CINXE.COM
Search results for: pavement
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: pavement</title> <meta name="description" content="Search results for: pavement"> <meta name="keywords" content="pavement"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="pavement" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="pavement"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 264</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: pavement</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">264</span> Cost Effectiveness and Performance Study of Perpetual Pavement Using ABAQUS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansour%20Fakhri">Mansour Fakhri</a>, <a href="https://publications.waset.org/abstracts/search?q=Monire%20Zokaei"> Monire Zokaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Where there are many demolitions on conventional asphalt pavements, heavy costs are paid to repair and reconstruct the pavement roads annually. Recently some research has been done in order to increase the pavement life. Perpetual pavement is regarded as one of them which can improve the pavement life and minimize the maintenance activity and cost. In this research, ABAQUS which is a finite element software is implemented for analyzing and simulation of perpetual pavement. Viscoelastic model of material is used and loading wheel is considered to be dynamic. Effect of different parameters on pavement function has been considered. Because of high primary cost these pavements are not widely used. In this regard, life cost analysis was also carried out to compare perpetual pavement to conventional asphalt concrete pavement. It was concluded that although the initial cost of perpetual pavement is higher than that of conventional asphalt pavement, life cycle cost analysis during 50 years of service life showed that the performance of this pavement is better and the whole life cost of that is less. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABAQUS" title="ABAQUS">ABAQUS</a>, <a href="https://publications.waset.org/abstracts/search?q=lifecycle%20cost%20analysis" title=" lifecycle cost analysis"> lifecycle cost analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanistic%20empirical" title=" mechanistic empirical"> mechanistic empirical</a>, <a href="https://publications.waset.org/abstracts/search?q=perpetual%20pavement" title=" perpetual pavement"> perpetual pavement</a> </p> <a href="https://publications.waset.org/abstracts/33524/cost-effectiveness-and-performance-study-of-perpetual-pavement-using-abaqus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">263</span> A Study on Numerical Modelling of Rigid Pavement: Temperature and Thickness Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Chegenizadeh">Amin Chegenizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Keramatikerman"> Mahdi Keramatikerman</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Nikraz"> Hamid Nikraz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pavement engineering plays a significant role to develop cost effective and efficient highway and road networks. In general, pavement regarding structure is categorized in two core group namely flexible and rigid pavements. There are various benefits in application of rigid pavement. For instance, they have a longer life and lower maintenance costs in compare with the flexible pavement. In rigid pavement designs, temperature and thickness are two effective parameters that could widely affect the total cost of the project. In this study, a numerical modeling using Kenpave-Kenslab was performed to investigate the effect of these two important parameters in the rigid pavement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rigid%20pavement" title="rigid pavement">rigid pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenpave" title=" Kenpave"> Kenpave</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenslab" title=" Kenslab"> Kenslab</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness" title=" thickness"> thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/44103/a-study-on-numerical-modelling-of-rigid-pavement-temperature-and-thickness-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">262</span> Moisture Variations in Unbound Layers in an Instrumented Pavement Section</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Islam">R. Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafiqul%20A.%20Tarefder"> Rafiqul A. Tarefder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the moisture variations of unbound layers from April 2012 to January 2014 in the Interstate 40 (I-40) pavement section in New Mexico. Three moisture probes were installed at different layers inside the pavement which measure the continuous moisture variations of the pavement. Data show that the moisture contents of unbound layers are typically constant throughout the day and month unless there is rainfall. Moisture contents of all unbound layers change with rainfall. Change in ground water table may affect the moisture content of unbound layers which has not investigated in this study. In addition, the Level 3 predictions of moisture contents using the Pavement Mechanistic-Empirical (ME) Design software are compared and found quite reasonable. However, results presented in the current study may not be applicable for pavement in other regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20pavement" title="asphalt pavement">asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20probes" title=" moisture probes"> moisture probes</a>, <a href="https://publications.waset.org/abstracts/search?q=resilient%20modulus" title=" resilient modulus"> resilient modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20model" title=" climate model "> climate model </a> </p> <a href="https://publications.waset.org/abstracts/21090/moisture-variations-in-unbound-layers-in-an-instrumented-pavement-section" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">261</span> Structural Evaluation of Cell-Filled Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subrat%20Roy">Subrat Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the findings of a study carried out for evaluating the performance of cell-filled pavement for low volume roads. Details of laboratory investigations and the methodology adopted for construction of cell-filled pavement are presented. The aim of this study is to evaluate the structural behaviour of cement concrete filled cell pavement laid over three different types of subbases (water bound macadam, soil-cement and moorum). A formwork of cells of a thin plastic sheet was used to construct the cell-filled pavements to form flexible, interlocked block pavements. Surface deflections were measured using falling weight deflectometer and benkelman beam methods. Resilient moduli of pavement layers were estimated from the measured deflections. A comparison of deflections obtained from both the methodology is also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell-filled%20pavement" title="cell-filled pavement">cell-filled pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=WBM" title=" WBM"> WBM</a>, <a href="https://publications.waset.org/abstracts/search?q=FWD" title=" FWD"> FWD</a>, <a href="https://publications.waset.org/abstracts/search?q=Moorum" title=" Moorum"> Moorum</a> </p> <a href="https://publications.waset.org/abstracts/19215/structural-evaluation-of-cell-filled-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">260</span> Developing Pavement Structural Deterioration Curves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gregory%20Kelly">Gregory Kelly</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary%20Chai"> Gary Chai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sittampalam%20Manoharan"> Sittampalam Manoharan</a>, <a href="https://publications.waset.org/abstracts/search?q=Deborah%20Delaney"> Deborah Delaney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Structural Number (SN) can be calculated for a road pavement from the properties and thicknesses of the surface, base course, sub-base, and subgrade. Historically, the cost of collecting structural data has been very high. Data were initially collected using Benkelman Beams and now by Falling Weight Deflectometer (FWD). The structural strength of pavements weakens over time due to environmental and traffic loading factors, but due to a lack of data, no structural deterioration curve for pavements has been implemented in a Pavement Management System (PMS). International Roughness Index (IRI) is a measure of the road longitudinal profile and has been used as a proxy for a pavement’s structural integrity. This paper offers two conceptual methods to develop Pavement Structural Deterioration Curves (PSDC). Firstly, structural data are grouped in sets by design Equivalent Standard Axles (ESA). An ‘Initial’ SN (ISN), Intermediate SN’s (SNI) and a Terminal SN (TSN), are used to develop the curves. Using FWD data, the ISN is the SN after the pavement is rehabilitated (Financial Accounting ‘Modern Equivalent’). Intermediate SNIs, are SNs other than the ISN and TSN. The TSN was defined as the SN of the pavement when it was approved for pavement rehabilitation. The second method is to use Traffic Speed Deflectometer data (TSD). The road network already divided into road blocks, is grouped by traffic loading. For each traffic loading group, road blocks that have had a recent pavement rehabilitation, are used to calculate the ISN and those planned for pavement rehabilitation to calculate the TSN. The remaining SNs are used to complete the age-based or if available, historical traffic loading-based SNI’s. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conceptual" title="conceptual">conceptual</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20structural%20number" title=" pavement structural number"> pavement structural number</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20structural%20deterioration%20curve" title=" pavement structural deterioration curve"> pavement structural deterioration curve</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20management%20system" title=" pavement management system"> pavement management system</a> </p> <a href="https://publications.waset.org/abstracts/83307/developing-pavement-structural-deterioration-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">259</span> Pavement Maintenance and Rehabilitation Scheduling Using Genetic Algorithm Based Multi Objective Optimization Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashwini%20Gowda%20K.%20S">Ashwini Gowda K. S</a>, <a href="https://publications.waset.org/abstracts/search?q=Archana%20M.%20R"> Archana M. R</a>, <a href="https://publications.waset.org/abstracts/search?q=Anjaneyappa%20V"> Anjaneyappa V</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents pavement maintenance and management system (PMMS) to obtain optimum pavement maintenance and rehabilitation strategies and maintenance scheduling for a network using a multi-objective genetic algorithm (MOGA). Optimal pavement maintenance & rehabilitation strategy is to maximize the pavement condition index of the road section in a network with minimum maintenance and rehabilitation cost during the planning period. In this paper, NSGA-II is applied to perform maintenance optimization; this maintenance approach was expected to preserve and improve the existing condition of the highway network in a cost-effective way. The proposed PMMS is applied to a network that assessed pavement based on the pavement condition index (PCI). The minimum and maximum maintenance cost for a planning period of 20 years obtained from the non-dominated solution was found to be 5.190x10¹⁰ ₹ and 4.81x10¹⁰ ₹, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance%20and%20rehabilitation" title=" maintenance and rehabilitation"> maintenance and rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20technique" title=" optimization technique"> optimization technique</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20condition%20index" title=" pavement condition index"> pavement condition index</a> </p> <a href="https://publications.waset.org/abstracts/129811/pavement-maintenance-and-rehabilitation-scheduling-using-genetic-algorithm-based-multi-objective-optimization-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">258</span> Mechanistic Study of Composite Pavement Behavior in Heavy Duty Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Makara%20Rith">Makara Rith</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Kyu%20Kim"> Young Kyu Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung%20Woo%20Lee"> Seung Woo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In heavy duty areas, asphalt pavement constructed as entrance roadway may expose distresses such as cracking and rutting during service life. To mitigate these problems, composite pavement with a roller-compacted concrete base may be a good alternative; however, it should be initially investigated. Structural performances such as fatigue cracking and rut depth may be changed due to variation of some design factors. Therefore, this study focuses on the variation effect of material modulus, layer thickness and loading on composite pavement performances. Stress and strain at the critical location are determined and used as the input of transfer function for corresponding distresses to evaluate the pavement performance. Also, composite pavement satisfying the design criteria may be selected as a design section for heavy duty areas. Consequently, this investigation indicates that composite pavement has the ability to eliminate fatigue cracking in asphalt surfaces and significantly reduce rut depth. In addition, a thick or strong rigid base can significantly reduce rut depth and prolong fatigue life of this layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20pavement" title="composite pavement">composite pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=ports" title=" ports"> ports</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking" title=" cracking"> cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=rutting" title=" rutting"> rutting</a> </p> <a href="https://publications.waset.org/abstracts/85660/mechanistic-study-of-composite-pavement-behavior-in-heavy-duty-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">257</span> GIS Pavement Maintenance Selection Strategy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mekdelawit%20Teferi%20Alamirew">Mekdelawit Teferi Alamirew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a practical tool, the Geographical information system (GIS) was used for data integration, collection, management, analysis, and output presentation in pavement mangement systems . There are many GIS techniques to improve the maintenance activities like Dynamic segmentation and weighted overlay analysis which considers Multi Criteria Decision Making process. The results indicated that the developed MPI model works sufficiently and yields adequate output for providing accurate decisions. Hence considering multi criteria to prioritize the pavement sections for maintenance, as a result of the fact that GIS maps can express position, extent, and severity of pavement distress features more effectively than manual approaches, lastly the paper also offers digitized distress maps that can help agencies in their decision-making processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pavement" title="pavement">pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible" title=" flexible"> flexible</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=index" title=" index"> index</a> </p> <a href="https://publications.waset.org/abstracts/182371/gis-pavement-maintenance-selection-strategy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">256</span> Modeling the Road Pavement Dynamic Response Due to Heavy Vehicles Loadings and Kinematic Excitations General Asymmetries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josua%20K.%20Junias">Josua K. Junias</a>, <a href="https://publications.waset.org/abstracts/search?q=Fillemon%20N.%20Nangolo"> Fillemon N. Nangolo</a>, <a href="https://publications.waset.org/abstracts/search?q=Petrina%20T.%20Johaness"> Petrina T. Johaness</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The deterioration of pavement can lead to the formation of potholes, which cause the wheels of a vehicle to experience unusual and uneven movement. In addition, improper loading practices of heavy vehicles can result in dynamic loading of the pavement due to the vehicle's response to the irregular movement caused by the potholes. Previous studies have only focused on the effects of either the road's uneven surface or the asymmetrical loading of the vehicle, but not both. This study aimed to model the pavement's dynamic response to heavy vehicles under different loading configurations and wheel movements. A sample of 225 cases with symmetrical and asymmetrical loading and kinematic movements was used, and 27 validated 3D pavement-vehicle interactive models were developed using SIMWISE 4D. The study found that the type of kinematic movement experienced by the heavy vehicle affects the pavement's dynamic loading, with eccentrically loaded, asymmetrically kinematic heavy vehicles having a statistically significant impact. The study also suggests that the mass of the vehicle's suspension system plays a role in the pavement's dynamic loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eccentricities" title="eccentricities">eccentricities</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20dynamic%20loading" title=" pavement dynamic loading"> pavement dynamic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20displacement%20dynamic%20response" title=" vertical displacement dynamic response"> vertical displacement dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20vehicles" title=" heavy vehicles"> heavy vehicles</a> </p> <a href="https://publications.waset.org/abstracts/166750/modeling-the-road-pavement-dynamic-response-due-to-heavy-vehicles-loadings-and-kinematic-excitations-general-asymmetries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">255</span> Design