CINXE.COM

Search results for: green process

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: green process</title> <meta name="description" content="Search results for: green process"> <meta name="keywords" content="green process"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="green process" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="green process"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 16866</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: green process</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16866</span> Analytic Hierarchy Process Method for Supplier Selection Considering Green Logistics: Case Study of Aluminum Production Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Erbiyik">H. Erbiyik</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bal"> A. Bal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sirakaya"> M. Sirakaya</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96.%20Yesildal"> Ö. Yesildal</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Yolcu"> E. Yolcu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The emergence of many environmental issues began with the Industrial Revolution. The depletion of natural resources and emerging environmental challenges over time requires enterprises and managers to take into consideration environmental factors while managing business. If we take notice of these causes; the design and implementation of environmentally friendly green purchasing, production and waste management systems become very important at green logistics systems. Companies can adopt green supply chain with the awareness of these facts. The concept of green supply chain constitutes from green purchasing, green production, green logistics, waste management and reverse logistics. In this study, we wanted to identify the concept of green supply chain and why green supply chain should be applied. In the practice part of the study an analytic hierarchy process (AHP) study is conducted on an aluminum production company to evaluate suppliers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20sector" title="aluminum sector">aluminum sector</a>, <a href="https://publications.waset.org/abstracts/search?q=analytic%20hierarchy%20process" title=" analytic hierarchy process"> analytic hierarchy process</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20making" title=" decision making"> decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20logistics" title=" green logistics"> green logistics</a> </p> <a href="https://publications.waset.org/abstracts/53773/analytic-hierarchy-process-method-for-supplier-selection-considering-green-logistics-case-study-of-aluminum-production-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16865</span> An Alternative Concept of Green Screen Keying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin%20Zhi">Jin Zhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on a green screen keying method developed especially for film visual effects. There are a series of ways of using existing tools for creating mattes from green or blue screen plates. However, it is still a time-consuming process, and the results vary especially when it comes to retaining tiny details, such as hair and fur. This paper introduces an alternative concept and method for retaining edge details of characters on a green screen plate, also, a number of connected mathematical equations are explored. At the end of this study, a simplified process of applying this method in real productions is also introduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20screen" title="green screen">green screen</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20effects" title=" visual effects"> visual effects</a>, <a href="https://publications.waset.org/abstracts/search?q=compositing" title=" compositing"> compositing</a>, <a href="https://publications.waset.org/abstracts/search?q=matte" title=" matte"> matte</a> </p> <a href="https://publications.waset.org/abstracts/5566/an-alternative-concept-of-green-screen-keying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16864</span> A Review on the Necessities of Green Building in Bangladesh and Its Construction Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syeda%20Afsana%20Azad">Syeda Afsana Azad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change, due to the release of greenhouse gases into the atmosphere has been recognized as one of the biggest threats to the present world. The condition of the earth is getting worse day by day due to climate change. Bangladesh is considered to be one of the most vulnerable countries to climate change due to large population, sharp urbanization, etc. Construction of green building is a very good solution to reduce the greenhouse effect. Green building technology refers to that kind of structures which are environmentally friendly and resource-efficient throughout a building’s service life. This technology can provide at least 50% energy saving opportunity to the nation. The necessity of the construction of structures in an environment-friendly way is increasing now. This study shows the scenario of rapid population growth, urbanization, necessity of green building in Bangladesh and also discusses the construction process of green building. As the present climate condition of Bangladesh is not friendly, construction of green building is very much needed. To battle climate change, it is mandatory to construct green building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bangladesh" title="Bangladesh">Bangladesh</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20building" title=" green building"> green building</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20house%20effect" title=" green house effect"> green house effect</a> </p> <a href="https://publications.waset.org/abstracts/83938/a-review-on-the-necessities-of-green-building-in-bangladesh-and-its-construction-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16863</span> Factors Affecting Green Supply Chain Management of Lampang Ceramics Industry </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nattida%20Wannaruk">Nattida Wannaruk</a>, <a href="https://publications.waset.org/abstracts/search?q=Wasawat%20Nakkiew"> Wasawat Nakkiew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to study the factors that affect the performance of green supply chain management in the Lampang ceramics industry. The data investigation of this research was questionnaires which were gathered from 20 factories in the Lampang ceramics industry. The research factors are divided into five major groups which are green design, green purchasing, green manufacturing, green logistics and reverse logistics. The questionnaire has consisted of four parts that related to factors green supply chain management and general information of the Lampang ceramics industry. Then, the data were analyzed using descriptive statistic and priority of each factor by using the analytic hierarchy process (AHP). The understanding of factors affecting the green supply chain management of Lampang ceramics industry was indicated in the summary result along with each factor weight. The result of this research could be contributed to the development of indicators or performance evaluation in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lampang%20ceramics%20industry" title="Lampang ceramics industry">Lampang ceramics industry</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20supply%20chain%20management" title=" green supply chain management"> green supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis%20hierarchy%20process%20%28AHP%29" title=" analysis hierarchy process (AHP)"> analysis hierarchy process (AHP)</a>, <a href="https://publications.waset.org/abstracts/search?q=factors%20affecting" title=" factors affecting"> factors affecting</a> </p> <a href="https://publications.waset.org/abstracts/87292/factors-affecting-green-supply-chain-management-of-lampang-ceramics-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16862</span> A Sensitivity Analysis on the Production of Potable Water, Green Hydrogen and Derivatives from South-West African Seawater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shane%20David%20van%20Zyl">Shane David van Zyl</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Burger"> A. J. Burger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The global green energy shift