CINXE.COM
YCbCr - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>YCbCr - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"179654bc-e1d1-44fa-862c-1c7584cce79f","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"YCbCr","wgTitle":"YCbCr","wgCurRevisionId":1283309883,"wgRevisionId":1283309883,"wgArticleId":592613,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","All articles with unsourced statements","Articles with unsourced statements from April 2021","Color space"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"YCbCr","wgRelevantArticleId":592613,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1189998","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGELevelingUpEnabledForUser":false}; RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","ext.pygments":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.pygments.view","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.pygments%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.22"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/b/b8/YCbCr.GIF"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1200"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/b/b8/YCbCr.GIF"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="800"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="640"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="YCbCr - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/YCbCr"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=YCbCr&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/YCbCr"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="auth.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-YCbCr rootpage-YCbCr skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=YCbCr" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=YCbCr" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=YCbCr" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=YCbCr" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Rationale" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Rationale"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Rationale</span> </div> </a> <ul id="toc-Rationale-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Conversions" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Conversions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Conversions</span> </div> </a> <button aria-controls="toc-Conversions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Conversions subsection</span> </button> <ul id="toc-Conversions-sublist" class="vector-toc-list"> <li id="toc-RGB_conversion" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#RGB_conversion"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>RGB conversion</span> </div> </a> <ul id="toc-RGB_conversion-sublist" class="vector-toc-list"> <li id="toc-R'G'B'_to_Y′PbPr" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#R'G'B'_to_Y′PbPr"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.1</span> <span>R'G'B' to Y′PbPr</span> </div> </a> <ul id="toc-R'G'B'_to_Y′PbPr-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Y′PbPr_to_Y′CbCr" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Y′PbPr_to_Y′CbCr"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.2</span> <span>Y′PbPr to Y′CbCr</span> </div> </a> <ul id="toc-Y′PbPr_to_Y′CbCr-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Y′CbCr_to_xvYCC" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Y′CbCr_to_xvYCC"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.3</span> <span>Y′CbCr to xvYCC</span> </div> </a> <ul id="toc-Y′CbCr_to_xvYCC-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-ITU-R_BT.601_conversion" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#ITU-R_BT.601_conversion"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>ITU-R BT.601 conversion</span> </div> </a> <ul id="toc-ITU-R_BT.601_conversion-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-ITU-R_BT.709_conversion" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#ITU-R_BT.709_conversion"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>ITU-R BT.709 conversion</span> </div> </a> <ul id="toc-ITU-R_BT.709_conversion-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-ITU-R_BT.2020_conversion" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#ITU-R_BT.2020_conversion"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>ITU-R BT.2020 conversion</span> </div> </a> <ul id="toc-ITU-R_BT.2020_conversion-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-SMPTE_240M_conversion" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#SMPTE_240M_conversion"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>SMPTE 240M conversion</span> </div> </a> <ul id="toc-SMPTE_240M_conversion-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-JPEG_conversion" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#JPEG_conversion"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6</span> <span>JPEG conversion</span> </div> </a> <ul id="toc-JPEG_conversion-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Coefficients_for_BT.470-6_System_B,_G_primaries" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Coefficients_for_BT.470-6_System_B,_G_primaries"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.7</span> <span>Coefficients for BT.470-6 System B, G primaries</span> </div> </a> <ul id="toc-Coefficients_for_BT.470-6_System_B,_G_primaries-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Chromaticity-derived_luminance_systems" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Chromaticity-derived_luminance_systems"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.8</span> <span>Chromaticity-derived luminance systems</span> </div> </a> <ul id="toc-Chromaticity-derived_luminance_systems-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Numerical_approximations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Numerical_approximations"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Numerical approximations</span> </div> </a> <button aria-controls="toc-Numerical_approximations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Numerical approximations subsection</span> </button> <ul id="toc-Numerical_approximations-sublist" class="vector-toc-list"> <li id="toc-Approximate_8-bit_matrices_for_BT.601" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Approximate_8-bit_matrices_for_BT.601"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Approximate 8-bit matrices for BT.601</span> </div> </a> <ul id="toc-Approximate_8-bit_matrices_for_BT.601-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Packed_pixel_formats_and_conversion" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Packed_pixel_formats_and_conversion"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Packed pixel formats and conversion</span> </div> </a> <button aria-controls="toc-Packed_pixel_formats_and_conversion-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Packed pixel formats and conversion subsection</span> </button> <ul id="toc-Packed_pixel_formats_and_conversion-sublist" class="vector-toc-list"> <li id="toc-4:4:4" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#4:4:4"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>4:4:4</span> </div> </a> <ul id="toc-4:4:4-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-4:2:2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#4:2:2"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>4:2:2</span> </div> </a> <ul id="toc-4:2:2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-4:1:1" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#4:1:1"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>4:1:1</span> </div> </a> <ul id="toc-4:1:1-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-4:2:0" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#4:2:0"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>4:2:0</span> </div> </a> <ul id="toc-4:2:0-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">YCbCr</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 15 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-15" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">15 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/YCbCr" title="YCbCr – Belarusian" lang="be" hreflang="be" data-title="YCbCr" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/YCbCr" title="YCbCr – Catalan" lang="ca" hreflang="ca" data-title="YCbCr" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/YCbCr" title="YCbCr – Czech" lang="cs" hreflang="cs" data-title="YCbCr" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/YCbCr-Farbmodell" title="YCbCr-Farbmodell – German" lang="de" hreflang="de" data-title="YCbCr-Farbmodell" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/YCbCr" title="YCbCr – Spanish" lang="es" hreflang="es" data-title="YCbCr" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/YCbCr" title="YCbCr – French" lang="fr" hreflang="fr" data-title="YCbCr" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/YCbCr" title="YCbCr – Korean" lang="ko" hreflang="ko" data-title="YCbCr" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/YCbCr" title="YCbCr – Indonesian" lang="id" hreflang="id" data-title="YCbCr" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/YCbCr" title="YCbCr – Italian" lang="it" hreflang="it" data-title="YCbCr" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/YCbCr" title="YCbCr – Polish" lang="pl" hreflang="pl" data-title="YCbCr" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/YCbCr" title="YCbCr – Russian" lang="ru" hreflang="ru" data-title="YCbCr" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/YCbCr" title="YCbCr – Sundanese" lang="su" hreflang="su" data-title="YCbCr" data-language-autonym="Sunda" data-language-local-name="Sundanese" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/YCbCr" title="YCbCr – Finnish" lang="fi" hreflang="fi" data-title="YCbCr" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/YCbCr" title="YCbCr – Vietnamese" lang="vi" hreflang="vi" data-title="YCbCr" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/YCbCr" title="YCbCr – Chinese" lang="zh" hreflang="zh" data-title="YCbCr" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1189998#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/YCbCr" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:YCbCr" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/YCbCr"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=YCbCr&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=YCbCr&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/YCbCr"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=YCbCr&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=YCbCr&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/YCbCr" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/YCbCr" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=YCbCr&oldid=1283309883" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=YCbCr&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=YCbCr&id=1283309883&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FYCbCr"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FYCbCr"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=YCbCr&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=YCbCr&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1189998" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Family of digital colour spaces</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">"CbCr" redirects here. For other uses, see <a href="/wiki/CBCR_(disambiguation)" class="mw-redirect mw-disambig" title="CBCR (disambiguation)">CBCR</a>.</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:YCbCr.GIF" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b8/YCbCr.GIF/220px-YCbCr.GIF" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/b/b8/YCbCr.GIF 1.5x" data-file-width="240" data-file-height="240" /></a><figcaption>A visualization of YCbCr color space</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:YCbCr-CbCr_Scaled_Y50.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/34/YCbCr-CbCr_Scaled_Y50.png/250px-YCbCr-CbCr_Scaled_Y50.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/34/YCbCr-CbCr_Scaled_Y50.png/330px-YCbCr-CbCr_Scaled_Y50.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/34/YCbCr-CbCr_Scaled_Y50.png/500px-YCbCr-CbCr_Scaled_Y50.png 2x" data-file-width="3500" data-file-height="3500" /></a><figcaption>The CbCr plane at constant luma Y′=0.5</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Barns_grand_tetons_YCbCr_separation.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Barns_grand_tetons_YCbCr_separation.jpg/220px-Barns_grand_tetons_YCbCr_separation.jpg" decoding="async" width="220" height="657" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Barns_grand_tetons_YCbCr_separation.jpg/330px-Barns_grand_tetons_YCbCr_separation.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Barns_grand_tetons_YCbCr_separation.jpg/440px-Barns_grand_tetons_YCbCr_separation.jpg 2x" data-file-width="1600" data-file-height="4780" /></a><figcaption>A color image and its Y′, C<sub>B</sub> and C<sub>R</sub> components. The Y′ image is essentially a greyscale copy of the main image.</figcaption></figure> <p><b>YCbCr</b>, <b>Y′CbCr</b>, also written as <b>YC<sub>B</sub>C<sub>R</sub></b> or <b>Y′C<sub>B</sub>C<sub>R</sub></b>, is a family of <a href="/wiki/Color_space" title="Color space">color spaces</a> used as a part of the <a href="/wiki/Color_image_pipeline" title="Color image pipeline">color image pipeline</a> in <a href="/wiki/Digital_video" title="Digital video">digital video</a> and <a href="/wiki/Digital_photography" title="Digital photography">photography</a> systems. Like <a href="/wiki/YPbPr" title="YPbPr">YP<sub>B</sub>P<sub>R</sub></a>, it is based on <a href="/wiki/RGB" class="mw-redirect" title="RGB">RGB</a> primaries; the two are generally equivalent but YC<sub>B</sub>C<sub>R</sub> is intended for <a href="/wiki/Digital_video" title="Digital video">digital video</a> while YP<sub>B</sub>P<sub>R</sub> is designed for use in <a href="/wiki/Analogue_electronics" title="Analogue electronics">analog systems</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p><p>Y′ is the <a href="/wiki/Luma_(video)" title="Luma (video)">luma</a> component and C<sub>B</sub> and C<sub>R</sub> are the <a href="/wiki/B-Y" title="B-Y">blue-difference</a> and <a href="/wiki/R-Y" title="R-Y">red-difference</a> <a href="/wiki/Chrominance" title="Chrominance">chroma</a> components. Luma Y′ (with <a href="/wiki/Prime_(symbol)" title="Prime (symbol)">prime</a>) is distinguished from <a href="/wiki/Relative_luminance" title="Relative luminance">luminance</a> Y, meaning that light intensity is nonlinearly encoded based on <a href="/wiki/Gamma_corrected" class="mw-redirect" title="Gamma corrected">gamma corrected</a> <a href="/wiki/RGB" class="mw-redirect" title="RGB">RGB</a> primaries. </p><p>Y′CbCr color spaces are defined by a mathematical <a href="/wiki/Coordinate_transformation" class="mw-redirect" title="Coordinate transformation">coordinate transformation</a> from an associated RGB primaries and <a href="/wiki/White_point" title="White point">white point</a>. If the underlying <a href="/wiki/RGB_color_spaces" title="RGB color spaces">RGB color space</a> is absolute, the Y′CbCr color space is an <a href="/wiki/Absolute_color_space" class="mw-redirect" title="Absolute color space">absolute color space</a> as well; conversely, if the RGB space is ill-defined, so is Y′CbCr. The transformation is defined in equations 32, 33 in <a href="/wiki/ITU-T" title="ITU-T">ITU-T</a> H.273.