CINXE.COM

Suggesting Presets for Images: Building: “For This Photo” at VSCO — The TensorFlow Blog

<!DOCTYPE html> <html class='v2' dir='ltr' lang='en' xmlns='http://www.w3.org/1999/xhtml' xmlns:b='http://www.google.com/2005/gml/b' xmlns:data='http://www.google.com/2005/gml/data' xmlns:expr='http://www.google.com/2005/gml/expr'> <head> <link href='https://www.blogger.com/static/v1/widgets/3566091532-css_bundle_v2.css' rel='stylesheet' type='text/css'/> <meta content='text/html; charset=UTF-8' http-equiv='Content-Type'/> <meta content='blogger' name='generator'/> <link href='https://blog.tensorflow.org/favicon.ico' rel='icon' type='image/x-icon'/> <link href='https://blog.tensorflow.org/2019/06/vsco-suggesting-presets-for-images.html' rel='canonical'/> <link rel="alternate" type="application/atom+xml" title="The TensorFlow Blog - Atom" href="https://blog.tensorflow.org/feeds/posts/default" /> <link rel="alternate" type="application/rss+xml" title="The TensorFlow Blog - RSS" href="https://blog.tensorflow.org/feeds/posts/default?alt=rss" /> <link rel="service.post" type="application/atom+xml" title="The TensorFlow Blog - Atom" href="https://www.blogger.com/feeds/7864883956188652345/posts/default" /> <link rel="alternate" type="application/atom+xml" title="The TensorFlow Blog - Atom" href="https://blog.tensorflow.org/feeds/5010170555212952218/comments/default" /> <!--Can't find substitution for tag [blog.ieCssRetrofitLinks]--> <link href='https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEi3BzBmgf1YvXZrCcvNMb138eelfPEa1fCSlkZNiKoIqhBGYvt0vmyMQYAmr36r0d4bJDT70VOZs_aEO_Xog1gepCJK9EwvY3-_aRdpn2za7YDR2XYfr6a_uqMSf8tTl0deNtayrp9ptN8/s1600/Screen+Shot+2019-11-20+at+11.19.32+PM.png' rel='image_src'/> <meta content='https://blog.tensorflow.org/2019/06/vsco-suggesting-presets-for-images.html' property='og:url'/> <meta content='Suggesting Presets for Images: Building: “For This Photo” at VSCO' property='og:title'/> <meta content='The TensorFlow blog contains regular news from the TensorFlow team and the community, with articles on Python, TensorFlow.js, TF Lite, TFX, and more.' property='og:description'/> <meta content='https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEi3BzBmgf1YvXZrCcvNMb138eelfPEa1fCSlkZNiKoIqhBGYvt0vmyMQYAmr36r0d4bJDT70VOZs_aEO_Xog1gepCJK9EwvY3-_aRdpn2za7YDR2XYfr6a_uqMSf8tTl0deNtayrp9ptN8/w1200-h630-p-k-no-nu/Screen+Shot+2019-11-20+at+11.19.32+PM.png' property='og:image'/> <meta charset='UTF-8'/> <meta content='IE=edge' http-equiv='X-UA-Compatible'/> <meta content='width=device-width, initial-scale=1' name='viewport'/> <meta content='https://www.gstatic.com/tf_blog/images/image_blank.png' property='og:image'/> <meta content='https://www.gstatic.com/tf_blog/images/image_blank.png' property='twitter:image'/> <meta content='summary_large_image' name='twitter:card'/> <meta content='Suggesting Presets for Images: Building: “For This Photo” at VSCO' property='twitter:title'/> <title>Suggesting Presets for Images: Building: &#8220;For This Photo&#8221; at VSCO &#8212; The TensorFlow Blog</title> <meta content='' property='description'/> <meta content='' property='og:description'/> <style id='page-skin-1' type='text/css'><!-- /* ADD YOUR CSS HERE */ body{font-family:Roboto,sans-serif;font-size:16px;line-height:30px;-webkit-font-smoothing:antialiased;color:#000}h1{font-family:Google Sans,sans-serif;font-size:34px;font-weight:500;line-height:44px}h2{font-size:30px;line-height:40px}h2,h3{font-family:Google Sans,sans-serif;font-weight:700}h3{font-size:24px;line-height:32px}h4{font-size:20px;font-weight:500}h4,h5{font-family:Google Sans,sans-serif;line-height:26px}h5{font-size:16px;font-weight:700}h6{font-size:14px;line-height:22px}.display,h6{font-family:Google Sans,sans-serif;font-weight:700}.display{font-size:46px;line-height:56px}.hidden-text{height:1px;overflow:hidden;pointer-events:none;position:absolute;top:-10px;width:1px}img,video{border:0;height:auto;max-width:100%}body{position:relative;min-height:100vh}body.no-scroll{overflow:hidden}.content-wrap{padding-top:97px;padding-bottom:552px}@media only screen and (max-width:839px){.content-wrap{padding-top:48px}}.widget{margin:0;line-height:unset}.widget li{padding-left:12px}.widget ol,.widget ul{padding-left:40px}.widget li,.widget ol,.widget ul{line-height:unset}.tensorsite-full-footer{position:absolute;bottom:0;height:461px;width:100%}.posts-container{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;position:relative}.posts-container .tensorsite-posts__regular{-webkit-box-flex:3;-webkit-flex:3;-ms-flex:3;flex:3}.divider{width:100%;background-color:#e3e5e8;height:1px;margin-bottom:24px;z-index:1}.divider--lg-gap{margin:45px auto 25px}.divider--article-bottom{margin:30px 0}.divider--article-top{margin-bottom:36px}@media only screen and (max-width:767px){.divider--article-top{margin-bottom:24px}}.tensorsite-blog-logo{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center}.tensorsite-blog-logo__image{width:auto;height:32px}.tensorsite-logo{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;-webkit-box-flex:1;-webkit-flex:1;-ms-flex:1;flex:1}.tensorsite-logo__image{width:auto;height:32px}@media only screen and (max-width:767px){.tensorsite-logo{margin-bottom:36px}}.wrapper{overflow:hidden}.tensorsite-container{margin:48px auto;padding:0 40px;position:relative;width:auto;max-width:1420px}@media only screen and (max-width:767px){.tensorsite-container{margin:24px auto;padding:0 20px}}@media only screen and (min-width:768px){.tensorsite-container.featured{margin:48px auto -12px}}.tensorsite-container--large{margin:48px auto;padding:0 40px;position:relative;width:auto;max-width:1050px}@media only screen and (max-width:767px){.tensorsite-container--large{margin:24px auto;padding:0 20px}}.tensorsite-container--medium{margin:48px auto;padding:0 40px;position:relative;width:auto;max-width:844px}@media only screen and (max-width:767px){.tensorsite-container--medium{margin:24px auto;padding:0 20px}}.tensorsite-container--narrow{margin:48px auto;padding:0 40px;position:relative;width:auto;max-width:682px}@media only screen and (max-width:767px){.tensorsite-container--narrow{margin:24px auto;padding:0 20px}}.tensorsite-container--flex-horizontal{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex}.section,body{margin:0}.tensorsite-content{border-radius:10px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-flex:1;-webkit-flex:1;-ms-flex:1;flex:1;-webkit-box-orient:vertical;-webkit-box-direction:normal;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;padding:26px 30px;position:relative}.tensorsite-content .spacer{-webkit-box-flex:1;-webkit-flex:1;-ms-flex:1;flex:1}.tensorsite-content a:not(.tensorsite-content__button),.tensorsite-content div{-webkit-transition:color .2s linear;transition:color .2s linear}.tensorsite-content ul{list-style:none;padding:0}.tensorsite-content ul li{line-height:1;margin:8px 0}.tensorsite-content ul li:last-of-type{margin-bottom:0}.tensorsite-content p{margin:0}.tensorsite-content__image-wrapper{position:relative}.tensorsite-content__image{border-radius:10px 10px 0 0;display:block;height:100%;-o-object-fit:cover;object-fit:cover;position:absolute;width:100%;-webkit-transform:scale(1.015);transform:scale(1.015);-webkit-transition:-webkit-transform .5s ease;transition:-webkit-transform .5s ease;transition:transform .5s ease;transition:transform .5s ease,-webkit-transform .5s ease;will-change:transform}@media only screen and (max-width:850px){.tensorsite-content__image{position:relative}}.tensorsite-content__icon{position:absolute;top:15px;right:24px}.tensorsite-content__subtitle{font-family:Google Sans,sans-serif;font-size:16px;font-weight:700;line-height:26px;font-weight:500!important;color:#425066;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;margin-bottom:18px;position:relative}.tensorsite-content__subtitle b{margin:0 5px}.tensorsite-content__title{font-family:Google Sans,sans-serif;font-size:34px;font-weight:500;line-height:44px;font-weight:700!important;color:#425066;margin-bottom:12px}.tensorsite-content__title:last-child{margin-bottom:0}.tensorsite-content__title--grow{-webkit-box-flex:1;-webkit-flex-grow:1;-ms-flex-positive:1;flex-grow:1}.tensorsite-content__info{font-size:14px;line-height:22px;color:#616161;margin-bottom:18px}.tensorsite-content__description{font-family:Roboto,sans-serif;font-size:16px;line-height:30px;color:#616161;margin-bottom:24px}a{color:#425066;-webkit-transition:color .2s linear;transition:color .2s linear}a,a:active,a:focus{text-decoration:none}a.disabled{pointer-events:none;cursor:default;color:#ccc}a.disabled .cta-icon path{fill:#ccc}a .cta-icon{-webkit-transition:margin-right .2s linear,margin-left .2s linear;transition:margin-right .2s linear,margin-left .2s linear}a .cta-icon path{fill:#425066;-webkit-transition:fill .2s linear;transition:fill .2s linear}a .cta-icon.grey path{fill:#ccc}a .cta-icon--left{-webkit-transform:rotate(180deg);transform:rotate(180deg)}a:hover{color:#ff6f00}a:hover .cta-icon path{fill:#ff6f00}.tensorsite-card{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-backface-visibility:hidden;backface-visibility:hidden;background:#fff;border-radius:10px;-webkit-box-shadow:0 0 36px rgba(0,0,0,.1);box-shadow:0 0 36px rgba(0,0,0,.1);-webkit-box-orient:horizontal;-webkit-box-direction:normal;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;margin:24px 0;overflow:hidden;position:relative;-webkit-transform:translateZ(0);transform:translateZ(0);-webkit-transition:opacity .2s linear,-webkit-box-shadow .2s linear;transition:opacity .2s linear,-webkit-box-shadow .2s linear;transition:box-shadow .2s linear,opacity .2s linear;transition:box-shadow .2s linear,opacity .2s linear,-webkit-box-shadow .2s linear}.tensorsite-card.hidden{display:none}.tensorsite-card .divider{margin-bottom:18px}@media only screen and (max-width:850px){.tensorsite-card .divider{margin-bottom:14px}}.tensorsite-card.featured{min-height:300px}.tensorsite-card.featured .tensorsite-content{-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center}.tensorsite-card.featured .tensorsite-content .tensorsite-content__title{font-size:40px;line-height:54px}@media only screen and (max-width:850px){.tensorsite-card.featured .tensorsite-content .tensorsite-content__title{font-size:26px;line-height:36px}}.tensorsite-card.featured .tensorsite-content .tensorsite-content__subtitle{margin-bottom:18px}@media only screen and (max-width:850px){.tensorsite-card.featured .tensorsite-content .tensorsite-content__subtitle{margin-bottom:10px}}@media only screen and (max-width:850px){.tensorsite-card{-webkit-box-orient:vertical;-webkit-box-direction:normal;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;max-height:unset;max-width:600px;margin:24px auto}}.tensorsite-card:hover .tensorsite-content__title{color:#ff6f00}.tensorsite-card .tensorsite-content{padding:28px 30px 32px}.tensorsite-card .tensorsite-content .tensorsite-content__cta-wrapper,.tensorsite-card .tensorsite-content .tensorsite-content__description,.tensorsite-card .tensorsite-content .tensorsite-content__info,.tensorsite-card .tensorsite-content .tensorsite-content__subtitle,.tensorsite-card .tensorsite-content .tensorsite-content__title{position:relative}.tensorsite-card .tensorsite-content .tensorsite-content__subtitle{margin-bottom:14px}@media only screen and (max-width:1279px){.tensorsite-card .tensorsite-content .tensorsite-content__subtitle{margin-bottom:8px;line-height:24px;font-size:14px}}.tensorsite-card .tensorsite-content .tensorsite-content__title{margin-bottom:16px;font-size:30px}@media only screen and (max-width:1279px){.tensorsite-card .tensorsite-content .tensorsite-content__title{font-size:24px;margin-bottom:14px;line-height:32px}.tensorsite-card .tensorsite-content .tensorsite-content__title .no-subtitle{margin-top:32px}}.tensorsite-card .tensorsite-content .tensorsite-content__description{margin-bottom:0;display:-webkit-box;line-clamp:4;-webkit-line-clamp:4;text-overflow:ellipsis;-webkit-box-orient:vertical;overflow:hidden}.tensorsite-card .tensorsite-content .tensorsite-content__description *{color:#616161!important;font-weight:400!important}.tensorsite-card .tensorsite-content .tensorsite-content__info{font-family:Google Sans,sans-serif;margin-bottom:20px}@media only screen and (max-width:1279px){.tensorsite-card .tensorsite-content .tensorsite-content__info{line-height:24px}}@media only screen and (max-width:850px){.tensorsite-card .tensorsite-content{padding:16px 18px 20px}}.tensorsite-card .tensorsite-content__image-wrapper{background-color:#fbfcfc;overflow:hidden;position:relative;width:auto;-webkit-flex-basis:40%;-ms-flex-preferred-size:40%;flex-basis:40%;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center}@media only screen and (max-width:850px){.tensorsite-card .tensorsite-content__image-wrapper{max-height:250px}}.tensorsite-card .tensorsite-content__image-wrapper.hidden{display:none}.tensorsite-card:focus,.tensorsite-card:hover{-webkit-box-shadow:0 0 64px rgba(0,0,0,.22);box-shadow:0 0 64px rgba(0,0,0,.22);cursor:pointer}.tensorsite-card__href{height:100%;left:0;opacity:0;position:absolute;top:0;width:100%;z-index:2}.tensorsite-card:first-of-type{margin-top:0}.tensorsite-card:hover .tensorsite-content__image-wrapper img,.tensorsite-card__href:focus~.tensorsite-content__image-wrapper img{-webkit-transform:scale(1.03);transform:scale(1.03);-webkit-transition:-webkit-transform 1s ease;transition:-webkit-transform 1s ease;transition:transform 1s ease;transition:transform 1s ease,-webkit-transform 1s ease}.tensorsite-detail{color:#000!important}.tensorsite-detail__title{font-family:Google Sans,sans-serif;font-size:46px;font-weight:700;line-height:56px;margin-bottom:24px}@media only screen and (max-width:767px){.tensorsite-detail__title{font-family:Google Sans,sans-serif;font-size:28px;font-weight:700;line-height:1.36;margin-bottom:16px}}.tensorsite-detail__body,.tensorsite-detail__body div,.tensorsite-detail__body div>span,.tensorsite-detail__body li>span{font-family:Roboto,sans-serif!important;font-size:16px!important;line-height:28px!important;letter-spacing:0!important}.tensorsite-detail__body b,.tensorsite-detail__body strong{font-weight:500!important}.tensorsite-detail__body h1,.tensorsite-detail__body h1>span,.tensorsite-detail__body h1>strong,.tensorsite-detail__body h2,.tensorsite-detail__body h2>span,.tensorsite-detail__body h2>strong{font-family:Google Sans,sans-serif!important;font-size:30px!important;font-weight:700!important;line-height:40px!important;margin-bottom:18px!important;margin-top:40px}@media only screen and (max-width:767px){.tensorsite-detail__body h1,.tensorsite-detail__body h1>span,.tensorsite-detail__body h1>strong,.tensorsite-detail__body h2,.tensorsite-detail__body h2>span,.tensorsite-detail__body h2>strong{font-size:24px!important;line-height:34px!important;margin-bottom:12px!important;margin-top:30px}}.tensorsite-detail__body h3,.tensorsite-detail__body h3>span,.tensorsite-detail__body h3>strong{font-family:Google Sans,sans-serif!important;font-size:26px!important;font-weight:700!important;line-height:36px!important;margin-bottom:14px!important;margin-top:40px}@media only screen and (max-width:767px){.tensorsite-detail__body h3,.tensorsite-detail__body h3>span,.tensorsite-detail__body h3>strong{font-size:22px!important;line-height:32px!important;margin-bottom:12px!important;margin-top:30px}}.tensorsite-detail__body h4,.tensorsite-detail__body h4>span,.tensorsite-detail__body h4>strong{font-family:Google Sans,sans-serif!important;font-size:20px!important;font-weight:500!important;line-height:30px!important;margin-bottom:14px!important;margin-top:40px}@media only screen and (max-width:767px){.tensorsite-detail__body h4,.tensorsite-detail__body h4>span,.tensorsite-detail__body h4>strong{margin-bottom:12px!important;margin-top:30px}}.tensorsite-detail__body ol,.tensorsite-detail__body ul{margin:24px 0}@media only screen and (max-width:767px){.tensorsite-detail__body ol,.tensorsite-detail__body ul{margin:18px 0}}.tensorsite-detail__body a{color:#425066!important;font-weight:500!important}.tensorsite-detail__body a:not(.author-link){text-decoration:underline!important}.tensorsite-detail__body a:hover{color:#ff6f00!important}.tensorsite-detail__body a.author-link{white-space:nowrap}.tensorsite-detail__body a[imageanchor]{display:block!important;float:none!important;margin-left:0!important;margin-right:0!important}.tensorsite-detail__body img{display:block}.tensorsite-detail__body img:not(.unset-width){width:100%;border-radius:4px;margin:24px 0}.tensorsite-detail__body img.unset-width{margin:0 auto 12px}.tensorsite-detail__body iframe{width:100%}.tensorsite-detail__body .gist{margin:24px 0}.tensorsite-detail__body .tr-caption-container{width:100%;padding:0;margin:24px 0}.tensorsite-detail__body .tr-caption-container img{margin:0 0 12px}.tensorsite-detail__body .tr-caption{font-size:12.8px!important;font-style:normal!important;font-family:unset!important;line-height:1.8!important;font-weight:400!important}.tensorsite-detail__body code,.tensorsite-detail__body pre[class*=language-]{background:#f5f6f7!important;font-family:Roboto Mono,monospace!important;border-radius:2px}.tensorsite-detail__body code{padding:5px 8px}.tensorsite-detail__body pre[class*=language-]{margin:24px auto!important;line-height:1.7!important;padding:24px}@media only screen and (max-width:767px){.tensorsite-detail__body pre[class*=language-]{padding:8px 12px}}.tensorsite-detail__body pre[class*=language-] code{padding:0}.tensorsite-detail__body pre[class*=language-] .token.operator{background:unset!important}.tensorsite-detail__body .separator[style*=center]>a:not([style*=float]){margin:0!important}.tensorsite-detail__contact{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between;margin-bottom:36px}@media only screen and (max-width:767px){.tensorsite-detail__contact{margin-bottom:24px}}.tensorsite-detail__info{font-family:Google Sans,sans-serif;font-size:16px;font-weight:700;line-height:26px;font-weight:400;color:#616161;margin-right:25px}.tensorsite-detail-footer .article-divider{padding:30px 0}.tensorsite-detail-footer .tensorsite-chip{font-family:Roboto,sans-serif;font-size:16px;line-height:30px;color:#616161;border:1px solid #ebebeb;padding:4px 10px;display:inline-block;border-radius:4px;margin-bottom:4px;-webkit-transition:color .2s linear,background-color .2s linear;transition:color .2s linear,background-color .2s linear;text-decoration:none}.tensorsite-detail-footer .tensorsite-chip:hover{background-color:hsla(213,7%,76%,.2)}.tensorsite-detail-footer .tensorsite-chip:focus{background-color:hsla(213,7%,76%,.26)}.tensorsite-detail-footer .tensorsite-chip:active{background-color:hsla(213,7%,76%,.32)}.tensorsite-next{background:#f5f6f7;padding:48px 0 60px;display:none}@media only screen and (max-width:767px){.tensorsite-next{padding:48px 0 0}}.tensorsite-next.active{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex}.tensorsite-next__title{font-family:Google Sans,sans-serif;font-size:46px;font-weight:700;line-height:56px;margin-bottom:36px;text-align:center}@media only screen and (max-width:767px){.tensorsite-next__title{font-family:Google Sans,sans-serif;font-size:28px;font-weight:700;line-height:1.36;margin-bottom:24px}}#pagination-container{display:none}.pagination{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between}.pagination .arrow-link{font-family:Google Sans,sans-serif;font-size:16px;font-weight:700;line-height:20px;display:-webkit-inline-box;display:-webkit-inline-flex;display:-ms-inline-flexbox;display:inline-flex;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;text-decoration:none}.pagination .arrow-link .cta-icon{height:12px}.pagination .arrow-link .cta-icon--left{margin-left:4px}.pagination .arrow-link .cta-icon--right{margin-right:4px}.pagination .arrow-link>span{padding:0 8px}.pagination .arrow-link:hover .cta-icon--left{margin-left:0;margin-right:4px}.pagination .arrow-link:hover .cta-icon--right{margin-left:4px;margin-right:0}.filter-page__title{font-family:Google Sans,sans-serif;font-size:46px;font-weight:700;line-height:56px;line-height:46px;margin-bottom:20px}@media only screen and (max-width:767px){.filter-page__title{font-family:Google Sans,sans-serif;font-size:30px;font-weight:700;line-height:40px}}.filter-page__subtitle{font-size:18px;line-height:30px;max-width:735px}@media only screen and (max-width:767px){.filter-page__subtitle{font-family:Roboto,sans-serif;font-size:16px;line-height:28px}}.filter-page__subtitle a{text-decoration:underline;font-weight:500}.tensorsite-button{font-family:Google Sans,sans-serif;font-size:16px;font-weight:700;line-height:20px;border-radius:8px;-webkit-box-shadow:0 0 20px transparent;box-shadow:0 0 20px transparent;display:inline-block;height:auto;outline:none;padding:13px 22px;text-transform:none;-webkit-transition:background .3s linear,color .3s linear,-webkit-box-shadow .3s linear;transition:background .3s linear,color .3s