CINXE.COM
Search results for: XPS spectra
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: XPS spectra</title> <meta name="description" content="Search results for: XPS spectra"> <meta name="keywords" content="XPS spectra"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="XPS spectra" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="XPS spectra"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 739</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: XPS spectra</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">739</span> The Microwave and Far Infrared Spectra of Acetaldehyde-d1 in vt=2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Larrousi">A. Larrousi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Elkeurti"> M. Elkeurti</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Amara"> K. Amara</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zemouli"> M. Zemouli</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20H.%20Coudert"> L. H. Coudert</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20R.%20Medvedev"> I. R. Medvedev</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20C.%20De%20Lucia"> F. C. De Lucia</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsuko%20Maeda"> Atsuko Maeda</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20W.%20C.%20McKellar"> R. W. C. McKellar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Appadoo"> D. Appadoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental and theoretical investigations of the microwave and far infrared spectra of CH3COD are reported. Two hundred twelve lines were identified in the far infrared spectrum recorded using the Canadian synchrotron radiation light source. Two thousand one hundred and sixty-eight lines in vt=0,1 and 216 in vt=2 have been measured in the microwave spectrum obtained using the fast scan submillimeter spectroscopic technique. A global analysis of the new data and of already available microwave lines has been carried out and yielded values for rotation–torsion parameters. The unitless weighted standard deviation of the fit is 1.6. 46 parameters and 216 lines were identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CH3COD" title="CH3COD">CH3COD</a>, <a href="https://publications.waset.org/abstracts/search?q=torsion" title=" torsion"> torsion</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20microwave%20spectra" title=" the microwave spectra"> the microwave spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=far%20infrared%20spectra%20high%20resolution" title=" far infrared spectra high resolution"> far infrared spectra high resolution</a> </p> <a href="https://publications.waset.org/abstracts/18891/the-microwave-and-far-infrared-spectra-of-acetaldehyde-d1-in-vt2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">738</span> Synthesis, Characterization and Antibacterial Screening of 3-Hydroxy-2-[3-(2/3/4-Methoxybenzoyl)Thioureido]Butyric Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20M.%20Yusof">M. S. M. Yusof</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ramli"> R. Ramli</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20C.%20Soh"> S. K. C. Soh</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ismail"> N. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ngah"> N. Ngah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the synthesis of a series of methoxybenzoylthiourea amino acid derivatives. The compounds were obtained from the reactions between 2/3/4-methoxybenzoyl isothiocyanate with threonine. All of the compounds were characterized via mass spectrometry, <sup>1</sup>H and <sup>13</sup>C NMR spectrometry, UV-Vis spectrophotometer and FT-IR spectroscopy. Mass spectra for all of the compounds showed the presence of molecular ion [M]<sup>+</sup> peaks at <em>m</em>/<em>z</em> 312, which are in agreement to the calculated molecular weight. For <sup>1</sup>H NMR spectra, the presence of OC<em>H</em><sub>3</sub>, C=S-N<em>H</em> and C=O-N<em>H</em> protons were observed within range of δ<sub>H </sub>3.8-4.0 ppm, 11.1-11.5 ppm and 10.0-11.5 ppm, respectively. <sup>13</sup>C NMR spectra in all compounds displayed the presence of O<em>C</em>H<sub>3</sub>, <em>C</em>=O-NH,<em> C</em>=O-OH and <em>C</em>=S carbon resonances within range of δ<sub>C </sub>55.0-57.0 ppm, 165.0-168.0 ppm, 170.0-171.0 ppm and 180.0-182.0 ppm, respectively. In UV spectra, two absorption bands have been observed and both were assigned to the n-π* and π-π* transitions. Six vibrational modes of <em>v</em>(N-H), <em>v</em>(O-H), <em>v</em>(C=O-OH), <em>v</em>(C=O-NH), <em>v</em>(C=C) aromatic and <em>v</em>(C=S) appeared in the FT-IR spectra within the range of 3241-3467 cm<sup>-1</sup>, 2976-3302 cm<sup>-1</sup>, 1720-1768 cm<sup>-1</sup>, 1655-1672 cm<sup>-1</sup>, 1519-1525 cm<sup>-1</sup> and 754-763 cm<sup>-1</sup>, respectively. The antibacterial activity for all of the compounds was screened against <em>Staphylococcus aureus</em>, <em>Staphylococcus epidermidis</em>, <em>Salmonella typhimurium</em> and <em>Escherichia coli</em>. However, no activity was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methoxybenzoyl%20isothiocyanate" title="methoxybenzoyl isothiocyanate">methoxybenzoyl isothiocyanate</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid" title=" amino acid"> amino acid</a>, <a href="https://publications.waset.org/abstracts/search?q=threonine" title=" threonine"> threonine</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a> </p> <a href="https://publications.waset.org/abstracts/68578/synthesis-characterization-and-antibacterial-screening-of-3-hydroxy-2-3-234-methoxybenzoylthioureidobutyric-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">737</span> Excitonic Refractive Index Change in High Purity GaAs Modulator at Room Temperature for Optical Fiber Communication Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Durga%20Prasad%20Sapkota">Durga Prasad Sapkota</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhu%20Sudan%20Kayastha"> Madhu Sudan Kayastha</a>, <a href="https://publications.waset.org/abstracts/search?q=Koichi%20Wakita"> Koichi Wakita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have compared and analyzed the electron absorption properties between with and without excitonic effect bulk in high purity GaAs spatial light modulator for an optical fiber communication network. The electroabsorption properties such as absorption spectra, change in absorption spectra, change in refractive index and extinction ratio have been calculated. We have also compared the result of absorption spectra and change in absorption spectra with the experimental results and found close agreement with experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exciton" title="exciton">exciton</a>, <a href="https://publications.waset.org/abstracts/search?q=refractive%20index%20change" title=" refractive index change"> refractive index change</a>, <a href="https://publications.waset.org/abstracts/search?q=extinction%20ratio" title=" extinction ratio"> extinction ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=GaAs" title=" GaAs"> GaAs</a> </p> <a href="https://publications.waset.org/abstracts/22596/excitonic-refractive-index-change-in-high-purity-gaas-modulator-at-room-temperature-for-optical-fiber-communication-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">575</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">736</span> Stray Light Reduction Methodology by a Sinusoidal Light Modulation and Three-Parameter Sine Curve Fitting Algorithm for a Reflectance Spectrometer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hung%20Chih%20Hsieh">Hung Chih Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Hao%20Chang"> Cheng Hao Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun%20Hsiang%20Chang"> Yun Hsiang Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Lin%20Chang"> Yu Lin Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the applications of the spectrometer, the stray light that comes from the environment affects the measurement results a lot. Hence, environment and instrument quality control for the stray reduction is critical for the spectral reflectance measurement. In this paper, a simple and practical method has been developed to correct a spectrometer's response for measurement errors arising from the environment's and instrument's stray light. A sinusoidal modulated light intensity signal was incident on a tested sample, and then the reflected light was collected by the spectrometer. Since a sinusoidal signal modulated the incident light, the reflected light also had a modulated frequency which was the same as the incident signal. Using the three-parameter sine curve fitting algorithm, we can extract the primary reflectance signal from the total measured signal, which contained the primary reflectance signal and the stray light from the environment. The spectra similarity between the extracted spectra by this proposed method with extreme environment stray light is 99.98% similar to the spectra without the environment's stray light. This result shows that we can measure the reflectance spectra without the affection of the environment's stray light. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectrometer" title="spectrometer">spectrometer</a>, <a href="https://publications.waset.org/abstracts/search?q=stray%20light" title=" stray light"> stray light</a>, <a href="https://publications.waset.org/abstracts/search?q=three-parameter%20sine%20curve%20fitting" title=" three-parameter sine curve fitting"> three-parameter sine curve fitting</a>, <a href="https://publications.waset.org/abstracts/search?q=spectra%20extraction" title=" spectra extraction"> spectra extraction</a> </p> <a href="https://publications.waset.org/abstracts/138998/stray-light-reduction-methodology-by-a-sinusoidal-light-modulation-and-three-parameter-sine-curve-fitting-algorithm-for-a-reflectance-spectrometer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">735</span> Ductility Reduction Factors for Displacement Spectra Corresponding to Soft Soil Zone of the Valley of Mexico</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=No%C3%A9%20D.%20Lazos-Gallardo">Noé D. Lazos-Gallardo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonia%20E.%20Ruiz"> Sonia E. Ruiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Federico%20Valenzuela-Beltran"> Federico Valenzuela-Beltran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simplified mathematical expression to estimate ductility reduction factors of the displacement spectra corresponding to the soft soil zone of Mexico City is proposed. The aim is to allow a better characterization of the displacement spectra and provide a simple expression to be used in displacement based design (DBD). Emphasis is on the Mexico City Building Code. The study is based on the analysis of single degree of freedom (SDOF) systems with elasto-plastic hysteretic behavior. Several seismic ground motions corresponding to subduction events with magnitudes equal to or greater than 6 and recorded in different stations of Mexico City are used. The proposed expression involves the ratio of elastic and inelastic pseudo-aceleration spectra, and depends on factors such the ductility demand and the vibration period of the structural system. The resulting ductility reduction factors obtained in this study are compared with others existing in the literature, and their advantages and disadvantages are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=displacement%20based%20design" title="displacement based design">displacement based design</a>, <a href="https://publications.waset.org/abstracts/search?q=displacements%20spectrum" title=" displacements spectrum"> displacements spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility%20reduction%20factors" title=" ductility reduction factors"> ductility reduction factors</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20soil" title=" soft soil"> soft soil</a> </p> <a href="https://publications.waset.org/abstracts/83199/ductility-reduction-factors-for-displacement-spectra-corresponding-to-soft-soil-zone-of-the-valley-of-mexico" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">734</span> De-Novo Structural Elucidation from Mass/NMR Spectra</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismael%20Zamora">Ismael Zamora</a>, <a href="https://publications.waset.org/abstracts/search?q=Elisabeth%20Ortega"> Elisabeth Ortega</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatiana%20Radchenko"> Tatiana Radchenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillem%20Plasencia"> Guillem Plasencia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The structure elucidation based on Mass Spectra (MS) data of unknown substances is an unresolved problem that affects many different fields of application. The recent overview of software available for structure elucidation of small molecules has shown the demand for efficient computational tool that will be able to perform structure elucidation of unknown small molecules and peptides. We developed an algorithm for De-Novo fragment analysis based on MS data that proposes a set of scored and ranked structures that are compatible with the MS and MSMS spectra. Several different algorithms were developed depending on the initial set of fragments and the structure building processes. Also, in all cases, several scores for the final molecule ranking were computed. They were validated with small and middle databases (DB) with the eleven test set compounds. Similar results were obtained from any of the databases that contained the fragments of the expected compound. We presented an algorithm. Or De-Novo fragment analysis based on only mass spectrometry (MS) data only that proposed a set of scored/ranked structures that was validated on different types of databases and showed good results as proof of concept. Moreover, the solutions proposed by Mass Spectrometry were submitted to the prediction of NMR spectra in order to elucidate which of the proposed structures was compatible with the NMR spectra collected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=De%20Novo" title="De Novo">De Novo</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20elucidation" title=" structure elucidation"> structure elucidation</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=NMR" title=" NMR"> NMR</a> </p> <a href="https://publications.waset.org/abstracts/58568/de-novo-structural-elucidation-from-massnmr-spectra" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">733</span> Despiking of Turbulent Flow Data in Gravel Bed Stream </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratul%20Das">Ratul Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present experimental study insights the decontamination of instantaneous velocity fluctuations captured by Acoustic Doppler Velocimeter (ADV) in gravel-bed streams to ascertain near-bed turbulence for low Reynolds number. The interference between incidental and reflected pulses produce spikes in the ADV data especially in the near-bed flow zone and therefore filtering the data are very essential. Nortek’s Vectrino four-receiver ADV probe was used to capture the instantaneous three-dimensional velocity fluctuations over a non-cohesive bed. A spike removal algorithm based on the acceleration threshold method was applied to note the bed roughness and its influence on velocity fluctuations and velocity power spectra in the carrier fluid. The velocity power spectra of despiked signals with a best combination of velocity threshold (VT) and acceleration threshold (AT) are proposed which ascertained velocity power spectra a satisfactory fit with the Kolmogorov “–5/3 scaling-law” in the inertial sub-range. Also, velocity distributions below the roughness crest level fairly follows a third-degree polynomial series. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20doppler%20velocimeter" title="acoustic doppler velocimeter">acoustic doppler velocimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=gravel-bed" title=" gravel-bed"> gravel-bed</a>, <a href="https://publications.waset.org/abstracts/search?q=spike%20removal" title=" spike removal"> spike removal</a>, <a href="https://publications.waset.org/abstracts/search?q=reynolds%20shear%20stress" title=" reynolds shear stress"> reynolds shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=near-bed%20turbulence" title=" near-bed turbulence"> near-bed turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20power%20spectra" title=" velocity power spectra"> velocity power spectra</a> </p> <a href="https://publications.waset.org/abstracts/47047/despiking-of-turbulent-flow-data-in-gravel-bed-stream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">732</span> Entomological Origin of Honey Discriminated by NMR Chloroform Extracts in Ecuadorian Honey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Vit">P. Vit</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Uddin"> J. Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Zuccato"> V. Zuccato</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Maza"> F. Maza</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Schievano"> E. Schievano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Ecuador honeys are produced by Apis mellifera and stingless bees (Meliponini). We studied honey produced in beeswax combs by Apis mellifera, and honey produced in pots by Geotrigona and Scaptotrigona bees. Chloroform extracts of honey were obtained for fast NMR spectra. The 1D spectra were acquired at 298 K, with a 600 MHz NMR Bruker instrument, using a modified double pulsed field gradient spin echoes (DPFGSE) sequence. Signals of 1H NMR spectra were integrated and used as inputs for PCA, PLS-DA analysis, and labelled sets of classes were successfully identified, enhancing the separation between the three groups of honey according to the entomological origin: A. mellifera, Geotrigona and Scaptotrigona. This procedure is therefore recommended for authenticity test of honey in Ecuador. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Apis%20mellifera" title="Apis mellifera">Apis mellifera</a>, <a href="https://publications.waset.org/abstracts/search?q=honey" title=" honey"> honey</a>, <a href="https://publications.waset.org/abstracts/search?q=1H%20NMR" title=" 1H NMR"> 1H NMR</a>, <a href="https://publications.waset.org/abstracts/search?q=entomological%20origin" title=" entomological origin"> entomological origin</a>, <a href="https://publications.waset.org/abstracts/search?q=meliponini" title=" meliponini "> meliponini </a> </p> <a href="https://publications.waset.org/abstracts/24309/entomological-origin-of-honey-discriminated-by-nmr-chloroform-extracts-in-ecuadorian-honey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">731</span> Spectral Properties of Fiber Bragg Gratings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Hamaizi">Y. Hamaizi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Triki"> H. Triki</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20El-Akrmi"> A. El-Akrmi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the reflection spectra, group delay and dispersion of a uniform fiber Bragg grating (FBG) are obtained. FBGs with two types of apodized variations of the refractive index were modeled to show how the side-lobes can be suppressed. Apodization techniques are used to get optimized reflection spectra. The simulation is based on solving coupled mode equations together with the transfer matrix method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20bragg%20gratings" title="fiber bragg gratings">fiber bragg gratings</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled-mode%20theory" title=" coupled-mode theory"> coupled-mode theory</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectivity" title=" reflectivity"> reflectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=apodization" title=" apodization"> apodization</a> </p> <a href="https://publications.waset.org/abstracts/22861/spectral-properties-of-fiber-bragg-gratings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">704</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">730</span> Photoluminescence in Cerium Doped Fluorides Prepared by Slow Precipitation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aarti%20Muley">Aarti Muley</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Dhoblae"> S. J. Dhoblae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CaF₂ and BaF₂ doped with cerium were prepared by slow precipitation method with different molar concentration and different cerium concentration. Both the samples were also prepared by direct method for comparison. The XRD of BaF₂:Ce shows that it crystallizes to BCC structure. The peak matches with JCPDS file no. 4-0452. Also, The XRD pattern of CaF₂:Ce matches well with the JCPDS file number 75- 0363 and crystallized to BCC phase. In CaF₂, the double-humped photoluminescence spectra were observed at 320nm and 340nm when the sample was prepared by the direct precipitation method, and the ratio between these peaks is unity. However when the sample prepared by slow precipitation method the double-humped emission spectra of CaF₂:Ce was observed at 323nm and 340nm. The ratio between these peaks is 0.58, and the optimum concentration is obtained for 0.1 molar CaF₂ with Ce concentration 1.5%. When the cerium concentration is increased by 2% the peak at 323nm vanishes, and the emission was observed at 342nm with the shoulder at 360nm. In this case, the intensity reduces drastically. The excitation is observed at 305nm with a small peak at 254nm. One molar BaF₂ doped with 0.1% of cerium was synthesized by direct precipitation method gives double humped spectra at 308nm and 320nm, when it is prepared with slow precipitation method with the cerium concentration 0.05m%, 0.1m%, 0.15m%, 0.2m% the broad emission is observed around 325nm with the shoulder at 350nm. The excitation spectra are narrow and observed at 290nm. As the percentage of cerium is increased further again shift is observed. The emission spectra were observed at 360nm with a small peak at 330nm. The phenomenon of shifting of emission spectra at low concentration of cerium can directly relate with the particle size and reported for nanomaterials also. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20fluoride" title="calcium fluoride">calcium fluoride</a>, <a href="https://publications.waset.org/abstracts/search?q=barium%20fluoride" title=" barium fluoride"> barium fluoride</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=slow%20precipitation%20method" title=" slow precipitation method"> slow precipitation method</a> </p> <a href="https://publications.waset.org/abstracts/106448/photoluminescence-in-cerium-doped-fluorides-prepared-by-slow-precipitation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">729</span> Spectroscopic Studies and Reddish Luminescence Enhancement with the Increase in Concentration of Europium Ions in Oxy-Fluoroborate Glasses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahamuda%20Sk">Mahamuda Sk</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Rao%20Allam"> Srinivasa Rao Allam</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijaya%20Prakash%20G."> Vijaya Prakash G.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The different concentrations of Eu3+ ions doped in Oxy-fluoroborate glasses of composition 60 B2O3-10 BaF2-10 CaF2-15 CaF2- (5-x) Al2O3 -x Eu2O3 where x = 0.1, 0.5, 1.0 and 2.0 mol%, have been prepared by conventional melt quenching technique and are characterized through absorption and photoluminescence (PL), decay, color chromaticity and Confocal measurements. The absorption spectra of all the glasses consists of six peaks corresponding to the transitions 7F0→5D2, 7F0→5D1, 7F1→5D1, 7F1→5D0, 7F0→7F6 and 7F1→7F6 respectively. The experimental oscillator strengths with and without thermal corrections have been evaluated using absorption spectra. Judd-Ofelt (JO) intensity parameters (Ω2 and Ω4) have been evaluated from the photoluminescence spectra of all the glasses. PL spectra of all the glasses have been recorded at excitation wavelengths 395 nm (conventional excitation source) and 410 nm (diode laser) to observe the intensity variation in the PL spectra. All the spectra consists of five emission peaks corresponding to the transitions 5D0→7FJ (J = 0, 1, 2, 3 and 4). Surprisingly no concentration quenching is observed on PL spectra. Among all the glasses the glass with 2.0 mol% of Eu3+ ion concentration possesses maximum intensity for the transition 5D0→7F2 (612 nm) in bright red region. The JO parameters derived from the photoluminescence spectra have been used to evaluate the essential radiative properties such as transition probability (A), radiative lifetime (τR), branching ratio (βR) and peak stimulated emission cross-section (σse) for the 5D0→7FJ (J = 0, 1, 2, 3 and 4) transitions of the Eu3+ ions. The decay rates of the 5D0 fluorescent level of Eu3+ ions in the title glasses are found to be single exponential for all the studied Eu3+ ion concentrations. A marginal increase in lifetime of the 5D0 level has been noticed with increase in Eu3+ ion concentration from 0.1 mol% to 2.0 mol%. Among all the glasses, the glass with 2.0 mol% of Eu3+ ion concentration possesses maximum values of branching ratio, stimulated emission cross-section and quantum efficiency for the transition 5D0→7F2 (612 nm) in bright red region. The color chromaticity coordinates are also evaluated to confirm the reddish luminescence from these glasses. These color coordinates exactly fall in the bright red region. Confocal images also recorded to confirm reddish luminescence from these glasses. From all the obtained results in the present study, it is suggested that the glass with 2.0 mol% of Eu3+ ion concentration is suitable to emit bright red color laser. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Europium" title="Europium">Europium</a>, <a href="https://publications.waset.org/abstracts/search?q=Judd-Ofelt%20parameters" title=" Judd-Ofelt parameters"> Judd-Ofelt parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=laser" title=" laser"> laser</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a> </p> <a href="https://publications.waset.org/abstracts/46830/spectroscopic-studies-and-reddish-luminescence-enhancement-with-the-increase-in-concentration-of-europium-ions-in-oxy-fluoroborate-glasses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">728</span> Site Specific Ground Response Estimations for the Vulnerability Assessment of the Buildings of the Third Biggest Mosque in the World, Algeria’s Mosque</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mohamadi">S. Mohamadi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Boudina"> T. Boudina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rouabeh"> A. Rouabeh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Seridi"> A. Seridi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Equivalent linear and non-linear ground response analyses are conducted at many representative sites at the mosque of Algeria, to compare the free field acceleration spectra with local code of practice. Spectral Analysis of Surface Waves (SASW) technique was adopted to measure the in-situ shear wave velocity profile at the representative sites. The seismic movement imposed on the rock is the NS component of Keddara station recorded during the earthquake in Boumerdes 21 May 2003. The site-specific elastic design spectra for each site are determined to further obtain site specific non-linear acceleration spectra. As a case study, the results of site-specific evaluations are presented for two building sites (site of minaret and site of the prayer hall) to demonstrate the influence of local geological conditions on ground response at Algerian sites. A comparison of computed response with the standard code of practice being used currently in Algeria for the seismic zone of Algiers indicated that the design spectra is not able to capture site amplification due to local geological conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equivalent%20linear" title="equivalent linear">equivalent linear</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear" title=" non-linear"> non-linear</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20response%20analysis" title=" ground response analysis"> ground response analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20response%20spectrum" title=" design response spectrum"> design response spectrum</a> </p> <a href="https://publications.waset.org/abstracts/20463/site-specific-ground-response-estimations-for-the-vulnerability-assessment-of-the-buildings-of-the-third-biggest-mosque-in-the-world-algerias-mosque" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">727</span> Estimating X-Ray Spectra for Digital Mammography by Using the Expectation Maximization Algorithm: A Monte Carlo Simulation Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chieh-Chun%20Chang">Chieh-Chun Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Ting%20Shih"> Cheng-Ting Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan-Lin%20Liu"> Yan-Lin Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Jun%20Chang"> Shu-Jun Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jay%20Wu"> Jay Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the widespread use of digital mammography (DM), radiation dose evaluation of breasts has become important. X-ray spectra are one of the key factors that influence the absorbed dose of glandular tissue. In this study, we estimated the X-ray spectrum of DM using the expectation maximization (EM) algorithm with the transmission measurement data. The interpolating polynomial model proposed by Boone was applied to generate the initial guess of the DM spectrum with the target/filter combination of Mo/Mo and the tube voltage of 26 kVp. The Monte Carlo N-particle code (MCNP5) was used to tally the transmission data through aluminum sheets of 0.2 to 3 mm. The X-ray spectrum was reconstructed by using the EM algorithm iteratively. The influence of the initial guess for EM reconstruction was evaluated. The percentage error of the average energy between the reference spectrum inputted for Monte Carlo simulation and the spectrum estimated by the EM algorithm was -0.14%. The normalized root mean square error (NRMSE) and the normalized root max square error (NRMaSE) between both spectra were 0.6% and 2.3%, respectively. We conclude that the EM algorithm with transmission measurement data is a convenient and useful tool for estimating x-ray spectra for DM in clinical practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20mammography" title="digital mammography">digital mammography</a>, <a href="https://publications.waset.org/abstracts/search?q=expectation%20maximization%20algorithm" title=" expectation maximization algorithm"> expectation maximization algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=X-Ray%20spectrum" title=" X-Ray spectrum"> X-Ray spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=X-Ray" title=" X-Ray"> X-Ray</a> </p> <a href="https://publications.waset.org/abstracts/3616/estimating-x-ray-spectra-for-digital-mammography-by-using-the-expectation-maximization-algorithm-a-monte-carlo-simulation-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">730</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">726</span> The Synthesis of AgInS₂/SnS₂/RGO Heterojunctions with Enhanced Photocatalytic Degradation of Norfloxacin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingmei%20Zhang">Mingmei Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinyong%20Li"> Xinyong Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Novel AgInS2/SnS2/RGO (AISR) heterojunctions photocatalysts were synthesized by simple hydrothermal method. The morphology and composition of the fabricated AISR nanocomposites were investigated by field-emission scanning electron microscopy (SEM), X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). Moreover, the as-prepared AISR photocatalysts exhibited excellent photocatalytic activities for the degradation of Norfloxacin (NOR), mainly due to its high optical absorption and separation efficiency of photogenerated electron-hole pairs, as evidenced by UV–vis diffusion reflection spectra (DRS) and Surface photovoltage (SPV) spectra. Furthermore, laser flash photolysis technique was conducted to test the lifetime of charge carriers of the fabricated nanocomposites. The interfacial charges transfer mechanism was also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AISR%20heterojunctions" title="AISR heterojunctions">AISR heterojunctions</a>, <a href="https://publications.waset.org/abstracts/search?q=electron-hole%20pairs" title=" electron-hole pairs"> electron-hole pairs</a>, <a href="https://publications.waset.org/abstracts/search?q=SPV%20spectra" title=" SPV spectra"> SPV spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=charges%20transfer%20mechanism" title=" charges transfer mechanism"> charges transfer mechanism</a> </p> <a href="https://publications.waset.org/abstracts/83504/the-synthesis-of-agins2sns2rgo-heterojunctions-with-enhanced-photocatalytic-degradation-of-norfloxacin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">725</span> Simulation and Characterization of Compact Magnetic Proton Recoil Spectrometer for Fast Neutron Spectra Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xingyu%20Peng">Xingyu Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingyuan%20Hu"> Qingyuan Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuebin%20Zhu"> Xuebin Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xi%20Yuan"> Xi Yuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neutron spectrometry has contributed much to the development of nuclear physics since 1932 and has also become an importance tool in several other fields, notably nuclear technology, fusion plasma diagnostics and radiation protection. Compared with neutron fluxes, neutron spectra can provide more detailed information on the internal physical process of neutron sources, such as fast neutron reactors, fusion plasma, fission-fusion hybrid reactors, and so on. However, high performance neutron spectrometer is not so commonly available as it requires the use of large and complex instrumentation. This work describes the development and characterization of a compact magnetic proton recoil (MPR) spectrometer for high-resolution measurements of fast neutron spectra. The compact MPR spectrometer is featured by its large recoil angle, small size permanent analysis magnet, short beam transport line and dual-purpose detector array for both steady state and pulsed neutron spectra measurement. A 3-dimensional electromagnetic particle transport code is developed to simulate the response function of the spectrometer. Simulation results illustrate that the performance of the spectrometer is mainly