CINXE.COM

Karine Frénal | Université de Genève - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Karine Frénal | Université de Genève - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="y_-kKKpousFkfmkC0g9NE3AKdqjGIzgAMebSKGLPswafQYuHsoCPHNUDrbmwSrL2TJ_9bkDorTVIKF9NQTHRCw" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"Karine Frénal","url":"https://unige.academia.edu/KarineFr%C3%A9nal","sameAs":[]},"dateCreated":"2015-05-30T08:45:33-07:00","dateModified":"2017-08-06T06:43:28-07:00","name":"Karine Frénal","description":"","sameAs":[],"relatedLink":"https://www.academia.edu/30762180/Plasticity_between_MyoC_and_MyoA_Glideosomes_An_Example_of_Functional_Compensation_in_Toxoplasma_gondii_Invasion"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><style type="text/css">@media(max-width: 567px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 32px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 30px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 30px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 24px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 24px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 18px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 32px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 20px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 32px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 40px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 24px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 26px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 48px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 52px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 48px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 58px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 80px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 64px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 568px)and (max-width: 1279px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 104px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 1280px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 38px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 152px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}</style><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-57f9da13cef3fd4e2a8b655342c6488eded3e557e823fe67571f2ac77acd7b6f.css" /> <meta name="author" content="karine frénal" /> <meta name="description" content="Karine Frénal, Université de Genève: 6 Followers, 6 Following, 11 Research papers. Research interests: Gut Microbiota, Cytokines, and Horizontal Gene Transfer." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '1c8f2629124142ea28c916500798e0fe19205797'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13945,"monthly_visitors":"143 million","monthly_visitor_count":143959625,"monthly_visitor_count_in_millions":143,"user_count":285874105,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1743096441000); window.Aedu.timeDifference = new Date().getTime() - 1743096441000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-9982828ed1de4777566441c35ccf7157c55ca779141fce69380d727ebdbbb926.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-a16f2f63712f47da129db801247ecab11f5858a61d732c9434f2ae62a03a9458.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-08f4d2761301896e0b81ad24c59c899a459c9b72383f67316154df2737176402.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://unige.academia.edu/KarineFr%C3%A9nal" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-b94460767d572c2cdb82b120dcc6a5b9ddb80bf47276962990758b2685a0da74.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":31698439,"first_name":"Karine","middle_initials":null,"last_name":"Frénal","page_name":"KarineFrénal","domain_name":"unige","created_at":"2015-05-30T08:45:33.176-07:00","display_name":"Karine Frénal","url":"https://unige.academia.edu/KarineFr%C3%A9nal","photo":"/images/s65_no_pic.png","has_photo":false,"department":{"id":1595224,"name":"Departement de microbiologie et medecine moleculaire","url":"https://unige.academia.edu/Departments/Departement_de_microbiologie_et_medecine_moleculaire/Documents","university":{"id":526,"name":"Université de Genève","url":"https://unige.academia.edu/"}},"position":"Post-Doc","position_id":2,"is_analytics_public":false,"interests":[{"id":51374,"name":"Gut Microbiota","url":"https://www.academia.edu/Documents/in/Gut_Microbiota"},{"id":9111,"name":"Cytokines","url":"https://www.academia.edu/Documents/in/Cytokines"},{"id":21949,"name":"Horizontal Gene Transfer","url":"https://www.academia.edu/Documents/in/Horizontal_Gene_Transfer"},{"id":251655,"name":"Antibiotics","url":"https://www.academia.edu/Documents/in/Antibiotics"},{"id":184383,"name":"Microbiology and Immunology","url":"https://www.academia.edu/Documents/in/Microbiology_and_Immunology"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://unige.academia.edu/KarineFr%C3%A9nal&quot;,&quot;location&quot;:&quot;/KarineFr%C3%A9nal&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;unige.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/KarineFr%C3%A9nal&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-e707805c-8be4-4d3e-bbc5-08569a93947d"></div> <div id="ProfileCheckPaperUpdate-react-component-e707805c-8be4-4d3e-bbc5-08569a93947d"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Karine Frénal</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://unige.academia.edu/">Université de Genève</a>, <a class="u-tcGrayDarker" href="https://unige.academia.edu/Departments/Departement_de_microbiologie_et_medecine_moleculaire/Documents">Departement de microbiologie et medecine moleculaire</a>, <span class="u-tcGrayDarker">Post-Doc</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Karine" data-follow-user-id="31698439" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="31698439"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">6</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">6</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">6</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><h3 class="ds2-5-heading-sans-serif-xs">Related Authors</h3></div><ul class="suggested-user-card-list" data-nosnippet="true"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/DJacot"><img class="profile-avatar u-positionAbsolute" alt="Damien Jacot related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/DJacot">Damien Jacot</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://case.academia.edu/J%C3%BCrgenBosch"><img class="profile-avatar u-positionAbsolute" alt="Jürgen Bosch related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://case.academia.edu/J%C3%BCrgenBosch">Jürgen Bosch</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Case Western Reserve University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://glasgow.academia.edu/JamieWhitelaw"><img class="profile-avatar u-positionAbsolute" alt="Jamie Whitelaw related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://glasgow.academia.edu/JamieWhitelaw">Jamie Whitelaw</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Glasgow</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://cnrs.academia.edu/IsabelleTardieux"><img class="profile-avatar u-positionAbsolute" alt="Isabelle Tardieux related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/51900292/13741460/121136131/s200_isabelle.tardieux.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://cnrs.academia.edu/IsabelleTardieux">Isabelle Tardieux</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Centre National de la Recherche Scientifique / French National Centre for Scientific Research</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/AlanCowman"><img class="profile-avatar u-positionAbsolute" alt="Alan Cowman related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/AlanCowman">Alan Cowman</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://bc.academia.edu/FrankIvey"><img class="profile-avatar u-positionAbsolute" alt="F Douglas Ivey related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/1127014/9854346/10983631/s200_frank.ivey.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://bc.academia.edu/FrankIvey">F Douglas Ivey</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Boston College</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/ValeriePolonais"><img class="profile-avatar u-positionAbsolute" alt="Valerie Polonais related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/ValeriePolonais">Valerie Polonais</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/FavreDominique"><img class="profile-avatar u-positionAbsolute" alt="Dominique Favre related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/FavreDominique">Dominique Favre</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/DavidFerguson25"><img class="profile-avatar u-positionAbsolute" alt="David Ferguson related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/DavidFerguson25">David Ferguson</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://bastyr.academia.edu/httpswwwcalmeduorgprogramsmbsfacultyprofilesouzhangphp"><img class="profile-avatar u-positionAbsolute" alt="Ou Zhang related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/119966046/30817230/28516183/s200_ou.zhang.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://bastyr.academia.edu/httpswwwcalmeduorgprogramsmbsfacultyprofilesouzhangphp">Ou Zhang</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Bastyr University</p></div></div></ul></div><style type="text/css">.suggested-academics--header h3{font-size:16px;font-weight:500;line-height:20px}</style><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Karine Frénal</h3></div><div class="js-work-strip profile--work_container" data-work-id="30762175"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30762175/The_Plasmodium_berghei_Ca2_H_Exchanger_PbCAX_Is_Essential_for_Tolerance_to_Environmental_Ca2_during_Sexual_Development"><img alt="Research paper thumbnail of The Plasmodium berghei Ca2+/H+ Exchanger, PbCAX, Is Essential for Tolerance to Environmental Ca2+ during Sexual Development" class="work-thumbnail" src="https://attachments.academia-assets.com/51199599/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30762175/The_Plasmodium_berghei_Ca2_H_Exchanger_PbCAX_Is_Essential_for_Tolerance_to_Environmental_Ca2_during_Sexual_Development">The Plasmodium berghei Ca2+/H+ Exchanger, PbCAX, Is Essential for Tolerance to Environmental Ca2+ during Sexual Development</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/FavreDominique">Dominique Favre</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://unige.academia.edu/KarineFr%C3%A9nal">Karine Frénal</a></span></div><div class="wp-workCard_item"><span>PLoS Pathogens</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Ca 2+ contributes to a myriad of important cellular processes in all organisms, including the api...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Ca 2+ contributes to a myriad of important cellular processes in all organisms, including the apicomplexans, Plasmodium and Toxoplasma. Due to its varied and essential roles, free Ca 2+ is tightly regulated by complex mechanisms. These mechanisms are therefore of interest as putative drug targets. One pathway in Ca 2+ homeostatic control in apicomplexans uses a Ca 2+ /H + exchanger (a member of the cation exchanger family, CAX). The P. falciparum CAX (PfCAX) has recently been characterised in asexual blood stage parasites. To determine the physiological importance of apicomplexan CAXs, tagging and knock-out strategies were undertaken in the genetically tractable T. gondii and P. berghei parasites. In addition, a yeast heterologous expression system was used to study the function of apicomplexan CAXs. Tagging of T. gondii and P. berghei CAXs (TgCAX and PbCAX) under control of their endogenous promoters could not demonstrate measureable expression of either CAX in tachyzoites and asexual blood stages, respectively. These results were consistent with the ability of parasites to tolerate knock-outs of the genes for TgCAX and PbCAX at these developmental stages. In contrast, PbCAX expression was detectable during sexual stages of development in female gametocytes/gametes, zygotes and ookinetes, where it was dispersed in membranous networks within the cytosol (with minimal mitochondrial localisation). Furthermore, genetically disrupted parasites failed to develop further from &#39;&#39;round&#39;&#39; form zygotes, suggesting that PbCAX is essential for ookinete development and differentiation. This impeded phenotype could be rescued by removal of extracellular Ca 2+ . Therefore, PbCAX provides a mechanism for free living parasites to multiply within the ionic microenvironment of the mosquito midgut. Ca 2+ homeostasis mediated by PbCAX is critical and suggests plasmodial CAXs may be targeted in approaches designed to block parasite transmission. Citation: Guttery DS, Pittman JK, Frénal K, Poulin B, McFarlane LR, et al. (2013) The Plasmodium berghei Ca 2+ /H + Exchanger, PbCAX, Is Essential for Tolerance to Environmental Ca 2+ during Sexual Development. PLoS Pathog 9(2): e1003191.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b377ddd6a7945e4347cc8f6b5f5cd5be" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51199599,&quot;asset_id&quot;:30762175,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51199599/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30762175"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30762175"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30762175; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30762175]").text(description); $(".js-view-count[data-work-id=30762175]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30762175; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30762175']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b377ddd6a7945e4347cc8f6b5f5cd5be" } } $('.js-work-strip[data-work-id=30762175]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30762175,"title":"The Plasmodium berghei Ca2+/H+ Exchanger, PbCAX, Is Essential for Tolerance to Environmental Ca2+ during Sexual Development","translated_title":"","metadata":{"grobid_abstract":"Ca 2+ contributes to a myriad of important cellular processes in all organisms, including the apicomplexans, Plasmodium and Toxoplasma. Due to its varied and essential roles, free Ca 2+ is tightly regulated by complex mechanisms. These mechanisms are therefore of interest as putative drug targets. One pathway in Ca 2+ homeostatic control in apicomplexans uses a Ca 2+ /H + exchanger (a member of the cation exchanger family, CAX). The P. falciparum CAX (PfCAX) has recently been characterised in asexual blood stage parasites. To determine the physiological importance of apicomplexan CAXs, tagging and knock-out strategies were undertaken in the genetically tractable T. gondii and P. berghei parasites. In addition, a yeast heterologous expression system was used to study the function of apicomplexan CAXs. Tagging of T. gondii and P. berghei CAXs (TgCAX and PbCAX) under control of their endogenous promoters could not demonstrate measureable expression of either CAX in tachyzoites and asexual blood stages, respectively. These results were consistent with the ability of parasites to tolerate knock-outs of the genes for TgCAX and PbCAX at these developmental stages. In contrast, PbCAX expression was detectable during sexual stages of development in female gametocytes/gametes, zygotes and ookinetes, where it was dispersed in membranous networks within the cytosol (with minimal mitochondrial localisation). Furthermore, genetically disrupted parasites failed to develop further from ''round'' form zygotes, suggesting that PbCAX is essential for ookinete development and differentiation. This impeded phenotype could be rescued by removal of extracellular Ca 2+ . Therefore, PbCAX provides a mechanism for free living parasites to multiply within the ionic microenvironment of the mosquito midgut. Ca 2+ homeostasis mediated by PbCAX is critical and suggests plasmodial CAXs may be targeted in approaches designed to block parasite transmission. Citation: Guttery DS, Pittman JK, Frénal K, Poulin B, McFarlane LR, et al. (2013) The Plasmodium berghei Ca 2+ /H + Exchanger, PbCAX, Is Essential for Tolerance to Environmental Ca 2+ during Sexual Development. PLoS Pathog 9(2): e1003191.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"PLoS Pathogens","grobid_abstract_attachment_id":51199599},"translated_abstract":null,"internal_url":"https://www.academia.edu/30762175/The_Plasmodium_berghei_Ca2_H_Exchanger_PbCAX_Is_Essential_for_Tolerance_to_Environmental_Ca2_during_Sexual_Development","translated_internal_url":"","created_at":"2017-01-05T02:44:03.428-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":58566697,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26923711,"work_id":30762175,"tagging_user_id":58566697,"tagged_user_id":31698439,"co_author_invite_id":null,"email":"k***l@unige.ch","affiliation":"Université de Genève","display_order":0,"name":"Karine Frénal","title":"The Plasmodium berghei Ca2+/H+ Exchanger, PbCAX, Is Essential for Tolerance to Environmental Ca2+ during Sexual Development"}],"downloadable_attachments":[{"id":51199599,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51199599/thumbnails/1.jpg","file_name":"The_Plasmodium_berghei_Ca2H_Exchange20170105-6160-19obndj.pdf","download_url":"https://www.academia.edu/attachments/51199599/download_file","bulk_download_file_name":"The_Plasmodium_berghei_Ca2_H_Exchanger_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51199599/The_Plasmodium_berghei_Ca2H_Exchange20170105-6160-19obndj-libre.pdf?1483613546=\u0026response-content-disposition=attachment%3B+filename%3DThe_Plasmodium_berghei_Ca2_H_Exchanger_P.pdf\u0026Expires=1743100040\u0026Signature=LHQA20LxiSantroAUml-3uVLlf1g6b6eV6deWI4xNLziMsiIUVEoSxkF-yh~zmvraTjfEKsIVDd6wf~2BFC5Is6QGL6uxlxShC1bi2LrK9dO06NSc3R8CZRrcPhWFD-opleUTw-iIkAZXDJloXzk8cO04C-8yvQ~vyltuJePOYP-XNNwNk8TRKAnBqlJGLdUvQfHQTV~uwOqnTM97b7j9YCacWSlnU0~ZemIPFSUordywZIjt7pELOLutdO2FQjDQQbvhgl8B8cJo-cBsAruvHixpyGRjYk7Yjcbs8XwRigcOm5ITv7INgV5mIMj5~EwGgsS6YwtNNidtwIC2x8dxQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Plasmodium_berghei_Ca2_H_Exchanger_PbCAX_Is_Essential_for_Tolerance_to_Environmental_Ca2_during_Sexual_Development","translated_slug":"","page_count":18,"language":"en","content_type":"Work","summary":"Ca 2+ contributes to a myriad of important cellular processes in all organisms, including the apicomplexans, Plasmodium and Toxoplasma. Due to its varied and essential roles, free Ca 2+ is tightly regulated by complex mechanisms. These mechanisms are therefore of interest as putative drug targets. One pathway in Ca 2+ homeostatic control in apicomplexans uses a Ca 2+ /H + exchanger (a member of the cation exchanger family, CAX). The P. falciparum CAX (PfCAX) has recently been characterised in asexual blood stage parasites. To determine the physiological importance of apicomplexan CAXs, tagging and knock-out strategies were undertaken in the genetically tractable T. gondii and P. berghei parasites. In addition, a yeast heterologous expression system was used to study the function of apicomplexan CAXs. Tagging of T. gondii and P. berghei CAXs (TgCAX and PbCAX) under control of their endogenous promoters could not demonstrate measureable expression of either CAX in tachyzoites and asexual blood stages, respectively. These results were consistent with the ability of parasites to tolerate knock-outs of the genes for TgCAX and PbCAX at these developmental stages. In contrast, PbCAX expression was detectable during sexual stages of development in female gametocytes/gametes, zygotes and ookinetes, where it was dispersed in membranous networks within the cytosol (with minimal mitochondrial localisation). Furthermore, genetically disrupted parasites failed to develop further from ''round'' form zygotes, suggesting that PbCAX is essential for ookinete development and differentiation. This impeded phenotype could be rescued by removal of extracellular Ca 2+ . Therefore, PbCAX provides a mechanism for free living parasites to multiply within the ionic microenvironment of the mosquito midgut. Ca 2+ homeostasis mediated by PbCAX is critical and suggests plasmodial CAXs may be targeted in approaches designed to block parasite transmission. Citation: Guttery DS, Pittman JK, Frénal K, Poulin B, McFarlane LR, et al. (2013) The Plasmodium berghei Ca 2+ /H + Exchanger, PbCAX, Is Essential for Tolerance to Environmental Ca 2+ during Sexual Development. PLoS Pathog 9(2): e1003191.","owner":{"id":58566697,"first_name":"Dominique","middle_initials":null,"last_name":"Favre","page_name":"FavreDominique","domain_name":"independent","created_at":"2017-01-05T02:43:43.441-08:00","display_name":"Dominique Favre","url":"https://independent.academia.edu/FavreDominique"},"attachments":[{"id":51199599,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51199599/thumbnails/1.jpg","file_name":"The_Plasmodium_berghei_Ca2H_Exchange20170105-6160-19obndj.pdf","download_url":"https://www.academia.edu/attachments/51199599/download_file","bulk_download_file_name":"The_Plasmodium_berghei_Ca2_H_Exchanger_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51199599/The_Plasmodium_berghei_Ca2H_Exchange20170105-6160-19obndj-libre.pdf?1483613546=\u0026response-content-disposition=attachment%3B+filename%3DThe_Plasmodium_berghei_Ca2_H_Exchanger_P.pdf\u0026Expires=1743100040\u0026Signature=LHQA20LxiSantroAUml-3uVLlf1g6b6eV6deWI4xNLziMsiIUVEoSxkF-yh~zmvraTjfEKsIVDd6wf~2BFC5Is6QGL6uxlxShC1bi2LrK9dO06NSc3R8CZRrcPhWFD-opleUTw-iIkAZXDJloXzk8cO04C-8yvQ~vyltuJePOYP-XNNwNk8TRKAnBqlJGLdUvQfHQTV~uwOqnTM97b7j9YCacWSlnU0~ZemIPFSUordywZIjt7pELOLutdO2FQjDQQbvhgl8B8cJo-cBsAruvHixpyGRjYk7Yjcbs8XwRigcOm5ITv7INgV5mIMj5~EwGgsS6YwtNNidtwIC2x8dxQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":1290,"name":"Immunology","url":"https://www.academia.edu/Documents/in/Immunology"},{"id":6947,"name":"Medical Microbiology","url":"https://www.academia.edu/Documents/in/Medical_Microbiology"},{"id":9534,"name":"Calcium","url":"https://www.academia.edu/Documents/in/Calcium"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":29290,"name":"Oogenesis","url":"https://www.academia.edu/Documents/in/Oogenesis"},{"id":67484,"name":"Sequence alignment","url":"https://www.academia.edu/Documents/in/Sequence_alignment"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":564492,"name":"Sex Differentiation","url":"https://www.academia.edu/Documents/in/Sex_Differentiation"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":1693871,"name":"Plasmodium berghei","url":"https://www.academia.edu/Documents/in/Plasmodium_berghei"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30762180"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30762180/Plasticity_between_MyoC_and_MyoA_Glideosomes_An_Example_of_Functional_Compensation_in_Toxoplasma_gondii_Invasion"><img alt="Research paper thumbnail of Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion" class="work-thumbnail" src="https://attachments.academia-assets.com/51199613/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30762180/Plasticity_between_MyoC_and_MyoA_Glideosomes_An_Example_of_Functional_Compensation_in_Toxoplasma_gondii_Invasion">Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/FavreDominique">Dominique Favre</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/DamienJacot">Damien Jacot</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://unige.academia.edu/KarineFr%C3%A9nal">Karine Frénal</a></span></div><div class="wp-workCard_item"><span>PLoS Pathogens</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The glideosome is an actomyosin-based machinery that powers motility in Apicomplexa and participa...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The glideosome is an actomyosin-based machinery that powers motility in Apicomplexa and participates in host cell invasion and egress from infected cells. The central component of the glideosome, myosin A (MyoA), is a motor recruited at the pellicle by the acylated gliding-associated protein GAP45. In Toxoplasma gondii, GAP45 also contributes to the cohesion of the pellicle, composed of the inner membrane complex (IMC) and the plasma membrane, during motor traction. GAP70 was previously identified as a paralog of GAP45 that is tailored to recruit MyoA at the apical cap in the coccidian subgroup of the Apicomplexa. A third member of this family, GAP80, is demonstrated here to assemble a new glideosome, which recruits the class XIV myosin C (MyoC) at the basal polar ring. MyoC shares the same myosin light chains as MyoA and also interacts with the integral IMC proteins GAP50 and GAP40. Moreover, a central component of this complex, the IMCassociated protein 1 (IAP1), acts as the key determinant for the restricted localization of MyoC to the posterior pole. Deletion of specific components of the MyoC-glideosome underscores the installation of compensatory mechanisms with components of the MyoA-glideosome. Conversely, removal of MyoA leads to the relocalization of MyoC along the pellicle and at the apical cap that accounts for residual invasion. The two glideosomes exhibit a considerable level of plasticity to ensure parasite survival. Citation: Frénal K, Marq JB, Jacot D, Polonais V, Soldati-Favre D (2014) Plasticity between MyoC-and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion. PLoS Pathog 10(11): e1004504.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d80ffcb632b63912ecbb9951a38c5672" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51199613,&quot;asset_id&quot;:30762180,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51199613/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30762180"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30762180"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30762180; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30762180]").text(description); $(".js-view-count[data-work-id=30762180]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30762180; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30762180']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d80ffcb632b63912ecbb9951a38c5672" } } $('.js-work-strip[data-work-id=30762180]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30762180,"title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion","translated_title":"","metadata":{"grobid_abstract":"The glideosome is an actomyosin-based machinery that powers motility in Apicomplexa and participates in host cell invasion and egress from infected cells. The central component of the glideosome, myosin A (MyoA), is a motor recruited at the pellicle by the acylated gliding-associated protein GAP45. In Toxoplasma gondii, GAP45 also contributes to the cohesion of the pellicle, composed of the inner membrane complex (IMC) and the plasma membrane, during motor traction. GAP70 was previously identified as a paralog of GAP45 that is tailored to recruit MyoA at the apical cap in the coccidian subgroup of the Apicomplexa. A third member of this family, GAP80, is demonstrated here to assemble a new glideosome, which recruits the class XIV myosin C (MyoC) at the basal polar ring. MyoC shares the same myosin light chains as MyoA and also interacts with the integral IMC proteins GAP50 and GAP40. Moreover, a central component of this complex, the IMCassociated protein 1 (IAP1), acts as the key determinant for the restricted localization of MyoC to the posterior pole. Deletion of specific components of the MyoC-glideosome underscores the installation of compensatory mechanisms with components of the MyoA-glideosome. Conversely, removal of MyoA leads to the relocalization of MyoC along the pellicle and at the apical cap that accounts for residual invasion. The two glideosomes exhibit a considerable level of plasticity to ensure parasite survival. Citation: Frénal K, Marq JB, Jacot D, Polonais V, Soldati-Favre D (2014) Plasticity between MyoC-and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion. PLoS Pathog 10(11): e1004504.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"PLoS Pathogens","grobid_abstract_attachment_id":51199613},"translated_abstract":null,"internal_url":"https://www.academia.edu/30762180/Plasticity_between_MyoC_and_MyoA_Glideosomes_An_Example_of_Functional_Compensation_in_Toxoplasma_gondii_Invasion","translated_internal_url":"","created_at":"2017-01-05T02:44:04.828-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":58566697,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26923684,"work_id":30762180,"tagging_user_id":58566697,"tagged_user_id":31756244,"co_author_invite_id":null,"email":"j***q@unige.ch","display_order":0,"name":"Jean-baptiste Marq","title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion"},{"id":26923691,"work_id":30762180,"tagging_user_id":58566697,"tagged_user_id":31753081,"co_author_invite_id":null,"email":"d***t@unige.ch","display_order":4194304,"name":"Damien Jacot","title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion"},{"id":26923704,"work_id":30762180,"tagging_user_id":58566697,"tagged_user_id":31895436,"co_author_invite_id":null,"email":"v***s@iut.u-clermont1.fr","display_order":6291456,"name":"Valerie Polonais","title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion"},{"id":26923712,"work_id":30762180,"tagging_user_id":58566697,"tagged_user_id":31698439,"co_author_invite_id":null,"email":"k***l@unige.ch","affiliation":"Université de Genève","display_order":7340032,"name":"Karine Frénal","title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion"},{"id":28316983,"work_id":30762180,"tagging_user_id":31753081,"tagged_user_id":null,"co_author_invite_id":6178932,"email":"s***i@sun0.urz.uniheidelberg.de","display_order":7864320,"name":"Dominique Soldati","title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion"}],"downloadable_attachments":[{"id":51199613,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51199613/thumbnails/1.jpg","file_name":"Plasticity_between_MyoC-_and_MyoA-Glideo20170105-6160-sd84c3.pdf","download_url":"https://www.academia.edu/attachments/51199613/download_file","bulk_download_file_name":"Plasticity_between_MyoC_and_MyoA_Glideos.