties as compared to their constituents. Here, by measuring Raman spectra of shear modes, we probe the coupling at the interface between two artificially-stacked few-layer graphenes rotated with respect to each other. The strength of interlayer coupling between the two interface layers is found to be only 20% of that between Bernal-stacked layers. Nevertheless, this weak coupling manifests itself in a Davydov splitting of the shear mode frequencies in systems consisting of two equivalent graphene multilayers, and in the intensity enhancement of shear modes due to the optical resonance with several optically allowed electronic transitions between conduction and valence bands in the band structures. This study paves way for fundamental understanding into the interface coupling of two-dimensional hybrids and heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.6017v1-abstract-full').style.display = 'none'; document.getElementById('1408.6017v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, Accepted by Nature Communications</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.1494">arXiv:1308.1494</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1308.1494">pdf</a>, <a href="https://arxiv.org/ps/1308.1494">ps</a>, <a href="https://arxiv.org/format/1308.1494">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/107/27008">10.1209/0295-5075/107/27008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tuning exciton and biexciton transition energies and fine structure splitting through hydrostatic pressure in single InGaAs quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xuefei Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+H">Hai Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dou%2C+X">Xiuming Dou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+K">Kun Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Y">Ying Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+H">Haiqiao Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+Z">Zhichuan Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Y">Yang Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shushen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Desheng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+G">Guangcan Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+L">Lixin He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+B">Baoquan Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.1494v1-abstract-short" style="display: inline;"> We demonstrate that the exciton and biexciton emission energies as well as exciton fine structure splitting (FSS) in single (In,Ga)As/GaAs quantum dots (QDs) can be efficiently tuned using hydrostatic pressure in situ in an optical cryostat at up to 4.4 GPa. The maximum exciton emission energy shift was up to 380 meV, and the FSS was up to 180 $渭$eV. We successfully produced a biexciton antibindin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.1494v1-abstract-full').style.display = 'inline'; document.getElementById('1308.1494v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.1494v1-abstract-full" style="display: none;"> We demonstrate that the exciton and biexciton emission energies as well as exciton fine structure splitting (FSS) in single (In,Ga)As/GaAs quantum dots (QDs) can be efficiently tuned using hydrostatic pressure in situ in an optical cryostat at up to 4.4 GPa. The maximum exciton emission energy shift was up to 380 meV, and the FSS was up to 180 $渭$eV. We successfully produced a biexciton antibinding-binding transition in QDs, which is the key experimental condition that generates color- and polarization-indistinguishable photon pairs from the cascade of biexciton emissions and that generates entangled photons via a time-reordering scheme. We perform atomistic pseudopotential calculations on realistic (In,Ga)As/GaAs QDs to understand the physical mechanism underlying the hydrostatic pressure-induced effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.1494v1-abstract-full').style.display = 'none'; document.getElementById('1308.1494v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.1612">arXiv:1212.1612</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1212.1612">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/jz301576s">10.1021/jz301576s <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Windowed Carbon Nanotubes for Efficient CO2 Removal from Natural Gas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hongjun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cooper%2C+V+R">Valentino R. Cooper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+S">Sheng Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">De-en Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.1612v1-abstract-short" style="display: inline;"> We demonstrate from molecular dynamics simulations that windowed carbon nanotubes can efficiently separate CO2 from the CO2/CH4 mixture, resembling polymeric hollow fibers for gas separation. Three CO2/CH4 mixtures with 30%, 50% and 80% CO2 are investigated as a function of applied pressure from 80 to 180 bar. In all simulated conditions, only CO2 permeation is observed; CH4 is completely rejected&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.1612v1-abstract-full').style.display = 'inline'; document.getElementById('1212.1612v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.1612v1-abstract-full" style="display: none;"> We demonstrate from molecular dynamics simulations that windowed carbon nanotubes can efficiently separate CO2 from the CO2/CH4 mixture, resembling polymeric hollow fibers for gas separation. Three CO2/CH4 mixtures with 30%, 50% and 80% CO2 are investigated as a function of applied pressure from 80 to 180 bar. In all simulated conditions, only CO2 permeation is observed; CH4 is completely rejected by the nitrogen-functionalized windows or pores on the nanotube wall in the accessible timescale, while maintaining a fast diffusion rate along the tube. The estimated time-dependent CO2 permeance ranges from 107 to 105 GPU (gas permeation unit), compared with ~100 GPU for typical polymeric membranes. CO2/CH4 selectivity is estimated to be ~108 from the difference in free-energy barriers of permeation. This work suggests that a windowed carbon nanotube can be used as a highly efficient medium, configurable in hollow-fiber-like modules, for removing