has placed significant value on the production of green hydrogen and its derivatives. The study examines the impact on capital expenditure (CAPEX), operational expenditure (OPEX), levelized cost, and environmental impact, depending on the relationship between various production capacities of potable water, green hydrogen, and green ammonia. A model-based sensitivity analysis approach was used to determine the relevance of various process parameters in the production of potable water combined with green hydrogen or green ammonia production. The effects of changes on CAPEX, OPEX and levelized costs of the products were determined. Furthermore, a qualitative environmental impact analysis was done to determine the effect on the environment. The findings indicated the individual process unit contribution to the overall CAPEX and OPEX while also determining the major contributors to changes in the levelized costs of products. The results emphasize the difference in costs associated with potable water, green hydrogen, and green ammonia production, indicating the extent to which potable water production costs become insignificant in the complete process, which, therefore, can have a large social benefit through increased potable water production resulting in decreased water scarcity in the south-west African region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CAPEX%20and%20OPEX" title="CAPEX and OPEX">CAPEX and OPEX</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20hydrogen%20and%20green%20ammonia" title=" green hydrogen and green ammonia"> green hydrogen and green ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a> </p> <a href="https://publications.waset.org/abstracts/186913/a-sensitivity-analysis-on-the-production-of-potable-water-green-hydrogen-and-derivatives-from-south-west-african-seawater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">39</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16861</span> Decision Support Tool for Green Roofs Selection: A Multicriteria Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Teot%C3%B3nio">I. Teotónio</a>, <a href="https://publications.waset.org/abstracts/search?q=C.O.%20Cruz"> C.O. Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=C.M.%20Silva"> C.M. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Manso"> M. Manso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diverse stakeholders show different concerns when choosing green roof systems. Also, green roof solutions vary in their cost and performance. Therefore, decision-makers continually face the difficult task of balancing benefits against green roofs costs. Decision analysis methods, as multicriteria analysis, can be used when the decision‑making process includes different perspectives, multiple objectives, and uncertainty. The present study adopts a multicriteria decision model to evaluate the installation of green roofs in buildings, determining the solution with the best trade-off between costs and benefits in agreement with the preferences of the users/investors. This methodology was applied to a real decision problem, assessing the preferences between different green roof systems in an existing building in Lisbon. This approach supports the decision-making process on green roofs and enables robust and informed decisions on urban planning while optimizing buildings retrofitting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20making" title="decision making">decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20roofs" title=" green roofs"> green roofs</a>, <a href="https://publications.waset.org/abstracts/search?q=investors%20preferences" title=" investors preferences"> investors preferences</a>, <a href="https://publications.waset.org/abstracts/search?q=multicriteria%20analysis" title=" multicriteria analysis"> multicriteria analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a> </p> <a href="https://publications.waset.org/abstracts/115903/decision-support-tool-for-green-roofs-selection-a-multicriteria-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16860</span> Green Construction in EGYPT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanan%20A.%20Anwar">Hanan A. Anwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces green building construction in Egypt with different concepts and practices. The following study includes green building applied definition, guidelines, regulations and Standards. Evaluation of cost/benefit of green construction methods and green construction rating systems are presented. Relevant case studies will be reviewed. Four sites will be included. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20construction" title="green construction">green construction</a>, <a href="https://publications.waset.org/abstracts/search?q=ecofreindly" title=" ecofreindly"> ecofreindly</a>, <a href="https://publications.waset.org/abstracts/search?q=self-sufficient%20town" title=" self-sufficient town"> self-sufficient town</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20neutral%20atmosphere" title=" carbon neutral atmosphere"> carbon neutral atmosphere</a> </p> <a href="https://publications.waset.org/abstracts/21630/green-construction-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">656</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16859</span> A Framework for Green Use and Disposal of Information Communication Technology Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Frezer%20Alem%20Kebede">Frezer Alem Kebede</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The notion of viewing ICT as merely support for the business process has shifted towards viewing ICT as a critical business enabler. As such, the need for ICT devices has increased, contributing to high electronic equipment acquisition and disposal. Hence, its use and disposal must be seen in light of environmental sustainability, i.e., in terms of green use and disposal. However, there are limited studies on green Use and Disposal framework to be used as guiding lens by organizations in developing countries. And this study endeavors to address that need taking one of the largest multinational ICT intensive company in the country. The design and development of this framework passed through several stages, initially factors affecting green use and disposal were identified after quantitative and qualitative data analysis then there were multiple brainstorming sessions for the design enhancement as participative modelling was employed. Given the difference in scope and magnitude of the challenges identified, the proposed framework approaches green use and disposal in four imperatives; strategically, tactically, operationally and through continuous improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20disposal" title=" green disposal"> green disposal</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20ICT" title=" green ICT"> green ICT</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20use" title=" green use"> green use</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20use%20and%20disposal%20framework" title=" green use and disposal framework"> green use and disposal framework</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/123464/a-framework-for-green-use-and-disposal-of-information-communication-technology-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16858</span> The Effect of Environmental CSR on Corporate Social Performance: The Mediating Role of Green Innovation and Corporate Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edward%20Fosu">Edward Fosu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green innovation has emerged as a significant environmental concern across the world. Green innovation refers to the utilization of technological developments that facilitate energy savings and waste material recycling. The stakeholder theory and resourced-based theory were used to examine how stakeholders' expectations affect corporate green innovation activities and how corporate innovation initiatives affect the corporate image and social performance. This study used structural equation modelling (SEM) and hierarchical regression to test the effects of environmental corporate social responsibility on social performance through mediators: green innovation and corporate image. A quantitative design was employed using data from Chinese companies in Ghana for this study. The study assessed. The results revealed that environmental practices promote