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51199613/Plasticity_between_MyoC-_and_MyoA-Glideo20170105-6160-sd84c3-libre.pdf?1483613547=\u0026response-content-disposition=attachment%3B+filename%3DPlasticity_between_MyoC_and_MyoA_Glideos.pdf\u0026Expires=1743100040\u0026Signature=Uo8Cu8a2Aj7UT34oXltmMgt09-VDLuGaX7441RuQjbEbDNWwlpO~-qQ-LLzEVS-KZtPNOxXOy7DafbkPg5bGI0nwg92wxJ~kG3tYqFpX~ShFJTqKQuj37xTdhiywW3Sso1XJhSO-kZvN7xcjhKoM8T9NqmvH0FvvM8ZVwgsIyhq0oKke~UxoiDXyf1bihDwjWwE4OaDnyVOCW45WOilroNpXgyJHtUH36Seus7-h85SaNOYyVP5OJ3aab1fPUxFqSqMBkuDWpNyfFabHg49AQdLJOoy6rDOs8aCREX7xil3gDGvjblX6~8W4-PXhBFsa7MTQOzDOjEgSOU1lwBSsXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Plasticity_between_MyoC_and_MyoA_Glideosomes_An_Example_of_Functional_Compensation_in_Toxoplasma_gondii_Invasion","translated_slug":"","page_count":22,"language":"en","content_type":"Work","summary":"The glideosome is an actomyosin-based machinery that powers motility in Apicomplexa and participates in host cell invasion and egress from infected cells. The central component of the glideosome, myosin A (MyoA), is a motor recruited at the pellicle by the acylated gliding-associated protein GAP45. In Toxoplasma gondii, GAP45 also contributes to the cohesion of the pellicle, composed of the inner membrane complex (IMC) and the plasma membrane, during motor traction. GAP70 was previously identified as a paralog of GAP45 that is tailored to recruit MyoA at the apical cap in the coccidian subgroup of the Apicomplexa. A third member of this family, GAP80, is demonstrated here to assemble a new glideosome, which recruits the class XIV myosin C (MyoC) at the basal polar ring. MyoC shares the same myosin light chains as MyoA and also interacts with the integral IMC proteins GAP50 and GAP40. Moreover, a central component of this complex, the IMCassociated protein 1 (IAP1), acts as the key determinant for the restricted localization of MyoC to the posterior pole. Deletion of specific components of the MyoC-glideosome underscores the installation of compensatory mechanisms with components of the MyoA-glideosome. Conversely, removal of MyoA leads to the relocalization of MyoC along the pellicle and at the apical cap that accounts for residual invasion. The two glideosomes exhibit a considerable level of plasticity to ensure parasite survival. Citation: Frénal K, Marq JB, Jacot D, Polonais V, Soldati-Favre D (2014) Plasticity between MyoC-and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion. PLoS Pathog 10(11): e1004504.","owner":{"id":58566697,"first_name":"Dominique","middle_initials":null,"last_name":"Favre","page_name":"FavreDominique","domain_name":"independent","created_at":"2017-01-05T02:43:43.441-08:00","display_name":"Dominique Favre","url":"https://independent.academia.edu/FavreDominique"},"attachments":[{"id":51199613,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51199613/thumbnails/1.jpg","file_name":"Plasticity_between_MyoC-_and_MyoA-Glideo20170105-6160-sd84c3.pdf","download_url":"https://www.academia.edu/attachments/51199613/download_file","bulk_download_file_name":"Plasticity_between_MyoC_and_MyoA_Glideos.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51199613/Plasticity_between_MyoC-_and_MyoA-Glideo20170105-6160-sd84c3-libre.pdf?1483613547=\u0026response-content-disposition=attachment%3B+filename%3DPlasticity_between_MyoC_and_MyoA_Glideos.pdf\u0026Expires=1743100040\u0026Signature=Uo8Cu8a2Aj7UT34oXltmMgt09-VDLuGaX7441RuQjbEbDNWwlpO~-qQ-LLzEVS-KZtPNOxXOy7DafbkPg5bGI0nwg92wxJ~kG3tYqFpX~ShFJTqKQuj37xTdhiywW3Sso1XJhSO-kZvN7xcjhKoM8T9NqmvH0FvvM8ZVwgsIyhq0oKke~UxoiDXyf1bihDwjWwE4OaDnyVOCW45WOilroNpXgyJHtUH36Seus7-h85SaNOYyVP5OJ3aab1fPUxFqSqMBkuDWpNyfFabHg49AQdLJOoy6rDOs8aCREX7xil3gDGvjblX6~8W4-PXhBFsa7MTQOzDOjEgSOU1lwBSsXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":1290,"name":"Immunology","url":"https://www.academia.edu/Documents/in/Immunology"},{"id":6947,"name":"Medical Microbiology","url":"https://www.academia.edu/Documents/in/Medical_Microbiology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12688165"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/12688165/Myosin_Class_XIV_And_Other_Myosins_In_Protists"><img alt="Research paper thumbnail of Myosin Class XIV And Other Myosins In Protists" class="work-thumbnail" src="https://attachments.academia-assets.com/46006263/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/12688165/Myosin_Class_XIV_And_Other_Myosins_In_Protists">Myosin Class XIV And Other Myosins In Protists</a></div><div class="wp-workCard_item"><span>Proteins and Cell Regulation</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Myosins are actin-based molecular motors that convert chemical energy released by ATP hydrolysis ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Myosins are actin-based molecular motors that convert chemical energy released by ATP hydrolysis into directed movement along tracks of actin filaments. They are found in eukaryotes and are implicated in a number of important cell functions, such as nuclear and cell division, transport of molecules, vesicles, and organelles, signal transduction, and motility. The myosin superfamily was previously described as containing at least 18 different classes with class XIV reported to be specific to apicomplexan parasites and subdivided into two subclasses. But a recent reassessment of myosin phylogeny and classification incorporating a number of novel sequences uncovered by several genome sequencing initiatives has expanded the known repertoire of myosin heavy chains from apicomplexans and other protists. It established six new myosin classes, three of which are restricted to alveolates (XXII, XXIII, XXIV), and showed that class XIV encompasses myosins of both apicomplexans and ciliates and is subdivided into four subclasses. Moreover, several sequences include protein domains (ATS1-like, WD40) previously unknown to be associated with myosin motors. In this chapter, we discuss the current classification of myosin heavy chains with particular emphasis on the apicomplexan myosins. Most of them have not yet been studied experimentally and we discuss their possible function based on their classification and their protein domains.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="16eeda30e0d4181ef9862bc541f50bb8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46006263,&quot;asset_id&quot;:12688165,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46006263/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12688165"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12688165"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12688165; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12688165]").text(description); $(".js-view-count[data-work-id=12688165]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12688165; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12688165']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "16eeda30e0d4181ef9862bc541f50bb8" } } $('.js-work-strip[data-work-id=12688165]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12688165,"title":"Myosin Class XIV And Other Myosins In Protists","translated_title":"","metadata":{"grobid_abstract":"Myosins are actin-based molecular motors that convert chemical energy released by ATP hydrolysis into directed movement along tracks of actin filaments. They are found in eukaryotes and are implicated in a number of important cell functions, such as nuclear and cell division, transport of molecules, vesicles, and organelles, signal transduction, and motility. The myosin superfamily was previously described as containing at least 18 different classes with class XIV reported to be specific to apicomplexan parasites and subdivided into two subclasses. But a recent reassessment of myosin phylogeny and classification incorporating a number of novel sequences uncovered by several genome sequencing initiatives has expanded the known repertoire of myosin heavy chains from apicomplexans and other protists. It established six new myosin classes, three of which are restricted to alveolates (XXII, XXIII, XXIV), and showed that class XIV encompasses myosins of both apicomplexans and ciliates and is subdivided into four subclasses. Moreover, several sequences include protein domains (ATS1-like, WD40) previously unknown to be associated with myosin motors. In this chapter, we discuss the current classification of myosin heavy chains with particular emphasis on the apicomplexan myosins. Most of them have not yet been studied experimentally and we discuss their possible function based on their classification and their protein domains.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Proteins and Cell Regulation","grobid_abstract_attachment_id":46006263},"translated_abstract":null,"internal_url":"https://www.academia.edu/12688165/Myosin_Class_XIV_And_Other_Myosins_In_Protists","translated_internal_url":"","created_at":"2015-05-30T08:45:54.149-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31698439,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":694752,"work_id":12688165,"tagging_user_id":31698439,"tagged_user_id":null,"co_author_invite_id":258647,"email":"b***h@ntu.edu.sg","display_order":null,"name":"Bernardo Foth","title":"Myosin Class XIV And Other Myosins In Protists"}],"downloadable_attachments":[{"id":46006263,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006263/thumbnails/1.jpg","file_name":"Myosin_Class_XIV_And_Other_Myosins_In_Pr20160527-12660-q87aay.pdf","download_url":"https://www.academia.edu/attachments/46006263/download_file","bulk_download_file_name":"Myosin_Class_XIV_And_Other_Myosins_In_Pr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006263/Myosin_Class_XIV_And_Other_Myosins_In_Pr20160527-12660-q87aay-libre.pdf?1464397352=\u0026response-content-disposition=attachment%3B+filename%3DMyosin_Class_XIV_And_Other_Myosins_In_Pr.pdf\u0026Expires=1743100040\u0026Signature=FQVWlz6QxUFJQwov9eboI7G~I4GWefEs5dlSBAEZKI2niSOPolhywQFD-rqGePUF8Kp5WJFjHFSx0zIKgNC3YZcd~ZpfM53GwA3tynZkv9a6tBfLCTT1QgB~5Tf18VImnUJVzHIl-ymbXn77HVAKI6Va3ilAyjY7-7ngy2dRllyRyZdXutY52J-XGzbjisW37x7asaRTaA7~4meIj9bq4YIf~AR~ydvgfgskrinCtd6VMY3D9wSBA514fisBdwnELHyJIf4YooG3B1BQE5akc~RmZcBJF1TW~wR~NZjn44A7U7nOUJvhP5fiUybMR4rr2Vmi0DsPu8Mtzo7XqVYC7g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Myosin_Class_XIV_And_Other_Myosins_In_Protists","translated_slug":"","page_count":20,"language":"en","content_type":"Work","summary":"Myosins are actin-based molecular motors that convert chemical energy released by ATP hydrolysis into directed movement along tracks of actin filaments. They are found in eukaryotes and are implicated in a number of important cell functions, such as nuclear and cell division, transport of molecules, vesicles, and organelles, signal transduction, and motility. The myosin superfamily was previously described as containing at least 18 different classes with class XIV reported to be specific to apicomplexan parasites and subdivided into two subclasses. But a recent reassessment of myosin phylogeny and classification incorporating a number of novel sequences uncovered by several genome sequencing initiatives has expanded the known repertoire of myosin heavy chains from apicomplexans and other protists. It established six new myosin classes, three of which are restricted to alveolates (XXII, XXIII, XXIV), and showed that class XIV encompasses myosins of both apicomplexans and ciliates and is subdivided into four subclasses. Moreover, several sequences include protein domains (ATS1-like, WD40) previously unknown to be associated with myosin motors. In this chapter, we discuss the current classification of myosin heavy chains with particular emphasis on the apicomplexan myosins. Most of them have not yet been studied experimentally and we discuss their possible function based on their classification and their protein domains.","owner":{"id":31698439,"first_name":"Karine","middle_initials":null,"last_name":"Frénal","page_name":"KarineFrénal","domain_name":"unige","created_at":"2015-05-30T08:45:33.176-07:00","display_name":"Karine Frénal","url":"https://unige.academia.edu/KarineFr%C3%A9nal"},"attachments":[{"id":46006263,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006263/thumbnails/1.jpg","file_name":"Myosin_Class_XIV_And_Other_Myosins_In_Pr20160527-12660-q87aay.pdf","download_url":"https://www.academia.edu/attachments/46006263/download_file","bulk_download_file_name":"Myosin_Class_XIV_And_Other_Myosins_In_Pr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006263/Myosin_Class_XIV_And_Other_Myosins_In_Pr20160527-12660-q87aay-libre.pdf?1464397352=\u0026response-content-disposition=attachment%3B+filename%3DMyosin_Class_XIV_And_Other_Myosins_In_Pr.pdf\u0026Expires=1743100040\u0026Signature=FQVWlz6QxUFJQwov9eboI7G~I4GWefEs5dlSBAEZKI2niSOPolhywQFD-rqGePUF8Kp5WJFjHFSx0zIKgNC3YZcd~ZpfM53GwA3tynZkv9a6tBfLCTT1QgB~5Tf18VImnUJVzHIl-ymbXn77HVAKI6Va3ilAyjY7-7ngy2dRllyRyZdXutY52J-XGzbjisW37x7asaRTaA7~4meIj9bq4YIf~AR~ydvgfgskrinCtd6VMY3D9wSBA514fisBdwnELHyJIf4YooG3B1BQE5akc~RmZcBJF1TW~wR~NZjn44A7U7nOUJvhP5fiUybMR4rr2Vmi0DsPu8Mtzo7XqVYC7g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":38650,"name":"Cell Division","url":"https://www.academia.edu/Documents/in/Cell_Division"},{"id":38831,"name":"Signal Transduction","url":"https://www.academia.edu/Documents/in/Signal_Transduction"},{"id":330392,"name":"Protein Domains","url":"https://www.academia.edu/Documents/in/Protein_Domains"},{"id":732028,"name":"Genome sequence","url":"https://www.academia.edu/Documents/in/Genome_sequence"},{"id":1155801,"name":"Actin Filaments","url":"https://www.academia.edu/Documents/in/Actin_Filaments"},{"id":1393770,"name":"Molecular Motor","url":"https://www.academia.edu/Documents/in/Molecular_Motor"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12688164"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/12688164/Structural_and_functional_characterization_of_the_TgDRE_multidomain_protein_a_DNA_repair_enzyme_from_Toxoplasma_gondii"><img alt="Research paper thumbnail of Structural and functional characterization of the TgDRE multidomain protein, a DNA repair enzyme from Toxoplasma gondii" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Structural and functional characterization of the TgDRE multidomain protein, a DNA repair enzyme from Toxoplasma gondii</div><div class="wp-workCard_item"><span>Biochemistry</span><span>, Jan 18, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The parasite Toxoplasma gondii expresses a 55 kDa protein or TgDRE that belongs to a novel family...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The parasite Toxoplasma gondii expresses a 55 kDa protein or TgDRE that belongs to a novel family of proteins characterized by the presence of three domains, a human splicing factor 45-like motif (SF), a glycine-rich motif (G-patch), and a RNA recognition motif (RRM). The two latter domains are mainly known as RNA-binding domains, and their presence in TgDRE, whose partial DNA repair function was demonstrated, suggests that the protein could also be involved in the RNA metabolism. In this work, we characterized the structure and function of the different domains by using single or multidomain proteins to define their putative role. The SF45-like domain has a helical conformation and is involved in the oligomerization of the protein. The G-patch domain, mainly unstructured on its own as well as in the presence of the SF upstream and RRM downstream domains, is able to bind small RNA oligonucleotides. We also report the structure determination of the RRM domain from the NMR data. It ad...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12688164"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12688164"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12688164; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12688164]").text(description); $(".js-view-count[data-work-id=12688164]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12688164; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12688164']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=12688164]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12688164,"title":"Structural and functional characterization of the TgDRE multidomain protein, a DNA repair enzyme from Toxoplasma gondii","translated_title":"","metadata":{"abstract":"The parasite Toxoplasma gondii expresses a 55 kDa protein or TgDRE that belongs to a novel family of proteins characterized by the presence of three domains, a human splicing factor 45-like motif (SF), a glycine-rich motif (G-patch), and a RNA recognition motif (RRM). The two latter domains are mainly known as RNA-binding domains, and their presence in TgDRE, whose partial DNA repair function was demonstrated, suggests that the protein could also be involved in the RNA metabolism. In this work, we characterized the structure and function of the different domains by using single or multidomain proteins to define their putative role. The SF45-like domain has a helical conformation and is involved in the oligomerization of the protein. The G-patch domain, mainly unstructured on its own as well as in the presence of the SF upstream and RRM downstream domains, is able to bind small RNA oligonucleotides. We also report the structure determination of the RRM domain from the NMR data. It ad...","publication_date":{"day":18,"month":1,"year":2006,"errors":{}},"publication_name":"Biochemistry"},"translated_abstract":"The parasite Toxoplasma gondii expresses a 55 kDa protein or TgDRE that belongs to a novel family of proteins characterized by the presence of three domains, a human splicing factor 45-like motif (SF), a glycine-rich motif (G-patch), and a RNA recognition motif (RRM). The two latter domains are mainly known as RNA-binding domains, and their presence in TgDRE, whose partial DNA repair function was demonstrated, suggests that the protein could also be involved in the RNA metabolism. In this work, we characterized the structure and function of the different domains by using single or multidomain proteins to define their putative role. The SF45-like domain has a helical conformation and is involved in the oligomerization of the protein. The G-patch domain, mainly unstructured on its own as well as in the presence of the SF upstream and RRM downstream domains, is able to bind small RNA oligonucleotides. We also report the structure determination of the RRM domain from the NMR data. It ad...","internal_url":"https://www.academia.edu/12688164/Structural_and_functional_characterization_of_the_TgDRE_multidomain_protein_a_DNA_repair_enzyme_from_Toxoplasma_gondii","translated_internal_url":"","created_at":"2015-05-30T08:45:54.046-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31698439,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Structural_and_functional_characterization_of_the_TgDRE_multidomain_protein_a_DNA_repair_enzyme_from_Toxoplasma_gondii","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The parasite Toxoplasma gondii expresses a 55 kDa protein or TgDRE that belongs to a novel family of proteins characterized by the presence of three domains, a human splicing factor 45-like motif (SF), a glycine-rich motif (G-patch), and a RNA recognition motif (RRM). The two latter domains are mainly known as RNA-binding domains, and their presence in TgDRE, whose partial DNA repair function was demonstrated, suggests that the protein could also be involved in the RNA metabolism. In this work, we characterized the structure and function of the different domains by using single or multidomain proteins to define their putative role. The SF45-like domain has a helical conformation and is involved in the oligomerization of the protein. The G-patch domain, mainly unstructured on its own as well as in the presence of the SF upstream and RRM downstream domains, is able to bind small RNA oligonucleotides. We also report the structure determination of the RRM domain from the NMR data. It ad...","owner":{"id":31698439,"first_name":"Karine","middle_initials":null,"last_name":"Frénal","page_name":"KarineFrénal","domain_name":"unige","created_at":"2015-05-30T08:45:33.176-07:00","display_name":"Karine Frénal","url":"https://unige.academia.edu/KarineFr%C3%A9nal"},"attachments":[],"research_interests":[{"id":145,"name":"Biochemistry","url":"https://www.academia.edu/Documents/in/Biochemistry"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12688163"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/12688163/Plasticity_between_MyoC_and_MyoA_Glideosomes_An_Example_of_Functional_Compensation_in_Toxoplasma_gondii_Invasion"><img alt="Research paper thumbnail of Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion" class="work-thumbnail" src="https://attachments.academia-assets.com/46006281/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/12688163/Plasticity_between_MyoC_and_MyoA_Glideosomes_An_Example_of_Functional_Compensation_in_Toxoplasma_gondii_Invasion">Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/ValeriePolonais">Valerie Polonais</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://unige.academia.edu/KarineFr%C3%A9nal">Karine Frénal</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JeanbaptisteMarq">Jean-baptiste Marq</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/DamienJacot">Damien Jacot</a></span></div><div class="wp-workCard_item"><span>PLoS Pathogens</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The glideosome is an actomyosin-based machinery that powers motility in Apicomplexa and participa...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The glideosome is an actomyosin-based machinery that powers motility in Apicomplexa and participates in host cell invasion and egress from infected cells. The central component of the glideosome, myosin A (MyoA), is a motor recruited at the pellicle by the acylated gliding-associated protein GAP45. In Toxoplasma gondii, GAP45 also contributes to the cohesion of the pellicle, composed of the inner membrane complex (IMC) and the plasma membrane, during motor traction. GAP70 was previously identified as a paralog of GAP45 that is tailored to recruit MyoA at the apical cap in the coccidian subgroup of the Apicomplexa. A third member of this family, GAP80, is demonstrated here to assemble a new glideosome, which recruits the class XIV myosin C (MyoC) at the basal polar ring. MyoC shares the same myosin light chains as MyoA and also interacts with the integral IMC proteins GAP50 and GAP40. Moreover, a central component of this complex, the IMCassociated protein 1 (IAP1), acts as the key determinant for the restricted localization of MyoC to the posterior pole. Deletion of specific components of the MyoC-glideosome underscores the installation of compensatory mechanisms with components of the MyoA-glideosome. Conversely, removal of MyoA leads to the relocalization of MyoC along the pellicle and at the apical cap that accounts for residual invasion. The two glideosomes exhibit a considerable level of plasticity to ensure parasite survival. Citation: Frénal K, Marq JB, Jacot D, Polonais V, Soldati-Favre D (2014) Plasticity between MyoC-and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion. PLoS Pathog 10(11): e1004504.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6dd3f9945114af29f77d608de3658048" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46006281,&quot;asset_id&quot;:12688163,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46006281/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12688163"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12688163"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12688163; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12688163]").text(description); $(".js-view-count[data-work-id=12688163]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12688163; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12688163']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6dd3f9945114af29f77d608de3658048" } } $('.js-work-strip[data-work-id=12688163]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12688163,"title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion","translated_title":"","metadata":{"ai_title_tag":"MyoC and MyoA Glideosomes' Functional Plasticity","grobid_abstract":"The glideosome is an actomyosin-based machinery that powers motility in Apicomplexa and participates in host cell invasion and egress from infected cells. The central component of the glideosome, myosin A (MyoA), is a motor recruited at the pellicle by the acylated gliding-associated protein GAP45. In Toxoplasma gondii, GAP45 also contributes to the cohesion of the pellicle, composed of the inner membrane complex (IMC) and the plasma membrane, during motor traction. GAP70 was previously identified as a paralog of GAP45 that is tailored to recruit MyoA at the apical cap in the coccidian subgroup of the Apicomplexa. A third member of this family, GAP80, is demonstrated here to assemble a new glideosome, which recruits the class XIV myosin C (MyoC) at the basal polar ring. MyoC shares the same myosin light chains as MyoA and also interacts with the integral IMC proteins GAP50 and GAP40. Moreover, a central component of this complex, the IMCassociated protein 1 (IAP1), acts as the key determinant for the restricted localization of MyoC to the posterior pole. Deletion of specific components of the MyoC-glideosome underscores the installation of compensatory mechanisms with components of the MyoA-glideosome. Conversely, removal of MyoA leads to the relocalization of MyoC along the pellicle and at the apical cap that accounts for residual invasion. The two glideosomes exhibit a considerable level of plasticity to ensure parasite survival. Citation: Frénal K, Marq JB, Jacot D, Polonais V, Soldati-Favre D (2014) Plasticity between MyoC-and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion. PLoS Pathog 10(11): e1004504.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"PLoS Pathogens","grobid_abstract_attachment_id":46006281},"translated_abstract":null,"internal_url":"https://www.academia.edu/12688163/Plasticity_between_MyoC_and_MyoA_Glideosomes_An_Example_of_Functional_Compensation_in_Toxoplasma_gondii_Invasion","translated_internal_url":"","created_at":"2015-05-30T08:45:53.945-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31698439,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":28316979,"work_id":12688163,"tagging_user_id":31753081,"tagged_user_id":null,"co_author_invite_id":6178932,"email":"s***i@sun0.urz.uniheidelberg.de","display_order":-5991862,"name":"Dominique Soldati","title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion"},{"id":28316974,"work_id":12688163,"tagging_user_id":31753081,"tagged_user_id":58566697,"co_author_invite_id":null,"email":"d***e@hotmail.com","display_order":-3595117,"name":"Dominique Favre","title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion"},{"id":694758,"work_id":12688163,"tagging_user_id":31698439,"tagged_user_id":31895436,"co_author_invite_id":258649,"email":"v***s@iut.u-clermont1.fr","display_order":-1198372,"name":"Valerie Polonais","title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion"},{"id":694761,"work_id":12688163,"tagging_user_id":31698439,"tagged_user_id":31756244,"co_author_invite_id":258650,"email":"j***q@unige.ch","display_order":1198373,"name":"Jean-baptiste Marq","title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion"},{"id":694750,"work_id":12688163,"tagging_user_id":31698439,"tagged_user_id":31753081,"co_author_invite_id":258646,"email":"d***t@unige.ch","display_order":3595118,"name":"Damien Jacot","title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion"},{"id":694755,"work_id":12688163,"tagging_user_id":31698439,"tagged_user_id":null,"co_author_invite_id":258648,"email":"v***s@unige.ch","display_order":5991863,"name":"Valerie Polonais","title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion"}],"downloadable_attachments":[{"id":46006281,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006281/thumbnails/1.jpg","file_name":"Plasticity_between_MyoC-_and_MyoA-Glideo20160527-26258-1wk4ykw.pdf","download_url":"https://www.academia.edu/attachments/46006281/download_file","bulk_download_file_name":"Plasticity_between_MyoC_and_MyoA_Glideos.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006281/Plasticity_between_MyoC-_and_MyoA-Glideo20160527-26258-1wk4ykw-libre.pdf?1464397353=\u0026response-content-disposition=attachment%3B+filename%3DPlasticity_between_MyoC_and_MyoA_Glideos.pdf\u0026Expires=1743100040\u0026Signature=TEI0y5xHHVgnJnFXovkwqTgLQnxYDGU9q20wYrNVliWmYWX90~fQEUGL8AoeE4OnLf1gylIkCWjmzeOuucozSvd-REoWn~CI57rXprCMRfFJiHHbeWyERAQ90iLj3CZSd7lvMZkPrdJYLhivJG8V6ahnDmsJ9Gr7KiOGpe4SjbOmT8rvE5uOc4JKa-IwjgggHvwV7aYMjOIouyIwM-wLtk9P1HPMgKsby35klzBUETrxz7qCZoToaFFMwM58fFFeQYFDKFykMGO-IUK9~-O68satqYugRqQryfjq2fef4i1qkOn1oWY0F3RARCYQFa66ErVoOqFrVF8dgcBSmYzyEg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Plasticity_between_MyoC_and_MyoA_Glideosomes_An_Example_of_Functional_Compensation_in_Toxoplasma_gondii_Invasion","translated_slug":"","page_count":21,"language":"en","content_type":"Work","summary":"The glideosome is an actomyosin-based machinery that powers motility in Apicomplexa and participates in host cell invasion and egress from infected cells. The central component of the glideosome, myosin A (MyoA), is a motor recruited at the pellicle by the acylated gliding-associated protein GAP45. In Toxoplasma gondii, GAP45 also contributes to the cohesion of the pellicle, composed of the inner membrane complex (IMC) and the plasma membrane, during motor traction. GAP70 was previously identified as a paralog of GAP45 that is tailored to recruit MyoA at the apical cap in the coccidian subgroup of the Apicomplexa. A third member of this family, GAP80, is demonstrated here to assemble a new glideosome, which recruits the class XIV myosin C (MyoC) at the basal polar ring. MyoC shares the same myosin light chains as MyoA and also interacts with the integral IMC proteins GAP50 and GAP40. Moreover, a central component of this complex, the IMCassociated protein 1 (IAP1), acts as the key determinant for the restricted localization of MyoC to the posterior pole. Deletion of specific components of the MyoC-glideosome underscores the installation of compensatory mechanisms with components of the MyoA-glideosome. Conversely, removal of MyoA leads to the relocalization of MyoC along the pellicle and at the apical cap that accounts for residual invasion. The two glideosomes exhibit a considerable level of plasticity to ensure parasite survival. Citation: Frénal K, Marq JB, Jacot D, Polonais V, Soldati-Favre D (2014) Plasticity between MyoC-and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion. PLoS Pathog 10(11): e1004504.","owner":{"id":31698439,"first_name":"Karine","middle_initials":null,"last_name":"Frénal","page_name":"KarineFrénal","domain_name":"unige","created_at":"2015-05-30T08:45:33.176-07:00","display_name":"Karine Frénal","url":"https://unige.academia.edu/KarineFr%C3%A9nal"},"attachments":[{"id":46006281,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006281/thumbnails/1.jpg","file_name":"Plasticity_between_MyoC-_and_MyoA-Glideo20160527-26258-1wk4ykw.pdf","download_url":"https://www.academia.edu/attachments/46006281/download_file","bulk_download_file_name":"Plasticity_between_MyoC_and_MyoA_Glideos.