linear,-webkit-box-shadow .3s linear;transition:box-shadow .3s linear,background .3s linear,color .3s linear;transition:box-shadow .3s linear,background .3s linear,color .3s linear,-webkit-box-shadow .3s linear}.tensorsite-button:active{-webkit-box-shadow:none;box-shadow:none}.tensorsite-button--orange{background:-webkit-gradient(linear,left top,right top,from(#ff6f00),to(#ff9100));background:linear-gradient(90deg,#ff6f00,#ff9100);color:#fff;overflow:hidden;position:relative;z-index:1}.tensorsite-button--orange:after{background:#ff6f00;bottom:0;content:"";left:0;opacity:0;position:absolute;right:0;top:0;-webkit-transition:opacity .3s;transition:opacity .3s;z-index:-1}.tensorsite-button--orange:focus:after,.tensorsite-button--orange:hover:after{opacity:1}.tensorsite-button--white{background:#fff;color:#425066}.tensorsite-button--white:focus,.tensorsite-button--white:hover{background:#425066;color:#fff}.tensorsite-footer{margin-top:-92px;overflow:hidden;padding-top:92px;pointer-events:none;position:relative}.tensorsite-footer:after,.tensorsite-footer:before{bottom:0;content:"";display:block;position:absolute}.tensorsite-footer:before{background:#ff6f00;left:0;right:calc(1440px + ((100% - 1440px) / 2) + 96px);top:184px}.tensorsite-footer:after{background:#ff9100;left:calc(1440px + ((100% - 1440px) / 2) + 96px);right:0;top:0}.tensorsite-footer.grey{background-color:#f5f6f7}.tensorsite-footer__container{background-image:-webkit-gradient(linear,right top,left top,color-stop(18%,#ff9100),color-stop(86%,#ff6f00));background-image:linear-gradient(-90deg,#ff9100 18%,#ff6f00 86%);margin:0 auto;max-width:calc(100% - 192px);min-height:210px;padding:70px 0;position:relative}@media screen and (min-width:1440px){.tensorsite-footer__container{max-width:1248px}}@media only screen and (max-width:767px){.tensorsite-footer__container{background-image:-webkit-gradient(linear,right top,left top,from(#ff9100),to(#ff6f00));background-image:linear-gradient(-90deg,#ff9100,#ff6f00);padding-bottom:100px}}.tensorsite-footer__side{bottom:0;position:absolute;width:192px}.tensorsite-footer__side:before{content:"";display:block;height:92px;margin-top:-92px;width:100%}.tensorsite-footer__side--left{background:#ff6f00;left:-192px;top:92px}.tensorsite-footer__side--left:before{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 192 92'%3E%3Cpath d='M162 8L96 46 30 84a60.7 60.7 0 0 1-30 8h192V0a60.7 60.7 0 0 0-30 8z' fill='%23FF6F00'/%3E%3C/svg%3E")}.tensorsite-footer__side--right{background:#ff9100;right:-192px;top:0}.tensorsite-footer__side--right:before{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 192 92'%3E%3Cpath d='M162 8L96 46 30 84a60.7 60.7 0 0 1-30 8h192V0a60.7 60.7 0 0 0-30 8z' fill='%23FF9100'/%3E%3C/svg%3E")}.tensorsite-footer__content{pointer-events:auto}.tensorsite-footer__content .tensorsite-content{margin:0 auto;max-width:650px;padding:0}.tensorsite-footer__content .tensorsite-content__title{font-family:Google Sans,sans-serif;font-size:30px;font-weight:700;line-height:40px;color:#fff;padding:0;text-align:center;width:auto}.tensorsite-footer__content .tensorsite-content__description{font-size:18px;line-height:30px;color:#fff;text-align:center}.tensorsite-footer__content .tensorsite-content__cta-wrapper{margin-top:10px;text-align:center}.tensorsite-footer__content .tensorsite-content .tensorsite-content__title+.tensorsite-content__cta-wrapper{margin-top:40px}@media only screen and (max-width:767px){.tensorsite-footer__content{margin:0 -76px}}.tensorsite-footer__lines{background:url("https://www.gstatic.com/tf_blog/images/tf_lines.svg") bottom/100% auto no-repeat;bottom:0;left:50%;max-width:1720px;min-width:1320px;pointer-events:none;position:absolute;top:0;-webkit-transform:translate(-50%);transform:translate(-50%);width:90vw;z-index:2}@media only screen and (max-width:767px){.tensorsite-footer__lines{-webkit-transform:translate(-30%);transform:translate(-30%)}}@media only screen and (max-width:480px){.tensorsite-footer__lines{-webkit-transform:translate(-20%);transform:translate(-20%)}}.icon-link{border-radius:50%;height:42px;width:42px;display:-webkit-inline-box;display:-webkit-inline-flex;display:-ms-inline-flexbox;display:inline-flex;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;-webkit-transition:background .2s linear;transition:background .2s linear;position:relative}.icon-link:hover{background-color:hsla(213,7%,76%,.2)}.icon-link:focus{background-color:hsla(213,7%,76%,.26)}.icon-link:active{background-color:hsla(213,7%,76%,.32)}.icon-tooltip{left:-3rem}.icon-tooltip,.icon-tooltip-github{position:absolute;width:10rem;background-color:#f5f6f7;top:2.25rem;z-index:999;border-radius:.5rem;text-align:center;color:#425066;display:none;-webkit-box-shadow:0 1px 6px 0 rgba(60,64,67,.3),0 2px 6px 2px rgba(60,64,67,.15);box-shadow:0 1px 6px 0 rgba(60,64,67,.3),0 2px 6px 2px rgba(60,64,67,.15)}.icon-tooltip-github{left:-7rem}.footer__links .footer-link:not(:first-child):before{content:"\B7";color:#999;font-weight:500;margin:5px}.social-icons__container-header,.social-icons__links{height:100%;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center}.social-icons__container-header{margin-right:14px}.social-icons__container-header .icon-link{margin-right:0;margin-left:18px}@media only screen and (max-width:1000px){.social-icons__container-header{display:none}}.social-icons__container-footer{background:#f9f9f9;padding:36px 40px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center}.social-icons__container-footer .icon-link:not(:last-of-type){margin-right:24px}.social-icons__container-footer .footer__side--right{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;gap:20px}@media only screen and (max-width:767px){.social-icons__container-footer .footer__side--right{display:block}.social-icons__container-footer .footer__side--right .social-icons__links{place-content:center}}@media only screen and (max-width:767px){.social-icons__container-footer{-webkit-box-orient:vertical;-webkit-box-direction:normal;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column}}.header__overlay{height:100%;left:0;position:absolute;width:100%;background-color:rgba(0,0,0,.4);-webkit-animation:fade-in .4s cubic-bezier(.39,.575,.565,1);animation:fade-in .4s cubic-bezier(.39,.575,.565,1);opacity:0;top:0;z-index:-1}.header__overlay.show{opacity:1;z-index:800;-webkit-transition:opacity .2s ease-in-out;transition:opacity .2s ease-in-out}.header{position:fixed;z-index:700;top:0;width:100%;-webkit-box-shadow:0 1px 2px 0 rgba(60,64,67,.3),0 2px 6px 2px rgba(60,64,67,.15);box-shadow:0 1px 2px 0 rgba(60,64,67,.3),0 2px 6px 2px rgba(60,64,67,.15);height:97px}@media only screen and (max-width:839px){.header{height:48px}}.header .top-row{background:#fff;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between;padding:0 24px;height:48px;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;border-bottom:1px solid #e6e6e6}@media only screen and (max-width:839px){.header .top-row{padding:0 16px}}.header .top-row__left,.header .top-row__right{-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;-webkit-box-flex:0;-webkit-flex:0 0 auto;-ms-flex:0 0 auto;flex:0 0 auto;height:100%}.header .nav-row,.header .top-row__left,.header .top-row__right{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex}.header .nav-row{background:#f5f6f7;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between;width:100%}.header .nav-items{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-flex:1;-webkit-flex-grow:1;-ms-flex-positive:1;flex-grow:1;height:48px;position:relative;padding:0 24px}@media only screen and (max-width:839px){.header .nav-items{display:none}}.header .nav-items tab{position:relative}.header .nav-items tab.active .header__nav-item:after,.header .nav-items tab:hover .header__nav-item:after{background:#425066}@media only screen and (max-width:839px){.header .header__cta,.header .nav-items{display:none}}.header__search-container{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;margin:6px 0 6px 24px;overflow:hidden;position:relative;margin-right:36px;border-radius:4px}@media only screen and (max-width:767px){.header__search-container:not(.mobile){display:none}}.header__search-container.mobile{margin:0 0 20px}.header__search-container.mobile #searchform,.header__search-container.mobile .searchbox{width:100%}.header__search-container .searchbox{border-radius:2px}.header__search-container .searchbox input{font-family:Roboto,sans-serif;font-size:16px;line-height:30px;background:#f5f6f7;color:#425066;border:0;margin:0;height:20px;outline:0;padding:8px 8px 8px 40px;width:100%;-webkit-transition:background .2s;transition:background .2s}.header__search-container .searchbox input::-webkit-input-placeholder{color:#425066}.header__search-container .searchbox input:-ms-input-placeholder,.header__search-container .searchbox input::-ms-input-placeholder{color:#425066}.header__search-container .searchbox input::placeholder{color:#425066}.header__search-container .searchbox input:hover{background:#e8eaed}.header__search-container .material-icons{color:#425066;left:8px;position:absolute;top:6px;-webkit-transition:color .2s;transition:color .2s}.header__cta{font-family:Google Sans,sans-serif;font-size:16px;font-weight:700;line-height:20px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center}.header__cta.mobile{padding:18px 0}.header__cta:hover .cta-icon{margin-left:0;margin-right:12px}.header__cta .cta-icon{-webkit-transition:margin-right .2s linear,margin-left .2s linear;transition:margin-right .2s linear,margin-left .2s linear;margin-left:4px;margin-right:8px;-webkit-transform:rotate(180deg);transform:rotate(180deg)}.header__nav-item{font-family:Google Sans,sans-serif;font-size:14px;font-weight:700;line-height:22px;color:#677282;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;padding:0 36px 0 0;height:100%;text-transform:none}.header__nav-item:hover{color:#677282}.header__nav-item.mobile{font-weight:500;padding:0}.header__nav-item.mobile:hover{color:#ff6f00}.header__nav-item:after{bottom:0;border-radius:3px 3px 0 0;content:"";display:block;height:3px;left:calc(50% - 18px);min-width:20px;position:absolute;right:0;-webkit-transform:translateX(-50%);transform:translateX(-50%);width:calc(100% - 44px)}.header__hamburger{border:0;background:none;outline:none;padding:0;margin:1px 8px 0 -4px;padding:8px;color:rgba(0,0,0,.65);cursor:pointer}@media only screen and (min-width:840px){.header__hamburger{display:none}}.header__side-menu{background-color:#fff;bottom:0;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-orient:vertical;-webkit-box-direction:normal;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;height:100%;left:0;overflow:auto;position:fixed;top:0;-webkit-transform:translateX(-100%);transform:translateX(-100%);-webkit-transition:-webkit-transform .2s cubic-bezier(.215,.61,.355,1);transition:-webkit-transform .2s cubic-bezier(.215,.61,.355,1);transition:transform .2s cubic-bezier(.215,.61,.355,1);transition:transform .2s cubic-bezier(.215,.61,.355,1),-webkit-transform .2s cubic-bezier(.215,.61,.355,1);z-index:900}.header__side-menu.is-open{height:100%;-webkit-transform:translateX(0);transform:translateX(0);width:80%}.header__side-menu__content{height:100%;padding:18px 16px 0;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-orient:vertical;-webkit-box-direction:normal;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column}.header__side-menu__content .spacer{-webkit-box-flex:1;-webkit-flex:1;-ms-flex:1;flex:1}.header__side-menu__title{font-size:18px;line-height:30px;font-weight:500;margin-bottom:12px}.header__side-menu__items{list-style:none}.header__side-menu__items li{padding:12px 0}.header__side-menu__bottom{border-top:1px solid #e6e6e6}.header__side-menu__logo-container{background:#fff;height:48px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;-webkit-flex-shrink:0;-ms-flex-negative:0;flex-shrink:0;padding:0 16px;border-bottom:1px solid #e6e6e6}.tensorsite__tags{-webkit-box-flex:1;-webkit-flex:1;-ms-flex:1;flex:1;height:650px;margin-left:40px;padding-top:40px;position:-webkit-sticky;position:sticky;top:97px}@media only screen and (max-width:850px){.tensorsite__tags{display:none}}.tensorsite__tags h2{margin-bottom:32px}.tensorsite__tags .tensorsite-tag{font-family:Google Sans,sans-serif;font-size:20px;font-weight:500;line-height:26px;color:#425066;display:block;padding:20px 0;border-bottom:1px solid #e3e5e8;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;-webkit-transition:color .2s linear;transition:color .2s linear}.tensorsite__tags .tensorsite-tag:hover{color:#ff6f00}.tensorsite__tags .tensorsite-tag:hover .cta-icon{margin-left:12px;margin-right:0}.tensorsite__tags .tensorsite-tag .cta-icon{-webkit-transition:margin-right .2s linear,margin-left .2s linear;transition:margin-right .2s linear,margin-left .2s linear;margin-left:8px;margin-right:4px}.community-icon{width:24px;height:24px;vertical-align:middle} ] --></style> <!-- Custom TensorFlow Fonts --> <link href='https://fonts.googleapis.com/css?family=Google+Sans:400,500,700|Roboto:400,400italic,500,500italic,700,700italic|Roboto+Mono:400,500,700|Material+Icons' rel='stylesheet'/> <!-- End Custom TensorFlow Fonts --> <!-- Code Block Syntax Highlighting --> <link href="//prismjs.com/themes/prism.css" rel="stylesheet"> <script src="//prismjs.com/prism.js" type="text/javascript"></script> <script src='https://cdnjs.cloudflare.com/ajax/libs/prism/1.17.1/plugins/autoloader/prism-autoloader.min.js'></script> <!-- End Code Block Syntax Highlighting --> <!-- Image Zoom --> <link href='https://cdn.jsdelivr.net/npm/zoom-vanilla.js/dist/zoom.css' rel='stylesheet'/> <script defer='defer' src='https://cdn.jsdelivr.net/npm/zoom-vanilla.js/dist/zoom-vanilla.min.js' type='text/javascript'></script> <!-- End Image Zoom--> <link href='https://www.gstatic.com/tf_blog/images/favicon.png' rel='shortcut icon' type='image/png'/> <script type='text/javascript'> //<![CDATA[ const qs = (string, el = document) => el.querySelector(string); const qsa = (string, el = document) => el.querySelectorAll(string); class App { constructor() { this.body = qs('body'); this.detailBody = qs('.tensorsite-detail__body'); this.overlay = qs('.header__overlay'); this.hamburger = qs('.header__hamburger'); this.sideMenu = qs('.header__side-menu'); this.detailBodies = qsa('.tensorsite-detail__body'); this.searchForms = qsa('.searchbox'); this.searchInputs = qsa('.search-input'); this.homeHref = qs('#home-href'); this.featuredCard = qs('.tensorsite-card.featured'); this.featuredPostHref = this.featuredCard && this.featuredCard .querySelector('.tensorsite-card__href') .getAttribute('href'); this.cards = qsa('.tensorsite-card'); this.images = qsa('img[border]'); this.cardDescriptions = qsa('.tensorsite-content__description'); this.hiddenDescription = qsa('.tensorsite-detail__description'); this.iconLinks = qs('.social-icons__links').children this.iconTooltips = qsa('[class^="icon-tooltip"]') this._toggleMobileMenu = this._toggleMobileMenu.bind(this); this._closeMenu = this._closeMenu.bind(this); this._onResize = this._onResize.bind(this); this._getScreen = this._getScreen.bind(this); this._searchGoogle = this._searchGoogle.bind(this); this._handleSearchKeypress = this._handleSearchKeypress.bind(this); this._removeDividerAboveImage(); this._setAllTagActive(); this._showFeaturedPost(); this._redirectWithMaxResults(); this._makeImagesZoomable(); this._removeCardLineBreaks(); this._getNextPost().then(()=>{ this._removeCardLineBreaks(); }) this.addEventListeners(); } addEventListeners() { window.addEventListener('resize', this._onResize); this.hamburger.addEventListener('click', this._toggleMobileMenu); this.searchForms.forEach(el => el.addEventListener('submit', this._searchGoogle)); this.searchInputs.forEach(el => el.addEventListener('keypress', this._handleSearchKeypress)); Array.from(this.iconLinks).forEach((icon, i) => { icon.addEventListener("mouseover", () => icon.querySelectorAll('[class^="icon-tooltip"]')[0].style.display = 'block'); icon.addEventListener("mouseout", () => icon.querySelectorAll('[class^="icon-tooltip"]')[0].style.display = 'none'); }) } _getNextPost() { return new Promise((resolve) => { const nextHref = qs('.tensorsite-detail__next-url'); if (this.detailBody && nextHref) { let request = new XMLHttpRequest(); request.open('GET', nextHref.getAttribute('href'), true); request.onload = function() { if (this.status >= 200 && this.status < 400) { // Success! Should be an HTML response // Save html in variable so you're able to query select const parser = new DOMParser(); const html = parser.parseFromString(this.response, "text/html"); const nextTitle = html.querySelector('.tensorsite-detail__title'); const nextDesc = html.querySelector('.tensorsite-detail__description'); const nextTags = html.querySelector('.tensorsite-detail__tags'); const nextHref = qs('.tensorsite-detail__next-url').getAttribute('href'); const nextImgUrl = html.querySelector('.tensorsite-detail__main-image'); const nextTitleEl = document.querySelector('.tensorsite-content__title.next'); const nextDescEl = document.querySelector('.tensorsite-content__description.next'); let nextTagsEl = document.querySelector('.tensorsite-content__subtitle.next'); const nextHrefEl = document.querySelector('.tensorsite-card__href.next'); const nextImgEl = document.querySelector('.tensorsite-content__image-wrapper'); const nextContainer = qs('.tensorsite-next'); const footer = qs('.tensorsite-footer'); if (nextTitleEl && nextTitle) { nextTitleEl.innerHTML = nextTitle.innerHTML; } if (nextDescEl && nextDesc) { nextDescEl.innerHTML = nextDesc.innerHTML; } if (nextTagsEl && nextTags) { nextTagsEl.innerHTML = nextTags.innerHTML; } if (nextHref && nextHrefEl) { nextHrefEl.setAttribute('href', nextHref); } if (nextImgEl && nextImgUrl) { // If Blogger can't find a firstImageUrl, it returns a // message informing us of that, so this checks // if the string is a URL if(!/http/.test(nextImgUrl.innerHTML)){ nextImgEl.classList.add('hidden'); } else { nextImgEl.querySelector('img').src = nextImgUrl.innerHTML; } } if (nextHref) { nextContainer.classList.add('active'); footer.classList.add('grey'); } resolve(); } else { // We reached our target server, but it returned an error console.error('Error: Could not get the next title'); } }; request.send(); } }) } get isMenuOpen() { return this.sideMenu.classList.contains('is-open'); } _handleSearchKeypress(e) { if (e.which == 13) { this._searchGoogle(); } } _searchGoogle(e) { e.preventDefault(); const {value} = e.target.querySelector('.search-input'); window.location.href = 'https://www.google.com/search?q=site%3A' + window.location.hostname + '%20' + value; } _toggleMobileMenu() { this.body.classList.toggle('no-scroll'); this.overlay.classList.toggle('show'); this.sideMenu.classList.toggle('is-open'); if (this.isMenuOpen) { this.overlay.addEventListener('click', this._closeMenu); } else { this.overlay.removeEventListener('click', this._closeMenu); } } _closeMenu(e) { if (this.isMenuOpen) { this._toggleMobileMenu(); } } _onResize() { if (this._getScreen().width > 839 && this.isMenuOpen) { this._closeMenu(); } } _getScreen() { return { scrollY: window.scrollY, width: window.innerWidth, height: window.innerHeight, } }; _removeDividerAboveImage() { if (this.detailBody && this.detailBody.firstElementChild && this.detailBody.firstElementChild.querySelector('img')) { const firstDivider = qs('.divider'); firstDivider.style.display = 'none'; } } _isCurrentPathAllPosts(){ const {pathname, search} = window.location; return pathname === '/' || (pathname === '/search' && !/label/.test(search)) } _setAllTagActive() { if(this._isCurrentPathAllPosts()){ const allTag = qs('.header__nav-item.all'); allTag.parentElement.classList.add('active'); } } // Shows featured post only if not on the home page _showFeaturedPost() { if (window.location.pathname === '/' && this.featuredCard) { // If any posts in the list have the same href, hide them. // Using a boolean in order to skip the first match // since that is the actual featured card. let skippedFirst = false; this.cards.forEach(card => { const link = card .querySelector('.tensorsite-card__href') .getAttribute('href'); if (link === this.featuredPostHref) { if (skippedFirst) { card.classList.add('hidden'); } skippedFirst = true; } }) } } _makeImagesZoomable(){ this.images.forEach(image => { image.setAttribute('data-action', 'zoom'); if(/a/i.test(image.parentNode.tagName)){ image.parentNode.replaceWith(image) } }) } // Adds max-results query param if URL contains a label filter but // doesn't contain max-results _redirectWithMaxResults(){ const {search} = window.location; const isLabelMatch = /(tensorflow|tfx|community)/gi.test(search) if(isLabelMatch && !