corporate social performance (β = 0.070, t = 1.974, p = 0.049), positively affect green product innovation (β = 0.251, t = 7.478, p < 0.001), and has direct effect on green process innovation (β = 0.174, t = 6.192, p < 0.001). Green product innovation and green process innovation significantly promote corporate image respectively (β = 0.089, t = 2.581, p = 0.010), (β = 0.089, t = 2.367, p = 0.018). Corporate image has significant direct effects on corporate social performance (β = 0.146, t = 4.256, p < 0.001). Corporate environmental practices have an impact on the development of green products and processes which promote companies’ social performance. Additionally, evidence supports that corporate image influences companies’ social performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20CSR" title="environmental CSR">environmental CSR</a>, <a href="https://publications.waset.org/abstracts/search?q=corporate%20image" title=" corporate image"> corporate image</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20innovation" title=" green innovation"> green innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=coprorate%20social%20performance" title=" coprorate social performance"> coprorate social performance</a> </p> <a href="https://publications.waset.org/abstracts/156221/the-effect-of-environmental-csr-on-corporate-social-performance-the-mediating-role-of-green-innovation-and-corporate-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16857</span> The Application of Green Technology to Residential Architecture in Hangzhou</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huiru%20Chen">Huiru Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuran%20Zhang"> Xuran Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, the residential architecture in China are still causing high energy consumption and high pollution during their whole life cycle, which can be backward compared with the developed countries. The aim of this paper is to discuss the application of green technology to residential architecture in Hangzhou. This article will start with the development of green buildings, then analyzes the use status of green technology in Hangzhou from several specific measures. Analysis of the typical existing green residential buildings in Hangzhou is an attempt to form a preliminary Hangzhou’s green technology application strategy system. Through research, it has been found that the application of green technology in Hangzhou has changed from putting green to the facade, to the combination of the preservation of the traditional green concept and the modern green technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=application" title="application">application</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20technology" title=" green technology"> green technology</a>, <a href="https://publications.waset.org/abstracts/search?q=Hangzhou" title=" Hangzhou"> Hangzhou</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20architecture" title=" residential architecture"> residential architecture</a> </p> <a href="https://publications.waset.org/abstracts/92930/the-application-of-green-technology-to-residential-architecture-in-hangzhou" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16856</span> Rating the Importance of Customer Requirements for Green Product Using Analytic Hierarchy Process Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lara%20F.%20Horani">Lara F. Horani</a>, <a href="https://publications.waset.org/abstracts/search?q=Shurong%20Tong"> Shurong Tong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Identification of customer requirements and their preferences are the starting points in the process of product design. Most of design methodologies focus on traditional requirements. But in the previous decade, the green products and the environment requirements have increasingly attracted the attention with the constant increase in the level of consumer awareness towards environmental problems (such as green-house effect, global warming, pollution and energy crisis, and waste management). Determining the importance weights for the customer requirements is an essential and crucial process. This paper used the analytic hierarchy process (AHP) approach to evaluate and rate the customer requirements for green products. With respect to the ultimate goal of customer satisfaction, surveys are conducted using a five-point scale analysis. With the help of this scale, one can derive the weight vectors. This approach can improve the imprecise ranking of customer requirements inherited from studies based on the conventional AHP. Furthermore, the AHP with extent analysis is simple and easy to implement to prioritize customer requirements. The research is based on collected data through a questionnaire survey conducted over a sample of 160 people belonging to different age, marital status, education and income groups in order to identify the customer preferences for green product requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytic%20hierarchy%20process%20%28AHP%29" title="analytic hierarchy process (AHP)">analytic hierarchy process (AHP)</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20product" title=" green product"> green product</a>, <a href="https://publications.waset.org/abstracts/search?q=customer%20requirements%20for%20green%20design" title=" customer requirements for green design"> customer requirements for green design</a>, <a href="https://publications.waset.org/abstracts/search?q=importance%20weights%20for%20the%20customer%20requirements" title=" importance weights for the customer requirements"> importance weights for the customer requirements</a> </p> <a href="https://publications.waset.org/abstracts/81006/rating-the-importance-of-customer-requirements-for-green-product-using-analytic-hierarchy-process-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16855</span> The Relationship between Absorptive Capacity and Green Innovation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Hashim">R. Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Bock"> A. J. Bock</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Cooper"> S. Cooper </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Absorptive capacity generally facilitates the adoption of innovation. How does this relationship change when economic return is not the sole driver of innovation uptake? We investigate whether absorptive capacity facilitates the adoption of green innovation based on a survey of 79 construction companies in Scotland. Based on the results of multiple regression analyses, we confirm that existing knowledge utilisation (EKU), knowledge building (KB) and external knowledge acquisition (EKA) are significant predictors of green process GP), green administrative (GA) and green technical innovation (GT), respectively. We discuss the implications for theories of innovation adoption and knowledge enhancement associated with environmentally-friendly practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorptive%20capacity" title="absorptive capacity">absorptive capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20industry" title=" construction industry"> construction industry</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental" title=" environmental"> environmental</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20innovation" title=" green innovation"> green innovation</a> </p> <a href="https://publications.waset.org/abstracts/18052/the-relationship-between-absorptive-capacity-and-green-innovation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16854</span> Valuation of Green Commercial Office Building: A Preliminary Study of Malaysian Valuers&#039; Insight</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tuti%20Haryati%20Jasimin">Tuti Haryati Jasimin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hishamuddin%20Mohd%20Ali"> Hishamuddin Mohd Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaysia’s green building development is gaining momentum and green buildings have become a key focus area especially within the commercial sector with the encouragement of government legislation and policy. Due to the emerging awareness among the market players’ views of the benefits associated with the ownership of green buildings in Malaysia, there is a need for valuers to incorporate consideration of sustainability into their assessments of property market value to ensure the