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006281/Plasticity_between_MyoC-_and_MyoA-Glideo20160527-26258-1wk4ykw-libre.pdf?1464397353=\u0026response-content-disposition=attachment%3B+filename%3DPlasticity_between_MyoC_and_MyoA_Glideos.pdf\u0026Expires=1743100040\u0026Signature=TEI0y5xHHVgnJnFXovkwqTgLQnxYDGU9q20wYrNVliWmYWX90~fQEUGL8AoeE4OnLf1gylIkCWjmzeOuucozSvd-REoWn~CI57rXprCMRfFJiHHbeWyERAQ90iLj3CZSd7lvMZkPrdJYLhivJG8V6ahnDmsJ9Gr7KiOGpe4SjbOmT8rvE5uOc4JKa-IwjgggHvwV7aYMjOIouyIwM-wLtk9P1HPMgKsby35klzBUETrxz7qCZoToaFFMwM58fFFeQYFDKFykMGO-IUK9~-O68satqYugRqQryfjq2fef4i1qkOn1oWY0F3RARCYQFa66ErVoOqFrVF8dgcBSmYzyEg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":1290,"name":"Immunology","url":"https://www.academia.edu/Documents/in/Immunology"},{"id":6947,"name":"Medical Microbiology","url":"https://www.academia.edu/Documents/in/Medical_Microbiology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12688162"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/12688162/Unusual_Anchor_of_a_Motor_Complex_MyoD_MLC2_to_the_Plasma_Membrane_of_Toxoplasma_gondii"><img alt="Research paper thumbnail of Unusual Anchor of a Motor Complex (MyoD-MLC2) to the Plasma Membrane of Toxoplasma gondii" class="work-thumbnail" src="https://attachments.academia-assets.com/46006178/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/12688162/Unusual_Anchor_of_a_Motor_Complex_MyoD_MLC2_to_the_Plasma_Membrane_of_Toxoplasma_gondii">Unusual Anchor of a Motor Complex (MyoD-MLC2) to the Plasma Membrane of Toxoplasma gondii</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/ValeriePolonais">Valerie Polonais</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://unige.academia.edu/KarineFr%C3%A9nal">Karine Frénal</a></span></div><div class="wp-workCard_item"><span>Traffic</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Toxoplasma gondii possesses 11 rather atypical myosin heavy chains. The only myosin light chain d...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Toxoplasma gondii possesses 11 rather atypical myosin heavy chains. The only myosin light chain described to date is MLC1, associated with myosin A, and contributing to gliding motility. In this study, we examined the repertoire of calmodulin-like proteins in Apicomplexans, identified six putative myosin light chains and determined their subcellular localization in T. gondii and Plasmodium falciparum. MLC2, only found in coccidians, is associated with myosin D via its calmodulin (CaM)like domain and anchored to the plasma membrane of T. gondii via its N-terminal extension. Molecular modeling suggests that the MyoD-MLC2 complex is more compact than the reported structure of Plasmodium MyoA-myosin A tail-interacting protein (MTIP) complex. Anchorage of this MLC2 to the plasma membrane is likely governed by palmitoylation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4b3602735f23a06144e6164b9de9b58c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46006178,&quot;asset_id&quot;:12688162,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46006178/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12688162"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12688162"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12688162; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12688162]").text(description); $(".js-view-count[data-work-id=12688162]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12688162; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12688162']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4b3602735f23a06144e6164b9de9b58c" } } $('.js-work-strip[data-work-id=12688162]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12688162,"title":"Unusual Anchor of a Motor Complex (MyoD-MLC2) to the Plasma Membrane of Toxoplasma gondii","translated_title":"","metadata":{"grobid_abstract":"Toxoplasma gondii possesses 11 rather atypical myosin heavy chains. The only myosin light chain described to date is MLC1, associated with myosin A, and contributing to gliding motility. In this study, we examined the repertoire of calmodulin-like proteins in Apicomplexans, identified six putative myosin light chains and determined their subcellular localization in T. gondii and Plasmodium falciparum. MLC2, only found in coccidians, is associated with myosin D via its calmodulin (CaM)like domain and anchored to the plasma membrane of T. gondii via its N-terminal extension. Molecular modeling suggests that the MyoD-MLC2 complex is more compact than the reported structure of Plasmodium MyoA-myosin A tail-interacting protein (MTIP) complex. Anchorage of this MLC2 to the plasma membrane is likely governed by palmitoylation.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Traffic","grobid_abstract_attachment_id":46006178},"translated_abstract":null,"internal_url":"https://www.academia.edu/12688162/Unusual_Anchor_of_a_Motor_Complex_MyoD_MLC2_to_the_Plasma_Membrane_of_Toxoplasma_gondii","translated_internal_url":"","created_at":"2015-05-30T08:45:53.843-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31698439,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":30372317,"work_id":12688162,"tagging_user_id":31895436,"tagged_user_id":null,"co_author_invite_id":4870444,"email":"k***i@gmail.com","display_order":-5991862,"name":"Krishna Chinthalapudi","title":"Unusual Anchor of a Motor Complex (MyoD-MLC2) to the Plasma Membrane of Toxoplasma gondii"},{"id":30372316,"work_id":12688162,"tagging_user_id":31895436,"tagged_user_id":null,"co_author_invite_id":4080218,"email":"d***e@nimr.mrc.ac.uk","display_order":-3595117,"name":"Dietmar Manstein","title":"Unusual Anchor of a Motor Complex (MyoD-MLC2) to the Plasma Membrane of Toxoplasma gondii"},{"id":694757,"work_id":12688162,"tagging_user_id":31698439,"tagged_user_id":31895436,"co_author_invite_id":258649,"email":"v***s@iut.u-clermont1.fr","display_order":-1198372,"name":"Valerie Polonais","title":"Unusual Anchor of a Motor Complex (MyoD-MLC2) to the Plasma Membrane of Toxoplasma gondii"},{"id":694760,"work_id":12688162,"tagging_user_id":31698439,"tagged_user_id":31756244,"co_author_invite_id":258650,"email":"j***q@unige.ch","display_order":1198373,"name":"Jean-baptiste Marq","title":"Unusual Anchor of a Motor Complex (MyoD-MLC2) to the Plasma Membrane of Toxoplasma gondii"},{"id":694754,"work_id":12688162,"tagging_user_id":31698439,"tagged_user_id":null,"co_author_invite_id":258648,"email":"v***s@unige.ch","display_order":3595118,"name":"Valerie Polonais","title":"Unusual Anchor of a Motor Complex (MyoD-MLC2) to the Plasma Membrane of Toxoplasma gondii"},{"id":694751,"work_id":12688162,"tagging_user_id":31698439,"tagged_user_id":null,"co_author_invite_id":258647,"email":"b***h@ntu.edu.sg","display_order":5991863,"name":"Bernardo Foth","title":"Unusual Anchor of a Motor Complex (MyoD-MLC2) to the Plasma Membrane of Toxoplasma gondii"}],"downloadable_attachments":[{"id":46006178,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006178/thumbnails/1.jpg","file_name":"Unusual_Anchor_of_a_Motor_Complex_MyoD-20160527-31079-91s0xj.pdf","download_url":"https://www.academia.edu/attachments/46006178/download_file","bulk_download_file_name":"Unusual_Anchor_of_a_Motor_Complex_MyoD_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006178/Unusual_Anchor_of_a_Motor_Complex_MyoD-20160527-31079-91s0xj-libre.pdf?1464397356=\u0026response-content-disposition=attachment%3B+filename%3DUnusual_Anchor_of_a_Motor_Complex_MyoD_M.pdf\u0026Expires=1743100041\u0026Signature=HCqrzAUwGFSCaPXvDYw~~DgM7BdCOGDrPBReCPbPhLCZG1QS8TQ07hAT~6OjET7g51VGZrMChcgWD2W4RXca94RNRO83zW1LOm3nYj7Xl3YMDyD07Ts-VDudCrmuX9yrb2rNlTxE-NWziLQoHjed7kYOd6u3OyIzvEpW1sbTVd22D9w046-71EMC~Fjk~SVcXZGsyVgECjY~d9H5ip2WhhPuPa-HahwosLdbgRsOSxD~lyyMpEHneHhm~UOly8CXYJO-cntLiLgm2R-9RdmEduxWXLQE6gUYiPNMa7bxnYmmXlQ~9yGSeFfYYKHEtvw8HM5lWNbcKxcxyi54l7UzsQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Unusual_Anchor_of_a_Motor_Complex_MyoD_MLC2_to_the_Plasma_Membrane_of_Toxoplasma_gondii","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"Toxoplasma gondii possesses 11 rather atypical myosin heavy chains. The only myosin light chain described to date is MLC1, associated with myosin A, and contributing to gliding motility. In this study, we examined the repertoire of calmodulin-like proteins in Apicomplexans, identified six putative myosin light chains and determined their subcellular localization in T. gondii and Plasmodium falciparum. MLC2, only found in coccidians, is associated with myosin D via its calmodulin (CaM)like domain and anchored to the plasma membrane of T. gondii via its N-terminal extension. Molecular modeling suggests that the MyoD-MLC2 complex is more compact than the reported structure of Plasmodium MyoA-myosin A tail-interacting protein (MTIP) complex. Anchorage of this MLC2 to the plasma membrane is likely governed by palmitoylation.","owner":{"id":31698439,"first_name":"Karine","middle_initials":null,"last_name":"Frénal","page_name":"KarineFrénal","domain_name":"unige","created_at":"2015-05-30T08:45:33.176-07:00","display_name":"Karine Frénal","url":"https://unige.academia.edu/KarineFr%C3%A9nal"},"attachments":[{"id":46006178,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006178/thumbnails/1.jpg","file_name":"Unusual_Anchor_of_a_Motor_Complex_MyoD-20160527-31079-91s0xj.pdf","download_url":"https://www.academia.edu/attachments/46006178/download_file","bulk_download_file_name":"Unusual_Anchor_of_a_Motor_Complex_MyoD_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006178/Unusual_Anchor_of_a_Motor_Complex_MyoD-20160527-31079-91s0xj-libre.pdf?1464397356=\u0026response-content-disposition=attachment%3B+filename%3DUnusual_Anchor_of_a_Motor_Complex_MyoD_M.pdf\u0026Expires=1743100041\u0026Signature=HCqrzAUwGFSCaPXvDYw~~DgM7BdCOGDrPBReCPbPhLCZG1QS8TQ07hAT~6OjET7g51VGZrMChcgWD2W4RXca94RNRO83zW1LOm3nYj7Xl3YMDyD07Ts-VDudCrmuX9yrb2rNlTxE-NWziLQoHjed7kYOd6u3OyIzvEpW1sbTVd22D9w046-71EMC~Fjk~SVcXZGsyVgECjY~d9H5ip2WhhPuPa-HahwosLdbgRsOSxD~lyyMpEHneHhm~UOly8CXYJO-cntLiLgm2R-9RdmEduxWXLQE6gUYiPNMa7bxnYmmXlQ~9yGSeFfYYKHEtvw8HM5lWNbcKxcxyi54l7UzsQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":54433,"name":"Phylogeny","url":"https://www.academia.edu/Documents/in/Phylogeny"},{"id":67484,"name":"Sequence alignment","url":"https://www.academia.edu/Documents/in/Sequence_alignment"},{"id":138124,"name":"Myosin","url":"https://www.academia.edu/Documents/in/Myosin"},{"id":150380,"name":"Molecular motor proteins","url":"https://www.academia.edu/Documents/in/Molecular_motor_proteins"},{"id":157891,"name":"Traffic","url":"https://www.academia.edu/Documents/in/Traffic"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":956752,"name":"Protein Quaternary Structure","url":"https://www.academia.edu/Documents/in/Protein_Quaternary_Structure"},{"id":1457054,"name":"Protein Transport","url":"https://www.academia.edu/Documents/in/Protein_Transport"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"},{"id":2468093,"name":"Cell Membrane","url":"https://www.academia.edu/Documents/in/Cell_Membrane"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12688161"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/12688161/Exploring_structural_features_of_the_interaction_between_the_scorpion_toxinCnErg1_and_ERG_K_channels"><img alt="Research paper thumbnail of Exploring structural features of the interaction between the scorpion toxinCnErg1 and ERG K+ channels" class="work-thumbnail" src="https://attachments.academia-assets.com/46006133/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/12688161/Exploring_structural_features_of_the_interaction_between_the_scorpion_toxinCnErg1_and_ERG_K_channels">Exploring structural features of the interaction between the scorpion toxinCnErg1 and ERG K+ channels</a></div><div class="wp-workCard_item"><span>Proteins: Structure, Function, and Bioinformatics</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The ␥-KTx-type scorpion toxins specific for K ؉ channels were found to interact with ERG channels...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The ␥-KTx-type scorpion toxins specific for K ؉ channels were found to interact with ERG channels on the turret region, while ␣-KTx3.2 Agitoxin-2 binds to the pore region of the Shaker K ؉ channel, and ␣-KTx5.3 BmP05 binds to the intermediate region of the small-conductance calciumactivated K-channel (SK Ca ). In order to explore the critical residues for ␥-KTx binding, we determined the NMR structure of native ␥-KTx1.1 (CnErg1), a 42 amino acid residues scorpion toxin isolated from the venom of the Mexican scorpion Centruroïdes noxius Hoffmann, and we used computational evolutionary trace (ET) analysis to predict possible structural and functional features of interacting surfaces. The 1 H-NMR three-dimensional solution structure of native ergtoxin (CnErg1) was solved using a total of 452 distance constraints, 13 3 J NH-H␣ and 10 hydrogen bonds. The structure is characterized by 2 segments of ␣-helices and a triple-stranded antiparallel ␤-sheet stabilized by 4 disulfide bridges. The ET and structural analysis provided indication of the presence of two important amino acid residue clusters, one hydrophobic and the other hydrophilic, that should be involved in the surface contact between the toxin and the channel. Some features of the proposed interacting surface are discussed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f5700ac812c07f4532dd0e2ff943bd0e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46006133,&quot;asset_id&quot;:12688161,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46006133/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12688161"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12688161"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12688161; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12688161]").text(description); $(".js-view-count[data-work-id=12688161]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12688161; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12688161']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f5700ac812c07f4532dd0e2ff943bd0e" } } $('.js-work-strip[data-work-id=12688161]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12688161,"title":"Exploring structural features of the interaction between the scorpion toxinCnErg1 and ERG K+ channels","translated_title":"","metadata":{"ai_title_tag":"CnErg1 Scorpion Toxin Interacts with ERG K+ Channels","grobid_abstract":"The ␥-KTx-type scorpion toxins specific for K ؉ channels were found to interact with ERG channels on the turret region, while ␣-KTx3.2 Agitoxin-2 binds to the pore region of the Shaker K ؉ channel, and ␣-KTx5.3 BmP05 binds to the intermediate region of the small-conductance calciumactivated K-channel (SK Ca ). In order to explore the critical residues for ␥-KTx binding, we determined the NMR structure of native ␥-KTx1.1 (CnErg1), a 42 amino acid residues scorpion toxin isolated from the venom of the Mexican scorpion Centruroïdes noxius Hoffmann, and we used computational evolutionary trace (ET) analysis to predict possible structural and functional features of interacting surfaces. The 1 H-NMR three-dimensional solution structure of native ergtoxin (CnErg1) was solved using a total of 452 distance constraints, 13 3 J NH-H␣ and 10 hydrogen bonds. The structure is characterized by 2 segments of ␣-helices and a triple-stranded antiparallel ␤-sheet stabilized by 4 disulfide bridges. The ET and structural analysis provided indication of the presence of two important amino acid residue clusters, one hydrophobic and the other hydrophilic, that should be involved in the surface contact between the toxin and the channel. Some features of the proposed interacting surface are discussed.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Proteins: Structure, Function, and Bioinformatics","grobid_abstract_attachment_id":46006133},"translated_abstract":null,"internal_url":"https://www.academia.edu/12688161/Exploring_structural_features_of_the_interaction_between_the_scorpion_toxinCnErg1_and_ERG_K_channels","translated_internal_url":"","created_at":"2015-05-30T08:45:53.731-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31698439,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46006133,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006133/thumbnails/1.jpg","file_name":"Exploring_structural_features_of_the_int20160527-2023-v9f3n4.pdf","download_url":"https://www.academia.edu/attachments/46006133/download_file","bulk_download_file_name":"Exploring_structural_features_of_the_int.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006133/Exploring_structural_features_of_the_int20160527-2023-v9f3n4-libre.pdf?1464397357=\u0026response-content-disposition=attachment%3B+filename%3DExploring_structural_features_of_the_int.pdf\u0026Expires=1743100041\u0026Signature=FENFEbUlsNxU6czMkDNonDicLeDYCouqbMjHQaK-W9uc-i3XXeb9VIH3MqNjUhPrSiMEkDY1WMKjxAO5G028DqC~fi8Yq4VjscW-PSwz-LMAnxSFjOm7fUKsgHVNX3BDeUHPOfF4-RIj0QQpPQ32vgilLxM2KJpy~AGCdTSOCTzHmNMnQcF2hf7e55XiRt9HbSg~xLTgz8zdbZX59EQtMbymUB~IjXq~ngCyu2XXSRrwVLpudwshb-btOyg9kZ8fo9E76GrgrvxLGLUNAx9wz05hQNo5n9~ZMhZPL~k8fM9Z8kaJaTYemG~dwupAAbjlYyk8pFUNzy02PINsD5dlNA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Exploring_structural_features_of_the_interaction_between_the_scorpion_toxinCnErg1_and_ERG_K_channels","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"The ␥-KTx-type scorpion toxins specific for K ؉ channels were found to interact with ERG channels on the turret region, while ␣-KTx3.2 Agitoxin-2 binds to the pore region of the Shaker K ؉ channel, and ␣-KTx5.3 BmP05 binds to the intermediate region of the small-conductance calciumactivated K-channel (SK Ca ). In order to explore the critical residues for ␥-KTx binding, we determined the NMR structure of native ␥-KTx1.1 (CnErg1), a 42 amino acid residues scorpion toxin isolated from the venom of the Mexican scorpion Centruroïdes noxius Hoffmann, and we used computational evolutionary trace (ET) analysis to predict possible structural and functional features of interacting surfaces. The 1 H-NMR three-dimensional solution structure of native ergtoxin (CnErg1) was solved using a total of 452 distance constraints, 13 3 J NH-H␣ and 10 hydrogen bonds. The structure is characterized by 2 segments of ␣-helices and a triple-stranded antiparallel ␤-sheet stabilized by 4 disulfide bridges. The ET and structural analysis provided indication of the presence of two important amino acid residue clusters, one hydrophobic and the other hydrophilic, that should be involved in the surface contact between the toxin and the channel. Some features of the proposed interacting surface are discussed.","owner":{"id":31698439,"first_name":"Karine","middle_initials":null,"last_name":"Frénal","page_name":"KarineFrénal","domain_name":"unige","created_at":"2015-05-30T08:45:33.176-07:00","display_name":"Karine Frénal","url":"https://unige.academia.edu/KarineFr%C3%A9nal"},"attachments":[{"id":46006133,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006133/thumbnails/1.jpg","file_name":"Exploring_structural_features_of_the_int20160527-2023-v9f3n4.pdf","download_url":"https://www.academia.edu/attachments/46006133/download_file","bulk_download_file_name":"Exploring_structural_features_of_the_int.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006133/Exploring_structural_features_of_the_int20160527-2023-v9f3n4-libre.pdf?1464397357=\u0026response-content-disposition=attachment%3B+filename%3DExploring_structural_features_of_the_int.pdf\u0026Expires=1743100041\u0026Signature=FENFEbUlsNxU6czMkDNonDicLeDYCouqbMjHQaK-W9uc-i3XXeb9VIH3MqNjUhPrSiMEkDY1WMKjxAO5G028DqC~fi8Yq4VjscW-PSwz-LMAnxSFjOm7fUKsgHVNX3BDeUHPOfF4-RIj0QQpPQ32vgilLxM2KJpy~AGCdTSOCTzHmNMnQcF2hf7e55XiRt9HbSg~xLTgz8zdbZX59EQtMbymUB~IjXq~ngCyu2XXSRrwVLpudwshb-btOyg9kZ8fo9E76GrgrvxLGLUNAx9wz05hQNo5n9~ZMhZPL~k8fM9Z8kaJaTYemG~dwupAAbjlYyk8pFUNzy02PINsD5dlNA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":4967,"name":"Molecular Evolution","url":"https://www.academia.edu/Documents/in/Molecular_Evolution"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":53293,"name":"Software","url":"https://www.academia.edu/Documents/in/Software"},{"id":54433,"name":"Phylogeny","url":"https://www.academia.edu/Documents/in/Phylogeny"},{"id":67484,"name":"Sequence alignment","url":"https://www.academia.edu/Documents/in/Sequence_alignment"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":181569,"name":"Proteins","url":"https://www.academia.edu/Documents/in/Proteins"},{"id":296798,"name":"Hydrogen Bonding","url":"https://www.academia.edu/Documents/in/Hydrogen_Bonding"},{"id":470847,"name":"Voltage-Gated Potassium Channels","url":"https://www.academia.edu/Documents/in/Voltage-Gated_Potassium_Channels"},{"id":557691,"name":"Potassium Channels","url":"https://www.academia.edu/Documents/in/Potassium_Channels"},{"id":653665,"name":"Protein Conformation","url":"https://www.academia.edu/Documents/in/Protein_Conformation"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":967839,"name":"Structure activity Relationship","url":"https://www.academia.edu/Documents/in/Structure_activity_Relationship"},{"id":1010725,"name":"Protein Binding","url":"https://www.academia.edu/Documents/in/Protein_Binding"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12688160"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/12688160/Emerging_roles_for_protein_S_palmitoylation_in_Toxoplasma_biology"><img alt="Research paper thumbnail of Emerging roles for protein S-palmitoylation in Toxoplasma biology" class="work-thumbnail" src="https://attachments.academia-assets.com/46006169/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/12688160/Emerging_roles_for_protein_S_palmitoylation_in_Toxoplasma_biology">Emerging roles for protein S-palmitoylation in Toxoplasma biology</a></div><div class="wp-workCard_item"><span>International Journal for Parasitology</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Post-translational modifications are refined, rapidly responsive and powerful ways to modulate pr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Post-translational modifications are refined, rapidly responsive and powerful ways to modulate protein function. Among post-translational modifications, acylation is now emerging as a widespread modification exploited by eukaryotes, bacteria and viruses to control biological processes. Protein palmitoylation involves the attachment of palmitic acid, also known as hexadecanoic acid, to cysteine residues of integral and peripheral membrane proteins and increases their affinity for membranes. Importantly, similar to phosphorylation, palmitoylation is reversible and is becoming recognised as instrumental for the regulation of protein function by modulating protein interactions, stability, folding, trafficking and signalling. Palmitoylation appears to play a central role in the biology of the Apicomplexa, regulating critical processes such as host cell invasion which is vital for parasite survival and dissemination. The recent identification of over 400 palmitoylated proteins in Plasmodium falciparum erythrocytic stages illustrates the broad spread and impact of this modification on parasite biology. The main enzymes responsible for protein palmitoylation are multi-membrane protein S-acyl transferases harbouring a catalytic Asp-His-His-Cys (DHHC) motif. A global functional analysis of the repertoire of protein S-acyl transferases in Toxoplasma gondii and Plasmodium berghei has recently been performed. The essential nature of some of these enzymes illustrates the key roles played by this post-translational modification in the corresponding substrates implicated in fundamental processes such as parasite motility and organelle biogenesis. Toward a better understanding of the depalmitoylation event, a protein with palmitoyl protein thioesterase activity has been identified in T. gondii. TgPPT1/TgASH1 is the main target of specific acyl protein thioesterase inhibitors but is dispensable for parasite survival, suggesting the implication of other genes in depalmitoylation. Palmitoylation/depalmitoylation cycles are now emerging as potential novel regulatory networks and T. gondii represents a superb model organism in which to explore their significance.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ddb5b88706cdd8530b62a4026e949c32" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46006169,&quot;asset_id&quot;:12688160,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46006169/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12688160"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12688160"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12688160; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12688160]").text(description); $(".js-view-count[data-work-id=12688160]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12688160; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12688160']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ddb5b88706cdd8530b62a4026e949c32" } } $('.js-work-strip[data-work-id=12688160]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12688160,"title":"Emerging roles for protein S-palmitoylation in Toxoplasma biology","translated_title":"","metadata":{"grobid_abstract":"Post-translational modifications are refined, rapidly responsive and powerful ways to modulate protein function. Among post-translational modifications, acylation is now emerging as a widespread modification exploited by eukaryotes, bacteria and viruses to control biological processes. Protein palmitoylation involves the attachment of palmitic acid, also known as hexadecanoic acid, to cysteine residues of integral and peripheral membrane proteins and increases their affinity for membranes. Importantly, similar to phosphorylation, palmitoylation is reversible and is becoming recognised as instrumental for the regulation of protein function by modulating protein interactions, stability, folding, trafficking and signalling. Palmitoylation appears to play a central role in the biology of the Apicomplexa, regulating critical processes such as host cell invasion which is vital for parasite survival and dissemination. The recent identification of over 400 palmitoylated proteins in Plasmodium falciparum erythrocytic stages illustrates the broad spread and impact of this modification on parasite biology. The main enzymes responsible for protein palmitoylation are multi-membrane protein S-acyl transferases harbouring a catalytic Asp-His-His-Cys (DHHC) motif. A global functional analysis of the repertoire of protein S-acyl transferases in Toxoplasma gondii and Plasmodium berghei has recently been performed. The essential nature of some of these enzymes illustrates the key roles played by this post-translational modification in the corresponding substrates implicated in fundamental processes such as parasite motility and organelle biogenesis. Toward a better understanding of the depalmitoylation event, a protein with palmitoyl protein thioesterase activity has been identified in T. gondii. TgPPT1/TgASH1 is the main target of specific acyl protein thioesterase inhibitors but is dispensable for parasite survival, suggesting the implication of other genes in depalmitoylation. Palmitoylation/depalmitoylation cycles are now emerging as potential novel regulatory networks and T. gondii represents a superb model organism in which to explore their significance.