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Rationale">Rationale</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=YCbCr&action=edit&section=1" title="Edit section: Rationale"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Black and white television was in wide use before color television. Due to the number of existing TV sets and cameras, some form of <a href="/wiki/Backwards_compatibility" class="mw-redirect" title="Backwards compatibility">backwards compatibility</a> was desired for the new color broadcasts. French engineer <a href="/wiki/Georges_Valensi" title="Georges Valensi">Georges Valensi</a> developed and patented a system for transmitting RGB color as luma and chroma signals in 1938. This would allow existing black and white televisions to process only the luma information and ignore the chroma, essentially packaging a black and white video within the color video. Because of this backwards compatibility the system based on Valensi's idea was called <a href="/wiki/Compatible_color" class="mw-redirect" title="Compatible color">compatible color</a>. In the same way, a black and white broadcast could be received by a color television without any additional processing circuitry. To preserve existing broadcast frequency allocations, the new chroma information was given lower bandwidth than the luma information. This is possible because humans are more sensitive to the black-and-white information (see image example to the right). This is called <a href="/wiki/Chroma_subsampling" title="Chroma subsampling">chroma subsampling</a>. </p><p>YCbCr and Y′CbCr are a practical approximation to color processing and perceptual uniformity, where the <a href="/wiki/Primary_color" title="Primary color">primary colors</a> corresponding roughly to red, green and blue are processed into perceptually meaningful information. By doing this, subsequent image/video processing, transmission and storage can do operations and introduce errors in perceptually meaningful ways. Y′CbCr is used to separate out a luma signal (Y′) that can be stored with high resolution or transmitted at high bandwidth, and two chroma components (C<sub>B</sub> and C<sub>R</sub>) that can be bandwidth-reduced, subsampled, compressed, or otherwise treated separately for improved system efficiency. </p> <div class="mw-heading mw-heading2"><h2 id="Conversions">Conversions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=YCbCr&action=edit&section=2" title="Edit section: Conversions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>YCbCr is sometimes abbreviated to <b>YCC</b>. Typically the terms Y′CbCr, YCbCr, <a href="/wiki/YPbPr" title="YPbPr">YPbPr</a> and <a href="/wiki/YUV" class="mw-redirect" title="YUV">YUV</a> are used interchangeably, leading to some confusion. The main difference is that YPbPr is used with <a href="/wiki/Analog_video" class="mw-redirect" title="Analog video">analog</a> images and YCbCr with digital images, leading to different scaling values for U<sub>max</sub> and V<sub>max</sub> (in YCbCr both are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edef8290613648790a8ac1a95c2fb7c3972aea2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:1.658ex; height:3.509ex;" alt="{\displaystyle {\tfrac {1}{2}}}" /></span>) when converting to/from YUV. Y′CbCr and YCbCr differ due to the values being gamma corrected or not. </p><p>The equations below give a better picture of the common principles and general differences between these formats. </p> <div class="mw-heading mw-heading3"><h3 id="RGB_conversion">RGB conversion</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=YCbCr&action=edit&section=3" title="Edit section: RGB conversion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="R'G'B'_to_Y′PbPr"><span id="R.27G.27B.27_to_Y.E2.80.B2PbPr"></span>R'G'B' to Y′PbPr</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=YCbCr&action=edit&section=4" title="Edit section: R'G'B' to Y′PbPr"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:CCD.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/32/CCD.png/250px-CCD.png" decoding="async" width="220" height="76" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/32/CCD.png/330px-CCD.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/32/CCD.png/500px-CCD.png 2x" data-file-width="1600" data-file-height="550" /></a><figcaption>RGB to YCbCr conversion</figcaption></figure><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/YPbPr" title="YPbPr">YPbPr</a></div> <p>Y′CbCr signals (prior to scaling and offsets to place the signals into digital form) are called <a href="/wiki/YPbPr" title="YPbPr">YPbPr</a>, and are created from the corresponding gamma-adjusted <a href="/wiki/RGB" class="mw-redirect" title="RGB">RGB</a> (red, green and blue) source using three defined constants K<sub>R</sub>, K<sub>G</sub>, and K<sub>B</sub> as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}Y'&=K_{R}\cdot R'+K_{G}\cdot G'+K_{B}\cdot B'\\P_{B}&={\frac {1}{2}}\cdot {\frac {B'-Y'}{1-K_{B}}}\\P_{R}&={\frac {1}{2}}\cdot {\frac {R'-Y'}{1-K_{R}}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>Y</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>R</mi> <mo>′</mo> </msup> <mo>+</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>G</mi> <mo>′</mo> </msup> <mo>+</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>B</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>B</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <msup> <mi>Y</mi> <mo>′</mo> </msup> </mrow> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>R</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <msup> <mi>Y</mi> <mo>′</mo> </msup> </mrow> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}Y'&=K_{R}\cdot R'+K_{G}\cdot G'+K_{B}\cdot B'\\P_{B}&={\frac {1}{2}}\cdot {\frac {B'-Y'}{1-K_{B}}}\\P_{R}&={\frac {1}{2}}\cdot {\frac {R'-Y'}{1-K_{R}}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82ceab4d9e18603ac6e4dab60d098d0df2808505" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.625ex; margin-bottom: -0.213ex; width:35.351ex; height:14.843ex;" alt="{\displaystyle {\begin{aligned}Y'&=K_{R}\cdot R'+K_{G}\cdot G'+K_{B}\cdot B'\\P_{B}&={\frac {1}{2}}\cdot {\frac {B'-Y'}{1-K_{B}}}\\P_{R}&={\frac {1}{2}}\cdot {\frac {R'-Y'}{1-K_{R}}}\end{aligned}}}" /></span></dd></dl> <p>where K<sub>R</sub>, K<sub>G</sub>, and K<sub>B</sub> are ordinarily derived from the definition of the corresponding RGB space, and required to satisfy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{R}+K_{G}+K_{B}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{R}+K_{G}+K_{B}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be1559cbc23ccb3337ac81a2d7f7148f2fe0bca3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.344ex; height:2.509ex;" alt="{\displaystyle K_{R}+K_{G}+K_{B}=1}" /></span>. </p><p>The equivalent <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrix</a> manipulation is often referred to as the "color matrix": </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}Y'\\P_{B}\\P_{R}\end{bmatrix}}={\begin{bmatrix}K_{R}&K_{G}&K_{B}\\-{\frac {1}{2}}\cdot {\frac {K_{R}}{1-K_{B}}}&-{\frac {1}{2}}\cdot {\frac {K_{G}}{1-K_{B}}}&{\frac {1}{2}}\\{\frac {1}{2}}&-{\frac {1}{2}}\cdot {\frac {K_{G}}{1-K_{R}}}&-{\frac {1}{2}}\cdot {\frac {K_{B}}{1-K_{R}}}\end{bmatrix}}{\begin{bmatrix}R'\\G'\\B'\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>Y</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>R</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>G</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>B</mi> <mo>′</mo> </msup> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}Y'\\P_{B}\\P_{R}\end{bmatrix}}={\begin{bmatrix}K_{R}&K_{G}&K_{B}\\-{\frac {1}{2}}\cdot {\frac {K_{R}}{1-K_{B}}}&-{\frac {1}{2}}\cdot {\frac {K_{G}}{1-K_{B}}}&{\frac {1}{2}}\\{\frac {1}{2}}&-{\frac {1}{2}}\cdot {\frac {K_{G}}{1-K_{R}}}&-{\frac {1}{2}}\cdot {\frac {K_{B}}{1-K_{R}}}\end{bmatrix}}{\begin{bmatrix}R'\\G'\\B'\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b15bc10bec3cd9c5b3b5da18a9e5d74f4d3d484" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:56.745ex; height:12.509ex;" alt="{\displaystyle {\begin{bmatrix}Y'\\P_{B}\\P_{R}\end{bmatrix}}={\begin{bmatrix}K_{R}&K_{G}&K_{B}\\-{\frac {1}{2}}\cdot {\frac {K_{R}}{1-K_{B}}}&-{\frac {1}{2}}\cdot {\frac {K_{G}}{1-K_{B}}}&{\frac {1}{2}}\\{\frac {1}{2}}&-{\frac {1}{2}}\cdot {\frac {K_{G}}{1-K_{R}}}&-{\frac {1}{2}}\cdot {\frac {K_{B}}{1-K_{R}}}\end{bmatrix}}{\begin{bmatrix}R'\\G'\\B'\end{bmatrix}}}" /></span></dd></dl> <p>And its inverse: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}R'\\G'\\B'\end{bmatrix}}={\begin{bmatrix}1&0&2-2\cdot K_{R}\\1&-{\frac {K_{B}}{K_{G}}}\cdot (2-2\cdot K_{B})&-{\frac {K_{R}}{K_{G}}}\cdot (2-2\cdot K_{R})\\1&2-2\cdot K_{B}&0\end{bmatrix}}{\begin{bmatrix}Y'\\P_{B}\\P_{R}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>R</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>G</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>B</mi> <mo>′</mo> </msup> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> <mo>−<!-- − --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>−<!-- − --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>−<!-- − --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>2</mn> <mo>−<!-- − --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>Y</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}R'\\G'\\B'\end{bmatrix}}={\begin{bmatrix}1&0&2-2\cdot K_{R}\\1&-{\frac {K_{B}}{K_{G}}}\cdot (2-2\cdot K_{B})&-{\frac {K_{R}}{K_{G}}}\cdot (2-2\cdot K_{R})\\1&2-2\cdot K_{B}&0\end{bmatrix}}{\begin{bmatrix}Y'\\P_{B}\\P_{R}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de5c77f14e7456e9f4f6880057b1c9beeada8b3c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.838ex; width:64.021ex; height:10.843ex;" alt="{\displaystyle {\begin{bmatrix}R'\\G'\\B'\end{bmatrix}}={\begin{bmatrix}1&0&2-2\cdot K_{R}\\1&-{\frac {K_{B}}{K_{G}}}\cdot (2-2\cdot K_{B})&-{\frac {K_{R}}{K_{G}}}\cdot (2-2\cdot K_{R})\\1&2-2\cdot K_{B}&0\end{bmatrix}}{\begin{bmatrix}Y'\\P_{B}\\P_{R}\end{bmatrix}}}" /></span></dd></dl> <p>Here, the prime (′) symbols mean <a href="/wiki/Gamma_correction" title="Gamma correction">gamma correction</a> is being used; thus R′, G′ and B′ nominally range from 0 to 1, with 0 representing the minimum intensity (e.g., for display of the color <a href="/wiki/Black" title="Black">black</a>) and 1 the maximum (e.g., for display of the color <a href="/wiki/White" title="White">white</a>). The resulting luma (Y) value will then have a nominal range from 0 to 1, and the chroma (P<sub>B</sub> and P<sub>R</sub>) values will have a nominal range from -0.5 to +0.5. The reverse conversion process can be readily derived by inverting the above equations. </p> <div class="mw-heading mw-heading4"><h4 id="Y′PbPr_to_Y′CbCr"><span id="Y.E2.80.B2PbPr_to_Y.E2.80.B2CbCr"></span>Y′PbPr to Y′CbCr</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=YCbCr&action=edit&section=5" title="Edit section: Y′PbPr to Y′CbCr"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>When representing the signals in digital form, the results are scaled and rounded, and offsets are typically added. For example, the scaling and offset applied to the Y′ component per specification (e.g. <a href="/wiki/MPEG-2" title="MPEG-2">MPEG-2</a><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup>) results in the value of 16 for black and the value of 235 for white when using an 8-bit representation. The standard has 8-bit digitized versions of C<sub>B</sub> and C<sub>R</sub> scaled to a different range of 16 to 240. Consequently, rescaling by the fraction (235-16)/(240-16) = 219/224 is sometimes required when doing color matrixing or processing in YCbCr space, resulting in quantization distortions when the subsequent processing is not performed using higher bit depths. </p><p>The scaling that results in the use of a smaller range of digital values than what might appear to be desirable for representation of the nominal range of the input data allows for some "overshoot" and "undershoot" during processing without necessitating undesirable <a href="/wiki/Clipping_(signal_processing)" title="Clipping (signal processing)">clipping</a>. This "<a href="/wiki/Highlight_headroom" title="Highlight headroom">headroom</a>" and "toeroom"<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> can also be used for extension of the nominal color <a href="/wiki/Gamut" title="Gamut">gamut</a>, as specified by <a href="/wiki/XvYCC" title="XvYCC">xvYCC</a>. </p><p>The value 235 accommodates a maximum overshoot of (255 - 235) / (235 - 16) = 9.1%, which is slightly larger than the theoretical maximum overshoot (<a href="/wiki/Gibbs_phenomenon" title="Gibbs phenomenon">Gibbs' Phenomenon</a>) of about 8.9% of the maximum (black-to-white) step. The toeroom is smaller, allowing only 16 / 219 = 7.3% overshoot, which is less than the theoretical maximum overshoot of 8.9%. In addition, because values 0 and 255 are reserved in HDMI, the room is actually slightly less. </p> <div class="mw-heading mw-heading4"><h4 id="Y′CbCr_to_xvYCC"><span id="Y.E2.80.B2CbCr_to_xvYCC"></span>Y′CbCr to xvYCC</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=YCbCr&action=edit&section=6" title="Edit section: Y′CbCr to xvYCC"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/XvYCC" title="XvYCC">xvYCC</a></div> <p>Since the equations defining Y′CbCr are formed in a way that rotates the entire nominal RGB color cube and scales it to fit within a (larger) YCbCr color cube, there are some points within the Y′CbCr color cube that <i>cannot</i> be represented in the corresponding RGB domain (at least not within the nominal RGB range). This causes some difficulty in determining how to correctly interpret and display some Y′CbCr signals. These out-of-range Y′CbCr values are used by <a href="/wiki/XvYCC" title="XvYCC">xvYCC</a> to encode colors outside the BT.709 gamut. </p> <div class="mw-heading mw-heading3"><h3 id="ITU-R_BT.601_conversion">ITU-R BT.601 conversion</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=YCbCr&action=edit&section=7" title="Edit section: ITU-R BT.601 conversion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Rec._601" title="Rec. 601">Rec. 601</a></div> <p>The form of Y′CbCr that was defined for <a href="/wiki/Standard-definition_television" title="Standard-definition television">standard-definition television</a> use in the <a href="/wiki/ITU-R" title="ITU-R">ITU-R</a> BT.601 (formerly <a href="/wiki/CCIR_601" class="mw-redirect" title="CCIR 601">CCIR 601</a>) standard for use with <a href="/wiki/Digital_component_video" title="Digital component video">digital component video</a> is derived from the corresponding RGB space (ITU-R BT.470-6 System M primaries) as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}K_{R}&=0.299\\K_{G}&=0.587\\K_{B}&=0.114\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0.299</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0.587</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0.114</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}K_{R}&=0.299\\K_{G}&=0.587\\K_{B}&=0.114\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c729507bcd633db1cb8820f4d03e3c95b5653d59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:12.644ex; height:8.843ex;" alt="{\displaystyle {\begin{aligned}K_{R}&=0.299\\K_{G}&=0.587\\K_{B}&=0.114\end{aligned}}}" /></span></dd></dl> <p>From the above constants and formulas, the following can be derived for ITU-R BT.601. </p><p>Analog YPbPr from analog R'G'B' is derived as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}Y'&=&0.299\cdot R'&+&0.587\cdot G'&+&0.114\cdot B'\\P_{B}&=-&0.168736\cdot R'&-&0.331264\cdot G'&+&0.5\cdot B'\\P_{R}&=&0.5\cdot R'&-&0.418688\cdot G'&-&0.081312\cdot B'\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>Y</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> </mtd> <mtd> <mn>0.299</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>R</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>+</mo> </mtd> <mtd> <mn>0.587</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>G</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>+</mo> </mtd> <mtd> <mn>0.114</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>B</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>−<!