green buildings continue to increase in the market. This paper analyses the valuers’ current perception on the valuation practices with regard to the green issues in Malaysia. The study was based on a survey of registered real estate valuers and the experts whose work related to valuation in the Klang Valley area to rate their view regarding the perception on valuation of green building. The findings present evidence that even though Malaysian valuers have limited knowledge of green buildings, they recognize the importance of incorporating the green features in the valuation process. The inclusion of incorporating the green features in valuations in practice was hindered by the inadequacy of sufficient transactional data in the market. Furthermore, valuers experienced difficulty in identifying what are the various input parameters of green building and how to adjust it in order to reflect the benefit of sustainability features correctly in the valuation process. This paper focuses on the present challenges confronted by Malaysian valuers with regards to incorporating the green features in their valuation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20commercial%20office%20building" title="green commercial office building">green commercial office building</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a>, <a href="https://publications.waset.org/abstracts/search?q=valuers%E2%80%99%20perception" title=" valuers’ perception"> valuers’ perception</a>, <a href="https://publications.waset.org/abstracts/search?q=valuation" title=" valuation"> valuation</a>, <a href="https://publications.waset.org/abstracts/search?q=commercial%20sector" title=" commercial sector"> commercial sector</a> </p> <a href="https://publications.waset.org/abstracts/29619/valuation-of-green-commercial-office-building-a-preliminary-study-of-malaysian-valuers-insight" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16853</span> Using Building Information Modeling in Green Building Design and Performance Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moataz%20M.%20Hamed">Moataz M. Hamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20S.%20M.%20Al%20Hagla"> Khalid S. M. Al Hagla</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeyad%20El%20Sayad"> Zeyad El Sayad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thinking in design energy-efficiency and high-performance green buildings require a different design mechanism and design approach than conventional buildings to achieve more sustainable result. By reasoning about specific issues at the correct time in the design process, the design team can minimize negative impacts, maximize building performance and keep both first and operation costs low. This paper attempts to investigate and exploit the sustainable dimension of building information modeling (BIM) in designing high-performance green buildings that require less energy for operation, emit less carbon dioxide and provide a conducive indoor environment for occupants through early phases of the design process. This objective was attained by a critical and extensive literature review that covers the following issues: the value of considering green strategies in the early design stage, green design workflow, and BIM-based performance analysis. Then the research proceeds with a case study that provides an in-depth comparative analysis of building performance evaluation between an office building in Alexandria, Egypt that was designed by the conventional design process with the same building if taking into account sustainability consideration and BIM-based sustainable analysis integration early through the design process. Results prove that using sustainable capabilities of building information modeling (BIM) in early stages of the design process side by side with green design workflow promote buildings performance and sustainability outcome. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BIM" title="BIM">BIM</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20performance%20analysis" title=" building performance analysis"> building performance analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=BIM-based%20sustainable%20analysis" title=" BIM-based sustainable analysis"> BIM-based sustainable analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20building%20design" title=" green building design"> green building design</a> </p> <a href="https://publications.waset.org/abstracts/76735/using-building-information-modeling-in-green-building-design-and-performance-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16852</span> Thermal Behavior of Green Roof: Case Study at Seoul National University Retentive Green Roof</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Theresia%20Gita%20Hapsari">Theresia Gita Hapsari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There has been major concern about urban heating as urban clusters emerge and population migration from rural to urban areas continues. Green roof has been one of the main practice for urban heat island mitigation for the past decades, thus, this study was conducted to predict the cooling potential of retentive green roof in mitigating urban heat island. Retentive green roof was developed by Han in 2010. It has 320 mm height of retention wall surrounding the vegetation and 65mm depth of retention board underneath the soil, while most conventional green roof doesn’t have any retention wall and only maximum of 25 mm depth of drainage board. Seoul National University retentive green roof significantly reduced sensible heat movement towards the air by 0.5 kWh/m2, and highly enhanced the evaporation process as much as 0.5 – 5.4 kg/m2 which equals to 0.3 – 3.6 kWh/m2 of latent heat flux. These results indicate that with design enhancement, serving as a viable alternate for conventional green roof, retentive green roof contributes to overcome the limitation of conventional green roof which is the main solution for mitigating urban heat island. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20roof" title="green roof">green roof</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20impact%20development" title=" low impact development"> low impact development</a>, <a href="https://publications.waset.org/abstracts/search?q=retention%20board" title=" retention board"> retention board</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20behavior" title=" thermal behavior"> thermal behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20heat%20island" title=" urban heat island"> urban heat island</a> </p> <a href="https://publications.waset.org/abstracts/76640/thermal-behavior-of-green-roof-case-study-at-seoul-national-university-retentive-green-roof" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16851</span> Water-Bentonite Interaction of Green Pellets through Micro-Structural Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satyananda%20Patra">Satyananda Patra</a>, <a href="https://publications.waset.org/abstracts/search?q=Venugopal%20Rayasam"> Venugopal Rayasam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality of pellets produced is affected by quality and type of green pellets, amount of addition of binders and fluxing agents along with the provided firing conditions. The green pellet quality depends upon chemistry, mineralogy and granulometry of fines used for pellet making, the feed size, its moisture content and porosity. During firing of green pellets, ingredients present within reacts to form different phases and microstructure. So in turn, physical and metallurgical properties of pellets are influenced by amount and type of binder and flux addition, induration time and temperature. During iron making process, the metallurgical properties of fired pellets are decided by the type and amount of these phases and their chemistry. Green pelletizing and induration studies have been already carried out with magnetite and hematite ore fines but for Indian iron ores of high alumina content showing different pelletizing characters, these studies cannot be directly interpreted. The main objective of proposed research work is to understand the green pelletizing process and determine the water bentonite interaction at different levels. Swelling behavior of bentonite and microstructure of the green pellet are investigated. Conversion of iron ore fines into pellets, the key raw material and process variables that influence the pellet quality needs to