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"International Journal for Parasitology","grobid_abstract_attachment_id":46006169},"translated_abstract":null,"internal_url":"https://www.academia.edu/12688160/Emerging_roles_for_protein_S_palmitoylation_in_Toxoplasma_biology","translated_internal_url":"","created_at":"2015-05-30T08:45:53.628-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31698439,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":29951650,"work_id":12688160,"tagging_user_id":31698439,"tagged_user_id":58566697,"co_author_invite_id":null,"email":"d***e@hotmail.com","display_order":0,"name":"Dominique Favre","title":"Emerging roles for protein S-palmitoylation in Toxoplasma biology"},{"id":29951651,"work_id":12688160,"tagging_user_id":31698439,"tagged_user_id":null,"co_author_invite_id":6178932,"email":"s***i@sun0.urz.uniheidelberg.de","display_order":4194304,"name":"Dominique Soldati","title":"Emerging roles for protein S-palmitoylation in Toxoplasma biology"}],"downloadable_attachments":[{"id":46006169,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006169/thumbnails/1.jpg","file_name":"Emerging_roles_for_protein_S-palmitoylat20160527-27545-15xn44x.pdf","download_url":"https://www.academia.edu/attachments/46006169/download_file","bulk_download_file_name":"Emerging_roles_for_protein_S_palmitoylat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006169/Emerging_roles_for_protein_S-palmitoylat20160527-27545-15xn44x-libre.pdf?1464397357=\u0026response-content-disposition=attachment%3B+filename%3DEmerging_roles_for_protein_S_palmitoylat.pdf\u0026Expires=1743100041\u0026Signature=IHFwovXwjHPzIgf9z-Y6Mw7NPaJZoP6EGxftcrdTnmK-8KvyuhLgFAUJEeOAP16hUUICYN6c2COcXtNLSq2kDn-u9oB7lHNUvO33bluNN8ZfbDZnGRxumyCzEeBKo301UTz4QSqpt0-x3b1xjCgBNON7Agxgv2fHduBz0ln1zLBy9MsujqFvPDfZrMiskb4lvpI5uZS-LJFcjUf6jASeb3L7cofCjuspim4nXYGg3cTBnE4XiiC9uh8iH-c1v1I2XyNWDilgkOWP89kIJqPZJJ44~v1LXOkHrlC0Ko8DjhW44CDLoY~pHXBIZ244OmE64bv2bD2LXkzHbwdy3u9Dcw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Emerging_roles_for_protein_S_palmitoylation_in_Toxoplasma_biology","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"Post-translational modifications are refined, rapidly responsive and powerful ways to modulate protein function. Among post-translational modifications, acylation is now emerging as a widespread modification exploited by eukaryotes, bacteria and viruses to control biological processes. Protein palmitoylation involves the attachment of palmitic acid, also known as hexadecanoic acid, to cysteine residues of integral and peripheral membrane proteins and increases their affinity for membranes. Importantly, similar to phosphorylation, palmitoylation is reversible and is becoming recognised as instrumental for the regulation of protein function by modulating protein interactions, stability, folding, trafficking and signalling. Palmitoylation appears to play a central role in the biology of the Apicomplexa, regulating critical processes such as host cell invasion which is vital for parasite survival and dissemination. The recent identification of over 400 palmitoylated proteins in Plasmodium falciparum erythrocytic stages illustrates the broad spread and impact of this modification on parasite biology. The main enzymes responsible for protein palmitoylation are multi-membrane protein S-acyl transferases harbouring a catalytic Asp-His-His-Cys (DHHC) motif. A global functional analysis of the repertoire of protein S-acyl transferases in Toxoplasma gondii and Plasmodium berghei has recently been performed. The essential nature of some of these enzymes illustrates the key roles played by this post-translational modification in the corresponding substrates implicated in fundamental processes such as parasite motility and organelle biogenesis. Toward a better understanding of the depalmitoylation event, a protein with palmitoyl protein thioesterase activity has been identified in T. gondii. TgPPT1/TgASH1 is the main target of specific acyl protein thioesterase inhibitors but is dispensable for parasite survival, suggesting the implication of other genes in depalmitoylation. Palmitoylation/depalmitoylation cycles are now emerging as potential novel regulatory networks and T. gondii represents a superb model organism in which to explore their significance.","owner":{"id":31698439,"first_name":"Karine","middle_initials":null,"last_name":"Frénal","page_name":"KarineFrénal","domain_name":"unige","created_at":"2015-05-30T08:45:33.176-07:00","display_name":"Karine Frénal","url":"https://unige.academia.edu/KarineFr%C3%A9nal"},"attachments":[{"id":46006169,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006169/thumbnails/1.jpg","file_name":"Emerging_roles_for_protein_S-palmitoylat20160527-27545-15xn44x.pdf","download_url":"https://www.academia.edu/attachments/46006169/download_file","bulk_download_file_name":"Emerging_roles_for_protein_S_palmitoylat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006169/Emerging_roles_for_protein_S-palmitoylat20160527-27545-15xn44x-libre.pdf?1464397357=\u0026response-content-disposition=attachment%3B+filename%3DEmerging_roles_for_protein_S_palmitoylat.pdf\u0026Expires=1743100041\u0026Signature=IHFwovXwjHPzIgf9z-Y6Mw7NPaJZoP6EGxftcrdTnmK-8KvyuhLgFAUJEeOAP16hUUICYN6c2COcXtNLSq2kDn-u9oB7lHNUvO33bluNN8ZfbDZnGRxumyCzEeBKo301UTz4QSqpt0-x3b1xjCgBNON7Agxgv2fHduBz0ln1zLBy9MsujqFvPDfZrMiskb4lvpI5uZS-LJFcjUf6jASeb3L7cofCjuspim4nXYGg3cTBnE4XiiC9uh8iH-c1v1I2XyNWDilgkOWP89kIJqPZJJ44~v1LXOkHrlC0Ko8DjhW44CDLoY~pHXBIZ244OmE64bv2bD2LXkzHbwdy3u9Dcw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":173,"name":"Zoology","url":"https://www.academia.edu/Documents/in/Zoology"},{"id":9786,"name":"Proteomics","url":"https://www.academia.edu/Documents/in/Proteomics"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":54433,"name":"Phylogeny","url":"https://www.academia.edu/Documents/in/Phylogeny"},{"id":84924,"name":"Immunity","url":"https://www.academia.edu/Documents/in/Immunity"},{"id":567271,"name":"Palmitoylation","url":"https://www.academia.edu/Documents/in/Palmitoylation"},{"id":644860,"name":"Veterinary Sciences","url":"https://www.academia.edu/Documents/in/Veterinary_Sciences"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":868560,"name":"Lymphocytes","url":"https://www.academia.edu/Documents/in/Lymphocytes"},{"id":1035050,"name":"Proteome","url":"https://www.academia.edu/Documents/in/Proteome"},{"id":1272099,"name":"Leukocytes","url":"https://www.academia.edu/Documents/in/Leukocytes"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":1763968,"name":"Gene Expression Regulation","url":"https://www.academia.edu/Documents/in/Gene_Expression_Regulation"},{"id":1947616,"name":"Mononuclear Phagocyte System","url":"https://www.academia.edu/Documents/in/Mononuclear_Phagocyte_System"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12688159"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/12688159/Role_of_the_Parasite_and_Host_Cytoskeleton_in_Apicomplexa_Parasitism"><img alt="Research paper thumbnail of Role of the Parasite and Host Cytoskeleton in Apicomplexa Parasitism" class="work-thumbnail" src="https://attachments.academia-assets.com/46006158/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/12688159/Role_of_the_Parasite_and_Host_Cytoskeleton_in_Apicomplexa_Parasitism">Role of the Parasite and Host Cytoskeleton in Apicomplexa Parasitism</a></div><div class="wp-workCard_item"><span>Cell Host &amp; Microbe</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The phylum Apicomplexa includes a large and diverse group of obligate intracellular parasites tha...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The phylum Apicomplexa includes a large and diverse group of obligate intracellular parasites that rely on actomyosin-based motility to migrate, enter host cells, and egress from infected cells. To ensure their intracellular survival and replication, the apicomplexans have evolved sophisticated strategies for subversion of the host cytoskeleton. Given the properties in common between the host and parasite cytoskeleton, dissecting their individual contribution to the establishment of parasitic infection has been challenging. Nevertheless, recent studies have provided new insights into the mechanisms by which parasites subvert the dynamic properties of host actin and tubulin to promote their entry, development, and egress. (A) Model of a typical apicomplexan parasite, highlighting the elements of the cytoskeleton. (B) Scheme of the actomyosin system involved in gliding motility. (C) Illustration of the effects of the drugs discussed in this review on actin and microtubule cytoskeletons. BDM, 2,3-butanedione monoxime; FH, formin homology domain. (D) Effects of the drugs on the host cell (left) and on the parasite (right). . (2005). Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bb48120d192b3ea0626c91aa7096638c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46006158,&quot;asset_id&quot;:12688159,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46006158/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12688159"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12688159"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12688159; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12688159]").text(description); $(".js-view-count[data-work-id=12688159]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12688159; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12688159']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bb48120d192b3ea0626c91aa7096638c" } } $('.js-work-strip[data-work-id=12688159]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12688159,"title":"Role of the Parasite and Host Cytoskeleton in Apicomplexa Parasitism","translated_title":"","metadata":{"grobid_abstract":"The phylum Apicomplexa includes a large and diverse group of obligate intracellular parasites that rely on actomyosin-based motility to migrate, enter host cells, and egress from infected cells. To ensure their intracellular survival and replication, the apicomplexans have evolved sophisticated strategies for subversion of the host cytoskeleton. Given the properties in common between the host and parasite cytoskeleton, dissecting their individual contribution to the establishment of parasitic infection has been challenging. Nevertheless, recent studies have provided new insights into the mechanisms by which parasites subvert the dynamic properties of host actin and tubulin to promote their entry, development, and egress. (A) Model of a typical apicomplexan parasite, highlighting the elements of the cytoskeleton. (B) Scheme of the actomyosin system involved in gliding motility. (C) Illustration of the effects of the drugs discussed in this review on actin and microtubule cytoskeletons. BDM, 2,3-butanedione monoxime; FH, formin homology domain. (D) Effects of the drugs on the host cell (left) and on the parasite (right). . (2005). Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Cell Host \u0026 Microbe","grobid_abstract_attachment_id":46006158},"translated_abstract":null,"internal_url":"https://www.academia.edu/12688159/Role_of_the_Parasite_and_Host_Cytoskeleton_in_Apicomplexa_Parasitism","translated_internal_url":"","created_at":"2015-05-30T08:45:53.544-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31698439,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46006158,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006158/thumbnails/1.jpg","file_name":"Role_of_the_parasite_and_host_cytoskelet20160527-31079-vlxtyl.pdf","download_url":"https://www.academia.edu/attachments/46006158/download_file","bulk_download_file_name":"Role_of_the_Parasite_and_Host_Cytoskelet.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006158/Role_of_the_parasite_and_host_cytoskelet20160527-31079-vlxtyl-libre.pdf?1464397357=\u0026response-content-disposition=attachment%3B+filename%3DRole_of_the_Parasite_and_Host_Cytoskelet.pdf\u0026Expires=1743100041\u0026Signature=cnUl2HdPPJODEM7d6N1A8EksdkVih6zBDzKa9SmgZQRDYWUVrOpYK4mmAz~nenf01Bro3Tx4ccKDlgIw5qxI9TrvLFNOkpblJhchXjh1o0Hf63jkw7mMpF21GE2qe5UmkRQfml0ZkYucf-ZVnWuom-TGS9a-UywoDkypb4LuvUGCRTIY~IXWjhAA0gXCjEseOQuSe1cuBYKGpGpQC65nsJNJwM8k~OtOlaP8SZHUbTg0mgAfk3JKERwHOmcpweixkL5emgEcESZVY2Jf8OSnlZ~OfDx-elcc36AoR4jj5NfBJtSvCLVKCZlc7fPH~w-XtMZhABu2P-AP8~qGSrOuKA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Role_of_the_Parasite_and_Host_Cytoskeleton_in_Apicomplexa_Parasitism","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"The phylum Apicomplexa includes a large and diverse group of obligate intracellular parasites that rely on actomyosin-based motility to migrate, enter host cells, and egress from infected cells. To ensure their intracellular survival and replication, the apicomplexans have evolved sophisticated strategies for subversion of the host cytoskeleton. Given the properties in common between the host and parasite cytoskeleton, dissecting their individual contribution to the establishment of parasitic infection has been challenging. Nevertheless, recent studies have provided new insights into the mechanisms by which parasites subvert the dynamic properties of host actin and tubulin to promote their entry, development, and egress. (A) Model of a typical apicomplexan parasite, highlighting the elements of the cytoskeleton. (B) Scheme of the actomyosin system involved in gliding motility. (C) Illustration of the effects of the drugs discussed in this review on actin and microtubule cytoskeletons. BDM, 2,3-butanedione monoxime; FH, formin homology domain. (D) Effects of the drugs on the host cell (left) and on the parasite (right). . (2005). Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii.","owner":{"id":31698439,"first_name":"Karine","middle_initials":null,"last_name":"Frénal","page_name":"KarineFrénal","domain_name":"unige","created_at":"2015-05-30T08:45:33.176-07:00","display_name":"Karine Frénal","url":"https://unige.academia.edu/KarineFr%C3%A9nal"},"attachments":[{"id":46006158,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006158/thumbnails/1.jpg","file_name":"Role_of_the_parasite_and_host_cytoskelet20160527-31079-vlxtyl.pdf","download_url":"https://www.academia.edu/attachments/46006158/download_file","bulk_download_file_name":"Role_of_the_Parasite_and_Host_Cytoskelet.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006158/Role_of_the_parasite_and_host_cytoskelet20160527-31079-vlxtyl-libre.pdf?1464397357=\u0026response-content-disposition=attachment%3B+filename%3DRole_of_the_Parasite_and_Host_Cytoskelet.pdf\u0026Expires=1743100041\u0026Signature=cnUl2HdPPJODEM7d6N1A8EksdkVih6zBDzKa9SmgZQRDYWUVrOpYK4mmAz~nenf01Bro3Tx4ccKDlgIw5qxI9TrvLFNOkpblJhchXjh1o0Hf63jkw7mMpF21GE2qe5UmkRQfml0ZkYucf-ZVnWuom-TGS9a-UywoDkypb4LuvUGCRTIY~IXWjhAA0gXCjEseOQuSe1cuBYKGpGpQC65nsJNJwM8k~OtOlaP8SZHUbTg0mgAfk3JKERwHOmcpweixkL5emgEcESZVY2Jf8OSnlZ~OfDx-elcc36AoR4jj5NfBJtSvCLVKCZlc7fPH~w-XtMZhABu2P-AP8~qGSrOuKA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":6947,"name":"Medical Microbiology","url":"https://www.academia.edu/Documents/in/Medical_Microbiology"},{"id":37508,"name":"Cytoskeleton","url":"https://www.academia.edu/Documents/in/Cytoskeleton"},{"id":142138,"name":"Host-parasite interactions","url":"https://www.academia.edu/Documents/in/Host-parasite_interactions"},{"id":533598,"name":"Tubulin","url":"https://www.academia.edu/Documents/in/Tubulin"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12688158"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/12688158/Functional_Dissection_of_the_Apicomplexan_Glideosome_Molecular_Architecture"><img alt="Research paper thumbnail of Functional Dissection of the Apicomplexan Glideosome Molecular Architecture" class="work-thumbnail" src="https://attachments.academia-assets.com/46006272/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/12688158/Functional_Dissection_of_the_Apicomplexan_Glideosome_Molecular_Architecture">Functional Dissection of the Apicomplexan Glideosome Molecular Architecture</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://unige.academia.edu/KarineFr%C3%A9nal">Karine Frénal</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/ValeriePolonais">Valerie Polonais</a></span></div><div class="wp-workCard_item"><span>Cell Host &amp; Microbe</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The glideosome of apicomplexan parasites is an actin-and myosin-based machine located at the pell...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The glideosome of apicomplexan parasites is an actin-and myosin-based machine located at the pellicle, between the plasma membrane (PM) and inner membrane complex (IMC), that powers parasite motility, migration, and host cell invasion and egress. It is composed of myosin A, its light chain MLC1, and two gliding-associated proteins, GAP50 and GAP45. We identify GAP40, a polytopic protein of the IMC, as an additional glideosome component and show that GAP45 is anchored to the PM and IMC via its N-and C-terminal extremities, respectively. While the C-terminal region of GAP45 recruits MLC1-MyoA to the IMC, the N-terminal acylation and coiled-coil domain preserve pellicle integrity during invasion. GAP45 is essential for gliding, invasion, and egress. The orthologous Plasmodium falciparum GAP45 can fulfill this dual function, as shown by transgenera complementation, whereas the coccidian GAP45 homolog (designated here as) GAP70 specifically recruits the glideosome to the apical cap of the parasite.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e9c65583e3634e0bed711d0a766bd456" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46006272,&quot;asset_id&quot;:12688158,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46006272/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12688158"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12688158"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12688158; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12688158]").text(description); $(".js-view-count[data-work-id=12688158]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12688158; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12688158']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e9c65583e3634e0bed711d0a766bd456" } } $('.js-work-strip[data-work-id=12688158]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12688158,"title":"Functional Dissection of the Apicomplexan Glideosome Molecular Architecture","translated_title":"","metadata":{"grobid_abstract":"The glideosome of apicomplexan parasites is an actin-and myosin-based machine located at the pellicle, between the plasma membrane (PM) and inner membrane complex (IMC), that powers parasite motility, migration, and host cell invasion and egress. It is composed of myosin A, its light chain MLC1, and two gliding-associated proteins, GAP50 and GAP45. We identify GAP40, a polytopic protein of the IMC, as an additional glideosome component and show that GAP45 is anchored to the PM and IMC via its N-and C-terminal extremities, respectively. While the C-terminal region of GAP45 recruits MLC1-MyoA to the IMC, the N-terminal acylation and coiled-coil domain preserve pellicle integrity during invasion. GAP45 is essential for gliding, invasion, and egress. The orthologous Plasmodium falciparum GAP45 can fulfill this dual function, as shown by transgenera complementation, whereas the coccidian GAP45 homolog (designated here as) GAP70 specifically recruits the glideosome to the apical cap of the parasite.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Cell Host \u0026 Microbe","grobid_abstract_attachment_id":46006272},"translated_abstract":null,"internal_url":"https://www.academia.edu/12688158/Functional_Dissection_of_the_Apicomplexan_Glideosome_Molecular_Architecture","translated_internal_url":"","created_at":"2015-05-30T08:45:53.448-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31698439,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":694759,"work_id":12688158,"tagging_user_id":31698439,"tagged_user_id":31756244,"co_author_invite_id":258650,"email":"j***q@unige.ch","display_order":null,"name":"Jean-baptiste Marq","title":"Functional Dissection of the Apicomplexan Glideosome Molecular Architecture"},{"id":694753,"work_id":12688158,"tagging_user_id":31698439,"tagged_user_id":null,"co_author_invite_id":258648,"email":"v***s@unige.ch","display_order":null,"name":"Valerie Polonais","title":"Functional Dissection of the Apicomplexan Glideosome Molecular Architecture"},{"id":694756,"work_id":12688158,"tagging_user_id":31698439,"tagged_user_id":31895436,"co_author_invite_id":258649,"email":"v***s@iut.u-clermont1.fr","display_order":null,"name":"Valerie Polonais","title":"Functional Dissection of the Apicomplexan Glideosome Molecular Architecture"}],"downloadable_attachments":[{"id":46006272,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006272/thumbnails/1.jpg","file_name":"Functional_Dissection_of_the_Apicomplexa20160527-27545-1wtitxw.pdf","download_url":"https://www.academia.edu/attachments/46006272/download_file","bulk_download_file_name":"Functional_Dissection_of_the_Apicomplexa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006272/Functional_Dissection_of_the_Apicomplexa20160527-27545-1wtitxw-libre.pdf?1464397353=\u0026response-content-disposition=attachment%3B+filename%3DFunctional_Dissection_of_the_Apicomplexa.pdf\u0026Expires=1743100041\u0026Signature=JfkxwP4MezdpReb1ofeB4h-q-tKt81GUmPqMbFkDmGmHeGhz4ERDzWK4mH9g3~Nb~hon0mErtwvB3SUKPU~ZmCZXefV5FqIc8UiL~pUHhygDkawbMmM40vRouzW2Sl6rG-C6TssWz6KDlLl3FdyWn1HQAUyWqAQ0gohD3STMM5VnOfpKNDJHGy~CjTe3zDhxUR20SA~FG3v9Im-OZ5zSC-pLJCxkhLRdMfUfIOENSOVl5uTxHhfnEHYih7xOZ91z~zFTLRSNAgLEoUbRyVKclpyV1RYKu~9M1K-5IiGmLnbgDTxqiq3RyczlMAPX4fPWZ3urY3hAEiezavoRWs-ZrQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Functional_Dissection_of_the_Apicomplexan_Glideosome_Molecular_Architecture","translated_slug":"","page_count":15,"language":"en","content_type":"Work","summary":"The glideosome of apicomplexan parasites is an actin-and myosin-based machine located at the pellicle, between the plasma membrane (PM) and inner membrane complex (IMC), that powers parasite motility, migration, and host cell invasion and egress. It is composed of myosin A, its light chain MLC1, and two gliding-associated proteins, GAP50 and GAP45. We identify GAP40, a polytopic protein of the IMC, as an additional glideosome component and show that GAP45 is anchored to the PM and IMC via its N-and C-terminal extremities, respectively. While the C-terminal region of GAP45 recruits MLC1-MyoA to the IMC, the N-terminal acylation and coiled-coil domain preserve pellicle integrity during invasion. GAP45 is essential for gliding, invasion, and egress. The orthologous Plasmodium falciparum GAP45 can fulfill this dual function, as shown by transgenera complementation, whereas the coccidian GAP45 homolog (designated here as) GAP70 specifically recruits the glideosome to the apical cap of the parasite.","owner":{"id":31698439,"first_name":"Karine","middle_initials":null,"last_name":"Frénal","page_name":"KarineFrénal","domain_name":"unige","created_at":"2015-05-30T08:45:33.176-07:00","display_name":"Karine Frénal","url":"https://unige.academia.edu/KarineFr%C3%A9nal"},"attachments":[{"id":46006272,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006272/thumbnails/1.jpg","file_name":"Functional_Dissection_of_the_Apicomplexa20160527-27545-1wtitxw.pdf","download_url":"https://www.academia.edu/attachments/46006272/download_file","bulk_download_file_name":"Functional_Dissection_of_the_Apicomplexa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006272/Functional_Dissection_of_the_Apicomplexa20160527-27545-1wtitxw-libre.pdf?1464397353=\u0026response-content-disposition=attachment%3B+filename%3DFunctional_Dissection_of_the_Apicomplexa.pdf\u0026Expires=1743100041\u0026Signature=JfkxwP4MezdpReb1ofeB4h-q-tKt81GUmPqMbFkDmGmHeGhz4ERDzWK4mH9g3~Nb~hon0mErtwvB3SUKPU~ZmCZXefV5FqIc8UiL~pUHhygDkawbMmM40vRouzW2Sl6rG-C6TssWz6KDlLl3FdyWn1HQAUyWqAQ0gohD3STMM5VnOfpKNDJHGy~CjTe3zDhxUR20SA~FG3v9Im-OZ5zSC-pLJCxkhLRdMfUfIOENSOVl5uTxHhfnEHYih7xOZ91z~zFTLRSNAgLEoUbRyVKclpyV1RYKu~9M1K-5IiGmLnbgDTxqiq3RyczlMAPX4fPWZ3urY3hAEiezavoRWs-ZrQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":6947,"name":"Medical Microbiology","url":"https://www.academia.edu/Documents/in/Medical_Microbiology"},{"id":11298,"name":"Membrane Proteins","url":"https://www.academia.edu/Documents/in/Membrane_Proteins"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":142138,"name":"Host-parasite interactions","url":"https://www.academia.edu/Documents/in/Host-parasite_interactions"},{"id":454230,"name":"Plasmodium falciparum","url":"https://www.academia.edu/Documents/in/Plasmodium_falciparum"},{"id":620070,"name":"Transfection","url":"https://www.academia.edu/Documents/in/Transfection"},{"id":664187,"name":"Acylation","url":"https://www.academia.edu/Documents/in/Acylation"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"},{"id":2468093,"name":"Cell Membrane","url":"https://www.academia.edu/Documents/in/Cell_Membrane"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12647563"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/12647563/Global_Analysis_of_Apicomplexan_Protein_S_Acyl_Transferases_Reveals_an_Enzyme_Essential_for_Invasion"><img alt="Research paper thumbnail of Global Analysis of Apicomplexan Protein S-Acyl Transferases Reveals an Enzyme Essential for Invasion" class="work-thumbnail" src="https://attachments.academia-assets.com/46030839/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/12647563/Global_Analysis_of_Apicomplexan_Protein_S_Acyl_Transferases_Reveals_an_Enzyme_Essential_for_Invasion">Global Analysis of Apicomplexan Protein S-Acyl Transferases Reveals an Enzyme Essential for Invasion</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/ArnaultGraindorge">Arnault Graindorge</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://unige.academia.edu/KarineFr%C3%A9nal">Karine Frénal</a>, and <a class="" data-click-track="profile-work-strip-authors" rel="nofollow" href="https://net.academia.edu/MuellerC">Mueller C</a></span></div><div class="wp-workCard_item"><span>Traffic</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The advent of techniques to study palmitoylation on a whole proteome scale has revealed that it i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The advent of techniques to study palmitoylation on a whole proteome scale has revealed that it is an important reversible modification that plays a role in regulating multiple biological processes. Palmitoylation can control the affinity of a protein for lipid membranes, which allows it to impact protein trafficking, stability, folding, signalling and interactions. The publication of the palmitome of the schizont stage of Plasmodium falciparum implicated a role for palmitoylation in host cell invasion, protein export and organelle biogenesis. However, nothing is known so far about the repertoire of protein S-acyl transferases (PATs) that catalyse this modification in Apicomplexa. We undertook a comprehensive analysis of the repertoire of Asp-His-His-Cys cysteine-rich domain (DHHC-CRD) PAT family in Toxoplasma gondii and Plasmodium berghei by assessing their localization and essentiality. Unlike functional redundancies reported in other eukaryotes, some apicomplexan-specific DHHCs are essential for parasite growth, and several are targeted to organelles unique to this phylum. Of particular interest is DHHC7, which localizes to rhoptry organelles in all parasites tested, including the major human pathogen P. falciparum. TgDHHC7 interferes with the localization of the rhoptry palmitoylated protein TgARO and affects the apical positioning of the rhoptry organelles. This PAT has a major impact on T. gondii host cell invasion, but not on the parasite&#39;s ability to egress.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="906751edb04f10e9389d06c6068caa55" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46030839,&quot;asset_id&quot;:12647563,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46030839/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12647563"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12647563"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12647563; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12647563]").text(description); $(".js-view-count[data-work-id=12647563]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12647563; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12647563']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "906751edb04f10e9389d06c6068caa55" } } $('.js-work-strip[data-work-id=12647563]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12647563,"title":"Global Analysis of Apicomplexan Protein S-Acyl Transferases Reveals an Enzyme Essential for Invasion","translated_title":"","metadata":{"ai_title_tag":"Apicomplexan PATs: Key to Host Invasion","grobid_abstract":"The advent of techniques to study palmitoylation on a whole proteome scale has revealed that it is an important reversible modification that plays a role in regulating multiple biological processes. Palmitoylation can control the affinity of a protein for lipid membranes, which allows it to impact protein trafficking, stability, folding, signalling and interactions. The publication of the palmitome of the schizont stage of Plasmodium falciparum implicated a role for palmitoylation in host cell invasion, protein export and organelle biogenesis. However, nothing is known so far about the repertoire of protein S-acyl transferases (PATs) that catalyse this modification in Apicomplexa. We undertook a comprehensive analysis of the repertoire of Asp-His-His-Cys cysteine-rich domain (DHHC-CRD) PAT family in Toxoplasma gondii and Plasmodium berghei by assessing their localization and essentiality. Unlike functional redundancies reported in other eukaryotes, some apicomplexan-specific DHHCs are essential for parasite growth, and several are targeted to organelles unique to this phylum. Of particular interest is DHHC7, which localizes to rhoptry organelles in all parasites tested, including the major human pathogen P. falciparum. TgDHHC7 interferes with the localization of the rhoptry palmitoylated protein TgARO and affects the apical positioning of the rhoptry organelles. This PAT has a major impact on T. gondii host cell invasion, but not on the parasite's ability to egress.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Traffic","grobid_abstract_attachment_id":46030839},"translated_abstract":null,"internal_url":"https://www.academia.edu/12647563/Global_Analysis_of_Apicomplexan_Protein_S_Acyl_Transferases_Reveals_an_Enzyme_Essential_for_Invasion","translated_internal_url":"","created_at":"2015-05-28T06:32:15.685-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31633727,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":673151,"work_id":12647563,"tagging_user_id":31633727,"tagged_user_id":31725114,"co_author_invite_id":252277,"email":"m***k@um5s.net.ma","affiliation":"Mohamed V Souissi","display_order":null,"name":"Mueller C","title":"Global Analysis of Apicomplexan Protein S-Acyl Transferases Reveals an Enzyme Essential for Invasion"},{"id":673152,"work_id":12647563,"tagging_user_id":31633727,"tagged_user_id":null,"co_author_invite_id":252278,"email":"s***s@voila.fr","display_order":null,"name":"Soldati-favre D","title":"Global Analysis of Apicomplexan Protein S-Acyl Transferases Reveals an Enzyme Essential for Invasion"},{"id":673150,"work_id":12647563,"tagging_user_id":31633727,"tagged_user_id":31698439,"co_author_invite_id":252276,"email":"k***l@unige.ch","affiliation":"Université de Genève","display_order":null,"name":"Karine Frénal","title":"Global Analysis of Apicomplexan Protein S-Acyl Transferases Reveals an Enzyme Essential for Invasion"}],"downloadable_attachments":[{"id":46030839,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46030839/thumbnails/1.jpg","file_name":"Global_Analysis_of_Apicomplexan_Protein_20160528-11776-1u6jo0h.pdf","download_url":"https://www.academia.edu/attachments/46030839/download_file","bulk_download_file_name":"Global_Analysis_of_Apicomplexan_Protein.