CINXE.COM

Search results for: Madalina Dumitru

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Madalina Dumitru</title> <meta name="description" content="Search results for: Madalina Dumitru"> <meta name="keywords" content="Madalina Dumitru"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Madalina Dumitru" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Madalina Dumitru"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Madalina Dumitru</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> The Change in Management Accounting from an Institutional Perspective: A Case Study for a Romania Company</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Jinga">Gabriel Jinga</a>, <a href="https://publications.waset.org/abstracts/search?q=Madalina%20Dumitru"> Madalina Dumitru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to present the process of change in management accounting in Romania, a former communist country from Eastern Europe. In order to explain this process, we used the contingency and institutional theories. We focused on the following directions: the presentation of the scientific context and motivation of this research and the case study. We presented the state of the art in the process of change in the management accounting from the international and national perspective. We also described the evolution of management accounting in Romania in the context of economic and political changes. An important moment was the fall of communism in 1989. This represents a starting point for a new economic environment and for new management accounting. Accordingly, we developed a case study which presented this evolution. The conclusion of our research was that the changes in the management accounting system of the company analysed occurred in the same time with the institutionalization of some elements (e.g. degree of competition, training and competencies in management accounting). The management accounting system was modeled by the contingencies specific to this company (e.g. environment, industry, strategy). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=management%20accounting" title="management accounting">management accounting</a>, <a href="https://publications.waset.org/abstracts/search?q=change" title=" change"> change</a>, <a href="https://publications.waset.org/abstracts/search?q=Romania" title=" Romania"> Romania</a>, <a href="https://publications.waset.org/abstracts/search?q=contingency" title=" contingency"> contingency</a>, <a href="https://publications.waset.org/abstracts/search?q=institutional%20theory" title=" institutional theory"> institutional theory</a> </p> <a href="https://publications.waset.org/abstracts/22076/the-change-in-management-accounting-from-an-institutional-perspective-a-case-study-for-a-romania-company" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> The Change in Management Accounting from an Institutional and Contingency Perspective. A Case Study for a Romanian Company</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Jinga">Gabriel Jinga</a>, <a href="https://publications.waset.org/abstracts/search?q=Madalina%20Dumitru"> Madalina Dumitru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to present the process of change in management accounting in Romania, a former communist country from Eastern Europe. In order to explain this process, we used the contingency and institutional theories. We focused on the following directions: the presentation of the scientific context and motivation of this research and the case study. We presented the state of the art in the process of change in the management accounting from the international and national perspective. We also described the evolution of management accounting in Romania in the context of economic and political changes. An important moment was the fall of communism in 1989. This represents a starting point for a new economic environment and for new management accounting. Accordingly, we developed a case study which presented this evolution. The conclusion of our research was that the changes in the management accounting system of the company analysed occurred in the same time with the institutionalisation of some elements (e.g. degree of competition, training and competencies in management accounting). The management accounting system was modelled by the contingencies specific to this company (e.g. environment, industry, strategy). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=management%20accounting" title="management accounting">management accounting</a>, <a href="https://publications.waset.org/abstracts/search?q=change" title=" change"> change</a>, <a href="https://publications.waset.org/abstracts/search?q=Romania" title=" Romania"> Romania</a>, <a href="https://publications.waset.org/abstracts/search?q=contingency%20and%20institutional%20theory" title=" contingency and institutional theory"> contingency and institutional theory</a> </p> <a href="https://publications.waset.org/abstracts/22403/the-change-in-management-accounting-from-an-institutional-and-contingency-perspective-a-case-study-for-a-romanian-company" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Modal Dynamic Analysis of a Mechanism with Deformable Elements from an Oil Pump Unit Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Dumitru">N. Dumitru</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Dumitru"> S. Dumitru</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Copilusi"> C. Copilusi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ploscaru"> N. Ploscaru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On this research, experimental analyses have been performed in order to determine the oil pump mechanism dynamics and stability from an oil unit mechanical structure. The experimental tests were focused on the vibrations which occur inside of the rod element during functionality of the oil pump unit. The oil pump mechanism dynamic parameters were measured and also determined through numerical computations. Entire research is based on the oil pump unit mechanical system virtual prototyping. For a complete analysis of the mechanism, the frequency dynamic response was identified, mainly for the mechanism driven element, based on two methods: processing and virtual simulations with MSC Adams aid and experimental analysis. In fact, through this research, a complete methodology is presented where numerical simulations of a mechanism with deformed elements are developed on a dynamic mode and these can be correlated with experimental tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modal%20dynamic%20analysis" title="modal dynamic analysis">modal dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20pump" title=" oil pump"> oil pump</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrations" title=" vibrations"> vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20elements" title=" flexible