be identified and a correlation should be established between them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iron%20ore" title="iron ore">iron ore</a>, <a href="https://publications.waset.org/abstracts/search?q=pelletization" title=" pelletization"> pelletization</a>, <a href="https://publications.waset.org/abstracts/search?q=binders" title=" binders"> binders</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20pellets" title=" green pellets"> green pellets</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/71905/water-bentonite-interaction-of-green-pellets-through-micro-structural-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16850</span> Simulating Lean and Green Correlation in Supply Chain Context</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Benmoussa">Rachid Benmoussa</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Ezzahra%20Essaber"> Fatima Ezzahra Essaber</a>, <a href="https://publications.waset.org/abstracts/search?q=Roland%20De%20Guio"> Roland De Guio</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Zahra%20Ben%20Moussa"> Fatima Zahra Ben Moussa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Implementing green practices in supply chain management is a complex task mainly because ecological, economical and operational goals are usually in conflict. Green practices might thus face companies’ reluctance because managers can consider its implementation obviously as a performance lean degradation. To implement lean and green practices successfully, companies need relevant decision-making tools to highlight the correlation between them. To contribute to this issue, this work tries to answer the following research question: How to use simulation to assess correlation (antagonism or convergence) between lean and green goals? To answer this question, we propose in this paper a based simulation process that measures correlation generally between two variables. So as to prove its relevance, a logistics academic case study is used to illustrate all its stages. It shows, as for example, that Lean goal 'Stock' and Green goal 'CO₂ emission' are not conceptually correlated (linearly). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation" title="simulation">simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=lean" title=" lean"> lean</a>, <a href="https://publications.waset.org/abstracts/search?q=green" title=" green"> green</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a> </p> <a href="https://publications.waset.org/abstracts/92960/simulating-lean-and-green-correlation-in-supply-chain-context" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16849</span> Eco Scale: A Tool for Assessing the Greenness of Pharmaceuticals Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heba%20M.%20Mohamed">Heba M. Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Owing to scientific and public concern about health and environment and seeking for a better quality of life; “Green”, “Environmentally” and “Eco” friendly practices have been presented and implemented in different research areas. Subsequently, researchers’ attention is drawn in the direction of greening the analytical methodologies and taking the Green Analytical Chemistry principles (GAC) into consideration. It is of high importance to appraise the environmental impact of each of the implemented green approaches. Compared to the other traditional green metrics (E-factor, Atom economy and the process profile), the eco scale is the optimum choice to assess the environmental impact of the analytical procedures used for pharmaceuticals analysis. For analytical methodologies, Eco-Scale is calculated by allotting penalty points to any factor of the used analytical procedure which disagree and not match with the model green analysis, where the perfect green analysis has its Eco-Scale value of 100. In this work, calculation and comparison of the Eco-Scale for some of the reported green analytical methods was done, to accentuate their greening potentials. Where the different scores can reveal how green the method is, compared to the ideal value. The study emphasizes that greenness measurement is not only about the waste quantity determination but also dictates a holistic scheme, considering all factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco%20scale" title="eco scale">eco scale</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20analysis" title=" green analysis"> green analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=environmentally%20friendly" title=" environmentally friendly"> environmentally friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceuticals%20analysis" title=" pharmaceuticals analysis"> pharmaceuticals analysis</a> </p> <a href="https://publications.waset.org/abstracts/21750/eco-scale-a-tool-for-assessing-the-greenness-of-pharmaceuticals-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16848</span> Determinants of Green Strategy: Analysis Using Probit and Logit Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayushi%20Modi">Ayushi Modi</a>, <a href="https://publications.waset.org/abstracts/search?q=Eliot%20Bochet-Merand"> Eliot Bochet-Merand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the structural determinants of green strategies among Small and Medium Enterprises (SMEs) in the European Union and select countries, utilizing data from the Flash Eurobarometer 498 - SMEs, Resource Efficiency, and Green Markets. By applying sequential logit analysis, we explore the drivers behind the adoption and scaling of green actions, such as resource efficiency, waste management, and product innovation, while also examining the provision of green products and services. A key contribution of this research is the novel distinction between the process stage (green actions) and the product stage (green outputs), allowing for a deeper analysis of how green initiatives translate into sustainable business outcomes. Our findings reveal that structural characteristics, such as firm size, sector, and turnover growth, significantly influence the likelihood of both providing green products and implementing comprehensive green actions. Smaller, younger firms in high-impact sectors like construction and industry are more likely to engage in sustainability efforts, particularly when they have a green strategy and a dedicated green workforce. Furthermore, companies serving B2B and B2C clients and experiencing turnover growth are more inclined to offer green products. The study underscores the economic implications of these insights, suggesting that financial flexibility, strategic commitment, and human capital investments are critical for scaling green initiatives. By refining variables and excluding heterogeneous countries, our data management ensures robust results. This research provides novel insights into the distinct roles of process and product stages in sustainability, offering valuable policy recommendations for promoting environmental performance in SMEs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20strategy" title="green strategy">green strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20efficiency" title=" resource efficiency"> resource efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=SMES" title=" SMES"> SMES</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20innovation" title=" product innovation"> product innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20performance" title=" environmental performance"> environmental performance</a> </p> <a href="https://publications.waset.org/abstracts/192193/determinants-of-green-strategy-analysis-using-probit-and-logit-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16847</span> A Study of the Planning and Designing of the Built Environment under the Green Transit-Oriented Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wann-Ming%20Wey">Wann-Ming Wey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the problems of global climate change and natural disasters have induced the concerns and attentions of environmental sustainability issues for the public. Aside from the environmental planning efforts done for human environment, Transit-Oriented Development (TOD) has been widely used as one of the future solutions for the sustainable city development. In order to be more consistent with the urban sustainable development, the development of the built environment planning based on the concept of Green TOD which combines