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46030839/Global_Analysis_of_Apicomplexan_Protein_20160528-11776-1u6jo0h-libre.pdf?1464485907=\u0026response-content-disposition=attachment%3B+filename%3DGlobal_Analysis_of_Apicomplexan_Protein.pdf\u0026Expires=1743100041\u0026Signature=OPQowJTeWWOeFOMdau6L57u9p2nDeRkGqr-Z7xa6OHRfb-FgjBkCX9mCnJRQ661th0lqPdeNjdtIxUz438zKlwEKw4vQIkN2XniiaVZCaeLI4cdcX9aC21y1kaKZovOPgPpXzXA0Ql4xwDL~fZKyAceNTJgp3YBmhuGWZVGd2rynailuTnqyCdM8eJI93mCdHx6JlHm0Vf8eJbo8VXJVdIG7N3MY75~G7sawiZCr1IsAUduK4bFERIyf4q7lFbjquWwyevfQNJmi6XjiNtZ9lWPNBM9XCLH-EFtt8Gp5qtW4SxmmUOA064e4Dfl3uJv0aaBjF~u~9LhJrpyv~hqgqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Global_Analysis_of_Apicomplexan_Protein_S_Acyl_Transferases_Reveals_an_Enzyme_Essential_for_Invasion","translated_slug":"","page_count":17,"language":"en","content_type":"Work","summary":"The advent of techniques to study palmitoylation on a whole proteome scale has revealed that it is an important reversible modification that plays a role in regulating multiple biological processes. Palmitoylation can control the affinity of a protein for lipid membranes, which allows it to impact protein trafficking, stability, folding, signalling and interactions. The publication of the palmitome of the schizont stage of Plasmodium falciparum implicated a role for palmitoylation in host cell invasion, protein export and organelle biogenesis. However, nothing is known so far about the repertoire of protein S-acyl transferases (PATs) that catalyse this modification in Apicomplexa. We undertook a comprehensive analysis of the repertoire of Asp-His-His-Cys cysteine-rich domain (DHHC-CRD) PAT family in Toxoplasma gondii and Plasmodium berghei by assessing their localization and essentiality. Unlike functional redundancies reported in other eukaryotes, some apicomplexan-specific DHHCs are essential for parasite growth, and several are targeted to organelles unique to this phylum. Of particular interest is DHHC7, which localizes to rhoptry organelles in all parasites tested, including the major human pathogen P. falciparum. TgDHHC7 interferes with the localization of the rhoptry palmitoylated protein TgARO and affects the apical positioning of the rhoptry organelles. This PAT has a major impact on T. gondii host cell invasion, but not on the parasite's ability to egress.","owner":{"id":31633727,"first_name":"Arnault","middle_initials":null,"last_name":"Graindorge","page_name":"ArnaultGraindorge","domain_name":"independent","created_at":"2015-05-28T06:31:48.449-07:00","display_name":"Arnault Graindorge","url":"https://independent.academia.edu/ArnaultGraindorge"},"attachments":[{"id":46030839,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46030839/thumbnails/1.jpg","file_name":"Global_Analysis_of_Apicomplexan_Protein_20160528-11776-1u6jo0h.pdf","download_url":"https://www.academia.edu/attachments/46030839/download_file","bulk_download_file_name":"Global_Analysis_of_Apicomplexan_Protein.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46030839/Global_Analysis_of_Apicomplexan_Protein_20160528-11776-1u6jo0h-libre.pdf?1464485907=\u0026response-content-disposition=attachment%3B+filename%3DGlobal_Analysis_of_Apicomplexan_Protein.pdf\u0026Expires=1743100041\u0026Signature=OPQowJTeWWOeFOMdau6L57u9p2nDeRkGqr-Z7xa6OHRfb-FgjBkCX9mCnJRQ661th0lqPdeNjdtIxUz438zKlwEKw4vQIkN2XniiaVZCaeLI4cdcX9aC21y1kaKZovOPgPpXzXA0Ql4xwDL~fZKyAceNTJgp3YBmhuGWZVGd2rynailuTnqyCdM8eJI93mCdHx6JlHm0Vf8eJbo8VXJVdIG7N3MY75~G7sawiZCr1IsAUduK4bFERIyf4q7lFbjquWwyevfQNJmi6XjiNtZ9lWPNBM9XCLH-EFtt8Gp5qtW4SxmmUOA064e4Dfl3uJv0aaBjF~u~9LhJrpyv~hqgqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":54433,"name":"Phylogeny","url":"https://www.academia.edu/Documents/in/Phylogeny"},{"id":157891,"name":"Traffic","url":"https://www.academia.edu/Documents/in/Traffic"},{"id":567271,"name":"Palmitoylation","url":"https://www.academia.edu/Documents/in/Palmitoylation"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":1457054,"name":"Protein Transport","url":"https://www.academia.edu/Documents/in/Protein_Transport"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":1693871,"name":"Plasmodium berghei","url":"https://www.academia.edu/Documents/in/Plasmodium_berghei"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="2989522" id="papers"><div class="js-work-strip profile--work_container" data-work-id="30762175"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30762175/The_Plasmodium_berghei_Ca2_H_Exchanger_PbCAX_Is_Essential_for_Tolerance_to_Environmental_Ca2_during_Sexual_Development"><img alt="Research paper thumbnail of The Plasmodium berghei Ca2+/H+ Exchanger, PbCAX, Is Essential for Tolerance to Environmental Ca2+ during Sexual Development" class="work-thumbnail" src="https://attachments.academia-assets.com/51199599/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30762175/The_Plasmodium_berghei_Ca2_H_Exchanger_PbCAX_Is_Essential_for_Tolerance_to_Environmental_Ca2_during_Sexual_Development">The Plasmodium berghei Ca2+/H+ Exchanger, PbCAX, Is Essential for Tolerance to Environmental Ca2+ during Sexual Development</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/FavreDominique">Dominique Favre</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://unige.academia.edu/KarineFr%C3%A9nal">Karine Frénal</a></span></div><div class="wp-workCard_item"><span>PLoS Pathogens</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Ca 2+ contributes to a myriad of important cellular processes in all organisms, including the api...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Ca 2+ contributes to a myriad of important cellular processes in all organisms, including the apicomplexans, Plasmodium and Toxoplasma. Due to its varied and essential roles, free Ca 2+ is tightly regulated by complex mechanisms. These mechanisms are therefore of interest as putative drug targets. One pathway in Ca 2+ homeostatic control in apicomplexans uses a Ca 2+ /H + exchanger (a member of the cation exchanger family, CAX). The P. falciparum CAX (PfCAX) has recently been characterised in asexual blood stage parasites. To determine the physiological importance of apicomplexan CAXs, tagging and knock-out strategies were undertaken in the genetically tractable T. gondii and P. berghei parasites. In addition, a yeast heterologous expression system was used to study the function of apicomplexan CAXs. Tagging of T. gondii and P. berghei CAXs (TgCAX and PbCAX) under control of their endogenous promoters could not demonstrate measureable expression of either CAX in tachyzoites and asexual blood stages, respectively. These results were consistent with the ability of parasites to tolerate knock-outs of the genes for TgCAX and PbCAX at these developmental stages. In contrast, PbCAX expression was detectable during sexual stages of development in female gametocytes/gametes, zygotes and ookinetes, where it was dispersed in membranous networks within the cytosol (with minimal mitochondrial localisation). Furthermore, genetically disrupted parasites failed to develop further from &#39;&#39;round&#39;&#39; form zygotes, suggesting that PbCAX is essential for ookinete development and differentiation. This impeded phenotype could be rescued by removal of extracellular Ca 2+ . Therefore, PbCAX provides a mechanism for free living parasites to multiply within the ionic microenvironment of the mosquito midgut. Ca 2+ homeostasis mediated by PbCAX is critical and suggests plasmodial CAXs may be targeted in approaches designed to block parasite transmission. Citation: Guttery DS, Pittman JK, Frénal K, Poulin B, McFarlane LR, et al. (2013) The Plasmodium berghei Ca 2+ /H + Exchanger, PbCAX, Is Essential for Tolerance to Environmental Ca 2+ during Sexual Development. PLoS Pathog 9(2): e1003191.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b377ddd6a7945e4347cc8f6b5f5cd5be" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51199599,&quot;asset_id&quot;:30762175,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51199599/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30762175"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30762175"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30762175; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30762175]").text(description); $(".js-view-count[data-work-id=30762175]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30762175; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30762175']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b377ddd6a7945e4347cc8f6b5f5cd5be" } } $('.js-work-strip[data-work-id=30762175]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30762175,"title":"The Plasmodium berghei Ca2+/H+ Exchanger, PbCAX, Is Essential for Tolerance to Environmental Ca2+ during Sexual Development","translated_title":"","metadata":{"grobid_abstract":"Ca 2+ contributes to a myriad of important cellular processes in all organisms, including the apicomplexans, Plasmodium and Toxoplasma. Due to its varied and essential roles, free Ca 2+ is tightly regulated by complex mechanisms. These mechanisms are therefore of interest as putative drug targets. One pathway in Ca 2+ homeostatic control in apicomplexans uses a Ca 2+ /H + exchanger (a member of the cation exchanger family, CAX). The P. falciparum CAX (PfCAX) has recently been characterised in asexual blood stage parasites. To determine the physiological importance of apicomplexan CAXs, tagging and knock-out strategies were undertaken in the genetically tractable T. gondii and P. berghei parasites. In addition, a yeast heterologous expression system was used to study the function of apicomplexan CAXs. Tagging of T. gondii and P. berghei CAXs (TgCAX and PbCAX) under control of their endogenous promoters could not demonstrate measureable expression of either CAX in tachyzoites and asexual blood stages, respectively. These results were consistent with the ability of parasites to tolerate knock-outs of the genes for TgCAX and PbCAX at these developmental stages. In contrast, PbCAX expression was detectable during sexual stages of development in female gametocytes/gametes, zygotes and ookinetes, where it was dispersed in membranous networks within the cytosol (with minimal mitochondrial localisation). Furthermore, genetically disrupted parasites failed to develop further from ''round'' form zygotes, suggesting that PbCAX is essential for ookinete development and differentiation. This impeded phenotype could be rescued by removal of extracellular Ca 2+ . Therefore, PbCAX provides a mechanism for free living parasites to multiply within the ionic microenvironment of the mosquito midgut. Ca 2+ homeostasis mediated by PbCAX is critical and suggests plasmodial CAXs may be targeted in approaches designed to block parasite transmission. Citation: Guttery DS, Pittman JK, Frénal K, Poulin B, McFarlane LR, et al. (2013) The Plasmodium berghei Ca 2+ /H + Exchanger, PbCAX, Is Essential for Tolerance to Environmental Ca 2+ during Sexual Development. PLoS Pathog 9(2): e1003191.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"PLoS Pathogens","grobid_abstract_attachment_id":51199599},"translated_abstract":null,"internal_url":"https://www.academia.edu/30762175/The_Plasmodium_berghei_Ca2_H_Exchanger_PbCAX_Is_Essential_for_Tolerance_to_Environmental_Ca2_during_Sexual_Development","translated_internal_url":"","created_at":"2017-01-05T02:44:03.428-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":58566697,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26923711,"work_id":30762175,"tagging_user_id":58566697,"tagged_user_id":31698439,"co_author_invite_id":null,"email":"k***l@unige.ch","affiliation":"Université de Genève","display_order":0,"name":"Karine Frénal","title":"The Plasmodium berghei Ca2+/H+ Exchanger, PbCAX, Is Essential for Tolerance to Environmental Ca2+ during Sexual Development"}],"downloadable_attachments":[{"id":51199599,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51199599/thumbnails/1.jpg","file_name":"The_Plasmodium_berghei_Ca2H_Exchange20170105-6160-19obndj.pdf","download_url":"https://www.academia.edu/attachments/51199599/download_file","bulk_download_file_name":"The_Plasmodium_berghei_Ca2_H_Exchanger_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51199599/The_Plasmodium_berghei_Ca2H_Exchange20170105-6160-19obndj-libre.pdf?1483613546=\u0026response-content-disposition=attachment%3B+filename%3DThe_Plasmodium_berghei_Ca2_H_Exchanger_P.pdf\u0026Expires=1743100040\u0026Signature=LHQA20LxiSantroAUml-3uVLlf1g6b6eV6deWI4xNLziMsiIUVEoSxkF-yh~zmvraTjfEKsIVDd6wf~2BFC5Is6QGL6uxlxShC1bi2LrK9dO06NSc3R8CZRrcPhWFD-opleUTw-iIkAZXDJloXzk8cO04C-8yvQ~vyltuJePOYP-XNNwNk8TRKAnBqlJGLdUvQfHQTV~uwOqnTM97b7j9YCacWSlnU0~ZemIPFSUordywZIjt7pELOLutdO2FQjDQQbvhgl8B8cJo-cBsAruvHixpyGRjYk7Yjcbs8XwRigcOm5ITv7INgV5mIMj5~EwGgsS6YwtNNidtwIC2x8dxQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Plasmodium_berghei_Ca2_H_Exchanger_PbCAX_Is_Essential_for_Tolerance_to_Environmental_Ca2_during_Sexual_Development","translated_slug":"","page_count":18,"language":"en","content_type":"Work","summary":"Ca 2+ contributes to a myriad of important cellular processes in all organisms, including the apicomplexans, Plasmodium and Toxoplasma. Due to its varied and essential roles, free Ca 2+ is tightly regulated by complex mechanisms. These mechanisms are therefore of interest as putative drug targets. One pathway in Ca 2+ homeostatic control in apicomplexans uses a Ca 2+ /H + exchanger (a member of the cation exchanger family, CAX). The P. falciparum CAX (PfCAX) has recently been characterised in asexual blood stage parasites. To determine the physiological importance of apicomplexan CAXs, tagging and knock-out strategies were undertaken in the genetically tractable T. gondii and P. berghei parasites. In addition, a yeast heterologous expression system was used to study the function of apicomplexan CAXs. Tagging of T. gondii and P. berghei CAXs (TgCAX and PbCAX) under control of their endogenous promoters could not demonstrate measureable expression of either CAX in tachyzoites and asexual blood stages, respectively. These results were consistent with the ability of parasites to tolerate knock-outs of the genes for TgCAX and PbCAX at these developmental stages. In contrast, PbCAX expression was detectable during sexual stages of development in female gametocytes/gametes, zygotes and ookinetes, where it was dispersed in membranous networks within the cytosol (with minimal mitochondrial localisation). Furthermore, genetically disrupted parasites failed to develop further from ''round'' form zygotes, suggesting that PbCAX is essential for ookinete development and differentiation. This impeded phenotype could be rescued by removal of extracellular Ca 2+ . Therefore, PbCAX provides a mechanism for free living parasites to multiply within the ionic microenvironment of the mosquito midgut. Ca 2+ homeostasis mediated by PbCAX is critical and suggests plasmodial CAXs may be targeted in approaches designed to block parasite transmission. Citation: Guttery DS, Pittman JK, Frénal K, Poulin B, McFarlane LR, et al. (2013) The Plasmodium berghei Ca 2+ /H + Exchanger, PbCAX, Is Essential for Tolerance to Environmental Ca 2+ during Sexual Development. PLoS Pathog 9(2): e1003191.","owner":{"id":58566697,"first_name":"Dominique","middle_initials":null,"last_name":"Favre","page_name":"FavreDominique","domain_name":"independent","created_at":"2017-01-05T02:43:43.441-08:00","display_name":"Dominique Favre","url":"https://independent.academia.edu/FavreDominique"},"attachments":[{"id":51199599,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51199599/thumbnails/1.jpg","file_name":"The_Plasmodium_berghei_Ca2H_Exchange20170105-6160-19obndj.pdf","download_url":"https://www.academia.edu/attachments/51199599/download_file","bulk_download_file_name":"The_Plasmodium_berghei_Ca2_H_Exchanger_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51199599/The_Plasmodium_berghei_Ca2H_Exchange20170105-6160-19obndj-libre.pdf?1483613546=\u0026response-content-disposition=attachment%3B+filename%3DThe_Plasmodium_berghei_Ca2_H_Exchanger_P.pdf\u0026Expires=1743100040\u0026Signature=LHQA20LxiSantroAUml-3uVLlf1g6b6eV6deWI4xNLziMsiIUVEoSxkF-yh~zmvraTjfEKsIVDd6wf~2BFC5Is6QGL6uxlxShC1bi2LrK9dO06NSc3R8CZRrcPhWFD-opleUTw-iIkAZXDJloXzk8cO04C-8yvQ~vyltuJePOYP-XNNwNk8TRKAnBqlJGLdUvQfHQTV~uwOqnTM97b7j9YCacWSlnU0~ZemIPFSUordywZIjt7pELOLutdO2FQjDQQbvhgl8B8cJo-cBsAruvHixpyGRjYk7Yjcbs8XwRigcOm5ITv7INgV5mIMj5~EwGgsS6YwtNNidtwIC2x8dxQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":1290,"name":"Immunology","url":"https://www.academia.edu/Documents/in/Immunology"},{"id":6947,"name":"Medical Microbiology","url":"https://www.academia.edu/Documents/in/Medical_Microbiology"},{"id":9534,"name":"Calcium","url":"https://www.academia.edu/Documents/in/Calcium"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":29290,"name":"Oogenesis","url":"https://www.academia.edu/Documents/in/Oogenesis"},{"id":67484,"name":"Sequence alignment","url":"https://www.academia.edu/Documents/in/Sequence_alignment"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":564492,"name":"Sex Differentiation","url":"https://www.academia.edu/Documents/in/Sex_Differentiation"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":1693871,"name":"Plasmodium berghei","url":"https://www.academia.edu/Documents/in/Plasmodium_berghei"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="30762180"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30762180/Plasticity_between_MyoC_and_MyoA_Glideosomes_An_Example_of_Functional_Compensation_in_Toxoplasma_gondii_Invasion"><img alt="Research paper thumbnail of Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion" class="work-thumbnail" src="https://attachments.academia-assets.com/51199613/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30762180/Plasticity_between_MyoC_and_MyoA_Glideosomes_An_Example_of_Functional_Compensation_in_Toxoplasma_gondii_Invasion">Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/FavreDominique">Dominique Favre</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/DamienJacot">Damien Jacot</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://unige.academia.edu/KarineFr%C3%A9nal">Karine Frénal</a></span></div><div class="wp-workCard_item"><span>PLoS Pathogens</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The glideosome is an actomyosin-based machinery that powers motility in Apicomplexa and participa...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The glideosome is an actomyosin-based machinery that powers motility in Apicomplexa and participates in host cell invasion and egress from infected cells. The central component of the glideosome, myosin A (MyoA), is a motor recruited at the pellicle by the acylated gliding-associated protein GAP45. In Toxoplasma gondii, GAP45 also contributes to the cohesion of the pellicle, composed of the inner membrane complex (IMC) and the plasma membrane, during motor traction. GAP70 was previously identified as a paralog of GAP45 that is tailored to recruit MyoA at the apical cap in the coccidian subgroup of the Apicomplexa. A third member of this family, GAP80, is demonstrated here to assemble a new glideosome, which recruits the class XIV myosin C (MyoC) at the basal polar ring. MyoC shares the same myosin light chains as MyoA and also interacts with the integral IMC proteins GAP50 and GAP40. Moreover, a central component of this complex, the IMCassociated protein 1 (IAP1), acts as the key determinant for the restricted localization of MyoC to the posterior pole. Deletion of specific components of the MyoC-glideosome underscores the installation of compensatory mechanisms with components of the MyoA-glideosome. Conversely, removal of MyoA leads to the relocalization of MyoC along the pellicle and at the apical cap that accounts for residual invasion. The two glideosomes exhibit a considerable level of plasticity to ensure parasite survival. Citation: Frénal K, Marq JB, Jacot D, Polonais V, Soldati-Favre D (2014) Plasticity between MyoC-and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion. PLoS Pathog 10(11): e1004504.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d80ffcb632b63912ecbb9951a38c5672" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51199613,&quot;asset_id&quot;:30762180,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51199613/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30762180"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30762180"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30762180; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30762180]").text(description); $(".js-view-count[data-work-id=30762180]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30762180; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30762180']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d80ffcb632b63912ecbb9951a38c5672" } } $('.js-work-strip[data-work-id=30762180]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30762180,"title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion","translated_title":"","metadata":{"grobid_abstract":"The glideosome is an actomyosin-based machinery that powers motility in Apicomplexa and participates in host cell invasion and egress from infected cells. The central component of the glideosome, myosin A (MyoA), is a motor recruited at the pellicle by the acylated gliding-associated protein GAP45. In Toxoplasma gondii, GAP45 also contributes to the cohesion of the pellicle, composed of the inner membrane complex (IMC) and the plasma membrane, during motor traction. GAP70 was previously identified as a paralog of GAP45 that is tailored to recruit MyoA at the apical cap in the coccidian subgroup of the Apicomplexa. A third member of this family, GAP80, is demonstrated here to assemble a new glideosome, which recruits the class XIV myosin C (MyoC) at the basal polar ring. MyoC shares the same myosin light chains as MyoA and also interacts with the integral IMC proteins GAP50 and GAP40. Moreover, a central component of this complex, the IMCassociated protein 1 (IAP1), acts as the key determinant for the restricted localization of MyoC to the posterior pole. Deletion of specific components of the MyoC-glideosome underscores the installation of compensatory mechanisms with components of the MyoA-glideosome. Conversely, removal of MyoA leads to the relocalization of MyoC along the pellicle and at the apical cap that accounts for residual invasion. The two glideosomes exhibit a considerable level of plasticity to ensure parasite survival. Citation: Frénal K, Marq JB, Jacot D, Polonais V, Soldati-Favre D (2014) Plasticity between MyoC-and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion. PLoS Pathog 10(11): e1004504.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"PLoS Pathogens","grobid_abstract_attachment_id":51199613},"translated_abstract":null,"internal_url":"https://www.academia.edu/30762180/Plasticity_between_MyoC_and_MyoA_Glideosomes_An_Example_of_Functional_Compensation_in_Toxoplasma_gondii_Invasion","translated_internal_url":"","created_at":"2017-01-05T02:44:04.828-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":58566697,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":26923684,"work_id":30762180,"tagging_user_id":58566697,"tagged_user_id":31756244,"co_author_invite_id":null,"email":"j***q@unige.ch","display_order":0,"name":"Jean-baptiste Marq","title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion"},{"id":26923691,"work_id":30762180,"tagging_user_id":58566697,"tagged_user_id":31753081,"co_author_invite_id":null,"email":"d***t@unige.ch","display_order":4194304,"name":"Damien Jacot","title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion"},{"id":26923704,"work_id":30762180,"tagging_user_id":58566697,"tagged_user_id":31895436,"co_author_invite_id":null,"email":"v***s@iut.u-clermont1.fr","display_order":6291456,"name":"Valerie Polonais","title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion"},{"id":26923712,"work_id":30762180,"tagging_user_id":58566697,"tagged_user_id":31698439,"co_author_invite_id":null,"email":"k***l@unige.ch","affiliation":"Université de Genève","display_order":7340032,"name":"Karine Frénal","title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion"},{"id":28316983,"work_id":30762180,"tagging_user_id":31753081,"tagged_user_id":null,"co_author_invite_id":6178932,"email":"s***i@sun0.urz.uniheidelberg.de","display_order":7864320,"name":"Dominique Soldati","title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion"}],"downloadable_attachments":[{"id":51199613,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51199613/thumbnails/1.jpg","file_name":"Plasticity_between_MyoC-_and_MyoA-Glideo20170105-6160-sd84c3.pdf","download_url":"https://www.academia.edu/attachments/51199613/download_file","bulk_download_file_name":"Plasticity_between_MyoC_and_MyoA_Glideos.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51199613/Plasticity_between_MyoC-_and_MyoA-Glideo20170105-6160-sd84c3-libre.pdf?1483613547=\u0026response-content-disposition=attachment%3B+filename%3DPlasticity_between_MyoC_and_MyoA_Glideos.pdf\u0026Expires=1743100040\u0026Signature=Uo8Cu8a2Aj7UT34oXltmMgt09-VDLuGaX7441RuQjbEbDNWwlpO~-qQ-LLzEVS-KZtPNOxXOy7DafbkPg5bGI0nwg92wxJ~kG3tYqFpX~ShFJTqKQuj37xTdhiywW3Sso1XJhSO-kZvN7xcjhKoM8T9NqmvH0FvvM8ZVwgsIyhq0oKke~UxoiDXyf1bihDwjWwE4OaDnyVOCW45WOilroNpXgyJHtUH36Seus7-h85SaNOYyVP5OJ3aab1fPUxFqSqMBkuDWpNyfFabHg49AQdLJOoy6rDOs8aCREX7xil3gDGvjblX6~8W4-PXhBFsa7MTQOzDOjEgSOU1lwBSsXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Plasticity_between_MyoC_and_MyoA_Glideosomes_An_Example_of_Functional_Compensation_in_Toxoplasma_gondii_Invasion","translated_slug":"","page_count":22,"language":"en","content_type":"Work","summary":"The glideosome is an actomyosin-based machinery that powers motility in Apicomplexa and participates in host cell invasion and egress from infected cells. The central component of the glideosome, myosin A (MyoA), is a motor recruited at the pellicle by the acylated gliding-associated protein GAP45. In Toxoplasma gondii, GAP45 also contributes to the cohesion of the pellicle, composed of the inner membrane complex (IMC) and the plasma membrane, during motor traction. GAP70 was previously identified as a paralog of GAP45 that is tailored to recruit MyoA at the apical cap in the coccidian subgroup of the Apicomplexa. A third member of this family, GAP80, is demonstrated here to assemble a new glideosome, which recruits the class XIV myosin C (MyoC) at the basal polar ring. MyoC shares the same myosin light chains as MyoA and also interacts with the integral IMC proteins GAP50 and GAP40. Moreover, a central component of this complex, the IMCassociated protein 1 (IAP1), acts as the key determinant for the restricted localization of MyoC to the posterior pole. Deletion of specific components of the MyoC-glideosome underscores the installation of compensatory mechanisms with components of the MyoA-glideosome. Conversely, removal of MyoA leads to the relocalization of MyoC along the pellicle and at the apical cap that accounts for residual invasion. The two glideosomes exhibit a considerable level of plasticity to ensure parasite survival. Citation: Frénal K, Marq JB, Jacot D, Polonais V, Soldati-Favre D (2014) Plasticity between MyoC-and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion. PLoS Pathog 10(11): e1004504.","owner":{"id":58566697,"first_name":"Dominique","middle_initials":null,"last_name":"Favre","page_name":"FavreDominique","domain_name":"independent","created_at":"2017-01-05T02:43:43.441-08:00","display_name":"Dominique Favre","url":"https://independent.academia.edu/FavreDominique"},"attachments":[{"id":51199613,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51199613/thumbnails/1.jpg","file_name":"Plasticity_between_MyoC-_and_MyoA-Glideo20170105-6160-sd84c3.pdf","download_url":"https://www.academia.edu/attachments/51199613/download_file","bulk_download_file_name":"Plasticity_between_MyoC_and_MyoA_Glideos.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51199613/Plasticity_between_MyoC-_and_MyoA-Glideo20170105-6160-sd84c3-libre.pdf?1483613547=\u0026response-content-disposition=attachment%3B+filename%3DPlasticity_between_MyoC_and_MyoA_Glideos.pdf\u0026Expires=1743100040\u0026Signature=Uo8Cu8a2Aj7UT34oXltmMgt09-VDLuGaX7441RuQjbEbDNWwlpO~-qQ-LLzEVS-KZtPNOxXOy7DafbkPg5bGI0nwg92wxJ~kG3tYqFpX~ShFJTqKQuj37xTdhiywW3Sso1XJhSO-kZvN7xcjhKoM8T9NqmvH0FvvM8ZVwgsIyhq0oKke~UxoiDXyf1bihDwjWwE4OaDnyVOCW45WOilroNpXgyJHtUH36Seus7-h85SaNOYyVP5OJ3aab1fPUxFqSqMBkuDWpNyfFabHg49AQdLJOoy6rDOs8aCREX7xil3gDGvjblX6~8W4-PXhBFsa7MTQOzDOjEgSOU1lwBSsXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":1290,"name":"Immunology","url":"https://www.academia.edu/Documents/in/Immunology"},{"id":6947,"name":"Medical Microbiology","url":"https://www.academia.edu/Documents/in/Medical_Microbiology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12688165"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/12688165/Myosin_Class_XIV_And_Other_Myosins_In_Protists"><img alt="Research paper thumbnail of Myosin Class XIV And Other Myosins In Protists" class="work-thumbnail" src="https://attachments.academia-assets.com/46006263/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/12688165/Myosin_Class_XIV_And_Other_Myosins_In_Protists">Myosin Class XIV And Other Myosins In Protists</a></div><div class="wp-workCard_item"><span>Proteins and Cell Regulation</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Myosins are actin-based molecular motors that convert chemical energy released by ATP hydrolysis ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Myosins are actin-based molecular motors that convert chemical energy released by ATP hydrolysis into directed movement along tracks of actin filaments. They are found in eukaryotes and are implicated in a number of important cell functions, such as nuclear and cell division, transport of molecules, vesicles, and organelles, signal transduction, and motility. The myosin superfamily was previously described as containing at least 18 different classes with class XIV reported to be specific to apicomplexan parasites and subdivided into two subclasses. But a recent reassessment of myosin phylogeny and classification incorporating a number of novel sequences uncovered by several genome sequencing initiatives has expanded the known repertoire of myosin heavy chains from apicomplexans and other protists. It established six new myosin classes, three of which are restricted to alveolates (XXII, XXIII, XXIV), and showed that class XIV encompasses myosins of both apicomplexans and ciliates and is subdivided into four subclasses. Moreover, several sequences include protein domains (ATS1-like, WD40) previously unknown to be associated with myosin motors. In this chapter, we discuss the current classification of myosin heavy chains with particular emphasis on the apicomplexan myosins. Most of them have not yet been studied experimentally and we discuss their possible function based on their classification and their protein domains.