determined by n-p recoil foil and proton apertures, and an overall energy resolution of 3% is achieved for 14 MeV neutrons. Dedicated experiments using alpha source and mono-energetic neutron beam are employed to verify the simulated response function of the compact MPR spectrometer. These experimental results show a good agreement with the simulated ones, which indicates that the simulation code possesses good accuracy and reliability. The compact MPR spectrometer described in this work is a valuable tool for fast neutron spectra measurements for the fission or fusion devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neutron%20spectrometry" title="neutron spectrometry">neutron spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20proton%20recoil%20spectrometer" title=" magnetic proton recoil spectrometer"> magnetic proton recoil spectrometer</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20spectra" title=" neutron spectra"> neutron spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20neutron" title=" fast neutron"> fast neutron</a> </p> <a href="https://publications.waset.org/abstracts/92156/simulation-and-characterization-of-compact-magnetic-proton-recoil-spectrometer-for-fast-neutron-spectra-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">724</span> Solar Wind Turbulence and the Role of Circularly Polarized Dispersive Alfvén Wave</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swati%20Sharma">Swati Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Sharma"> R. P. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We intend to study the nonlinear evolution of the parallel propagating finite frequency Alfvén wave (also called Dispersive Alfvén wave/Hall MHD wave) propagating in the solar wind regime of the solar region when a perpendicularly propagating magnetosonic wave is present in the background. The finite frequency Alfvén wave behaves differently from the usual non-dispersive behavior of the Alfvén wave. To study the nonlinear processes (such as filamentation) taking place in the solar regions such as solar wind, the dynamical equation of both the waves are derived. Numerical simulation involving finite difference method for the time domain and pseudo spectral method for the spatial domain is then performed to analyze the transient evolution of these waves. The power spectra of the Dispersive Alfvén wave is also investigated. The power spectra shows the distribution of the magnetic field intensity of the Dispersive Alfvén wave over different wave numbers. For DAW the spectra shows a steepening for scales larger than the proton inertial length. This means that the wave energy gets transferred to the solar wind particles as the wave reaches higher wave numbers. This steepening of the power spectra can be explained on account of the finite frequency of the Alfvén wave. The obtained results are consistent with the observations made by CLUSTER spacecraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20wind" title="solar wind">solar wind</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersive%20alfven%20wave" title=" dispersive alfven wave"> dispersive alfven wave</a> </p> <a href="https://publications.waset.org/abstracts/14764/solar-wind-turbulence-and-the-role-of-circularly-polarized-dispersive-alfven-wave" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">600</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">723</span> 1H-NMR Spectra of Diesel-Biodiesel Blends to Evaluate the Quality and Determine the Adulteration of Biodiesel with Vegetable Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luis%20F.%20Bianchessi">Luis F. Bianchessi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gustavo%20G.%20Shimamoto"> Gustavo G. Shimamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthieu%20Tubino"> Matthieu Tubino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of biodiesel has been diffused in Brazil and all over the world by the trading of biodiesel (B100). In Brazil, the diesel oil currently being sold is a blend, containing 7% biodiesel (B7). In this context, it is necessary to develop methods capable of identifying this blend composition, especially regarding the biodiesel quality used for making these blends. In this study, hydrogen nuclear magnetic resonance spectra (1H-NMR) are proposed as a form of identifying and confirming the quality of type B10 blends (10% of biodiesel and 90% of diesel). Furthermore, the presence of vegetable oils, which may be from fuel adulteration or as an evidence of low degree of transesterification conversion during the synthesis of B100, may also be identified. Mixtures of diesel, vegetable oils and their respective biodiesel were prepared. Soybean oil and macauba kernel oil were used as raw material. The diesel proportion remained fixed at 90%. The other proportion (10%) was varied in terms of vegetable oil and biodiesel. The 1H-NMR spectra were obtained for each one of the mixtures, in order to find a correlation between the spectra and the amount of biodiesel, as well as the amount of residual vegetable oil. The ratio of the integral of the methylenic hydrogen H-2 of glycerol (exclusive of vegetable oil) with respect to the integral of the olefinic hydrogens (present in vegetable oil and biodiesel) was obtained. These ratios were correlated with the percentage of vegetable oil in each mixture, from 0% to 10%. The obtained correlation could be described by linear relationships with R2 of 0.9929 for soybean biodiesel and 0.9982 for macauba kernel biodiesel. Preliminary results show that the technique can be used to monitor the biodiesel quality in commercial diesel-biodiesel blends, besides indicating possible adulteration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel" title=" diesel"> diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel%20quality" title=" biodiesel quality"> biodiesel quality</a>, <a href="https://publications.waset.org/abstracts/search?q=adulteration" title=" adulteration"> adulteration</a> </p> <a href="https://publications.waset.org/abstracts/34605/1h-nmr-spectra-of-diesel-biodiesel-blends-to-evaluate-the-quality-and-determine-the-adulteration-of-biodiesel-with-vegetable-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">623</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">722</span> Studies of Substituent and Solvent Effect on Spectroscopic Properties Of 6-OH-4-CH3, 7-OH-4-CH3 and 7-OH-4-CF3 Coumarin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar">Sanjay Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports the solvent effects on the electronic absorption and fluorescence emission spectra of 6-OH-4-CH3, 7-OH-4-CH3 and 7-OH-4-CF3 coumarin derivatives having -OH, -CH3 and -CF3 substituent at different positions in various solvents (Polar and Non-Polar). The first excited singlet state dipole moment and ground state dipole moment were calculated using Bakhshiev, Kawski-Chamma-Viallet and Reichardt-Dimroth equations and were compared for all the coumarin studied. In all cases the dipole moments were found to be higher in the excited singlet state than in the ground state indicating a substantial redistribution of Π-electron density in the excited state. The angle between the excited singlet state and ground state dipole moment is also calculated. The red shift of the absorption and fluorescence emission bands, observed for all the coumarin studied upon increasing the solvent polarity indicating that the electronic transitions were Π → Π* nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coumarin" title="coumarin">coumarin</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20effects" title=" solvent effects"> solvent effects</a>, <a href="https://publications.waset.org/abstracts/search?q=absorption%20spectra" title=" absorption spectra"> absorption spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20spectra" title=" emission spectra"> emission spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=excited%20singlet%20state%20dipole%20moment" title=" excited singlet state dipole moment"> excited singlet state dipole moment</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20state%20dipole%20moment" title=" ground state dipole moment"> ground state dipole moment</a>, <a href="https://publications.waset.org/abstracts/search?q=solvatochromism" title=" solvatochromism"> solvatochromism</a> </p> <a href="https://publications.waset.org/abstracts/29723/studies-of-substituent-and-solvent-effect-on-spectroscopic-properties-of-6-oh-4-ch3-7-oh-4-ch3-and-7-oh-4-cf3-coumarin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">833</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">721</span> An Extended X-Ray Absorption Fine Structure Study of