CO2 from natural gas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.1612v1-abstract-full').style.display = 'none'; document.getElementById('1212.1612v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Physical Chemistry Letters, 2012, 3:3343 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1207.4644">arXiv:1207.4644</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1207.4644">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adfm.201201577">10.1002/adfm.201201577 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Triggering the Continuous Growth of Graphene toward Millimeter Size Grain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">Tianru Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+G">Guqiao Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+H">Honglie Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Haomin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+L">Lei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Da Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X">Xiaoming Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+M">Mianheng Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1207.4644v1-abstract-short" style="display: inline;"> In this report, we demonstrated a simple but efficient strategy to synthesize millimeter-sized graphene single crystal grains by regulating the supply of reactants in chemical vapor deposition process. Polystyrene was used as a carbon source. Pulse heating on the carbon source was utilized to minimize the nucleation density of graphene on copper foil, while the gradual increase in the temperature&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.4644v1-abstract-full').style.display = 'inline'; document.getElementById('1207.4644v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1207.4644v1-abstract-full" style="display: none;"> In this report, we demonstrated a simple but efficient strategy to synthesize millimeter-sized graphene single crystal grains by regulating the supply of reactants in chemical vapor deposition process. Polystyrene was used as a carbon source. Pulse heating on the carbon source was utilized to minimize the nucleation density of graphene on copper foil, while the gradual increase in the temperature of carbon source and the flow rate of hydrogen is adapted to drive the continuous growth of graphene grain. As a result, the nucleation density of graphene grain can be controlled as lower as ~100 nuclei/cm2, and the dimension of single crystal grain could grow up to ~1.2 mm. Raman spectroscopy, transmission electron microscopy and electrical transport measurement show that the graphene grains obtained are in high quality. The strategy presented here provides very good controllability and enables the possibility for large graphene single crystals, which is of vital importance for practical applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.4644v1-abstract-full').style.display = 'none'; document.getElementById('1207.4644v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 10 figures. accepted Advanced Functional materials 2012</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Functional Materials, 2012 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1201.1125">arXiv:1201.1125</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1201.1125">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3692066">10.1063/1.3692066 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temperature dependence of electron-spin relaxation in a single InAs quantum dot at zero applied magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dou%2C+X+M">X. M. Dou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+B+Q">B. Q. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D+S">D. S. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+H+Q">H. Q. Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+Z+C">Z. C. Niu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1201.1125v1-abstract-short" style="display: inline;"> The temperature-dependent electron spin relaxation of positively charged excitons in a single InAs quantum dot (QD) was measured by time-resolved photoluminescence spectroscopy at zero applied magnetic fields. The experimental results show that the electron-spin relaxation is clearly divided into two different temperature regimes: (i) T &lt; 50 K, spin relaxation depends on the dynamical nuclear spin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.1125v1-abstract-full').style.display = 'inline'; document.getElementById('1201.1125v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1201.1125v1-abstract-full" style="display: none;"> The temperature-dependent electron spin relaxation of positively charged excitons in a single InAs quantum dot (QD) was measured by time-resolved photoluminescence spectroscopy at zero applied magnetic fields. The experimental results show that the electron-spin relaxation is clearly divided into two different temperature regimes: (i) T &lt; 50 K, spin relaxation depends on the dynamical nuclear spin polarization (DNSP) and is approximately temperature-independent, as predicted by Merkulov et al. (ii) T &gt; about 50 K, spin relaxation speeds up with increasing temperature. A model of two LO phonon scattering process coupled with hyperfine interaction is proposed to account for the accelerated electron spin relaxation at higher temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.1125v1-abstract-full').style.display = 'none'; document.getElementById('1201.1125v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1201.1123">arXiv:1201.1123</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1201.1123">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/98/17007">10.1209/0295-5075/98/17007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurements of a fast nuclear spin dynamics in a single InAs quantum dot with positively charged exciton </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dou%2C+X+M">X. M. Dou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+B+Q">B. Q. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D+S">D. S. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+H+Q">H. Q. Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+Z+C">Z. C. Niu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1201.1123v1-abstract-short" style="display: inline;"> By using highly time-resolved spectroscopy with an alternative 蟽+/蟽 - laser pulse modulation technique, we are able to measure the fast buildup and decay times of the dynamical nuclear spin polarization (DNSP) at 5 K for a single InAs quantum dot (QD) with positively charged exciton. It is shown that the nuclear dipole-dipole interaction can efficiently depolarize DNSP with a typical time constant&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.1123v1-abstract-full').style.display = 'inline'; document.getElementById('1201.1123v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1201.1123v1-abstract-full" style="display: none;"> By using highly time-resolved spectroscopy with an alternative 蟽+/蟽 - laser pulse modulation technique, we are able to measure the fast buildup and decay times of the dynamical nuclear spin polarization (DNSP) at 5 K for a single InAs quantum dot (QD) with positively charged exciton. It is shown that the nuclear dipole-dipole interaction can efficiently depolarize DNSP with a typical time constant of 500 渭s in the absence of external magnetic field. By using an external field of 8 mT to suppress the nuclear dipolar interaction, the decay time turns to be mainly induced by interaction with unpaired electron and extends to about 5 ms. In addition, it is found that the time constant of hole-induced depolarization of nuclear spin is about 112 ms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.1123v1-abstract-full').style.display = 'none'; document.getElementById('1201.1123v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1112.2242">arXiv:1112.2242</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1112.2242">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.85.035406">10.1103/PhysRevB.85.035406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Understanding Controls on Interfacial Wetting at Epitaxial Graphene: Experiment and Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Hua Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ganesh%2C+P">P. Ganesh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Presser%2C+V">Volker Presser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wander%2C+M+C+F">Matthew C. F. Wander</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fenter%2C+P">Paul Fenter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kent%2C+P+R+C">Paul R. C. Kent</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">De-en Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chialvo%2C+A+A">Ariel A. Chialvo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McDonough%2C+J">John McDonough</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shuford%2C+K+L">Kevin L. Shuford</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gogotsi%2C+Y">Yury Gogotsi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1112.2242v2-abstract-short" style="display: inline;"> The interaction of interfacial water with graphitic carbon at the atomic scale is studied as a function of the hydrophobicity of epitaxial graphene. High resolution X-ray reflectivity shows that the graphene-water contact angle is controlled by the average graphene thickness, due to the fraction of the film surface expressed as the epitaxial buffer layer whose contact angle (contact angle 胃_c = 73&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.2242v2-abstract-full').style.display = 'inline'; document.getElementById('1112.2242v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1112.2242v2-abstract-full" style="display: none;"> The interaction of interfacial water with graphitic carbon at the atomic scale is studied as a function of the hydrophobicity of epitaxial graphene. High resolution X-ray reflectivity shows that the graphene-water contact angle is controlled by the average graphene thickness, due to the fraction of the film surface expressed as the epitaxial buffer layer whose contact angle (contact angle 胃_c = 73掳) is substantially smaller than that of multilayer graphene (胃_c = 93掳). Classical and ab initio molecular dynamics simulations show that the reduced contact angle of the buffer layer is due to both its epitaxy with the SiC substrate and the presence of interfacial defects. This insight clarifies the relationship between interfacial water structure and hydrophobicity, in general, and suggests new routes to control interface properties of epitaxial graphene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.2242v2-abstract-full').style.display = 'none'; document.getElementById('1112.2242v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 Pages, 3 Tables, 8 Figures; Some minor corrections and changes have been made through the publication production process. The manuscript has been published on-line by Physical Review B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B, 2012, 85, 035406 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1110.4556">arXiv:1110.4556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1110.4556">pdf</a>, <a href="https://arxiv.org/ps/1110.4556">ps</a>, <a href="https://arxiv.org/format/1110.4556">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.84.193402">10.1103/PhysRevB.84.193402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Au40: A Large Tetrahedral Magic Cluster </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">De-en Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walter%2C+M">Michael Walter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1110.4556v1-abstract-short" style="display: inline;"> 40 is a magic number for tetrahedral symmetry predicted in both nuclear physics and the electronic jellium model. We show that Au40 could be such a a magic cluster from density functional theory-based basin hopping for global minimization. The putative global minimum found for Au40 has a twisted pyramid structure, reminiscent of the famous tetrahedral Au20, and a sizable HOMO-LUMO gap of 0.69 eV,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.4556v1-abstract-full').style.display = 'inline'; document.getElementById('1110.4556v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1110.4556v1-abstract-full" style="display: none;"> 40 is a magic number for tetrahedral symmetry predicted in both nuclear physics and the electronic jellium model. We show that Au40 could be such a a magic cluster from density functional theory-based basin hopping for global minimization. The putative global