elements"> flexible elements</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20response" title=" frequency response"> frequency response</a> </p> <a href="https://publications.waset.org/abstracts/47941/modal-dynamic-analysis-of-a-mechanism-with-deformable-elements-from-an-oil-pump-unit-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Production Structures of Energy Based on Water Force, Its Infrastructure Protection, and Possible Causes of Failure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriela-Andreea%20Despescu">Gabriela-Andreea Despescu</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C4%83d%C4%83lina-Elena%20Mavrodin"> Mădălina-Elena Mavrodin</a>, <a href="https://publications.waset.org/abstracts/search?q=Gheorghe%20L%C4%83z%C4%83roiu"> Gheorghe Lăzăroiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Florin%20Adrian%20Gr%C4%83dinaru"> Florin Adrian Grădinaru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to contribute to the enhancement of a hydroelectric plant protection by coordinating protection measures and existing security and introducing new measures under a risk management process. Also, the plan identifies key critical elements of a hydroelectric plant, from its level vulnerabilities and threats it is subjected to in order to achieve the necessary protection measures to reduce the level of risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=critical%20infrastructure" title="critical infrastructure">critical infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20analysis" title=" risk analysis"> risk analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20infrastructure%20protection" title=" critical infrastructure protection"> critical infrastructure protection</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title=" vulnerability"> vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title=" risk management"> risk management</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine" title=" turbine"> turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20analysis" title=" impact analysis"> impact analysis</a> </p> <a href="https://publications.waset.org/abstracts/37627/production-structures-of-energy-based-on-water-force-its-infrastructure-protection-and-possible-causes-of-failure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> The Impact of the Information Technologies on the Accounting Department of the Romanian Companies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dumitru%20Valentin%20Florentin">Dumitru Valentin Florentin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The need to use high volumes of data and the high competition are only two reasons which make necessary the use of information technologies. The objective of our research is to establish the impact of information technologies on the accounting department of the Romanian companies. In order to achieve it, starting from the literature review we made an empirical research based on a questionnaire. We investigated the types of technologies used, the reasons which led to the implementation of certain technologies, the benefits brought by the use of the information technologies, the difficulties brought by the implementation and the future effects of the applications. The conclusions show that there is an evolution in the degree of implementation of the information technologies in the Romanian companies, compared with the results of other studies conducted a few years before. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20technologies" title="information technologies">information technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=company" title=" company"> company</a>, <a href="https://publications.waset.org/abstracts/search?q=Romania" title=" Romania"> Romania</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20study" title=" empirical study"> empirical study</a> </p> <a href="https://publications.waset.org/abstracts/22404/the-impact-of-the-information-technologies-on-the-accounting-department-of-the-romanian-companies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> The Monitoring of Surface Water Bodies from Tisa Catchment Area, Maramureş County in 2014</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriela-Andreea%20Despescu">Gabriela-Andreea Despescu</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C4%83d%C4%83lina%20Mavrodin"> Mădălina Mavrodin</a>, <a href="https://publications.waset.org/abstracts/search?q=Gheorghe%20L%C4%83z%C4%83roiu"> Gheorghe Lăzăroiu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Nacu"> S. Nacu</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20B%C4%83stina%C5%9F"> R. Băstinaş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Monitoring of Surface Water Bodies (Rivers) from Tisa Catchment Area - Maramureş County in 2014. This study is focused on the monitoring and evaluation of river’s water bodies from Maramureş County, using the methodology associated with the EU Water Framework Directive 60/2000. Thus, in the first part are defined the theoretical terms of monitoring activities related to the water bodies’ quality and the specific features of those we can find in the studied area. There are presented the water bodies’ features, quality indicators and the monitoring frequencies for the rivers situated in the Tisa catchment area. The results have shown the actual ecological and chemical state of those water bodies, in relation with the standard values mentioned through the Water Framework Directive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=monitoring" title="monitoring">monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=surveillance" title=" surveillance"> surveillance</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20bodies" title=" water bodies"> water bodies</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/50140/the-monitoring-of-surface-water-bodies-from-tisa-catchment-area-maramures-county-in-2014" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Intelligent Computing with Bayesian Regularization Artificial Neural Networks for a Nonlinear System of COVID-19 Epidemic Model for Future Generation Disease Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahir%20Nawaz%20Cheema">Tahir Nawaz Cheema</a>, <a href="https://publications.waset.org/abstracts/search?q=Dumitru%20Baleanu"> Dumitru Baleanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Raza"> Ali Raza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research work, we design intelligent computing through Bayesian Regularization artificial neural networks (BRANNs) introduced to solve the mathematical modeling of infectious diseases (Covid-19). The dynamical transmission is due to the interaction of people and its mathematical representation based on the system's nonlinear differential equations. The generation of the dataset of the Covid-19 model is exploited by the power of