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="16eeda30e0d4181ef9862bc541f50bb8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46006263,&quot;asset_id&quot;:12688165,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46006263/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12688165"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12688165"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12688165; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12688165]").text(description); $(".js-view-count[data-work-id=12688165]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12688165; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12688165']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "16eeda30e0d4181ef9862bc541f50bb8" } } $('.js-work-strip[data-work-id=12688165]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12688165,"title":"Myosin Class XIV And Other Myosins In Protists","translated_title":"","metadata":{"grobid_abstract":"Myosins are actin-based molecular motors that convert chemical energy released by ATP hydrolysis into directed movement along tracks of actin filaments. They are found in eukaryotes and are implicated in a number of important cell functions, such as nuclear and cell division, transport of molecules, vesicles, and organelles, signal transduction, and motility. The myosin superfamily was previously described as containing at least 18 different classes with class XIV reported to be specific to apicomplexan parasites and subdivided into two subclasses. But a recent reassessment of myosin phylogeny and classification incorporating a number of novel sequences uncovered by several genome sequencing initiatives has expanded the known repertoire of myosin heavy chains from apicomplexans and other protists. It established six new myosin classes, three of which are restricted to alveolates (XXII, XXIII, XXIV), and showed that class XIV encompasses myosins of both apicomplexans and ciliates and is subdivided into four subclasses. Moreover, several sequences include protein domains (ATS1-like, WD40) previously unknown to be associated with myosin motors. In this chapter, we discuss the current classification of myosin heavy chains with particular emphasis on the apicomplexan myosins. Most of them have not yet been studied experimentally and we discuss their possible function based on their classification and their protein domains.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Proteins and Cell Regulation","grobid_abstract_attachment_id":46006263},"translated_abstract":null,"internal_url":"https://www.academia.edu/12688165/Myosin_Class_XIV_And_Other_Myosins_In_Protists","translated_internal_url":"","created_at":"2015-05-30T08:45:54.149-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31698439,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":694752,"work_id":12688165,"tagging_user_id":31698439,"tagged_user_id":null,"co_author_invite_id":258647,"email":"b***h@ntu.edu.sg","display_order":null,"name":"Bernardo Foth","title":"Myosin Class XIV And Other Myosins In Protists"}],"downloadable_attachments":[{"id":46006263,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006263/thumbnails/1.jpg","file_name":"Myosin_Class_XIV_And_Other_Myosins_In_Pr20160527-12660-q87aay.pdf","download_url":"https://www.academia.edu/attachments/46006263/download_file","bulk_download_file_name":"Myosin_Class_XIV_And_Other_Myosins_In_Pr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006263/Myosin_Class_XIV_And_Other_Myosins_In_Pr20160527-12660-q87aay-libre.pdf?1464397352=\u0026response-content-disposition=attachment%3B+filename%3DMyosin_Class_XIV_And_Other_Myosins_In_Pr.pdf\u0026Expires=1743100040\u0026Signature=FQVWlz6QxUFJQwov9eboI7G~I4GWefEs5dlSBAEZKI2niSOPolhywQFD-rqGePUF8Kp5WJFjHFSx0zIKgNC3YZcd~ZpfM53GwA3tynZkv9a6tBfLCTT1QgB~5Tf18VImnUJVzHIl-ymbXn77HVAKI6Va3ilAyjY7-7ngy2dRllyRyZdXutY52J-XGzbjisW37x7asaRTaA7~4meIj9bq4YIf~AR~ydvgfgskrinCtd6VMY3D9wSBA514fisBdwnELHyJIf4YooG3B1BQE5akc~RmZcBJF1TW~wR~NZjn44A7U7nOUJvhP5fiUybMR4rr2Vmi0DsPu8Mtzo7XqVYC7g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Myosin_Class_XIV_And_Other_Myosins_In_Protists","translated_slug":"","page_count":20,"language":"en","content_type":"Work","summary":"Myosins are actin-based molecular motors that convert chemical energy released by ATP hydrolysis into directed movement along tracks of actin filaments. They are found in eukaryotes and are implicated in a number of important cell functions, such as nuclear and cell division, transport of molecules, vesicles, and organelles, signal transduction, and motility. The myosin superfamily was previously described as containing at least 18 different classes with class XIV reported to be specific to apicomplexan parasites and subdivided into two subclasses. But a recent reassessment of myosin phylogeny and classification incorporating a number of novel sequences uncovered by several genome sequencing initiatives has expanded the known repertoire of myosin heavy chains from apicomplexans and other protists. It established six new myosin classes, three of which are restricted to alveolates (XXII, XXIII, XXIV), and showed that class XIV encompasses myosins of both apicomplexans and ciliates and is subdivided into four subclasses. Moreover, several sequences include protein domains (ATS1-like, WD40) previously unknown to be associated with myosin motors. In this chapter, we discuss the current classification of myosin heavy chains with particular emphasis on the apicomplexan myosins. Most of them have not yet been studied experimentally and we discuss their possible function based on their classification and their protein domains.","owner":{"id":31698439,"first_name":"Karine","middle_initials":null,"last_name":"Frénal","page_name":"KarineFrénal","domain_name":"unige","created_at":"2015-05-30T08:45:33.176-07:00","display_name":"Karine Frénal","url":"https://unige.academia.edu/KarineFr%C3%A9nal"},"attachments":[{"id":46006263,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006263/thumbnails/1.jpg","file_name":"Myosin_Class_XIV_And_Other_Myosins_In_Pr20160527-12660-q87aay.pdf","download_url":"https://www.academia.edu/attachments/46006263/download_file","bulk_download_file_name":"Myosin_Class_XIV_And_Other_Myosins_In_Pr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006263/Myosin_Class_XIV_And_Other_Myosins_In_Pr20160527-12660-q87aay-libre.pdf?1464397352=\u0026response-content-disposition=attachment%3B+filename%3DMyosin_Class_XIV_And_Other_Myosins_In_Pr.pdf\u0026Expires=1743100040\u0026Signature=FQVWlz6QxUFJQwov9eboI7G~I4GWefEs5dlSBAEZKI2niSOPolhywQFD-rqGePUF8Kp5WJFjHFSx0zIKgNC3YZcd~ZpfM53GwA3tynZkv9a6tBfLCTT1QgB~5Tf18VImnUJVzHIl-ymbXn77HVAKI6Va3ilAyjY7-7ngy2dRllyRyZdXutY52J-XGzbjisW37x7asaRTaA7~4meIj9bq4YIf~AR~ydvgfgskrinCtd6VMY3D9wSBA514fisBdwnELHyJIf4YooG3B1BQE5akc~RmZcBJF1TW~wR~NZjn44A7U7nOUJvhP5fiUybMR4rr2Vmi0DsPu8Mtzo7XqVYC7g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":38650,"name":"Cell Division","url":"https://www.academia.edu/Documents/in/Cell_Division"},{"id":38831,"name":"Signal Transduction","url":"https://www.academia.edu/Documents/in/Signal_Transduction"},{"id":330392,"name":"Protein Domains","url":"https://www.academia.edu/Documents/in/Protein_Domains"},{"id":732028,"name":"Genome sequence","url":"https://www.academia.edu/Documents/in/Genome_sequence"},{"id":1155801,"name":"Actin Filaments","url":"https://www.academia.edu/Documents/in/Actin_Filaments"},{"id":1393770,"name":"Molecular Motor","url":"https://www.academia.edu/Documents/in/Molecular_Motor"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12688164"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/12688164/Structural_and_functional_characterization_of_the_TgDRE_multidomain_protein_a_DNA_repair_enzyme_from_Toxoplasma_gondii"><img alt="Research paper thumbnail of Structural and functional characterization of the TgDRE multidomain protein, a DNA repair enzyme from Toxoplasma gondii" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Structural and functional characterization of the TgDRE multidomain protein, a DNA repair enzyme from Toxoplasma gondii</div><div class="wp-workCard_item"><span>Biochemistry</span><span>, Jan 18, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The parasite Toxoplasma gondii expresses a 55 kDa protein or TgDRE that belongs to a novel family...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The parasite Toxoplasma gondii expresses a 55 kDa protein or TgDRE that belongs to a novel family of proteins characterized by the presence of three domains, a human splicing factor 45-like motif (SF), a glycine-rich motif (G-patch), and a RNA recognition motif (RRM). The two latter domains are mainly known as RNA-binding domains, and their presence in TgDRE, whose partial DNA repair function was demonstrated, suggests that the protein could also be involved in the RNA metabolism. In this work, we characterized the structure and function of the different domains by using single or multidomain proteins to define their putative role. The SF45-like domain has a helical conformation and is involved in the oligomerization of the protein. The G-patch domain, mainly unstructured on its own as well as in the presence of the SF upstream and RRM downstream domains, is able to bind small RNA oligonucleotides. We also report the structure determination of the RRM domain from the NMR data. It ad...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12688164"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12688164"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12688164; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12688164]").text(description); $(".js-view-count[data-work-id=12688164]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12688164; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12688164']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=12688164]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12688164,"title":"Structural and functional characterization of the TgDRE multidomain protein, a DNA repair enzyme from Toxoplasma gondii","translated_title":"","metadata":{"abstract":"The parasite Toxoplasma gondii expresses a 55 kDa protein or TgDRE that belongs to a novel family of proteins characterized by the presence of three domains, a human splicing factor 45-like motif (SF), a glycine-rich motif (G-patch), and a RNA recognition motif (RRM). The two latter domains are mainly known as RNA-binding domains, and their presence in TgDRE, whose partial DNA repair function was demonstrated, suggests that the protein could also be involved in the RNA metabolism. In this work, we characterized the structure and function of the different domains by using single or multidomain proteins to define their putative role. The SF45-like domain has a helical conformation and is involved in the oligomerization of the protein. The G-patch domain, mainly unstructured on its own as well as in the presence of the SF upstream and RRM downstream domains, is able to bind small RNA oligonucleotides. We also report the structure determination of the RRM domain from the NMR data. It ad...","publication_date":{"day":18,"month":1,"year":2006,"errors":{}},"publication_name":"Biochemistry"},"translated_abstract":"The parasite Toxoplasma gondii expresses a 55 kDa protein or TgDRE that belongs to a novel family of proteins characterized by the presence of three domains, a human splicing factor 45-like motif (SF), a glycine-rich motif (G-patch), and a RNA recognition motif (RRM). The two latter domains are mainly known as RNA-binding domains, and their presence in TgDRE, whose partial DNA repair function was demonstrated, suggests that the protein could also be involved in the RNA metabolism. In this work, we characterized the structure and function of the different domains by using single or multidomain proteins to define their putative role. The SF45-like domain has a helical conformation and is involved in the oligomerization of the protein. The G-patch domain, mainly unstructured on its own as well as in the presence of the SF upstream and RRM downstream domains, is able to bind small RNA oligonucleotides. We also report the structure determination of the RRM domain from the NMR data. It ad...","internal_url":"https://www.academia.edu/12688164/Structural_and_functional_characterization_of_the_TgDRE_multidomain_protein_a_DNA_repair_enzyme_from_Toxoplasma_gondii","translated_internal_url":"","created_at":"2015-05-30T08:45:54.046-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31698439,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Structural_and_functional_characterization_of_the_TgDRE_multidomain_protein_a_DNA_repair_enzyme_from_Toxoplasma_gondii","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The parasite Toxoplasma gondii expresses a 55 kDa protein or TgDRE that belongs to a novel family of proteins characterized by the presence of three domains, a human splicing factor 45-like motif (SF), a glycine-rich motif (G-patch), and a RNA recognition motif (RRM). The two latter domains are mainly known as RNA-binding domains, and their presence in TgDRE, whose partial DNA repair function was demonstrated, suggests that the protein could also be involved in the RNA metabolism. In this work, we characterized the structure and function of the different domains by using single or multidomain proteins to define their putative role. The SF45-like domain has a helical conformation and is involved in the oligomerization of the protein. The G-patch domain, mainly unstructured on its own as well as in the presence of the SF upstream and RRM downstream domains, is able to bind small RNA oligonucleotides. We also report the structure determination of the RRM domain from the NMR data. It ad...","owner":{"id":31698439,"first_name":"Karine","middle_initials":null,"last_name":"Frénal","page_name":"KarineFrénal","domain_name":"unige","created_at":"2015-05-30T08:45:33.176-07:00","display_name":"Karine Frénal","url":"https://unige.academia.edu/KarineFr%C3%A9nal"},"attachments":[],"research_interests":[{"id":145,"name":"Biochemistry","url":"https://www.academia.edu/Documents/in/Biochemistry"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12688163"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/12688163/Plasticity_between_MyoC_and_MyoA_Glideosomes_An_Example_of_Functional_Compensation_in_Toxoplasma_gondii_Invasion"><img alt="Research paper thumbnail of Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion" class="work-thumbnail" src="https://attachments.academia-assets.com/46006281/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/12688163/Plasticity_between_MyoC_and_MyoA_Glideosomes_An_Example_of_Functional_Compensation_in_Toxoplasma_gondii_Invasion">Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/ValeriePolonais">Valerie Polonais</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://unige.academia.edu/KarineFr%C3%A9nal">Karine Frénal</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JeanbaptisteMarq">Jean-baptiste Marq</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/DamienJacot">Damien Jacot</a></span></div><div class="wp-workCard_item"><span>PLoS Pathogens</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The glideosome is an actomyosin-based machinery that powers motility in Apicomplexa and participa...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The glideosome is an actomyosin-based machinery that powers motility in Apicomplexa and participates in host cell invasion and egress from infected cells. The central component of the glideosome, myosin A (MyoA), is a motor recruited at the pellicle by the acylated gliding-associated protein GAP45. In Toxoplasma gondii, GAP45 also contributes to the cohesion of the pellicle, composed of the inner membrane complex (IMC) and the plasma membrane, during motor traction. GAP70 was previously identified as a paralog of GAP45 that is tailored to recruit MyoA at the apical cap in the coccidian subgroup of the Apicomplexa. A third member of this family, GAP80, is demonstrated here to assemble a new glideosome, which recruits the class XIV myosin C (MyoC) at the basal polar ring. MyoC shares the same myosin light chains as MyoA and also interacts with the integral IMC proteins GAP50 and GAP40. Moreover, a central component of this complex, the IMCassociated protein 1 (IAP1), acts as the key determinant for the restricted localization of MyoC to the posterior pole. Deletion of specific components of the MyoC-glideosome underscores the installation of compensatory mechanisms with components of the MyoA-glideosome. Conversely, removal of MyoA leads to the relocalization of MyoC along the pellicle and at the apical cap that accounts for residual invasion. The two glideosomes exhibit a considerable level of plasticity to ensure parasite survival. Citation: Frénal K, Marq JB, Jacot D, Polonais V, Soldati-Favre D (2014) Plasticity between MyoC-and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion. PLoS Pathog 10(11): e1004504.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6dd3f9945114af29f77d608de3658048" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46006281,&quot;asset_id&quot;:12688163,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46006281/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12688163"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12688163"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12688163; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12688163]").text(description); $(".js-view-count[data-work-id=12688163]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12688163; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12688163']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6dd3f9945114af29f77d608de3658048" } } $('.js-work-strip[data-work-id=12688163]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12688163,"title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion","translated_title":"","metadata":{"ai_title_tag":"MyoC and MyoA Glideosomes' Functional Plasticity","grobid_abstract":"The glideosome is an actomyosin-based machinery that powers motility in Apicomplexa and participates in host cell invasion and egress from infected cells. The central component of the glideosome, myosin A (MyoA), is a motor recruited at the pellicle by the acylated gliding-associated protein GAP45. In Toxoplasma gondii, GAP45 also contributes to the cohesion of the pellicle, composed of the inner membrane complex (IMC) and the plasma membrane, during motor traction. GAP70 was previously identified as a paralog of GAP45 that is tailored to recruit MyoA at the apical cap in the coccidian subgroup of the Apicomplexa. A third member of this family, GAP80, is demonstrated here to assemble a new glideosome, which recruits the class XIV myosin C (MyoC) at the basal polar ring. MyoC shares the same myosin light chains as MyoA and also interacts with the integral IMC proteins GAP50 and GAP40. Moreover, a central component of this complex, the IMCassociated protein 1 (IAP1), acts as the key determinant for the restricted localization of MyoC to the posterior pole. Deletion of specific components of the MyoC-glideosome underscores the installation of compensatory mechanisms with components of the MyoA-glideosome. Conversely, removal of MyoA leads to the relocalization of MyoC along the pellicle and at the apical cap that accounts for residual invasion. The two glideosomes exhibit a considerable level of plasticity to ensure parasite survival. Citation: Frénal K, Marq JB, Jacot D, Polonais V, Soldati-Favre D (2014) Plasticity between MyoC-and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion. PLoS Pathog 10(11): e1004504.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"PLoS Pathogens","grobid_abstract_attachment_id":46006281},"translated_abstract":null,"internal_url":"https://www.academia.edu/12688163/Plasticity_between_MyoC_and_MyoA_Glideosomes_An_Example_of_Functional_Compensation_in_Toxoplasma_gondii_Invasion","translated_internal_url":"","created_at":"2015-05-30T08:45:53.945-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31698439,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":28316979,"work_id":12688163,"tagging_user_id":31753081,"tagged_user_id":null,"co_author_invite_id":6178932,"email":"s***i@sun0.urz.uniheidelberg.de","display_order":-5991862,"name":"Dominique Soldati","title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion"},{"id":28316974,"work_id":12688163,"tagging_user_id":31753081,"tagged_user_id":58566697,"co_author_invite_id":null,"email":"d***e@hotmail.com","display_order":-3595117,"name":"Dominique Favre","title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion"},{"id":694758,"work_id":12688163,"tagging_user_id":31698439,"tagged_user_id":31895436,"co_author_invite_id":258649,"email":"v***s@iut.u-clermont1.fr","display_order":-1198372,"name":"Valerie Polonais","title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion"},{"id":694761,"work_id":12688163,"tagging_user_id":31698439,"tagged_user_id":31756244,"co_author_invite_id":258650,"email":"j***q@unige.ch","display_order":1198373,"name":"Jean-baptiste Marq","title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion"},{"id":694750,"work_id":12688163,"tagging_user_id":31698439,"tagged_user_id":31753081,"co_author_invite_id":258646,"email":"d***t@unige.ch","display_order":3595118,"name":"Damien Jacot","title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion"},{"id":694755,"work_id":12688163,"tagging_user_id":31698439,"tagged_user_id":null,"co_author_invite_id":258648,"email":"v***s@unige.ch","display_order":5991863,"name":"Valerie Polonais","title":"Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion"}],"downloadable_attachments":[{"id":46006281,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006281/thumbnails/1.jpg","file_name":"Plasticity_between_MyoC-_and_MyoA-Glideo20160527-26258-1wk4ykw.pdf","download_url":"https://www.academia.edu/attachments/46006281/download_file","bulk_download_file_name":"Plasticity_between_MyoC_and_MyoA_Glideos.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006281/Plasticity_between_MyoC-_and_MyoA-Glideo20160527-26258-1wk4ykw-libre.pdf?1464397353=\u0026response-content-disposition=attachment%3B+filename%3DPlasticity_between_MyoC_and_MyoA_Glideos.pdf\u0026Expires=1743100040\u0026Signature=TEI0y5xHHVgnJnFXovkwqTgLQnxYDGU9q20wYrNVliWmYWX90~fQEUGL8AoeE4OnLf1gylIkCWjmzeOuucozSvd-REoWn~CI57rXprCMRfFJiHHbeWyERAQ90iLj3CZSd7lvMZkPrdJYLhivJG8V6ahnDmsJ9Gr7KiOGpe4SjbOmT8rvE5uOc4JKa-IwjgggHvwV7aYMjOIouyIwM-wLtk9P1HPMgKsby35klzBUETrxz7qCZoToaFFMwM58fFFeQYFDKFykMGO-IUK9~-O68satqYugRqQryfjq2fef4i1qkOn1oWY0F3RARCYQFa66ErVoOqFrVF8dgcBSmYzyEg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Plasticity_between_MyoC_and_MyoA_Glideosomes_An_Example_of_Functional_Compensation_in_Toxoplasma_gondii_Invasion","translated_slug":"","page_count":21,"language":"en","content_type":"Work","summary":"The glideosome is an actomyosin-based machinery that powers motility in Apicomplexa and participates in host cell invasion and egress from infected cells. The central component of the glideosome, myosin A (MyoA), is a motor recruited at the pellicle by the acylated gliding-associated protein GAP45. In Toxoplasma gondii, GAP45 also contributes to the cohesion of the pellicle, composed of the inner membrane complex (IMC) and the plasma membrane, during motor traction. GAP70 was previously identified as a paralog of GAP45 that is tailored to recruit MyoA at the apical cap in the coccidian subgroup of the Apicomplexa. A third member of this family, GAP80, is demonstrated here to assemble a new glideosome, which recruits the class XIV myosin C (MyoC) at the basal polar ring. MyoC shares the same myosin light chains as MyoA and also interacts with the integral IMC proteins GAP50 and GAP40. Moreover, a central component of this complex, the IMCassociated protein 1 (IAP1), acts as the key determinant for the restricted localization of MyoC to the posterior pole. Deletion of specific components of the MyoC-glideosome underscores the installation of compensatory mechanisms with components of the MyoA-glideosome. Conversely, removal of MyoA leads to the relocalization of MyoC along the pellicle and at the apical cap that accounts for residual invasion. The two glideosomes exhibit a considerable level of plasticity to ensure parasite survival. Citation: Frénal K, Marq JB, Jacot D, Polonais V, Soldati-Favre D (2014) Plasticity between MyoC-and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion. PLoS Pathog 10(11): e1004504.","owner":{"id":31698439,"first_name":"Karine","middle_initials":null,"last_name":"Frénal","page_name":"KarineFrénal","domain_name":"unige","created_at":"2015-05-30T08:45:33.176-07:00","display_name":"Karine Frénal","url":"https://unige.academia.edu/KarineFr%C3%A9nal"},"attachments":[{"id":46006281,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006281/thumbnails/1.jpg","file_name":"Plasticity_between_MyoC-_and_MyoA-Glideo20160527-26258-1wk4ykw.pdf","download_url":"https://www.academia.edu/attachments/46006281/download_file","bulk_download_file_name":"Plasticity_between_MyoC_and_MyoA_Glideos.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006281/Plasticity_between_MyoC-_and_MyoA-Glideo20160527-26258-1wk4ykw-libre.pdf?1464397353=\u0026response-content-disposition=attachment%3B+filename%3DPlasticity_between_MyoC_and_MyoA_Glideos.pdf\u0026Expires=1743100040\u0026Signature=TEI0y5xHHVgnJnFXovkwqTgLQnxYDGU9q20wYrNVliWmYWX90~fQEUGL8AoeE4OnLf1gylIkCWjmzeOuucozSvd-REoWn~CI57rXprCMRfFJiHHbeWyERAQ90iLj3CZSd7lvMZkPrdJYLhivJG8V6ahnDmsJ9Gr7KiOGpe4SjbOmT8rvE5uOc4JKa-IwjgggHvwV7aYMjOIouyIwM-wLtk9P1HPMgKsby35klzBUETrxz7qCZoToaFFMwM58fFFeQYFDKFykMGO-IUK9~-O68satqYugRqQryfjq2fef4i1qkOn1oWY0F3RARCYQFa66ErVoOqFrVF8dgcBSmYzyEg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":1290,"name":"Immunology","url":"https://www.academia.edu/Documents/in/Immunology"},{"id":6947,"name":"Medical Microbiology","url":"https://www.academia.edu/Documents/in/Medical_Microbiology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12688162"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/12688162/Unusual_Anchor_of_a_Motor_Complex_MyoD_MLC2_to_the_Plasma_Membrane_of_Toxoplasma_gondii"><img alt="Research paper thumbnail of Unusual Anchor of a Motor Complex (MyoD-MLC2) to the Plasma Membrane of Toxoplasma gondii" class="work-thumbnail" src="https://attachments.academia-assets.com/46006178/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/12688162/Unusual_Anchor_of_a_Motor_Complex_MyoD_MLC2_to_the_Plasma_Membrane_of_Toxoplasma_gondii">Unusual Anchor of a Motor Complex (MyoD-MLC2) to the Plasma Membrane of Toxoplasma gondii</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/ValeriePolonais">Valerie Polonais</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://unige.academia.edu/KarineFr%C3%A9nal">Karine Frénal</a></span></div><div class="wp-workCard_item"><span>Traffic</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Toxoplasma gondii possesses 11 rather atypical myosin heavy chains. The only myosin light chain d...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Toxoplasma gondii possesses 11 rather atypical myosin heavy chains. The only myosin light chain described to date is MLC1, associated with myosin A, and contributing to gliding motility. In this study, we examined the repertoire of calmodulin-like proteins in Apicomplexans, identified six putative myosin light chains and determined their subcellular localization in T. gondii and Plasmodium falciparum. MLC2, only found in coccidians, is associated with myosin D via its calmodulin (CaM)like domain and anchored to the plasma membrane of T. gondii via its N-terminal extension. Molecular modeling suggests that the MyoD-MLC2 complex is more compact than the reported structure of Plasmodium MyoA-myosin A tail-interacting protein (MTIP) complex. Anchorage of this MLC2 to the plasma membrane is likely governed by palmitoylation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4b3602735f23a06144e6164b9de9b58c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46006178,&quot;asset_id&quot;:12688162,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46006178/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12688162"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12688162"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12688162; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12688162]").text(description); $(".js-view-count[data-work-id=12688162]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12688162; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12688162']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4b3602735f23a06144e6164b9de9b58c" } } $('.js-work-strip[data-work-id=12688162]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12688162,"title":"Unusual Anchor of a Motor Complex (MyoD-MLC2) to the Plasma Membrane of Toxoplasma gondii","translated_title":"","metadata":{"grobid_abstract":"Toxoplasma gondii possesses 11 rather atypical myosin heavy chains. The only myosin light chain described to date is MLC1, associated with myosin A, and contributing to gliding motility. In this study, we examined the repertoire of calmodulin-like proteins in Apicomplexans, identified six putative myosin light chains and determined their subcellular localization in T. gondii and Plasmodium falciparum. MLC2, only found in coccidians, is associated with myosin D via its calmodulin (CaM)like domain and anchored to the plasma membrane of T. gondii via its N-terminal extension. Molecular modeling suggests that the MyoD-MLC2 complex is more compact than the reported structure of Plasmodium MyoA-myosin A tail-interacting protein (MTIP) complex. Anchorage of this MLC2 to the plasma membrane is likely governed by palmitoylation.