minimum found for Au40 has a twisted pyramid structure, reminiscent of the famous tetrahedral Au20, and a sizable HOMO-LUMO gap of 0.69 eV, indicating its molecular nature. Analysis of the electronic states reveals that the gap is related to shell closings of the metallic electrons in a tetrahedrally distorted effective potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.4556v1-abstract-full').style.display = 'none'; document.getElementById('1110.4556v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures, phys. rev. b, in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 84 (2011) 193402 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0906.0030">arXiv:0906.0030</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0906.0030">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.80.115402">10.1103/PhysRevB.80.115402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic doping of a thiolated-gold superatom </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">De-en Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Whetten%2C+R+L">Robert L. Whetten</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0906.0030v3-abstract-short" style="display: inline;"> The Au25(SR)18- cluster is a new member in the superatom family which features a centered icosahedral shell (Au13) protected by six RS(AuSR)2 motifs (RS- being a alkylthiolate group). Here we show that this superatom can be magnetically doped by replacing the center Au atom with Cr, Mn, or Fe. We find that Cr and Mn-doped clusters have an optimized magnetic moment of 5 Bohr magnetons while the F&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0906.0030v3-abstract-full').style.display = 'inline'; document.getElementById('0906.0030v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0906.0030v3-abstract-full" style="display: none;"> The Au25(SR)18- cluster is a new member in the superatom family which features a centered icosahedral shell (Au13) protected by six RS(AuSR)2 motifs (RS- being a alkylthiolate group). Here we show that this superatom can be magnetically doped by replacing the center Au atom with Cr, Mn, or Fe. We find that Cr and Mn-doped clusters have an optimized magnetic moment of 5 Bohr magnetons while the Fe-doped cluster has an optimized magnetic moment of 3 Bohr magnetons. Although the dopant atom&#39;s local magnetic moment makes a major contribution to the total moment, the icosahedral Au12 shell is also found to be significantly magnetized. Our work here provides a new scenario of magnetic doping of a metal-cluster superatom which is protected by ligands and made by wet chemistry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0906.0030v3-abstract-full').style.display = 'none'; document.getElementById('0906.0030v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures; added a note and discussion and corrected typos</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B, 80, 115402 (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0904.2253">arXiv:0904.2253</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0904.2253">pdf</a>, <a href="https://arxiv.org/ps/0904.2253">ps</a>, <a href="https://arxiv.org/format/0904.2253">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Generalized Jarzynski&#39;s equality of inhomogeneous multidimensional diffusion processes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+H">Hao Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Daquan Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0904.2253v1-abstract-short" style="display: inline;"> Applying the well-known Feynman-Kac formula of inhomogeneous case, an interesting and rigorous mathematical proof of generalized Jarzynski&#39;s equality of inhomogeneous multidimensional diffusion processes is presented, followed by an extension of the second law of thermodynamics. Then, we explain its physical meaning and applications, extending Hummer and Szabo&#39;s work ({\em Proc. Natl. Acad. Sci.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0904.2253v1-abstract-full').style.display = 'inline'; document.getElementById('0904.2253v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0904.2253v1-abstract-full" style="display: none;"> Applying the well-known Feynman-Kac formula of inhomogeneous case, an interesting and rigorous mathematical proof of generalized Jarzynski&#39;s equality of inhomogeneous multidimensional diffusion processes is presented, followed by an extension of the second law of thermodynamics. Then, we explain its physical meaning and applications, extending Hummer and Szabo&#39;s work ({\em Proc. Natl. Acad. Sci. USA} {\bf 98}(7), 3658--3661 (2001)) and Hatano-Sasa equality of steady state thermodynamics ({\em Phys. Rev. Lett.} {\bf 86}, 3463--3466 (2001)) to the general multidimensional case. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0904.2253v1-abstract-full').style.display = 'none'; document.getElementById('0904.2253v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">in Journal of Statistical Physics 2008</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0901.1101">arXiv:0901.1101</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0901.1101">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3077295">10.1063/1.3077295 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First principles study of the graphene/Ru(0001) interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">De-en Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+M">Mao-Hua Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+S">Sheng Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0901.1101v1-abstract-short" style="display: inline;"> Annealing the Ru metal that typically contains residual carbon impurities offers a facile way to grow graphene on Ru(0001) at the macroscopic scale. Two superstructures of the graphene/Ru(0001) interface with periodicities of 3.0-nm and 2.7-nm, respectively, have been previously observed by scanning tunneling microscopy. Using first-principles density functional theory, we optimized the observed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0901.1101v1-abstract-full').style.display = 'inline'; document.getElementById('0901.1101v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0901.1101v1-abstract-full" style="display: none;"> Annealing the Ru metal that typically contains residual carbon impurities offers