both TOD and Green Urbanism is adapted here. The connotation of the urban development under the green TOD including the design toward environment protect, the maximum enhancement resources and the efficiency of energy use, use technology to construct green buildings and protected areas, natural ecosystems and communities linked, etc. Green TOD is not only to provide the solution to urban traffic problems, but to direct more sustainable and greener consideration for future urban development planning and design. In this study, we use both the TOD and Green Urbanism concepts to proceed to the study of the built environment planning and design. Fuzzy Delphi Technique (FDT) is utilized to screen suitable criteria of the green TOD. Furthermore, Fuzzy Analytic Network Process (FANP) and Quality Function Deployment (QFD) were then developed to evaluate the criteria and prioritize the alternatives. The study results can be regarded as the future guidelines of the built environment planning and designing under green TOD development in Taiwan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20TOD" title="green TOD">green TOD</a>, <a href="https://publications.waset.org/abstracts/search?q=built%20environment" title=" built environment"> built environment</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20delphi%20technique" title=" fuzzy delphi technique"> fuzzy delphi technique</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20function%20deployment" title=" quality function deployment"> quality function deployment</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20analytic%20network%20process" title=" fuzzy analytic network process"> fuzzy analytic network process</a> </p> <a href="https://publications.waset.org/abstracts/52387/a-study-of-the-planning-and-designing-of-the-built-environment-under-the-green-transit-oriented-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16846</span> Development of a Green Star Certification Tool for Existing Buildings in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bouwer%20Kleynhans">Bouwer Kleynhans</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The built environment is responsible for about 40% of the world’s energy consumption and generates one third of global carbon dioxide emissions. The Green Building Council of South Africa’s (GBCSA) current rating tools are all for new buildings. By far the largest portion of buildings exist stock and therefore the need to develop a certification tool for existing buildings. Direct energy measurement comprises 27% of the total available points in this tool. The aim of this paper is to describe the development process of a green star certification tool for existing buildings in South Africa with specific emphasis on the energy measurement criteria. Successful implementation of this tool within the property market will ensure a reduced carbon footprint of buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=certification%20tool" title="certification tool">certification tool</a>, <a href="https://publications.waset.org/abstracts/search?q=development%20process" title=" development process"> development process</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20buildings" title=" green buildings"> green buildings</a> </p> <a href="https://publications.waset.org/abstracts/9572/development-of-a-green-star-certification-tool-for-existing-buildings-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16845</span> Green Hospitality Industry: An Experience Study with Game Theory in China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min%20Wei">Min Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The green hotel provides the products/services consistent with the full utilization of resources, protecting the ecological environment conducive to customers’ requirements and health. In order to better develop the green hospitality industry, this paper applies the game theory to analyze the intrinsic relationship and balanced interests among the stakeholders including government, hotels, and tourists during green hospitality development. Based on the hypothesis in game theory, this paper tries to construct a linkage mechanism in stakeholders, by which a theoretical basis for the interests’ balance can be realized. By using game theory and constructing a game model including tourists, hotels and government, this paper analyzes the relationship of the various stakeholders involved in the green hospitality development, and subsequently proposes the development model of green hospitality industry. On the one hand, this paper applies game theory to construct a green hotel development model and provides a theoretical basis for the interest balance of stakeholders based on theoretical perspective. On the other hand, the current development of green hospitality industry is still in initial phase, and the outcome of this research tries to guide tourists to form a green awareness and to establish the concept of green consumption for hotel development, so that green hotel products/services are provided. In addition, this paper provides a basis for decision making in the relevant government departments so that the interests of all stakeholders are promoted and cooperative game between stakeholders is established, for which the sustainable development of green hotels is achieved. The findings indicate that the process of achieving green hospitality industry development is to maximize the whole interests of stakeholders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20hospitality" title="green hospitality">green hospitality</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20theory" title=" game theory"> game theory</a>, <a href="https://publications.waset.org/abstracts/search?q=stakeholders" title=" stakeholders"> stakeholders</a>, <a href="https://publications.waset.org/abstracts/search?q=development%20model" title=" development model"> development model</a> </p> <a href="https://publications.waset.org/abstracts/107299/green-hospitality-industry-an-experience-study-with-game-theory-in-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16844</span> Contextual Paper on Green Finance: Analysis of the Green Bonds Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dina%20H.%20Gabr">Dina H. Gabr</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20A.%20El%20Bannan"> Mona A. El Bannan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With growing worldwide concern for global warming, green finance has become the fuel that pushes the world to act in combating and mitigating climate change. Coupled with adopting the Paris Agreement and the United Nations Sustainable Development Goals, Green finance became a vital tool in creating a pathway to sustainable development, as it connects the financial world with environmental and societal benefits. This paper provides a comprehensive review of the concepts and definitions of green finance and the importance of 'green' impact investments today. The core challenge in combating climate change is reducing and controlling Greenhouse gas emissions; therefore, this study explores the solutions green finance provides putting emphasis on the use of renewable energy, which is necessary for enhancing the transition to the green economy. With increasing attention to the concept of green finance, multiple forms of green investments and financial tools have come to fruition; the most prominent are green bonds. The rise of green bonds, a debt market to finance climate solutions, provide a promising mechanism for sustainable finance. Following the review, this paper compiles a comprehensive green bond dataset, presenting a statistical study of the evolution of the green bonds market from its first appearance in 2006 until 2021. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=GHG%20emissions" title=" GHG emissions"> GHG emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20bonds" title=" green bonds"> green bonds</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20finance" title=" green finance"> green finance</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20finance" title=" sustainable finance"> sustainable finance</a> </p> <a href="https://publications.waset.org/abstracts/149244/contextual-paper-on-green-finance-analysis-of-the-green-bonds-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16843</span> The Survey Research and Evaluation of Green Residential Building Based on the Improved Group Analytical Hierarchy Process Method in Yinchuan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yun-na%20Wu">Yun-na Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhen%20Wang"> Zhen Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the economic downturn and the deterioration of the living environment, the development of residential buildings as high energy consuming building is gradually changing from &ldquo;extensive&rdquo; to green building in China. So, the evaluation system of green building is continuously improved, but the current evaluation work has the following problems: (1) There are differences in the cost of the actual investment and the purchasing power of residents, also construction target of green residential building is single and lacks multi-objective performance development. (2) Green building evaluation lacks regional characteristics and cannot reflect the different regional residents demand. (3) In the process of determining the criteria weight, the experts&rsquo; judgment matrix is difficult to meet the requirement of consistency. Therefore, to solve those problems, questionnaires which are about the green residential building for Ningxia area are distributed, and the results of questionnaires can feedback the purchasing power of residents and the acceptance of the green building cost. Secondly, combined with the geographical features of Ningxia minority areas, the evaluation criteria system of green residential building is constructed. Finally, using the improved group AHP method and the grey clustering method, the criteria weight is determined, and a real case is evaluated, which is located in Xing Qing district, Ningxia. A conclusion can be obtained that the professional evaluation for this project and good social recognition is basically the same. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evaluation" title="evaluation">evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20residential%20building" title=" green residential building"> green residential building</a>, <a href="https://publications.waset.org/abstracts/search?q=grey%20clustering%20method" title=" grey clustering method"> grey clustering method</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20AHP" title=" group AHP"> group AHP</a> </p> <a href="https://publications.waset.org/abstracts/61444/the-survey-research-and-evaluation-of-green-residential-building-based-on-the-improved-group-analytical-hierarchy-process-method-in-yinchuan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16842</span> Agriroofs and Agriwalls: Applications of Food Production in Green Roofs and Green Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20M.%20Elmazek">Eman M. Elmazek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green roofs and walls are a rising technology in the global sustainable architectural industry. The idea takes great steps towards the future of sustainable design due to its many benefits. However, there are many barriers and constraints. Economical, structural, and knowledge barriers prevent the spread of the usage of green roofs and living walls. Understanding the benefits and expanding them will spread the idea. Benefits provided by these green spots interrupt and maintain the current urban cover. Food production is one of the benefits of green roofs. It can save money and energy spent in food transportation. The goal of this paper is to put a better understanding of implementing green systems. The paper aims to identify gains versus challenges facing the technology. It surveys with case studies buildings with green roofs and walls used for food production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20roof" title="green roof">green roof</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20walls" title=" green walls"> green walls</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20farming" title=" urban farming"> urban farming</a>, <a href="https://publications.waset.org/abstracts/search?q=roof%20herb%20garden" title=" roof herb garden"> roof herb garden</a> </p> <a href="https://publications.waset.org/abstracts/46610/agriroofs-and-agriwalls-applications-of-food-production-in-green-roofs-and-green-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16841</span> Integrated Evaluation of Green Design and Green Manufacturing Processes Using a Mathematical Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan-Jye%20Tseng">Yuan-Jye Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Shin-Han%20Lin"> Shin-Han Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, a mathematical model for integrated evaluation of green design and green manufacturing processes is presented. To design a product, there can be alternative options to design the detailed components to fulfill the same product requirement. In the design alternative cases, the components of the product can be designed with different materials and detailed specifications. If several design alternative cases are proposed, the different materials and specifications can affect the manufacturing processes. In this paper, a new concept for integrating green design and green manufacturing processes is presented. A green design can be determined based the manufacturing processes of the designed product by evaluating the green criteria including energy usage and environmental impact, in addition to the traditional criteria of manufacturing cost. With this concept, a mathematical model is developed to find the green design and the associated green manufacturing processes. In the mathematical model, the cost items include material cost, manufacturing cost, and green related cost. The green related cost items include energy cost and environmental cost. The objective is to find the decisions of green design and green manufacturing processes to achieve the minimized total cost. In practical applications, the decision-making can be made to select a good green design case and its green manufacturing processes. In this presentation, an example product is illustrated. It shows that the model is practical and useful for integrated evaluation of green design and green manufacturing processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title="supply chain management">supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20supply%20chain" title=" green supply chain"> green supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20design" title=" green design"> green design</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20manufacturing" title=" green manufacturing"> green manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a> </p> <a href="https://publications.waset.org/abstracts/10104/integrated-evaluation-of-green-design-and-green-manufacturing-processes-using-a-mathematical-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">807</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16840</span> Evaluation of Green Logistics Performance: An Application of Analytic Hierarchy Process Method for Ranking Environmental Indicators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eduarda%20Dutra%20De%20Souza">Eduarda Dutra De Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriela%20Hammes"> Gabriela Hammes</a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20Bouzon"> Marina Bouzon</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20M.