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Traffic","grobid_abstract_attachment_id":46006178},"translated_abstract":null,"internal_url":"https://www.academia.edu/12688162/Unusual_Anchor_of_a_Motor_Complex_MyoD_MLC2_to_the_Plasma_Membrane_of_Toxoplasma_gondii","translated_internal_url":"","created_at":"2015-05-30T08:45:53.843-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31698439,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":30372317,"work_id":12688162,"tagging_user_id":31895436,"tagged_user_id":null,"co_author_invite_id":4870444,"email":"k***i@gmail.com","display_order":-5991862,"name":"Krishna Chinthalapudi","title":"Unusual Anchor of a Motor Complex (MyoD-MLC2) to the Plasma Membrane of Toxoplasma gondii"},{"id":30372316,"work_id":12688162,"tagging_user_id":31895436,"tagged_user_id":null,"co_author_invite_id":4080218,"email":"d***e@nimr.mrc.ac.uk","display_order":-3595117,"name":"Dietmar Manstein","title":"Unusual Anchor of a Motor Complex (MyoD-MLC2) to the Plasma Membrane of Toxoplasma gondii"},{"id":694757,"work_id":12688162,"tagging_user_id":31698439,"tagged_user_id":31895436,"co_author_invite_id":258649,"email":"v***s@iut.u-clermont1.fr","display_order":-1198372,"name":"Valerie Polonais","title":"Unusual Anchor of a Motor Complex (MyoD-MLC2) to the Plasma Membrane of Toxoplasma gondii"},{"id":694760,"work_id":12688162,"tagging_user_id":31698439,"tagged_user_id":31756244,"co_author_invite_id":258650,"email":"j***q@unige.ch","display_order":1198373,"name":"Jean-baptiste Marq","title":"Unusual Anchor of a Motor Complex (MyoD-MLC2) to the Plasma Membrane of Toxoplasma gondii"},{"id":694754,"work_id":12688162,"tagging_user_id":31698439,"tagged_user_id":null,"co_author_invite_id":258648,"email":"v***s@unige.ch","display_order":3595118,"name":"Valerie Polonais","title":"Unusual Anchor of a Motor Complex (MyoD-MLC2) to the Plasma Membrane of Toxoplasma gondii"},{"id":694751,"work_id":12688162,"tagging_user_id":31698439,"tagged_user_id":null,"co_author_invite_id":258647,"email":"b***h@ntu.edu.sg","display_order":5991863,"name":"Bernardo Foth","title":"Unusual Anchor of a Motor Complex (MyoD-MLC2) to the Plasma Membrane of Toxoplasma gondii"}],"downloadable_attachments":[{"id":46006178,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006178/thumbnails/1.jpg","file_name":"Unusual_Anchor_of_a_Motor_Complex_MyoD-20160527-31079-91s0xj.pdf","download_url":"https://www.academia.edu/attachments/46006178/download_file","bulk_download_file_name":"Unusual_Anchor_of_a_Motor_Complex_MyoD_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006178/Unusual_Anchor_of_a_Motor_Complex_MyoD-20160527-31079-91s0xj-libre.pdf?1464397356=\u0026response-content-disposition=attachment%3B+filename%3DUnusual_Anchor_of_a_Motor_Complex_MyoD_M.pdf\u0026Expires=1743100041\u0026Signature=HCqrzAUwGFSCaPXvDYw~~DgM7BdCOGDrPBReCPbPhLCZG1QS8TQ07hAT~6OjET7g51VGZrMChcgWD2W4RXca94RNRO83zW1LOm3nYj7Xl3YMDyD07Ts-VDudCrmuX9yrb2rNlTxE-NWziLQoHjed7kYOd6u3OyIzvEpW1sbTVd22D9w046-71EMC~Fjk~SVcXZGsyVgECjY~d9H5ip2WhhPuPa-HahwosLdbgRsOSxD~lyyMpEHneHhm~UOly8CXYJO-cntLiLgm2R-9RdmEduxWXLQE6gUYiPNMa7bxnYmmXlQ~9yGSeFfYYKHEtvw8HM5lWNbcKxcxyi54l7UzsQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Unusual_Anchor_of_a_Motor_Complex_MyoD_MLC2_to_the_Plasma_Membrane_of_Toxoplasma_gondii","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"Toxoplasma gondii possesses 11 rather atypical myosin heavy chains. The only myosin light chain described to date is MLC1, associated with myosin A, and contributing to gliding motility. In this study, we examined the repertoire of calmodulin-like proteins in Apicomplexans, identified six putative myosin light chains and determined their subcellular localization in T. gondii and Plasmodium falciparum. MLC2, only found in coccidians, is associated with myosin D via its calmodulin (CaM)like domain and anchored to the plasma membrane of T. gondii via its N-terminal extension. Molecular modeling suggests that the MyoD-MLC2 complex is more compact than the reported structure of Plasmodium MyoA-myosin A tail-interacting protein (MTIP) complex. Anchorage of this MLC2 to the plasma membrane is likely governed by palmitoylation.","owner":{"id":31698439,"first_name":"Karine","middle_initials":null,"last_name":"Frénal","page_name":"KarineFrénal","domain_name":"unige","created_at":"2015-05-30T08:45:33.176-07:00","display_name":"Karine Frénal","url":"https://unige.academia.edu/KarineFr%C3%A9nal"},"attachments":[{"id":46006178,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006178/thumbnails/1.jpg","file_name":"Unusual_Anchor_of_a_Motor_Complex_MyoD-20160527-31079-91s0xj.pdf","download_url":"https://www.academia.edu/attachments/46006178/download_file","bulk_download_file_name":"Unusual_Anchor_of_a_Motor_Complex_MyoD_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006178/Unusual_Anchor_of_a_Motor_Complex_MyoD-20160527-31079-91s0xj-libre.pdf?1464397356=\u0026response-content-disposition=attachment%3B+filename%3DUnusual_Anchor_of_a_Motor_Complex_MyoD_M.pdf\u0026Expires=1743100041\u0026Signature=HCqrzAUwGFSCaPXvDYw~~DgM7BdCOGDrPBReCPbPhLCZG1QS8TQ07hAT~6OjET7g51VGZrMChcgWD2W4RXca94RNRO83zW1LOm3nYj7Xl3YMDyD07Ts-VDudCrmuX9yrb2rNlTxE-NWziLQoHjed7kYOd6u3OyIzvEpW1sbTVd22D9w046-71EMC~Fjk~SVcXZGsyVgECjY~d9H5ip2WhhPuPa-HahwosLdbgRsOSxD~lyyMpEHneHhm~UOly8CXYJO-cntLiLgm2R-9RdmEduxWXLQE6gUYiPNMa7bxnYmmXlQ~9yGSeFfYYKHEtvw8HM5lWNbcKxcxyi54l7UzsQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":54433,"name":"Phylogeny","url":"https://www.academia.edu/Documents/in/Phylogeny"},{"id":67484,"name":"Sequence alignment","url":"https://www.academia.edu/Documents/in/Sequence_alignment"},{"id":138124,"name":"Myosin","url":"https://www.academia.edu/Documents/in/Myosin"},{"id":150380,"name":"Molecular motor proteins","url":"https://www.academia.edu/Documents/in/Molecular_motor_proteins"},{"id":157891,"name":"Traffic","url":"https://www.academia.edu/Documents/in/Traffic"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":956752,"name":"Protein Quaternary Structure","url":"https://www.academia.edu/Documents/in/Protein_Quaternary_Structure"},{"id":1457054,"name":"Protein Transport","url":"https://www.academia.edu/Documents/in/Protein_Transport"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"},{"id":2468093,"name":"Cell Membrane","url":"https://www.academia.edu/Documents/in/Cell_Membrane"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12688161"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/12688161/Exploring_structural_features_of_the_interaction_between_the_scorpion_toxinCnErg1_and_ERG_K_channels"><img alt="Research paper thumbnail of Exploring structural features of the interaction between the scorpion toxinCnErg1 and ERG K+ channels" class="work-thumbnail" src="https://attachments.academia-assets.com/46006133/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/12688161/Exploring_structural_features_of_the_interaction_between_the_scorpion_toxinCnErg1_and_ERG_K_channels">Exploring structural features of the interaction between the scorpion toxinCnErg1 and ERG K+ channels</a></div><div class="wp-workCard_item"><span>Proteins: Structure, Function, and Bioinformatics</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The ␥-KTx-type scorpion toxins specific for K ؉ channels were found to interact with ERG channels...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The ␥-KTx-type scorpion toxins specific for K ؉ channels were found to interact with ERG channels on the turret region, while ␣-KTx3.2 Agitoxin-2 binds to the pore region of the Shaker K ؉ channel, and ␣-KTx5.3 BmP05 binds to the intermediate region of the small-conductance calciumactivated K-channel (SK Ca ). In order to explore the critical residues for ␥-KTx binding, we determined the NMR structure of native ␥-KTx1.1 (CnErg1), a 42 amino acid residues scorpion toxin isolated from the venom of the Mexican scorpion Centruroïdes noxius Hoffmann, and we used computational evolutionary trace (ET) analysis to predict possible structural and functional features of interacting surfaces. The 1 H-NMR three-dimensional solution structure of native ergtoxin (CnErg1) was solved using a total of 452 distance constraints, 13 3 J NH-H␣ and 10 hydrogen bonds. The structure is characterized by 2 segments of ␣-helices and a triple-stranded antiparallel ␤-sheet stabilized by 4 disulfide bridges. The ET and structural analysis provided indication of the presence of two important amino acid residue clusters, one hydrophobic and the other hydrophilic, that should be involved in the surface contact between the toxin and the channel. Some features of the proposed interacting surface are discussed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f5700ac812c07f4532dd0e2ff943bd0e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46006133,&quot;asset_id&quot;:12688161,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46006133/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12688161"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12688161"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12688161; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12688161]").text(description); $(".js-view-count[data-work-id=12688161]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12688161; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12688161']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f5700ac812c07f4532dd0e2ff943bd0e" } } $('.js-work-strip[data-work-id=12688161]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12688161,"title":"Exploring structural features of the interaction between the scorpion toxinCnErg1 and ERG K+ channels","translated_title":"","metadata":{"ai_title_tag":"CnErg1 Scorpion Toxin Interacts with ERG K+ Channels","grobid_abstract":"The ␥-KTx-type scorpion toxins specific for K ؉ channels were found to interact with ERG channels on the turret region, while ␣-KTx3.2 Agitoxin-2 binds to the pore region of the Shaker K ؉ channel, and ␣-KTx5.3 BmP05 binds to the intermediate region of the small-conductance calciumactivated K-channel (SK Ca ). In order to explore the critical residues for ␥-KTx binding, we determined the NMR structure of native ␥-KTx1.1 (CnErg1), a 42 amino acid residues scorpion toxin isolated from the venom of the Mexican scorpion Centruroïdes noxius Hoffmann, and we used computational evolutionary trace (ET) analysis to predict possible structural and functional features of interacting surfaces. The 1 H-NMR three-dimensional solution structure of native ergtoxin (CnErg1) was solved using a total of 452 distance constraints, 13 3 J NH-H␣ and 10 hydrogen bonds. The structure is characterized by 2 segments of ␣-helices and a triple-stranded antiparallel ␤-sheet stabilized by 4 disulfide bridges. The ET and structural analysis provided indication of the presence of two important amino acid residue clusters, one hydrophobic and the other hydrophilic, that should be involved in the surface contact between the toxin and the channel. Some features of the proposed interacting surface are discussed.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Proteins: Structure, Function, and Bioinformatics","grobid_abstract_attachment_id":46006133},"translated_abstract":null,"internal_url":"https://www.academia.edu/12688161/Exploring_structural_features_of_the_interaction_between_the_scorpion_toxinCnErg1_and_ERG_K_channels","translated_internal_url":"","created_at":"2015-05-30T08:45:53.731-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31698439,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46006133,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006133/thumbnails/1.jpg","file_name":"Exploring_structural_features_of_the_int20160527-2023-v9f3n4.pdf","download_url":"https://www.academia.edu/attachments/46006133/download_file","bulk_download_file_name":"Exploring_structural_features_of_the_int.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006133/Exploring_structural_features_of_the_int20160527-2023-v9f3n4-libre.pdf?1464397357=\u0026response-content-disposition=attachment%3B+filename%3DExploring_structural_features_of_the_int.pdf\u0026Expires=1743100041\u0026Signature=FENFEbUlsNxU6czMkDNonDicLeDYCouqbMjHQaK-W9uc-i3XXeb9VIH3MqNjUhPrSiMEkDY1WMKjxAO5G028DqC~fi8Yq4VjscW-PSwz-LMAnxSFjOm7fUKsgHVNX3BDeUHPOfF4-RIj0QQpPQ32vgilLxM2KJpy~AGCdTSOCTzHmNMnQcF2hf7e55XiRt9HbSg~xLTgz8zdbZX59EQtMbymUB~IjXq~ngCyu2XXSRrwVLpudwshb-btOyg9kZ8fo9E76GrgrvxLGLUNAx9wz05hQNo5n9~ZMhZPL~k8fM9Z8kaJaTYemG~dwupAAbjlYyk8pFUNzy02PINsD5dlNA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Exploring_structural_features_of_the_interaction_between_the_scorpion_toxinCnErg1_and_ERG_K_channels","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"The ␥-KTx-type scorpion toxins specific for K ؉ channels were found to interact with ERG channels on the turret region, while ␣-KTx3.2 Agitoxin-2 binds to the pore region of the Shaker K ؉ channel, and ␣-KTx5.3 BmP05 binds to the intermediate region of the small-conductance calciumactivated K-channel (SK Ca ). In order to explore the critical residues for ␥-KTx binding, we determined the NMR structure of native ␥-KTx1.1 (CnErg1), a 42 amino acid residues scorpion toxin isolated from the venom of the Mexican scorpion Centruroïdes noxius Hoffmann, and we used computational evolutionary trace (ET) analysis to predict possible structural and functional features of interacting surfaces. The 1 H-NMR three-dimensional solution structure of native ergtoxin (CnErg1) was solved using a total of 452 distance constraints, 13 3 J NH-H␣ and 10 hydrogen bonds. The structure is characterized by 2 segments of ␣-helices and a triple-stranded antiparallel ␤-sheet stabilized by 4 disulfide bridges. The ET and structural analysis provided indication of the presence of two important amino acid residue clusters, one hydrophobic and the other hydrophilic, that should be involved in the surface contact between the toxin and the channel. Some features of the proposed interacting surface are discussed.","owner":{"id":31698439,"first_name":"Karine","middle_initials":null,"last_name":"Frénal","page_name":"KarineFrénal","domain_name":"unige","created_at":"2015-05-30T08:45:33.176-07:00","display_name":"Karine Frénal","url":"https://unige.academia.edu/KarineFr%C3%A9nal"},"attachments":[{"id":46006133,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006133/thumbnails/1.jpg","file_name":"Exploring_structural_features_of_the_int20160527-2023-v9f3n4.pdf","download_url":"https://www.academia.edu/attachments/46006133/download_file","bulk_download_file_name":"Exploring_structural_features_of_the_int.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006133/Exploring_structural_features_of_the_int20160527-2023-v9f3n4-libre.pdf?1464397357=\u0026response-content-disposition=attachment%3B+filename%3DExploring_structural_features_of_the_int.pdf\u0026Expires=1743100041\u0026Signature=FENFEbUlsNxU6czMkDNonDicLeDYCouqbMjHQaK-W9uc-i3XXeb9VIH3MqNjUhPrSiMEkDY1WMKjxAO5G028DqC~fi8Yq4VjscW-PSwz-LMAnxSFjOm7fUKsgHVNX3BDeUHPOfF4-RIj0QQpPQ32vgilLxM2KJpy~AGCdTSOCTzHmNMnQcF2hf7e55XiRt9HbSg~xLTgz8zdbZX59EQtMbymUB~IjXq~ngCyu2XXSRrwVLpudwshb-btOyg9kZ8fo9E76GrgrvxLGLUNAx9wz05hQNo5n9~ZMhZPL~k8fM9Z8kaJaTYemG~dwupAAbjlYyk8pFUNzy02PINsD5dlNA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":4967,"name":"Molecular Evolution","url":"https://www.academia.edu/Documents/in/Molecular_Evolution"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":53293,"name":"Software","url":"https://www.academia.edu/Documents/in/Software"},{"id":54433,"name":"Phylogeny","url":"https://www.academia.edu/Documents/in/Phylogeny"},{"id":67484,"name":"Sequence alignment","url":"https://www.academia.edu/Documents/in/Sequence_alignment"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":181569,"name":"Proteins","url":"https://www.academia.edu/Documents/in/Proteins"},{"id":296798,"name":"Hydrogen Bonding","url":"https://www.academia.edu/Documents/in/Hydrogen_Bonding"},{"id":470847,"name":"Voltage-Gated Potassium Channels","url":"https://www.academia.edu/Documents/in/Voltage-Gated_Potassium_Channels"},{"id":557691,"name":"Potassium Channels","url":"https://www.academia.edu/Documents/in/Potassium_Channels"},{"id":653665,"name":"Protein Conformation","url":"https://www.academia.edu/Documents/in/Protein_Conformation"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":967839,"name":"Structure activity Relationship","url":"https://www.academia.edu/Documents/in/Structure_activity_Relationship"},{"id":1010725,"name":"Protein Binding","url":"https://www.academia.edu/Documents/in/Protein_Binding"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12688160"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/12688160/Emerging_roles_for_protein_S_palmitoylation_in_Toxoplasma_biology"><img alt="Research paper thumbnail of Emerging roles for protein S-palmitoylation in Toxoplasma biology" class="work-thumbnail" src="https://attachments.academia-assets.com/46006169/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/12688160/Emerging_roles_for_protein_S_palmitoylation_in_Toxoplasma_biology">Emerging roles for protein S-palmitoylation in Toxoplasma biology</a></div><div class="wp-workCard_item"><span>International Journal for Parasitology</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Post-translational modifications are refined, rapidly responsive and powerful ways to modulate pr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Post-translational modifications are refined, rapidly responsive and powerful ways to modulate protein function. Among post-translational modifications, acylation is now emerging as a widespread modification exploited by eukaryotes, bacteria and viruses to control biological processes. Protein palmitoylation involves the attachment of palmitic acid, also known as hexadecanoic acid, to cysteine residues of integral and peripheral membrane proteins and increases their affinity for membranes. Importantly, similar to phosphorylation, palmitoylation is reversible and is becoming recognised as instrumental for the regulation of protein function by modulating protein interactions, stability, folding, trafficking and signalling. Palmitoylation appears to play a central role in the biology of the Apicomplexa, regulating critical processes such as host cell invasion which is vital for parasite survival and dissemination. The recent identification of over 400 palmitoylated proteins in Plasmodium falciparum erythrocytic stages illustrates the broad spread and impact of this modification on parasite biology. The main enzymes responsible for protein palmitoylation are multi-membrane protein S-acyl transferases harbouring a catalytic Asp-His-His-Cys (DHHC) motif. A global functional analysis of the repertoire of protein S-acyl transferases in Toxoplasma gondii and Plasmodium berghei has recently been performed. The essential nature of some of these enzymes illustrates the key roles played by this post-translational modification in the corresponding substrates implicated in fundamental processes such as parasite motility and organelle biogenesis. Toward a better understanding of the depalmitoylation event, a protein with palmitoyl protein thioesterase activity has been identified in T. gondii. TgPPT1/TgASH1 is the main target of specific acyl protein thioesterase inhibitors but is dispensable for parasite survival, suggesting the implication of other genes in depalmitoylation. Palmitoylation/depalmitoylation cycles are now emerging as potential novel regulatory networks and T. gondii represents a superb model organism in which to explore their significance.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ddb5b88706cdd8530b62a4026e949c32" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46006169,&quot;asset_id&quot;:12688160,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46006169/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12688160"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12688160"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12688160; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12688160]").text(description); $(".js-view-count[data-work-id=12688160]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12688160; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12688160']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ddb5b88706cdd8530b62a4026e949c32" } } $('.js-work-strip[data-work-id=12688160]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12688160,"title":"Emerging roles for protein S-palmitoylation in Toxoplasma biology","translated_title":"","metadata":{"grobid_abstract":"Post-translational modifications are refined, rapidly responsive and powerful ways to modulate protein function. Among post-translational modifications, acylation is now emerging as a widespread modification exploited by eukaryotes, bacteria and viruses to control biological processes. Protein palmitoylation involves the attachment of palmitic acid, also known as hexadecanoic acid, to cysteine residues of integral and peripheral membrane proteins and increases their affinity for membranes. Importantly, similar to phosphorylation, palmitoylation is reversible and is becoming recognised as instrumental for the regulation of protein function by modulating protein interactions, stability, folding, trafficking and signalling. Palmitoylation appears to play a central role in the biology of the Apicomplexa, regulating critical processes such as host cell invasion which is vital for parasite survival and dissemination. The recent identification of over 400 palmitoylated proteins in Plasmodium falciparum erythrocytic stages illustrates the broad spread and impact of this modification on parasite biology. The main enzymes responsible for protein palmitoylation are multi-membrane protein S-acyl transferases harbouring a catalytic Asp-His-His-Cys (DHHC) motif. A global functional analysis of the repertoire of protein S-acyl transferases in Toxoplasma gondii and Plasmodium berghei has recently been performed. The essential nature of some of these enzymes illustrates the key roles played by this post-translational modification in the corresponding substrates implicated in fundamental processes such as parasite motility and organelle biogenesis. Toward a better understanding of the depalmitoylation event, a protein with palmitoyl protein thioesterase activity has been identified in T. gondii. TgPPT1/TgASH1 is the main target of specific acyl protein thioesterase inhibitors but is dispensable for parasite survival, suggesting the implication of other genes in depalmitoylation. Palmitoylation/depalmitoylation cycles are now emerging as potential novel regulatory networks and T. gondii represents a superb model organism in which to explore their significance.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"International Journal for Parasitology","grobid_abstract_attachment_id":46006169},"translated_abstract":null,"internal_url":"https://www.academia.edu/12688160/Emerging_roles_for_protein_S_palmitoylation_in_Toxoplasma_biology","translated_internal_url":"","created_at":"2015-05-30T08:45:53.628-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31698439,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":29951650,"work_id":12688160,"tagging_user_id":31698439,"tagged_user_id":58566697,"co_author_invite_id":null,"email":"d***e@hotmail.com","display_order":0,"name":"Dominique Favre","title":"Emerging roles for protein S-palmitoylation in Toxoplasma biology"},{"id":29951651,"work_id":12688160,"tagging_user_id":31698439,"tagged_user_id":null,"co_author_invite_id":6178932,"email":"s***i@sun0.urz.uniheidelberg.de","display_order":4194304,"name":"Dominique Soldati","title":"Emerging roles for protein S-palmitoylation in Toxoplasma biology"}],"downloadable_attachments":[{"id":46006169,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006169/thumbnails/1.jpg","file_name":"Emerging_roles_for_protein_S-palmitoylat20160527-27545-15xn44x.pdf","download_url":"https://www.academia.edu/attachments/46006169/download_file","bulk_download_file_name":"Emerging_roles_for_protein_S_palmitoylat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006169/Emerging_roles_for_protein_S-palmitoylat20160527-27545-15xn44x-libre.pdf?1464397357=\u0026response-content-disposition=attachment%3B+filename%3DEmerging_roles_for_protein_S_palmitoylat.pdf\u0026Expires=1743100041\u0026Signature=IHFwovXwjHPzIgf9z-Y6Mw7NPaJZoP6EGxftcrdTnmK-8KvyuhLgFAUJEeOAP16hUUICYN6c2COcXtNLSq2kDn-u9oB7lHNUvO33bluNN8ZfbDZnGRxumyCzEeBKo301UTz4QSqpt0-x3b1xjCgBNON7Agxgv2fHduBz0ln1zLBy9MsujqFvPDfZrMiskb4lvpI5uZS-LJFcjUf6jASeb3L7cofCjuspim4nXYGg3cTBnE4XiiC9uh8iH-c1v1I2XyNWDilgkOWP89kIJqPZJJ44~v1LXOkHrlC0Ko8DjhW44CDLoY~pHXBIZ244OmE64bv2bD2LXkzHbwdy3u9Dcw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Emerging_roles_for_protein_S_palmitoylation_in_Toxoplasma_biology","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"Post-translational modifications are refined, rapidly responsive and powerful ways to modulate protein function. Among post-translational modifications, acylation is now emerging as a widespread modification exploited by eukaryotes, bacteria and viruses to control biological processes. Protein palmitoylation involves the attachment of palmitic acid, also known as hexadecanoic acid, to cysteine residues of integral and peripheral membrane proteins and increases their affinity for membranes. Importantly, similar to phosphorylation, palmitoylation is reversible and is becoming recognised as instrumental for the regulation of protein function by modulating protein interactions, stability, folding, trafficking and signalling. Palmitoylation appears to play a central role in the biology of the Apicomplexa, regulating critical processes such as host cell invasion which is vital for parasite survival and dissemination. The recent identification of over 400 palmitoylated proteins in Plasmodium falciparum erythrocytic stages illustrates the broad spread and impact of this modification on parasite biology. The main enzymes responsible for protein palmitoylation are multi-membrane protein S-acyl transferases harbouring a catalytic Asp-His-His-Cys (DHHC) motif. A global functional analysis of the repertoire of protein S-acyl transferases in Toxoplasma gondii and Plasmodium berghei has recently been performed. The essential nature of some of these enzymes illustrates the key roles played by this post-translational modification in the corresponding substrates implicated in fundamental processes such as parasite motility and organelle biogenesis. Toward a better understanding of the depalmitoylation event, a protein with palmitoyl protein thioesterase activity has been identified in T. gondii. TgPPT1/TgASH1 is the main target of specific acyl protein thioesterase inhibitors but is dispensable for parasite survival, suggesting the implication of other genes in depalmitoylation. Palmitoylation/depalmitoylation cycles are now emerging as potential novel regulatory networks and T. gondii represents a superb model organism in which to explore their significance.","owner":{"id":31698439,"first_name":"Karine","middle_initials":null,"last_name":"Frénal","page_name":"KarineFrénal","domain_name":"unige","created_at":"2015-05-30T08:45:33.176-07:00","display_name":"Karine Frénal","url":"https://unige.academia.edu/KarineFr%C3%A9nal"},"attachments":[{"id":46006169,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006169/thumbnails/1.jpg","file_name":"Emerging_roles_for_protein_S-palmitoylat20160527-27545-15xn44x.pdf","download_url":"https://www.academia.edu/attachments/46006169/download_file","bulk_download_file_name":"Emerging_roles_for_protein_S_palmitoylat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006169/Emerging_roles_for_protein_S-palmitoylat20160527-27545-15xn44x-libre.pdf?1464397357=\u0026response-content-disposition=attachment%3B+filename%3DEmerging_roles_for_protein_S_palmitoylat.pdf\u0026Expires=1743100041\u0026Signature=IHFwovXwjHPzIgf9z-Y6Mw7NPaJZoP6EGxftcrdTnmK-8KvyuhLgFAUJEeOAP16hUUICYN6c2COcXtNLSq2kDn-u9oB7lHNUvO33bluNN8ZfbDZnGRxumyCzEeBKo301UTz4QSqpt0-x3b1xjCgBNON7Agxgv2fHduBz0ln1zLBy9MsujqFvPDfZrMiskb4lvpI5uZS-LJFcjUf6jASeb3L7cofCjuspim4nXYGg3cTBnE4XiiC9uh8iH-c1v1I2XyNWDilgkOWP89kIJqPZJJ44~v1LXOkHrlC0Ko8DjhW44CDLoY~pHXBIZ244OmE64bv2bD2LXkzHbwdy3u9Dcw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":173,"name":"Zoology","url":"https://www.academia.edu/Documents/in/Zoology"},{"id":9786,"name":"Proteomics","url":"https://www.academia.edu/Documents/in/Proteomics"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":54433,"name":"Phylogeny","url":"https://www.academia.edu/Documents/in/Phylogeny"},{"id":84924,"name":"Immunity","url":"https://www.academia.edu/Documents/in/Immunity"},{"id":567271,"name":"Palmitoylation","url":"https://www.academia.edu/Documents/in/Palmitoylation"},{"id":644860,"name":"Veterinary Sciences","url":"https://www.academia.edu/Documents/in/Veterinary_Sciences"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":868560,"name":"Lymphocytes","url":"https://www.academia.edu/Documents/in/Lymphocytes"},{"id":1035050,"name":"Proteome","url":"https://www.academia.edu/Documents/in/Proteome"},{"id":1272099,"name":"Leukocytes","url":"https://www.academia.edu/Documents/in/Leukocytes"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":1763968,"name":"Gene Expression Regulation","url":"https://www.academia.edu/Documents/in/Gene_Expression_Regulation"},{"id":1947616,"name":"Mononuclear Phagocyte System","url":"https://www.academia.edu/Documents/in/Mononuclear_Phagocyte_System"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12688159"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/12688159/Role_of_the_Parasite_and_Host_Cytoskeleton_in_Apicomplexa_Parasitism"><img alt="Research paper thumbnail of Role of the Parasite and Host Cytoskeleton in Apicomplexa Parasitism" class="work-thumbnail" src="https://attachments.academia-assets.com/46006158/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/12688159/Role_of_the_Parasite_and_Host_Cytoskeleton_in_Apicomplexa_Parasitism">Role of the Parasite and Host Cytoskeleton in Apicomplexa Parasitism</a></div><div class="wp-workCard_item"><span>Cell Host &amp; Microbe</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The phylum Apicomplexa includes a large and diverse group of obligate intracellular parasites tha...