-- − --></mo> </mtd> <mtd> <mn>0.168736</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>R</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> </mtd> <mtd> <mn>0.331264</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>G</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>+</mo> </mtd> <mtd> <mn>0.5</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>B</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> </mtd> <mtd> <mn>0.5</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>R</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> </mtd> <mtd> <mn>0.418688</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>G</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> </mtd> <mtd> <mn>0.081312</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>B</mi> <mo>′</mo> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}Y'&=&0.299\cdot R'&+&0.587\cdot G'&+&0.114\cdot B'\\P_{B}&=-&0.168736\cdot R'&-&0.331264\cdot G'&+&0.5\cdot B'\\P_{R}&=&0.5\cdot R'&-&0.418688\cdot G'&-&0.081312\cdot B'\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24807e87309699852a750cb9c2faff0505220c63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:64.98ex; height:8.843ex;" alt="{\displaystyle {\begin{aligned}Y'&=&0.299\cdot R'&+&0.587\cdot G'&+&0.114\cdot B'\\P_{B}&=-&0.168736\cdot R'&-&0.331264\cdot G'&+&0.5\cdot B'\\P_{R}&=&0.5\cdot R'&-&0.418688\cdot G'&-&0.081312\cdot B'\end{aligned}}}" /></span></dd></dl> <p>Digital Y′CbCr (8 bits per sample) is derived from analog R'G'B' as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}Y'&=&16&+&(65.481\cdot R'&+&128.553\cdot G'&+&24.966\cdot B')\\C_{B}&=&128&+&(-37.797\cdot R'&-&74.203\cdot G'&+&112.0\cdot B')\\C_{R}&=&128&+&(112.0\cdot R'&-&93.786\cdot G'&-&18.214\cdot B')\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>Y</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> </mtd> <mtd> <mn>16</mn> </mtd> <mtd> <mi></mi> <mo>+</mo> </mtd> <mtd> <mo stretchy="false">(</mo> <mn>65.481</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>R</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>+</mo> </mtd> <mtd> <mn>128.553</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>G</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>+</mo> </mtd> <mtd> <mn>24.966</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>B</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> </mtd> <mtd> <mn>128</mn> </mtd> <mtd> <mi></mi> <mo>+</mo> </mtd> <mtd> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>37.797</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>R</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> </mtd> <mtd> <mn>74.203</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>G</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>+</mo> </mtd> <mtd> <mn>112.0</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>B</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> </mtd> <mtd> <mn>128</mn> </mtd> <mtd> <mi></mi> <mo>+</mo> </mtd> <mtd> <mo stretchy="false">(</mo> <mn>112.0</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>R</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> </mtd> <mtd> <mn>93.786</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>G</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> </mtd> <mtd> <mn>18.214</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>B</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}Y'&=&16&+&(65.481\cdot R'&+&128.553\cdot G'&+&24.966\cdot B')\\C_{B}&=&128&+&(-37.797\cdot R'&-&74.203\cdot G'&+&112.0\cdot B')\\C_{R}&=&128&+&(112.0\cdot R'&-&93.786\cdot G'&-&18.214\cdot B')\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/347b280f8e160b56dd9f1c61bbf92fcd956910b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:70.442ex; height:9.176ex;" alt="{\displaystyle {\begin{aligned}Y'&=&16&+&(65.481\cdot R'&+&128.553\cdot G'&+&24.966\cdot B')\\C_{B}&=&128&+&(-37.797\cdot R'&-&74.203\cdot G'&+&112.0\cdot B')\\C_{R}&=&128&+&(112.0\cdot R'&-&93.786\cdot G'&-&18.214\cdot B')\end{aligned}}}" /></span></dd></dl> <p>or simply componentwise </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}(Y',C_{B},C_{R})&=&(16,128,128)+(219\cdot Y,224\cdot P_{B},224\cdot P_{R})\\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false">(</mo> <msup> <mi>Y</mi> <mo>′</mo> </msup> <mo>,</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> </mtd> <mtd> <mo stretchy="false">(</mo> <mn>16</mn> <mo>,</mo> <mn>128</mn> <mo>,</mo> <mn>128</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mn>219</mn> <mo>⋅<!-- ⋅ --></mo> <mi>Y</mi> <mo>,</mo> <mn>224</mn> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo>,</mo> <mn>224</mn> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}(Y',C_{B},C_{R})&=&(16,128,128)+(219\cdot Y,224\cdot P_{B},224\cdot P_{R})\\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e6e8ac561dfc0a509fb034d1c57bf8a624a6551" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:63.706ex; height:2.843ex;" alt="{\displaystyle {\begin{aligned}(Y',C_{B},C_{R})&=&(16,128,128)+(219\cdot Y,224\cdot P_{B},224\cdot P_{R})\\\end{aligned}}}" /></span></dd></dl> <p>The resultant signals range from 16 to 235 for Y′ (Cb and Cr range from 16 to 240); the values from 0 to 15 are called <i>footroom</i>, while the values from 236 to 255 are called <i>headroom</i>. The same quantisation ranges, different for Y and Cb, Cr also apply to BT.2020 and BT.709. </p><p>Alternatively, digital Y′CbCr can derived from digital R'dG'dB'd (8 bits per sample, each using the full range with zero representing black and 255 representing white) according to the following equations: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}Y'&=&16&+&{\frac {65.481\cdot R'_{D}}{255}}&+&{\frac {128.553\cdot G'_{D}}{255}}&+&{\frac {24.966\cdot B'_{D}}{255}}\\C_{B}&=&128&-&{\frac {37.797\cdot R'_{D}}{255}}&-&{\frac {74.203\cdot G'_{D}}{255}}&+&{\frac {112.0\cdot B'_{D}}{255}}\\C_{R}&=&128&+&{\frac {112.0\cdot R'_{D}}{255}}&-&{\frac {93.786\cdot G'_{D}}{255}}&-&{\frac {18.214\cdot B'_{D}}{255}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>Y</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> </mtd> <mtd> <mn>16</mn> </mtd> <mtd> <mi></mi> <mo>+</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>65.481</mn> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> </mrow> <mn>255</mn> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>+</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>128.553</mn> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> </mrow> <mn>255</mn> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>+</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>24.966</mn> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> </mrow> <mn>255</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> </mtd> <mtd> <mn>128</mn> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>37.797</mn> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> </mrow> <mn>255</mn> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>74.203</mn> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> </mrow> <mn>255</mn> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>+</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>112.0</mn> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> </mrow> <mn>255</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> </mtd> <mtd> <mn>128</mn> </mtd> <mtd> <mi></mi> <mo>+</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>112.0</mn> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> </mrow> <mn>255</mn> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>93.786</mn> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> </mrow> <mn>255</mn> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>18.214</mn> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> </mrow> <mn>255</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}Y'&=&16&+&{\frac {65.481\cdot R'_{D}}{255}}&+&{\frac {128.553\cdot G'_{D}}{255}}&+&{\frac {24.966\cdot B'_{D}}{255}}\\C_{B}&=&128&-&{\frac {37.797\cdot R'_{D}}{255}}&-&{\frac {74.203\cdot G'_{D}}{255}}&+&{\frac {112.0\cdot B'_{D}}{255}}\\C_{R}&=&128&+&{\frac {112.0\cdot R'_{D}}{255}}&-&{\frac {93.786\cdot G'_{D}}{255}}&-&{\frac {18.214\cdot B'_{D}}{255}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f785ce9e4d2201cb2aaa90a9534f677a93c00d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.171ex; width:72.058ex; height:17.509ex;" alt="{\displaystyle {\begin{aligned}Y'&=&16&+&{\frac {65.481\cdot R'_{D}}{255}}&+&{\frac {128.553\cdot G'_{D}}{255}}&+&{\frac {24.966\cdot B'_{D}}{255}}\\C_{B}&=&128&-&{\frac {37.797\cdot R'_{D}}{255}}&-&{\frac {74.203\cdot G'_{D}}{255}}&+&{\frac {112.0\cdot B'_{D}}{255}}\\C_{R}&=&128&+&{\frac {112.0\cdot R'_{D}}{255}}&-&{\frac {93.786\cdot G'_{D}}{255}}&-&{\frac {18.214\cdot B'_{D}}{255}}\end{aligned}}}" /></span></dd></dl> <p>In the formula below, the scaling factors are multiplied by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {256}{255}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>256</mn> <mn>255</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {256}{255}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b19a49efcb5643336430d8623a142bd0f286a3cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:4.323ex; height:5.176ex;" alt="{\displaystyle {\frac {256}{255}}}" /></span>. This allows for the value 256 in the denominator, which can be calculated by a single <a href="/wiki/Bitshift" class="mw-redirect" title="Bitshift">bitshift</a>. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}Y'&=&16&+&{\frac {65.738\cdot R'_{D}}{256}}&+&{\frac {129.057\cdot G'_{D}}{256}}&+&{\frac {25.064\cdot B'_{D}}{256}}\\C_{B}&=&128&-&{\frac {37.945\cdot R'_{D}}{256}}&-&{\frac {74.494\cdot G'_{D}}{256}}&+&{\frac {112.439\cdot B'_{D}}{256}}\\C_{R}&=&128&+&{\frac {112.439\cdot R'_{D}}{256}}&-&{\frac {94.154\cdot G'_{D}}{256}}&-&{\frac {18.285\cdot B'_{D}}{256}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>Y</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> </mtd> <mtd> <mn>16</mn> </mtd> <mtd> <mi></mi> <mo>+</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>65.738</mn> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> </mrow> <mn>256</mn> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>+</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>129.057</mn> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> </mrow> <mn>256</mn> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>+</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>25.064</mn> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> </mrow> <mn>256</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> </mtd> <mtd> <mn>128</mn> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>37.945</mn> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> </mrow> <mn>256</mn> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>74.494</mn> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> </mrow> <mn>256</mn> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>+</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>112.439</mn> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> </mrow> <mn>256</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> </mtd> <mtd> <mn>128</mn> </mtd> <mtd> <mi></mi> <mo>+</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>112.439</mn> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> </mrow> <mn>256</mn> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>94.154</mn> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> </mrow> <mn>256</mn> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>18.285</mn> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> </mrow> <mn>256</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}Y'&=&16&+&{\frac {65.738\cdot R'_{D}}{256}}&+&{\frac {129.057\cdot G'_{D}}{256}}&+&{\frac {25.064\cdot B'_{D}}{256}}\\C_{B}&=&128&-&{\frac {37.945\cdot R'_{D}}{256}}&-&{\frac {74.494\cdot G'_{D}}{256}}&+&{\frac {112.439\cdot B'_{D}}{256}}\\C_{R}&=&128&+&{\frac {112.439\cdot R'_{D}}{256}}&-&{\frac {94.154\cdot G'_{D}}{256}}&-&{\frac {18.285\cdot B'_{D}}{256}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4b1f4181139f827eb5cdb9eddadb95bac38b1ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.171ex; width:74.383ex; height:17.509ex;" alt="{\displaystyle {\begin{aligned}Y'&=&16&+&{\frac {65.738\cdot R'_{D}}{256}}&+&{\frac {129.057\cdot G'_{D}}{256}}&+&{\frac {25.064\cdot B'_{D}}{256}}\\C_{B}&=&128&-&{\frac {37.945\cdot R'_{D}}{256}}&-&{\frac {74.494\cdot G'_{D}}{256}}&+&{\frac {112.439\cdot B'_{D}}{256}}\\C_{R}&=&128&+&{\frac {112.439\cdot R'_{D}}{256}}&-&{\frac {94.154\cdot G'_{D}}{256}}&-&{\frac {18.285\cdot B'_{D}}{256}}\end{aligned}}}" /></span></dd></dl> <p>If the R'd G'd B'd digital source includes footroom and headroom, the footroom offset 16 needs to be subtracted first from each signal, and a scale factor of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {255}{219}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>255</mn> <mn>219</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {255}{219}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ac03244408c2661328db939d24423c27a99ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:4.323ex; height:5.176ex;" alt="{\displaystyle {\frac {255}{219}}}" /></span> needs to be included in the equations. </p><p>The inverse transform is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}R'_{D}&=&{\frac {298.082\cdot Y'}{256}}&&&+&{\frac {408.583\cdot C_{R}}{256}}&-&222.921\\G'_{D}&=&{\frac {298.082\cdot Y'}{256}}&-&{\frac {100.291\cdot C_{B}}{256}}&-&{\frac {208.120\cdot C_{R}}{256}}&+&135.576\\B'_{D}&=&{\frac {298.082\cdot