CoTi Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jose%20Alberto%20Duarte%20Moller">Jose Alberto Duarte Moller</a>, <a href="https://publications.waset.org/abstracts/search?q=Cynthia%20Deisy%20Gomez%20Esparza"> Cynthia Deisy Gomez Esparza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cobalt-titanium system was grown as thin films in an INTERCOVAMEX V3 sputtering system, equipped with four magnetrons assisted by DC pulsed and direct DC. A polished highly oriented (400) silicon wafer was used as substrate and the growing temperature was 500 oC. Xray Absorption Spectroscopy experiments were carried out in the SSRL in the 4-3 beam line. The Extenden X-Ray Absorption Fine Structure spectra have been numerically processed by WINXAS software from the background subtraction until the normalization and FFT adjustment. Analyzing the absorption spectra of cobalt in the CoTi2 phase we can appreciate that they agree in energy with the reference spectra that corresponds to the CoO, which indicates that the valence where upon working is Co2+. The RDF experimental results were then compared with those RDF´s generated theoretically by using FEFF software, from a model compound of CoTi2 phase obtained by XRD. The fitting procedure is a highly iterative process. Fits are also checked in R-space using both the real and imaginary parts of Fourier transform. Finally, the presence of overlapping coordination shells and the correctness of the assumption about the nature of the coordinating atom were checked. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=XAS" title="XAS">XAS</a>, <a href="https://publications.waset.org/abstracts/search?q=EXAFS" title=" EXAFS"> EXAFS</a>, <a href="https://publications.waset.org/abstracts/search?q=FEFF" title=" FEFF"> FEFF</a>, <a href="https://publications.waset.org/abstracts/search?q=CoTi" title=" CoTi"> CoTi</a> </p> <a href="https://publications.waset.org/abstracts/87384/an-extended-x-ray-absorption-fine-structure-study-of-coti-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">720</span> Solid-State Synthesis Approach and Optical study of Red Emitting Phosphors Li₃BaSrxCa₁₋ₓEu₂.₇Gd₀.₃(MoO₄)₈ for White LEDs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyansha%20Sharma">Priyansha Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sibani%20Mund"> Sibani Mund</a>, <a href="https://publications.waset.org/abstracts/search?q=Sivakumar%20Vaidyanathan"> Sivakumar Vaidyanathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid-state synthesis methods were used for the synthesis of pure red emissive Li¬3BaSrxCa(1-x)Eu2.7Gd0.3(MoO4)8 (x = 0.0 to 1.0) phosphors, XRD, SEM, and FTIR spectra were used to characterize the materials, and their optical properties were thoroughly investigated. PL studies were examined at different excitations 230 nm, 275nm, 465nm, and 395 nm. All the spectra show similar emissions with the highest transition at 616 nm due to ED transition. The given phosphor Li¬3BaSr0.25Ca0.75Eu2.7Gd0.3(MoO4)8 shows the highest intensity and is thus chosen for the temperature-dependent and Quantum yield study. According to the PL investigation, the phosphor-containing Eu3+ emits red light due to the (5D0 7F2) transition. The excitation analysis shows that all of the Eu3+ activated phosphors exhibited broad absorption due to the charge transfer band, O2-Mo6+, O2-Eu3+ transition, as well as narrow absorption bands related to the Eu3+ ion's 4f-4f electronic transition. Excitation spectra show Charge transfer band at 275 nm shows the highest intensity. The primary band in the spectra refers to Eu3+ ions occupying the lattice's non-centrosymmetric location. All of the compositions are monoclinic crystal structures with space group C2/c and match with reference powder patterns. The thermal stability of the 3BaSr0.25Ca0.75Eu2.7Gd0.3(MoO4)8 phosphor was investigated at (300 k- 500 K) as well as at low temperature from (20 K to 275 K) to be utilized for red and white LED fabrication. The Decay Lifetime of all the phosphor was measured. The best phosphor was used for White and Red LED fabrication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PL" title="PL">PL</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphor" title=" phosphor"> phosphor</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20yield" title=" quantum yield"> quantum yield</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20LED" title=" white LED"> white LED</a> </p> <a href="https://publications.waset.org/abstracts/177908/solid-state-synthesis-approach-and-optical-study-of-red-emitting-phosphors-li3basrxca1eu27gd03moo48-for-white-leds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">719</span> Ductility Spectrum Method for the Design and Verification of Structures </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Chikh">B. Chikh</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Moussa"> L. Moussa</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Bechtoula"> H. Bechtoula</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Mehani"> Y. Mehani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zerzour"> A. Zerzour </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a new method, applicable to evaluation and design of structures has been developed and illustrated by comparison with the capacity spectrum method (CSM, ATC-40). This method uses inelastic spectra and gives peak responses consistent with those obtained when using the nonlinear time history analysis. Hereafter, the seismic demands assessment method is called in this paper DSM, Ductility Spectrum Method. It is used to estimate the seismic deformation of Single-Degree-Of-Freedom (SDOF) systems based on DDRS, Ductility Demand Response Spectrum, developed by the author. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20demand" title="seismic demand">seismic demand</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity" title=" capacity"> capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=inelastic%20spectra" title=" inelastic spectra"> inelastic spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20and%20structure" title=" design and structure"> design and structure</a> </p> <a href="https://publications.waset.org/abstracts/1850/ductility-spectrum-method-for-the-design-and-verification-of-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">718</span> Study of Waveguide Silica Glasses by Raman Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abdelmounim%20Bakkali">Mohamed Abdelmounim Bakkali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20El%20Mataouy"> Mustapha El Mataouy</a>, <a href="https://publications.waset.org/abstracts/search?q=Abellatif%20Aaliti"> Abellatif Aaliti</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouhamed%20Khaddor"> Mouhamed Khaddor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the paper, we study the effects of introducing hafnium oxide on Raman spectra of silica glass planar waveguide activated by 0.3 mol% Er3+ ions. This work compares Raman spectra measured for three thin films deposited on silicon substrate. The films were prepared with different molar ratio of Si/Hf using sol-gel method and deposited by dip coating technique. The effect of hafnium oxide incorporation on the waveguides shows the evolution of the structure of this material. This structural information is useful to understand the luminescence intensity by means of ion–ion interaction mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20amplifiers" title="optical amplifiers">optical amplifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=non-bridging%20oxygen" title=" non-bridging oxygen"> non-bridging oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=erbium" title=" erbium"> erbium</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=waveguide" title=" waveguide"> waveguide</a>, <a href="https://publications.waset.org/abstracts/search?q=silica-hafnia" title=" silica-hafnia"> silica-hafnia</a> </p> <a href="https://publications.waset.org/abstracts/60116/study-of-waveguide-silica-glasses-by-raman-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">717</span> Halogenated Methoxy- and Methyl-benzoic Acids: Joint Experimental and DFT Study For Molecular Structure, Vibrational Analysis, and Other Molecular Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boda%20Sreenivas">Boda Sreenivas</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyathakula%20Ravindranath"> Lyathakula Ravindranath</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanugula%20Srishailam"> Kanugula Srishailam</a>, <a href="https://publications.waset.org/abstracts/search?q=Byru%20Venkatram%20Reddy"> Byru Venkatram Reddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extensive research into the optimized structure and molecular properties of 