of Roller Compacting Concrete Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Zarrin">O. Zarrin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ramezan%20Shirazi"> M. Ramezan Shirazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality of concrete is usually defined by compressive strength, but flexural strength is the most important characteristic of concrete in a pavement which control the mix design of concrete instead of compressive strength. Therefore, the aggregates which are selected for the pavements are affected by higher flexural strength. Roller Compacting Concrete Pavement (RCCP) is not a new construction method. The other characteristic of this method is no bleeding and less shrinkage due to the lower amount of water. For this purpose, a roller is needed for placing and compacting. The surface of RCCP is not smooth; therefore, the most common use of this pavement is in an industrial zone with slower traffic speed which requires durable and tough pavement. For preparing a smoother surface, it can be achieved by asphalt paver. RCCP decrease the finishing cost because there are no bars, formwork, and the lesser labor need for placing the concrete. In this paper, different aspect of RCCP such as mix design, flexural, compressive strength and focus on the different part of RCCP on detail have been investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title="flexural strength">flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement" title=" pavement"> pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt" title=" asphalt"> asphalt</a> </p> <a href="https://publications.waset.org/abstracts/23282/design-of-roller-compacting-concrete-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">625</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">254</span> Study on the Pavement Structural Performance of Highways in the North China Region Based on Pavement Distress and Ground Penetrating Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingwei%20Yi">Mingwei Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Liujie%20Guo"> Liujie Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zongjun%20Pan"> Zongjun Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiang%20Lin"> Xiang Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoming%20Yi"> Xiaoming Yi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rapid expansion of road construction mileage in China, the scale of road maintenance needs has concurrently escalated. As the service life of roads extends, the design of pavement repair and maintenance emerges as a crucial component in preserving the excellent performance of the pavement. The remaining service life of asphalt pavement structure is a vital parameter in the lifecycle maintenance design of asphalt pavements. Based on an analysis of pavement structural integrity, this study introduces a characterization and assessment of the remaining life of existing asphalt pavement structures. It proposes indicators such as the transverse crack spacing and the length of longitudinal cracks. The transverse crack spacing decreases with an increase in maintenance intervals and with the extended use of semi-rigid base layer structures, although this trend becomes less pronounced after maintenance intervals exceed 4 years. The length of longitudinal cracks increases with longer maintenance intervals, but this trend weakens after five years. This system can support the enhancement of standardization and scientific design in highway maintenance decision-making processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20integrity" title="structural integrity">structural integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=highways" title=" highways"> highways</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20evaluation" title=" pavement evaluation"> pavement evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt%20concrete%20pavement" title=" asphalt concrete pavement"> asphalt concrete pavement</a> </p> <a href="https://publications.waset.org/abstracts/181500/study-on-the-pavement-structural-performance-of-highways-in-the-north-china-region-based-on-pavement-distress-and-ground-penetrating-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">253</span> Stresses Induced in Saturated Asphalt Pavement by Moving Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhong">Yang Zhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Meijie%20Xue"> Meijie Xue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to investigate the stresses and excess pore fluid pressure induced by the moving wheel pressure on saturated asphalt pavements, which is one of the reasons for a damage phenomenon in flexible pavement denoted stripping. The saturated asphalt pavement is modeled as multilayered poroelastic half space exerted by a wheel pressure, which is moving at a constant velocity along the surface of the pavement. The governing equations for the proposed analysis are based on the Biot’s theory of dynamics in saturated poroelastic medium. The governing partial differential equations are solved by using Laplace and Hankel integral transforms. The solutions for the stresses and excess pore pressure are expressed in the forms of numerical inversion Laplace and Hankel integral transforms. The numerical simulation results clearly demonstrate the induced deformation and water flow in the asphalt pavement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=saturated%20asphalt%20pavements" title="saturated asphalt pavements">saturated asphalt pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20loads" title=" moving loads"> moving loads</a>, <a href="https://publications.waset.org/abstracts/search?q=excess%20pore%20fluid%20pressure" title=" excess pore fluid pressure"> excess pore fluid pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20of%20pavement" title=" stress of pavement"> stress of pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=biot%20theory" title=" biot theory"> biot theory</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20and%20strain%20of%20pavement" title=" stress and strain of pavement"> stress and strain of pavement</a> </p> <a href="https://publications.waset.org/abstracts/48170/stresses-induced-in-saturated-asphalt-pavement-by-moving-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">252</span> Use of FWD in Determination of Bonding Condition of Semi-Rigid Asphalt Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nonde%20Lushinga">Nonde Lushinga</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiang%20Xin"> Jiang Xin</a>, <a href="https://publications.waset.org/abstracts/search?q=Danstan%20Chiponde"> Danstan Chiponde</a>, <a href="https://publications.waset.org/abstracts/search?q=Lawrence%20P.%20Mutale"> Lawrence P. Mutale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, falling weight deflectometer (FWD) was used to determine the bonding condition of a newly constructed semi-rigid base pavement. Using Evercal back-calculation computer programme, it was possible to quickly and accurately determine the structural condition of the pavement system of FWD test data. The bonding condition of the pavement layers was determined from calculated shear stresses and strains (relative horizontal displacements) on the interface of pavement layers from BISAR 3.0 pavement computer programmes. Thus, by using non-linear layered elastic theory, a pavement structure is analysed in the same way as other civil engineering structures. From non-destructive FWD testing, the required bonding condition of pavement layers was quantified from soundly based principles of Goodman’s constitutive models shown in equation 2, thereby producing the shear reaction modulus (Ks) which gives an indication of bonding state of pavement layers. Furthermore, a Tack coat failure Ratio (TFR) which has long being used in the USA in pavement evaluation was also used in the study in order to give validity to the study. According to research [39], the interface between two asphalt layers is determined by use of Tack Coat failure Ratio (TFR) which is the ratio of the stiffness of top layer asphalt layers over the stiffness of the second asphalt layer (E1/E2) in a slipped pavement. TFR gives an indication of the strength of the tack coat which is the main determinants of interlayer slipping. The criteria is that if the interface was in the state full bond, TFR would be greater or equals to 1 and that if the TFR was 0, meant full slip. Results of the calculations showed that TFR value was 1.81 which re-affirmed the position that the pavement under study was in the state of full bond because the value was greater than 1. It was concluded that FWD can be used to determine bonding condition of existing and newly constructed pavements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=falling%20weight%20deflectometer%20%28FWD%29" title="falling weight deflectometer (FWD)">falling weight deflectometer (FWD)</a>, <a href="https://publications.waset.org/abstracts/search?q=backcaluclation" title=" backcaluclation"> backcaluclation</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-rigid%20base%20pavement" title=" semi-rigid