Y'}{256}}&+&{\frac {516.412\cdot C_{B}}{256}}&&&-&276.836\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>298.082</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>Y</mi> <mo>′</mo> </msup> </mrow> <mn>256</mn> </mfrac> </mrow> </mtd> <mtd></mtd> <mtd></mtd> <mtd> <mi></mi> <mo>+</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>408.583</mn> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mrow> <mn>256</mn> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> </mtd> <mtd> <mn>222.921</mn> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>298.082</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>Y</mi> <mo>′</mo> </msup> </mrow> <mn>256</mn> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>100.291</mn> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mrow> <mn>256</mn> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>208.120</mn> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mrow> <mn>256</mn> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>+</mo> </mtd> <mtd> <mn>135.576</mn> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>298.082</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>Y</mi> <mo>′</mo> </msup> </mrow> <mn>256</mn> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>+</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>516.412</mn> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mrow> <mn>256</mn> </mfrac> </mrow> </mtd> <mtd></mtd> <mtd></mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> </mtd> <mtd> <mn>276.836</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}R'_{D}&=&{\frac {298.082\cdot Y'}{256}}&&&+&{\frac {408.583\cdot C_{R}}{256}}&-&222.921\\G'_{D}&=&{\frac {298.082\cdot Y'}{256}}&-&{\frac {100.291\cdot C_{B}}{256}}&-&{\frac {208.120\cdot C_{R}}{256}}&+&135.576\\B'_{D}&=&{\frac {298.082\cdot Y'}{256}}&+&{\frac {516.412\cdot C_{B}}{256}}&&&-&276.836\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74e68b7c5b341625451ffc91ce65adc159d0299c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.838ex; width:77.529ex; height:16.843ex;" alt="{\displaystyle {\begin{aligned}R'_{D}&=&{\frac {298.082\cdot Y'}{256}}&&&+&{\frac {408.583\cdot C_{R}}{256}}&-&222.921\\G'_{D}&=&{\frac {298.082\cdot Y'}{256}}&-&{\frac {100.291\cdot C_{B}}{256}}&-&{\frac {208.120\cdot C_{R}}{256}}&+&135.576\\B'_{D}&=&{\frac {298.082\cdot Y'}{256}}&+&{\frac {516.412\cdot C_{B}}{256}}&&&-&276.836\end{aligned}}}" /></span></dd></dl> <p>The inverse transform without any roundings (using values coming directly from ITU-R BT.601 recommendation) is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}R'_{D}={\frac {255}{219}}\cdot (Y'-16)&&&&&&&+{\frac {255}{224}}\cdot 1.402\cdot (C_{R}-128)\\G'_{D}={\frac {255}{219}}\cdot (Y'-16)&-&{\frac {255}{224}}\cdot 1.772&&\cdot {\frac {0.114}{0.587}}&&\cdot (C_{B}-128)&-{\frac {255}{224}}\cdot 1.402\cdot {\frac {0.299}{0.587}}\cdot (C_{R}-128)\\B'_{D}={\frac {255}{219}}\cdot (Y'-16)&+&{\frac {255}{224}}\cdot 1.772&&&&\cdot (C_{B}-128)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>255</mn> <mn>219</mn> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msup> <mi>Y</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <mn>16</mn> <mo stretchy="false">)</mo> </mtd> <mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd> <mi></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>255</mn> <mn>224</mn> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mn>1.402</mn> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mn>128</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>255</mn> <mn>219</mn> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msup> <mi>Y</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <mn>16</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>255</mn> <mn>224</mn> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mn>1.772</mn> </mtd> <mtd></mtd> <mtd> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>0.114</mn> <mn>0.587</mn> </mfrac> </mrow> </mtd> <mtd></mtd> <mtd> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mn>128</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>255</mn> <mn>224</mn> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mn>1.402</mn> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>0.299</mn> <mn>0.587</mn> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mn>128</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>255</mn> <mn>219</mn> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msup> <mi>Y</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <mn>16</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>+</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>255</mn> <mn>224</mn> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mn>1.772</mn> </mtd> <mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mn>128</mn> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}R'_{D}={\frac {255}{219}}\cdot (Y'-16)&&&&&&&+{\frac {255}{224}}\cdot 1.402\cdot (C_{R}-128)\\G'_{D}={\frac {255}{219}}\cdot (Y'-16)&-&{\frac {255}{224}}\cdot 1.772&&\cdot {\frac {0.114}{0.587}}&&\cdot (C_{B}-128)&-{\frac {255}{224}}\cdot 1.402\cdot {\frac {0.299}{0.587}}\cdot (C_{R}-128)\\B'_{D}={\frac {255}{219}}\cdot (Y'-16)&+&{\frac {255}{224}}\cdot 1.772&&&&\cdot (C_{B}-128)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9cb70944b200b980dff2d402ff32ff2ac6db6c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.293ex; margin-bottom: -0.212ex; width:103.489ex; height:16.176ex;" alt="{\displaystyle {\begin{aligned}R'_{D}={\frac {255}{219}}\cdot (Y'-16)&&&&&&&+{\frac {255}{224}}\cdot 1.402\cdot (C_{R}-128)\\G'_{D}={\frac {255}{219}}\cdot (Y'-16)&-&{\frac {255}{224}}\cdot 1.772&&\cdot {\frac {0.114}{0.587}}&&\cdot (C_{B}-128)&-{\frac {255}{224}}\cdot 1.402\cdot {\frac {0.299}{0.587}}\cdot (C_{R}-128)\\B'_{D}={\frac {255}{219}}\cdot (Y'-16)&+&{\frac {255}{224}}\cdot 1.772&&&&\cdot (C_{B}-128)\end{aligned}}}" /></span></dd></dl> <p>This form of Y′CbCr is used primarily for older <a href="/wiki/Standard-definition_television" title="Standard-definition television">standard-definition television</a> systems, as it uses an RGB model that fits the phosphor emission characteristics of older CRTs. </p> <div class="mw-heading mw-heading3"><h3 id="ITU-R_BT.709_conversion">ITU-R BT.709 conversion</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=YCbCr&action=edit&section=8" title="Edit section: ITU-R BT.709 conversion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Rec._709" title="Rec. 709">Rec. 709</a></div><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:CIExy1931_Rec_2020_and_Rec_709.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/27/CIExy1931_Rec_2020_and_Rec_709.svg/250px-CIExy1931_Rec_2020_and_Rec_709.svg.png" decoding="async" width="220" height="250" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/27/CIExy1931_Rec_2020_and_Rec_709.svg/330px-CIExy1931_Rec_2020_and_Rec_709.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/27/CIExy1931_Rec_2020_and_Rec_709.svg/440px-CIExy1931_Rec_2020_and_Rec_709.svg.png 2x" data-file-width="476" data-file-height="540" /></a><figcaption><a href="/wiki/Rec._709" title="Rec. 709">Rec. 709</a> compared with <a href="/wiki/Rec._2020" title="Rec. 2020">Rec. 2020</a></figcaption></figure> <p>A different form of Y′CbCr is specified in the <a href="/wiki/ITU-R_BT.709" class="mw-redirect" title="ITU-R BT.709">ITU-R BT.709</a> standard, primarily for <a href="/wiki/HDTV" class="mw-redirect" title="HDTV">HDTV</a> use. The newer form is also used in some computer-display oriented applications, as <a href="/wiki/SRGB" title="SRGB">sRGB</a> (though the matrix used for sRGB form of YCbCr, <a href="/wiki/SRGB#sYCC_extended-gamut_transformation" title="SRGB">sYCC</a>, is still BT.601). In this case, the values of Kb and Kr differ, but the formulas for using them are the same. For ITU-R BT.709, the constants are: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}K_{B}&=0.0722\\K_{R}&=0.2126\\(K_{G}&=1-K_{B}-K_{R}=0.7152)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0.0722</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0.2126</mn> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">(</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>−<!-- − --></mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>=</mo> <mn>0.7152</mn> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}K_{B}&=0.0722\\K_{R}&=0.2126\\(K_{G}&=1-K_{B}-K_{R}=0.7152)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01351e397f9dd6f871df371222f0210ca45491d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:32.462ex; height:8.843ex;" alt="{\displaystyle {\begin{aligned}K_{B}&=0.0722\\K_{R}&=0.2126\\(K_{G}&=1-K_{B}-K_{R}=0.7152)\end{aligned}}}" /></span></dd></dl> <p>This form of Y′CbCr is based on an RGB model that more closely fits the phosphor emission characteristics of newer CRTs and other modern display equipment.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (April 2021)">citation needed</span></a></i>]</sup> The conversion matrices for BT.709 are these: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\begin{bmatrix}Y'\\C_{B}\\C_{R}\end{bmatrix}}&={\begin{bmatrix}0.2126&0.7152&0.0722\\-0.1146&-0.3854&0.5\\0.5&-0.4542&-0.0458\end{bmatrix}}{\begin{bmatrix}R'\\G'\\B'\end{bmatrix}}\\{\begin{bmatrix}R'\\G'\\B'\end{bmatrix}}&={\begin{bmatrix}1&0&1.5748\\1&-0.1873&-0.4681\\1&1.8556&0\end{bmatrix}}{\begin{bmatrix}Y'\\C_{B}\\C_{R}\end{bmatrix}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>Y</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0.2126</mn> </mtd> <mtd> <mn>0.7152</mn> </mtd> <mtd> <mn>0.0722</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>0.1146</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>0.3854</mn> </mtd> <mtd> <mn>0.5</mn> </mtd> </mtr> <mtr> <mtd> <mn>0.5</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>0.4542</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>0.0458</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>R</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>G</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>B</mi> <mo>′</mo> </msup> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>R</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>G</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>B</mi> <mo>′</mo> </msup> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1.5748</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>0.1873</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>0.4681</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1.8556</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>Y</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\begin{bmatrix}Y'\\C_{B}\\C_{R}\end{bmatrix}}&={\begin{bmatrix}0.2126&0.7152&0.0722\\-0.1146&-0.3854&0.5\\0.5&-0.4542&-0.0458\end{bmatrix}}{\begin{bmatrix}R'\\G'\\B'\end{bmatrix}}\\{\begin{bmatrix}R'\\G'\\B'\end{bmatrix}}&={\begin{bmatrix}1&0&1.5748\\1&-0.1873&-0.4681\\1&1.8556&0\end{bmatrix}}{\begin{bmatrix}Y'\\C_{B}\\C_{R}\end{bmatrix}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43a922ef5ea8209794e07f48c65aaa2609c88f90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.838ex; width:50.506ex; height:18.843ex;" alt="{\displaystyle {\begin{aligned}{\begin{bmatrix}Y'\\C_{B}\\C_{R}\end{bmatrix}}&={\begin{bmatrix}0.2126&0.7152&0.0722\\-0.1146&-0.3854&0.5\\0.5&-0.4542&-0.0458\end{bmatrix}}{\begin{bmatrix}R'\\G'\\B'\end{bmatrix}}\\{\begin{bmatrix}R'\\G'\\B'\end{bmatrix}}&={\begin{bmatrix}1&0&1.5748\\1&-0.1873&-0.4681\\1&1.8556&0\end{bmatrix}}{\begin{bmatrix}Y'\\C_{B}\\C_{R}\end{bmatrix}}\end{aligned}}}" /></span></dd></dl> <p>The definitions of the R', G', and B' signals also differ between BT.709 and BT.601, and differ within BT.601 depending on the type of TV system in use (625-line as in <a href="/wiki/PAL" title="PAL">PAL</a> and <a href="/wiki/SECAM" title="SECAM">SECAM</a> or 525-line as in <a href="/wiki/NTSC" title="NTSC">NTSC</a>), and differ further in other specifications. In different designs there are differences in the definitions of the R, G, and B chromaticity coordinates, the reference white point, the supported gamut range, the exact gamma pre-compensation functions for deriving R', G' and B' from R, G, and B, and in the scaling and offsets to be applied during conversion from R'G'B' to Y′CbCr. So proper conversion of Y′CbCr from one form to the other is not just a matter of inverting one matrix and applying the other. In fact, when Y′CbCr is designed ideally, the values of K<sub>B</sub> and K<sub>R</sub> are derived from the precise specification of the RGB color primary signals, so that the luma (Y′) signal corresponds as closely as possible to a <a href="/wiki/Gamma_correction" title="Gamma correction">gamma-adjusted</a> measurement of <a href="/wiki/Luminance" title="Luminance">luminance</a> (typically based on the <a href="/wiki/International_Commission_on_Illumination" title="International Commission on Illumination">CIE</a> 1931 measurements of the response of the human visual system to color stimuli).<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="ITU-R_BT.2020_conversion">ITU-R BT.2020 conversion</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=YCbCr&action=edit&section=9" title="Edit section: ITU-R BT.2020 conversion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Rec._2020" title="Rec. 2020">Rec. 2020</a></div> <p>The <a href="/wiki/ITU-R_BT.2020" class="mw-redirect" title="ITU-R BT.2020">ITU-R BT.2020</a> standard uses the same gamma function as BT.709. It defines:<sup id="cite_ref-Recommendation2020_6-0" class="reference"><a href="#cite_note-Recommendation2020-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p> <ul><li>Non-constant luminance Y'CbCr, similar to the previous entries, except with different <span class="texhtml mvar" style="font-style:italic;">K<sub>B</sub></span> and <span class="texhtml mvar" style="font-style:italic;">K<sub>R</sub></span>.</li> <li>Constant luminance Y'cCbcCrc, a formulation where Y' is the gamma-codec version of the true <a href="/wiki/Luminance" title="Luminance">luminance</a>.<sup id="cite_ref-Recommendation2020_6-1" class="reference"><a href="#cite_note-Recommendation2020-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup></li></ul> <p>For both, the coefficients derived from the primaries are: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}K_{B}&=0.0593\\K_{R}&=0.2627\\(K_{G}&=1-K_{B}-K_{R}=0.6780)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0.0593</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0.2627</mn> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">(</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>−<!