/max-results/.test(search)){ window.location.href = window.location.href + '&max-results=20' } } _removeCardLineBreaks(){ const descriptions = this.cardDescriptions || [this.hiddenDescription]; if(descriptions){ descriptions.forEach(node=> { let stringArray = node.innerText.split(/(\r\n|\n|\r)/g); for(let i = stringArray.length; i > 0; i--){ if(/(\r\n|\n|\r)/.test(stringArray[i]) || stringArray[i] === ''){ let j = i - 1; while(j > 0 && (/(\r\n|\n|\r)/.test(stringArray[j]) || stringArray[j] === '')){ stringArray.splice(j, 1); j-- } } } return node.innerText = stringArray.join('') }) } } } window.addEventListener('DOMContentLoaded', (event) => { new App(); }); //]]> </script> <script type='text/javascript'> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-142343919-1', 'auto', 'blogger'); ga('blogger.send', 'pageview'); </script> <link href='https://www.blogger.com/dyn-css/authorization.css?targetBlogID=7864883956188652345&amp;zx=fec37b9b-5beb-4355-a145-f93f4e783e5d' media='none' onload='if(media!=&#39;all&#39;)media=&#39;all&#39;' rel='stylesheet'/><noscript><link href='https://www.blogger.com/dyn-css/authorization.css?targetBlogID=7864883956188652345&amp;zx=fec37b9b-5beb-4355-a145-f93f4e783e5d' rel='stylesheet'/></noscript> <meta name='google-adsense-platform-account' content='ca-host-pub-1556223355139109'/> <meta name='google-adsense-platform-domain' content='blogspot.com'/> </head> <body> <div class='header__overlay'></div> <div class='section' id='nav'><div class='widget HTML' data-version='1' id='HTML1'> <header class='header'> <div aria-hidden='true' data-href='https://blog.tensorflow.org/' hidden='true' id='home-href'></div> <div class='top-row'> <div class='top-row__left'> <button aria-label='Toggle menu' class='header__hamburger' type='button'> <i class='material-icons'>menu</i> </button> <a class='tensorsite-blog-logo' href='https://blog.tensorflow.org/'> <img alt='TensorFlow Blog Logo' class='tensorsite-blog-logo__image' src='https://www.gstatic.com/tf_blog/images/tfblog_logo.svg'/> </a> </div> <div class='top-row__right'> <div class='header__search-container'> <form action='' class='searchbox'> <input aria-label='Search box' class='search-input' name='q' onblur='if (this.value=="") {this.value="Search the Blog";}' onfocus='if (this.value=="Search the Blog") {this.value=""}' placeholder='Search the Blog' type='text' value=''/> <i class='material-icons'>search</i> <input style='visibility:hidden;position:absolute' type='submit'/> </form> </div> <a class='header__cta' href='https://www.tensorflow.org/'> <svg class='cta-icon' height='12' viewBox='0 0 18 18' width='12' xmlns='http://www.w3.org/2000/svg'> <g fill='none' fill-rule='evenodd' transform='translate(-3 -3)'> <rect height='24' width='24'></rect> <path d='M20.55,10.95 L13.05,3.45 C12.45,2.85 11.55,2.85 10.95,3.45 C10.35,4.05 10.35,4.95 10.95,5.55 L15.9,10.5 L4.5,10.5 C3.6,10.5 3,11.1 3,12 C3,12.9 3.6,13.5 4.5,13.5 L15.9,13.5 L10.95,18.45 C10.35,19.05 10.35,19.95 10.95,20.55 C10.95,20.55 10.95,20.55 10.95,20.55 C11.55,21.15 12.45,21.15 13.05,20.55 C13.05,20.55 13.05,20.55 13.05,20.55 L20.55,13.05 C21.15,12.45 21.15,11.55 20.55,10.95 C20.55,10.95 20.55,10.95 20.55,10.95 Z' fill='#000'></path> </g> </svg> Return to TensorFlow Home </a> </div> </div> <div class='nav-row'> <div class='nav-items'> <tab> <a class='header__nav-item all' dir='ltr' href='https://blog.tensorflow.org/'> All </a> </tab> <tab> <a class='header__nav-item' dir='ltr' href='https://blog.tensorflow.org/search?label=TensorFlow+Core&max-results=20'> TensorFlow Core </a> </tab> <tab> <a class='header__nav-item' dir='ltr' href='https://blog.tensorflow.org/search?label=TensorFlow.js&max-results=20'> TensorFlow.js </a> </tab> <tab> <a class='header__nav-item' dir='ltr' href='https://blog.tensorflow.org/search?label=TensorFlow+Lite&max-results=20'> TensorFlow Lite </a> </tab> <tab> <a class='header__nav-item' dir='ltr' href='https://blog.tensorflow.org/search?label=TFX&max-results=20'> TFX </a> </tab> <tab> <a class='header__nav-item' dir='ltr' href='https://blog.tensorflow.org/search?label=Community&max-results=20'> Community </a> </tab> </div> <section class='social-icons'> <div class='social-icons__container-header'> <div class='social-icons__links'> <a class='icon-link' href='https://discuss.tensorflow.org' rel='noopener noreferrer' target='_blank'> <img alt='TensorFlow Forum' src='https://www.gstatic.com/tf_blog/images/ic_forum_2.svg'/> <div class='icon-tooltip'>TensorFlow Forum</div> </a> <a class='icon-link' href='https://www.youtube.com/tensorflow' rel='noopener noreferrer' target='_blank'> <img alt='TensorFlow YouTube' src='https://www.gstatic.com/tf_blog/images/ic_youtube.svg'/> <div class='icon-tooltip'>TensorFlow YouTube</div> </a> <a class='icon-link' href='https://twitter.com/TensorFlow' rel='noopener noreferrer' target='_blank'> <img alt='TensorFlow Twitter' src='https://www.gstatic.com/tf_blog/images/ic_twitter.svg'/> <div class='icon-tooltip'>TensorFlow Twitter</div> </a> <a class='icon-link' href='https://github.com/tensorflow' rel='noopener noreferrer' target='_blank'> <img alt='TensorFlow GitHub' src='https://www.gstatic.com/tf_blog/images/ic_github.svg'/> <div class='icon-tooltip-github'>TensorFlow GitHub</div> </a> </div> </div> </section> </div> </header> <div class='header__side-menu'> <div class='header__side-menu__logo-container'> <a class='tensorsite-blog-logo' href='https://blog.tensorflow.org/'> <img alt='TensorFlow Blog Logo' class='tensorsite-blog-logo__image' src='https://www.gstatic.com/tf_blog/images/tfblog_logo.svg'/> </a> </div> <div class='header__side-menu__content'> <div class='header__side-menu__items'> <div class='header__search-container mobile'> <form action='' class='searchbox'> <input aria-label='Search box' class='search-input' name='q' onblur='if (this.value=="") {this.value="Search the Blog";}' onfocus='if (this.value=="Search the Blog") {this.value=""}' placeholder='Search the Blog' type='text' value=''/> <i class='material-icons'>search</i> <input style='visibility:hidden;position:absolute' type='submit'/> </form> </div> <div class='header__side-menu__title'>Tags</div> <tab> <li> <a class='header__nav-item mobile' dir='ltr' href='https://blog.tensorflow.org/'> All </a> </li> </tab> <tab> <li> <a class='header__nav-item mobile' dir='ltr' href='https://blog.tensorflow.org/search?label=TensorFlow+Core&max-results=20'> TensorFlow Core </a> </li> </tab> <tab> <li> <a class='header__nav-item mobile' dir='ltr' href='https://blog.tensorflow.org/search?label=TensorFlow.js&max-results=20'> TensorFlow.js </a> </li> </tab> <tab> <li> <a class='header__nav-item mobile' dir='ltr' href='https://blog.tensorflow.org/search?label=TensorFlow+Lite&max-results=20'> TensorFlow Lite </a> </li> </tab> <tab> <li> <a class='header__nav-item mobile' dir='ltr' href='https://blog.tensorflow.org/search?label=TFX&max-results=20'> TFX </a> </li> </tab> <tab> <li> <a class='header__nav-item mobile' dir='ltr' href='https://blog.tensorflow.org/search?label=Community&max-results=20'> Community </a> </li> </tab> </div> <div class='spacer'></div> <div class='header__side-menu__bottom'> <a class='header__cta mobile' href='https://www.tensorflow.org/'> Return to TensorFlow Home </a> </div> </div> </div> </div></div> <div class='content-wrap'> <div class='section' id='blog'><div class='widget FeaturedPost' data-version='1' id='FeaturedPost1'> </div><div class='widget Blog' data-version='1' id='Blog1'> <div class='tensorsite-container--narrow'> <div class='tensorsite-detail'> <a aria-hidden='true' class='tensorsite-detail__next-url' hidden='true' href='https://blog.tensorflow.org/2019/06/high-performance-inference-with-TensorRT.html'></a> <div aria-hidden='true' class='tensorsite-detail__current-url' hidden='true'>https://blog.tensorflow.org/2019/06/vsco-suggesting-presets-for-images.html</div> <div aria-hidden='true' class='tensorsite-detail__tags' hidden='true'> <span>Community</span> </div> <div aria-hidden='true' class='tensorsite-detail__main-image' hidden='true'> https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEi3BzBmgf1YvXZrCcvNMb138eelfPEa1fCSlkZNiKoIqhBGYvt0vmyMQYAmr36r0d4bJDT70VOZs_aEO_Xog1gepCJK9EwvY3-_aRdpn2za7YDR2XYfr6a_uqMSf8tTl0deNtayrp9ptN8/s1600/Screen+Shot+2019-11-20+at+11.19.32+PM.png </div> <p aria-hidden='true' class='tensorsite-detail__description' hidden='true'> <span class='tensorsite-content__info'> June 24, 2019 &#8212; </span> <em>A guest article posted by the VSCO Engineering team</em><br><br> At <a href="https://vsco.co/">VSCO</a>, we build creative tools, spaces, and connections driven by self-expression. Our app is a place where people can create and edit images and videos, discover tips and new ideas, and connect to a vibrant global community void of public likes, comments, and follower counts.<br><br> We use machine learning as a tool for personalizing and guiding eac&#8230; </p> <div class='tensorsite-content__subtitle'> <a href='https://blog.tensorflow.org/search?label=Community&max-results=20'> <span>Community</span> </a> <b class='label-divider-dot'>&#183;</b> <img alt='Google Article' class='community-icon' src='https://www.gstatic.com/tf_blog/images/ic_google.svg'/> </div> <div class='tensorsite-detail__title'> Suggesting Presets for Images: Building: &#8220;For This Photo&#8221; at VSCO </div> <div class='tensorsite-detail__contact'> <div class='tensorsite-detail__info'> <span class='tensorsite-detail__timestamp'>June 24, 2019</span> </div> <a class='icon-link' href='https://twitter.com/intent/tweet?text=%22Suggesting Presets for Images: Building: “For This Photo” at VSCO%22 from the TensorFlow Blog%0A%0Ahttps://blog.tensorflow.org/2019/06/vsco-suggesting-presets-for-images.html' rel='noopener noreferrer' target='_blank' title='Share this post on Twitter'> <svg alt='Twitter Social Icon' class='twitter-icon social-icon' height='19' viewBox='0 0 23 19' width='23' xmlns='http://www.w3.org/2000/svg'> <g fill='none' fill-rule='evenodd' transform='translate(-7 -9)'> <rect height='36' width='36'></rect> <path d='M14.076,27.2827953 C22.566,27.2827953 27.21,20.2477953 27.21,14.1477953 C27.21,13.9477953 27.21,13.7487953 27.197,13.5507953 C28.1,12.8977953 28.88,12.0887953 29.5,11.1617953 C28.657,11.5347953 27.764,11.7797953 26.848,11.8877953 C27.812,11.3107953 28.533,10.4037953 28.878,9.33479527 C27.972,9.87179527 26.98,10.2507953 25.947,10.4547953 C24.198,8.59579527 21.274,8.50679527 19.415,10.2547953 C18.217,11.3817953 17.708,13.0617953 18.08,14.6647953 C14.368,14.4787953 10.91,12.7257953 8.566,9.84279527 C7.341,11.9507953 7.967,14.6497953 9.995,16.0047953 C9.261,15.9827953 8.542,15.7837953 7.9,15.4267953 L7.9,15.4847953 C7.9,17.6827953 9.449,19.5747953 11.603,20.0107953 C10.924,20.1957953 10.211,20.2227953 9.519,20.0897953 C10.124,21.9707953 11.856,23.2587953 13.832,23.2957953 C12.197,24.5797953 10.178,25.2777953 8.098,25.2747953 C7.731,25.2747953 7.364,25.2527953 7,25.2087953 C9.111,26.5627953 11.567,27.2817953 14.076,27.2787953' fill='#545454'></path> </g> </svg> </a> </div> <div class='divider divider--article-top'></div> <div class='tensorsite-detail__body'> <meta name="twitter:title" content="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjofqk8SpCNdsWmmydE2Kw7h4mW0lX0G-5WWtKas7kUY3oZ1qI6O9eY3BWX9f5EoXBQF2F8T2RoVfQLGN01QEfZ8MgJjmLVWgGcRPoqOijyaj3vBvUWKLpIWHQO3n4pwRMBohvH3Yxce04/s1600/buildingwithandwithoutfilter.png"><meta name="twitter:image" content="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjofqk8SpCNdsWmmydE2Kw7h4mW0lX0G-5WWtKas7kUY3oZ1qI6O9eY3BWX9f5EoXBQF2F8T2RoVfQLGN01QEfZ8MgJjmLVWgGcRPoqOijyaj3vBvUWKLpIWHQO3n4pwRMBohvH3Yxce04/s1600/buildingwithandwithoutfilter.png"><em>A guest article posted by the VSCO Engineering team</em><br /> <a name='more'></a><br /> At <a href="https://vsco.co/">VSCO</a>, we build creative tools, spaces, and connections driven by self-expression. Our app is a place where people can create and edit images and videos, discover tips and new ideas, and connect to a vibrant global community void of public likes, comments, and follower counts.