the explicit Runge Kutta method for different countries of the world like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, testing, and validation processes for every frequent update in Bayesian Regularization backpropagation for numerical behavior of the dynamics of the Covid-19 model. The performance and effectiveness of designed methodology BRANNs are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20models" title="mathematical models">mathematical models</a>, <a href="https://publications.waset.org/abstracts/search?q=beysian%20regularization" title=" beysian regularization"> beysian regularization</a>, <a href="https://publications.waset.org/abstracts/search?q=bayesian-regularization%20backpropagation%20networks" title=" bayesian-regularization backpropagation networks"> bayesian-regularization backpropagation networks</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis" title=" regression analysis"> regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20computing" title=" numerical computing"> numerical computing</a> </p> <a href="https://publications.waset.org/abstracts/145835/intelligent-computing-with-bayesian-regularization-artificial-neural-networks-for-a-nonlinear-system-of-covid-19-epidemic-model-for-future-generation-disease-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Studies and Full Scale Tests for the Development of a Ravine Filling with a Depth of about 12.00m</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dana%20Madalina%20Pohrib">Dana Madalina Pohrib</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Irina%20Ciobanu"> Elena Irina Ciobanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In compaction works, the most often used codes and standards are those for road embankments and refer to a maximum filling height of 3.00m. When filling a height greater than 3.00m, such codes are no longer valid and thus their application may lead to technical difficulties in the process of compaction and to the achievement of a sufficient degree of compaction. For this reason, in the case of controlled fillings with heights greater than 3.00m it is necessary to formulate and apply a number of special techniques, which can be determined by performing a full scale test. This paper presents the results of the studies and full scale tests conducted for the stabilization of a ravine with vertical banks and a depth of about 12.00m. The fillings will support a heavy traffic road connecting the two parts of a village in Vaslui County, Romania. After analyzing two comparative intervention solutions, the variant of a controlled filling bordered by a monolith concrete retaining wall was chosen. The results obtained by the authors highlighted the need to insert a geogrid reinforcement at every 2.00m for creating a 12.00m thick compacted fill. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compaction" title="compaction">compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20probing" title=" dynamic probing"> dynamic probing</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20stratification" title=" soil stratification"> soil stratification</a> </p> <a href="https://publications.waset.org/abstracts/6414/studies-and-full-scale-tests-for-the-development-of-a-ravine-filling-with-a-depth-of-about-1200m" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Stability Analysis of Tumor-Immune Fractional Order Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadia%20Arshad">Sadia Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Yifa%20Tang"> Yifa Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dumitru%20Baleanu"> Dumitru Baleanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A fractional order mathematical model is proposed that incorporate CD8+ cells, natural killer cells, cytokines and tumor cells. The tumor cells growth in the absence of an immune response is modeled by logistic law as it was the simplest form for which predictions also agreed with the experimental data. Natural Killer Cells are our first line of defense. NK cells directly kill tumor cells through several mechanisms, including the release of cytoplasmic granules containing perforin and granzyme, expression of tumor necrosis factor (TNF) family members. The effect of the NK cells on the tumor cell population is expressed with the product term. Rational form is used to describe interaction between CD8+ cells and tumor cells. A number of cytokines are produced by NKs, including tumor necrosis factor TNF, IFN, and interleukin (IL-10). Source term for cytokines is modeled by Michaelis-Menten form to indicate the saturated effects of the immune response. Stability of the equilibrium points is discussed for biologically significant values of bifurcation parameters. We studied the treatment of fractional order system by investigating analytical conditions of tumor eradication. Numerical simulations are presented to illustrate the analytical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20model" title="cancer model">cancer model</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20calculus" title=" fractional calculus"> fractional calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulations" title=" numerical simulations"> numerical simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20analysis" title=" stability analysis"> stability analysis</a> </p> <a href="https://publications.waset.org/abstracts/52821/stability-analysis-of-tumor-immune-fractional-order-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Carbon Footprint of Blowmoulded Plastic Parts-Case Study on Automotive Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M%C4%83d%C4%83lina%20Elena%20Mavrodin">Mădălina Elena Mavrodin</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriela%20Andreea%20Despescu"> Gabriela Andreea Despescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gheorghe%20L%C4%83z%C4%83roiu"> Gheorghe Lăzăroiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Long term trend of global warming has brought a very deep interest in climate change, which is due most likely to increasing concentrations of anthropogenic greenhouse gases. 