a facile way to grow graphene on Ru(0001) at the macroscopic scale. Two superstructures of the graphene/Ru(0001) interface with periodicities of 3.0-nm and 2.7-nm, respectively, have been previously observed by scanning tunneling microscopy. Using first-principles density functional theory, we optimized the observed superstructures and found interfacial C-Ru bonding of C atoms atop Ru atoms for both superstructures, which causes the graphene sheet to buckle and form periodic humps of ~1.7 A in height within the graphene sheet. The flat region of the graphene sheet, which is 2.2-2.3 A above the top Ru layer and has more C atoms occupying the atop sites, interacts more strongly with the substrate than does the hump region. We found that interfacial adhesion is much stronger for the 3.0-nm superstructure than for the 2.7-nm superstructure, suggesting that the former is the thermodynamically more stable phase. We explained the 3.0-nm superstructure&#39;s stability in terms of the interplay between C-Ru bonding and lattice matching. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0901.1101v1-abstract-full').style.display = 'none'; document.getElementById('0901.1101v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages; 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Chemical Physics, 130, 074705 (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0805.1884">arXiv:0805.1884</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0805.1884">pdf</a>, <a href="https://arxiv.org/format/0805.1884">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/nl801412y">10.1021/nl801412y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Macroscopic graphene membranes and their extraordinary stiffness </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Booth%2C+T+J">T. J. Booth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blake%2C+P">P. Blake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nair%2C+R+R">R. R. Nair</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">D. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hill%2C+E+W">E. W. Hill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bangert%2C+U">U. Bangert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bleloch%2C+A">A. Bleloch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gass%2C+M">M. Gass</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novoselov%2C+K+S">K. S. Novoselov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Katsnelson%2C+M+I">M. I. Katsnelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geim%2C+A+K">A. K. Geim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0805.1884v4-abstract-short" style="display: inline;"> The properties of suspended graphene are currently attracting enormous interest, but the small size of available samples and the difficulties in making them severely restrict the number of experimental techniques that can be used to study the optical, mechanical, electronic, thermal and other characteristics of this one-atom-thick material. Here we describe a new and highly-reliable approach for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0805.1884v4-abstract-full').style.display = 'inline'; document.getElementById('0805.1884v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0805.1884v4-abstract-full" style="display: none;"> The properties of suspended graphene are currently attracting enormous interest, but the small size of available samples and the difficulties in making them severely restrict the number of experimental techniques that can be used to study the optical, mechanical, electronic, thermal and other characteristics of this one-atom-thick material. Here we describe a new and highly-reliable approach for making graphene membranes of a macroscopic size (currently up to 100 microns in diameter) and their characterization by transmission electron microscopy. In particular, we have found that long graphene beams supported by one side only do not scroll or fold, in striking contrast to the current perception of graphene as a supple thin fabric, but demonstrate sufficient stiffness to support extremely large loads, millions of times exceeding their own weight, in agreement with the presented theory. Our work opens many avenues for studying suspended graphene and using it in various micromechanical systems and electron microscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0805.1884v4-abstract-full').style.display = 'none'; document.getElementById('0805.1884v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2008; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 May, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures. Accepted for Nano Letters. v4 includes corrections to theory, updated references, corrected typos</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 2008 8 (8) 2442 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0803.3031">arXiv:0803.3031</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0803.3031">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/nl080649i">10.1021/nl080649i <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Graphene-Based Liquid Crystal Device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Blake%2C+P">P. Blake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brimicombe%2C+P+D">P. D. Brimicombe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nair%2C+R+R">R. R. Nair</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Booth%2C+T+J">T. J. Booth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">D. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schedin%2C+F">F. Schedin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ponomarenko%2C+L+A">L. A. Ponomarenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morozov%2C+S+V">S. V. Morozov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gleeson%2C+H+F">H. F. Gleeson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hill%2C+E+W">E. W. Hill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geim%2C+A+K">A. K. Geim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novoselov%2C+K+S">K. S. Novoselov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0803.3031v1-abstract-short" style="display: inline;"> Graphene is only one atom thick, optically transparent, chemically inert and an excellent conductor. These properties seem to make this material an excellent candidate for applications in various photonic devices that require conducting but transparent thin films. In this letter we demonstrate liquid crystal devices with electrodes made of graphene which show excellent performance with a high co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0803.3031v1-abstract-full').style.display = 'inline'; document.getElementById('0803.3031v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0803.3031v1-abstract-full" style="display: none;"> Graphene is only one atom thick, optically transparent, chemically inert and an excellent conductor. These properties seem to make this material an excellent candidate for applications in various photonic devices that require conducting but transparent thin films. In this letter we demonstrate liquid crystal devices with electrodes made of graphene which show excellent performance with a high contrast ratio. We also discuss the advantages of graphene compared to conventionally-used metal oxides in terms of low resistivity, high transparency and chemical stability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0803.3031v1-abstract-full').style.display = 'none'; document.getElementById('0803.3031v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett., 8 (6), 1704--1708, 2008. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0705.0259">arXiv:0705.0259</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0705.0259">pdf</a>, <a href="https://arxiv.org/format/0705.0259">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.2768624">10.1063/1.2768624 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Making graphene visible </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Blake%2C+P">P. Blake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novoselov%2C+K+S">K. S. Novoselov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neto%2C+A+H+C">A. H. Castro Neto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">D. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+R">R. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Booth%2C+T+J">T. J. Booth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geim%2C+A+K">A. K. Geim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hill%2C+E+W">E. W. Hill</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0705.0259v3-abstract-short" style="display: inline;"> Microfabrication of graphene devices used in many experimental studies currently relies on the fact that graphene crystallites can be visualized using optical microscopy if prepared on top of silicon wafers with a certain thickness of silicon dioxide. We study graphene&#39;s visibility and show that it depends strongly on both thickness of silicon dioxide and light wavelength. We have found that by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0705.0259v3-abstract-full').style.display = 'inline'; document.getElementById('0705.0259v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0705.0259v3-abstract-full" style="display: none;"> Microfabrication of graphene devices used in many experimental studies currently relies on the fact that graphene crystallites can be visualized using optical microscopy if prepared on top of silicon wafers with a certain thickness of silicon dioxide. We study graphene&#39;s visibility and show that it depends strongly on both thickness of silicon dioxide and light wavelength. We have found that by using monochromatic illumination, graphene can be isolated for any silicon dioxide thickness, albeit 300 nm (the current standard) and, especially, approx. 100 nm are most suitable for its visual detection. By using a Fresnel-law-based model, we quantitatively describe the experimental data without any fitting parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0705.0259v3-abstract-full').style.display = 'none'; document.getElementById('0705.0259v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2007; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Since v1: minor changes to text and figures to improve clarity; references added. Submitted to Applied Physics Letters, 30-Apr-07. 3 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 91, 063124 (2007) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0610809">arXiv:cond-mat/0610809</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0610809">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nmat1967">10.1038/nmat1967 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of Individual Gas Molecules Absorbed on Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schedin%2C+F">F. Schedin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geim%2C+A+K">A. K. Geim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morozov%2C+S+V">S. V. Morozov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">D. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hill%2C+E+H">E. H. Hill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blake%2C+P">P. Blake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novoselov%2C+K+S">K. S. Novoselov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0610809v2-abstract-short" style="display: inline;"> The ultimate aspiration of any detection method is to achieve such a level of sensitivity that individual quanta of a measured value can be resolved. In the case of chemical sensors, the quantum is one atom or molecule. Such resolution has so far been beyond the reach of any detection technique, including solid-state gas sensors hailed for their exceptional sensitivity. The fundamental reason li&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0610809v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0610809v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0610809v2-abstract-full" style="display: none;"> The ultimate aspiration of any detection method is to achieve such a level of sensitivity that individual quanta of a measured value can be resolved. In the case of chemical sensors, the quantum is one atom or molecule. Such resolution has so far been beyond the reach of any detection technique, including solid-state gas sensors hailed for their exceptional sensitivity. The fundamental reason limiting the resolution of such sensors is fluctuations due to thermal motion of charges and defects which lead to intrinsic noise exceeding the sought-after signal from individual molecules, usually by many orders of magnitude. Here we show that micrometre-size sensors made from graphene are capable of detecting individual events when a gas molecule attaches to or detaches from graphenes surface. The adsorbed molecules change the local carrier concentration in graphene one by one electron, which leads to step-like changes in resistance. The achieved sensitivity is due to the fact that graphene is an exceptionally low-noise material electronically, which makes it a promising candidate not only for chemical detectors but also for other applications where local probes sensitive to external charge, magnetic field or mechanical strain are required. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0610809v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0610809v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2007; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 October, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">the final version is significantly different from the earlier 2006 version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials 6, 652-655 (2007) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0606284">arXiv:cond-mat/0606284</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0606284">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0606284">ps</a>, <a href="https://arxiv.org/format/cond-mat/0606284">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.97.187401">10.1103/PhysRevLett.97.187401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Raman Fingerprint of Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ferrari%2C+A+C">A. C. Ferrari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meyer%2C+J+C">J. C. Meyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scardaci%2C+V">V. Scardaci</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casiraghi%2C+C">C. Casiraghi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lazzeri%2C+M">Michele Lazzeri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mauri%2C+F">Francesco Mauri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piscanec%2C+S">S. Piscanec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Da Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novoselov%2C+K+S">K. S. Novoselov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roth%2C+S">S. Roth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geim%2C+A+K">A. K. Geim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0606284v1-abstract-short" style="display: inline;"> Graphene is the two-dimensional (2d) building block for carbon allotropes of every other dimensionality. It can be stacked into 3d graphite, rolled into 1d nanotubes, or wrapped into 0d fullerenes. Its recent discovery in free state has finally provided the possibility to study experimentally its electronic and phonon properties. Here we show that graphene&#39;s electronic structure is uniquely capt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0606284v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0606284v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0606284v1-abstract-full" style="display: none;"> Graphene is the two-dimensional (2d) building block for carbon allotropes of every other dimensionality. It can be stacked into 3d graphite, rolled into 1d nanotubes, or wrapped into 0d fullerenes. Its recent discovery in free state has finally provided the possibility to study experimentally its electronic and phonon properties. Here we show that graphene&#39;s electronic structure is uniquely captured in its Raman spectrum that clearly evolves with increasing number of layers. Raman fingerprints for single-, bi- and few-layer graphene reflect changes in the electronic structure and electron-phonon interactions and allow unambiguous, high-throughput, non-destructive identification of graphene layers, which is critically lacking in this emerging research area. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0606284v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0606284v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 97, 187401 (2006) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0603826">arXiv:cond-mat/0603826</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0603826">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.97.016801">10.1103/PhysRevLett.97.016801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong suppression of weak (anti)localization in graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Morozov%2C+S+V">S. V. Morozov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novoselov%2C+K+S">K. S. Novoselov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Katsnelson%2C+M+I">M. I. Katsnelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schedin%2C+F">F. Schedin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ponomarenko%2C+L+A">L. A. Ponomarenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">D. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geim%2C+A+K">A. K. Geim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0603826v2-abstract-short" style="display: inline;"> Low-field magnetoresistance is ubiquitous in low-dimensional metallic systems with high resistivity and well understood as arising due to quantum interference on self-intersecting diffusive trajectories. We have found that in graphene this weak-localization magnetoresistance is strongly suppressed and, in some cases, completely absent. This unexpected observation is attributed to mesoscopic corr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0603826v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0603826v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0603826v2-abstract-full" style="display: none;"> Low-field magnetoresistance is ubiquitous in low-dimensional metallic systems with high resistivity and well understood as arising due to quantum interference on self-intersecting diffusive trajectories. We have found that in graphene this weak-localization magnetoresistance is strongly suppressed and, in some cases, completely absent. This unexpected observation is attributed to mesoscopic corrugations of graphene sheets which cause a dephasing effect similar to that of a random magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0603826v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0603826v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2006; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 March, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">improved presentation of the theory part after referees comments; important experimental info added (see &#34;note added in proof&#34;)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 97, 016801 (2006) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0602565">arXiv:cond-mat/0602565</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0602565">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys245">10.1038/nphys245 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unconventional quantum Hall effect and Berry&#39;s phase of 2pi in bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Novoselov%2C+K+S">K. S. Novoselov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McCann%2C+E">E. McCann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morozov%2C+S+V">S. V. Morozov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Falko%2C+V+I">V. I. Falko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Katsnelson%2C+M+I">M. I. Katsnelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeitler%2C+U">U. Zeitler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">D. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schedin%2C+F">F. Schedin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geim%2C+A+K">A. K. Geim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0602565v1-abstract-short" style="display: inline;"> There are known two distinct types of the integer quantum Hall effect. One is the conventional quantum Hall effect, characteristic of two-dimensional semiconductor systems, and the other is its relativistic counterpart recently observed in graphene, where charge carriers mimic Dirac fermions characterized by Berry&#39;s phase pi, which results in a shifted positions of Hall plateaus. Here we report&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0602565v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0602565v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0602565v1-abstract-full" style="display: none;"> There are known two distinct types of the integer quantum Hall effect. One is the conventional quantum Hall effect, characteristic of two-dimensional semiconductor systems, and the other is its relativistic counterpart recently observed in graphene, where charge carriers mimic Dirac fermions characterized by Berry&#39;s phase pi, which results in a shifted positions of Hall plateaus. Here we report a third type of the integer quantum Hall effect. Charge carriers in bilayer graphene have a parabolic energy spectrum but are chiral and exhibit Berry&#39;s phase 2pi affecting their quantum dynamics. The Landau quantization of these fermions results in plateaus in Hall conductivity at standard integer positions but the last (zero-level) plateau is missing. The zero-level anomaly is accompanied by metallic conductivity in the limit of low concentrations and high magnetic fields, in stark contrast to the conventional, insulating behavior in this regime. The revealed chiral fermions have no known analogues and present an intriguing case for quantum-mechanical studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0602565v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0602565v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to appear in Nature Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 2, 177-180 (2006) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0509330">arXiv:cond-mat/0509330</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0509330">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature04233">10.1038/nature04233 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-Dimensional Gas of Massless Dirac Fermions in Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Novoselov%2C+K+S">K. S. Novoselov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geim%2C+A+K">A. K. Geim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morozov%2C+S+V">S. V. Morozov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">D. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Katsnelson%2C+M+I">M. I. Katsnelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grigorieva%2C+I+V">I. V. Grigorieva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dubonos%2C+S+V">S. V. Dubonos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Firsov%2C+A+A">A. A. Firsov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0509330v1-abstract-short" style="display: inline;"> Electronic properties of materials are commonly described by quasiparticles that behave as non-relativistic electrons with a finite mass and obey the Schroedinger equation. Here we report a condensed matter system where electron transport is essentially governed by the Dirac equation and charge carriers mimic relativistic particles with zero mass and an effective &#34;speed of light&#34; c* ~10^6m/s. Ou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0509330v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0509330v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0509330v1-abstract-full" style="display: none;"> Electronic properties of materials are commonly described by quasiparticles that behave as non-relativistic electrons with a finite mass and obey the Schroedinger equation. Here we report a condensed matter system where electron transport is essentially governed by the Dirac equation and charge carriers mimic relativistic particles with zero mass and an effective &#34;speed of light&#34; c* ~10^6m/s. Our studies of graphene - a single atomic layer of carbon - have revealed a variety of unusual phenomena characteristic of two-dimensional (2D) Dirac fermions. In particular, we have observed that a) the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; b) graphene&#39;s conductivity never falls below a minimum value corresponding to the conductance quantum e^2/h, even when carrier concentrations tend to zero; c) the cyclotron mass m of massless carriers with energy E in graphene is described by equation E =mc*^2; and d) Shubnikov-de Haas oscillations in graphene exhibit a phase shift of pi due to Berry&#39;s phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0509330v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0509330v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 438:197,2005 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Jiang%2C+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10