3-Flouro-2-methylbenzoicacid(FMB), 3-Chloro-2-methoxybenzoicacid (CMB), and 3-Bromo-2-methylbenzoicacid (BMB) was carried out using FT-IR, FT-Raman and UV-Visible spectra, as well as theoretically using the DFT approach with B3LYPfunctional in conjunction with 6-311++G(d,p) basis set. The optimized structure was determined by evaluating torsional scans about free rotation bonds. Structure parameters, harmonic vibrational frequencies, potential energy distribution(PED), and infrared and Raman intensities were computed. The computational results from the DFT approach, such asFT-IR, FT-Raman, and UV-Visible spectra, were compared with the experimental results and found good agreement. Observed and calculated frequencies agreed with an rms error of 8.42, 6.60, and 6.95 cm-1 for FMB, CMB, and BMB, respectively. Unambiguous vibrational assignments were made for all fundamentals using PED and eigenvectors. The electronic HOMO-LUMO, H-bonding, and strong conjugative interactions across different molecular entities are discussed using experimental and simulated Ultraviolet-Visible spectra. The title molecules' molecular properties such as dipole moment, mean polarizability, and first-order hyperpolarizability, were calculated to study their non-linear optical (NLO) behavior. The chemical reactivity descriptors and mapped electrostatic surface potential (MESP) were also evaluated. Natural bond orbital (NBO) analysis was used to examine the stability of molecules resulting from hyperconjugative interactions and charge delocalization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ftir%2Framan%20spectra" title="ftir/raman spectra">ftir/raman spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=NLO" title=" NLO"> NLO</a>, <a href="https://publications.waset.org/abstracts/search?q=homo-lumo" title=" homo-lumo"> homo-lumo</a>, <a href="https://publications.waset.org/abstracts/search?q=NBO" title=" NBO"> NBO</a>, <a href="https://publications.waset.org/abstracts/search?q=halogenated%20benzoic%20acids" title=" halogenated benzoic acids"> halogenated benzoic acids</a> </p> <a href="https://publications.waset.org/abstracts/162874/halogenated-methoxy-and-methyl-benzoic-acids-joint-experimental-and-dft-study-for-molecular-structure-vibrational-analysis-and-other-molecular-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">716</span> Nullity of t-Tupple Graphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khidir%20R.%20Sharaf">Khidir R. Sharaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Didar%20A.%20Ali"> Didar A. Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nullity η (G) of a graph is the occurrence of zero as an eigenvalue in its spectra. A zero-sum weighting of a graph G is real valued function, say f from vertices of G to the set of real numbers, provided that for each vertex of G the summation of the weights f (w) over all neighborhood w of v is zero for each v in G.A high zero-sum weighting of G is one that uses maximum number of non-zero independent variables. If G is graph with an end vertex, and if H is an induced sub-graph of G obtained by deleting this vertex together with the vertex adjacent to it, then, η(G)= η(H). In this paper, a high zero-sum weighting technique and the end vertex procedure are applied to evaluate the nullity of t-tupple and generalized t-tupple graphs are derived and determined for some special types of graphs. Also, we introduce and prove some important results about the t-tupple coalescence, Cartesian and Kronecker products of nut graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graph%20theory" title="graph theory">graph theory</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20spectra" title=" graph spectra"> graph spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=nullity%20of%20graphs" title=" nullity of graphs"> nullity of graphs</a>, <a href="https://publications.waset.org/abstracts/search?q=statistic" title=" statistic"> statistic</a> </p> <a href="https://publications.waset.org/abstracts/4759/nullity-of-t-tupple-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">715</span> Normal Coordinate Analysis, Molecular Structure, Vibrational, Electronic Spectra, and NMR Investigation of 4-Amino-3-Phenyl-1H-1,2,4-Triazole-5(4H)-Thione by Ab Initio HF and DFT Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Bahgat">Khaled Bahgat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, the characterization of 4-Amino-3-phenyl-1H-1,2,4-triazole-5(4H)-thione (APTT) molecule was carried out by quantum chemical method and vibrational spectral techniques. The FT-IR (4000–400 cm_1) and FT-Raman (4000–100 cm_1) spectra of APTT were recorded in solid phase. The UV–Vis absorption spectrum of the APTT was recorded in the range of 200–400 nm. The molecular geometry, harmonic vibrational frequencies and bonding features of APTT in the ground state have been calculated by HF and DFT methods using 6-311++G(d,p) basis set. The complete vibrational frequency assignments were made by normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMF). The molecular stability and bond strength were investigated by applying the natural bond orbital analysis (NBO) and natural localized molecular orbital (NLMO) analysis. The electronic properties, such as excitation energies, absorption wavelength, HOMO and LUMO energies were performed by time depended DFT (TD-DFT) approach. The 1H and 13C nuclear magnetic resonance chemical shift of the molecule were calculated using the gauge-including atomic orbital (GIAO) method and compared with experimental results. Finally, the calculation results were analyzed to simulate infrared, FT-Raman and UV spectra of the title compound which shows better agreement with observed spectra. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=4-amino-3-phenyl-1H-1" title="4-amino-3-phenyl-1H-1">4-amino-3-phenyl-1H-1</a>, <a href="https://publications.waset.org/abstracts/search?q=2" title="2">2</a>, <a href="https://publications.waset.org/abstracts/search?q=4-triazole-5%284H%29-thione" title="4-triazole-5(4H)-thione">4-triazole-5(4H)-thione</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrational%20assignments" title=" vibrational assignments"> vibrational assignments</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20coordinate%20analysis" title=" normal coordinate analysis"> normal coordinate analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20mechanical%20calculations" title=" quantum mechanical calculations"> quantum mechanical calculations</a> </p> <a href="https://publications.waset.org/abstracts/18175/normal-coordinate-analysis-molecular-structure-vibrational-electronic-spectra-and-nmr-investigation-of-4-amino-3-phenyl-1h-124-triazole-54h-thione-by-ab-initio-hf-and-dft-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">714</span> In vivo Spectroscopic Study on the Effects of Ionising and Non-Ionising Radiation on Some Biophysical Properties of Rat Blood </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Allehyani">S. H. Allehyani</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Ibrahim"> H. S. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20M.%20Ali"> F. M. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Sayd"> E. Sayd</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Abou%20Aiad"> T. Abou Aiad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study aimed to analyse the radiation risk associated with the exposure of haemoglobin (Hb) of rat red blood cells (rbcs) exposed to a 50-Hz 6-kV/m electric field, a fast neutron dose of 1 mSv, and mixed radiation from fast neutrons and an electric field distributed over a period of three weeks at a rate of 5 days/week and 8 hours/day. The dielectric measurements and the absorption spectra for the haemoglobin molecule in the frequency range of 1 kHz to 5 MHz were measured for all of the samples. The dielectric relaxation results demonstrated an increase in the dielectric increment (∆ε) for the rbcs from all of the irradiated animals, which indicates an increase in the electric dipole. Moreover, the results revealed a decrease in the relaxation time (τ) and the molecular radius (r) of the irradiated molecules, which indicates that the increase in ∆ε is mainly due to a pronounced increase in the centre of mass of the charge on the electric dipole of the Hb molecule. The results from the absorption spectra indicate that the ratio of met-haemoglobin to oxy-haemoglobin is altered by irradiation. Moreover, the results from the delayed effect studies show that the structure and function of the newly generated Hb molecules are altered and dissimilar to that of healthy Hb. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rat%20red%20blood%20cell%20haemoglobin" title="rat red blood cell haemoglobin">rat red blood cell haemoglobin</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20properties" title=" dielectric properties"> dielectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=absorption%20spectra" title=" absorption spectra"> absorption spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=biochemical%20analysis" title=" biochemical analysis"> biochemical analysis</a> </p> <a href="https://publications.waset.org/abstracts/16865/in-vivo-spectroscopic-study-on-the-effects-of-ionising-and-non-ionising-radiation-on-some-biophysical-properties-of-rat-blood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">713</span> Application of FT-NIR Spectroscopy and Electronic Nose in On-line Monitoring of Dough Proofing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhuresh%20Dwivedi">Madhuresh Dwivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Navneet%20Singh%20Deora"> Navneet Singh Deora</a>, <a href="https://publications.waset.org/abstracts/search?q=Aastha%20Deswal"> Aastha Deswal</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20N.%20Mishra"> H. N. Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> FT-NIR spectroscopy and electronic nose was used to study the kinetics of dough proofing. Spectroscopy was conducted with an optic probe in the diffuse reflectance mode. The dough leavening was carried out at different temperatures (25 and 35°C) and constant RH (80%). Spectra were collected in the range of wave numbers from 12,000 to 4,000 cm-1 directly on the samples, every 5 min during proofing, up to 2 hours. NIR spectra were corrected for scatter effect and second order derivatization was done to transform the spectra. Principal component analysis (PCA) was applied for the leavening process and process kinetics was calculated. PCA was performed on data set and loadings were calculated. For leavening, four absorption zones (8,950-8,850, 7,200-6,800, 5,250-5,150 and 4,700-4,250 cm-1) were involved in describing the process. Simultaneously electronic nose was also used for understanding the development of odour compounds during fermentation. The electronic nose was able to differential the sample on the basis of aroma generation at different time during fermentation. In order to rapidly differentiate samples based on odor, a Principal component analysis is performed and successfully demonstrated in this study. The result suggests that electronic nose and FT-NIR spectroscopy can be utilized for the online quality control of the fermentation process during leavening of bread dough. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FT-NIR" title="FT-NIR">FT-NIR</a>, <a href="https://publications.waset.org/abstracts/search?q=dough" title=" dough"> dough</a>, <a href="https://publications.waset.org/abstracts/search?q=e-nose" title=" e-nose"> e-nose</a>, <a href="https://publications.waset.org/abstracts/search?q=proofing" title=" proofing"> proofing</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20component%20analysis" title=" principal component analysis"> principal component analysis</a> </p> <a href="https://publications.waset.org/abstracts/6309/application-of-ft-nir-spectroscopy-and-electronic-nose-in-on-line-monitoring-of-dough-proofing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">712</span> Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bitewulign%20Mekonnen">Bitewulign Mekonnen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=near-infrared%20spectroscopy" title=" near-infrared spectroscopy"> near-infrared spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a> </p> <a href="https://publications.waset.org/abstracts/168834/comprehensive-machine-learning-based-glucose-sensing-from-near-infrared-spectra" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">711</span> Regional Adjustment to the Analytical Attenuation Coefficient in the GMPM BSSA 14 for the Region of Spain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gonzalez%20Carlos">Gonzalez Carlos</a>, <a href="https://publications.waset.org/abstracts/search?q=Martinez%20Fransisco"> Martinez Fransisco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are various types of analysis that allow us to involve seismic phenomena that cause strong requirements for structures that are designed by society; one of them is a probabilistic analysis which works from prediction equations that have been created based on metadata seismic compiled in different regions. These equations form models that are used to describe the 5% damped pseudo spectra response for the various zones considering some easily known input parameters. The biggest problem for the creation of these models requires data with great robust statistics that support the results, and there are several places where this type of information is not available, for which the use of alternative methodologies helps to achieve adjustments to different models of seismic prediction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GMPM" title="GMPM">GMPM</a>, <a href="https://publications.waset.org/abstracts/search?q=5%25%20damped%20pseudo-response%20spectra" title=" 5% damped pseudo-response spectra"> 5% damped pseudo-response spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=models%20of%20seismic%20prediction" title=" models of seismic prediction"> models of seismic prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=PSHA" title=" PSHA"> PSHA</a> </p> <a href="https://publications.waset.org/abstracts/151393/regional-adjustment-to-the-analytical-attenuation-coefficient-in-the-gmpm-bssa-14-for-the-region-of-spain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">710</span> Spectroscopy Investigation of Ni0.5Zn0.5Fe2O4 Nano Ferrite Prepared by Soft Mechanochemical Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20%C5%BD.%20Lazarevi%C4%87">Z. Ž. Lazarević</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%8C.%20Jovaleki%C4%87"> Č. Jovalekić</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20N.%20Ivanovski"> V. N. Ivanovski</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20%C5%BD.%20Rom%C4%8Devi%C4%87"> N. Ž. Romčević</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nickel-zinc ferrite, Ni0.5Zn0.5Fe2O4 was prepared by mechanochemical route in a planetary ball mill starting from mixture of the appropriate quantities of the Ni(OH)2, Zn(OH)2 and Fe(OH)3 hydroxide powders. In order to monitor the progress of chemical reaction and confirm phase formation, powder samples obtained after 5 h and 10 h of milling were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), IR, Raman and Mössbauer spectroscopy. It is shown that the soft mechanochemical method, i.e. mechanochemical activation of hydroxides, produces high quality single phase Ni0.5Zn0.5Fe2O4 samples in much more efficient way. From the IR spectroscopy of single phase samples it is obvious that energy of modes depends on the ratio of cations. It is obvious that all samples have more than 5 Raman active modes predicted by group theory in the normal spinel structure. Deconvolution of measured spectra allows one to conclude that all complex bands in the spectra are made of individual peaks with the intensities that vary from spectrum to spectrum. The deconvolution of Raman spectra alows to separate contributions of different cations to a particular type of vibration and to estimate the degree of inversion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferrite" title="ferrite">ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20spectroscopy" title=" infrared spectroscopy"> infrared spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy"> Raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%B6ssbauer%20spectroscopy" title=" Mössbauer spectroscopy"> Mössbauer spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/30920/spectroscopy-investigation-of-ni05zn05fe2o4-nano-ferrite-prepared-by-soft-mechanochemical-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=XPS%20spectra&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=XPS%20spectra&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=XPS%20spectra&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=XPS%20spectra&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=XPS%20spectra&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=XPS%20spectra&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=XPS%20spectra&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=XPS%20spectra&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=XPS%20spectra&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=XPS%20spectra&page=24">24</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=XPS%20spectra&page=25">25</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=XPS%20spectra&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>