0f these, particular attention is paid to carbon dioxide, which has led in desire for obtaining carbon footprint products. Automotive industry is one of the world’s most important economic sectors with a great impact over the environment through all range of activities. Its impact over the environment has been studied, researcher trying as much as possible to reduce it and to offer environmental friendly solution for the using, but also manufacturing cars. In the global endeavour to meet the international commitments in order to reduce the greenhouse gas emissions, many companies integrate environmental issues into their management systems, with potential effects in their entire production chains. Several tools and calculators have been developed to measure the environmental impact of a product in the life cycle perspective of the whole product chain. There were a lot of ways to obtain the carbon footprint of driving a car, but the total carbon footprint of a car includes also the carbon footprint of all the components and accessories. In the automotive industry, one of the challenges is to calculate the carbon footprint of a car from ‘cradle to grave’; this meaning not only for driving the car, but also manufacturing it, so there can be an overview over the entire process of production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20footprint" title="carbon footprint">carbon footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming%20potential" title=" global warming potential"> global warming potential</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gases" title=" greenhouse gases"> greenhouse gases</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacture" title=" manufacture"> manufacture</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20air%20ducts" title=" plastic air ducts"> plastic air ducts</a> </p> <a href="https://publications.waset.org/abstracts/37633/carbon-footprint-of-blowmoulded-plastic-parts-case-study-on-automotive-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Ergosterol Biosynthesis: Non-Conventional Method for Improving Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madalina%20Postaru">Madalina Postaru</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20Tucaliuc"> Alexandra Tucaliuc</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20Cascaval"> Dan Cascaval</a>, <a href="https://publications.waset.org/abstracts/search?q=Anca%20Irina%20Galaction"> Anca Irina Galaction</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ergosterol (ergosta-5,7,22-trien-3β-ol) is the precursor of vitamin D2 (ergocalciferol), known as provitamin D2 as it is converted under UV radiation to this vitamin. The natural sources of ergosterol are mainly the yeasts (Saccharomyces sp., Candida sp.), but it can be also found in fungus (Claviceps sp.) or plants (orchids). As ergosterol is mainly accumulated in yeast cell membranes, especially in free form in the plasma-membrane, and the chemical synthesis of ergosterol does not represent an efficient method for its production, this study aimed to analyze the influence of aeration efficiency on ergosterol production by S. cerevisiae in batch and fed-batch fermentations, by considering different levels of mixing intensity, aeration rate, and n-dodecane concentration. Our previous studies on ergosterol production by S. cerevisiae in batch and fed-batch fermentation systems indicated that the addition of n-dodecane led to the increase of almost 50% of this sterol concentration, the highest productivity being reached for the fed-batch process. The experiments were carried out in a laboratory stirred bioreactor, provided with computer-controlled and recorded parameters. In batch fermentation system, the study indicated that the oxygen mass transfer coefficient, kLa, is amplified for about 3 times by increasing the volumetric concentration of n-dodecane from 0 to 15%. Moreover, the increase of dissolved oxygen concentration by adding n-dodecane leads to the diminution for 3.5 times of the produced alcohol amount. In fed-batch fermentation process, the positive influence of hydrocarbon on oxygen transfer rate is amplified mainly at its higher concentration level, as the result of the increased yeasts cells amount. Thus, by varying n-dodecane concentration from 0 to 15% vol., the kLa value increase becomes more important than for the batch fermentation, being of 4 times <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ergosterol" title="ergosterol">ergosterol</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast%20fermentation" title=" yeast fermentation"> yeast fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=n-dodecane" title=" n-dodecane"> n-dodecane</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen-vector" title=" oxygen-vector"> oxygen-vector</a> </p> <a href="https://publications.waset.org/abstracts/116342/ergosterol-biosynthesis-non-conventional-method-for-improving-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Studies on the Use of Sewage Sludge in Agriculture or in Incinerators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Catalina%20%20Iticescu">Catalina Iticescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucian%20Georgescu"> Lucian Georgescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihaela%20%20Timofti"> Mihaela Timofti</a>, <a href="https://publications.waset.org/abstracts/search?q=Dumitru%20Dima"> Dumitru Dima</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Murariu"> Gabriel Murariu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The amounts of sludge resulting from the treatment of domestic and industrial wastewater can create serious environmental problems if no solutions are found to eliminate them. At present, the predominant method of sewage sludge disposal is to store and use them in agricultural applications. The sewage sludge has fertilizer properties and can be used to enrich agricultural soils due to the nutrient content. In addition to plant growth (nitrogen and phosphorus), the sludge also contains heavy metals in varying amounts. An increasingly used method is the incineration of sludge. Thermal processes can be used to convert large amounts of sludge into useful energy. The sewage sludge analyzed for the present paper was extracted from the Wastewater Treatment Station (WWTP) Galati, Romania. The physico-chemical parameters determined were: pH (upH), nutrients and heavy metals. The determination methods were electrochemical, spectrophotometric and energy dispersive X–ray analyses (EDX). The results of the tests made on the content of nutrients in the sewage sludge have shown that existing nutrients can be used to increase the fertility of agricultural soils. The conclusion reached was that these sludge can be safely used on agricultural land and with good agricultural productivity results. To be able to use sewage sludge as a fuel, we need to know its calorific values. For wet sludge, the caloric power is low, while for dry sludge it is high. Higher calorific value and lower calorific value are determined only for dry solids. The apparatus used to determine the calorific power was a Parr 6755 Solution Calorimeter Calorimeter (Parr Instrument Company USA 2010 model). The calorific capacities for the studied sludge indicate that they can be used successfully in incinerators. Mixed with coal, they can also be used to produce electricity. The advantages are: it reduces the cost of obtaining electricity and considerably reduces the amount of sewage sludge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=incinerators" title=" incinerators"> incinerators</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a> </p> <a href="https://publications.waset.org/abstracts/78346/studies-on-the-use-of-sewage-sludge-in-agriculture-or-in-incinerators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Methods and Techniques for Lower Danube Sturgeon Monitoring Used for the Assessment of Anthropic Activities Pressures and the Quantification of Risks on These Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyorgy%20Deak">Gyorgy Deak</a>, <a href="https://publications.waset.org/abstracts/search?q=Marius%20C.