<br /> <img alt="VSCO on mobile app" border="0" data-original-height="1104" data-original-width="1600" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEi3BzBmgf1YvXZrCcvNMb138eelfPEa1fCSlkZNiKoIqhBGYvt0vmyMQYAmr36r0d4bJDT70VOZs_aEO_Xog1gepCJK9EwvY3-_aRdpn2za7YDR2XYfr6a_uqMSf8tTl0deNtayrp9ptN8/s1600/Screen+Shot+2019-11-20+at+11.19.32+PM.png" /><br /> We use machine learning as a tool for personalizing and guiding each user&#8217;s creative process. VSCO has a catalog of over 160 presets, which are pre-configured editing adjustments to help our users transform their images, including emulations of old film camera stock.<br /> <table align="center" cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: auto; margin-right: auto; text-align: center;"><tbody> <tr><td style="text-align: center;"><img alt="Pictures of a building before and after a filter is applied" border="0" data-original-height="734" data-original-width="1485" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjofqk8SpCNdsWmmydE2Kw7h4mW0lX0G-5WWtKas7kUY3oZ1qI6O9eY3BWX9f5EoXBQF2F8T2RoVfQLGN01QEfZ8MgJjmLVWgGcRPoqOijyaj3vBvUWKLpIWHQO3n4pwRMBohvH3Yxce04/s1600/buildingwithandwithoutfilter.png" style="margin-left: auto; margin-right: auto;" /></td></tr> <tr><td class="tr-caption" style="text-align: center;">A photo of a building before any filter is applied. Image by Sarah Hollander (left) The photo of the building with the AU5 preset applied. Image by Sarah Hollander (right)</td></tr> </tbody></table>However, our research suggested members were overwhelmed by the number of presets and stuck to using the few favorites they knew and liked instead of trying new presets.<br /> <h3>The Solution</h3>Our challenge was to overcome decision fatigue by providing trusted guidance and encouraging discovery, while still leaving space for our users to be creative in how they edit their images. Our Imaging team thoughtfully curated presets that complement different types of images, allowing us to deliver a personalized recommendation for each photo. We decided to solve this problem by suggesting presets for images with on-device machine learning using deep convolutional neural network (CNN) models because these models can understand a lot of the nuances in the images, making categorization easier and faster than traditional computer vision algorithms.<br /> <br /> With all this in mind, we developed the &#8220;For This Photo&#8221; feature, which uses on-device machine learning to identify what kind of photo someone is editing and then suggest relevant presets from a curated list. The feature has been so loved by our users that &#8220;For This Photo&#8221; is now the second most used category after &#8220;All&#8221;, which shows all presets.<br /> <br /> Video of &#8220;For This Photo&#8221; in action:<br /> <iframe allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen="" frameborder="0" height="315" src="https://www.youtube.com/embed/fHbjfeitIvE" width="560"></iframe><br /> <br /> To understand the flow of how &#8220;For This Photo&#8221; feature works when a user starts editing an image, we will walk through the steps that take place. When a user loads the image in Edit View, inference via the model is instantly kicked off and the model returns a category for the image. The category ID is then matched with the ID in the cached catalog and a list of presets for that category is retrieved. Six presets are picked, which are a combination of free presets as well as presets that are part of VSCO membership to be shown to the user in the &#8220;For This Photo&#8221; section. Showing free and paid presets was important to us in order to provide value to our non-members. The presets that are part of VSCO membership can still be previewed by non-members to provide them context on the value of VSCO membership. For members, it has the benefit of educating them on the type of images their member entitlement presets can be used for.<br /> <h4>On-device ML ensures accessibility, speed, and privacy</h4>From the get-go, we knew server based machine learning was not an option for this feature. There were three main reasons we wanted this feature to use on-device ML: offline editing, speed, and privacy.<br /> <br /> First, we did not want to limit our members&#8217; creativity by offering this feature only when they were online. Inspiration can strike anywhere &#8212; someone could be taking and editing photos with limited network connectivity, in the middle of a desert, or high up on a mountain. A large percentage of our user base is outside the United States, so not everyone has access to high-speed internet at all times.<br /> <br /> Second, we wanted to ensure editing would be fast. If we offered &#8220;For This Photo&#8221; with the ML model in the cloud, we&#8217;d have to upload users&#8217; images to categorize them (which takes time, bandwidth, and data), and users would have to download the presets, making the process slow on a good connection and impossible on a poor one. Doing the ML on-device means that everything happens locally, quickly, with no connection required. This is crucial for helping users capture the moment and stay in the creative flow.<br /> <br /> Third, the editing process is private. A server-side solution would require us to upload user photos while the users were still editing them, before they published them. We wanted to be cognizant of our users&#8217; privacy in their creative process.<br /> <h4>Why TensorFlow</h4>Knowing that we wanted to do on-device machine learning with our custom model, TensorFlow Lite was an obvious choice due to the ease of taking a model trained on the server and converting it to a model compatible for the phone (.tflite format) by using the <a href="https://www.tensorflow.org/api_docs/python/tf/lite/TFLiteConverter">TFLiteConverter</a>.<br /> <br /> Also, we had already experienced the success of TensorFlow and TensorFlow Serving in production systems for our server-side ML. TensorFlow&#8217;s libraries are designed with running ML in production as a primary focus so we felt TensorFlow Lite will be no different.<br /> <br /> We used <a href="https://developers.google.com/ml-kit/">ML Kit</a> to run inference on a TensorFlow Lite model straight-forward and incorporating it into our app very seamless. This enabled us to take the feature from prototype to production-ready pretty quickly. ML Kit provided higher level APIs for us to take care of initializing and loading a model as well as for running inference on images without having to deal with the lower level TensorFlow Lite C++ libraries directly, making the development process much faster and leaving us with more time to hone our model instead.<br /> <h3>Overview of VSCO&#8217;s Machine Learning Stack</h3>For our ML stack, we use TensorFlow for deep learning on images and <a href="https://spark.apache.org/">Apache Spark</a> for shallow learning on behavioral data.<br /> <br /> In production, we have a real-time cloud-based inference pipeline using TensorFlow Serving that runs every image uploaded to VSCO through various convolutional neural networks in real-time. The inference results of these models are then used for product features like Related Images, Search, Just For You and other sections in Discover, etc. For on-device machine learning, we use the mobile friendly parts of the TensorFlow ecosystem &#8212; ML Kit and TensorFlow Lite &#8212; we&#8217;ll get into the details of this part of our stack in the next section.<br /> <table align="center" cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: auto; margin-right: auto; text-align: center;"><tbody> <tr><td style="text-align: center;"><img alt="Related Images" border="0" data-original-height="1075" data-original-width="1600" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhFqiiljvDib0v1VHPuvrmSd4hNyZjja4SL7aymkaFacha8Io725MVmzEJYIT-bSfcq7ckSWM57dkBNZbI-OsFI3iYar0PV9C0N7Lj8omZDDXpbTimGP5vUwbKttiHDBXD-U0FRnY_vxOI/s1600/Screen+Shot+2019-11-20+at+11.30.14+PM.png" style="margin-left: auto; margin-right: auto;" /></td></tr> <tr><td class="tr-caption" style="text-align: center;">Related Images</td></tr> </tbody></table><table align="center" cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: auto; margin-right: auto; text-align: center;"><tbody> <tr><td style="text-align: center;"><img alt="Discover page" border="0" data-original-height="1145" data-original-width="1600" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg2jtoPgm1-Li25eelWbiPB3a58Gjd1GeB-47P_cCt71SsM4TNGKc4uyekrhck32kSYgmDfQsflKHvl-l8WcK7aHpM-p8WFqQPZx0WTyjzw3ssTJc1CzSHB7QJItxfkdC-vmMf3kIiugiU/s1600/justforyoudiscoverpage.png" style="margin-left: auto; margin-right: auto;" /></td></tr> <tr><td class="tr-caption" style="text-align: center;">Just For You</td></tr> </tbody></table><table align="center" cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: auto; margin-right: auto; text-align: center;"><tbody> <tr><td style="text-align: center;"><img alt="search page" border="0" data-original-height="1123" data-original-width="1600" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEizgfPWjV4iA86YkMfC1z424840JhwGGQ5MwdwJREu58ihY8CJEk0zaaTolKfDqRYWjO9_5CL4DzMDOBE4Di3hxiFrmLCiil3yt5NxZhu0YaGvyjxaJpvOprTc_eLgQGavGaHUmdXjl7Sw/s1600/search.png" style="margin-left: auto; margin-right: auto;" /></td></tr> <tr><td class="tr-caption" style="text-align: center;">Search</td></tr> </tbody></table><table align="center" cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: auto; margin-right: auto; text-align: center;"><tbody> <tr><td style="text-align: center;"><img border="0" data-original-height="1047" data-original-width="1600" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg50TbAhCPNZ9joSSe2EvMWTXb1KUkmlvTfeFd8gnqxTQ2bkQ152cj-Xtx0VqvXDdj87f3Gg_FhterUZTdw7tESA-B_h5CB-YRI8q_sbxUkw6hz4a8n6pfBwXYQzscgJE8E0P-QE6KZojw/s1600/user+suggestions.png" style="margin-left: auto; margin-right: auto;" /></td></tr> <tr><td class="tr-caption" style="text-align: center;">User Suggestions</td></tr> </tbody></table>We also have a Spark-based recommendation engine that allows us to train models on large datasets from different sources in our data store: image metadata, behavioral events and relational data. We then use the results of these models to serve personalized recommendations in various forms, for example: user suggestions.