base pavement"> semi-rigid base pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20reaction%20modulus" title=" shear reaction modulus"> shear reaction modulus</a> </p> <a href="https://publications.waset.org/abstracts/31099/use-of-fwd-in-determination-of-bonding-condition-of-semi-rigid-asphalt-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">251</span> Structural Evaluation of Airfield Pavement Using Finite Element Analysis Based Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20Ji">Richard Ji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nondestructive deflection testing has been accepted widely as a cost-effective tool for evaluating the structural condition of airfield pavements. Backcalculation of pavement layer moduli can be used to characterize the pavement existing condition in order to compute the load bearing capacity of pavement. This paper presents an improved best-fit backcalculation methodology based on deflection predictions obtained using finite element method (FEM). The best-fit approach is based on minimizing the squared error between falling weight deflectometer (FWD) measured deflections and FEM predicted deflections. Then, concrete elastic modulus and modulus of subgrade reaction were back-calculated using Heavy Weight Deflectometer (HWD) deflections collected at the National Airport Pavement Testing Facility (NAPTF) test site. It is an alternative and more versatile method in considering concrete slab geometry and HWD testing locations compared to methods currently available. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nondestructive%20testing" title="nondestructive testing">nondestructive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20moduli%20backcalculation" title=" pavement moduli backcalculation"> pavement moduli backcalculation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20pavements" title=" concrete pavements"> concrete pavements</a> </p> <a href="https://publications.waset.org/abstracts/97902/structural-evaluation-of-airfield-pavement-using-finite-element-analysis-based-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">250</span> Effect of Poly Naphthalene Sulfonate Superplasticizer on Constructibility of Roller-Compacted Concrete Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chamroeun%20Chhorn">Chamroeun Chhorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong%20Jae%20Hong"> Seong Jae Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoon-Ho%20Cho"> Yoon-Ho Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Jong%20Lee"> Hyun Jong Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung%20Woo%20Lee"> Seung Woo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of Roller-Compacted Concrete Pavement (RCCP) in public and private applications has been increasing steadily in the past few decades due to its cost saving. This eco-concrete pavement shares construction characteristics from asphalt pavement and material characteristics from the conventional concrete pavement. Due to its low binder and water content, the consistency of Roller-Compacted Concrete (RCC) is typically very stiff. Thus, it is crucial to control the consistency of this concrete. Without appropriate consistency, required density may not be achieved in actual construction for RCCP. The purpose of this study is to investigate the effect on Poly Naphtalene Sulfonate (PNS) superplasticizer on the consistency of RCC as well as its compactibility in actual construction. From this study, it was found that PNS superplasticizer can effectively reduce the stiffness of an RCC mixture and maintain it for a sufficient amount of time without compromising its strength properties. Moreover, it was observed from field test specimens that the use of this admixture can also improve the compaction efficiency throughout the whole depth of pavement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=roller-compacted%20concrete" title="roller-compacted concrete">roller-compacted concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=consistency" title=" consistency"> consistency</a>, <a href="https://publications.waset.org/abstracts/search?q=compactibility" title=" compactibility"> compactibility</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20naphthalene%20sulfonate%20superplasticizer" title=" poly naphthalene sulfonate superplasticizer"> poly naphthalene sulfonate superplasticizer</a> </p> <a href="https://publications.waset.org/abstracts/54668/effect-of-poly-naphthalene-sulfonate-superplasticizer-on-constructibility-of-roller-compacted-concrete-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">249</span> Numerical Modeling Analysis for the Double-Layered Asphalt Pavement Structure Behavior with Interface Bonding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minh%20Tu%20Le">Minh Tu Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Quang%20Huy%20Nguyen"> Quang Huy Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mai%20Lan%20Nguyen"> Mai Lan Nguyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bonding characteristics between pavement layers have an important influence on responses of pavement structures. This paper deals with analytical solution for the stresses, strains, and deflections of double-layered asphalt pavement structure. This solution is based on the homogeneous half-space of layered theory developed by Burmister (1943). The partial interaction between the layers is taken into account by considering an interface bonding behavior which is obtained by push-out shear test. Numerical applications considering three cases of bonding (unbonded, partially bonded, and fully bonded overlays) are carried out to the influence of the interface bonding on the structural behavior of asphalt pavement under static loading. Further, it was observed that numerical results indicate that the horizontal shear reaction modulus at the interface (Ks) will significantly affect pavement structure behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20solution" title="analytical solution">analytical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20bonding" title=" interface bonding"> interface bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20test%20keyword" title=" shear test keyword"> shear test keyword</a>, <a href="https://publications.waset.org/abstracts/search?q=double-layered%20asphalt" title=" double-layered asphalt"> double-layered asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20reaction%20modulus" title=" shear reaction modulus"> shear reaction modulus</a> </p> <a href="https://publications.waset.org/abstracts/83012/numerical-modeling-analysis-for-the-double-layered-asphalt-pavement-structure-behavior-with-interface-bonding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">248</span> The Effect of Proper Drainage on the Cost of Building and Repairing Roads </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abbas%20Tabatabaei">Seyed Abbas Tabatabaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeid%20Amini"> Saeid Amini</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Reza%20Ghafouri"> Hamid Reza Ghafouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important factors in flexible pavement failure is the lack of proper drainage along the roads. Water on the Paving Systems is one of the main parameters of pavement failure. Though, if water is discharged without delay and prior to discharge in order to prevent damaging the pavement the lifetime of the pavement will be considerably increased. In this study, duration of water stay and materials properties in pavement systems and the effects of aggregate gradation, and hydraulic conductivity of the drainage rate and Effects of subsurface drainage systems, drainage and reduction in the lifetime of the pavement have been studied. The study conducted in accordance with the terms offered can be concluded as under. The more hydraulic conductivity the less drainage time and the use of sub-surface drainage system causes two to three times of the pavement lifetime. In this research it has been tried by study and calculate the drained and undrained pavements lifetime by considering the effectiveness of water and drainage coefficient on flexible materials modulus and by using KENLAYER software to compare the present value cost of these pavements has been paid for a 20 year lifetime design. In this study, 14 pavement sections have been considered, of which 7 sections have been drained and 7 other not. Results show that drained pavements have more initial costs but the failure severity is so little in them and have longer lifetime for a 20 year lifetime design, the drained pavements seem so economic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drainage" title="drainage">drainage</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20and%20sub-base" title=" base and sub-base"> base and sub-base</a>, <a href="https://publications.waset.org/abstracts/search?q=elasticity%20modulus" title=" elasticity modulus"> elasticity modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregation" title=" aggregation"> aggregation</a> </p> <a href="https://publications.waset.org/abstracts/1249/the-effect-of-proper-drainage-on-the-cost-of-building-and-repairing-roads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">247</span> Effect of Climate Change on Road Maintenance in Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Russedul%20Islam">Mohammed Russedul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Shah%20M.