%20Raischi"> Marius C. Raischi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucian%20P.%20Georgescu"> Lucian P. Georgescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tiberius%20M.%20Danalache"> Tiberius M. Danalache</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Holban"> Elena Holban</a>, <a href="https://publications.waset.org/abstracts/search?q=Madalina%20G.%20Boboc"> Madalina G. Boboc</a>, <a href="https://publications.waset.org/abstracts/search?q=Monica%20Matei"> Monica Matei</a>, <a href="https://publications.waset.org/abstracts/search?q=Catalina%20Iticescu"> Catalina Iticescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Marius%20V.%20Olteanu"> Marius V. Olteanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Zamfir"> Stefan Zamfir</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Cornateanu"> Gabriel Cornateanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, on the Lower Danube, different types of pressures have been identified that affect the anadromous sturgeons stocks with an impact that leads to their decline. This paper presents techniques and procedures used by Romanian experts in the tagging and monitoring of anadromous sturgeons, as well as unique results at international level obtained on the basis of an informational volume collected in over 7 years of monitoring on these species behavior (both for adults as well as for ultrasonically tagged juveniles) on the Lower Danube. The local impact of hydrotechnical constructions (bottom sill, maritime navigation channel), the global impact of the poaching phenomenon and the impact of the restocking programs with sturgeon juveniles were assessed. Thus, the bottom sill impact on the Bala branch, the Bastroe Channel (cross-border impact) and the poaching phenomenon at the level of the Lower Danube was analyzed on the basis of a unique informational volume obtained through the use of patented monitoring systems by the Romanian experts (DKTB respectively, DKMR-01T). At the same time, the results from the monitoring of ultrasonically tagged sturgeon juveniles from the 2015 repopulation program are presented. Conclusions resulting from research can ensure favorable premises for finding some conservation solutions for CITES-protected sturgeon species that have survived for millions of years, currently being 1 species on the brink of extinction - Russian sturgeon, 2 species in danger of extinction - Beluga sturgeon and Stellate sturgeon and 2 species already extinct from the Lower Danube, namely common sturgeon and ship sturgeon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lower%20Danube" title="Lower Danube">Lower Danube</a>, <a href="https://publications.waset.org/abstracts/search?q=sturgeons%20monitoring%20%28adults%20and%20juveniles%29" title=" sturgeons monitoring (adults and juveniles)"> sturgeons monitoring (adults and juveniles)</a>, <a href="https://publications.waset.org/abstracts/search?q=tagging" title=" tagging"> tagging</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20on%20conservation" title=" impact on conservation"> impact on conservation</a> </p> <a href="https://publications.waset.org/abstracts/100774/methods-and-techniques-for-lower-danube-sturgeon-monitoring-used-for-the-assessment-of-anthropic-activities-pressures-and-the-quantification-of-risks-on-these-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Ingenious Eco-Technology for Transforming Food and Tanneries Waste into a Soil Bio-Conditioner and Fertilizer Product Used for Recovery and Enhancement of the Productive Capacity of the Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petre%20Voicu">Petre Voicu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mircea%20Oaida"> Mircea Oaida</a>, <a href="https://publications.waset.org/abstracts/search?q=Radu%20Vasiu"> Radu Vasiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Catalin%20Gheorghiu"> Catalin Gheorghiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurel%20Dumitru"> Aurel Dumitru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work deals with the way in which food and tobacco waste can be used in agriculture. As a result of the lack of efficient technologies for their recycling, we are currently faced with the appearance of appreciable quantities of residual organic residues that find their use only very rarely and only after long storage in landfills. The main disadvantages of long storage of organic waste are the unpleasant smell, the high content of pathogenic agents, and the high content in the water. The release of these enormous amounts imperatively demands the finding of solutions to ensure the avoidance of environmental pollution. The measure practiced by us consists of the processing of this waste in special installations, testing in pilot experimental perimeters, and later administration on agricultural lands without harming the quality of the soil, agricultural crops, and the environment. The current crisis of raw materials and energy also raises special problems in the field of organic waste valorization, an activity that takes place with low energy consumption. At the same time, their composition recommends them as useful secondary sources in agriculture. The transformation of food scraps and other residues concentrated organics thus acquires a new orientation, in which these materials are seen as important secondary resources. The utilization of food and tobacco waste in agriculture is also stimulated by the increasing lack of chemical fertilizers and the continuous increase in their price, under the conditions that the soil requires increased amounts of fertilizers in order to obtain high, stable, and profitable production. The need to maintain and increase the humus content of the soil is also taken into account, as an essential factor of its fertility, as a source and reserve of nutrients and microelements, as an important factor in increasing the buffering capacity of the soil, and the more reserved use of chemical fertilizers, improving the structure and permeability for water with positive effects on the quality of agricultural works and preventing the excess and/or deficit of moisture in the soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecology" title="ecology">ecology</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20waste" title=" organic waste"> organic waste</a>, <a href="https://publications.waset.org/abstracts/search?q=fertility" title=" fertility"> fertility</a> </p> <a href="https://publications.waset.org/abstracts/156319/ingenious-eco-technology-for-transforming-food-and-tanneries-waste-into-a-soil-bio-conditioner-and-fertilizer-product-used-for-recovery-and-enhancement-of-the-productive-capacity-of-the-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Removal of Total Petroleum Hydrocarbons from Contaminated Soils by Electrochemical Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20M.