-- − --></mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>=</mo> <mn>0.6780</mn> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}K_{B}&=0.0593\\K_{R}&=0.2627\\(K_{G}&=1-K_{B}-K_{R}=0.6780)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a4a827dd9f1f161b43e25569aa1c610725efbe5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:32.462ex; height:8.843ex;" alt="{\displaystyle {\begin{aligned}K_{B}&=0.0593\\K_{R}&=0.2627\\(K_{G}&=1-K_{B}-K_{R}=0.6780)\end{aligned}}}" /></span></dd></dl> <p>For NCL, the definition is classical: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y'=0.2627R'+0.6780G'+0.0593B'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>Y</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0.2627</mn> <msup> <mi>R</mi> <mo>′</mo> </msup> <mo>+</mo> <mn>0.6780</mn> <msup> <mi>G</mi> <mo>′</mo> </msup> <mo>+</mo> <mn>0.0593</mn> <msup> <mi>B</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y'=0.2627R'+0.6780G'+0.0593B'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b06d7060ac9d2da40c6bd20df8c67d673799b11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:38.15ex; height:2.676ex;" alt="{\displaystyle Y'=0.2627R'+0.6780G'+0.0593B'}" /></span>; <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Cb=(B'-Y')/1.8814}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mi>b</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <msup> <mi>Y</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>1.8814</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Cb=(B'-Y')/1.8814}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2f5586e6be5eb5f934dab7b79f99f927ebed35d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.167ex; height:3.009ex;" alt="{\displaystyle Cb=(B'-Y')/1.8814}" /></span>; <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Cr=(R'-Y')/1.4746}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mi>r</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>R</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <msup> <mi>Y</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>1.4746</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Cr=(R'-Y')/1.4746}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da5a2cd4a25ec64cac25bcde012c661c138ac8c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.218ex; height:3.009ex;" alt="{\displaystyle Cr=(R'-Y')/1.4746}" /></span>. The encoding conversion can, as usual, be written as a matrix.<sup id="cite_ref-Recommendation2020_6-2" class="reference"><a href="#cite_note-Recommendation2020-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> The decoding matrix for BT.2020-NCL is this with 14 decimal places: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\begin{bmatrix}R\\G\\B\end{bmatrix}}&={\begin{bmatrix}1&0&1.4746\\1&-0.16455312684366&-0.57135312684366\\1&1.8814&0\end{bmatrix}}{\begin{bmatrix}Y'\\C_{B}\\C_{R}\end{bmatrix}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>R</mi> </mtd> </mtr> <mtr> <mtd> <mi>G</mi> </mtd> </mtr> <mtr> <mtd> <mi>B</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1.4746</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>0.16455312684366</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>0.57135312684366</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1.8814</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>Y</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\begin{bmatrix}R\\G\\B\end{bmatrix}}&={\begin{bmatrix}1&0&1.4746\\1&-0.16455312684366&-0.57135312684366\\1&1.8814&0\end{bmatrix}}{\begin{bmatrix}Y'\\C_{B}\\C_{R}\end{bmatrix}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a875fb1d6f42a721bf6c4f408ebd988d814bae58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:65.966ex; height:9.176ex;" alt="{\displaystyle {\begin{aligned}{\begin{bmatrix}R\\G\\B\end{bmatrix}}&={\begin{bmatrix}1&0&1.4746\\1&-0.16455312684366&-0.57135312684366\\1&1.8814&0\end{bmatrix}}{\begin{bmatrix}Y'\\C_{B}\\C_{R}\end{bmatrix}}\end{aligned}}}" /></span></dd></dl> <p>The smaller values in the matrix are not rounded; they are precise values. For systems with limited precision (8 or 10 bit, for example) a lower precision of the above matrix could be used, for example, retaining only 6 digits after decimal point.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p><p>The CL version, YcCbcCrc, codes:<sup id="cite_ref-Recommendation2020_6-3" class="reference"><a href="#cite_note-Recommendation2020-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y'c=(0.2627R+0.6780G+0.0593B)'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>Y</mi> <mo>′</mo> </msup> <mi>c</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0.2627</mn> <mi>R</mi> <mo>+</mo> <mn>0.6780</mn> <mi>G</mi> <mo>+</mo> <mn>0.0593</mn> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y'c=(0.2627R+0.6780G+0.0593B)'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e0cb9605529588eaeb41ac80ce340e3e33bbe84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.597ex; height:3.009ex;" alt="{\displaystyle Y'c=(0.2627R+0.6780G+0.0593B)'}" /></span>. This is the gamma function applied to the true luminance calculated from linear RGB.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Cbc=(B'-Y'c)/(-2Nb)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mi>b</mi> <mi>c</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <msup> <mi>Y</mi> <mo>′</mo> </msup> <mi>c</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mi>N</mi> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Cbc=(B'-Y'c)/(-2Nb)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42d9c79dffab135f45c0bd586d9ca58a115b64f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.563ex; height:3.009ex;" alt="{\displaystyle Cbc=(B'-Y'c)/(-2Nb)}" /></span> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B'<Y'c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>B</mi> <mo>′</mo> </msup> <mo><</mo> <msup> <mi>Y</mi> <mo>′</mo> </msup> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B'<Y'c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a842bb149cceaa923ca06a17e39b7611aae968a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.139ex; height:2.509ex;" alt="{\displaystyle B'<Y'c}" /></span> otherwise <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (B'-Y'c)/(2Pb)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <msup> <mi>Y</mi> <mo>′</mo> </msup> <mi>c</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>P</mi> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (B'-Y'c)/(2Pb)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61a0943a2747919d9d48b80eb63d1d7599b8350d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.567ex; height:3.009ex;" alt="{\displaystyle (B'-Y'c)/(2Pb)}" /></span>. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Nb}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Nb}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b643c482bc8befa6fcda7b8fb24e9384d265fb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.061ex; height:2.176ex;" alt="{\displaystyle Nb}" /></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Pb}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Pb}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fba1480bcc68dc55fccaf02b8900ab393d5a1d50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.743ex; height:2.176ex;" alt="{\displaystyle Pb}" /></span> are the theoretical minimum and maximum of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (B'-Y'c)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <msup> <mi>Y</mi> <mo>′</mo> </msup> <mi>c</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (B'-Y'c)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9b9e03ebefeea40a6b92ac096e3427bbabc3ca3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.69ex; height:3.009ex;" alt="{\displaystyle (B'-Y'c)}" /></span> corresponding to the gamut. The rounded "practical" values are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Pb=0.7910}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mi>b</mi> <mo>=</mo> <mn>0.7910</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Pb=0.7910}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a38e5a2aa38c11a0f011d8f71ac090076dd91b80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.301ex; height:2.176ex;" alt="{\displaystyle Pb=0.7910}" /></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Nb=-0.9702}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mi>b</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mn>0.9702</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Nb=-0.9702}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98f721f22f788ab05acc5af17c5eed1d6ae32332" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:14.427ex; height:2.343ex;" alt="{\displaystyle Nb=-0.9702}" /></span>. The full derivation can be found in the recommendation.<sup id="cite_ref-Recommendation2020_6-4" class="reference"><a href="#cite_note-Recommendation2020-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Crc=(R'-Y'c)/(-2Nr)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mi>r</mi> <mi>c</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>R</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <msup> <mi>Y</mi> <mo>′</mo> </msup> <mi>c</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mi>N</mi> <mi>r</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Crc=(R'-Y'c)/(-2Nr)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f424a0132d45bdf1a997f7d6a53bdd11d854660" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.665ex; height:3.009ex;" alt="{\displaystyle Crc=(R'-Y'c)/(-2Nr)}" /></span> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R'<Y'c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>R</mi> <mo>′</mo> </msup> <mo><</mo> <msup> <mi>Y</mi> <mo>′</mo> </msup> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R'<Y'c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d57d2e7873cdbeee0889896e1804aaa4214693cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.139ex; height:2.509ex;" alt="{\displaystyle R'<Y'c}" /></span> otherwise <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (R'-Y'c)/(2Pr)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>R</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <msup> <mi>Y</mi> <mo>′</mo> </msup> <mi>c</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>P</mi> <mi>r</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (R'-Y'c)/(2Pr)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/633dc58e12bd42e7a869cd33b2a0981a677b79bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.618ex; height:3.009ex;" alt="{\displaystyle (R'-Y'c)/(2Pr)}" /></span>. Again, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Pr}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Pr}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7682249689adb4cb4ebf84b74a6f3afe0dd4a825" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.794ex; height:2.176ex;" alt="{\displaystyle Pr}" /></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Nr}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Nr}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bec4014fef30519bdc16e190b073458c621918f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.112ex; height:2.176ex;" alt="{\displaystyle Nr}" /></span> are theoretical limits. The rounded values are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Pr=0.4969}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mi>r</mi> <mo>=</mo> <mn>0.4969</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Pr=0.4969}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1aebe1ac95fac7521fd96fa2b09e4cae83314883" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.352ex; height:2.176ex;" alt="{\displaystyle Pr=0.4969}" /></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Nr=-0.8591}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mi>r</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mn>0.8591</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Nr=-0.8591}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb5161dc4da57df3f887733bb4ba9ef14f775217" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:14.478ex; height:2.343ex;" alt="{\displaystyle Nr=-0.8591}" /></span>.</li></ul> <p>The CL function can be used when preservation of luminance is of primary importance (see: <a href="/wiki/Chroma_subsampling#Gamma_luminance_error" title="Chroma subsampling">Chroma subsampling § Gamma luminance error</a>), or when "there is an expectation of improved coding efficiency for delivery." The specification refers to Report ITU-R BT.2246 on this matter.<sup id="cite_ref-Recommendation2020_6-5" class="reference"><a href="#cite_note-Recommendation2020-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> BT.2246 states that CL has improved compression efficiency and luminance preservation, but NCL will be more familiar to a staff that has previously handled color mixing and other production practices in HDTV YCbCr.<sup id="cite_ref-BT2246_8-0" class="reference"><a href="#cite_note-BT2246-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p><p>BT.2020 does not define <a href="/wiki/High-dynamic-range_video#Perceptual_quantizer" class="mw-redirect" title="High-dynamic-range video">PQ</a> and thus HDR, it is further defined in SMPTE ST 2084 and <a href="/wiki/BT.2100" class="mw-redirect" title="BT.2100">BT.2100</a>. BT.2100 will introduce the use of <a href="/wiki/ICtCp" title="ICtCp">IC<sub>T</sub>C<sub>P</sub></a>, a semi-perceptual colorspace derived from linear RGB with good hue linearity. It is "near-constant luminance".<sup id="cite_ref-chromaSub_9-0" class="reference"><a href="#cite_note-chromaSub-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="SMPTE_240M_conversion">SMPTE 240M conversion</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=YCbCr&action=edit&section=10" title="Edit section: SMPTE 240M conversion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Multiple_sub-Nyquist_sampling_encoding" title="Multiple sub-Nyquist sampling encoding">Multiple sub-Nyquist sampling encoding</a></div> <p>The <a href="/wiki/SMPTE_240M" class="mw-redirect" title="SMPTE 240M">SMPTE 240M</a> standard (used on the <a href="/wiki/Multiple_sub-Nyquist_sampling_encoding" title="Multiple sub-Nyquist sampling encoding">MUSE</a> analog HD television system) defines YCC with these coefficients: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}K_{B}&=0.087\\K_{R}&=0.212\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0.087</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0.212</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}K_{B}&=0.087\\K_{R}&=0.212\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5131ade25aba1342d638be5896a66dff3a90a747" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:12.599ex; height:5.843ex;" alt="{\displaystyle {\begin{aligned}K_{B}&=0.087\\K_{R}&=0.212\end{aligned}}}" /></span></dd></dl> <p>The coefficients are derived from SMPTE 170M primaries and white point, as used in 240M standard. </p> <div class="mw-heading mw-heading3"><h3 id="JPEG_conversion">JPEG conversion</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=YCbCr&action=edit&section=11" title="Edit section: JPEG conversion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/JFIF" class="mw-redirect" title="JFIF">JFIF</a> usage of <a href="/wiki/JPEG" title="JPEG">JPEG</a> supports a modified Rec. 601 Y′CbCr where Y′, C<sub>B</sub> and C<sub>R</sub> have the full 8-bit range of [0...255].<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> Below are the conversion equations expressed to six decimal digits of precision. (For ideal equations, see ITU-T T.871.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup>) Note that for the following formula, the range of each input (R,G,B) is also the full 8-bit range of [0...255]. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}Y'&=&0&+(0.299&\cdot R'_{D})&+(0.587&\cdot G'_{D})&+(0.114&\cdot B'_{D})\\C_{B}&=&128&-(0.168736&\cdot R'_{D})&-(0.331264&\cdot G'_{D})&+(0.5&\cdot B'_{D})\\C_{R}&=&128&+(0.5&\cdot R'_{D})&-(0.418688&\cdot G'_{D})&-(0.081312&\cdot B'_{D})\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>Y</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi></mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>0.299</mn> </mtd> <mtd> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>0.587</mn> </mtd> <mtd> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>0.114</mn> </mtd> <mtd> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> </mtd> <mtd> <mn>128</mn> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mn>0.168736</mn> </mtd> <mtd> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mn>0.331264</mn> </mtd> <mtd> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>0.5</mn> </mtd> <mtd> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> </mtd> <mtd> <mn>128</mn> </mtd> <mtd> <mi></mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>0.5</mn> </mtd> <mtd> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mn>0.418688</mn> </mtd> <mtd> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mn>0.081312</mn> </mtd> <mtd> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}Y'&=&0&+(0.299&\cdot R'_{D})&+(0.587&\cdot G'_{D})&+(0.114&\cdot B'_{D})\\C_{B}&=&128&-(0.168736&\cdot R'_{D})&-(0.331264&\cdot G'_{D})&+(0.5&\cdot B'_{D})\\C_{R}&=&128&+(0.5&\cdot R'_{D})&-(0.418688&\cdot G'_{D})&-(0.081312&\cdot B'_{D})\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/360de2ab4f6e309df6b8945058279b5b3b29ad6c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:80.789ex; height:9.843ex;" alt="{\displaystyle {\begin{aligned}Y'&=&0&+(0.299&\cdot R'_{D})&+(0.587&\cdot G'_{D})&+(0.114&\cdot B'_{D})\\C_{B}&=&128&-(0.168736&\cdot R'_{D})&-(0.331264&\cdot G'_{D})&+(0.5&\cdot B'_{D})\\C_{R}&=&128&+(0.5&\cdot R'_{D})&-(0.418688&\cdot G'_{D})&-(0.081312&\cdot B'_{D})\end{aligned}}}" /></span></dd></dl> <p>And back: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}R'_{D}&=&Y'&&&+1.402&\cdot (C_{R}-128)\\G'_{D}&=&Y'&-0.344136&\cdot (C_{B}-128)&-0.714136&\cdot (C_{R}-128)\\B'_{D}&=&Y'&+1.772&\cdot (C_{B}-128)&\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> </mtd> <mtd> <msup> <mi>Y</mi> <mo>′</mo> </msup> </mtd> <mtd></mtd> <mtd></mtd> <mtd> <mi></mi> <mo>+</mo> <mn>1.402</mn> </mtd> <mtd> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mn>128</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> </mtd> <mtd> <msup> <mi>Y</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> <mn>0.344136</mn> </mtd> <mtd> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mn>128</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> <mn>0.714136</mn> </mtd> <mtd> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mn>128</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>′</mo> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> </mtd> <mtd> <msup> <mi>Y</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>+</mo> <mn>1.772</mn> </mtd> <mtd> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mn>128</mn> <mo stretchy="false">)</mo> </mtd> <mtd></mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}R'_{D}&=&Y'&&&+1.402&\cdot (C_{R}-128)\\G'_{D}&=&Y'&-0.344136&\cdot (C_{B}-128)&-0.714136&\cdot (C_{R}-128)\\B'_{D}&=&Y'&+1.772&\cdot (C_{B}-128)&\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16b6c7a2fed82e2b46729873c51268ed32c10832" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:70.244ex; height:9.843ex;" alt="{\displaystyle {\begin{aligned}R'_{D}&=&Y'&&&+1.402&\cdot (C_{R}-128)\\G'_{D}&=&Y'&-0.344136&\cdot (C_{B}-128)&-0.714136&\cdot (C_{R}-128)\\B'_{D}&=&Y'&+1.772&\cdot (C_{B}-128)&\end{aligned}}}" /></span></dd></dl> <p>The above conversion is identical to <a href="/wiki/SYCC" title="SYCC">sYCC</a> when the input is given as sRGB, except that IEC 61966-2-1:1999/Amd1:2003 only gives four decimal digits. </p><p>JPEG also defines a "YCCK" format from Adobe for <a href="/wiki/CMYK" class="mw-redirect" title="CMYK">CMYK</a> input. In this format, the "K" value is passed as-is, while CMY are used to derive YCbCr with the above matrix by assuming <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=1-C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R=1-C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68364f30b8e492566e0ed5073202a3e411898c34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.632ex; height:2.343ex;" alt="{\displaystyle R=1-C}" /></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G=1-M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>=</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G=1-M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a29d60179f6ba285e018e0209ff839897e475edb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.37ex; height:2.343ex;" alt="{\displaystyle G=1-M}" /></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=1-Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=1-Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c559567b4ba707a718fa93e44ad81eb2e6d51c8e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.639ex; height:2.343ex;" alt="{\displaystyle B=1-Y}" /></span>. As a result, a similar set of subsampling techniques can be used.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Coefficients_for_BT.470-6_System_B,_G_primaries"><span id="Coefficients_for_BT.470-6_System_B.2C_G_primaries"></span>Coefficients for BT.470-6 System B, G primaries</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=YCbCr&action=edit&section=12" title="Edit section: Coefficients for BT.470-6 System B, G primaries"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}K_{B}&=0.0713\\K_{R}&=0.2220\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0.0713</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0.2220</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}K_{B}&=0.0713\\K_{R}&=0.2220\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e53f0708898ffd74564f81e72390bfdc0d9e229" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:13.762ex; height:5.843ex;" alt="{\displaystyle {\begin{aligned}K_{B}&=0.0713\\K_{R}&=0.2220\end{aligned}}}" /></span></dd></dl> <p>These coefficients are not in use and were never in use.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Chromaticity-derived_luminance_systems">Chromaticity-derived luminance systems</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=YCbCr&action=edit&section=13" title="Edit section: Chromaticity-derived luminance systems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>H.273 also describes constant and non-constant luminance systems which are derived strictly from primaries and white point, so that situations like sRGB/BT.709 default primaries of JPEG that use BT.601 matrix (that is derived from BT.470-6 System M) do not happen. </p> <div class="mw-heading mw-heading2"><h2 id="Numerical_approximations">Numerical approximations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=YCbCr&action=edit&section=14" title="Edit section: Numerical approximations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Prior to the development of fast <a href="/wiki/SIMD" class="mw-redirect" title="SIMD">SIMD</a> <a href="/wiki/Floating-point" class="mw-redirect" title="Floating-point">floating-point</a> processors, most digital implementations of RGB → Y′UV used integer math, in particular <a href="/wiki/Fixed-point_arithmetic" title="Fixed-point arithmetic">fixed-point</a> approximations. Approximation means that the precision of the used numbers (input data, output data and constant values) is limited, and thus a precision loss of typically about the last binary digit is accepted by whoever makes use of that option in typically a trade-off to improved computation speeds. </p><p>Y′ values are conventionally shifted and scaled to the range [16, 235] (referred to as studio swing or "TV levels") rather than using the full range of [0, 255] (referred to as full swing or "PC levels"). This practice was standardized in SMPTE-125M in order to accommodate signal overshoots ("ringing") due to filtering.<sup id="cite_ref-Keith_14-0" class="reference"><a href="#cite_note-Keith-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> U and V values, which may be positive or negative, are summed with 128 to make them always positive, giving a studio range of 16–240 for U and V. (These ranges are important in video editing and production, since using the wrong range will result either in an image with "clipped" blacks and whites, or a low-contrast image.) </p> <div class="mw-heading mw-heading3"><h3 id="Approximate_8-bit_matrices_for_BT.601">Approximate 8-bit matrices for BT.601</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=YCbCr&action=edit&section=15" title="Edit section: Approximate 8-bit matrices for BT.601"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>These matrices round all factors to the closest 1/256 unit. As a result, only one 16-bit intermediate value is formed for each component, and a simple right-shift with rounding <code class="mw-highlight mw-highlight-lang-text mw-content-ltr" style="" dir="ltr">(x + 128) >> 8</code> can take care of the division.<sup id="cite_ref-Keith_14-1" class="reference"><a href="#cite_note-Keith-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p><p>For studio-swing: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}Y'\\C_{B}\\C_{R}\end{bmatrix}}={\frac {1}{256}}{\begin{bmatrix}66&129&25\\-38&-74&112\\112&-94&-18\end{bmatrix}}{\begin{bmatrix}R'\\G'\\B'\end{bmatrix}}+{\begin{bmatrix}16\\128\\128\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>Y</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>256</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>66</mn> </mtd> <mtd> <mn>129</mn> </mtd> <mtd> <mn>25</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>38</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>74</mn> </mtd> <mtd> <mn>112</mn> </mtd> </mtr> <mtr> <mtd> <mn>112</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>94</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>18</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>R</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>G</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>B</mi> <mo>′</mo> </msup> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>16</mn> </mtd> </mtr> <mtr> <mtd> <mn>128</mn> </mtd> </mtr> <mtr> <mtd> <mn>128</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}Y'\\C_{B}\\C_{R}\end{bmatrix}}={\frac {1}{256}}{\begin{bmatrix}66&129&25\\-38&-74&112\\112&-94&-18\end{bmatrix}}{\begin{bmatrix}R'\\G'\\B'\end{bmatrix}}+{\begin{bmatrix}16\\128\\128\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4c0d39556a37fb7d9a64e447beb76733eceed30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:51.855ex; height:9.176ex;" alt="{\displaystyle {\begin{bmatrix}Y'\\C_{B}\\C_{R}\end{bmatrix}}={\frac {1}{256}}{\begin{bmatrix}66&129&25\\-38&-74&112\\112&-94&-18\end{bmatrix}}{\begin{bmatrix}R'\\G'\\B'\end{bmatrix}}+{\begin{bmatrix}16\\128\\128\end{bmatrix}}}" /></span></dd></dl> <p>For full-swing: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}Y'\\C_{B}\\C_{R}\end{bmatrix}}={\frac {1}{256}}{\begin{bmatrix}77&150&29\\-43&-84&127\\127&-106&-21\end{bmatrix}}{\begin{bmatrix}R'\\G'\\B'\end{bmatrix}}+{\begin{bmatrix}0\\128\\128\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>Y</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>256</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>77</mn> </mtd> <mtd> <mn>150</mn> </mtd> <mtd> <mn>29</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>43</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>84</mn> </mtd> <mtd> <mn>127</mn> </mtd> </mtr> <mtr> <mtd> <mn>127</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>106</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>21</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>R</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>G</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>B</mi> <mo>′</mo> </msup> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>128</mn> </mtd> </mtr> <mtr> <mtd> <mn>128</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}Y'\\C_{B}\\C_{R}\end{bmatrix}}={\frac {1}{256}}{\begin{bmatrix}77&150&29\\-43&-84&127\\127&-106&-21\end{bmatrix}}{\begin{bmatrix}R'\\G'\\B'\end{bmatrix}}+{\begin{bmatrix}0\\128\\128\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9986ff83e8b19e8050626f337dc43742acaa7b21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:53.018ex; height:9.176ex;" alt="{\displaystyle {\begin{bmatrix}Y'\\C_{B}\\C_{R}\end{bmatrix}}={\frac {1}{256}}{\begin{bmatrix}77&150&29\\-43&-84&127\\127&-106&-21\end{bmatrix}}{\begin{bmatrix}R'\\G'\\B'\end{bmatrix}}+{\begin{bmatrix}0\\128\\128\end{bmatrix}}}" /></span></dd></dl> <p>Google's <a href="/wiki/Skia_Graphics_Engine" title="Skia Graphics Engine">Skia</a> used to use the above 8-bit full-range matrix, resulting in a slight greening effect on JPEG images encoded by Android devices, more noticeable on repeated saving. The issue was fixed in 2016, when the more accurate version was used instead. Due to SIMD optimizations in <a href="/wiki/Libjpeg-turbo" class="mw-redirect" title="Libjpeg-turbo">libjpeg-turbo</a>, the accurate version is actually faster.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Packed_pixel_formats_and_conversion">Packed pixel formats and conversion</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=YCbCr&action=edit&section=16" title="Edit section: Packed pixel formats and conversion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Packed_pixel" title="Packed pixel">Packed pixel</a></div> <p>RGB files are typically encoded in 8, 12, 16 or 24 bits per pixel. In these examples, we will assume 24 bits per pixel, which is written as <a href="/wiki/RGB888" class="mw-redirect" title="RGB888">RGB888</a>. The standard byte format is simply <code>r0, g0, b0, r1, g1, b1, ...</code>. </p><p>YCbCr <a href="/wiki/Packed_pixel" title="Packed pixel">Packed pixel</a> formats are often referred to as "YUV". Such files can be encoded in 12, 16 or 24 bits per pixel. Depending on subsampling, the formats can largely be described as 4:4:4, 4:2:2, and 4:2:0p. The apostrophe after the Y is often omitted, as is the "p" (for planar) after YUV420p. In terms of actual file formats, 4:2:0 is the most common, as the data is more reduced, and the file extension is usually ".YUV". The relation between data rate and sampling (A:B:C) is defined by the ratio between Y to U and V channel.<sup id="cite_ref-msdn.types_16-0" class="reference"><a href="#cite_note-msdn.types-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-msdn.8rec_17-0" class="reference"><a href="#cite_note-msdn.8rec-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> The notation of "YUV" followed by three numbers is vague: the three numbers could refer to the subsampling (as is done in "YUV420"), or it could refer to bit depth in each channel (as is done in "YUV565"). The unambiguous way to refer to these formats is via the <a href="/wiki/FourCC" title="FourCC">FourCC</a> code.