%20Muniruzzaman"> Shah M. Muniruzzaman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kamrul-Al-Masud"> M. Kamrul-Al-Masud</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Sadat%20Morshed"> Syed Sadat Morshed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bangladesh is one of the most climate vulnerable countries in the world. According to scientists it is predicted that temperature will raise 1-3% and precipitation 20% by 2050 in Bangladesh. Increased temperature and precipitation will deteriorate pavement structure in an accelerated rate. The study has found that pavement life will reduce significantly due to rise in temperature and precipitation in in a coastal road in Bangladesh. It will cause to increase the maintenance cost of the road. The study has found that reduction in pavement life will be caused due the decrease in stiffness and strength parameters of the pavement material due to high temperature and precipitation. It has found that use of new material costlier than the existing one will be necessary to prevent the reduction of pavement life. Eventually it will increase the re-construction cost of the road. The study has used mechanistic-empirical analysis method with a software GAMES (General analysis on multi-layered elastic systems) to find out the effect of temperature and precipitation rise on the pavement life. The study will help to guide road engineers of Bangladesh to prepare in advance to fight with the climate change effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance%20cost" title=" maintenance cost"> maintenance cost</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanistic-empirical%20method" title=" mechanistic-empirical method"> mechanistic-empirical method</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20life" title=" pavement life"> pavement life</a> </p> <a href="https://publications.waset.org/abstracts/37676/effect-of-climate-change-on-road-maintenance-in-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">246</span> Simple Procedure for Probability Calculation of Tensile Crack Occurring in Rigid Pavement: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ale%C5%A1%20Florian">Aleš Florian</a>, <a href="https://publications.waset.org/abstracts/search?q=Lenka%20%C5%A0evelov%C3%A1"> Lenka Ševelová</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20%C5%BD%C3%A1k"> Jaroslav Žák</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Formation of tensile cracks in concrete slabs of rigid pavement can be (among others) the initiation point of the other, more serious failures which can ultimately lead to complete degradation of the concrete slab and thus the whole pavement. Two measures can be used for reliability assessment of this phenomenon - the probability of failure and/or the reliability index. Different methods can be used for their calculation. The simple ones are called moment methods and simulation techniques. Two methods - FOSM Method and Simple Random Sampling Method - are verified and their comparison is performed. The influence of information about the probability distribution and the statistical parameters of input variables as well as of the limit state function on the calculated reliability index and failure probability are studied in three points on the lower surface of concrete slabs of the older type of rigid pavement formerly used in the Czech Republic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure" title="failure">failure</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement" title=" pavement"> pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=probability" title=" probability"> probability</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20index" title=" reliability index"> reliability index</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20crack" title=" tensile crack"> tensile crack</a> </p> <a href="https://publications.waset.org/abstracts/4333/simple-procedure-for-probability-calculation-of-tensile-crack-occurring-in-rigid-pavement-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">546</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">245</span> Non-Linear Behavior of Granular Materials in Pavement Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Tichamakdj">Mounir Tichamakdj</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Sandjak"> Khaled Sandjak</a>, <a href="https://publications.waset.org/abstracts/search?q=Boualem%20Tiliouine"> Boualem Tiliouine </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design of flexible pavements is currently carried out using a multilayer elastic theory. However, for thin-surface pavements subject to light or medium traffic volumes, the importance of the non-linear stress-strain behavior of unbound granular materials requires the use of more sophisticated numerical models for the structural design of these pavements. The simplified analysis of the nonlinear behavior of granular materials in pavement design will be developed in this study. To achieve this objective, an equivalent linear model derived from a volumetric shear stress model is used to simulate the nonlinear elastic behavior of two unlinked local granular materials often used in pavements. This model is included here to adequately incorporate material non-linearity due to stress dependence and stiffness of the granular layers in the flexible pavement analysis. The sensitivity of the pavement design criteria to the likely variations in asphalt layer thickness and the mineralogical nature of unbound granular materials commonly used in pavement structures are also evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=granular%20materials" title="granular materials">granular materials</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20equivalent%20model" title=" linear equivalent model"> linear equivalent model</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20behavior" title=" non-linear behavior"> non-linear behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20design" title=" pavement design"> pavement design</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20volumetric%20strain%20model" title=" shear volumetric strain model"> shear volumetric strain model</a> </p> <a href="https://publications.waset.org/abstracts/95649/non-linear-behavior-of-granular-materials-in-pavement-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">244</span> Modified Clusterwise Regression for Pavement Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mukesh%20Khadka">Mukesh Khadka</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Paz"> Alexander Paz</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanns%20de%20la%20Fuente-Mella"> Hanns de la Fuente-Mella</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Typically, pavement performance models are developed in two steps: (i) pavement segments with similar characteristics are grouped together to form a cluster, and (ii) the corresponding performance models are developed using statistical techniques. A challenge is to select the characteristics that define clusters and the segments associated with them. If inappropriate characteristics are used, clusters may include homogeneous segments with different performance behavior or heterogeneous segments with similar performance behavior. Prediction accuracy of performance models can be improved by grouping the pavement segments into more uniform clusters by including both characteristics and a performance measure. This grouping is not always possible due to limited information. It is impractical to include all the potential significant factors because some of them are potentially unobserved or difficult to measure. Historical performance of pavement segments could be used as a proxy to incorporate the effect of the missing potential significant factors in clustering process. The current state-of-the-art proposes Clusterwise Linear Regression (CLR) to determine the pavement clusters and the associated performance models simultaneously. CLR incorporates the effect of significant factors as well as a performance measure. In this study, a mathematical program was formulated for CLR models including multiple explanatory variables. Pavement data collected recently over the entire state of Nevada were used. International Roughness Index (IRI) was used as a pavement performance measure because it serves as a unified standard that is widely accepted for evaluating pavement performance, especially in terms of riding quality. Results illustrate the advantage of the using CLR. Previous studies have used CLR along with experimental data. This study uses actual field data collected across a