<br /> <br /> To power other parts of our ML pipeline, we use <a href="https://www.elastic.co/products/elasticsearch">Elasticsearch</a> for search and relevance features, <a href="https://kafka.apache.org/">Apache Kafka</a> for log-based distributed streaming of data that serves as input for all our ML models, and <a href="https://kubernetes.io/">Kubernetes</a> for deploying all our micro-services. The languages we use include Python, C++, Go, Scala, and for on-device integrations, we use Java/Kotlin and Swift/Obj-C.<br /> <h3>On-device ML: How &#8220;For This Photo&#8221; Works</h3><h4>Step One: Categorizing Images</h4>In order to build a model that serves the &#8220;For This Photo&#8221; feature, we wanted to be able to first assign a category to the image and suggest presets that were designed to work well for that category. The diagram below depicts the process for categorizing an image:<br /> <table align="center" cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: auto; margin-right: auto; text-align: center;"><tbody> <tr><td style="text-align: center;"><img alt="Diagram showing process to categorize images" border="0" data-original-height="540" data-original-width="960" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEinhvjFtOMDTS-8n3WRZwFKCodKja6oknxDTsSUFPPUfkkdM-ZRxcXSUZpogYPc8FkxtabqXTqXtEvyYpMY5N1JEvvf4i4RAeQnvO0850QTfZ2g3qkuDLSQ6Pgu9l3ZYsNbFtSX-HLCDSw/s1600/diagram.png" style="margin-left: auto; margin-right: auto;" /></td></tr> <tr><td class="tr-caption" style="text-align: center;">Categorizing an image</td></tr> </tbody></table>We started with image data tagged by our in-house human curators. These curators are photography experts who have a front-row seat to our user behavior, so they know better than anyone what type of content is being shared and what trends are developing. They helped our engineering team come up with image categories for our model, which include art, portrait, vibrant, coastal, nature, architecture, light and shadow, monochrome, and many more. As the saying goes, 90% of machine learning is about cleaning up your data. These steps helped take care of making sure the data our model was based on was reliable.<br /> <br /> Using the categorized dataset we created with our human curators, we trained a CNN model in TensorFlow based on <a href="https://arxiv.org/abs/1602.07360">SqueezeNet </a>architecture. We chose this architecture because of its smaller size without much loss in accuracy. We converted this trained model from TensorFlow&#8217;s Saved Model format to TensorFlow Lite (.tflite) format using the <a href="https://www.tensorflow.org/api_docs/python/tf/lite/TFLiteConverter">TFLiteConverter</a> for use on Android. Some of the causes of our initial bugs in this stage were due to the mismatch in the version of TFLiteConverter we used compared to the version of TensorFlow Lite library that ML Kit had a reference to via Maven. The ML Kit team was very helpful in helping us fix these issues as we went along.<br /> <pre><code class="&#8221;language-python&#8221;">graph_def_file = &#8220;model_name.pb&#8221; input_arrays = [&#8220;input_tensor_name&#8221;] # this array can have more than one input name if the model requires multiple inputs output_arrays = [&#8220;output_tensor_name&#8221;] # this array can have more than one input name if the model has multiple outputs converter = lite.TFLiteConverter.from_frozen_graph( graph_def_file, input_arrays, output_arrays) tflite_model = converter.convert() open("converted_model.tflite", "wb").write(tflite_model)</code></pre>Once we had a model that could assign categories to images, we were able to bundle it into our app and run inference on images with it using ML Kit. Since we were using our own custom trained model, we used <a href="https://www.blogger.com/Custom%20Model%20API%20from%20ML%20Kit">Custom Model API</a> from ML Kit. For better accuracy, we decided to forgo the quantization step in model conversion and decided to use a floating point model in ML Kit. There were some challenges here because ML Kit by default assumes a quantized model. However, with not much effort, we were able to change some of the steps in model initialization to support a floating point model.<br /> <pre><code class="&#8221;language-JavaScript&#8221;">// create a model interpreter for local model (bundled with app) FirebaseModelOptions modelOptions = new FirebaseModelOptions.Builder() .setLocalModelName(&#8220;model_name&#8221;) .build(); modelInterpreter = FirebaseModelInterpreter.getInstance(modelOptions); // specify input output details for the model // SqueezeNet architecture uses 227 x 227 image as input modelInputOutputOptions = new FirebaseModelInputOutputOptions.Builder() .setInputFormat(0, FirebaseModelDataType.FLOAT32, new int[]{1, 227, 227, 3}) .setOutputFormat(0, FirebaseModelDataType.FLOAT32, new int[]{1, numLabels}) .build(); // create input data FirebaseModelInputs input = new FirebaseModelInputs.Builder().add(imgDataArray).build(); // imgDataArray is a float[][][][] array of (1, 227, 227, 3) // run inference modelInterpreter.run(input, modelInputOutputOptions);</code></pre><h4>Step Two: Suggesting Presets</h4>The next challenge was to suggest presets based on these categories of images. We collaborated with our in-house Imaging team who had created these presets to come up with lists of presets that work well for images in each of these categories. This process included rigorous testing on many images in each category where we analyzed how each preset affected various colors. At the end, we had a curated catalog with presets that are mapped to each category.<br /> <table align="center" cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: auto; margin-right: auto; text-align: center;"><tbody> <tr><td style="text-align: center;"><img border="0" data-original-height="540" data-original-width="960" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjSAbcWgFML1-nNecCDj-3FM-m1vR0Czuntj3joiTwIV1WqFuncnSRsivP7efXuRPeGZi9IXgQ5dC7UR4VRbeNOgAvPQTm6WFTZjzXxW4g9cS2LHtNIbxHmJK3-rZ-0gkeZpHNuYsZ5_r0/s1600/presets.png" style="margin-left: auto; margin-right: auto;" /></td></tr> <tr><td class="tr-caption" style="text-align: center;">Suggesting presets for an image</td></tr> </tbody></table>These curated catalogs are ever-evolving as we add new presets to our membership offering. In order to make it easier for us to update these lists on the fly without the users having to update their app, we decided to store these catalogs on the server and serve them using an API, a microservice written in Go which the mobile clients can check-in with periodically to make sure they have the latest version of the catalogs. The mobile clients cache this catalog and only fetch when there is a new version of the catalog available. However, this approach creates a &#8220;cold start&#8221; problem for users who do not connect to the internet before trying out this feature for the first time, not giving the app an opportunity to talk to the API and download these catalogs. To solve this, we decided to ship a default version of these catalogs with the app. This allows all users to be able to use this feature regardless of their internet connectivity, as was one of the goals of this feature to begin with.<br /> <h3>Results and Conclusion</h3>With &#8220;For This Photo&#8221;, we accomplished our goal to make editing with presets easier to navigate. We believe that if our members don&#8217;t find value in getting new presets, their creative progress is being hindered. We wanted to do better. We wanted to help more users not just discover new presets, but zero in on those presets that best matched what they were working on.<br /> <br /> We want to continue to improve &#8220;For This Photo&#8221; to provide recommendations based on other image characteristics as well as the user&#8217;s community actions (e.g. follows, favorites and reposts). In addition, we also want to provide greater context for those recommendations and to encourage our community of creators to discover and inspire each other.<br /> <br /> As we look forward to the future of this feature, we are also reflecting on the past. We recognize that this feature and VSCO&#8217;s on-device ML capabilities would not have been possible without TensorFlow Lite and ML Kit. We are excited to continue to invest in this area and build more features leveraging this technology in the future. </div> </div> <div class='tensorsite-detail-footer'> <div class='article-divider'> <img alt='Diamond Article Divider' src='https://www.gstatic.com/tf_blog/images/ic_article_end.svg'/> </div> <a class='tensorsite-chip' href='https://blog.tensorflow.org/search?label=Community&max-results=20'> Community </a> </div> </div> <div class='tensorsite-next'> <div class='tensorsite-container--large'> <div class='tensorsite-next__title'>Next post</div> <div class='tensorsite-card'> <a aria-label='Next Card' class='tensorsite-card__href next' href='https://blog.tensorflow.org/2019/06/vsco-suggesting-presets-for-images.html'></a> <div class='tensorsite-content__image-wrapper'> <img alt='Suggesting Presets for Images: Building: “For This Photo” at VSCO' class='tensorsite-content__image' src='https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEi3BzBmgf1YvXZrCcvNMb138eelfPEa1fCSlkZNiKoIqhBGYvt0vmyMQYAmr36r0d4bJDT70VOZs_aEO_Xog1gepCJK9EwvY3-_aRdpn2za7YDR2XYfr6a_uqMSf8tTl0deNtayrp9ptN8/s1600/Screen+Shot+2019-11-20+at+11.19.32+PM.png'/> </div> <div class='tensorsite-content'> <div class='tensorsite-content__subtitle next'> <span>Community</span> <b class='label-divider-dot'>&#183;</b> <img alt='Google Article' class='community-icon' src='https://www.gstatic.com/tf_blog/images/ic_google.svg'/> </div> <div class='tensorsite-content__title next'> Suggesting Presets for Images: Building: &#8220;For This Photo&#8221; at VSCO </div> <p class='tensorsite-content__description next'> <span class='tensorsite-content__info'> June 24, 2019 </span> &#8212; <span> <em>A guest article posted by the VSCO Engineering team</em><br><br> At <a href="https://vsco.co/">VSCO</a>, we build creative tools, spaces, and connections driven by self-expression. Our app is a place where people can create and edit images and videos, discover tips and new ideas, and connect to a vibrant global community void of public likes, comments, and follower counts.