<sup id="cite_ref-v4l2_18-0" class="reference"><a href="#cite_note-v4l2-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> </p><p>To convert from RGB to YUV or back, it is simplest to use RGB888 and 4:4:4. For 4:1:1, 4:2:2 and 4:2:0, the bytes need to be converted to 4:4:4 first. </p> <div class="mw-heading mw-heading3"><h3 id="4:4:4">4:4:4</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=YCbCr&action=edit&section=17" title="Edit section: 4:4:4"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>4:4:4 is straightforward, as no pixel-grouping is done: the difference lies solely in how many bits each channel is given, and their arrangement. The basic <code class="mw-highlight mw-highlight-lang-text mw-content-ltr" style="" dir="ltr">YUV3</code> scheme uses 3 bytes per pixel, with the order <code>y0, u0, v0, y1, u1, v1</code> (using "u" for Cb and "v" for Cr; the same applies to content below).<sup id="cite_ref-v4l2_18-1" class="reference"><a href="#cite_note-v4l2-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> In computers, it is more common to see a <code class="mw-highlight mw-highlight-lang-text mw-content-ltr" style="" dir="ltr">AYUV</code> format, which adds an alpha channel and goes <code>a0, y0, u0, v0, a1, y1, u1, v1</code>, because groups of 32-bits are easier to deal with.<sup id="cite_ref-msdn.types_16-1" class="reference"><a href="#cite_note-msdn.types-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="4:2:2">4:2:2</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=YCbCr&action=edit&section=18" title="Edit section: 4:2:2"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>4:2:2 groups 2 pixels together horizontally in each conceptual "container". Two main arrangements are:<sup id="cite_ref-msdn.8rec_17-1" class="reference"><a href="#cite_note-msdn.8rec-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p> <ul><li>YUY2: also called YUYV, runs in the format <code>y0, u, y1, v</code>.<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Yuv422_yuy2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/53/Yuv422_yuy2.svg/250px-Yuv422_yuy2.svg.png" decoding="async" width="220" height="38" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/53/Yuv422_yuy2.svg/330px-Yuv422_yuy2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/53/Yuv422_yuy2.svg/500px-Yuv422_yuy2.svg.png 2x" data-file-width="711" data-file-height="124" /></a><figcaption>YUY2 format</figcaption></figure></li> <li>UYVY: the byte-swapped reverse of YUY2, runs in the format <code>u, y0, v, y1</code>.</li></ul> <div class="mw-heading mw-heading3"><h3 id="4:1:1">4:1:1</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=YCbCr&action=edit&section=19" title="Edit section: 4:1:1"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>4:1:1 is rarely used. Pixels are in horizontal groups of 4.<sup id="cite_ref-msdn.8rec_17-2" class="reference"><a href="#cite_note-msdn.8rec-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="4:2:0">4:2:0</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=YCbCr&action=edit&section=20" title="Edit section: 4:2:0"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>4:2:0 is very commonly used. The main formats are IMC2, IMC4, YV12, and NV12.<sup id="cite_ref-msdn.8rec_17-3" class="reference"><a href="#cite_note-msdn.8rec-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> All of these four formats are "planar", meaning that the Y, U, and V values are grouped together instead of interspersed. They all occupy 12 bits per pixel, assuming a 8-bit channel. </p> <ul><li>IMC2 first lays the full images out in Y. It then arranges each line of chroma in the order of V<sub>0</sub> ... V<sub>n</sub>, U<sub>0</sub> ... U<sub>n</sub>, where <i>n</i> is the number of chroma samples per line, equal to half the width of Y.</li> <li>IMC4 is similar to IMC2, except it runs in U<sub>0</sub> ... U<sub>n</sub>, V<sub>0</sub> ... V<sub>n</sub>.</li> <li>I420 is a simpler design and is more commonly used. The entire image in Y is written out, followed by the image in U, then by the whole image in V.<figure class="mw-halign-center" typeof="mw:File/Thumb"><a href="/wiki/File:Yuv420.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0d/Yuv420.svg/960px-Yuv420.svg.png" decoding="async" width="800" height="359" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0d/Yuv420.svg/1200px-Yuv420.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0d/Yuv420.svg/1600px-Yuv420.svg.png 2x" data-file-width="972" data-file-height="436" /></a><figcaption>I420 layout</figcaption></figure></li> <li>YV12 follows the same general design as I420, only the order between the U and V images is flipped.<sup id="cite_ref-vlc-yuv420_19-0" class="reference"><a href="#cite_note-vlc-yuv420-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup></li> <li>NV12 is possibly the most commonly-used 8-bit 4:2:0 format. It is the default for <a href="/wiki/Android_(operating_system)" title="Android (operating system)">Android</a> camera preview.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> The entire image in Y is written out, followed by interleaved lines that go U<sub>0</sub>, V<sub>0</sub>, U<sub>1</sub>, V<sub>1</sub>, etc.</li></ul> <p>There are also "tiled" variants of planar formats.<sup id="cite_ref-v4l2.planar_21-0" class="reference"><a href="#cite_note-v4l2.planar-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=YCbCr&action=edit&section=21" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://discoverybiz.net/enu0/faq/faq_YUV_YCbCr_YPbPr.html">"YUV, YCbCr, YPbPr colour spaces"</a>. <i>DiscoveryBiz.Net</i>. 2024<span class="reference-accessdate">. Retrieved <span class="nowrap">2021-04-16</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=DiscoveryBiz.Net&rft.atitle=YUV%2C+YCbCr%2C+YPbPr+colour+spaces&rft.date=2024&rft_id=https%3A%2F%2Fdiscoverybiz.net%2Fenu0%2Ffaq%2Ffaq_YUV_YCbCr_YPbPr.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AYCbCr" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.itu.int/rec/T-REC-H.273/en">"H.273: Coding-independent code points for video signal type identification"</a>. <i>www.itu.int</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2025-01-06</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.itu.int&rft.atitle=H.273%3A+Coding-independent+code+points+for+video+signal+type+identification&rft_id=https%3A%2F%2Fwww.itu.int%2Frec%2FT-REC-H.273%2Fen&rfr_id=info%3Asid%2Fen.wikipedia.org%3AYCbCr" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">e.g. the <a href="/wiki/MPEG-2" title="MPEG-2">MPEG-2</a> specification, ITU-T <a href="/wiki/H.262" class="mw-redirect" title="H.262">H.262</a> 2000 E pg. 44</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://docs.microsoft.com/en-US/windows/win32/api/mfobjects/ne-mfobjects-mfnominalrange">"MFNominalRange (mfobjects.h) - Win32 apps"</a>. <i>docs.microsoft.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">10 November</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=docs.microsoft.com&rft.atitle=MFNominalRange+%28mfobjects.h%29+-+Win32+apps&rft_id=https%3A%2F%2Fdocs.microsoft.com%2Fen-US%2Fwindows%2Fwin32%2Fapi%2Fmfobjects%2Fne-mfobjects-mfnominalrange&rfr_id=info%3Asid%2Fen.wikipedia.org%3AYCbCr" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">Charles Poynton, <i>Digital Video and HDTV</i>, Chapter 24, pp. 291–292, <a href="/wiki/Morgan_Kaufmann" class="mw-redirect" title="Morgan Kaufmann">Morgan Kaufmann</a>, 2003.</span> </li> <li id="cite_note-Recommendation2020-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-Recommendation2020_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Recommendation2020_6-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Recommendation2020_6-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Recommendation2020_6-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Recommendation2020_6-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Recommendation2020_6-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.itu.int/rec/R-REC-BT.2020/en">"BT.2020 : Parameter values for ultra-high definition television systems for production and international programme exchange"</a>. <a href="/wiki/International_Telecommunication_Union" title="International Telecommunication Union">International Telecommunication Union</a>. June 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-09-08</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BT.2020+%3A+Parameter+values+for+ultra-high+definition+television+systems+for+production+and+international+programme+exchange&rft.date=2014-06&rft_id=https%3A%2F%2Fwww.itu.int%2Frec%2FR-REC-BT.2020%2Fen&rfr_id=info%3Asid%2Fen.wikipedia.org%3AYCbCr" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=13441&lang=ru">"ITU-T H Suppl. 18"</a>. October 2017. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/11.1002%2F1000%2F13441">11.1002/1000/13441</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=ITU-T+H+Suppl.+18&rft.date=2017-10&rft_id=info%3Ahdl%2F11.1002%2F1000%2F13441&rft_id=https%3A%2F%2Fwww.itu.int%2FITU-T%2Frecommendations%2Frec.aspx%3Frec%3D13441%26lang%3Dru&rfr_id=info%3Asid%2Fen.wikipedia.org%3AYCbCr" class="Z3988"></span></span> </li> <li id="cite_note-BT2246-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-BT2246_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.itu.int/pub/R-REP-BT.2246-8-2023">"BT.2246-8 (03/2023) The present state of ultra-high definition television"</a>. <i>ITU</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ITU&rft.atitle=BT.2246-8+%2803%2F2023%29+The+present+state+of+ultra-high+definition+television&rft_id=https%3A%2F%2Fwww.itu.int%2Fpub%2FR-REP-BT.2246-8-2023&rfr_id=info%3Asid%2Fen.wikipedia.org%3AYCbCr" class="Z3988"></span></span> </li> <li id="cite_note-chromaSub-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-chromaSub_9-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20181013172410/https://www.dolby.com/us/en/technologies/dolby-vision/ictcp_vs_ycbcr-subsampling.pdf">"Subsampling in ICtCp vs YCbCr"</a> <span class="cs1-format">(PDF)</span>. Dolby Laboratories, Inc. Archived from <a rel="nofollow" class="external text" href="https://www.dolby.com/us/en/technologies/dolby-vision/ictcp_vs_ycbcr-subsampling.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 13 October 2018.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Subsampling+in+ICtCp+vs+YCbCr&rft.pub=Dolby+Laboratories%2C+Inc.&rft_id=https%3A%2F%2Fwww.dolby.com%2Fus%2Fen%2Ftechnologies%2Fdolby-vision%2Fictcp_vs_ycbcr-subsampling.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AYCbCr" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.w3.org/Graphics/JPEG/jfif3.pdf">JPEG File Interchange Format Version 1.02</a></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation book cs1"><a rel="nofollow" class="external text" href="http://www.itu.int/rec/T-REC-T.871"><i>T.871: Information technology – Digital compression and coding of continuous-tone still images: JPEG File Interchange Format (JFIF)</i></a>. <a href="/wiki/ITU-T" title="ITU-T">ITU-T</a>. September 11, 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">2016-07-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=T.871%3A+Information+technology+%E2%80%93+Digital+compression+and+coding+of+continuous-tone+still+images%3A+JPEG+File+Interchange+Format+%28JFIF%29&rft.pub=ITU-T&rft.date=2012-09-11&rft_id=http%3A%2F%2Fwww.itu.int%2Frec%2FT-REC-T.871&rfr_id=info%3Asid%2Fen.wikipedia.org%3AYCbCr" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">See libjpeg-turbo documentation for: <a rel="nofollow" class="external text" href="https://github.com/libjpeg-turbo/libjpeg-turbo/blob/6b9e3b04008165260a13f77cf235170438d5adf8/java/org/libjpegturbo/turbojpeg/TJ.java#L402">CS_YCCK</a> 'YCCK (AKA "YCbCrK") is not an absolute colorspace but rather a mathematical transformation of CMYK designed solely for storage and transmission', <a rel="nofollow" class="external text" href="https://github.com/libjpeg-turbo/libjpeg-turbo/blob/6b9e3b04008165260a13f77cf235170438d5adf8/jccolor.c#L396">cmyk_ycck_convert()</a>; see </span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://tech.ebu.ch/docs/tech/tech3237s1.pdf">"EBU Tech 3237 Supplement 1"</a> <span class="cs1-format">(PDF)</span>. p. 18<span class="reference-accessdate">. Retrieved <span class="nowrap">15 April</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=EBU+Tech+3237+Supplement+1&rft.pages=18&rft_id=https%3A%2F%2Ftech.ebu.ch%2Fdocs%2Ftech%2Ftech3237s1.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AYCbCr" class="Z3988"></span></span> </li> <li id="cite_note-Keith-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-Keith_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Keith_14-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFJack1993" class="citation book cs1">Jack, Keith (1993). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/videodemystified00jack"><i>Video Demystified</i></a></span>. HighText Publications. p. 30. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/1-878707-09-4" title="Special:BookSources/1-878707-09-4"><bdi>1-878707-09-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Video+Demystified&rft.pages=30&rft.pub=HighText+Publications&rft.date=1993&rft.isbn=1-878707-09-4&rft.aulast=Jack&rft.aufirst=Keith&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fvideodemystified00jack&rfr_id=info%3Asid%2Fen.wikipedia.org%3AYCbCr" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://github.com/google/skia/commit/c7d01d3e1d3621907c27b283fb7f8b6e177c629d">"Use libjpeg-turbo for YUV->RGB conversion in jpeg encoder · google/skia@c7d01d3"</a>. <i>GitHub</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=GitHub&rft.atitle=Use+libjpeg-turbo+for+YUV-%3ERGB+conversion+in+jpeg+encoder+%C2%B7+google%2Fskia%40c7d01d3&rft_id=https%3A%2F%2Fgithub.com%2Fgoogle%2Fskia%2Fcommit%2Fc7d01d3e1d3621907c27b283fb7f8b6e177c629d&rfr_id=info%3Asid%2Fen.wikipedia.org%3AYCbCr" class="Z3988"></span></span> </li> <li id="cite_note-msdn.types-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-msdn.types_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-msdn.types_16-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://msdn.microsoft.com/en-us/library/windows/desktop/dd391027(v=vs.85).aspx">msdn.microsoft.com, YUV Video Subtypes</a></span> </li> <li id="cite_note-msdn.8rec-17"><span class="mw-cite-backlink">^ <a href="#cite_ref-msdn.8rec_17-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-msdn.8rec_17-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-msdn.8rec_17-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-msdn.8rec_17-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://msdn.microsoft.com/de-de/library/windows/desktop/dd206750(v=vs.85).aspx">msdn.microsoft.com, Recommended 8-Bit YUV Formats for Video Rendering</a></span> </li> <li id="cite_note-v4l2-18"><span class="mw-cite-backlink">^ <a href="#cite_ref-v4l2_18-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-v4l2_18-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://docs.kernel.org/userspace-api/media/v4l/pixfmt-packed-yuv.html">"2.7.1.1. Packed YUV formats — The Linux Kernel documentation"</a>. <i>docs.kernel.org</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=docs.kernel.org&rft.atitle=2.7.1.1.