variety of environmental, traffic, design, and construction and maintenance conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clusterwise%20regression" title="clusterwise regression">clusterwise regression</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20management%20system" title=" pavement management system"> pavement management system</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20model" title=" performance model"> performance model</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/44171/modified-clusterwise-regression-for-pavement-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">243</span> Temperature Profile Modelling in Flexible Pavement Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Csaba%20T%C3%B3th">Csaba Tóth</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%89va%20Lakatos"> Éva Lakatos</a>, <a href="https://publications.waset.org/abstracts/search?q=L%C3%A1szl%C3%B3%20Peth%C5%91"> László Pethő</a>, <a href="https://publications.waset.org/abstracts/search?q=Seoyoung%20Cho"> Seoyoung Cho </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The temperature effect on asphalt pavement structure is a crucial factor at the design stage. In this paper, by applying the German guidelines for temperature along the asphalt depth is estimated. The aim is to consider temperature profiles in different seasons in numerical modelling. The model is built with an elastic and isotropic solid element with 19 subdivisions of asphalt layers to reflect the temperature variation. Comparison with the simple three-layer pavement system (asphalt layers, base, and subgrade layers) will be followed to see the difference in result without temperature variation along with the depth. Finally, the fatigue life calculation was checked to prove the validity of the methodology of considering the temperature in the numerical modelling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temperature%20profile" title="temperature profile">temperature profile</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20pavement%20modeling" title=" flexible pavement modeling"> flexible pavement modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20modeling" title=" temperature modeling"> temperature modeling</a> </p> <a href="https://publications.waset.org/abstracts/123609/temperature-profile-modelling-in-flexible-pavement-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">242</span> Airport Pavement Crack Measurement Systems and Crack Density for Pavement Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ashtiani">Ali Ashtiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Shirazi"> Hamid Shirazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reviews the status of existing practice and research related to measuring pavement cracking and using crack density as a pavement surface evaluation protocol. Crack density for pavement evaluation is currently not widely used within the airport community and its use by the highway community is limited. However, surface cracking is a distress that is closely monitored by airport staff and significantly influences the development of maintenance, rehabilitation and reconstruction plans for airport pavements. Therefore crack density has the potential to become an important indicator of pavement condition if the type, severity and extent of surface cracking can be accurately measured. A pavement distress survey is an essential component of any pavement assessment. Manual crack surveying has been widely used for decades to measure pavement performance. However, the accuracy and precision of manual surveys can vary depending upon the surveyor and performing surveys may disrupt normal operations. Given the variability of manual surveys, this method has shown inconsistencies in distress classification and measurement. This can potentially impact the planning for pavement maintenance, rehabilitation and reconstruction and the associated funding strategies. A substantial effort has been devoted for the past 20 years to reduce the human intervention and the error associated with it by moving toward automated distress collection methods. The automated methods refer to the systems that identify, classify and quantify pavement distresses through processes that require no or very minimal human intervention. This principally involves the use of a digital recognition software to analyze and characterize pavement distresses. The lack of established protocols for measurement and classification of pavement cracks captured using digital images is a challenge to developing a reliable automated system for distress assessment. Variations in types and severity of distresses, different pavement surface textures and colors and presence of pavement joints and edges all complicate automated image processing and crack measurement and classification. This paper summarizes the commercially available systems and technologies for automated pavement distress evaluation. A comprehensive automated pavement distress survey involves collection, interpretation, and processing of the surface images to identify the type, quantity and severity of the surface distresses. The outputs can be used to quantitatively calculate the crack density. The systems for automated distress survey using digital images reviewed in this paper can assist the airport industry in the development of a pavement evaluation protocol based on crack density. Analysis of automated distress survey data can lead to a crack density index. This index can be used as a means of assessing pavement condition and to predict pavement performance. This can be used by airport owners to determine the type of pavement maintenance and rehabilitation in a more consistent way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airport%20pavement%20management" title="airport pavement management">airport pavement management</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20density" title=" crack density"> crack density</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20evaluation" title=" pavement evaluation"> pavement evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20management" title=" pavement management"> pavement management</a> </p> <a href="https://publications.waset.org/abstracts/80770/airport-pavement-crack-measurement-systems-and-crack-density-for-pavement-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">241</span> A Study on the Quantitative Evaluation Method of Asphalt Pavement Condition through the Visual Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sungho%20Kim">Sungho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaechoul%20Shin"> Jaechoul Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yujin%20Baek"> Yujin Baek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, due to the environmental impacts and time factor, etc., various type of pavement deterioration is increasing rapidly such as crack, pothole, rutting and roughness degradation. The Ministry of Land, Infrastructure and Transport maintains regular pavement condition of the highway and the national highway using the pavement condition survey equipment and structural survey equipment in Korea. Local governments that maintain local roads, farm roads, etc. are difficult to maintain the pavement condition using the pavement condition survey equipment depending on economic conditions, skills shortages and local conditions such as narrow roads. This study presents a quantitative evaluation method of the pavement condition through the visual inspection to overcome these problems of roads managed by local governments. It is difficult to evaluate rutting and roughness with the naked eye. However, the condition of cracks can be evaluated with the naked eye. Linear cracks (m), area cracks (m²) and potholes (number, m²) were investigated with the naked eye every 100 meters for survey the cracks. In this paper, crack ratio was calculated using the results of the condition of cracks and pavement condition was evaluated by calculated crack ratio. The pavement condition survey equipment also investigated the pavement condition in the same section in order to evaluate the reliability of pavement condition evaluation by the calculated crack ratio. The pavement condition was evaluated through the SPI (Seoul Pavement Index) and calculated crack ratio using results of field survey. The results of a comparison between 'the SPI considering only crack ratio' and 'the SPI considering rutting and roughness either' using the equipment survey data showed a margin of error below 5% when the SPI is less than 5. The SPI 5 is considered the base point to determine whether to maintain the pavement condition. It showed that the pavement condition can be evaluated using only the crack ratio. According to the analysis results of the crack ratio between the visual inspection and the equipment survey, it has an average error of 1.86%(minimum 0.03%, maximum 9.58%). Economically, the visual inspection costs only 10% of the equipment survey and will also help the economy by creating new jobs. This paper advises that local governments maintain the pavement condition through the visual investigations. However, more research is needed to improve reliability. Acknowledgment: The author would like to thank the MOLIT (Ministry of Land, Infrastructure, and Transport). This work was carried out through the project funded by the MOLIT. The project name is 'development of 20mm grade for road surface detecting roadway condition and rapid detection automation system for removal of pothole'. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20pavement%20maintenance" title="asphalt pavement maintenance">asphalt pavement maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20ratio" title=" crack ratio"> crack ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation%20of%20asphalt%20pavement%20condition" title=" evaluation of asphalt pavement condition"> evaluation of asphalt pavement condition</a>, <a href="https://publications.waset.org/abstracts/search?q=SPI%20%28Seoul%20Pavement%20Index%29" title=" SPI (Seoul Pavement Index)"> SPI (Seoul Pavement Index)</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20investigation" title=" visual investigation"> visual investigation</a> </p> <a href="https://publications.waset.org/abstracts/77718/a-study-on-the-quantitative-evaluation-method-of-asphalt-pavement-condition-through-the-visual-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">240</span> Potential of Rice Husk Ash as a Partial Cement Replacement in Concrete for Highways Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ash%20Ahmed">Ash Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Fraser%20Hyndman"> Fraser Hyndman</a>, <a href="https://publications.waset.org/abstracts/search?q=Heni%20Fitriani"> Heni Fitriani</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Kamau"> John Kamau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The highway pavement is the biggest structural asset a government can construct and maintain. Concrete rigid pavements are used to carry traffic in large volumes across countries safely and efficiently. Pavement quality concrete mixes have high levels of cement which contribute to up to 10% of global CO₂ emissions. Currently the UK specifies (ground granulated blastfurnace slag) GGBS and (pulverised fuel ash) PFA to reduce the quantity of cement used in pavement construction. GGBS and PFA come from heavy industry that should not be relied upon to improve the sustainability of construction materials. This report shows that cement in pavement quality concrete can be replaced with rice husk ash (RHA) without causing adverse effects to the mechanical properties required for highways. RHA comes from the food production industry and is vital for the growing global population. It is thus a socially responsible objective to use a pozzolan in highway pavement construction that is sourced from an environmentally friendly industry. The report investigates the properties of RHA mixes and compares them to existing pavement quality mixes already used and specified. The report found that sieving RHA and not grinding it gives the best performance. Due to the low density of RHA the investigation found that replacing cement by volume rather than weight provided the best results. Findings showed that CEM II mixed with 20% RHA meets the required specification for pavement quality concrete and mitigates using the comparative CEM I. The investigation also notes that RHA is observed to be more reactive with CEM II rather than CEM I and suits early strength gains required for pavement construction. The report concludes that RHA is a sustainable material that reduces the embodied CO₂ of pavement quality concrete, which is well suited for UK highway specifications and has the potential to improve the lives of people living in the developing countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pavement" title="pavement">pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolan" title=" pozzolan"> pozzolan</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title=" rice husk ash"> rice husk ash</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20concrete" title=" sustainable concrete"> sustainable concrete</a> </p> <a href="https://publications.waset.org/abstracts/100542/potential-of-rice-husk-ash-as-a-partial-cement-replacement-in-concrete-for-highways-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">239</span> Response of Pavement under Temperature and Vehicle Coupled Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhong">Yang Zhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei-Jie%20Xu"> Mei-Jie Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To study the dynamic mechanics response of asphalt pavement under the temperature load and vehicle loading, asphalt pavement was regarded as multilayered elastic half-space system, and theory analysis was conducted by regarding dynamic modulus of asphalt mixture as the parameter. Firstly, based on the dynamic modulus test of asphalt mixture, function relationship between the dynamic modulus of representative asphalt mixture and temperature was obtained. In addition, the analytical solution for thermal stress in the single layer was derived by using Laplace integral transformation and Hankel integral transformation respectively by using thermal equations of equilibrium. The analytical solution of calculation model of thermal stress in asphalt pavement was derived by transfer matrix of thermal stress in multilayer elastic system. Finally, the variation of thermal stress in pavement structure was analyzed. The result shows that there is an obvious difference between the thermal stress based on dynamic modulus and the solution based on static modulus. Therefore, the dynamic change of parameter in asphalt mixture should be taken into consideration when the theoretical analysis is taken out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20pavement" title="asphalt pavement">asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20modulus" title=" dynamic modulus"> dynamic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20transformation" title=" integral transformation"> integral transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20matrix" title=" transfer matrix"> transfer matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stress" title=" thermal stress"> thermal stress</a> </p> <a href="https://publications.waset.org/abstracts/31808/response-of-pavement-under-temperature-and-vehicle-coupled-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">238</span> Development of a General Purpose Computer Programme Based on Differential Evolution Algorithm: An Application towards Predicting Elastic Properties of Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sai%20Sankalp%20Vemavarapu">Sai Sankalp Vemavarapu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the application of machine learning in the field of transportation engineering for predicting engineering properties of pavement more accurately and efficiently. Predicting the elastic properties aid us in assessing the current road conditions and taking appropriate measures to avoid any inconvenience to commuters. This improves the longevity and sustainability of the pavement layer while reducing its overall life-cycle cost. As an example, we have implemented differential evolution (DE) in the back-calculation of the elastic modulus of multi-layered pavement. The proposed DE global optimization back-calculation approach is integrated with a forward response model. This approach treats back-calculation as a global optimization problem where the cost function to be minimized is defined as the root mean square error in measured and computed deflections. The optimal solution which is elastic modulus, in this case, is searched for in the solution space by the DE algorithm. The best DE parameter combinations and the most optimum value is predicted so that the results are reproducible whenever the need arises. The algorithm’s performance in varied scenarios was analyzed by changing the input parameters. The prediction was well within the permissible error, establishing the supremacy of DE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost%20function" title="cost function">cost function</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20evolution" title=" differential evolution"> differential evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=falling%20weight%20deflectometer" title=" falling weight deflectometer"> falling weight deflectometer</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20optimization" title=" global optimization"> global optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=metaheuristic%20algorithm" title=" metaheuristic algorithm"> metaheuristic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayered%20pavement" title=" multilayered pavement"> multilayered pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20condition%20assessment" title=" pavement condition assessment"> pavement condition assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20layer%20moduli%20back%20calculation" title=" pavement layer moduli back