<br><br> We use machine learning as a tool for personalizing and guiding eac&#8230; </span> </p> </div> </div> </div> </div> <!--Can't find substitution for tag [posts.post]--> </div></div> </div> <!-- End Page Container --> <div class='tensorsite-full-footer'> <div class='section' id='footer'><div class='widget HTML' data-version='1' id='HTML2'> <section class='tensorsite-footer'> <div class='tensorsite-container tensorsite-footer__container'> <div class='tensorsite-footer__side tensorsite-footer__side--left'></div> <div class='tensorsite-footer__side tensorsite-footer__side--right'></div> <div class='tensorsite-footer__content'> <div class='tensorsite-content'> <div class='tensorsite-content__title tensorsite-content__title--grow'> Build, deploy, and experiment easily with TensorFlow </div> <div class='tensorsite-content__cta-wrapper'> <a class='tensorsite-content__button tensorsite-button tensorsite-button--white' href='https://www.tensorflow.org/'> Get started </a> </div> </div> </div> </div> <div class='tensorsite-footer__lines'></div> </section> <section class='social-icons'> <div class='social-icons__container-footer'> <a alt='TensorFlow Home' class='tensorsite-logo' href='https://www.tensorflow.org/'> <img alt='TensorFlow Logo' class='tensorsite-logo__image' src='https://www.gstatic.com/tf_blog/images/tf_lockup.svg'/> </a> <div class='footer__side--right'> <div class='footer__links'> <a alt='Youtube Social Link' class='footer-link' href='https://www.google.com/' rel='noopener noreferrer' target='_blank'> Google </a> <a alt='Twitter Social Link' class='footer-link' href='https://policies.google.com/privacy' rel='noopener noreferrer' target='_blank'> Privacy </a> <a alt='Github Link' class='footer-link' href='https://policies.google.com/terms' rel='noopener noreferrer' target='_blank'> Terms </a> <a class='footer-link' href='https://blog.tensorflow.org/p/tensorflow-blog-contribution-notice.html'> Contributions notice </a> </div> <div class='social-icons__links'> <a alt='Youtube Social Link' class='icon-link' href='https://www.youtube.com/channel/UC0rqucBdTuFTjJiefW5t-IQ' rel='noopener noreferrer' target='_blank'> <img src='https://www.gstatic.com/tf_blog/images/ic_youtube.svg'/></a> <a alt='Twitter Social Link' class='icon-link' href='https://twitter.com/TensorFlow' rel='noopener noreferrer' target='_blank'> <img src='https://www.gstatic.com/tf_blog/images/ic_twitter.svg'/></a> <a alt='Github Link' class='icon-link' href='https://github.com/tensorflow' rel='noopener noreferrer' target='_blank'> <img src='https://www.gstatic.com/tf_blog/images/ic_github.svg'/></a> </div> </div> </div> </section> </div></div> </div> <script type="text/javascript" src="https://www.blogger.com/static/v1/widgets/984859869-widgets.js"></script> <script type='text/javascript'> window['__wavt'] = 'AOuZoY5i8hc52Cbil-4TdSUOwBQfHS_Ktg:1732684532156';_WidgetManager._Init('//www.blogger.com/rearrange?blogID\x3d7864883956188652345','//blog.tensorflow.org/2019/06/vsco-suggesting-presets-for-images.html','7864883956188652345'); _WidgetManager._SetDataContext([{'name': 'blog', 'data': {'blogId': '7864883956188652345', 'title': 'The TensorFlow Blog', 'url': 'https://blog.tensorflow.org/2019/06/vsco-suggesting-presets-for-images.html', 'canonicalUrl': 'https://blog.tensorflow.org/2019/06/vsco-suggesting-presets-for-images.html', 'homepageUrl': 'https://blog.tensorflow.org/', 'searchUrl': 'https://blog.tensorflow.org/search', 'canonicalHomepageUrl': 'https://blog.tensorflow.org/', 'blogspotFaviconUrl': 'https://blog.tensorflow.org/favicon.ico', 'bloggerUrl': 'https://www.blogger.com', 'hasCustomDomain': true, 'httpsEnabled': true, 'enabledCommentProfileImages': true, 'gPlusViewType': 'FILTERED_POSTMOD', 'adultContent': false, 'analyticsAccountNumber': 'UA-142343919-1', 'encoding': 'UTF-8', 'locale': 'en', 'localeUnderscoreDelimited': 'en', 'languageDirection': 'ltr', 'isPrivate': false, 'isMobile': false, 'isMobileRequest': false, 'mobileClass': '', 'isPrivateBlog': false, 'isDynamicViewsAvailable': true, 'feedLinks': '\x3clink rel\x3d\x22alternate\x22 type\x3d\x22application/atom+xml\x22 title\x3d\x22The TensorFlow Blog - Atom\x22 href\x3d\x22https://blog.tensorflow.org/feeds/posts/default\x22 /\x3e\n\x3clink rel\x3d\x22alternate\x22 type\x3d\x22application/rss+xml\x22 title\x3d\x22The TensorFlow Blog - RSS\x22 href\x3d\x22https://blog.tensorflow.org/feeds/posts/default?alt\x3drss\x22 /\x3e\n\x3clink rel\x3d\x22service.post\x22 type\x3d\x22application/atom+xml\x22 title\x3d\x22The TensorFlow Blog - Atom\x22 href\x3d\x22https://www.blogger.com/feeds/7864883956188652345/posts/default\x22 /\x3e\n\n\x3clink rel\x3d\x22alternate\x22 type\x3d\x22application/atom+xml\x22 title\x3d\x22The TensorFlow Blog - Atom\x22 href\x3d\x22https://blog.tensorflow.org/feeds/5010170555212952218/comments/default\x22 /\x3e\n', 'meTag': '', 'adsenseHostId': 'ca-host-pub-1556223355139109', 'adsenseHasAds': true, 'adsenseAutoAds': false, 'boqCommentIframeForm': true, 'loginRedirectParam': '', 'view': '', 'dynamicViewsCommentsSrc': '//www.blogblog.com/dynamicviews/4224c15c4e7c9321/js/comments.js', 'dynamicViewsScriptSrc': '//www.blogblog.com/dynamicviews/02de2df73990045b', 'plusOneApiSrc': 'https://apis.google.com/js/platform.js', 'disableGComments': true, 'interstitialAccepted': false, 'sharing': {'platforms': [{'name': 'Get link', 'key': 'link', 'shareMessage': 'Get link', 'target': ''}, {'name': 'Facebook', 'key': 'facebook', 'shareMessage': 'Share to Facebook', 'target': 'facebook'}, {'name': 'BlogThis!', 'key': 'blogThis', 'shareMessage': 'BlogThis!', 'target': 'blog'}, {'name': 'X', 'key': 'twitter', 'shareMessage': 'Share to X', 'target': 'twitter'}, {'name': 'Pinterest', 'key': 'pinterest', 'shareMessage': 'Share to Pinterest', 'target': 'pinterest'}, {'name': 'Email', 'key': 'email', 'shareMessage': 'Email', 'target': 'email'}], 'disableGooglePlus': true, 'googlePlusShareButtonWidth': 0, 'googlePlusBootstrap': '\x3cscript type\x3d\x22text/javascript\x22\x3ewindow.___gcfg \x3d {\x27lang\x27: \x27en\x27};\x3c/script\x3e'}, 'hasCustomJumpLinkMessage': false, 'jumpLinkMessage': 'Read more', 'pageType': 'item', 'postId': '5010170555212952218', 'postImageThumbnailUrl': 'https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEi3BzBmgf1YvXZrCcvNMb138eelfPEa1fCSlkZNiKoIqhBGYvt0vmyMQYAmr36r0d4bJDT70VOZs_aEO_Xog1gepCJK9EwvY3-_aRdpn2za7YDR2XYfr6a_uqMSf8tTl0deNtayrp9ptN8/s72-c/Screen+Shot+2019-11-20+at+11.19.32+PM.png', 'postImageUrl': 'https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEi3BzBmgf1YvXZrCcvNMb138eelfPEa1fCSlkZNiKoIqhBGYvt0vmyMQYAmr36r0d4bJDT70VOZs_aEO_Xog1gepCJK9EwvY3-_aRdpn2za7YDR2XYfr6a_uqMSf8tTl0deNtayrp9ptN8/s1600/Screen+Shot+2019-11-20+at+11.19.32+PM.png', 'pageName': 'Suggesting Presets for Images: Building: \u201cFor This Photo\u201d at VSCO', 'pageTitle': 'The TensorFlow Blog: Suggesting Presets for Images: Building: \u201cFor This Photo\u201d at VSCO', 'metaDescription': ''}}, {'name': 'features', 'data': {}}, {'name': 'messages', 'data': {'edit': 'Edit', 'linkCopiedToClipboard': 'Link copied to clipboard!', 'ok': 'Ok', 'postLink': 'Post Link'}}, {'name': 'template', 'data': {'name': 'custom', 'localizedName': 'Custom', 'isResponsive': false, 'isAlternateRendering': false, 'isCustom': true}}, {'name': 'view', 'data': {'classic': {'name': 'classic', 'url': '?view\x3dclassic'}, 'flipcard': {'name': 'flipcard', 'url': '?view\x3dflipcard'}, 'magazine': {'name': 'magazine', 'url': '?view\x3dmagazine'}, 'mosaic': {'name': 'mosaic', 'url': '?view\x3dmosaic'}, 'sidebar': {'name': 'sidebar', 'url': '?view\x3dsidebar'}, 'snapshot': {'name': 'snapshot', 'url': '?view\x3dsnapshot'}, 'timeslide': {'name': 'timeslide', 'url': '?view\x3dtimeslide'}, 'isMobile': false, 'title': 'Suggesting Presets for Images: Building: \u201cFor This Photo\u201d at VSCO', 'description': 'The TensorFlow blog contains regular news from the TensorFlow team and the community, with articles on Python, TensorFlow.js, TF Lite, TFX, and more.', 'featuredImage': 'https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEi3BzBmgf1YvXZrCcvNMb138eelfPEa1fCSlkZNiKoIqhBGYvt0vmyMQYAmr36r0d4bJDT70VOZs_aEO_Xog1gepCJK9EwvY3-_aRdpn2za7YDR2XYfr6a_uqMSf8tTl0deNtayrp9ptN8/s1600/Screen+Shot+2019-11-20+at+11.19.32+PM.png', 'url': 'https://blog.tensorflow.org/2019/06/vsco-suggesting-presets-for-images.html', 'type': 'item', 'isSingleItem': true, 'isMultipleItems': false, 'isError': false, 'isPage': false, 'isPost': true, 'isHomepage': false, 'isArchive': false, 'isLabelSearch': false, 'postId': 5010170555212952218}}]); _WidgetManager._RegisterWidget('_HTMLView', new _WidgetInfo('HTML1', 'nav', document.getElementById('HTML1'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_FeaturedPostView', new _WidgetInfo('FeaturedPost1', 'blog', document.getElementById('FeaturedPost1'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_BlogView', new _WidgetInfo('Blog1', 'blog', document.getElementById('Blog1'), {'cmtInteractionsEnabled': false, 'lightboxEnabled': true, 'lightboxModuleUrl': 'https://www.blogger.com/static/v1/jsbin/2646514562-lbx.js', 'lightboxCssUrl': 'https://www.blogger.com/static/v1/v-css/1964470060-lightbox_bundle.css'}, 'displayModeFull')); _WidgetManager._RegisterWidget('_HTMLView', new _WidgetInfo('HTML2', 'footer', document.getElementById('HTML2'), {}, 'displayModeFull')); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10