%20Coc%C3%A2r%C8%9B%C4%83">D. M. Cocârță</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Istrate"> I. A. Istrate</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Streche"> C. Streche</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20M.%20Dumitru"> D. M. Dumitru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil contamination phenomena are a wide world issue that has received the important attention in the last decades. The main pollutants that have affected soils are especially those resulted from the oil extraction, transport and processing. This paper presents results obtained in the framework of a research project focused on the management of contaminated sites with petroleum products/ REMPET. One of the specific objectives of the REMPET project was to assess the electrochemical treatment (improved with polarity change respect to the typical approach) as a treatment option for the remediation of total petroleum hydrocarbons (TPHs) from contaminated soils. Petroleum hydrocarbon compounds attach to soil components and are difficult to remove and degrade. Electrochemical treatment is a physicochemical treatment that has gained acceptance as an alternative method, for the remediation of organic contaminated soils comparing with the traditional methods as bioremediation and chemical oxidation. This type of treatment need short time and have high removal efficiency, being usually applied in heterogeneous soils with low permeability. During the experimental tests, the following parameters were monitored: pH, redox potential, humidity, current intensity, energy consumption. The electrochemical method was applied in an experimental setup with the next dimensions: 450 mm x 150 mm x 150 mm (L x l x h). The setup length was devised in three electrochemical cells that were connected at two power supplies. The power supplies configuration was provided in such manner that each cell has a cathode and an anode without overlapping. The initial value of TPH concentration in soil was of 1420.28 mg/kg<sub>dw</sub>. The remediation method has been applied for only 21 days, when it was already noticed an average removal efficiency of 31 %, with better results in the anode area respect to the cathode one (33% respect to 27%). The energy consumption registered after the development of the experiment was 10.6 kWh for exterior power supply and 16.1 kWh for the interior one. Taking into account that at national level, the most used methods for soil remediation are bioremediation (which needs too much time to be implemented and depends on many factors) and thermal desorption (which involves high costs in order to be implemented), the study of electrochemical treatment will give an alternative to these two methods (and their limitations). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20remediation" title="electrochemical remediation">electrochemical remediation</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20petroleum%20hydrocarbons" title=" total petroleum hydrocarbons"> total petroleum hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20contamination" title=" soil contamination"> soil contamination</a> </p> <a href="https://publications.waset.org/abstracts/63608/removal-of-total-petroleum-hydrocarbons-from-contaminated-soils-by-electrochemical-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Modeling of the Heat and Mass Transfer in Fluids through Thermal Pollution in Pipelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Radulescu">V. Radulescu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Dumitru"> S. Dumitru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Determination of the temperature field inside a fluid in motion has many practical issues, especially in the case of turbulent flow. The phenomenon is greater when the solid walls have a different temperature than the fluid. The turbulent heat and mass transfer have an essential role in case of the thermal pollution, as it was the recorded during the damage of the Thermoelectric Power-plant Oradea (closed even today). Basic Methods: Solving the theoretical turbulent thermal pollution represents a particularly difficult problem. By using the semi-empirical theories or by simplifying the made assumptions, based on the experimental measurements may be assured the elaboration of the mathematical model for further numerical simulations. The three zones of flow are analyzed separately: the vicinity of the solid wall, the turbulent transition zone, and the turbulent core. For each area are determined the distribution law of temperature. It is determined the dependence of between the Stanton and Prandtl numbers with correction factors, based on measurements experimental. Major Findings/Results: The limitation of the laminar thermal substrate was determined based on the theory of Landau and Levice, using the assumption that the longitudinal component of the velocity pulsation and the pulsation’s frequency varies proportionally with the distance to the wall. For the calculation of the average temperature, the formula is used a similar solution as for the velocity, by an analogous mediation. On these assumptions, the numerical modeling was performed with a gradient of temperature for the turbulent flow in pipes (intact or damaged, with cracks) having 4 different diameters, between 200-500 mm, as there were in the Thermoelectric Power-plant Oradea. Conclusions: It was made a superposition between the molecular viscosity and the turbulent one, followed by addition between the molecular and the turbulent transfer coefficients, necessary to elaborate the theoretical and the numerical modeling. The concept of laminar boundary layer has a different thickness when it is compared the flow with heat transfer and that one without a temperature gradient. The obtained results are within the margin of error of 5%, between the semi-empirical classical theories and the developed model, based on the experimental data. Finally, it is obtained a general correlation between the Stanton number and the Prandtl number, for a specific flow (with associated Reynolds number). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental%20measurements" title="experimental measurements">experimental measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20correlations" title=" numerical correlations"> numerical correlations</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20pollution%20through%20pipelines" title=" thermal pollution through pipelines"> thermal pollution through pipelines</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20thermal%20flow" title=" turbulent thermal flow "> turbulent thermal flow </a> </p> <a href="https://publications.waset.org/abstracts/89467/modeling-of-the-heat-and-mass-transfer-in-fluids-through-thermal-pollution-in-pipelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Selective Separation of Amino Acids by Reactive Extraction with Di-(2-Ethylhexyl) Phosphoric Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20C.%20Blaga">Alexandra C. Blaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20Ca%C5%9Fcaval"> Dan Caşcaval</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20Tucaliuc"> Alexandra Tucaliuc</a>, <a href="https://publications.waset.org/abstracts/search?q=Madalina%20Po%C5%9Ftaru"> Madalina Poştaru</a>, <a href="https://publications.waset.org/abstracts/search?q=Anca%20I.%20Galaction"> Anca I. Galaction</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amino acids are valuable chemical products used in in human foods, in animal feed additives and in the pharmaceutical field. Recently, there has been a noticeable rise of amino acids utilization throughout the world to include their use as raw materials in the production of various industrial chemicals: oil gelating agents (amino acid-based surfactants) to recover effluent oil in seas and rivers and poly(amino acids), which are attracting attention for biodegradable plastics manufacture. The amino acids can be obtained by biosynthesis or from protein hydrolysis, but their separation from the obtained mixtures can be challenging. In the last decades there has been a continuous interest in developing processes that will improve the selectivity and yield of downstream processing steps. The liquid-liquid extraction of amino acids (dissociated at any pH-value of the aqueous solutions) is possible only by using the reactive extraction technique, mainly with extractants of organophosphoric acid derivatives, high molecular weight amines and crown-ethers. The purpose of this study was to analyse the separation of nine amino acids of acidic character (l-aspartic acid, l-glutamic acid), basic character (l-histidine, l-lysine, l-arginine) and neutral character (l-glycine, l-tryptophan, l-cysteine, l-alanine) by reactive extraction with di-(2-ethylhexyl)phosphoric acid (D2EHPA) dissolved in butyl acetate. The results showed that the separation yield is controlled by the pH value of the aqueous phase: the reactive extraction of amino acids with D2EHPA is possible only if the amino acids exist in aqueous solution in their cationic forms (pH of aqueous phase below the isoeletric point). The studies for individual amino acids indicated the possibility of selectively separate different groups of amino acids with similar acidic properties as a function of aqueous solution pH-value: the maximum yields are reached for a pH domain of 2–3, then strongly decreasing with the pH increase. Thus, for acidic and neutral amino acids, the extraction becomes impossible at the isolelectric point (pHi) and for basic amino acids at a pH value lower than pHi, as a result of the carboxylic group dissociation. From the results obtained for the separation from the mixture of the nine amino acids, at different pH, it can be observed that all amino acids are extracted with different yields, for a pH domain of 1.5–3. Over this interval, the extract contains only the amino acids with neutral and basic character. For pH 5–6, only the neutral amino acids are extracted and for pH > 6 the extraction becomes impossible. Using this technique, the total separation of the following amino acids groups has been performed: neutral amino acids at pH 5–5.5, basic amino acids and l-cysteine at pH 4–4.5, l-histidine at pH 3–3.5 and acidic amino acids at pH 2–2.5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title="amino acids">amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=di-%282-ethylhexyl%29%20phosphoric%20acid" title=" di-(2-ethylhexyl) phosphoric acid"> di-(2-ethylhexyl) phosphoric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20extraction" title=" reactive extraction"> reactive extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20extraction" title=" selective extraction"> selective extraction</a> </p> <a href="https://publications.waset.org/abstracts/25016/selective-separation-of-amino-acids-by-reactive-extraction-with-di-2-ethylhexyl-phosphoric-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Oxidative Dehydrogenation and Hydrogenation of Malic Acid over Transition Metal Oxides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gheorghi%C5%A3a%20Mitran">Gheorghiţa Mitran</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20Urd%C4%83"> Adriana Urdă</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihaela%20Florea"> Mihaela Florea</a>, <a href="https://publications.waset.org/abstracts/search?q=Octavian%20Dumitru%20Pavel"> Octavian Dumitru Pavel</a>, <a href="https://publications.waset.org/abstracts/search?q=Florentina%20Nea%C5%A3u"> Florentina Neaţu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oxidative dehydrogenation and hydrogenation reactions of L-malic acid are interesting ways for its transformation into valuable products, including oxaloacetic, pyruvic and malonic acids but also 1,4-butanediol and 1,2,4-butanetriol. Keto acids have a range of applicationsin many chemical syntheses as pharmaceuticals, food additives and cosmetics. 3-Hydroxybutyrolactone and 1,2,4-butanetriol are used for the synthesis of chiral pharmaceuticals and other fine chemicals, while 1,4-butanediol can be used for organic syntheses, such as polybutylene succinate (PBS), polybutylene terephthalate (PBT), and for production of tetrahydrofuran (THF). L-malic acid is a non-toxic and natural organic acid present in fruits, and it is the main component of wine alongside tartaric acid representing about 90% of the wine total acidity. Iron oxides dopped with cobalt (CoxFe3-xO4; x= 0; 0.05; 0.1; 0.15) were studied as catalysts in these reactions. There is no mention in the literature of non-noble transition metal catalysts for these reactions. The method used for catalysts preparation was coprecipitation, whileBET XRD, XPS, FTIR and UV-VIS spectroscopy were used for the physicochemical properties evaluation.TheXRD patterns revealed the presence of α-Fe2O3 rhombohedral hematite structure, with cobalt atoms well dispersed and embedded in this structure. The studied samples are highly crystalline, with a crystallite size ranged from 58 to 65 nm. The optical absorption properties were investigated using UV-Vis spectroscopy, emphasizing the presence of bands that correspond with the reported hematite nanoparticle. Likewise, the presence of bands corresponding to lattice vibration of hexagonal hematite structurehas