calculation"> pavement layer moduli back calculation</a> </p> <a href="https://publications.waset.org/abstracts/100787/development-of-a-general-purpose-computer-programme-based-on-differential-evolution-algorithm-an-application-towards-predicting-elastic-properties-of-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">237</span> Experimental Assessment of Polypropylene Plastic Aggregates(PPA) for Pavement Construction: Their Mechanical Properties via Marshall Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samiullah%20Bhatti">Samiullah Bhatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Safdar%20Abbas%20Zaidi"> Safdar Abbas Zaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Murtaza%20Ali%20Jafri"> Syed Murtaza Ali Jafri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper presents the results of using plastic aggregate in flexible pavement. Plastic aggregates have been prepared with polypropylene (PP) recycled products and have been tested with Marshall apparatus. Grade 60/70 bitumen has been chosen for this research with a total content of 2.5 %, 3 % and 3.5 %. Plastic aggregates are mixed with natural aggregates with different proportions and it ranges from 10 % to 100 % with an increment of 10 %. Therefore, a total of 10 Marshall cakes were prepared with plastic aggregates in addition to a standard pavement sample. In total 33 samples have been tested for Marshall stability, flow and voids in mineral aggregates. The results show an increase in the value when it changes from 2.5 % bitumen to 3 % and after then it goes again toward declination. Thus, 3 % bitumen content has been found as the most optimum value for flexible pavements. Among all the samples, 20 % PP aggregates sample has been found satisfactory with respect to all the standards provided by ASTM. Therefore, it is suggested to use 20 plastic aggregates in flexible pavement construction. A comparison of bearing capacity and skid resistance is also observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marshall%20test" title="marshall test">marshall test</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20plastic" title=" polypropylene plastic"> polypropylene plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20aggregates" title=" plastic aggregates"> plastic aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20pavement%20alternative" title=" flexible pavement alternative"> flexible pavement alternative</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling%20of%20plastic%20waste" title=" recycling of plastic waste"> recycling of plastic waste</a> </p> <a href="https://publications.waset.org/abstracts/148528/experimental-assessment-of-polypropylene-plastic-aggregatesppa-for-pavement-construction-their-mechanical-properties-via-marshall-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">236</span> Effect of Unbound Granular Materials Nonlinear Resilient Behaviour on Pavement Response and Performance of Low Volume Roads </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Sandjak">Khaled Sandjak</a>, <a href="https://publications.waset.org/abstracts/search?q=Boualem%20Tiliouine">Boualem Tiliouine </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural analysis of flexible pavements has been and still is currently performed using multi-layer elastic theory. However, for thinly surfaced pavements subjected to low to medium volumes of traffics, the importance of non-linear stress-strain behaviour of unbound granular materials (UGM) requires the use of more sophisticated numerical models for structural design and performance of such pavements. In the present work, nonlinear unbound aggregates constitutive model is implemented within an axisymmetric finite element code developed to simulate the nonlinear behaviour of pavement structures including two local aggregates of different mineralogical nature, typically used in Algerian pavements. The performance of the mechanical model is examined about its capability of representing adequately, under various conditions, the granular material non-linearity in pavement analysis. In addition, deflection data collected by falling weight deflectometer (FWD) are incorporated into the analysis in order to assess the sensitivity of critical pavement design criteria and pavement design life to the constitutive model. Finally, conclusions of engineering significance are formulated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FWD%20backcalculations" title="FWD backcalculations">FWD backcalculations</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20simulations" title="finite element simulations">finite element simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=Nonlinear%20resilient%20behaviour" title="Nonlinear resilient behaviour">Nonlinear resilient behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20response%20and%20performance" title="pavement response and performance">pavement response and performance</a>, <a href="https://publications.waset.org/abstracts/search?q=RLT%20test%20results" title="RLT test results">RLT test results</a>, <a href="https://publications.waset.org/abstracts/search?q=unbound%20granular%20materials" title="unbound granular materials">unbound granular materials</a> </p> <a href="https://publications.waset.org/abstracts/32935/effect-of-unbound-granular-materials-nonlinear-resilient-behaviour-on-pavement-response-and-performance-of-low-volume-roads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">235</span> Temperature Susceptibility of Multigrade Bitumen Asphalt and an Approach to Account for Temperature Variation through Deep Pavements </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brody%20R.%20Clark">Brody R. Clark</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaminda%20Gallage"> Chaminda Gallage</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Yeaman"> John Yeaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multigrade bitumen asphalt is a quality asphalt product that is not utilised in many places globally. Multigrade bitumen is believed to be less sensitive to temperature, which gives it an advantage over conventional binders. Previous testing has shown that asphalt temperature changes greatly with depth, but currently the industry standard is to nominate a single temperature for design. For detailed design of asphalt roads, perhaps asphalt layers should be divided into nominal layer depths and different modulus and fatigue equations/values should be used to reflect the temperatures of each respective layer. A collaboration of previous laboratory testing conducted on multigrade bitumen asphalt beams under a range of temperatures and loading conditions was analysed. The samples tested included 0% or 15% recycled asphalt pavement (RAP) to determine what impact the recycled material has on the fatigue life and stiffness of the pavement. This paper investigated the temperature susceptibility of multigrade bitumen asphalt pavements compared to conventional binders by combining previous testing that included conducting a sweep of fatigue tests, developing complex modulus master curves for each mix and a study on how pavement temperature changes through pavement depth. This investigation found that the final design of the pavement is greatly affected by the nominated pavement temperature and respective material properties. This paper has outlined a potential revision to the current design approach for asphalt pavements and proposes that further investigation is needed into pavement temperature and its incorporation into design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt" title="asphalt">asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20modulus" title=" complex modulus"> complex modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20life" title=" fatigue life"> fatigue life</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20stiffness" title=" flexural stiffness"> flexural stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=four%20point%20bending" title=" four point bending"> four point bending</a>, <a href="https://publications.waset.org/abstracts/search?q=multigrade%20bitumen" title=" multigrade bitumen"> multigrade bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20asphalt%20pavement" title=" recycled asphalt pavement"> recycled asphalt pavement</a> </p> <a href="https://publications.waset.org/abstracts/84273/temperature-susceptibility-of-multigrade-bitumen-asphalt-and-an-approach-to-account-for-temperature-variation-through-deep-pavements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pavement&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pavement&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pavement&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pavement&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pavement&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pavement&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pavement&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pavement&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pavement&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>