%20Taboada%20Rodriguez"> Carlos M. Taboada Rodriguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The search for minimizing harmful impacts on the environment has become the focus of global society, affecting mainly how to manage organizations. Thus, companies have sought to transform their activities into environmentally friendly initiatives by applying green practices throughout their supply chains. In the logistics domain, the implementation of environmentally sound practices is still in its infancy in emerging countries such as Brazil. Given the need to reduce these environmental damages, this study aims to evaluate the performance of green logistics (GL) in the plastics industry sector in order to help to improve environmental performance within organizations and reduce the impact caused by their activities. The performance tool was based on theoretical research and the use of experts in the field. The Analytic Hierarchy Process (AHP) was used to prioritize green practices and assign weight to the indicators contained in the proposed tool. The tool also allows the co-production of a single indicator. The developed tool was applied in an industry of the plastic packaging sector. However, this tool may be applied in different industry sectors, and it is adaptable to different sizes of companies. Besides the contributions to the literature, this work also presents future paths of research in the field of green logistics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AHP" title="AHP">AHP</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20logistics" title=" green logistics"> green logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20supply%20chain" title=" green supply chain"> green supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title=" performance evaluation"> performance evaluation</a> </p> <a href="https://publications.waset.org/abstracts/102968/evaluation-of-green-logistics-performance-an-application-of-analytic-hierarchy-process-method-for-ranking-environmental-indicators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16839</span> Co-Gasification Process for Green and Blue Hydrogen Production: Innovative Process Development, Economic Analysis, and Exergy Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousaf%20Ayub">Yousaf Ayub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A co-gasification process, which involves the utilization of both biomass and plastic waste, has been developed to enable the production of blue and green hydrogen. To support this endeavor, an Aspen Plus simulation model has been meticulously created, and sustainability analysis is being conducted, focusing on economic viability, energy efficiency, advanced exergy considerations, and exergoeconomics evaluations. In terms of economic analysis, the process has demonstrated strong economic sustainability, as evidenced by an internal rate of return (IRR) of 8% at a process efficiency level of 70%. At present, the process has the potential to generate approximately 1100 kWh of electric power, with any excess electricity, beyond meeting the process requirements, capable of being harnessed for green hydrogen production via an alkaline electrolysis cell (AEC). This surplus electricity translates to a potential daily hydrogen production of around 200 kg. The exergy analysis of the model highlights that the gasifier component exhibits the lowest exergy efficiency, resulting in the highest energy losses, amounting to approximately 40%. Additionally, advanced exergy analysis findings pinpoint the gasifier as the primary source of exergy destruction, totaling around 9000 kW, with associated exergoeconomics costs amounting to 6500 $/h. Consequently, improving the gasifier's performance is a critical focal point for enhancing the overall sustainability of the process, encompassing energy, exergy, and economic considerations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blue%20hydrogen" title="blue hydrogen">blue hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20hydrogen" title=" green hydrogen"> green hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=co-gasification" title=" co-gasification"> co-gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20valorization" title=" waste valorization"> waste valorization</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20analysis" title=" exergy analysis"> exergy analysis</a> </p> <a href="https://publications.waset.org/abstracts/173926/co-gasification-process-for-green-and-blue-hydrogen-production-innovative-process-development-economic-analysis-and-exergy-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16838</span> Sustainable Building Law - The Legal Issues Abound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20J.%20Sobelsohn">Richard J. Sobelsohn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green Building and Sustainable Development help fight climate change, and protects the ozone, animal habitats, air quality, and ground water. The myriad of reasons to go Green has multiplied to the point that a developer that is building a ground-up or renovating/retrofitting a property has a plethora of choices to get to the green goal post. Sustainability not affects the bottom line but satisfies corporate mandates (ESG), consumer demand, market requirements, and the many laws dictating green building practices. The good news is that there are many paths a property owner can take to become green. The bad news is that there are many paths a property owner can take to become green, and they need to choose which direction to take. Certification of a building used to be the highest achievement in the Green building world. Now there are so many variables and laws with which a property owner must comply, and the legal analysis has mushroomed. Operation and Maintenance have also become one of the most important functions for a prudent Green Building owner. So adding to the “development/retrofit” parties involved in the sustainable building legal world, we now need to include all those people who keep the building green, and there are a lot of them! <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20building" title="green building">green building</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=legal%20issues" title=" legal issues"> legal issues</a>, <a href="https://publications.waset.org/abstracts/search?q=greenwashing" title=" greenwashing"> greenwashing</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20cleaning" title=" green cleaning"> green cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=compliance" title=" compliance"> compliance</a>, <a href="https://publications.waset.org/abstracts/search?q=ESQ" title=" ESQ"> ESQ</a> </p> <a href="https://publications.waset.org/abstracts/154541/sustainable-building-law-the-legal-issues-abound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16837</span> The Feasibility of Using Green Architecture in the Desert Areas and Its Effectiveness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulah%20Hamads%20Alatiah">Abdulah Hamads Alatiah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The green architecture represents the essence of the sustainability process and the fundamental rule in the desert areas' reconstruction seeking to maintain the environmental balance. This study is based on the analytical descriptive approach, to extract the objectives of green architecture in the desert areas, and reveal the most important principles that contribute to highlight its economic, social, and environmental importance, in addition to standing on the most important technical standards that can be relied upon to deal with its environmental problems. The green architecture aims: making use of the alternative energy, reducing the conventional energy consumption, addressing its negative effects, adapting to the climate, innovation in design, providing the individuals' welfare and rationalizing the use of the available resources to maintain its environmental sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20architecture" title="green architecture">green architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20warm-dry%20climate" title=" the warm-dry climate"> the warm-dry climate</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20lighting" title=" natural lighting"> natural lighting</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20quality" title=" environmental quality"> environmental quality</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20changes" title=" weather changes"> weather changes</a> </p> <a href="https://publications.waset.org/abstracts/43459/the-feasibility-of-using-green-architecture-in-the-desert-areas-and-its-effectiveness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20process&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20process&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20process&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20process&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20process&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20process&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20process&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20process&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20process&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20process&amp;page=562">562</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20process&amp;page=563">563</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20process&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10