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The phylum Apicomplexa includes a large and diverse group of obligate intracellular parasites that rely on actomyosin-based motility to migrate, enter host cells, and egress from infected cells. To ensure their intracellular survival and replication, the apicomplexans have evolved sophisticated strategies for subversion of the host cytoskeleton. Given the properties in common between the host and parasite cytoskeleton, dissecting their individual contribution to the establishment of parasitic infection has been challenging. Nevertheless, recent studies have provided new insights into the mechanisms by which parasites subvert the dynamic properties of host actin and tubulin to promote their entry, development, and egress. (A) Model of a typical apicomplexan parasite, highlighting the elements of the cytoskeleton. (B) Scheme of the actomyosin system involved in gliding motility. (C) Illustration of the effects of the drugs discussed in this review on actin and microtubule cytoskeletons. BDM, 2,3-butanedione monoxime; FH, formin homology domain. (D) Effects of the drugs on the host cell (left) and on the parasite (right). . (2005). Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bb48120d192b3ea0626c91aa7096638c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46006158,&quot;asset_id&quot;:12688159,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46006158/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12688159"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12688159"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12688159; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12688159]").text(description); $(".js-view-count[data-work-id=12688159]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12688159; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12688159']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bb48120d192b3ea0626c91aa7096638c" } } $('.js-work-strip[data-work-id=12688159]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12688159,"title":"Role of the Parasite and Host Cytoskeleton in Apicomplexa Parasitism","translated_title":"","metadata":{"grobid_abstract":"The phylum Apicomplexa includes a large and diverse group of obligate intracellular parasites that rely on actomyosin-based motility to migrate, enter host cells, and egress from infected cells. To ensure their intracellular survival and replication, the apicomplexans have evolved sophisticated strategies for subversion of the host cytoskeleton. Given the properties in common between the host and parasite cytoskeleton, dissecting their individual contribution to the establishment of parasitic infection has been challenging. Nevertheless, recent studies have provided new insights into the mechanisms by which parasites subvert the dynamic properties of host actin and tubulin to promote their entry, development, and egress. (A) Model of a typical apicomplexan parasite, highlighting the elements of the cytoskeleton. (B) Scheme of the actomyosin system involved in gliding motility. (C) Illustration of the effects of the drugs discussed in this review on actin and microtubule cytoskeletons. BDM, 2,3-butanedione monoxime; FH, formin homology domain. (D) Effects of the drugs on the host cell (left) and on the parasite (right). . (2005). Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Cell Host \u0026 Microbe","grobid_abstract_attachment_id":46006158},"translated_abstract":null,"internal_url":"https://www.academia.edu/12688159/Role_of_the_Parasite_and_Host_Cytoskeleton_in_Apicomplexa_Parasitism","translated_internal_url":"","created_at":"2015-05-30T08:45:53.544-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31698439,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46006158,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006158/thumbnails/1.jpg","file_name":"Role_of_the_parasite_and_host_cytoskelet20160527-31079-vlxtyl.pdf","download_url":"https://www.academia.edu/attachments/46006158/download_file","bulk_download_file_name":"Role_of_the_Parasite_and_Host_Cytoskelet.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006158/Role_of_the_parasite_and_host_cytoskelet20160527-31079-vlxtyl-libre.pdf?1464397357=\u0026response-content-disposition=attachment%3B+filename%3DRole_of_the_Parasite_and_Host_Cytoskelet.pdf\u0026Expires=1743100041\u0026Signature=cnUl2HdPPJODEM7d6N1A8EksdkVih6zBDzKa9SmgZQRDYWUVrOpYK4mmAz~nenf01Bro3Tx4ccKDlgIw5qxI9TrvLFNOkpblJhchXjh1o0Hf63jkw7mMpF21GE2qe5UmkRQfml0ZkYucf-ZVnWuom-TGS9a-UywoDkypb4LuvUGCRTIY~IXWjhAA0gXCjEseOQuSe1cuBYKGpGpQC65nsJNJwM8k~OtOlaP8SZHUbTg0mgAfk3JKERwHOmcpweixkL5emgEcESZVY2Jf8OSnlZ~OfDx-elcc36AoR4jj5NfBJtSvCLVKCZlc7fPH~w-XtMZhABu2P-AP8~qGSrOuKA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Role_of_the_Parasite_and_Host_Cytoskeleton_in_Apicomplexa_Parasitism","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"The phylum Apicomplexa includes a large and diverse group of obligate intracellular parasites that rely on actomyosin-based motility to migrate, enter host cells, and egress from infected cells. To ensure their intracellular survival and replication, the apicomplexans have evolved sophisticated strategies for subversion of the host cytoskeleton. Given the properties in common between the host and parasite cytoskeleton, dissecting their individual contribution to the establishment of parasitic infection has been challenging. Nevertheless, recent studies have provided new insights into the mechanisms by which parasites subvert the dynamic properties of host actin and tubulin to promote their entry, development, and egress. (A) Model of a typical apicomplexan parasite, highlighting the elements of the cytoskeleton. (B) Scheme of the actomyosin system involved in gliding motility. (C) Illustration of the effects of the drugs discussed in this review on actin and microtubule cytoskeletons. BDM, 2,3-butanedione monoxime; FH, formin homology domain. (D) Effects of the drugs on the host cell (left) and on the parasite (right). . (2005). Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii.","owner":{"id":31698439,"first_name":"Karine","middle_initials":null,"last_name":"Frénal","page_name":"KarineFrénal","domain_name":"unige","created_at":"2015-05-30T08:45:33.176-07:00","display_name":"Karine Frénal","url":"https://unige.academia.edu/KarineFr%C3%A9nal"},"attachments":[{"id":46006158,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006158/thumbnails/1.jpg","file_name":"Role_of_the_parasite_and_host_cytoskelet20160527-31079-vlxtyl.pdf","download_url":"https://www.academia.edu/attachments/46006158/download_file","bulk_download_file_name":"Role_of_the_Parasite_and_Host_Cytoskelet.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006158/Role_of_the_parasite_and_host_cytoskelet20160527-31079-vlxtyl-libre.pdf?1464397357=\u0026response-content-disposition=attachment%3B+filename%3DRole_of_the_Parasite_and_Host_Cytoskelet.pdf\u0026Expires=1743100041\u0026Signature=cnUl2HdPPJODEM7d6N1A8EksdkVih6zBDzKa9SmgZQRDYWUVrOpYK4mmAz~nenf01Bro3Tx4ccKDlgIw5qxI9TrvLFNOkpblJhchXjh1o0Hf63jkw7mMpF21GE2qe5UmkRQfml0ZkYucf-ZVnWuom-TGS9a-UywoDkypb4LuvUGCRTIY~IXWjhAA0gXCjEseOQuSe1cuBYKGpGpQC65nsJNJwM8k~OtOlaP8SZHUbTg0mgAfk3JKERwHOmcpweixkL5emgEcESZVY2Jf8OSnlZ~OfDx-elcc36AoR4jj5NfBJtSvCLVKCZlc7fPH~w-XtMZhABu2P-AP8~qGSrOuKA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":6947,"name":"Medical Microbiology","url":"https://www.academia.edu/Documents/in/Medical_Microbiology"},{"id":37508,"name":"Cytoskeleton","url":"https://www.academia.edu/Documents/in/Cytoskeleton"},{"id":142138,"name":"Host-parasite interactions","url":"https://www.academia.edu/Documents/in/Host-parasite_interactions"},{"id":533598,"name":"Tubulin","url":"https://www.academia.edu/Documents/in/Tubulin"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12688158"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/12688158/Functional_Dissection_of_the_Apicomplexan_Glideosome_Molecular_Architecture"><img alt="Research paper thumbnail of Functional Dissection of the Apicomplexan Glideosome Molecular Architecture" class="work-thumbnail" src="https://attachments.academia-assets.com/46006272/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/12688158/Functional_Dissection_of_the_Apicomplexan_Glideosome_Molecular_Architecture">Functional Dissection of the Apicomplexan Glideosome Molecular Architecture</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://unige.academia.edu/KarineFr%C3%A9nal">Karine Frénal</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/ValeriePolonais">Valerie Polonais</a></span></div><div class="wp-workCard_item"><span>Cell Host &amp; Microbe</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The glideosome of apicomplexan parasites is an actin-and myosin-based machine located at the pell...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The glideosome of apicomplexan parasites is an actin-and myosin-based machine located at the pellicle, between the plasma membrane (PM) and inner membrane complex (IMC), that powers parasite motility, migration, and host cell invasion and egress. It is composed of myosin A, its light chain MLC1, and two gliding-associated proteins, GAP50 and GAP45. We identify GAP40, a polytopic protein of the IMC, as an additional glideosome component and show that GAP45 is anchored to the PM and IMC via its N-and C-terminal extremities, respectively. While the C-terminal region of GAP45 recruits MLC1-MyoA to the IMC, the N-terminal acylation and coiled-coil domain preserve pellicle integrity during invasion. GAP45 is essential for gliding, invasion, and egress. The orthologous Plasmodium falciparum GAP45 can fulfill this dual function, as shown by transgenera complementation, whereas the coccidian GAP45 homolog (designated here as) GAP70 specifically recruits the glideosome to the apical cap of the parasite.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e9c65583e3634e0bed711d0a766bd456" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46006272,&quot;asset_id&quot;:12688158,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46006272/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12688158"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12688158"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12688158; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12688158]").text(description); $(".js-view-count[data-work-id=12688158]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12688158; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12688158']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e9c65583e3634e0bed711d0a766bd456" } } $('.js-work-strip[data-work-id=12688158]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12688158,"title":"Functional Dissection of the Apicomplexan Glideosome Molecular Architecture","translated_title":"","metadata":{"grobid_abstract":"The glideosome of apicomplexan parasites is an actin-and myosin-based machine located at the pellicle, between the plasma membrane (PM) and inner membrane complex (IMC), that powers parasite motility, migration, and host cell invasion and egress. It is composed of myosin A, its light chain MLC1, and two gliding-associated proteins, GAP50 and GAP45. We identify GAP40, a polytopic protein of the IMC, as an additional glideosome component and show that GAP45 is anchored to the PM and IMC via its N-and C-terminal extremities, respectively. While the C-terminal region of GAP45 recruits MLC1-MyoA to the IMC, the N-terminal acylation and coiled-coil domain preserve pellicle integrity during invasion. GAP45 is essential for gliding, invasion, and egress. The orthologous Plasmodium falciparum GAP45 can fulfill this dual function, as shown by transgenera complementation, whereas the coccidian GAP45 homolog (designated here as) GAP70 specifically recruits the glideosome to the apical cap of the parasite.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Cell Host \u0026 Microbe","grobid_abstract_attachment_id":46006272},"translated_abstract":null,"internal_url":"https://www.academia.edu/12688158/Functional_Dissection_of_the_Apicomplexan_Glideosome_Molecular_Architecture","translated_internal_url":"","created_at":"2015-05-30T08:45:53.448-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31698439,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":694759,"work_id":12688158,"tagging_user_id":31698439,"tagged_user_id":31756244,"co_author_invite_id":258650,"email":"j***q@unige.ch","display_order":null,"name":"Jean-baptiste Marq","title":"Functional Dissection of the Apicomplexan Glideosome Molecular Architecture"},{"id":694753,"work_id":12688158,"tagging_user_id":31698439,"tagged_user_id":null,"co_author_invite_id":258648,"email":"v***s@unige.ch","display_order":null,"name":"Valerie Polonais","title":"Functional Dissection of the Apicomplexan Glideosome Molecular Architecture"},{"id":694756,"work_id":12688158,"tagging_user_id":31698439,"tagged_user_id":31895436,"co_author_invite_id":258649,"email":"v***s@iut.u-clermont1.fr","display_order":null,"name":"Valerie Polonais","title":"Functional Dissection of the Apicomplexan Glideosome Molecular Architecture"}],"downloadable_attachments":[{"id":46006272,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006272/thumbnails/1.jpg","file_name":"Functional_Dissection_of_the_Apicomplexa20160527-27545-1wtitxw.pdf","download_url":"https://www.academia.edu/attachments/46006272/download_file","bulk_download_file_name":"Functional_Dissection_of_the_Apicomplexa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006272/Functional_Dissection_of_the_Apicomplexa20160527-27545-1wtitxw-libre.pdf?1464397353=\u0026response-content-disposition=attachment%3B+filename%3DFunctional_Dissection_of_the_Apicomplexa.pdf\u0026Expires=1743100041\u0026Signature=JfkxwP4MezdpReb1ofeB4h-q-tKt81GUmPqMbFkDmGmHeGhz4ERDzWK4mH9g3~Nb~hon0mErtwvB3SUKPU~ZmCZXefV5FqIc8UiL~pUHhygDkawbMmM40vRouzW2Sl6rG-C6TssWz6KDlLl3FdyWn1HQAUyWqAQ0gohD3STMM5VnOfpKNDJHGy~CjTe3zDhxUR20SA~FG3v9Im-OZ5zSC-pLJCxkhLRdMfUfIOENSOVl5uTxHhfnEHYih7xOZ91z~zFTLRSNAgLEoUbRyVKclpyV1RYKu~9M1K-5IiGmLnbgDTxqiq3RyczlMAPX4fPWZ3urY3hAEiezavoRWs-ZrQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Functional_Dissection_of_the_Apicomplexan_Glideosome_Molecular_Architecture","translated_slug":"","page_count":15,"language":"en","content_type":"Work","summary":"The glideosome of apicomplexan parasites is an actin-and myosin-based machine located at the pellicle, between the plasma membrane (PM) and inner membrane complex (IMC), that powers parasite motility, migration, and host cell invasion and egress. It is composed of myosin A, its light chain MLC1, and two gliding-associated proteins, GAP50 and GAP45. We identify GAP40, a polytopic protein of the IMC, as an additional glideosome component and show that GAP45 is anchored to the PM and IMC via its N-and C-terminal extremities, respectively. While the C-terminal region of GAP45 recruits MLC1-MyoA to the IMC, the N-terminal acylation and coiled-coil domain preserve pellicle integrity during invasion. GAP45 is essential for gliding, invasion, and egress. The orthologous Plasmodium falciparum GAP45 can fulfill this dual function, as shown by transgenera complementation, whereas the coccidian GAP45 homolog (designated here as) GAP70 specifically recruits the glideosome to the apical cap of the parasite.","owner":{"id":31698439,"first_name":"Karine","middle_initials":null,"last_name":"Frénal","page_name":"KarineFrénal","domain_name":"unige","created_at":"2015-05-30T08:45:33.176-07:00","display_name":"Karine Frénal","url":"https://unige.academia.edu/KarineFr%C3%A9nal"},"attachments":[{"id":46006272,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46006272/thumbnails/1.jpg","file_name":"Functional_Dissection_of_the_Apicomplexa20160527-27545-1wtitxw.pdf","download_url":"https://www.academia.edu/attachments/46006272/download_file","bulk_download_file_name":"Functional_Dissection_of_the_Apicomplexa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46006272/Functional_Dissection_of_the_Apicomplexa20160527-27545-1wtitxw-libre.pdf?1464397353=\u0026response-content-disposition=attachment%3B+filename%3DFunctional_Dissection_of_the_Apicomplexa.pdf\u0026Expires=1743100041\u0026Signature=JfkxwP4MezdpReb1ofeB4h-q-tKt81GUmPqMbFkDmGmHeGhz4ERDzWK4mH9g3~Nb~hon0mErtwvB3SUKPU~ZmCZXefV5FqIc8UiL~pUHhygDkawbMmM40vRouzW2Sl6rG-C6TssWz6KDlLl3FdyWn1HQAUyWqAQ0gohD3STMM5VnOfpKNDJHGy~CjTe3zDhxUR20SA~FG3v9Im-OZ5zSC-pLJCxkhLRdMfUfIOENSOVl5uTxHhfnEHYih7xOZ91z~zFTLRSNAgLEoUbRyVKclpyV1RYKu~9M1K-5IiGmLnbgDTxqiq3RyczlMAPX4fPWZ3urY3hAEiezavoRWs-ZrQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":6947,"name":"Medical Microbiology","url":"https://www.academia.edu/Documents/in/Medical_Microbiology"},{"id":11298,"name":"Membrane Proteins","url":"https://www.academia.edu/Documents/in/Membrane_Proteins"},{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":142138,"name":"Host-parasite interactions","url":"https://www.academia.edu/Documents/in/Host-parasite_interactions"},{"id":454230,"name":"Plasmodium falciparum","url":"https://www.academia.edu/Documents/in/Plasmodium_falciparum"},{"id":620070,"name":"Transfection","url":"https://www.academia.edu/Documents/in/Transfection"},{"id":664187,"name":"Acylation","url":"https://www.academia.edu/Documents/in/Acylation"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"},{"id":2468093,"name":"Cell Membrane","url":"https://www.academia.edu/Documents/in/Cell_Membrane"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12647563"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/12647563/Global_Analysis_of_Apicomplexan_Protein_S_Acyl_Transferases_Reveals_an_Enzyme_Essential_for_Invasion"><img alt="Research paper thumbnail of Global Analysis of Apicomplexan Protein S-Acyl Transferases Reveals an Enzyme Essential for Invasion" class="work-thumbnail" src="https://attachments.academia-assets.com/46030839/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/12647563/Global_Analysis_of_Apicomplexan_Protein_S_Acyl_Transferases_Reveals_an_Enzyme_Essential_for_Invasion">Global Analysis of Apicomplexan Protein S-Acyl Transferases Reveals an Enzyme Essential for Invasion</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/ArnaultGraindorge">Arnault Graindorge</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://unige.academia.edu/KarineFr%C3%A9nal">Karine Frénal</a>, and <a class="" data-click-track="profile-work-strip-authors" rel="nofollow" href="https://net.academia.edu/MuellerC">Mueller C</a></span></div><div class="wp-workCard_item"><span>Traffic</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The advent of techniques to study palmitoylation on a whole proteome scale has revealed that it i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The advent of techniques to study palmitoylation on a whole proteome scale has revealed that it is an important reversible modification that plays a role in regulating multiple biological processes. Palmitoylation can control the affinity of a protein for lipid membranes, which allows it to impact protein trafficking, stability, folding, signalling and interactions. The publication of the palmitome of the schizont stage of Plasmodium falciparum implicated a role for palmitoylation in host cell invasion, protein export and organelle biogenesis. However, nothing is known so far about the repertoire of protein S-acyl transferases (PATs) that catalyse this modification in Apicomplexa. We undertook a comprehensive analysis of the repertoire of Asp-His-His-Cys cysteine-rich domain (DHHC-CRD) PAT family in Toxoplasma gondii and Plasmodium berghei by assessing their localization and essentiality. Unlike functional redundancies reported in other eukaryotes, some apicomplexan-specific DHHCs are essential for parasite growth, and several are targeted to organelles unique to this phylum. Of particular interest is DHHC7, which localizes to rhoptry organelles in all parasites tested, including the major human pathogen P. falciparum. TgDHHC7 interferes with the localization of the rhoptry palmitoylated protein TgARO and affects the apical positioning of the rhoptry organelles. This PAT has a major impact on T. gondii host cell invasion, but not on the parasite&#39;s ability to egress.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="906751edb04f10e9389d06c6068caa55" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46030839,&quot;asset_id&quot;:12647563,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46030839/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12647563"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12647563"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12647563; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12647563]").text(description); $(".js-view-count[data-work-id=12647563]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12647563; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12647563']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "906751edb04f10e9389d06c6068caa55" } } $('.js-work-strip[data-work-id=12647563]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12647563,"title":"Global Analysis of Apicomplexan Protein S-Acyl Transferases Reveals an Enzyme Essential for Invasion","translated_title":"","metadata":{"ai_title_tag":"Apicomplexan PATs: Key to Host Invasion","grobid_abstract":"The advent of techniques to study palmitoylation on a whole proteome scale has revealed that it is an important reversible modification that plays a role in regulating multiple biological processes. Palmitoylation can control the affinity of a protein for lipid membranes, which allows it to impact protein trafficking, stability, folding, signalling and interactions. The publication of the palmitome of the schizont stage of Plasmodium falciparum implicated a role for palmitoylation in host cell invasion, protein export and organelle biogenesis. However, nothing is known so far about the repertoire of protein S-acyl transferases (PATs) that catalyse this modification in Apicomplexa. We undertook a comprehensive analysis of the repertoire of Asp-His-His-Cys cysteine-rich domain (DHHC-CRD) PAT family in Toxoplasma gondii and Plasmodium berghei by assessing their localization and essentiality. Unlike functional redundancies reported in other eukaryotes, some apicomplexan-specific DHHCs are essential for parasite growth, and several are targeted to organelles unique to this phylum. Of particular interest is DHHC7, which localizes to rhoptry organelles in all parasites tested, including the major human pathogen P. falciparum. TgDHHC7 interferes with the localization of the rhoptry palmitoylated protein TgARO and affects the apical positioning of the rhoptry organelles. This PAT has a major impact on T. gondii host cell invasion, but not on the parasite's ability to egress.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Traffic","grobid_abstract_attachment_id":46030839},"translated_abstract":null,"internal_url":"https://www.academia.edu/12647563/Global_Analysis_of_Apicomplexan_Protein_S_Acyl_Transferases_Reveals_an_Enzyme_Essential_for_Invasion","translated_internal_url":"","created_at":"2015-05-28T06:32:15.685-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":31633727,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":673151,"work_id":12647563,"tagging_user_id":31633727,"tagged_user_id":31725114,"co_author_invite_id":252277,"email":"m***k@um5s.net.ma","affiliation":"Mohamed V Souissi","display_order":null,"name":"Mueller C","title":"Global Analysis of Apicomplexan Protein S-Acyl Transferases Reveals an Enzyme Essential for Invasion"},{"id":673152,"work_id":12647563,"tagging_user_id":31633727,"tagged_user_id":null,"co_author_invite_id":252278,"email":"s***s@voila.fr","display_order":null,"name":"Soldati-favre D","title":"Global Analysis of Apicomplexan Protein S-Acyl Transferases Reveals an Enzyme Essential for Invasion"},{"id":673150,"work_id":12647563,"tagging_user_id":31633727,"tagged_user_id":31698439,"co_author_invite_id":252276,"email":"k***l@unige.ch","affiliation":"Université de Genève","display_order":null,"name":"Karine Frénal","title":"Global Analysis of Apicomplexan Protein S-Acyl Transferases Reveals an Enzyme Essential for Invasion"}],"downloadable_attachments":[{"id":46030839,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46030839/thumbnails/1.jpg","file_name":"Global_Analysis_of_Apicomplexan_Protein_20160528-11776-1u6jo0h.pdf","download_url":"https://www.academia.edu/attachments/46030839/download_file","bulk_download_file_name":"Global_Analysis_of_Apicomplexan_Protein.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46030839/Global_Analysis_of_Apicomplexan_Protein_20160528-11776-1u6jo0h-libre.pdf?1464485907=\u0026response-content-disposition=attachment%3B+filename%3DGlobal_Analysis_of_Apicomplexan_Protein.pdf\u0026Expires=1743100041\u0026Signature=OPQowJTeWWOeFOMdau6L57u9p2nDeRkGqr-Z7xa6OHRfb-FgjBkCX9mCnJRQ661th0lqPdeNjdtIxUz438zKlwEKw4vQIkN2XniiaVZCaeLI4cdcX9aC21y1kaKZovOPgPpXzXA0Ql4xwDL~fZKyAceNTJgp3YBmhuGWZVGd2rynailuTnqyCdM8eJI93mCdHx6JlHm0Vf8eJbo8VXJVdIG7N3MY75~G7sawiZCr1IsAUduK4bFERIyf4q7lFbjquWwyevfQNJmi6XjiNtZ9lWPNBM9XCLH-EFtt8Gp5qtW4SxmmUOA064e4Dfl3uJv0aaBjF~u~9LhJrpyv~hqgqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Global_Analysis_of_Apicomplexan_Protein_S_Acyl_Transferases_Reveals_an_Enzyme_Essential_for_Invasion","translated_slug":"","page_count":17,"language":"en","content_type":"Work","summary":"The advent of techniques to study palmitoylation on a whole proteome scale has revealed that it is an important reversible modification that plays a role in regulating multiple biological processes. Palmitoylation can control the affinity of a protein for lipid membranes, which allows it to impact protein trafficking, stability, folding, signalling and interactions. The publication of the palmitome of the schizont stage of Plasmodium falciparum implicated a role for palmitoylation in host cell invasion, protein export and organelle biogenesis. However, nothing is known so far about the repertoire of protein S-acyl transferases (PATs) that catalyse this modification in Apicomplexa. We undertook a comprehensive analysis of the repertoire of Asp-His-His-Cys cysteine-rich domain (DHHC-CRD) PAT family in Toxoplasma gondii and Plasmodium berghei by assessing their localization and essentiality. Unlike functional redundancies reported in other eukaryotes, some apicomplexan-specific DHHCs are essential for parasite growth, and several are targeted to organelles unique to this phylum. Of particular interest is DHHC7, which localizes to rhoptry organelles in all parasites tested, including the major human pathogen P. falciparum. TgDHHC7 interferes with the localization of the rhoptry palmitoylated protein TgARO and affects the apical positioning of the rhoptry organelles. This PAT has a major impact on T. gondii host cell invasion, but not on the parasite's ability to egress.","owner":{"id":31633727,"first_name":"Arnault","middle_initials":null,"last_name":"Graindorge","page_name":"ArnaultGraindorge","domain_name":"independent","created_at":"2015-05-28T06:31:48.449-07:00","display_name":"Arnault Graindorge","url":"https://independent.academia.edu/ArnaultGraindorge"},"attachments":[{"id":46030839,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46030839/thumbnails/1.jpg","file_name":"Global_Analysis_of_Apicomplexan_Protein_20160528-11776-1u6jo0h.pdf","download_url":"https://www.academia.edu/attachments/46030839/download_file","bulk_download_file_name":"Global_Analysis_of_Apicomplexan_Protein.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46030839/Global_Analysis_of_Apicomplexan_Protein_20160528-11776-1u6jo0h-libre.pdf?1464485907=\u0026response-content-disposition=attachment%3B+filename%3DGlobal_Analysis_of_Apicomplexan_Protein.pdf\u0026Expires=1743100041\u0026Signature=OPQowJTeWWOeFOMdau6L57u9p2nDeRkGqr-Z7xa6OHRfb-FgjBkCX9mCnJRQ661th0lqPdeNjdtIxUz438zKlwEKw4vQIkN2XniiaVZCaeLI4cdcX9aC21y1kaKZovOPgPpXzXA0Ql4xwDL~fZKyAceNTJgp3YBmhuGWZVGd2rynailuTnqyCdM8eJI93mCdHx6JlHm0Vf8eJbo8VXJVdIG7N3MY75~G7sawiZCr1IsAUduK4bFERIyf4q7lFbjquWwyevfQNJmi6XjiNtZ9lWPNBM9XCLH-EFtt8Gp5qtW4SxmmUOA064e4Dfl3uJv0aaBjF~u~9LhJrpyv~hqgqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":13346,"name":"Toxoplasma","url":"https://www.academia.edu/Documents/in/Toxoplasma"},{"id":54433,"name":"Phylogeny","url":"https://www.academia.edu/Documents/in/Phylogeny"},{"id":157891,"name":"Traffic","url":"https://www.academia.edu/Documents/in/Traffic"},{"id":567271,"name":"Palmitoylation","url":"https://www.academia.edu/Documents/in/Palmitoylation"},{"id":744838,"name":"Protozoan Proteins","url":"https://www.academia.edu/Documents/in/Protozoan_Proteins"},{"id":1457054,"name":"Protein Transport","url":"https://www.academia.edu/Documents/in/Protein_Transport"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":1693871,"name":"Plasmodium berghei","url":"https://www.academia.edu/Documents/in/Plasmodium_berghei"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "32f9ee6037c0cd1a0c00e2e8b2031b9180c100f878866bbfca9ed84a0ef684fa", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="sWWP0P5BEgvUpNVjGuDFsTgubwrRlcQt-eU9rXYaSD_l26B_5qkn1mXZEdh4pTpUBLvkzFdeURiAK7DIVeQqMg" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://unige.academia.edu/KarineFr%C3%A9nal" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="MV7rM6Vg0dEaHB-mSBrXwMDi_aSyC1sF1KXcAMyVyFBl4MScvYjkDKth2x0qXygl_Hd2YjTAzjCta1Fl72uqXQ" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10