+Packed+YUV+formats+%E2%80%94+The+Linux+Kernel+documentation&rft_id=https%3A%2F%2Fdocs.kernel.org%2Fuserspace-api%2Fmedia%2Fv4l%2Fpixfmt-packed-yuv.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AYCbCr" class="Z3988"></span></span> </li> <li id="cite_note-vlc-yuv420-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-vlc-yuv420_19-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://wiki.videolan.org/YUV#YV12">"VideoLAN Wiki: YUV"</a>. <i>wiki.videolan.org</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=wiki.videolan.org&rft.atitle=VideoLAN+Wiki%3A+YUV&rft_id=https%3A%2F%2Fwiki.videolan.org%2FYUV%23YV12&rfr_id=info%3Asid%2Fen.wikipedia.org%3AYCbCr" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://fourcc.org/yuv.php#NV21">fourcc.com YUV pixel formas</a></span> </li> <li id="cite_note-v4l2.planar-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-v4l2.planar_21-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://docs.kernel.org/userspace-api/media/v4l/pixfmt-yuv-planar.html">"2.7.1.2. Planar YUV formats — The Linux Kernel documentation"</a>. <i>docs.kernel.org</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=docs.kernel.org&rft.atitle=2.7.1.2.+Planar+YUV+formats+%E2%80%94+The+Linux+Kernel+documentation&rft_id=https%3A%2F%2Fdocs.kernel.org%2Fuserspace-api%2Fmedia%2Fv4l%2Fpixfmt-yuv-planar.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AYCbCr" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=YCbCr&action=edit&section=22" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="https://res18h39.netlify.app/color">Y′CbCr calculator</a>, including BT.1886</li> <li><a rel="nofollow" class="external text" href="https://poynton.ca/ColorFAQ.html">Charles Poynton — Color FAQ</a></li> <li><a rel="nofollow" class="external text" href="https://www.poynton.ca/Poynton-video-eng.html">Charles Poynton — Video engineering</a></li> <li><a rel="nofollow" class="external text" href="http://www.couleur.org/index.php?page=transformations#YCbCr">Color Space Visualization</a></li> <li><a rel="nofollow" class="external text" href="https://discoverybiz.net/enu0/faq/faq_YUV_YCbCr_YPbPr.html">YUV, YCbCr, YPbPr color spaces.</a></li> <li><a rel="nofollow" class="external text" href="https://api.video/what-is/ycbcr">YCbCr Definition</a></li></ul> <p>Software resources for packed pixels: </p> <ul><li>Kohn, Mike. <a rel="nofollow" class="external text" href="https://www.mikekohn.net/stuff/image_processing.php">Y′UV422 to RGB using SSE/Assembly</a></li> <li><a rel="nofollow" class="external text" href="https://chromium.googlesource.com/libyuv/libyuv/">libyuv</a></li> <li><a rel="nofollow" class="external text" href="https://code.google.com/p/pixfc-sse/">pixfc-sse</a> – C library of SSE-optimized color format conversions</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20190220164028/http://www.sunrayimage.com/examples.html">YUV files</a> – Sample / Demo YUV/RGB video files in many YUV formats, help you for the testing.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Color_space428" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Color_space" title="Template:Color space"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Color_space" title="Template talk:Color space"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Color_space" title="Special:EditPage/Template:Color space"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Color_space428" style="font-size:114%;margin:0 4em"><a href="/wiki/Color_space" title="Color space">Color space</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><a href="/wiki/List_of_color_spaces_and_their_uses" title="List of color spaces and their uses">List of color spaces</a></li> <li><a href="/wiki/Color_model" title="Color model">Color models</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Color_appearance_model" title="Color appearance model">CAM</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/CIECAM02" title="CIECAM02">CIECAM02</a></li> <li><a href="/wiki/ICAM_(color_appearance_model)" title="ICAM (color appearance model)">iCAM</a></li> <li><a href="/wiki/CAM16" class="mw-redirect" title="CAM16">CAM16</a></li> <li><a href="/w/index.php?title=CIECAM16&action=edit&redlink=1" class="new" title="CIECAM16 (page does not exist)">CIECAM16</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/International_Commission_on_Illumination" title="International Commission on Illumination">CIE</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/CIE_1931_color_space" title="CIE 1931 color space">XYZ (1931)</a></li> <li><a href="/wiki/CIE_1931_color_space#CIE_RGB_color_space" title="CIE 1931 color space">RGB (1931)</a></li> <li><a href="/wiki/CIE_1960_color_space" title="CIE 1960 color space">YUV (1960)</a></li> <li><a href="/wiki/CIE_1964_color_space" title="CIE 1964 color space">UVW (1964)</a></li> <li><a href="/wiki/CIELAB_color_space" title="CIELAB color space">CIELAB (1976)</a></li> <li><a href="/wiki/CIELUV" title="CIELUV">CIELUV (1976)</a></li> <li><a href="/wiki/CIECAM02" title="CIECAM02">CIECAM02</a></li> <li><a href="/w/index.php?title=CIECAM16&action=edit&redlink=1" class="new" title="CIECAM16 (page does not exist)">CIECAM16</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/RGB_color_model" title="RGB color model">RGB</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/RGB_color_spaces" title="RGB color spaces">RGB color spaces</a></li> <li><a href="/wiki/SRGB" title="SRGB">sRGB</a></li> <li><a href="/wiki/Rg_chromaticity" title="Rg chromaticity">rg chromaticity</a></li> <li><a href="/wiki/Adobe_RGB_color_space" title="Adobe RGB color space">Adobe</a></li> <li><a href="/wiki/Wide-gamut_RGB_color_space" title="Wide-gamut RGB color space">Wide-gamut</a></li> <li><a href="/wiki/ProPhoto_RGB_color_space" title="ProPhoto RGB color space">ProPhoto</a></li> <li><a href="/wiki/ScRGB" title="ScRGB">scRGB</a></li> <li><a href="/wiki/DCI-P3" title="DCI-P3">DCI-P3</a></li> <li><a href="/wiki/Rec._601" title="Rec. 601">Rec. 601</a></li> <li><a href="/wiki/NTSC#SMPTE_C" title="NTSC">SMPTE 240M/"C"</a></li> <li><a href="/wiki/Rec._709" title="Rec. 709">Rec. 709</a></li> <li><a href="/wiki/Rec._2020" title="Rec. 2020">Rec. 2020</a></li> <li><a href="/wiki/Rec._2100" title="Rec. 2100">Rec. 2100</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Y%E2%80%B2UV" title="Y′UV">Y′UV</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Y%E2%80%B2UV" title="Y′UV">YUV</a> <ul><li><a href="/wiki/PAL" title="PAL">PAL</a></li></ul></li> <li><a href="/wiki/YDbDr" title="YDbDr">YDbDr</a> <ul><li><a href="/wiki/SECAM" title="SECAM">SECAM</a></li></ul></li> <li><a href="/wiki/YIQ" title="YIQ">YIQ</a> <ul><li><a href="/wiki/NTSC" title="NTSC">NTSC</a></li></ul></li> <li><a class="mw-selflink selflink">YCbCr</a> <ul><li><a href="/wiki/Rec._601" title="Rec. 601">Rec. 601</a></li> <li><a href="/wiki/Rec._709" title="Rec. 709">Rec. 709</a></li> <li><a href="/wiki/Rec._2020" title="Rec. 2020">Rec. 2020</a></li> <li><a href="/wiki/Rec._2100" title="Rec. 2100">Rec. 2100</a></li></ul></li> <li><a href="/wiki/ICtCp" title="ICtCp">ICtCp</a> <ul><li><a href="/wiki/Rec._2100" title="Rec. 2100">Rec. 2100</a></li></ul></li> <li><a href="/wiki/YPbPr" title="YPbPr">YPbPr</a> <ul><li><a href="/wiki/Multiplexed_Analogue_Components" title="Multiplexed Analogue Components">MAC</a></li></ul></li> <li><a href="/wiki/XvYCC" title="XvYCC">xvYCC</a></li> <li><a href="/wiki/YCoCg" title="YCoCg">YCoCg</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/CcMmYK_color_model" title="CcMmYK color model">CcMmYK</a></li> <li><a href="/wiki/CMYK_color_model" title="CMYK color model">CMYK</a></li> <li><a href="/wiki/ColorADD" title="ColorADD">ColorADD</a></li> <li><a href="/wiki/Coloroid" title="Coloroid">Coloroid</a></li> <li><a href="/wiki/LMS_color_space" title="LMS color space">LMS</a></li> <li><a href="/wiki/Hexachrome" title="Hexachrome">Hexachrome</a></li> <li><a href="/wiki/HSL_and_HSV" title="HSL and HSV">HSL, HSV</a></li> <li><a href="/wiki/HCL_color_space" title="HCL color space">HCL</a></li> <li><a href="/wiki/Impossible_color" title="Impossible color">Imaginary color</a></li> <li><a href="/wiki/Oklab_color_space" title="Oklab color space">Oklab</a></li> <li><a href="/wiki/OSA-UCS" title="OSA-UCS">OSA-UCS</a></li> <li><a href="/wiki/Practical_Color_Coordinate_System" title="Practical Color Coordinate System">PCCS</a></li> <li><a href="/wiki/RG_color_models" title="RG color models">RG</a></li> <li><a href="/wiki/RYB_color_model" title="RYB color model">RYB</a></li> <li><a href="/wiki/HWB_color_model" title="HWB color model">HWB</a></li> <li><a href="/wiki/YJK" title="YJK">YJK</a></li> <li><a href="/wiki/TSL_color_space" title="TSL color space">TSL</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Color systems<br />and standards</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Academy_Color_Encoding_System" title="Academy Color Encoding System">ACES</a></li> <li><a href="/wiki/News_Media_Alliance" title="News Media Alliance">ANPA</a></li> <li><a href="/wiki/Colour_Index_International" title="Colour Index International">Colour Index International</a> <ul><li><a href="/wiki/List_of_dyes" title="List of dyes">CI list of dyes</a></li></ul></li> <li><a href="/wiki/DIC_Corporation" title="DIC Corporation">DIC</a></li> <li><a href="/wiki/Federal_Standard_595" title="Federal Standard 595">Federal Standard 595</a></li> <li><a href="/wiki/HKS_(colour_system)" title="HKS (colour system)">HKS</a></li> <li><a href="/wiki/ICC_profile" title="ICC profile">ICC profile</a></li> <li><a href="/wiki/ISCC%E2%80%93NBS_system" title="ISCC–NBS system">ISCC–NBS</a></li> <li><a href="/wiki/Munsell_color_system" title="Munsell color system">Munsell</a></li> <li><a href="/wiki/Natural_Color_System" title="Natural Color System">NCS</a></li> <li><a href="/wiki/Ostwald_color_system" title="Ostwald color system">Ostwald</a></li> <li><a href="/wiki/Pantone" title="Pantone">Pantone</a></li> <li><a href="/wiki/RAL_colour_standard" title="RAL colour standard">RAL</a> <ul><li><a href="/wiki/List_of_RAL_colors" class="mw-redirect" title="List of RAL colors">list</a></li></ul></li> <li><a href="/w/index.php?title=JIS_Z8102&action=edit&redlink=1" class="new" title="JIS Z8102 (page does not exist)">JIS Z8102</a><span class="noprint" style="font-size:85%; font-style: normal;"> [<a href="https://ja.wikipedia.org/wiki/JIS%E6%85%A3%E7%94%A8%E8%89%B2%E5%90%8D" class="extiw" title="ja:JIS慣用色名">ja</a>]</span></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div>For the vision capacities of organisms or machines, see <span class="noviewer" typeof="mw:File"><span title="Template"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/20px-Symbol_template_class_pink.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/40px-Symbol_template_class_pink.svg.png 1.5x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Template:Eye_physiology" title="Template:Eye physiology">Color vision</a>.</div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐684955989f‐nqjkd Cached time: 20250331182429 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.366 seconds Real time usage: 0.543 seconds Preprocessor visited node count: 1868/1000000 Post‐expand include size: 39456/2097152 bytes Template argument size: 1121/2097152 bytes Highest expansion depth: 13/100 Expensive parser function count: 15/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 66502/5000000 bytes Lua time usage: 0.193/10.000 seconds Lua memory usage: 6226726/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 368.686 1 -total 34.04% 125.514 1 Template:Reflist 25.06% 92.399 11 Template:Cite_web 22.58% 83.235 1 Template:Color_space 21.75% 80.171 1 Template:Navbox 18.52% 68.279 1 Template:Short_description 12.28% 45.269 2 Template:Pagetype 8.76% 32.300 1 Template:Citation_needed 7.37% 27.169 1 Template:Fix 5.81% 21.415 1 Template:Redirect --> <!-- Saved in parser cache with key enwiki:pcache:592613:|#|:idhash:canonical and timestamp 20250331182429 and revision id 1283309883. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://auth.wikimedia.org/loginwiki/wiki/Special:CentralAutoLogin/start?useformat=desktop&type=1x1&usesul3=1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=YCbCr&oldid=1283309883">https://en.wikipedia.org/w/index.php?title=YCbCr&oldid=1283309883</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Category</a>: <ul><li><a href="/wiki/Category:Color_space" title="Category:Color space">Color space</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_April_2021" title="Category:Articles with unsourced statements from April 2021">Articles with unsourced statements from April 2021</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 31 March 2025, at 18:23<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=YCbCr&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://www.wikimedia.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/static/images/footer/wikimedia-button.svg" width="84" height="29"><img src="/static/images/footer/wikimedia.svg" width="25" height="25" alt="Wikimedia Foundation" lang="en" loading="lazy"></picture></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" lang="en" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">YCbCr</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>15 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="mw-portlet mw-portlet-dock-bottom emptyPortlet" id="p-dock-bottom"> <ul> </ul> </div> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-65585cc8dc-vsp8x","wgBackendResponseTime":210,"wgPageParseReport":{"limitreport":{"cputime":"0.366","walltime":"0.543","ppvisitednodes":{"value":1868,"limit":1000000},"postexpandincludesize":{"value":39456,"limit":2097152},"templateargumentsize":{"value":1121,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":15,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":66502,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 368.686 1 -total"," 34.04% 125.514 1 Template:Reflist"," 25.06% 92.399 11 Template:Cite_web"," 22.58% 83.235 1 Template:Color_space"," 21.75% 80.171 1 Template:Navbox"," 18.52% 68.279 1 Template:Short_description"," 12.28% 45.269 2 Template:Pagetype"," 8.76% 32.300 1 Template:Citation_needed"," 7.37% 27.169 1 Template:Fix"," 5.81% 21.415 1 Template:Redirect"]},"scribunto":{"limitreport-timeusage":{"value":"0.193","limit":"10.000"},"limitreport-memusage":{"value":6226726,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-684955989f-nqjkd","timestamp":"20250331182429","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"YCbCr","url":"https:\/\/en.wikipedia.org\/wiki\/YCbCr","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1189998","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1189998","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-04-12T20:01:20Z","dateModified":"2025-03-31T18:23:07Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/b\/b8\/YCbCr.GIF","headline":"color space family"}</script> </body> </html>