been evidenced in DRIFT spectra. Oxidative dehydrogenation of malic acid was studied using as solvents for malic acid ethanol or water(2, 5 and 10% malic acid in 5 mL solvent)at room temperature, while the hydrogenation reaction was evaluated in water as solvent (5%), in the presence of 1% catalyst. The oxidation of malic acid into oxaloacetic acid is the first step, after that, oxaloacetic acid is rapidly decarboxylated to malonic acid or pyruvic acid, depending on the active site. The concentration of malic acid in solution, it, in turn, has an influence on conversionthis decreases when the concentration of malic acid in the solution is high. The spent catalysts after the oxidative dehydrogenation of malic acid in ethanol were characterized by DRIFT spectroscopy and the presence of oxaloacetic, pyruvic and malonicacids, along with unreacted malic acidwere observed on the surface. The increase of the ratio of Co/Fe on the surface has an influence on the malic acid conversion and on the pyruvic acid yield, while the yield of malonic acid is influenced by the percentage of iron on the surface (determined from XPS). Oxaloacetic acid yield reaches a maximumat one hour of reaction, being higher when ethanol is used as a solvent, after which it suddenly decreases. The hydrogenation of malic acid occurs by consecutive reactions with the production of 3-hydroxy-butyrolactone, 1,2,4-butanetriol and 1,4-butanediol. Malic acid conversion increases with cobalt loading increasing up to Co/Fe ratio of 0.1, after which it has a slight decrease, while the yield in 1,4-butanediol is directly proportional to the cobalt content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malic%20acid" title="malic acid">malic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20dehydrogenation" title=" oxidative dehydrogenation"> oxidative dehydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogenation" title=" hydrogenation"> hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=oxaloacetic%20acid" title="oxaloacetic acid">oxaloacetic acid</a> </p> <a href="https://publications.waset.org/abstracts/141633/oxidative-dehydrogenation-and-hydrogenation-of-malic-acid-over-transition-metal-oxides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Superparamagnetic Core Shell Catalysts for the Environmental Production of Fuels from Renewable Lignin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cristina%20Opris">Cristina Opris</a>, <a href="https://publications.waset.org/abstracts/search?q=Bogdan%20Cojocaru"> Bogdan Cojocaru</a>, <a href="https://publications.waset.org/abstracts/search?q=Madalina%20Tudorache"> Madalina Tudorache</a>, <a href="https://publications.waset.org/abstracts/search?q=Simona%20M.%20Coman"> Simona M. Coman</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasile%20I.%20Parvulescu"> Vasile I. Parvulescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Camelia%20Bala"> Camelia Bala</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahir%20Duraki"> Bahir Duraki</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeroen%20A.%20Van%20Bokhoven"> Jeroen A. Van Bokhoven</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tremendous achievements in the development of the society concretized by more sophisticated materials and systems are merely based on non-renewable resources. Consequently, after more than two centuries of intensive development, among others, we are faced with the decrease of the fossil fuel reserves, an increased impact of the greenhouse gases on the environment, and economic effects caused by the fluctuations in oil and mineral resource prices. The use of biomass may solve part of these problems, and recent analyses demonstrated that from the perspective of the reduction of the emissions of carbon dioxide, its valorization may bring important advantages conditioned by the usage of genetic modified fast growing trees or wastes, as primary sources. In this context, the abundance and complex structure of lignin may offer various possibilities of exploitation. However, its transformation in fuels or chemicals supposes a complex chemistry involving the cleavage of C-O and C-C bonds and altering of the functional groups. Chemistry offered various solutions in this sense. However, despite the intense work, there are still many drawbacks limiting the industrial application. Thus, the proposed technologies considered mainly homogeneous catalysts meaning expensive noble metals based systems that are hard to be recovered at the end of the reaction. Also, the reactions were carried out in organic solvents that are not acceptable today from the environmental point of view. To avoid these problems, the concept of this work was to investigate the synthesis of superparamagnetic core shell catalysts for the fragmentation of lignin directly in the aqueous phase. The magnetic nanoparticles were covered with a nanoshell of an oxide (niobia) with a double role: to protect the magnetic nanoparticles and to generate a proper (acidic) catalytic function and, on this composite, cobalt nanoparticles were deposed in order to catalyze the C-C bond splitting. With this purpose, we developed a protocol to prepare multifunctional and magnetic separable nano-composite Co@Nb2O5@Fe3O4 catalysts. We have also established an analytic protocol for the identification and quantification of the fragments resulted from lignin depolymerization in both liquid and solid phase. The fragmentation of various lignins occurred on the prepared materials in high yields and with very good selectivity in the desired fragments. The optimization of the catalyst composition indicated a cobalt loading of 4wt% as optimal. Working at 180 oC and 10 atm H2 this catalyst allowed a conversion of lignin up to 60% leading to a mixture containing over 96% in C20-C28 and C29-C37 fragments that were then completely fragmented to C12-C16 in a second stage. The investigated catalysts were completely recyclable, and no leaching of the elements included in the composition was determined by inductively coupled plasma optical emission spectrometry (ICP-OES). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superparamagnetic%20core-shell%20catalysts" title="superparamagnetic core-shell catalysts">superparamagnetic core-shell catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20production%20of%20fuels" title=" environmental production of fuels"> environmental production of fuels</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20lignin" title=" renewable lignin"> renewable lignin</a>, <a href="https://publications.waset.org/abstracts/search?q=recyclable%20catalysts" title=" recyclable catalysts"> recyclable catalysts</a> </p> <a href="https://publications.waset.org/abstracts/51154/superparamagnetic-core-shell-catalysts-for-the-environmental-production-of-fuels-from-renewable-lignin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10